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Abstract: The ornamental crop industry is an important contributor to the economy in the United
States. The industry has been facing challenges due to continuously increasing labor and agricultural
input costs. Sensing and automation technologies have been introduced to reduce labor requirements
and to ensure efficient management operations. This article reviews current sensing and automation
technologies used for ornamental nursery crop production and highlights prospective technologies
that can be applied for future applications. Applications of sensors, computer vision, artificial
intelligence (AI), machine learning (ML), Internet-of-Things (IoT), and robotic technologies are
reviewed. Some advanced technologies, including 3D cameras, enhanced deep learning models, edge
computing, radio-frequency identification (RFID), and integrated robotics used for other cropping
systems, are also discussed as potential prospects. This review concludes that advanced sensing, AI
and robotic technologies are critically needed for the nursery crop industry. Adapting these current
and future innovative technologies will benefit growers working towards sustainable ornamental
nursery crop production.

Keywords: agricultural mechanization; artificial intelligence; computer vision; digital agriculture;
internet-of-things; plant biometrics; smart irrigation; smart spraying; stress detection

1. Introduction

The nursery and greenhouse industry contributes nearly $14 billion in annual sales to
the U.S. economy [1]. This industry produces more than 2000 ornamental plant species, cov-
ering most of the U.S.’ ornamental plants [2]. Nurseries are, in general, open-air operations
where plants grow in the ground or in containers [3]. Greenhouses are typically enclosed
environments where growth conditions (e.g., lighting, temperature, humidity, and irriga-
tion) can be controlled [4]. Rapidly increasing production cost due to the increased labor
expense, difficulty in obtaining skilled labor, and inappropriate application of agricultural
resources are rising concerns for the ornamental industry [5,6]. Operations such as planting,
growing, and harvesting nursery crops are heavily dependent on labor. These operations
account for 43% of total production expenses [7]. It is becoming increasingly difficult for the
industry to obtain such labor, especially the skilled workforce required to grow ornamental
crops [8]. Conventional practices apply agricultural resources (such as water, nutrients,
fertilizers, and pesticides) excessively and inefficiently, increasing production costs. These
conventional approaches not only increase the production cost but are also responsible for
contaminating the environment and the ecosystem. The industry must look for alternative
solutions, such as automated crop management technologies, to reduce labor needs and
ensure the efficient use of crop production resources.
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In the current decade, sensing and automation technologies have been continually
increasing their impact on different crop management operations [9–13]. These technolo-
gies are categorized into two groups: ground-based and aerial-based. Ground-based crop
harvesting technologies have been tested on various crops, including sweet pepper [14],
lettuce [15], tomato [16], strawberries [11], apples [9], and cherries [17]. Ground-based
technologies have also been explored widely in automatic disease detection in different
crops, such as: powdery mildew on strawberry leaves [18]; leaf blotch, stripe rust, powdery
mildew, leaf rust, black chaff, and smut on wheat leaves [19]; Alternaria leaf spot, brown
spot, mosaic, grey spot and rust on apple leaves [20]; and anthracnose, brown spot, mites,
black rot, downy mildew, and leaf blight on grape leaves [10]. Recent evolutions in un-
manned aerial vehicles (UAVs) show the potential of using them in different agricultural
operations, thereby consuming less time than ground-based systems [12]. Until now, UAVs
used for agriculture have been limited to only remote sensing applications, due to limited
payload capacity and battery life. UAVs have been used in various crop management
applications, including automatic canker disease monitoring in citrus [21], weed detec-
tion in wheat and oat fields [22], detecting and mapping tree seedlings and individual
plants [23,24], and yield estimation in cotton [25]. However, the success of sensing and
automation technologies largely depends on the types of sensors used to acquire crop data
and the processing algorithms used to extract valuable information.

Various sensors, such as soil moisture, temperature and humidity sensors, cameras
(color, spectral, and infrared), together with computer algorithms are used to develop smart
technologies for agricultural applications [5,18,21,26]. A prototype irrigation controller
system was developed using nine soil moisture sensors on an IoT platform to automatically
manage water application in crops [26]. You et al. [27] used an RGB-D camera system
to develop an autonomous robot for pruning branches of sweet cherry trees. It should
be noted that RGB-D cameras offer four channels (i.e., red, green, blue and depth) that
were required to estimate the size of branches (by depth channel) to decide which ones
need to prune. Abdulridha et al. [21] detected citrus disease at an early stage using a
hyperspectral camera. Other cameras may not be suitable for detecting a particular disease
at the asymptomatic stage. Liu et al. [28] used enhanced generative adversarial networks
(GANs) to augment their data for grape leaf disease detection; other machine-learning
models were not considered because of the requirement for a deeper network.

In conclusion, identifying appropriate sensors and developing algorithms are neces-
sary tasks that depend mainly on crop and soil characteristics and operational needs. In
most cases, one automated technology is specific to one particular operation in a specific
crop. Therefore, evaluating sensor and algorithm performances for different crops in a
certain industry provide insights for choosing them generally, while developing technol-
ogy for a particular production operation. Although the ornamental crop industry is in
the initial phase of developing sensing and automation technologies, an overview of cur-
rently available technologies and prospects of advanced technologies utilized for other
crop industries (for agronomic crops and tree fruits industry) will be helpful for future
technology developments.

1.1. Scope of the Study

A few of the available reviews for ornamental crops mainly reviewed water manage-
ment technologies and barriers to technology adoption [6,29]. Lea-Cox et al. [29] studied
the economic benefit, current and future challenges, and support issues of using wireless
sensor networks (WSNs) for water management of ornamental crops. Rihn et al. [6] re-
viewed factors correlated with the nursery industry’s propensity to use automation and
mechanization. Their study also discussed the barriers to adoption for currently available
automated technologies. This review aims to cover available sensing and automation
technologies used for ornamental crop production operations, along with the prospects of
using some advanced technologies (used in other crop industries) that can be beneficial
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to this industry. To the author’s knowledge, this is the first review article that broadly
discusses sensing and automation technologies for ornamental crops.

1.2. Paper Organization

This review aims to discuss the status and challenges of sensing and automation
technologies for the ornamental crop industry. The organization of this article is as follows:
Section 2 presents an overview of sensing and automation technologies used for ornamental
crops. In Section 3, advanced technologies used for other cropping systems are discussed
that could be valuable for developing future technologies for ornamental crops. Finally,
Section 4 summarizes the overall discussion and conclusion of the article.

2. Sensing and Automation Technologies for Ornamental Crops

Sensing and automation technologies are used in different operations relating to
ornamental nursery crop production. The major operations are smart irrigation, plant stress
detection, smart or variable-rate spraying, and plant biometrics measurements (Figure 1).
This section presents detailed reviews of the currently applied sensing and automation
technologies for those operations. The technologies have also been used in a few other
areas and represented as other significant works.
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Figure 1. Areas where sensing and automation technologies are used for ornamental crop production.

2.1. Smart Irrigation

Smart or precision irrigation technology determines the water requirement of crops
using set-point control (using soil moisture data) or model-based control (using crop and
environmental data) to maximize irrigation efficiency [4,29]. It helps reduce excessive water
application while maintaining crop growth and development. Sensors-based irrigation
technologies have been tested in different nurseries, including greenhouse, container, pot-
in-pot, and field nurseries [30–34]. A schematic diagram of a smart irrigation system is
presented in Figure 2.
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Figure 2. A schematic of an IoT-based smart irrigation system for water management in a container-
based nursery.

