
University of Tennessee, Knoxville
Trace: Tennessee Research and Creative
Exchange

Masters Theses Graduate School

12-2003

Isosurface Extraction in the Visualization Toolkit
Using the Extrema Skeleton Algorithm
Subha Parvathy Mahaadevan
University of Tennessee - Knoxville

This Thesis is brought to you for free and open access by the Graduate School at Trace: Tennessee Research and Creative Exchange. It has been
accepted for inclusion in Masters Theses by an authorized administrator of Trace: Tennessee Research and Creative Exchange. For more information,
please contact trace@utk.edu.

Recommended Citation
Mahaadevan, Subha Parvathy, "Isosurface Extraction in the Visualization Toolkit Using the Extrema Skeleton Algorithm. " Master's
Thesis, University of Tennessee, 2003.
https://trace.tennessee.edu/utk_gradthes/2107

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Tennessee, Knoxville: Trace

https://core.ac.uk/display/268807114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://trace.tennessee.edu
https://trace.tennessee.edu
https://trace.tennessee.edu/utk_gradthes
https://trace.tennessee.edu/utk-grad
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a thesis written by Subha Parvathy Mahaadevan entitled "Isosurface Extraction
in the Visualization Toolkit Using the Extrema Skeleton Algorithm." I have examined the final electronic
copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the
requirements for the degree of Master of Science, with a major in Computer Science.

Bruce A. Whitehead, Major Professor

We have read this thesis and recommend its acceptance:

Kenneth R. Kimble, L. Montgomery Smi

Accepted for the Council:
Carolyn R. Hodges

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

To the Graduate Council:

I am submitting herewith a thesis written by Subha Parvathy Mahaadevan entitled

“Isosurface Extraction in the Visualization Toolkit Using the Extrema Skeleton

Algorithm.” I have examined the final electronic copy of this thesis for form and content

and recommend that it be accepted in partial fulfillment of the requirements for the

degree of Master of Science, with a major in Computer Science.

Bruce A. Whitehead

Major Professor

We have read this thesis and
recommend its acceptance:

Kenneth R. Kimble

L. Montgomery Smith

 Acceptance for the Council:

 Anne Mayhew

 Vice Provost and
 Dean of Graduate Studies

(Original signatures are on file with official student records.)

ISOSURFACE EXTRACTION
 IN THE VISUALIZATION TOOLKIT

 USING THE EXTREMA SKELETON ALGORITHM

A Thesis

Presented for the

Master of Science

Degree

The University of Tennessee, Knoxville

Subha Parvathy Mahaadevan

December 2003

ACKNOWLEDGEMENTS

I wish to thank my advisor Dr. Bruce Whitehead for his guidance and support

during my years of graduate study at UTSI. I also thank my thesis committee members

Dr. Kenneth Kimble, and Dr. Montgomery Smith for taking the time to serve on my

committee and for their valuable advice and input. My most sincere thanks are due to Dr.

John Steinhoff and Dr. John Caruthers for giving me the opportunity to work with the

CMRG team and for providing financial support for over a year, to Dr. Mary Helen

McCay, Dr. Dennis Keefer, and James O. Hornkohl for helping me to continue and

complete my thesis while working for CLA. Finally, thanks to Abraham Meganathan for

his help and support during my thesis and my stay at UTSI.

 ii

ABSTRACT

 Generating isosurfaces is a very useful technique in data visualization for

understanding the distribution of scalar data. Often, when the size of the data set is really

large, as in the case with data produced by medical imaging applications, engineering

simulations or geographic information systems applications, the use of traditional

methods like marching cubes makes repeated generation of isosurfaces a very time

consuming task. This thesis investigated the use of the Extrema Skeleton algorithm to

speed up repeated isosurface generation in the visualization package, Visualization

Toolkit (VTK). The objective was to reduce the number of non-isosurface cells visited to

generate isosurfaces, and to compare the Extrema Skeleton method with the Marching

Cubes method by monitoring parameters like time taken for the isosurfacing process and

number of cells visited. The results of this investigation showed that the Extrema

Skeleton method was faster for most of the datasets tested. For simple datasets with less

than 10% isosurface cells and complex datasets with less than 5% isosurface cells, the

Extrema Skeleton method was found to be significantly faster than the Marching Cubes

method. The time gained by the Extrema Skeleton method for datasets with greater than

15% isosurface cells was found to be insignificant. Based on the results of this study,

implementing the Extrema Skeleton method for the VTK software is a change worth

making because typical VTK users deal with datasets for which the Extrema Skeleton

method is significantly faster and also with datasets for which it is marginally faster than

the Marching Cubes method.

