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ABSTRACT 

 Generating isosurfaces is a very useful technique in data visualization for 

understanding the distribution of scalar data.  Often, when the size of the data set is really 

large, as in the case with data produced by medical imaging applications, engineering 

simulations or geographic information systems applications, the use of traditional 

methods like marching cubes makes repeated generation of isosurfaces a very time 

consuming task.  This thesis investigated the use of the Extrema Skeleton algorithm to 

speed up repeated isosurface generation in the visualization package, Visualization 

Toolkit (VTK).  The objective was to reduce the number of non-isosurface cells visited to 

generate isosurfaces, and to compare the Extrema Skeleton method with the Marching 

Cubes method by monitoring parameters like time taken for the isosurfacing process and 

number of cells visited.  The results of this investigation showed that the Extrema 

Skeleton method was faster for most of the datasets tested.  For simple datasets with less 

than 10% isosurface cells and complex datasets with less than 5% isosurface cells, the 

Extrema Skeleton method was found to be significantly faster than the Marching Cubes 

method.  The time gained by the Extrema Skeleton method for datasets with greater than 

15% isosurface cells was found to be insignificant.  Based on the results of this study, 

implementing the Extrema Skeleton method for the VTK software is a change worth 

making because typical VTK users deal with datasets for which the Extrema Skeleton 

method is significantly faster and also with datasets for which it is marginally faster than 

the Marching Cubes method. 
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CHAPTER 1 

INTRODUCTION 

 

Extracting isosurfaces is one of the most widely used and effective techniques for 

visualizing scientific data. It is an effective technique for understanding the distribution 

of scalar fields in a three-dimensional data set. 

 

An isosurface can be defined as a constant density function on a 3D data set. 

More precisely, a scalar volume data set [13] is a pair (V, W), where V = {vi ∈ ℜ3, i= 

1,…,n} is a finite set of points comprising a domain Ω ⊂ ℜ3, and W = {wi ∈ ℜ, i = 1,..,n} 

is a corresponding set values of a scalar field f(x,y,z), sampled at the points of V, i.e., wi = 

f(vi).  Given a value q ∈ ℜ, the set S(q) = {p ∈ Ω | f(p) = q} is called the isosurface of 

field f corresponding to the value q.  

 

Often it is useful to study the distribution of scalar fields by repeated generation 

of isosurfaces corresponding to different scalar values q. This feature is supported in most 

visualization tools and applications. Most physical real world problems generate such 

huge amounts of data that the cost of generating an isosurface becomes high in terms of 

time and resources. Efficient algorithms are therefore necessary for fast and accurate 

isosurface generation.  
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The representation of the data set in 3D space can be summarized as follows [13]. 

To begin with, a grid Σ is given. Σ is formed by subdividing the domain Ω into small 

hexahedra or tetrahedra, termed ‘cells’, whose vertices are at the points of V and whose 

values are in W. Thus each point on the grid Σ is the pair (vi, wi), i=1,..,n. Consider a cell 

ej ∈ Σ, that has vertices vj1,.., vjk.  ej is called an ‘isosurface cell’ if, for a fixed q ∈ ℜ, mini 

{wji} ≤ q ≤ maxi {wji}. 

 

The process of generating an isosurface occurs in four stages - 

(1) Finding isosurface cells: Given a value q, Σ is searched for isosurface cells. 

(2) Determining the topology of the surface inside each isosurface cell: Based on the 

cell topology, there are only a specific number of ways in which a surface can 

pass through a cell. This is discussed in the Marching cubes method [1] in 

Chapter 2. 

(3) Vertex computation: This is done by linear interpolation of the field along the 

edges that the isosurface intersects. (These vertices, called isosurface vertices, 

will be joined to form triangles at a later stage. Thus the isosurface will be 

approximated as a set of triangles inside each isosurface cell). 

(4) Surface normal computation: For each vertex so formed, the normal to the surface 

at that point is calculated. 
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1.1  RELATED WORK 

 Techniques like the Marching Cubes algorithm, that visits every cell in a dataset 

to find isosurface cells, can be very time consuming when the dataset is large.  Many 

techniques have been developed that aim to reduce the time taken by the cell selection 

stage.  These techniques can be grouped as algorithms that sort cells according to their 

scalar values, algorithms that use space-subdivision for cell classification like the Octrees 

method [4], and algorithms based on seed set and range based approaches. The first two 

techniques work best for a structured volume and are difficult to apply to unstructured 

grids. Also, the number of cells visited is O(n) [4,5], where n is the total number of cells.  

However, algorithms based on seed set approaches and range-based approaches can be 

applied to both structured and unstructured grids. The computation time for the 

isosurfacing process for these algorithms is much less than O(n) [6,9]. 

 

The range-based methods use an interval [a,b] of a cell’s scalar values, ‘a’ being 

the cell’s minimum scalar and ‘b’ being the cell’s maximum scalar. The isosurface cells 

are located by looking for an interval where a ≤ q ≤ b where q is the desired isovalue. 

Algorithms based on this approach include K-d trees [9], Lattice classification [6], and 

Interval trees [13]. The number of cells visited in these algorithms is less than O(n), but 

they require over O(n) time for the construction of the data structures in the initialization 

stage. The second approach is the seed set based method [7,8,10].  In this method, the 

preprocessing step generates a seed set, which is a set of cells in a volume chosen based 

on certain conditions. By traversing the seed set, it is possible to find at least one cell that 

 3



belongs to a desired isosurface. Using a propagation algorithm [8] that recursively visits 

adjacent cells (cells that share a face with a given cell), the entire isosurface is generated. 

Algorithms developed on the seed set based approach include the Extrema Graph method 

[8], and the Contour Tree method [7]. 

  

The Extrema Graph method extracts local maxima and minima, and connects 

them by arcs of cells in the volume. It then generates two sorted cell lists based on the 

maximum and minimum values of the cells on the boundary. This is done so that disjoint 

parts of an isosurface can be located. When a value is given, cells in the Extrema Graph 

and the boundary cell lists are searched to find at least one isosurface cell. The rest of the 

isosurface is propagated from these cell(s).  The disadvantage with this method is having 

to maintain the boundary cell list. Also, complexity of the algorithm is dependent on the 

number of extremum points in the data set [8]. 

 

The Contour Tree method overcomes the need to store boundary cells by finding 

not only extrema points, but also saddle points, and connects them all using a tree 

structure. The preprocessing time for this method is more than O(n) [7]. 

 

The Extrema Graph method was later extended to develop the Extrema Skeleton 

method [12]. In this method, the extremum points in a volume are found as in the 

Extrema Graph method, but instead of connecting the extrema points by a graph, a 

technique called Volume Thinning is used. The Volume Thinning technique is an 
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extension of the method used for image recognition. The Extrema Skeleton generated 

serves as the seed set. The Extrema Skeleton aims at preserving the topology of a given 

volume while connecting all the extrema in the volume. The skeleton contains at least 

one cell for every isosurface in the volume. The Extrema Skeleton method does not 

require more than O(n) computation time for preprocessing since the preprocessing 

technique involves visiting cells a constant number of times [12]. The number of cells in 

the skeleton is estimated as O(n1/3 m) [12], where m is the number of extremum points. 

The time for finding the isosurface cells is estimated as O(n1/3 m + k) [12] , where k is the 

number of isosurface cells.  

 

1.2  PROBLEM STATEMENT 

Many modern day applications generate large quantities of data.  Therefore, it is 

worth exploring techniques that reduce the time taken for finding isosurface cells.  The 

VTK package uses the Marching Cubes algorithm to find isosurfaces.  So, it was 

hypothesized that substituting the Marching Cubes algorithm with a more efficient 

algorithm would provide an improvement in the processing time.  To test this hypothesis, 

the Extrema Skeleton algorithm was chosen.  Various reasons shown below contributed 

to this choice : 

• Compared to the Marching Cubes algorithm, the number of cells searched by the 

Extrema Skeleton algorithm is smaller. 

• Preprocessing time is smaller than most methods that use sorting techniques. 