Table 1 presents different sensor applications for automatic irrigation management in
different nurseries. Wireless sensor networks (WSNs) were used to control irrigation water
flow in three container-based nurseries [32]. Experiments were conducted in two phases:
first, EM50R nodes with EC-5 sensors were used to monitor soil moisture; and second, nR5
nodes were used to monitor and control irrigation. The WSNs-based technology reduced
water use by about 20% to 25%. Kim et al. [35] tested soil moisture and EC sensors to
monitor and automatically implement irrigation protocols. Substrate moisture data were
measured to reduce water usage of hydrangea by as much as 83%. Coates et al. [36] used
a VH400 (Vegetronix, Sandy, UT, USA) sensor to monitor soil water content in container
nurseries where pots contain hydrangea plants. Even though the VH400 sensor costs
half as much as standard EC-5 sensors, the authors concluded the VH400 was unsuitable
for nursery crop monitoring because its output varied by up to 29%. This type of sensor
(VH400) shows a high sensitivity of ~34 mV rather than ~5 mV using EC-5 per % volumetric
water content. Lea-Cox et al. [31] used a hybrid system consisting of a 12-node CMU
network (developed by Carnegie Mellon University, United States) and Decagon Ech20
moisture sensors (Decagon Devices Inc., Pullman, WA, USA) to control water applications
in real-time in a container nursery. The system was also tested in a greenhouse where a
six-node CMU network was used. The results reported that both networks performed well,
but encountered some networking challenges at remote sites. The authors noted the CMU
network node is less costly than the commercial Decagon Ech20 sensor, but showed similar
performance. Wheeler et al. [34] also tested a smart irrigation system in a container nursery
and greenhouse. They used Decagon soil moisture sensors along with an nR5 wireless node
to control irrigation. The study reported a water use reduction of approximately 50% when
compared to grower-controlled irrigation. The same sensor system was trialed previously
by Wheeler et al. [5] in a floriculture greenhouse.

The WSNs are also used in pot-in-pot nurseries. Belayneh et al. [37] used this tech-
nology to control irrigation in dogwood (planted in 15-gal containers) and red maple
(planted in 30-gal containers) nurseries. The EM50R nodes were used to monitor data from
soil moisture, and environmental sensors and nR5 nodes were used for irrigation control.
Volumetric water content-based sensors were utilized for monitoring soil moisture. The
sensors were inserted at a 6-inch depth for dogwood and at 6 and 12 inches depth for red
maple. The results showed that the WSNs-based irrigation method reduced water usage
by ~34% and ~63% for red maple and dogwood, respectively. Lea-Cox and Belayneh [38]
developed a smart battery-operated nR5 wireless sensor node using a series of soil mois-
ture and environmental sensors to irrigate dogwood and red maple nursery blocks. The
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study reduced daily water application by about 62.9%. The authors concluded that this
sensor-based irrigation technology resulted in nearly a three-fold increase in the efficiency
of water without reducing the quality or growth of trees.

Internet-of-Things (IoT)-based smart irrigation systems have also been used for orna-
mental crop production. Banda-Chávez et al. [39] developed an IoT-based sensor network
to activate the irrigation system to irrigate ornamental plant using an IoT platform and soil
moisture sensors (YL-69). In addition, Beeson and Brooks [40] used an evapotranspiration
(ETo) model-based smart irrigation system for wax-leaf privet. The study reported that this
model-based irrigation system could reduce water application by about 22.22% annually,
compared to the traditional overhead irrigation method. Although a limited number of
studies have reported on the IoT-based automatic irrigation systems used for the ornamen-
tal industry, trends and current successes of this technology for other crop industries show
promising potential for ornamental crop production.

Although studies have reported the potential of using sensors-based technology for
irrigation management, many factors impede this technology’s efficacy. Sensor-to-sensor
variability in a particular environment could be one of them. The greatest variability among
sensor readings occurred at volumetric water content levels just below the water-holding
capacity of the substrate. Therefore, finding sensor-to-sensor variability in a particular
nursery condition can greatly increase confidence in the data. Sensor positioning is another
important factor that directly affects efficacy. Accurate positioning is needed in nursery
conditions, particularly when measuring soil moisture content in container production.
Sensors need to be placed in that part of the root zone where active water uptake occurs.
Determination of optimal sensor numbers is another factor in specifying sensors for a
nursery environment. The optimal number of sensors for a particular nursery depends
primarily on the accuracy and repeatability of the sensors, variation among sensors, spatial
variability of the nursery environment, and cost.

Table 1. Summary of studies reported for smart nursery irrigation.

Crop Nursery Types Soil Sensor Types Water Saving References

Ornamentals Container Capacitance-based
(WSNs) 20% to 25% Chappell et al. [32]

Hydrangea Container Capacitance-based
(WSNs) Not Reported Coates et al. [36]

Red Maple and Cherokee
Princess

Container and
Greenhouse

Matric potential and
capacitance sensors

(WSNs)
Not Reported Lea-Cox et al. [31]

Hydrangea Container Electrical conductivity
(WSNs) As much as 83% Kim et al. [35]

Woody Ornamental Plants:
Oakleaf Hydrangea,

Japanese Andromeda,
Catawba Rosebay and

Mountain Laurel

Container and
Greenhouse

Capacitance-based
(WSNs) 50% Wheeler et al. [34]

Dogwood and Red Maple Pot-in-pot Capacitance-based
(WSNs) 34% to 63% Belayneh et al. [37]

Dogwood and Red Maple Pot-in-pot Capacitance-based
(WSNs) 62.9% Lea-Cox and Belayneh [38]

Ornamental plants Pots in indoor Capacitance-based
(IoT) Not Reported Banda-Chávez et al. [39]
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2.2. Plant Stress Detection

Detection of stresses such as drought, disease infection, and pest pressure, recognizes
unfavorable condition or substance that affects the growth, development or production of
plants or crops using sensors and advanced technologies [41]. This detection helps growers
to identify problems and take preventive actions before stresses significantly damage
plants or crops. Two types of stresses have been identified in ornamental crop production:
abiotic plant stress and biotic plant stress. Abiotic plant stress includes drought, nutrient
deficiency, salinity problems, floods, etc., while biotic stress refers to damage caused by
fungi, bacteria, insects, or weeds. Sensors, including RGB, thermal, and spectral, have been
utilized to monitor stresses in ornamental crop production [42–45]. A schematic diagram
of the sensor-based automatic crop disease detection procedure is presented in Figure 3.
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Figure 3. A schematic of a computer-vision-guided dogwood anthracnose leaf disease
detection procedure.

