249 research outputs found

    Isosurface Extraction in the Visualization Toolkit Using the Extrema Skeleton Algorithm

    Get PDF
    Generating isosurfaces is a very useful technique in data visualization for understanding the distribution of scalar data. Often, when the size of the data set is really large, as in the case with data produced by medical imaging applications, engineering simulations or geographic information systems applications, the use of traditional methods like marching cubes makes repeated generation of isosurfaces a very time consuming task. This thesis investigated the use of the Extrema Skeleton algorithm to speed up repeated isosurface generation in the visualization package, Visualization Toolkit (VTK). The objective was to reduce the number of non-isosurface cells visited to generate isosurfaces, and to compare the Extrema Skeleton method with the Marching Cubes method by monitoring parameters like time taken for the isosurfacing process and number of cells visited. The results of this investigation showed that the Extrema Skeleton method was faster for most of the datasets tested. For simple datasets with less than 10% isosurface cells and complex datasets with less than 5% isosurface cells, the Extrema Skeleton method was found to be significantly faster than the Marching Cubes method. The time gained by the Extrema Skeleton method for datasets with greater than 15% isosurface cells was found to be insignificant. Based on the results of this study, implementing the Extrema Skeleton method for the VTK software is a change worth making because typical VTK users deal with datasets for which the Extrema Skeleton method is significantly faster and also with datasets for which it is marginally faster than the Marching Cubes method

    Case study of isosurface extraction algorithm performance

    Get PDF
    Journal ArticleIsosurface extraction is an important and useful visualization method. Over the past ten years, the field has seen numerous isosurface techniques published, leaving the user in a quandary about which one should be used. Some papers have published complexity analysis of the techniques, yet empirical evidence comparing different methods is lacking. This case study presents a comparative study of several representative isosurface extraction algorithms. It reports and analyzes empirical measurements of execution times and memory behavior for each algorithm. The results show that asymptotically optimal techniques may not be the best choice when implemented on modern computer architectures

    Fast extraction of neuron morphologies from large-scale SBFSEM image stacks

    Get PDF
    Neuron morphology is frequently used to classify cell-types in the mammalian cortex. Apart from the shape of the soma and the axonal projections, morphological classification is largely defined by the dendrites of a neuron and their subcellular compartments, referred to as dendritic spines. The dimensions of a neuron’s dendritic compartment, including its spines, is also a major determinant of the passive and active electrical excitability of dendrites. Furthermore, the dimensions of dendritic branches and spines change during postnatal development and, possibly, following some types of neuronal activity patterns, changes depending on the activity of a neuron. Due to their small size, accurate quantitation of spine number and structure is difficult to achieve (Larkman, J Comp Neurol 306:332, 1991). Here we follow an analysis approach using high-resolution EM techniques. Serial block-face scanning electron microscopy (SBFSEM) enables automated imaging of large specimen volumes at high resolution. The large data sets generated by this technique make manual reconstruction of neuronal structure laborious. Here we present NeuroStruct, a reconstruction environment developed for fast and automated analysis of large SBFSEM data sets containing individual stained neurons using optimized algorithms for CPU and GPU hardware. NeuroStruct is based on 3D operators and integrates image information from image stacks of individual neurons filled with biocytin and stained with osmium tetroxide. The focus of the presented work is the reconstruction of dendritic branches with detailed representation of spines. NeuroStruct delivers both a 3D surface model of the reconstructed structures and a 1D geometrical model corresponding to the skeleton of the reconstructed structures. Both representations are a prerequisite for analysis of morphological characteristics and simulation signalling within a neuron that capture the influence of spines

    Block Topology Generation for Structured Multi-block Meshing with Hierarchical Geometry Handling

    Get PDF
    AbstractMulti-block structured mesh generation remains one of the most popular meshing techniques because of its superior simulation quality but it is difficult to apply when dealing with complex three dimensional (3D) domains. To this end, a hybrid blocking approach, combining the medial axis based method with level set isosurface is presented and applied to mesh complex 3D external flow domains. Secondly, a hierarchical geometry handling approach is demonstrated which makes use of the lower order modeling, overset meshes and zonal blocking to reduce the meshing and modeling effort. Typical external aerodynamics cases have been showcased to describe how such techniques can be used for efficiently addressing modern industrial meshing challenges

    Aquatics reconstruction software: the design of a diagnostic tool based on computer vision algorithms

    Get PDF
    Computer vision methods can be applied to a variety of medical and surgical applications, and many techniques and algorithms are available that can be used to recover 3D shapes and information from images range and volume data. Complex practical applications, however, are rarely approachable with a single technique, and require detailed analysis on how they can be subdivided in subtasks that are computationally treatable and that, at the same time, allow for the appropriate level of user-interaction. In this paper we show an example of a complex application where, following criteria of efficiency, reliability and user friendliness, several computer vision techniques have been selected and customized to build a system able to support diagnosis and endovascular treatment of Abdominal Aortic Aneurysms. The system reconstructs the geometrical representation of four different structures related to the aorta (vessel lumen, thrombus, calcifications and skeleton) from CT angiography data. In this way it supports the three dimensional measurements required for a careful geometrical evaluation of the vessel, that is fundamental to decide if the treatment is necessary and to perform, in this case, its planning. The system has been realized within the European trial AQUATICS (IST-1999-20226 EUTIST-M WP 12), and it has been widely tested on clinical data

    Accelerated isosurface extraction in time-varying fields

    Get PDF
    Journal ArticleFor large time-varying data sets, memory and disk limitations can lower the performance of visualization applications. Algorithms and data structures must be explicitly designed to handle these data sets in order to achieve more interactive rates. The Temporal Branch-on-Need Octree (T-BON) extends the three-dimensional branch-on-need octree for time-varying isosurface extraction. This data structure minimizes the impact of the I/O bottleneck by reading from disk only those portions of the search structure and data necessary to construct the current isosurface

    Gap Filling of 3-D Microvascular Networks by Tensor Voting

    Get PDF
    We present a new algorithm which merges discontinuities in 3-D images of tubular structures presenting undesirable gaps. The application of the proposed method is mainly associated to large 3-D images of microvascular networks. In order to recover the real network topology, we need to ïŹll the gaps between the closest discontinuous vessels. The algorithm presented in this paper aims at achieving this goal. This algorithm is based on the skeletonization of the segmented network followed by a tensor voting method. It permits to merge the most common kinds of discontinuities found in microvascular networks. It is robust, easy to use, and relatively fast. The microvascular network images were obtained using synchrotron tomography imaging at the European Synchrotron Radiation Facility. These images exhibit samples of intracortical networks. Representative results are illustrated
    • 

    corecore