• This algorithm can be applied to both structured and unstructured grids. 
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This thesis is an investigation of the hypothesis that the Extrema Skeleton algorithm will 

decrease the time taken for isosurface extraction in a given simple structured data set, 

compared to the Marching Cubes algorithm used by the VTK package. 

 

1.3  OBJECTIVES 

This thesis focuses on the following objectives to investigate the hypothesis 

described in the problem statement of Section 1.2 : 

• Implement the Extrema Skeleton algorithm for the graphics package Visualization 

Toolkit (VTK) for simple structured grids consisting of voxels.  

• Determine the time and number of cells visited for multiple isosurfaces generated 

in the same volume and compare it with the existing method in the package for 

finding isosurfaces viz., the Marching Cubes method. 

Results of this study indicated that the Extrema Skeleton method was faster than 

Marching Cubes for most of the datasets tested.  While for some datasets, the time 

improvement was significant, for others the time gained was negligible.  It was concluded 

that implementing the Extrema Skeleton method for VTK speeds up the software by at 

least 10% for simple datasets with less than 10% isosurface cells.  Detailed results and 

discussion are presented in Chapter 4. 

 

1.4  APPLICATIONS 

Continuous extraction of isosurfaces is particularly useful in applications where 

the distribution of scalar values is important.  Examples of such applications include 
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visualizing distribution of temperature or pressure in fluid flow, and visualizing Magnetic 

Resonance (MR) scan data for extracting images of skin, soft tissues at various depths, 

bone structure, and organs from a single set of scanned data. 
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CHAPTER 2 

LITERATURE REVIEW 

 

The simplest way to compute isosurfaces is to visit each cell and determine 

whether the surface of interest passes through it. The isosurface is then approximated as a 

set of points or triangles inside the cells, as described in the Marching Cubes method [1]. 

Since this requires that all the cells in a given data set be visited, the time required for it is 

always O(n) [1], where n is the number of cells in the data set. This would be a 

disadvantage for particularly large values of n, since not all cells are isosurface cells. 

Hence, different approaches aimed at reducing the number of non-isosurface cells visited 

were proposed by different researchers. Sections 2.2 through 2.6 discuss some of the 

algorithms that were developed on this idea.  The algorithms discussed below are the 

Marching Cubes method [1], Span filtering [5], Octrees [4], Issue algorithm [6], Contour 

trees [7], and Extrema graph method [8] .  

 

2.1  MARCHING CUBES 

The Marching Cubes algorithm [1] creates triangle models of constant density 

surfaces from 3D data. The algorithm deals with surface reconstruction and involves the 

creation of a surface model from 3D data. The model usually consists of 3D volume 

elements (voxels) or polygons. A certain density value corresponding to the surface that 

is desired to be visualized is specified. Surface reconstruction then takes place in two 

stages. The algorithm first locates the surface corresponding to the specified value and 
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creates triangles. Then, it creates normals to the surface at each vertex of the triangle to 

construct a visualizable image.  

 

This method addresses all four processing stages for isosurface extraction listed in 

Chapter 1.  The first two steps, finding the isosurface cells and determining the topology 

of the surface, are performed in the same pass. 

 

2.1.1  Finding Isosurface Cells and Determining the Topology of the Surface   

The algorithm determines how a surface intersects a logical cube, created from 

eight pixels, and then moves on (marches) to the next cube until the whole image is 

constructed. To find how a surface intersects a cube, the algorithm assigns a “1” to all 

vertices in the cube for which the data value at the vertex exceeds or equals the value of 

the surface. If not, it assigns a value “0”. The vertices with value ‘1” are considered 

inside or on the isosurface while the vertices with value “0” are outside the surface of 

interest. The surface intersects all those cube edges such that one vertex is outside and 

another is inside the surface. Based on this, the topology and the location of the surface 

inside the cube are determined.  Since a regular cube has eight vertices, and the state of 

each vertex can either be inside or outside a given surface, there are 28 = 256 cases for 

surface-edge intersection. For the purpose of triangulation, the number of cases is 

reduced by the application of two different symmetries as described by Lorensen [1]. The 

cases resulting from the two different symmetries are the same and so finally, the total 

number of cases is reduced to 14. One of the symmetries occurs since the topology of the 
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surface inside the cube is unchanged if the relationship of the surface value to the “0” and 

“1” value of the vertices is interchanged. The vertices with value “1” are changed to 

value “0” and vice versa. Thus, only cases with zero to four vertices whose values are 

greater than the surface value are taken into consideration. This reduces the number of 

cases to 128. The number of cases is further reduced to 14 by applying rotational 

symmetry. Figure 2.1 shows an illustration of the 14 basic cases.  

 

2.1.2  Vertex Computation and Surface Normal Computation  

Vertex computation and surface normal computation are the two final steps of the 

isosurface extraction process.  An eight-bit index is created for each case based on the 

state of each of the eight vertices. This index is then used as a pointer to look up the 

appropriate list of intersected edges for the respective case in the table of surface-edge 

intersections. Using this entry, the surface intersection along the edge is interpolated.  

Finally, normals are created at the resulting triangle vertices to produce Gouraud-shaded 

images.  

 

Marching cubes is a simple, yet a very powerful algorithm and is used in many 

applications even today. The algorithm visits every cell in the data set. The complexity of 

the algorithm is O(n) since every cell is visited once [1]. This might become a 

disadvantage in the case of a large data set. To find the isosurface corresponding to a new 

value, the whole data set is visited once again. There is no stored information from a 
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Figure 2.1: Triangulated Cubes (Image courtesy of 
Kitware, Inc. and taken from [1]) 
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previously generated isosurface, and there is no carry over information from the previous 

iteration. 

 

2.2  SPAN FILTERING 

The Span Filtering method, proposed by Gallagher [5], focuses on the first stage 

in the isosurface extraction process, i.e., finding isosurface cells.  Any polygonization 

algorithm could be used in conjunction with this search method, to achieve the same end 

result as the final three stages of the isosurface extraction process listed in Chapter 1.  

 

This algorithm classifies or sorts cells according to the values in a cell and 

generates a compressed data representation for speeding up isosurface generation. The 

range of data values is divided into sub ranges, termed “buckets”. Every cell is classified 

based on which bucket its minimum value falls in and the number of buckets the 

particular cell’s range spans. In a “span list” cells are grouped based on their span, and 

within each group, cells are grouped further according to their starting bucket value. 

There is a list for groups that belongs totally to one bucket, one for groups that span more 

than K buckets, and one for groups whose span is greater than the previous lists.  The 

search algorithm for this method has a complexity of O(n) [5].   

 

2.3  OCTREES 

As in the case of the Span Filtering method, the Octrees algorithm, proposed by 

Wilhelms [4], focuses only on the cell selection stage of the isosurface extraction process.  
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While Wilhelms used the Octrees algorithm for finding the isosurface cells, the 

polygonization of those isosurface cells was performed using the Marching Cubes 

subroutines  (determining the topology of the surface, vertex computation, and surface 

normal computation), discussed in Section 2.1. 

 

Octrees are hierarchical data structures based on the decomposition of three-

dimensional space, that recursively divide 3D space into eight sub-volumes [4]. The root 

of the octree refers to the entire volume. Every coordinate direction is divided into a 

“lower” half space and an “upper” half space to create octants. A volume that has 2n-1 and 

2n cells can be represented by an octree of depth ‘n’.  Wilhelms [4] discusses the usage of 

summary at each node of the octree for the entire subvolume beneath it for isosurface 

generation. Thus, only areas of the tree that correspond to the value of interest need to be 

explored. For isosurface extraction, the maximum and minimum values of the data within 

a node’s sub-region are maintained. Given a value for which the corresponding isosurface 

has to be extracted, only those nodes whose minimum values are not greater than the 

given value and whose maximum values are not less than the given value are traversed. 

Nodes for which this condition fails, and the entire branch below them, are not traversed.  