Table 2 represents different ornamental plant disease detection using advanced sensing
technologies. Red-green-blue (RGB) imaging sensors with a spectrum range of 400–700 nm
(visible range) are used to monitor ornamental plant stresses due to their affordability and
application in other cropping systems. Velázquez-López et al. [42] developed an image
processing-based powdery mildew disease detection system for rose plants by using the
Open CV library. The system detected powdery mildew by converting RGB images to hue,
saturation, and value (HSV) color space and achieved the highest disease region matching
of 93.2% by segmenting with V channel using close captured images (captured at 10 cm from
the rose canopies). Although this study achieved good performance with the traditional
image segmentation method, the performance would not have been the same if the image
capturing conditions had changed. This is considered a major limitation, especially for
real-time disease detection, where multiple diseases would be present. Nuanmeesri [46]
advanced the image processing technique from traditional image segmentation to deep
learning-based detection in order to identify up to 15 different diseases. A hybrid deep
learning model built by fusing convolutional neural networks (CNNs) and a support vector
machine (SVM) were used. Researchers also tested the image registration approach of
two imaging media for ornamental crop disease detection. Minaei et al. [45] registered
RGB and thermal images to detect powdery mildew and gray mold disease on roses for
developing a site-specific spraying system. A few studies have compared RGB imaging
with spectral imaging for tulip disease detection [43,47]. The results reported that a spectral
imaging system achieved better detection accuracies than RGB imaging while detecting
tulip breaking virus (TBV).
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Hyperspectral imaging is a powerful tool that uses imaging and spectroscopy for
detecting stresses at the early stage, gathering and processing feature information from
a wide spectrum of light. Researchers have used hyperspectral sensors for ornamental
crops, but mainly in laboratory applications due to their vulnerability in real-time field
applications [43]. Polder et al. [48] identified Botrytis infected Cyclamen plants with
selected features (bands) of 497, 635, 744, 839, 604, 728, 542, and 467 nm in a controlled
greenhouse environment. Poona and Ismail [44] selected wavebands located across VIS,
red edge, NIR, and SWIR regions to detect Fusarium circinatum infection in Pinus radiata
seedlings at the asymptomatic stage. The study concluded that random forest (RF) is a
good machine learning (ML) classifier to discriminate disease infection from spectral bands.
Heim et al. [49] also used RF to differentiate myrtle rust-infected lemon myrtle plants and
achieved an overall accuracy of 90%. The spectral wavebands (545, 555, 1505, and 2195 nm)
were selected for discrimination. Considering hyperspectral systems’ slow data processing
and expense, some studies have tried to find an alternative to hyperspectral imaging. A
few studies have used the multispectral imaging system instead because of its faster data
processing ability. Polder et al. [43] used an RGB-NIR-based multispectral system (range
500–750 nm) to detect TBV disease in tulips and achieved a classification accuracy of 92%.
They employed a linear discriminant classifier along with R, G, B, and NIR features to
segment the plant and the soil. The author used features such the fraction of red pixels,
mean normalized red value, mean normalized green value, and ratio of contour pixels of
spots to classify disease in tulips. Pethybridge et al. [50] assessed ray blight disease (caused
by Phoma ligulicola) intensity using a hand-held multispectral radiometer with 485, 560,
660, 830, and 1650 nm spectral band sensors. The study used vegetation indices, including
normalized difference vegetative index (NDVI), green normalized difference vegetative
index (GNDVI), difference vegetative index, and renormalized difference vegetative index
to assess ray blight disease.

Thermal imaging has also been tested for stress detection in ornamental plants, a
technique which depicts the spatial distribution of temperature differences in a captured
scene by converting infrared (IR) radiation into visible images. Jafari et al. [51] classified
asymptomatic powdery mildew and gray mold disease on roses by fusing thermal images
with visible-range captured images. Valuable thermal features were extracted, and artificial
neural networks (ANN) and SVM were used to classify healthy and disease-infected
rose plants. The thermal features include maximum, minimum, median, mode, standard
deviation, maximum difference in temperature, skewness, kurtosis, sum of squared errors,
and so on. Studies have been conducted for disease stress detection using thermal imaging;
however, this type of sensing is more practical for water stress detection. Before conducting
the above experiment, Jafari et al. [52] attempted to classify Botrytis cinerea infection on rose
using thermal spectra and radial-basis neural networks. Buitrago et al. [53] analyzed the
infrared spectra of plants for water stress detection and concluded that spectral changes in
plant regions had a direct connection with the microstructure and biochemistry of leaves.

Stress detection technologies are widely used in other crop industries, especially for
agronomic crops (such as corn and soybean) and tree fruits (such as apple and citrus), but
very few experiments have been conducted for ornamental crops (mostly in the floriculture
industry). Very limited research, almost no studies, have been conducted for the woody
ornamental industry. A few studies have been conducted to detect stress using RGB
sensors because RGB cameras do not require deep technical knowledge to operate or use.
Spectral sensors are necessary to detect stress at an asymptomatic or early stage. Spectral
sensors have a huge potential for the ornamental industry, but not much progress has
been previously reported. Currently, UAVs are very popular for crop stress detection and
monitoring, but the applications of these systems are also very limited for the ornamental
crop industry. De Castro et al. [54] used a UAV system to detect water stress in Cornus,
Hydrangea, Spiraea, Buddleia and Physocarpus, and the results of this study show promise.
The ornamental industry can benefit from using UAV-based sensing technologies for the
timely detection and monitoring of stresses to enhance crop production.
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Table 2. Summary of studies reported for plant stress detection.

Crop Stress Type Imaging Type Processing Method Accuracies References

Rose Powdery mildew RGB (a video
camera: Everio)

Images were
converted to HSV,

and then
segmentation

performed to extract
the disease region

Highest 93.2% of
disease region

matching

Velázquez-López
et al. [42]

Rose Fifteen different
rose diseases

Color images
downloaded from
the Google search

engine and
ChromeDriver

A hybrid deep
learning model

(CNNs with SVM)

90.26% accuracy,
90.59% precision,
92.44% recall, and
91.50% F1-score

Nuanmeesri [46]

Rose Powdery mildew
and gray mold

RGB (Canon 550D
Kiss X4);

Thermal camera
(ITI-P400)

Image registration of
visible and thermal

images and then
segmentation to

segment diseased
area

Not reported Minaei et al. [45]

Tulip Tulip breaking virus

RGB (Nikon D70
with a NIKON 18–70

mm zoom lens);
Spectral camera

(Specim, spectrum
from 430 to 900 nm
with a resolution of

4.5 nm)

Spatial information
was extracted after
segmentation, and
then Fisher’s linear

discriminant analysis
(LDA) used for

the detection

Best results of 9, 18
and 29% detection

error were achieved
for Barcelona, Monte

Carlo, Yokohama
tulip variety,

respective using the
spectral camera

Polder et al. [47]

Tulip Tulip breaking virus

RGB (Prosilica
GC2450 and

GC2450); RGB-NIR
multispectral (JAI

AD120GE);
Multispectral (using
six-band filter wheel,

range 500-750 nm)

Plant segmented by
thresholding the
excessive-green

image ((2G–R–B) > 0)
and then LDA for
TBV classification

92% of TBV-diseased
plants were

accurately classified
using RGB-NIR

multispectral system

Polder et al. [43]

Cyclamen Botrytis
Hyperspectral

imaging
(400–1000 nm)

Selected most
discriminating

wavelengths and
then applied LDA

90% of pixels were
classified correctly Polder et al. [48]

Pinus radiata
seedlings

Pitch
canker disease
(F. circinatum

infection)

Hyperspectral
imaging

(600–2500 nm)

Wavebands were
selected using the
Boruta algorithm,
and then Random

forests were used for
discriminating

infected seedlings

0.82 and 0.84 KHAT
values for

healthy-infected and
infected damaged

discrimination,
respectively

Poona and Ismail [44]

Lemon myrtle Myrtle rust
Hyperspectral

imaging
(350–2500 nm)

Four wavebands
were chosen, and RF

was applied for
discrimination

90% of overall
accuracy Heim et al. [49]

Pyrethrum Ray blight
disease

Multispectral
radiometer

Reflectance was
measured, and data
were analyzed using
regression analysis

Not reported Pethybridge et al.
[50]

Rose Powdery mildew
and gray mold

Infrared thermal
camera (ITI-P400)

Image registration
and then

segmentation were
performed to extract
features, and finally,

neuro-fuzzy
classifiers were used

for classification

92.3% and 92.59%
estimation rates were

achieved for
powdery mildew and

gray mold,
respectively

Jafari et al. [51]

Rose Botrytis cinerea
infection

Infrared thermal
camera (ITI-P400)