 

The number of cells visited in this method in general is twice the number of 

isosurface cells [4]. The tree is sensitive to the underlying data it represents and so if the 

data contains many fluctuations or noise, then most of the tree needs to be traversed. 
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Also, the method requires significant setup time. So, the pre-computed results have to be 

stored effectively for any speed advantages. 

 

2.4  ISOSURFACE PROPAGATION 

The Isosurface Propagation algorithm proposed by Speray and Kennon [3] 

combines the cell selection stage and the polygonization step.  This method does not 

make clear distinctions between the surface topology determination, vertex computation, 

and surface normal computation steps.  Instead, polygons are generated as and when 

isosurface cells are found. 

 

The propagation algorithm does not require much preprocessing.  It uses cell 

adjacency to propagate itself through the face of cells. It requires a data structure that 

maintains the IDs of adjacent cells for each cell. When a cell that is intersected by an 

isosurface is specified, all its adjacent cells are put into a queue. Each cell is then 

extracted from the queue to check whether the surface of interest passes through it.  If so, 

the adjacent cells of the newly found isosurface cell are added to the queue. This process 

is done until the queue becomes empty. The algorithm requires manual specification of 

the starting cell and is not very useful for generating isosurfaces without it.  

 

2.5  EXTREMA GRAPH 

The Extrema Graph method [8] focuses on the cell selection stage of the 

isosurface extraction process.  The Marching Cubes subroutines or any other 
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polygonization algorithm could be used in conjunction with the Extrema Graph method 

to generate the isosurface. 

 

This method is based on generating a small seed set for a given data set. In the 

seed set based approach, a small set of cells from the data set is first generated. Given a 

fixed isovalue, the algorithm searches the seed set for a “hit” cell, or cells that contain the 

surface of interest. Using these cells as the starting point, the adjacent cells of each of 

these cells, i.e., the cells that share a face with a specified cell, are searched recursively, 

as in a propagation algorithm described in Section 2.4. This is done until all the cells that 

contain the isosurface are found. A polygonization algorithm, like Marching Cubes [1], is 

used to create triangles for isosurface generation. The preprocessing phase of the 

algorithm examines the values at the vertex of every cube in the volume and generates a 

set of extrema1 points. The algorithm makes the following assumptions [8]:  

1) if the isosurface is closed, then there are extrema points both inside and outside 

it2. 

2) if an isosurface is open then it intersects the boundary of the volume. 

 

 

                                                 
1 Definition: Let ‘e1’ be a hexahedral cell in a given dataset and let v11, v12, v13, …, v18, be the vertices of this 
cell. Let e2, e3, e4, e5, e6, e7, e8 be the seven cells that have the vertex v11, vi2, .. , vi8, where i = 2,3…,8. In 
other words, they are connected to e1 by 0 or more cell edges and the vertex v11 is a common vertex of all 
the eight cells. The vertex v11 is termed a minimum if v11 < vij, (or equivalently, a maximum if v11 > vij), for 
all i,j = 1,2,3,..,8 (i,j ≠ 1,1). If v11 is either a maximum or a minimum, then it is called an extremum point. 
 
2 A closed isosurface divides the dataset into two disjoint finite sets each of which must contain at least one 
extremum point. 
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2.5.1  Finding Extrema Points 

Itoh [8] defines extrema points as grid points whose scalar values are maximum 

or minimum in all cells that share them. To find the extremum points, the scalar values at 

the vertices of each cell are compared with one another, beginning with the first cell in 

the dataset.  Consider the case for finding minima - in each cell, the vertex v with the 

least scalar value is marked as the minima.  It is unmarked later if the scalar value of v is 

not the minimum in another cell that contains v as one of its vertices.  When all cells are 

processed in this manner, this will leave a few vertices marked as mimima.  The same 

procedure is followed to find the maximas.  A vertex that is marked either maxima or 

mimima is an extremum point.  

 

2.5.2  Generating Extrema Graphs 

An extrema graph is defined as a set of arcs that connects two extrema points. To 

start with, an extrema point is chosen as the ‘start’ point.  Several extrema points closer to 

the ‘start’ point are chosen as ‘candidates’, and one of them is chosen as the ‘destination’ 

point. The vector of the arc between the start point and the destination point is calculated. 

Beginning with a cell one of whose vertex is the ‘start’ point, the arc is traversed.  This is 

done until the cell containing the destination point is reached.  Two classes, class Arc and 

class Graph are used to maintain information about the cells that are traversed after arc 

formation, and for holding the final extrema graph information.  The cell ID of each 

traversed cell is inserted into a list.  If the traversal crosses the boundary of the volume, 

the traversal is abandoned and the next available closest destination point is chosen for 
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starting a new traversal. Flags are maintained for every extrema point to check how it is 

connected to another extrema. To begin with, the flag of an extrema point is its grid point 

ID. When it is connected with another extrema, the flag that has the larger value is 

replaced with the flag ID of the extrema with a smaller flag ID value. In addition, flag 

values of other extrema that are connected to this one are substituted with the new small 

value. This is done so that when choosing a destination point an extrema point with the 

same flag value as the start point is not selected.  

 

2.5.3  Generating Sorted Boundary Cell Lists 

Boundary cells are defined as those cells in the volume that have one or more 

faces that are not connected to any other cell [8]. Two structures, a BCELL and a BLIST 

are used for maintaining sorted boundary cell list. The minimum and maximum values 

are defined for each boundary cell and two lists based on each cell’s minimum and 

maximum are formed using a quick sort algorithm.  

 

2.5.4  Generating Isosurfaces 

Given a value q, the algorithm generates an isosurface corresponding to the value 

using the propagation algorithm. First, the seed set, i.e., the extrema graph and the sorted 

boundary cell lists, are searched for any cells that contain the specified isosurface. To 

begin with, the minimum value sorted cell list is traversed, only until the minimum value 

becomes greater than the value specified. If the maximum value of the visited cell is 

higher than the value specified, the cell is considered as an isosurface cell. The arcs are 
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searched next for any occurrence of isosurface cells. The given value is compared against 

the maximum-minimum value for each arc to check if the given value lies between these 

two values. If so, then all cells in that arc are visited. When an isosurface cell is found, its 

ID is put into a FIFO. After traversal of the cell list and the graph is completed, a cell is 

removed from the FIFO and the isosurface is generated for it. The cells that share a face 

with this cell are then pushed into this queue and the process is carried on recursively 

until the FIFO is empty (as described in the propagation algorithm in Section 2.4). 

 

The number of cells in the boundary cell lists is estimated as O(n2/3) [8], and the 

number of cells in the extrema graphs is estimated as O(n1/3) [8]. The cost of isosurface 

generation for this algorithm is estimated as O(n2/3) [8]. The number of cells intersected 

by the isosurface is estimated as O(n1/3) [8].  The worst-case estimate for the number of 

arcs in this algorithm as given in [9] is O(n). This happens when the data exhibits small 

perturbations and each node is an extrema, in which case each cell is an arc by itself.  

 

2.6  CONTOUR TREE 

The reviewed literature for the Contour Tree method [11] focuses on the 

procedure for finding isosurface cells using this method.  It does not address the surface 

topology determination, vertex computation, or the surface normal computation steps in 

detail.  Any polygonization algorithm could be used in conjunction with the Contour Tree 

method to complete the isosurface generation process for a given data set. 
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The Contour Tree method is also a seed set based method. The algorithm 

proposed by Kreveld [11], aims at connecting not only extremum points but also saddle 

points in an unstructured volume.  In an unstructured volume, it is possible to have voids 

and through-holes. A through-hole is a topological feature that increases the genus3 of an 

object.  A void is an empty space enclosed by a disjoint part of the boundary of a volume 

[11]. Figure 2.2 shows a void and a through-hole in a volume.  

 

Consider the case where a volume contains a through-hole. It is possible that an 

isosurface in the volume has 2 or more disjoint parts because of the existence of the 

through-hole. In this case, an Extrema Graph might not contain cells that intersect all the 

disjoint parts of the isosurface. In order to counter this flaw, the Extrema Graph has to 

either maintain a sorted boundary cell list or preserve the topology of the through-holes 

so that it intersects all the disjoint parts of every isosurface in the volume.  