Analyzed extracted
thermal features with

radial-basis neural
networks

96.4% correct
estimation rate Jafari et al. [52]

2.3. Smart Spraying

Management of different pests and diseases is essential to ensure high quality or-
namental nursery crop production meeting the market’s requirements [55]. Traditional
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management techniques include pruning the infected branches, removing dead or infected
plants, monitoring diseases, trapping insects, growing pest-resistant cultivars, and pesticide
applications [56]. Foliar pesticide application is the most effective method for preventing
pest infestations and ensuring healthy and unblemished nursery plants [57]. In the United
States, the greenhouse and nursery industries use about 1.3 million kg of pesticides every
year, saving billions worth of crops [58]. Conventionally, radial air-assisted sprayers are the
most used spray equipment for pesticide application in ornamental nurseries [59]. These
sprayers apply pesticides to the entire field regardless of the plant structure, plant growth
stage, and absence of plants in rows, thus, resulting in under- or over-spraying [60] as
well as contaminating the environment, wasting pesticides, and increasing production
cost [61]. This problem is more critical for the nursery industry, as there is great diversity in
canopy structures and densities found in nursery crops. In field nursery production, it is a
common practice that trees of different ages and cultivars are planted in the same row. The
traditional sprayers cannot adjust sprayer settings to match the target tree requirements,
reducing application efficiency. One way to improve spraying efficiency is to use sensing
technologies to identify target trees for precise spraying applications, also referred to as
smart/variable-rate-intelligent spraying (Figure 4).
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Smart spraying is defined as the precise application of pesticides, performed by
controlling the spray output of each nozzle based on the presence, structure, and canopy
density of plants as obtained from sensors such as ultrasound, laser, and cameras [18]. In
recent years, significant research has been conducted to develop smart spraying systems
for the nursery industry. Different sensors, such as ultrasonic and laser, have been utilized
to measure the canopy parameters for intelligent spraying in nursery crops. The summary
of the reviewed studies is presented in Table 3. The initial efforts for smart nursery
spraying were reported back in 2010 by a team of scientists from the United States [62].
The authors developed two precision sprayer prototypes: a hydraulic boom sprayer with
an ultrasonic sensor for small narrow trees such as liners and an air-assisted sprayer
with a laser scanner for other ornamental nursery species. The authors compared the
spray consumption between a sensor-based sprayer and a conventional air blast sprayer
at three growing stages and four travel speeds (3.2, 4.8, 6.4, and 8.0 km/h). The sensor-
based air-assisted sprayer applied 70%, 66%, and 52% fewer chemicals at different growth
stages than conventional spraying. The results also reported a uniform spray deposit and
coverage regardless of changes in the canopy size and travel speed. Jeon and Zhu [63]
developed an ultrasonic-sensed real-time variable-rate vertical boom sprayer for nursery
liners. The sprayer consisted of two booms with five pairs of equally spaced nozzles, with
the ultrasonic sensor mounted 0.35 m ahead of the nozzles. Field tests were conducted
for six different liner species at travel speeds from 3.2 to 8.0 km/h. The spray nozzles
were triggered successfully from 4.5 to 12.5 cm ahead of the target, and the effects of travel
speed on mean spray coverage and deposit were insignificant. Following this work, a
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study for the same precision sprayer was reported for performance evaluation based on
spray coverage, deposit, and droplet density compared to conventional ones for all six-liner
cultivars [64]. The reported results suggest that the spray coverage, deposit, and droplet
density were lower in the sensor-based sprayer, and the spray volume was reduced by
86.4% compared to the conventional sprayer.

Laser sensing is another technology used for precision spraying for many tree crops. A
few studies have been reported that utilize laser scanning for smart spraying applications
in nurseries. Chen et al. [57] developed a variable-rate air-assisted sprayer using a laser
scanner. The authors reported that the spray coverage differences inside the canopies were
not statistically significant at 3.2 and 6.4 km/h travel speeds. Liu et al. [65] used a laser
scanner to develop an intelligent variable-rate air-assisted sprayer and tested the system in
a commercial nursery and grapevine orchard. The authors reported that the new sprayer
reduced chemical usage by more than 50% compared to the conventional sprayer at a travel
speed of 3.2 to 8.0 km/h. Shen et al. [66] developed an air-assisted laser-guided sprayer
for Japanese maple nursery trees. The new sprayer consisted of a 270◦ radial-range laser
scanner, embedded controller, and pulse-width-modulated (PWM) nozzles. The authors
reported an accurate measurement of different trees and control of nozzles to match trees
independently. The spray usage was reduced by 12 to 43%, compared to the conventional
spraying. In addition, a few studies have been reported for field validation of precision
sprayers to control different diseases. Zhu et al. [59] validated the laser-guided air-assisted
sprayer and reported a chemical saving of about 36% and 30% in the Prairifire crabapple
and Honey locust nurseries, respectively. Chen et al. [67] also conducted a performance
comparison of laser-guided air-assisted sprayers with conventional sprayers in commercial
nurseries with different test plants. The author reported 56% and 52% chemical savings for
two nurseries. Similarly, a few other studies have compared the performance of smart laser-
guided sprayers with conventional sprayers and reported promising results for effective
disease control in different nursery crops [61,68].

Table 3. Summary of studies reported for smart nursery spraying.

Crops Nursery Types Sprayer and Sensor Type Performance References

Multiple ornamental
tree species Field nursery

Two sprayers: Vertical
boom with an ultrasonic

sensor; Air assisted
sprayer with a laser sensor

Chemical usage was reduced
by 70%, 66%, and 52% at

different growth stages of the
target trees; achieved uniform

spray deposits at all tested
travel speeds

Zhu et al. [62]

Multiple ornamental
tree species Field nursery liners Spray boom with

ultrasonic sensor

The mean spray deposit was
0.72–0.90 µL/cm2; the mean

spray coverage was 12–14.7%
Jeon and Zhu [63]

Multiple ornamental
tree species Field nursery liners Spray boom with

ultrasonic sensor

Spray volume was reduced by
86.4%; lower spray deposit

and droplet density
Jeon et al. [64]

Tsuga canadensis
Thuja occidentalis Container-grown Laser scanner air-assisted

sprayer

Spray coverage differences
were not significantly

different
Chen et al. [57]

Ornamental nursery and
grapevine Field nursery Laser scanner air-assisted

sprayer

Chemical usage reduced by
50% at a travel speed of 3.2 to

8.0 km/h
Liu et al. [65]

Japanese maple Field nursery Laser-guided air-assisted
sprayer Spray savings of 12 to 43% Shen et al. [66]

Prairifire crabapple
Honey locust

Field nursery;
pot-in-pot

Laser-guided air-assisted
sprayer

Chemical savings of 36% and
30% in the Prairifire crabapple

and Honey locust nurseries,
respectively

Zhu et al. [59]

Multiple ornamental
tree species Field nursery Laser-guided air-assisted

sprayer
Chemical savings of 56% and

52% for two nurseries Chen et al. [67]
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Smart spraying for nursery crops using different sensing technologies, mainly ultra-
sonic and laser, has been reported in the last decade. Ultrasonic and laser sensors were
integrated with conventional sprayers to detect the target (e.g., canopies). Although ultra-
sonic sensor-based sprayers exhibit significant chemical savings, their accuracy varies with
temperature, humidity, and detection distance [57]. On the other hand, laser sensors are less
influenced by weather conditions when detecting and measuring target characteristics [69].
Moreover, the nursery industry encounters several unique challenges, such as the lack
of crop uniformity, varying shapes, sizes, growth patterns, and harvest schedules. Most
existing sprayers have been developed for the orchard environment [59]; modifications
may be required to make them usable for ornamental nursery crop production. Another
challenge for the ornamental industry is its high aesthetic thresholds allowing for no visible
infections. Thus, efforts are required to develop a smart spraying system based on the
requirements of the nursery industry.