 

Figure 2.2: Through-hole and Void in a Volume (taken from [12]) 

                                                 
3 In common terminology, genus represents the number of holes in an object. 

 19



The contour tree method overcomes the need to maintain a sorted boundary cell 

list.  It does this by connecting the saddle points in a volume using a tree in addition to 

connecting the extremum points. A saddle point is defined as a point that is a stationary 

point, but is not an extremum point [18]. The method generates a tree by traversing cells, 

starting from the local maximum points, merges or splits at the saddle points and 

terminates at the local minimum points. The cells in the contour tree are then traversed 

and cells are selected to form a seed set in a manner such that the scalar range across the 

tree is not missed out. The method requires over O(n) [12] time for the computation of 

the tree structure. But the seed set formed is much less than the number of cells obtained 

from using extrema graphs and sorted boundary cell list. This successfully preserves all 

the topological features of the volume and a sorted cell list is not required.  

 

2.7  EXTREMA SKELETON FOR FAST ISOSURFACE GENERATION 

Itoh [10] describes in detail the steps involved in finding the isosurface cells using 

the Extrema Skeleton method.  This method focuses on the acceleration of the cell 

selection stage and uses the Propagation algorithm to generate an isosurface. 

 

This is a seed set based method that counters the problems associated with 

datasets containing voids and through-holes (discussed in Section 2.6) by using volume 

thinning (discussed in Section 2.7.1). The aim of the algorithm is to reduce the number of 

non-isosurface cells visited by forming a seed set.  To begin with, the seed set is searched 
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to find isosurface cells. Using the isosurface cells thus found, the entire isosurface can be 

generated by isosurface propagation.  

 

This is achieved by a two part preprocessing stage. In the first part, extremum 

points are extracted from the given volume using the method described in Section 2.5.1. 

The process involves visiting every cell and its adjacent cells once, to compare the scalar 

values and extract the extremum points. All cells that have any of these extremum points 

as one of their vertices are marked as extrema cells. Since the number of adjacent vertices 

of a vertex is constant for a given cell type, the computation time for extremum point 

extraction is O(n) [12]. 

 

In the second stage, the extrema cells are connected by cells in the data set 

selected using the volume thinning method to form an extrema skeleton. This extrema 

skeleton intersects all the disjoint parts of any given isosurface in the volume. The 

extrema skeleton is formed only once for a given dataset.  This skeleton can be used until 

the visualization application terminates.  

 

The pseudo code [10] describing the various steps in the algorithm is shown in 

Figure 2.3.  When an isovalue is specified by the user, the extrema skeleton is first 

searched to find the cells that are intersected by the isosurface. The neighbors of these 

cells are then visited recursively until the entire isosurface is extracted. 
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void main(){ 

/* preprocessing */ 

ExtractExtremumPoints(); 

VolumeThinning(); 

  

/* isosurfacing process */ 

while(1){ 

specify an isovalue; 

Extract_isosurfaceCells_from_skeleton(); 

IsosurfacePropagation(); 

} 

} 

Figure 2.3:  Pseudo Code for the Extrema Skeleton Algorithm (taken from [10]) 
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2.7.1  Summary of the Volume Thinning Method 

The extrema skeleton algorithm is described for an unstructured dataset composed of 

hexahedral cells in general.  The volume thinning method is an extension of the image 

thinning method [12]. Image thinning generates the skeleton of the pixels of a painted 

area while trying to preserve the features of the image itself.  

 

The first stage marks all the extrema cells in the volume. The marked cells are 

retained as part of the extrema skeleton. To begin with, the implementation assumes that 

the skeleton is made up of all cells in the dataset. Each “unmarked” cell on the boundary 

of the volume is then visited and many of them are eliminated based on certain conditions 

discussed later in Chapter 3. In order to determine whether a cell needs to be retained as 

part of the skeleton, the nodes and edges shared by a cell’s neighbors are considered. If 

the shared node or edge is on the boundary of non-eliminated cells, then the cell under 

consideration is retained. If the node or the shared edge is on the inside, then it is possible 

to traverse from one neighbor cell to another through their shared nodes or edges in the 

absence of the cell being considered. The method finally generates a one cell wide 

skeleton for the given volume which contains extrema cells and cells that are necessary to 

preserve the topological features in a volume. The order in which the cells are visited 

determines the shape of the skeleton and the number of cells in it.  
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CHAPTER 3 

IMPLEMENTATION FOR VTK 

 

 The Extrema Skeleton algorithm described in Section 2.7 was implemented for 

the graphics package Visualization Toolkit (VTK) [15], version 3.2.  

 

3.1 ISOSURFACING IN VTK 

3.1.1  Components of a Scene 

The process of generating an image using a computer is called rendering [15]. For 

rendering images in 3D, there are techniques that simulate the interaction of objects (or 

actors) with lights and camera to generate images. A combination of actors, lights, and 

camera constitute a scene.  

There are eight basic objects that are used to render a scene in VTK [15]. 

• vtkRenderMaster, creates a rendering window. 

• vtkRenderWindow, manages a window on the display device. One or more 

renderers can draw into an instance of vtkRenderWindow. 

• vtkRenderer, coordinates the rendering process involving lights, camera and 

actors. 

• vtkLight, a source of light, illuminates the scene. 

• vtkCamera, defines the view position, focal point and other viewing properties of 

the scene. 
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• vtkActor, represents an object rendered in the scene. 

• vtkProperty, defines the appearance of an actor like color. 

• vtkMapper, the geometric representation for an actor, interfaces the geometric 

structure to the graphics library. 

Since visualization transforms data into images and accurately represents information 

about data, it deals with the issues of Transformation and Representation. Transformation 

is the process of converting data into graphics primitives for display, while representation 

deals with the internal representation of data and graphics primitives. Thus a visualization 

model is characterized by a functional model, and an object model. The functional model 

represents the transformations as functions.  The object model specifies representations as 

objects. Examples of a functional and an object model are shown in Figure 3.1 and Figure 

3.2 respectively. 

 

 In the functional model, the oval blocks indicate operations (processes) performed 

on data, and the rectangular blocks show the data stores (objects) that represent and 

provide access to data.  Data stores are shown within two horizontal lines.  Arrows 

leading into a block indicate input and arrows leading out of a block indicate output. The 

blocks sometimes have parameters or variables that serve as additional inputs. Processes 

that create data with no inputs are called Source Objects. Processes that only take data 

inputs and create no data outputs are called Sinks. Processes that consume data inputs and 

give as output transformed data are called Filters. 
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Figure 3.1:  Functional Model (Image courtesy of 
Kitware, Inc. and taken from [15]) 
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vtkStructuredPoints 

vtkStructuredGrid vtkUnstructuredGrid vtkPolyData

vtkDataSet

vtkPointSet

vtkStructuredData 

vtkObject

Figure 3.2:  Example of Object Model (Image courtesy of 
Kitware, Inc. and taken from [15]) 
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The object model represents the objects in the system, their properties and their 

relationship with other models in the system. In VTK, the Object Modeling Technique 

(OMT) developed at GE is used [15].  In the OMT representation, object classes are 

represented as solid rectangles and instances of objects are represented as dotted 

rectangles. The object name, variables and methods that operate on the object are given 

inside the rectangle. Each rectangle has lines dividing it into sections that show the object 

name, variables and methods separately. Line segments are drawn between related 

objects to represent the relationship between them. Inheritance is depicted by a triangle, 

with the parent class at the apex of the triangle and the derived class at the base of the 

triangle. The inheritance tree grows top-down. Figure 3.2 shows an example of the 

dataset object model in VTK. 

 

3.1.2.  Visualization Pipeline 

The functional model of data visualization is also referred to as the visualization 

pipeline or the visualization network. The pipeline consists of objects to represent data 

(data objects) and objects to operate on data (process objects).  Figure 3.3 shows a 

visualization pipeline. 