2.4. Plant Biometrics and Identification

Information on plant physiology and responses to biotic/abiotic stresses are critical to
determine the management practices required to improve productivity and sustainability in
the nursery industry. Plant biometry (e.g., structural information) can assist in understand-
ing the plant’s growth differences in diverse environments [70]. Cultivar identification of
nursery plants is also important for breeding, reproduction, and cultivation [71]. Plant
biometry is a classification system that distinguishes a plant by defining its authenticity
using physiological characteristics. The defined biometric for an individual plant should
be universal, distinctive, permanent, and collectible [72].

Plant identification, inspection, and a precise count of each cultivar’s number and size
distribution are essential for nursery management and efficiently marketing the trees [73]
(Figure 5).
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Figure 5. A schematic of a UAV-based tree canopy characteristics measurement system.

Different sensors, including cameras and LiDAR, have been utilized for nursery plant
biometrics. The summary of the reviewed studies is presented in Table 4. The research for
nursery plant identification using camera imaging systems started in the 1990s. Shearer and
Holmes [74] used a camera vision system to identify tree species in the nursery. The study
used color co-occurrence matrices derived from intensity, saturation, and hue to identify
seven common containerized nursery plants. A total of 33 texture features were used for
the analysis, and the reported classification accuracy was 91%. She et al. [75] developed a
high-resolution imaging system to classify containerized Perennial peanut and Fire chief
arborvitae plants for counting. he authors found that the classification accuracy of plants
with flowers was higher (97%) than those without flowers (96%). Leiva et al. [76] developed
an unmanned aircraft system (UAS)-based imaging system for counting container-grown
Fire Chief arborvitae. The author developed a custom counting algorithm and tested it on
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different backgrounds, including gravel and black fabric. The reported results indicated
counting errors of 8% and 2% for gravel and black fabric backgrounds, respectively.

In another study, the authors used a depth camera for height measurements of nursery
plants [77]. The authors implemented Ghostnet–YoloV4 Network for measuring height
and counting different nursery plants, including spruce, Mongolian scotch pine, and
Manchurian ash. They achieved an accuracy of more than 92% for measurement and
counting. Gini et al. [78] used a UAS-based multispectral imaging system to classify eleven
nursery plant species. The author implemented multiple grey level co-occurrence matrix
algorithms to perform textural analysis of acquired images. A principal component analysis
was used after feature extraction, achieving a classification accuracy of 87% for the selected
plants. Likewise, a few studies have reported the application of LiDAR sensors to identify
nursery plants. Weiss et al. [79] developed a method for identifying nursery plant species
using a LiDAR sensor and supervised machine learning. The author used multiple machine
learning classifiers and 83 features to identify six containerized nursery plant species, and
achieved an accuracy of more than 98%.

Similarly, LiDAR and light curtain sensors were used to develop a stem detection
and classification system for almond nursery plants [73]. The authors developed a custom
segmentation and thresholding algorithm, and the reported detection accuracies with the
LiDAR and light curtain sensors were 95.7% and 99.48%, respectively. The success rates for
dead/alive plant detection for the LiDAR and light curtain sensors were 93.75% and 94.16%,
respectively. Additionally, a few other studies have reported the application of machine
vision approaches using different machine learning and deep learning methodologies for
detecting and classifying different flower nurseries [71,80–84].

Table 4. Summary of studies reported for plant biometric measurements.

Crops Sensor Type Model Performance References

Seven different plant
cultivars–container RGB camera

Color co-occurrence
matrices (intensity,

saturation, and hue)

Overall classification
accuracy of 91%

Shearer and
Holmes [74]

Perennial peanut and
Fire chief

arborvitae–container
RGB camera

Vegetation index
thresholding and the

support vector
machine (SVM)

Accuracy of more
than 94% She et al. [75]

Fire Chief
arborvitae–container

UAS-based RGB
camera

Custom counting
algorithm

Counting error on
gravel and black fabric

of 8% and
2%, respectively

Leiva et al. [76]

Spruce, Mongolian
scotch pine,

Manchurian ash–field
RGB-Depth camera YoloV4 with Ghostnet

Accuracy of more than
92% in both counts and
height measurements

Yuan et al. [77]

Eleven different tree
nurseries–field

UAS-based
Multispectral camera

Grey Level
Co-occurrence Matrix

for texture images;
Maximum Likelihood

algorithm, and
Principal Component

Analysis

Accuracy of 87%,
depending on

components reduction
on spectral camera

Gini et al. [78]

Six different
species–container LiDAR sensor

Logistic regression
functions, support

vector machines (SVM)

Accuracy greater
than 98% Weiss et al. [79]
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Table 4. Cont.

Crops Sensor Type Model Performance References

Almond tree nursery LiDAR and light
curtain sensors

Custom segmentation
and thresholding

algorithm

Tree detection acc of
95.7% (LiDAR) and

99.48% (light curtain
sensors); Dead/alive
tree detection acc of
93.75% (LiDAR) and

94.16% (light
curtain sensors)

Garrido et al. [73]

Flower-Field RGB camera ResNet18, ResNet50,
and DenseNet121

Accuracy of 91.88%,
97.34%, and

99.82% respectively
Zhang et al. [71]

Flower-Field RGB camera DenseNet121 Accuracy of 98.6% for
50 epochs Alipour et al. [80]

Flower-Field RGB camera
CNN, VGG16,

MobileNet2, and
Resnet50

Test accuracy: 91%,
89.35%, 92.12%,

71.75%, respectively
Narvekar and Rao [83]

Flower-Field RGB camera Custom and Inception
v3

Accuracy of 83% and
99%, respectively Dharwadkar et al. [81]

Flower-Field RGB camera

Naive Bayes (NB),
Generalized Linear

Model (GLM),
Multilayer Perceptron

(MP), Decision Tree
(DT), Random Forest

(RF), Gradient Boosted
Trees (GBT), and
Support Vector
Machine (SVM)

RF is the
best-performing model,

with an accuracy
of 78.5%.

Malik et al. [82]

Flower-Field RGB camera

Viola-Jones object
detection and
normalized

cross-correlation
algorithm

Classification accuracy
of more than 99% with
<0.5 s processing time

Soleimanipour and
Chegini [84]

Nursery crop management is time-consuming and labor-intensive, bringing a great
need for automation, especially for large nursery production areas. Sensing-based plant
biometrics, identification, and recognition are promising but challenging tasks. The rapid
advancements in sensing, computation, artificial Intelligence (AI), and data analytics have
allowed more detailed investigations in this domain. Research has been reported to identify
tree species for management operations and counting plants for inventory control using
different types of sensors, including RGB, multispectral, LiDAR, etc. A few recent studies
have utilized state-of-art deep learning techniques for nursery plant classification; however,
more efforts are needed to facilitate the growers’ use of such techniques for the profitability
and sustainability of the nursery industry.