 

Data objects represent information. They provide methods to create, access and 

delete information. Direct modification of information is not allowed except through 

formal object methods.  
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Figure 3.3:  Visualization Pipeline (Image courtesy of 
Kitware, Inc. and taken from [15]) 
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Process objects are objects that operate on data inputs and generate data outputs. They are 

further classified into Source objects, Filter objects or Mapper objects, depending on 

whether they initiate, maintain or terminate the data flow in the visualization pipeline.  

Source objects that interface to data stored in files are called Reader objects. They read 

data from an external file and produce a data object.  Filter objects require one or more 

data inputs and generate one or more data outputs. Mapper objects correspond to sinks in 

the functional model. They consume one or more data inputs and terminate the data flow 

in the pipeline. Mapper objects usually transform data inputs into graphics primitives. 

They can also write data to a file or interface with another software system.  

 

3.1.3  Executing the Pipeline 

 The complete process of causing each process object to operate is called the 

execution of the network or the pipeline [15]. In general, a process object should be 

executed only when all its input objects are up-to-date. This requires synchronization of 

all the process objects in the network, beginning with the source object. This 

synchronization is done by explicit control or by implicit control as shown in Figure 3.4. 

 
 Explicit control means directly controlling the execution of the process objects. A 

centralized executive is used to track the changes to the network, make explicit 

dependency checks to coordinate the network, and execute only those objects whose 

inputs have changed . 
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Figure 3.4:  Explicit and Implicit Network Execution (Image courtesy of 
Kitware, Inc. and taken from [15]) 
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Implicit execution means that an object is executed only if its local input parameters 

change. The two main steps involved in implicit execution are Update() and Execute(). 

Referring to figure 3.4(b), when output is requested from object E, it requests input from 

its input object D. Chain E-D-B-A back propagates the Update() method until the source 

object A is encountered. The source object A then executes if there is a change in itself or 

its external inputs. The output from A is then passed to its requesting object B. B calls the 

Execute() method since its input has changed. Thus, every object in the chain A-B-D-E 

checks to see whether itself or its inputs have changed, and executes via the Execute() 

method. The chain ends when the initial requesting object E executes and terminates.  

 

Scalar isosurfacing in VTK is done using implicit execution. The filter object that 

is used to extract isosurfaces in VTK is the vtkContourFilter class. vtkContourFilter class 

is a general filter used for generating isosurfaces. This class object accepts any dataset as 

input and generates polygonal data, like triangles, as output. While the vtkContourFilter 

class can deal with any cell type, it is up to the individual cell type class to provide the 

method for contouring (isosurfacing in this case). The pseudo code for generating an 

isosurface is shown in Figure 3.5. The isosurface generation process begins when the 

actor sends a request to be rendered. 
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Figure 3.5:  Pseudo Code for Generating an Isosurface in VTK 

int main(int argc, char** argv) { 

create_render window_to_display_resulting_image() ; 

create_renderer() ; 

read_datafile_using vtkStructuredGridReader() ; 

/** output of above is structured grid **/ 

create_vtkContourFilter object(); 

set the structured grid as input to the object(); 

create a mapper(); 

create actor(); 

set mapper as actor’s mapper(); 

set the output of the vtkContourFilter object as the 

input of mapper(); 

add actor to renderer(); 

render the scene();    

} 

 



3.2 IMPLEMENTATION OF THE EXTREMA SKELETON ALGORITHM FOR 

VTK: DETAILS AND METHODOLOGY 

The extrema skeleton algorithm was adapted and implemented for simple 

structured grids composed of voxel cells in VTK. The volume had no voids or through-

holes. The strategy was to keep the flow of execution the same as in VTK and deviate 

only at the point of isosurface generation. Therefore, the implementation started with 

using the same structured grid reader, render window, renderer, light, mapper and actor 

classes as in the regular implementation using VTK. The vtkContourFilter class however 

was modified slightly for use with the Extrema Skeleton Method.  For any given 

isovalue, the seed cell list was first searched for the occurrence of isosurface cells.  

Isosurface propagation was then used to find all remaining isosurface cells.  These cells 

were passed to the vtkContourFilter class for polygonization. 

 

Figure 3.6 summarizes the flow of data and the logical steps of the 

implementation in both VTK and in the Extrema Skeleton method.  The flow of the 

program can be summarized using the pseudo code shown in Figure 3.7.  The algorithm 

was implemented in C++. VTK has many interfaces for programming, like tcl/tk and 

Java. The possibility of programming in Java was explored, since Java has the advantages 

of garbage collection. However, there are limitations with regard to deriving classes, and 

accessing class variables. The number of functions available to program through the 

interface is also somewhat limited.  
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Figure 3.7:  Pseudo Code for Implementation of Extrema 
Skeleton Algorithm in VTK 

void main(int argc, char** argv) { 

create render window to display resulting image ; 

create renderer ; 

read datafile using vtkStructuredGridReader ; 

/** preprocessing for forming extrema skeleton **/ 

create and initialize data structure to extract extremumPoints ; 

create and initialize data structures to form seed cell list ; 

extract Extremum points ; 

form Seed Cell List ; 

/** end preprocessing **/ 

create contour filter ; 

setinput of contour filter as output of vtkStructuredGridReader ; 

for(i=0; i < number of contours; i++) { 

 find cells corresponding to value i from Seed Cell List; 

 queue neighbors of above found cells; //isosurface propagation 

} 

    pass isosurface cells found above to modified vtkContourFilter ; 

    create mapper ; 

    set output of vtkContourFilter as input to mapper ; 

    create actor ; 

    set above mapper as actor’s mapper ; 

    add actor to renderer() ; 

    render scene ; 

} 



 3.2.1.  Data Structures Used for the Extrema Skeleton Method 

The vtkContourFilter class was modified and a private member variable IsIsoCell 

of type vtkIdList was added.  This list was used to store the IDs of all isosurface cells.  

The vtkContourFilter::Execute() function was modified to use the IsIsoCell ID list and 

polygonize isosurface cells only.  The following classes were also used in the 

implementation for VTK:  

 

vtkNode 

This class represents a point on the grid and is used mainly to record the extremum points 

in the data set. It has scalar information pertaining to a grid point and has the following 

member variables: 

• A float variable called ‘scalar’ which holds the scalar value of each grid point. 

• Boolean variables Max, Min. - A grid point is an extremum point if it has only one 

of its boolean variables set to true. The position of the node is stored in the 

internal representation of a cell in VTK and so this information is not duplicated 

here.  

 

vtkVolThinCell 

This class represents the type of cells the volume is made of. A cell ei has the following 

variables associated with it : 
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• neighborList - an ID list of type vtkIdList, which contains the index of each of 

the adjacent cells, ei,1, ei,2, …, ei,6 of cell ei. Each non-existent neighbor is 

represented by –1 in the list. 

• ‘eliminated’ – a boolean variable to indicate whether or not a cell has been 

eliminated from the extrema skeleton. 

• CellType – an integer that shows the number of neighbors the cell has. 

 

vtkExtremumPtsList 

The functions of this class are used to find the extremum points in the data set and has the 

following member variable : 

• extremumPtsList, of type vtkIdList, used to store the ID of the extremum points in 

the data set. 

 

vtkSeedCellList 

The functions of this class are used to form the extrema skeleton. The member variables 

are integer arrays, of type vtkIdList, that are used to store or point to ID of cells and 

vertices. They are listed below. 

• seedCellList, of type vtkIdList, used to store the ID of the cells selected to 

form the seed list. 

• neighbList, used to point to the neighbor IDs of a cell.  

• ptCellList, used to point to the ID of all the cells that have a particular grid 

point as one of their vertices (i.e., share a vertex). 
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• nodeList, used to point to the ID of all the nodes of a cell. 

neighbList, ptCellList and nodeList are all pointers of type vtkIdList. No memory is 

allocated for these members. 