2.5. Other Significant Works

The economics of production practices associated with fertilizer inputs, pest control
needs, and labor requirements affect the nursery industry. Most nursery production op-
erations are labor intensive. According to Gunjal et al. [85], labor accounts for 70% of the
costs for nursery production. Though a few operations in nursery production have been
mechanized, many others have not been automated. Advanced sensing and mechaniza-
tion/automation could reduce resource consumption and labor dependence [73]. In this
context, the ornamental nursery industry has witnessed some progress in different sensing,



Sensors 2023, 23, 1818 14 of 25

automation, and robotic applications. Table 5 presents the summary of works related
to other sensing and automation applications for nursery crop production. Li et al. [86]
developed a trimming robot for ornamental plants. The design includes a knife system
and a rotary base, allowing the knife to rotate 360 degrees to cut the plants into the desired
shape. The robot was tested for five different nursery plant species (Aglaia odorata, Murraya
exotica, Camellia oleifera, Osmanthus fragrans, and Radermachera sinica), and results indicated
that the overall performance was above 93% with the time taken as 8.89 s. Zhang et al. [87]
developed a path-planning scheme for a watering robot for containerized ornamental
nursery plants. The authors optimized the robot’s path planning using a genetic algorithm
with neighbor exchanging to test different watering strategies, and achieved promising
results in terms of water savings. Sharma and Borse [88] developed an autonomous mo-
bile robot to carry out different production operations in the nursery. The robot featured
multiple sensor modules, including camera and climate monitoring, to perform real-time
growth monitoring, disease detection, and the spraying of fertilizer, pesticide, and water.
The platform was also equipped with a Zigbee communication framework to transmit
the sensed data to the central control system. The system achieved the desired results
for disease detection and growth monitoring; however, no technical details are provided.
Similarly, a conceptual design of a cable-driven parallel robot (CDPR) to perform different
operations, including seeding, weeding, and nutrition monitoring for plant nurseries has
been presented [89]. The authors performed the operational and path planning simulation
to execute seeding and weeding operations. Additionally, a pretrained VGG16 model was
used for weed identification, and results showed promise, with an accuracy of 96.29%
achieved during testing. Despite some progress, the status of research-based findings for
robotic applications in the nursery industry lags far behind its contemporary industries.

Table 5. Summary of works related to nursery production in other remaining areas.

Crops Nursery Types Specifications Performance References

Multiple species of
nursery plants Container grown Genetic algorithm for

optimized path planning

Reduced water
consumption; the
optimal path for

watering

Zhang et al. [87]

Five different
plant species Container grown Integrated knife and rotary

base for trimming

Overall performance
was more than 93%;

time: 8.89s
Li et al. [86]

Unspecified Field grown Algorithm: Support Vector
Machine (SVM)

High accuracy for
disease identification

and growth monitoring
Sharma and Borse [88]

Unspecified Field grown
Cable-driven manipulator;

pre-trained VGG16 for
vision system

Weed detection
accuracy of 96.29%;
accurate trajectory

planning in simulation

Prabha et al. [89]

3. Future Prospects/Directions
3.1. Advanced Camera Sensor Applications
3.1.1. ToF, LiDAR, and 3D Sensors Applications

Advanced sensing technologies, such as depth cameras, time-of-flight (ToF) cam-
eras, and multispectral and hyperspectral cameras, have been widely used in different
agricultural applications. Kim et al. [90] implemented a binocular stereo-vision camera
incorporated with a single-board computer for estimating crop height. Authors successfully
estimated heights for Chinese cabbage, potato, sesame, radish, and soybean crops with
a less than 5% of error in field conditions. Wang et al. [91] developed a ground-based
remote imaging system comprised of an ultrasonic sensor, a LiDAR sensor, a Kinect camera,
an imaging array of four digital cameras, and a custom-developed gimble and camera,
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respectively, for estimating sorghum plant height at plot level. The author observed that an
ultrasonic sensor, a LiDAR sensor, and a Kinect camera resulted in strong correlations (r ≥
0.90) between automatic and manual measurements for plant height estimation. The study
concluded that the ground-based image acquisition system resulted in a comparatively
higher correlation between automatic and manual measurements compared to the remote
imaging system. They recommended LiDAR combined with high-resolution camera array
technology, which can be an ideal methodology for measuring plant height effectively. The
3D/Depth cameras have found widespread usage in agriculture for a variety of purposes,
including but not limited to yield estimation [92], plant phenotyping [93], and disease
detection [94].

A vision-based under-canopy navigation and mapping system for corn and sorghum
was developed by Gai et al. [95] using a ToF camera combined with a field robot, PhenoBot
3.0. They implemented linear programming techniques and developed a novel algorithm
for reliable crop row detection and navigation. The developed system achieved mean abso-
lute errors (MAE) of 3.4 cm and 3.6 cm in fields of corn and sorghum, respectively. Similarly,
Gongal et al. [96] fused a color charge coupled device (CCD) camera and a ToF sensor
to estimate apple fruit size under controlled lighting conditions. The developed system
estimated apple fruit size with an accuracy of 84.8% based on pixel size. A few of the most
significant applications for ToF cameras in agriculture are plant height estimation [97,98],
3D reconstruction of the plant [99], 3D plant morphology [100], palm bunch grading [101],
and so on.

3.1.2. Spectral Sensor Applications

Cao et al. [102] developed a nitrogen monitoring system for tea plants using multispec-
tral (wavelengths: 475 nm, 560 nm, 668 nm, 717 nm, and 840 nm) and hyperspectral imaging
systems. They fused data after preprocessing, which included multispectral image regis-
tration, calibration, information extraction and selection, and hyperspectral wavelength
selection. After filtering the fused data, they feed them to regression models, including
PLS regression, random forest regression (RFR), and support vector machine regression
(SVR), to predict the nitrogen content of tea leaves. The support vector machine regression
outperformed other models and achieved R2 (coefficient of determination) and root mean
square error values of ~0.92 and ~0.06, respectively. Another researcher, Chandel et al. [103],
also used simple linear regression models (LRs) to experiment on characterizing Alfalfa
(Medicago sativa L.) crop vigor and yield by combining multispectral (465–860 nm) and
thermal infrared (11,000 ± 3000 nm) image data collected from unmanned aerial vehicles.
The model MLR-4 outperformed other models and achieved an R2 of 0.64.

The aforementioned studies offer compelling evidence of increased success rates
for agricultural applications of cutting-edge sensors, which suggest prospective uses for
ornamental nursery crops. The advanced sensors can operate successfully in both indoor
and outdoor environments. Therefore, in the future, automated systems for ornamental
nursery corps can be developed using sophisticated camera sensors like 3D or depth
cameras, ToF, multispectral, and hyperspectral.

3.2. Enhanced Deep Network Applications

Due to the extraordinary ability to generate synthetic datasets with the same properties
as training datasets, advanced computer vision-based techniques such as generative adver-
sarial networks (GANs) and transformers are overtaking photometric and geometric-based
augmentation approaches in a variety of agricultural problems. Abbas et al. [104] proposed
a tomato plant disease detection system using a publicly available plant village tomato
leaf dataset. The authors augmented the dataset using a conditional generative adversarial
network (C-GAN) and fed the data to a pre-trained DenseNet network. The network
successfully predicted tomato leaf diseases from healthy leaves and achieved an accuracy
of 97.11%. The augmentation of the tomato leaf dataset improved the DenseNet network’s
prediction by 2.77% compared to the accuracy of the original plant village tomato leaf
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dataset. Xiao et al. [105] implemented Texture Reconstruction Loss CycleGAN (TRL-GAN)
to produce phenotypic data for the citrus greening disease and improve classification net-
works for the detection of diseased leaves. The authors observed that the TRL-GAN based
method improved accuracy by 2.76% compared to the baseline model and 1.04% compared
to the traditional augmentation methods (rotation and stretching). Zhang et al. [106] com-
bined hyperspectral imaging with generative adversarial networks (DCGAN, CGAN) to
expand the original dataset. They also observed that expansion of the dataset using GANs
would improve the accuracy of k-nearest neighbor (kNN), SVM, and RF for haploid maize
kernel classification by 12%, 20%, and 12%, respectively, compared to baseline models.