 

3.2.2  Implementation Procedure 

In the main loop of the program, both the vtkNode and the vtkVolThinCell 

structures were initialized. Using the functions in the vtkStructuredGrid class, the scalar 

value for each point on the grid was retrieved from the vtkScalars data structure. This was 

used to initialize the vtkNode data structure. The neighbors for each cell in the volume 

were determined by finding out the list of cells that share all four nodes on the face of a 

cell. This information was stored in the neighbList member variable of the 

vtkVolThinCell class instance of that cell. A cell was classified based on the number of 

neighbors it had and also whether the cell was an extrema cell [10]. Accordingly, cells 

with no neighbors were of type ‘0’, cells with one neighbor were of type ‘1’, cells with 

two neighbors were of type ‘2’, and so on. All extrema cells were classified as ‘-1’. So, a 

voxel cell could be of type ‘i’= -1,0, 1, 2,…, 6 . The cell type ‘i’ for each cell was also 

stored in the vtkVolThinCell class instance of the respective cell. 

 

Finding extremum points    

Extremum points were extracted using the method described in Section 2.5.1.   
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Forming the extrema skeleton 

To start with, all cells touching the extrema points were marked as type ‘-1’. 

These cells were retained as part of the skeleton and were not removed until the skeleton 

was formed. In the initialization stage, the boolean variable ‘eliminated’ in the 

vtkVolThinCell class instance of all cells was set to false and all cells were assumed to be 

a part of the extrema skeleton. Each cell was then visited in the order in which it occurred 

in the structured grid object in VTK and was considered for elimination. If the cell was of 

type ‘-1’ then its ID was added to the seedCellList array. All other cells were considered 

for elimination based on the conditions shown in Figure 3.8 [10]. The connectivity 

between a cell and its non-eliminated neighbors was checked.  If a cell’s non-eliminated 

neighbors could be traversed through their shared faces without having to pass through 

the cell in question, the cell in question was eliminated. For example, if ei is the cell that 

had non-eliminated neighbors ej and ek, and if ek could be reached from ej by traversing 

through their shared faces without traversing through ei, then ei can be eliminated. When 

a cell was eliminated, its cell type was changed to ‘0’, its boolean variable ‘eliminated’ 

was set to true, and the cell type of all its non-eliminated neighbors was changed from ‘i’ 

to ‘i-1’, i>0. All type ‘0’ and type ‘1’ cells were automatically eliminated since there 

were no conditions to be checked for and since removing them did not affect the 

connectivity of their neighboring cells. Since the cell type of neighbor cells was 

continually updated during the thinning process, conditions for type ‘6’ cells were not 

required, because the type ‘6’ cells would change to some other cell type during the 

process.
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Figure 3.8:  Conditions for Hexahedral Cells (taken from [10]) 
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Finding isosurface cells from the skeleton 

Given a value, the seed cell list was searched for any cells intersected by the 

surface of interest. Upon finding ‘hit’ cells, the IDs of all such cells were stored in an 

integer array of type vtkIdList. These cells were then used as the starting points for 

isosurface propagation, described in Section 2.4, to find all the isosurface cells. This final 

list of isosurface cells was set as the IsIsoCell list member variable of the 

vtkContourFilter. 

 

3.3  POLYGONIZATION 

The vtkContourFilter class is used to generate surface contouring primitives 

(points, lines, polygons) depending on the input cell type.  In the case of voxel cells, the 

primitives are triangles.  The usual path for executing polygonization in VTK can be 

summarized as follows: 

The two stages – cell selection stage, and polygonization stage are executed in the same 

function.  Upon finding an isosurface cell, the surface inside the cell is determined for all 

desired isovalues.  The vtkContourFilter class initializes all the necessary data structures 

for creating and storing polygonal data.  Then, for each cell in the data set and for each 

isovalue, it calls the Contour() function of the appropriate cell type (in this case, 

vtkHexahedron::Contour() ).  The contour method for the vtkHexahedron class creates an 

index based on which vertices of the cell are outside or inside the surface (i.e., based on 

whether the scalar at the vertices of the cube is greater than, less than, or equal to the 

desired isovalue).  This index is then used as a pointer to look up the appropriate list of 
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intersected edges for the respective case in a table of surface-edge intersections.  Using 

this entry the point of intersection of the surface along the respective edges is found using 

linear interpolation.  The new points so created are checked for uniqueness using 

vtkMergePoints object.   

 

The vtkMergePoints class is a concrete implementation of the abstract class 

vtkLocator.  The abstract class, vtkLocator, is a spatial search object used to locate points 

in 3D.  It works by dividing a specific region in space into a regular array of “rectangular 

buckets”.  Each bucket contains a list of points.  These buckets can be quickly found in 

response to queries like point location. Locator objects are generally organized as tree 

structures and typically work as follows. Points or cells are first inserted into the tree 

structure. A point or cell will be associated with a certain bucket. When geometric 

operations are performed, they are first performed on the buckets, and if the operation 

turned out positive, more expensive operations are performed on the points and cells in 

the bucket.  

 

After the newly created points are checked for uniqueness using the 

vtkMergePoints::InsertUniquePoint() function, sets of points that form non-degenerate 

triangles (triangles whose vertices are non-coincident) are inserted into a vtkPolyData 

object. The vtkPolyData class is a concrete implementation of the vtkDataset class. It 

represents a geometric structure consisting of vertices, lines, polygons and triangle strips. 
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Point attributes, such as scalars, are also represented [15]. The vtkPolyData object holds 

the newly created polygonal data, i.e., vertices of the newly created triangles. 

 

3.4  RESOLVING PERFORMANCE PROBLEMS 

 In the implementation of the Extrema Skeleton algorithm for VTK, the same 

procedure for generating polygonal data described in Section 3.3 was used. However, 

instead of applying the procedure on all the cells in the dataset (which is the case in 

Marching Cubes), only the isosurface cells that were chosen using the Extrema Skeleton 

algorithm underwent polygonization.  When the list of isosurface cells was passed as 

input to vtkContourFilter, the polygonization time taken was longer than expected.  This 

delay was attributed to the vtkMergePoints::InsertUniquePoint function.  The 

InsertUniquePoint function checks for uniqueness of newly created points of intersection 

of the surface on cell edges.  The delay was found to be due to insufficient memory 

allocation (memory allocation was proportional to the number of isosurface cells) to the 

input parameters to the vtkMergePoints object.  To overcome this problem, the input 

parameters were initialized with memory proportional to the total number of cells in the 

dataset.  This change resulted in a significant reduction in the polygonization time. 
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CHAPTER 4 

RESULTS AND DISCUSSION 

 

The implementation of the extrema skeleton method for VTK was compiled and 

run on the Redhat Linux 7.2 operating system on a PC with a 500 MHz Pentium III 

processor and 512 MB of RAM. The VTK implementation of isosurface generation using 

the vtkContourFilter class was compared against the implementation of the Extrema 

Skeleton method for VTK in terms of the time taken to generate multiple isosurfaces, the 

number of cells searched for finding the isosurface and the time taken for the 

preprocessing stage. The timing scheme for both methods is shown in Figure 4.1.  The 

getrusage system call was used to obtain total time for contouring and rendering the 

resulting image.  getrusage returns the current resource usage for the program that calls 

it.  The syntax for this function is getrusage (int who, struct rusage *usage) where who is 

either RUSAGE_SELF or RUSAGE_CHILDREN.   This function contains several 

member variables that provide useful information on system resource usage for the 

calling program.  One such member variable timeval ru_utime was used to record the 

user time taken until getrusage was called in the program.  Time taken to execute a set of 

statements in the program was determined by taking the difference between the recorded 

time value before the first statement and the recorded time value after the last statement. 
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4.1  DATASETS TESTED 

Table 4.1 gives the sizes of the datasets used for comparing the two methods. The 

datasets Ellipsoid.vtk, Hyperboloid.vtk, and Paraboloid.vtk were generated by taking 

structured grids of differing sizes and assigning scalar values to each point in the grid 

using equations for an ellipsoid, hyperboloid, and paraboloid respectively.  Equations and 

ranges used to generate these datasets are shown in Appendix A.  FlowFrame1.vtk and 

FlowFrame20.vtk contain real data that were provided by the Computational Mechanics 

Research Group (CMRG) at the University of Tennessee Space Institute, Tullahoma.  

These datasets were generated by CMRG from studying the flow of water around a solid 

object.  AllIso.vtk was generated to compare the two algorithms in the case where all 

cells in the dataset were isosurface cells. The scalar value for every point on the grid of 

this dataset was either –1 or 1, and no two consecutive points on the grid had the same 

value. Thus, if an attempt were made to generate isosurfaces between values –1 and 1, all 

cells would be isosurfaces cells.  The procedure used to generate AllIso.vtk was also used 

to generate ZeroIso.vtk and SomeIso.vtk.  However, when testing ZeroIso.vtk the 

isovalues to be searched were chosen such that none of the cells in the dataset contained 

the search values.  In the dataset SomeIso.vtk, less than 1% of the scalar values were 

arbitrarily changed so that some of the cells in the dataset contained the search values. 

 

Figure 4.2 shows some of the properties of the datasets tested.  The graph shows 

the fraction of seed cells and the fraction of isosurface cells for each dataset.  Small seed 

cells fraction indicates that the dataset is simple with a regular well-defined distribution 
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Table 4.1: Size of Datasets 

Dataset # No. of Points Number of Cells 
ZeroIso.vtk 293,301 280,000 
SomeIso.vtk 293,301 280,000 
Ellipsoid.vtk 23,001 20,480 

Hyperboloid.vtk 58,466 54,000 
Paraboloid.vtk 69,741 64,000 

FlowFrame1.vtk 371,385 353,600 
FlowFrame20.vtk 371,385 353,600 

AllIso.vtk 52,521 48,000 
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Figure 4.2:  Dataset Characteristics 
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of scalar values in the grid.  Large seed cells fraction indicates that the dataset is complex 

with a significant fluctuation of scalar values from cell to cell.  The fraction of isosurface 

cells in a dataset depends on the scalar values and the isosurfaces being extracted.  The 

datasets ZeroIso.vtk, SomeIso.vtk, Hyperboloid.vtk, Paraboloid.vtk, and Ellipsoid.vtk are 

simple datasets4 with less than 10% isosurface cells.  The datasets FlowFrame1.vtk and 

FlowFrame.vtk are complex datasets5 with more than 10% isosurface cells.  The dataset 

AllIso.vtk is a simple dataset with 100% isosurface cells. 

 

Isosurfaces extracted from each dataset tested except ZeroIso.vtk and 

SomeIso.vtk are shown in Appendix B.  No polygons were generated for ZeroIso.vtk 

because no isosurface cells were found in the grid.  Very few polygons (corresponding to 

disjoint parts of an isosurface) were generated for SomeIso.vtk to be visualized.  

Additional datasets based on regular shapes like sphere and cylinder were also generated 

and visualized by extracting multiple isosurfaces.  These are shown in Appendix C. 

 

4.2  RESULTS 

The time taken for the various preprocessing stages is given in Table 4.2. The 

number of extrema points and the number of seed cells for each dataset is given in Table 

4.3. Ten isosurfaces were generated for each dataset. Table 4.4 shows the number of 

isosurface cells present in each dataset.  The table also compares the total number of cells 

searched by each method.  Table 4.5 lists the time taken to find all the isosurfaces plus  
                                                 
4 Datasets with <50% seed cells. 
5 Datasets with >50% seed cells. 
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Table 4.2: Time for Various Preprocessing Stages (microseconds per cell) 

Dataset # IES EES SES TPPES=IES+EES+SES TPPMC

ZeroIso.vtk 11.64 6.50 6.04 24.18 0 
SomeIso.vtk 11.64 6.46 6.39 24.50 0 
Ellipsoid.vtk 12.04 6.30 5.74 24.07 0 

Hyperboloid.vtk 11.88 6.25 5.94 24.06 0 
Paraboloid.vtk 11.72 5.86 5.86 23.44 0 

FlowFrame1.vtk 11.79 6.84 6.48 25.11 0 
FlowFrame20.vtk 11.65 6.87 6.48 25.00 0 

AllIso.vtk 12.29 6.46 6.04 24.79 0 
IES   – Initializing data structures for extrema skeleton method 
EES  – Time for finding extremum points for extrema skeleton method 
SES  – Time for finding seed cell list for extrema skeleton method 
TPPES – Total preprocessing time for extrema skeleton method 
TPPMC – Total preprocessing time for marching cubes method 

 

 

Table 4.3: Seed List and Extremum Points for the Extrema Skeleton Method 

Dataset # No. of Extremum 
Points 

No. of Cells in 
Seed List 

ZeroIso.vtk 51 3,578 

SomeIso.vtk 64 20,591 

Ellipsoid.vtk 2 551 

Hyperboloid.vtk 2 113 

Paraboloid.vtk 2 138 

FlowFrame1.vtk 11,460 208,806 

FlowFrame20.vtk 11,239 204,873 

AllIso.vtk 41 2,418 
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Table 4.4: Number of Isosurface Cells and Cells Searched for Ten Isosurfaces 

No. of Cells Searched 
Dataset # 

No. of 
Isosurface 

Cells 
Extrema 
Skeleton 

Marching 
Cubes 

ZeroIso.vtk 0 35,780 2,800,000 

SomeIso.vtk 92 206,680 2,800,000 

Ellipsoid.vtk 10,302 99,950 204,800 

Hyperboloid.vtk 3,288 43,000 540,000 

Paraboloid.vtk 15,490 81,190 640,000 

FlowFrame1.vtk 388,548 2,816,010 3,536,000 

FlowFrame20.vtk 397,619 2,805,020 3,536,000 

AllIso.vtk 480,000 480,000 480,000 
 

 

Table 4.5: Time for Generating Ten Isosurfaces (microseconds per cell) 

Extrema Skeleton Marching Cubes 
Dataset # 

TES TMC

ZeroIso.vtk 0.96 16.14 

SomeIso.vtk 1.93 16.18 

Ellipsoid.vtk 2.96 17.04 

Hyperboloid.vtk 6.56 19.69 

Paraboloid.vtk 16.11 23.44 

FlowFrame1.vtk 38.07 40.16 

FlowFrame20.vtk 38.72 40.72 

AllIso.vtk 214.17 212.50 
TES  – Time taken by extrema skeleton method for generating isosurfaces. 
TMC  – Time taken by marching cubes method for generating isosurfaces. 
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the time taken for polygonization for both methods.  All times are expressed in units of 

microseconds per cell in the dataset.  The number of polygons created for each dataset by 

both algorithms is shown in Table 4.6.  Graphs based on the tabulated results are shown 

in Figures 4.3 through 4.5.  Graphical and tabulated results are discussed in Section 4.3. 

 

4.3  DISCUSSION OF RESULTS 

Based on Figure 4.3, it is evident that the total preprocessing time per cell for the 

Extrema Skeleton method is constant.  Therefore, preprocessing time is proportional to 

the number of cells in the dataset.  For a given dataset, the preprocessing time is the same 

irrespective of how many isovalues are searched. 

 

 

Table 4.6: Number of Polygons Generated for Ten Isosurfaces 

Dataset # Extrema Skeleton Marching Cubes 

ZeroIso.vtk 0 0 

SomeIso.vtk 92 92 

Ellipsoid.vtk 20,600 20,600 

Hyperboloid.vtk 6,571 6,571 

Paraboloid.vtk 30,229 30,229 

FlowFrame1.vtk 890,358 890,358 

FlowFrame20.vtk 914,258 914,258 

AllIso.vtk 960,000 960,000 
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Figure 4.3:  Preprocessing Time for the Extrema Skeleton Method 
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Figure 4.5:  Performance of Extrema Skeleton Method 
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For all datasets except AllIso.vtk, the number of cells searched by the Extrema 

Skeleton algorithm for finding all isosurface cells was found to be less than the number 

of cells searched by the Marching Cubes algorithm.  Since all cells in AllIso.vtk were 

isosurface cells, the total number of cells searched by both algorithms was the same.  The 

results are shown in Table 4.4. 