Data enlargement using GANs allows for the development of detection, classification,
and prediction models with less data on ornamental nursery crop images, which increases
the model’s resilience in varying conditions and improves performances or accuracies. The
augmented data can be incredibly useful when developing machine vision-based systems
for nursery crops, such as leaf classification and disease assessment systems. Robots may
be trained in a simulated environment using the data produced by GANs.

3.3. Edge-AI Applications

Embedded platforms combined with hardware accelerators and artificial intelligence-
based sensing technology, called Edge Artificial Intelligence (Edge-AI), have made quick
responses with low latency possible over cloud-based solutions. This technique has been
adopted in different agricultural applications in recent years. Mazzia et al. [107] developed
a real-time apple detection system using an Edge-AI technology. They implemented
YOLOv3-Tiny algorithms on three different embedded platforms, including Raspberry
Pi 3 B+ with Intel Movidius Neural Computing Stick (NCS), Nvidia’s Jetson Nano and
Jetson AGX Xavier, and successfully detected apples in an orchard. Their system achieved
an accuracy of 83.64% with a data processing speed up to 30 frames per second (fps) in
complex situations. Zhang et al. [108] implemented YOLOv4-Tiny networks combined with
improved cross stage partial networks (CSPNet) in the backbone for strawberry detection
and implemented a developed model on the embedded platform Jetson Nano (NVIDIA
Corporation, Santa Clara, CA, USA). Their optimized model (RTSD-Net) with TensorRT
achieved about 25.20 fps and performed 15% faster than the original YOLOv4-tiny model
on Jetson Nano without significant loss of accuracy. Other promising applications of
Edge-AI are air temperature forecasting [109], environment monitoring [110], autonomous
navigation systems [111] and so on.

Edge-AI technology can potentially be applied for weeding, spraying, and robot
navigation in ornament nursery crop production. Weed maps generated by UAVs may
be combined into autonomous robots for site-specific weed management and pesticide
applications in the field. Embedded hardwire (Raspberry Pi, Jetson Nano, and Jetson TX2)
paired with sensors (color camera, depth camera), and AI may be implemented to develop
Edge-AI technology for ornamental nursery crops. Vision-based robots using Edge-AI
technology can be an aid to robot navigation for accomplishing site-specific applications in
nursery crops.

3.4. Radio Frequency Identification Tagging Applications

Radio frequency identification (RFID) technology has become popular in different
fields of agriculture, including soil environment monitoring, soil moisture monitoring, soil
solarization, and automation in irrigation. Deng et al. [112] designed and developed a
novel system that integrates an RFID sensor with LoRa to provide a low-cost, low-power,
and efficient soil environment monitoring solution. The authors embedded RFID tags at
60 cm into the soil; the tags can communicate with the monitoring center through radio
communication (LoRa) placed in the patrol car. Their system would be able to establish
communication within a range of 1.3 m without compromising relative measurement
errors (temperature: 1.5% and soil moisture content: 1.0%). The study achieved a higher
communication rate (above 90%) at a patrol speed of 33 kmh−1. Luvisi et al. [113] developed
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a system that monitors different types of soil solarization (sandy, loam, and clay soils) using
an RFID sensor and biodegradable films. They placed soil sensors at different depths (5
and 10 cm) along with a soil profile at different soil moisture holding capacities (10%, 50%,
and 90%) and measured the effect of soil solarization treatment. In the second and third
weeks of treatment, they found that the maximum soil temperature at depths of 5 and 10
cm increased to 9–13 ◦C and 11–14 ◦C, respectively. They also found that the method was
90% reliable. Vellidis et al. [114] implemented soil moisture sensors (Watermark® granular
resistive type) and thermocouple temperature sensors coupled with RFID tags (WhereNet®,
Santa Clara, CA, USA) for developing sensor nodes to automate irrigation schedules for
cotton crops. The nodes were connected to a laptop computer via wireless communication.
The developed system contained an array of sensors, and data obtained from the sensors
could assist in decision-making and scheduling irrigation for the cotton field. Several
researchers also contributed to RFID-based soil moisture sensor developments [115–119].
RFID-based sensors also have other applications in agriculture, including tracking plants
in pots in greenhouses [120], tracing food quality [121], and monitoring livestock [122].

The above studies and their success rates clearly show the potential of using RFID-
based sensors in ornamental nursery crop applications. The potential applications of RFID-
based sensors for nursery crops include soil environment monitoring, soil solarization,
and automating irrigation scheduling, in indoor or field conditions. The RFID tags can be
used in conjunction with soil monitoring sensors such as soil, moisture, soil micronutrient,
gas, etc. to build sensor nodes and receive in-field data through wireless communications.
Readings from sensor nodes may be used with machine learning and deep learning to
make decisions in various field management operations.

3.5. Integrated Robotics Applications

Robots integrated with computer vision have been widely adopted in many areas
of agriculture, such as plant detection and mapping, fruit detection and localizations,
robot-based harvesting, navigation, and obstacle detection systems. Weiss and Biber [123]
developed a ground-based robot for maize plant recognition, mapping, and navigation
using a 3D LiDAR sensor-based micro-electro-mechanical system (FX6 3D LiDAR). The
robot was constructed using modeled artificial maize plants and tested on a small corn field.
The designed robot achieved detection and mapping accuracy of around 60%–70%. They
measured a greater localization deviation in the direction of the row, measuring 1–2 cm.
Ge et al. [124] developed a strawberry fruit localization method using a strawberry harvest-
ing robot with an RGB-D camera. The authors implemented a convolutional neural network
(i.e., Mask-RCNN) on RGB images for strawberry fruit segmentation and combined depth
values to obtain 3D points of fruits. The 3D point was then used to obtain fruit localization
using the shape completion method. The system achieved a minimum center deviation
of 6.9 mm between ground truths and automated measurements. Skoczeń et al. [125]
also proposed a similar approach to develop an automatic obstacle-detection robot. They
implemented an RGB-D camera (Intel RealSense D435i) for robot vision, reached obstacle
segmentation accuracy of 98.11%, and obtained a depth measurement error of 38 cm.

Ji et al. [126] developed a machine vision algorithm for a green pepper harvesting robot.
The contrast values of images obtained by the camera (MX808) for various light conditions
(normal, weak, and strong light) were then increased to make the green pepper stand out
from the background leaf. The energy-driven sampling (SEEDS) algorithm is then fed the
improved images to build super pixel blocks. The manifold ranking (MR) algorithm, the
CART classifier, and the conditional random field (CRF) algorithm were used to recognize
green pepper from super pixel blocks, followed by morphological processing. Classifiers
were evaluated on 500 images obtained from different lighting conditions. The algorithm
manifold ranking outperformed other classifiers and achieved an accuracy of 83.6%; it took
116 milliseconds to run the entire evaluation on Intel Core (TM) i5-4210U CPU (2.80 GHz,
8 GB). Gai et al. [127] developed a cherry fruit detection system using a high-resolution
Sony DSC-HX400 camera combined with a YOLO-V4 Dense Model network. The study
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compared the developed algorithm’s accuracy with the base model, YOLO-V3-dense, and
YOLO-V4 and observed an improved detection rate (F1 scores: 94.70%). YOLO-V4 Dense
Model took 0.467 s on an Intel Core (TM) i7-7700 CPU (3.60 GHz, 4 GB) with a Tesla
V100 GPU for processing an image of 1280 by 800 pixels. They found robotic intelligent
picking is possible using the developed system. Jia et al. [128] also developed a robot
vision using a high-resolution camera (6000 × 4000 pixel) for an apple harvesting robot
using an optimized Mask R-CNN. The developed system achieved a high rate of detection
(precision: 97.31%; recall: 95.70%).

The development of robot vision using high-resolution camera sensors combined
with deep learning techniques can be adopted to develop ornamental crop management
robots. Applications, such as spraying, weeding, soil sampling, and digging could be
effectively solved, enabling different operations in nursery crops. Robot vision combined
with machine and deep learning may also be implemented in nurseries for plant counting,
stem counting, and other essential tasks.

4. Discussion and Conclusions

The ornamental crop industry in the U.S. depends largely on agricultural workers.
Sensing and automation technologies offer a huge potential to reduce labor dependency
and ensure the efficient use of resources required by the ornamental industry. In turn,
the information in this article can aid the nursery industry in knowing about the specific
area where technological development takes place and what those technologies are, and
in considering what types of sensors, algorithms and tools are advantageous to develop
effective technologies in different production operations.

Current sensing and automation technology usage varies by production operations.
For instance, smart irrigation has primarily relied on soil moisture sensors, and stress
detection has largely depended on camera sensors. Despite the fact that not many studies
have used IoT or Edge-AI-based IoT systems, these could be potential technologies for
automating irrigation operations for ornamental crops. The Edge-AI-based systems and AI-
of-things (AIoT) are relatively new concepts in agricultural applications, and successes in
other cropping systems have shown promise for the ornamental nursery industry. Similar
to irrigation, a very limited number of studies have been conducted for ornamental plant
stress detection. One important fact regarding stresses is that they have to be detected
early to minimize their effect on crops. Spectral cameras, including hyperspectral and
multispectral devices, are the two sensors currently being used to detect stresses at the
asymptomatic stage. However, the major challenge of detecting plant stresses is to detect
them in real-time field conditions. Researchers have been trying to address challenges such
as illumination variations, data processing speed, and environmental factors to make a
viable system for real-time applications. More efforts are required, though, especially for
the hyperspectral system, due to its slow data processing issues. Fluorescence sensors are
another spectral technology that has not been explored much for ornamental crops, one
which can provide improved spectroscopy data and can be useful for early plant stress
detection. LiDAR is one of the powerful tools that can be used to accurately measure plant
biometric information (plant height, width, canopy volume and density, etc.) to develop a
smart or variable-rate spraying system. However, this tool cannot be used for spot spraying
operations for disease management because the LiDAR sensor can only provide point cloud
information (unlike cameras, it does not provide any color information). Integrated LiDAR
and camera systems could potentially be tools for smart spraying systems for ornamental
nursery crop production. The advantages and disadvantages of different sensors are
presented in Table 6.



Sensors 2023, 23, 1818 19 of 25

Table 6. Advantages and disadvantages of different sensors for ornamental crops.

Sensor Types Advantages Disadvantages

Image sensors (RGB camera,
multispectral, hyperspectral, etc.)

• Capable of detecting diseases,
stresses, and weeds in
ornamental crops;

• Ability to provide 3D information
for pruning, shape forming, weed
management and other operations;

• Potential to replace humans for crop
monitoring using drones.

• Sensitive to weather conditions,
especially illumination conditions;

• Some image sensors, such as
hyperspectral, are expensive.

Range sensors (LiDAR, ultrasonic, etc.)

• Sensors, especially LiDAR, not
affected by
environmental conditions;

• Plant biometrics (height, canopy
volume, density, leaf area index, etc.)
accurately determined;

• High speed of canopy
parameter measurement.

• Cannot provide detailed crop
information (only provide point
cloud data);

• Vibration during operation can
significantly affect the
sensor performance.

Infrared sensors (temperature sensors)

• Provide crop
temperature information;

• Very important to detect crop
drought stress for ornamental crops;

• Capable of detecting imported fire
ant colonies in ornamental
crop fields.

• Cannot detect multiple objects with
a small temperature differences;

• Fairly expensive.

Volumetric sensors (soil
moisture sensors)

• A simple method of measurement;
• Can directly measure the amount of

water in the soil;
• Delivers the results immediately;
• Low in cost.

• Requires initial evaluation of
site-specific conditions before
selecting sensors;

• Accuracy is low in sandy soils due
to large particles.

Surprisingly, very few applications have been noticed for UAVs in ornamental crops,
despite extensive implications these days in the agronomic, tree fruit and row crops. The
low manufacturing cost and fast operation speed have opened up further research oppor-
tunities for UAVs. UAVs are becoming an essential part of remote sensing and can be an
effective tool for ornamental plant stress detection and monitoring crop growth and devel-
opment. The UAVs bring advantages over ground-based systems, such as their flexibility
in capturing ultra-high spatial and temporal resolution data at any terrain conditions, and
they require less time to collect data. However, developing manipulation systems for UAVs
that can act with precision in fields is a challenging task requiring extensive investigations.
The coordination between UAVs and ground-based systems has been receiving increasing
attention in recent years, and has the potential to benefit the ornamental crop industry
for site-specific management. Calibrating sensors is essential to reduce variability when
multiple sensors are involved in a particular crop management operation.

Recent advances in deep learning models (e.g., CNNs, GANs, transformers) have
contributed significantly to different industries, including agriculture, but ornamental
crops remain at the bottom user of these impressive innovations. These models can help
predict stress, pest pressure, growth, yield, etc. RFID, a new crop tracking technology,
can increase production operations’ efficacy and help nurseries to reduce the burden for
growers or laborers by automating the inspections and recording accurate ornamental crop
data instantly. Agricultural robotics is another critical area that can benefit the ornamental
crop industry enormously. Currently, the agricultural workforce conducts most production
operations, such as planting, pruning/shape forming, weeding, disease monitoring, and
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harvesting. These operations are vastly labor-intensive and cost a large portion of pro-
duction expenses. Autonomous robotic systems can replace the humans conducting these
operations. The systems will reduce time and production expenses in the long run. The
ornamental industry lacks automation/robotic technologies; therefore, significant research
needs to be done on these topics to develop some implementable robotic systems.

As the majority of the ornamental crop farms are not so large compared to other major
cropping industries, adopting advanced sensing and automation technologies would be a
major challenge due to the initial high investment. Integrated multipurpose automated
technologies will be helpful for this purpose. For instance, when a particular automated
system can work for multiple operations (e.g., planting, pruning, and harvesting) for
ornamental crops by replacing a few parts of the system, growers would be interested in
buying and adopting those multipurpose systems. Researchers and manufacturers need
to consider these points while working on or developing technologies for the ornamental
nursery crop industry.

Although not much progress in sensing and automation technologies has been ob-
served for ornamental nursery crop production, a few mechanized systems are available
for commercial scales. These include mixing systems to mix substrate or soil, potting
systems to fill containers, tray filling systems to fill trays, planters to plant nursery liners in
containers, seeding systems to sow and space out seeds on pots or containers, etc. Pack
Manufacturing (http://packmfg.com/) (Pack Manufacturing Inc., McMinnville, TN, USA)
is a leading company in the sale of these mechanized systems.

A vital challenge in technology development for ornamental nursery crops is the
substantial number of available plant species. Various ornamental plants have different
morphologies, characteristics, canopy structures, and growth requirements. It is nec-
essary to understand the types of plants grown and their production requirements to
align the sensing and automation technologies with the production needs to facilitate
industry operations.
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