 

Table 4.5 compares the time taken by each algorithm to generate ten isosurfaces 

on different datasets.  The results are plotted in Figure 4.4.   This figure indicates that 

while the Extrema Skeleton method was significantly faster for some datasets, the time 

taken was comparable but still less than the Marching Cubes method for other datasets.  

Performance of the Extrema Skeleton method depends on two parameters - the fraction of 

seed cells and the fraction of isosurface cells in the dataset.  The time taken by the 

Extrema Skeleton method is in fact the sum of the time taken to find isosurface cells 

(corresponds to the fraction of seed cells plus fraction of isosurface cells) and the time 

taken to polygonize the isosurface cells (corresponds to the fraction of isosurface cells).  

Total time for the Extrema Skeleton method however depends predominantly on the 

fraction of isosurface cells because polygonization is a time consuming operation.  Figure 

4.5 graphically represents the relationship between the performance of Extrema Skeleton 

Method, the dataset characteristics (fraction of seed cells), and the isovalues being 

searched (fraction of isosurface cells).  For the datasets tested, performance of the 

Extrema Skeleton method was recorded by determining how much faster the Extrema  
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Skeleton method was compared to the Marching Cubes method according to the formula: 

% Faster = (TMC – TES)/TMC * 100 

Performance was then plotted against ‘Dataset Parameter’ where, 

Dataset Parameter = (Fraction of Isosurface cells) + 0.08 x (Fraction of Seed cells) 

Dataset Parameter was chosen in the form shown above for the following reasons: 

a) Performance primarily depends on the fraction of isosurface cells. 

b) The constant “0.08” in the equation was chosen because the average time to 

process a non-isosurface cell was found to be approximately 8% of the average 

time taken to process an isosurface cell. 

It was found that as the value of Dataset Parameter increased, performance of the 

Extrema Skeleton method decreased.  It can be concluded from Figure 4.5 that, for the 

simple datasets tested, the Extrema Skeleton method was at least 31% faster.  For the 

remaining datasets tested, the Extrema Skeleton method was marginally (<5%) faster. 

 

The number of polygons generated when ten isosurfaces were extracted is shown 

in Table 4.6 for each dataset.  In every case, the number of polygons generated was equal 

for both methods.  This indicates that the Extrema Skeleton method gives the same end 

result as the Marching Cubes method by searching fewer cells. 

 

In comparing the timing results of both methods, preprocessing time for the 

Extrema Skeleton method was not considered.  This is because preprocessing time is 

independent of the isovalues searched and also independent of how many isosurfaces are 
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extracted.  Preprocessing time for a given dataset depends only on its size.  If 

preprocessing time were included in the the timing results when comparing the two 

methods, performance of the Extrema Skeleton method could be bettered by simply 

extracting more isosurfaces.  This point is illustrated in Figure 4.6.  Timing results were 

compared by extracting 10 isosurfaces and 25 isosurfaces from the dataset SomeIso.vtk.  

Results show that for 10 isosurfaces, Marching Cubes was faster while for 25 isosurfaces, 

the Extrema Skeleton Method was faster.  For both cases, preprocessing time was the 

same. 

 

4.4  COMPARING RESULTS WITH PREVIOUS WORK 

Itoh [10] compared the performance of the Extrema Skeleton method with other 

algorithms that require preprocessing.  Results of his study indicated that the 

preprocessing time for the Extrema Skeleton method was in most cases less than the 

preprocessing time for other methods.  He also found that the preprocessing time for the 

Extrema Skeleton method increased linearly with the size of the dataset.  His 

observations match the findings of the current study.  Itoh also found that the time taken 

by the Extrema Skeleton method depends on the size of the dataset and the number of 

extremum points, but primarily on the number of isosurface cells.  This is consistent with 

the observations of the current study where the performance of the Extrema Skeleton 

method was observed to depend on the fraction of isosurface cells and the fraction of 

seed cells (depends on extremum points and dataset size) in the dataset.  Further
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Figure 4.6:  Amortization of Preprocessing Time for the Extrema Skeleton Method 
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comparison of the results is restricted by the differences between the type of datasets 

tested, and type of dataset cells.  The type of datasets tested in the current work 

represented a structured grid.  Datasets tested by Itoh were all unstructured grids.  

Similarly, while the datasets tested in the current work comprised of hexahedral cells, 

datasets tested by Itoh comprised of tetrahedral cells. 

 

4.5  CONCLUSIONS 

As stated in the problem statement described in Section 1.2, the objective of this 

thesis was to investigate the hypothesis that the Extrema Skeleton algorithm will decrease 

the time taken to extract isosurfaces from a given dataset, when compared to the 

Marching Cubes algorithm in the VTK package.  The intent was to decrease the 

computing time by reducing the number of cells searched.  This hypothesis was found to 

be true for most but not all of the datasets tested.  Conclusions from this study are listed 

below: 

1. Preprocessing time for the Extrema Skeleton method is linearly proportional to 

the size of the dataset. 

2. For simple datasets with less than 10% isosurface cells and complex datasets with 

less than 5% isosurface cells, the Extrema Skeleton method is at least 10% faster 

than the Marching Cubes method. 

3. For complex datasets with greater than 10% isosurface cells and any dataset with 

greater than 15% isosurface cells, the speedup gained by the Extrema Skeleton 

method is insignificant. 
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4. Real data is usually not based on smooth functions.  Therefore, users of VTK are 

expected to encounter datasets that have at least 30% seed cells.  Users are also 

very likely to deal with datasets having less than 10% isosurface cells.    

Therefore, implementing the Extrema Skeleton method for the VTK software is 

worthwhile because VTK users deal with datasets for which the Extrema Skeleton 

method is significantly faster and also with datasets for which the Extrema 

Skeleton is marginally faster than the Marching Cubes method. 
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APPENDIX A 

Equations Used to Generate Datasets 
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The following equations were used to generate the datasets Ellipsoid.vtk, Paraboloid.vtk, 
and Hyperboloid.vtk: 
 

Ellipsoid.vtk 

1
256464

),,(
222

−++=
zyxzyxf  

f(x,y,z) was assigned as the scalar value at the point (x,y,z). 

Data was generated in the range (0,0,0) to (10,4,8) using a step size of 0.25.  This range 
will yield the section of the ellipsoid shown in Figure B-1. 
 

Hyperboloid.vtk 

1
256464

),,(
222

−−+=
zyxzyxf  

f(x,y,z) is assigned as the scalar value at the point (x,y,z). 

Data was generated in the range (0,0,0) to (6,9,8) using a step size of 0.2. This range will 
yield the section of the hyperboloid shown in Figure B-2. 
 

Paraboloid.vtk 

( ) zyxzyxf −+= 222),,(  

f(x,y,z) is assigned as the scalar value at the point (x,y,z). 

Data was generated in the range (0,0,0) to (1,4,2) using a step size of 0.05.  This range 
will yield the section of the paraboloid shown in Figure B-3. 
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APPENDIX B 

Isosurfaces Extracted From the Datasets Tested 
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View 1 View 2  

 

Figure B-1:  Ten Isosurfaces Extracted from Ellipsoid.vtk 
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  View 1 View 2 
 

 Figure B-2:  Ten Isosurfaces Extracted from Hyperboloid.vtk 
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View 1 View 2  

 

Figure B-3:  Ten Isosurfaces Extracted from Paraboloid.vtk 

 72



 

 

 

 

 View 1 View 2 

 

 Figure B-4:  Ten Isosurfaces Extracted from FlowFrame1.vtk 
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 View 1 View 2 

 

Figure B-5:  Ten Isosurfaces Extracted from FlowFrame20.vtk  
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View 1 View 2 

 

 
Figure B-6:  Ten Isosurfaces Extracted from AllIso.vtk 
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APPENDIX C 

Visualization of Regular Objects 
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Figure C-1:  Isosurfaces Extracted from Data Generated  
Using Equation of a Sphere 

 

 

 

 Figure C-2:  Isosurfaces Extracted from Data Generated  
Using Equation of a Cylinder 
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