 iii

TABLE OF CONTENTS

CHAPTER ..PAGE

1. INTRODUCTION .. 1
 1.1 Related Work .. 3
 1.2 Problem Statement .. 5
 1.3 Objectives ... 6
 1.4 Applications .. 6

2. LITERATURE REVIEW ... 8
 2.1 Marching Cubes .. 8
 2.1.1 Finding Isosurface Cells and Determing the Topology of
 the Surface .. 9
 2.1.2 Vertex Computation and Surface Normal Computation.......................... 10
 2.2 Span Filtering.. 12
 2.3 Octrees .. 12
 2.4 Isosurface Propagation.. 14
 2.5 Extrema Graph .. 14
 2.5.1 Finding Extrema Points.. 16
 2.5.2 Generating Extrema Graphs... 16
 2.5.3 Generating Sorted Boundary Cell Lists ... 17
 2.5.4 Generating Isosurfaces... 17
 2.6 Contour Tree ... 18
 2.7 Extrema Skeleton for Fast Isosurface Generation .. 20
 2.7.1 Summary of Volume Thinning Method... 23

3. IMPLEMENTATION FOR VTK... 24
 3.1 Isosurfacing in VTK ... 24
 3.1.1 Components of a Scene.. 24
 3.1.2 Visualization Pipeline .. 28
 3.1.3 Executing the Pipeline ... 30

3.2 Implementation of the Extrema Skeleton Algorithm for VTK:
Details and Methodology.. 34

 3.2.1 Data Structures Used for the Extrema Skeleton Method......................... 37
 3.2.2 Implementation Procedure ... 39
 3.3 Polygonization .. 42
 3.4 Resolving Performance Problems... 44

4. RESULTS AND DISCUSSION... 45
 4.1 Datasets Tested ... 47
 4.2 Results... 50
 4.3 Discussion of Results.. 53

 iv

 4.4 Comparing Results with Previous Work... 59
 4.5 Conclusions... 61

LIST OF REFERENCES.. 63

APPENDIX... 66
 Appendix A Equations Used to Generate Datasets... 67
 Appendix B Isosurfaces Extracted from the Datasets Tested................................... 69
 Appendix C Visualization of Regular Objects.. 76

VITA... 78

 v

LIST OF TABLES

TABLE..PAGE

4.1 Size of Datasets... 48

4.2 Time for Various Preprocessing Stages.. 51

4.3 Seed List and Extremum Points for the Extrema Skeleton Method 51

4.4 Number of Isosurface Cells and Cells Searched for Ten Isosurfaces....................... 52

4.5 Time for Generating Ten Isosurfaces ... 52

4.6 Number of Polygons Generated for Ten Isosurfaces.. 53

 vi

LIST OF FIGURES

FIGURE ..PAGE

2.1 Triangulated Cubes ... 11

2.2 Through-hole and Void in a Volume.. 19

2.3 Pseudo Code for the Extrema Skeleton Algorithm... 22

3.1 Functional Model .. 26

3.2 Example of Object Model... 27

3.3 Visualization Pipeline ... 29

3.4 Explicit and Implicit Network Execution ... 31

3.5 Pseudo Code for Generating an Isosurface in VTK.. 33

3.6 Implementation of Marching Cubes and Extrema Skeleton Methods in VTK......... 35

3.7 Pseudo Code for Implementation of Extrema Skeleton Algorithm in VTK............. 36

3.8 Conditions for Hexahedral Cells... 41

4.1 Timing Scheme for Comparing the Marching Cubes Algorithm with the

Extrema Skeleton Algorithm .. 46

4.2 Dataset Characteristics.. 49

4.3 Preprocessing Time for the Extrema Skeleton Method .. 54

4.4 Comparison of Time for Generating Ten Isosurfaces... 55

4.5 Performance of the Extrema Skeleton Method... 56

4.6 Amortization of Preprocessing Time for the Extrema Skeleton Method 60

B-1 Ten Isosurfaces Extracted from Ellipsoid.vtk.. 70

B-2 Ten Isosurfaces Extracted from Hyperboloid.vtk.. 71

 vii

B-3 Ten Isosurfaces Extracted from Paraboloid.vtk... 72

B-4 Ten Isosurfaces Extracted from FlowFrame1.vtk.. 73

B-5 Ten Isosurfaces Extracted from FlowFrame20.vtk.. 74

B-6 Ten Isosurfaces Extracted from AllIso.vtk .. 75

C-1 Isosurfaces Extracted from Data Generated Using Equation of a Sphere 77

C-2 Isosurfaces Extracted from Data Generated Using Equation of a Cylinder 77

 viii

LIST OF SYMBOLS

Ω A domain in ℜ3

Σ A grid

C-1 A cell that has an extremum point as one of its vertices

Ci A cell with ‘i’ neighbors (for i≥0)

ei A cell in a grid

f A function

FIFO First In First Out queue

k Number of isosurface cells

K Number of buckets

m Number of extremum points in a dataset

n Number of cells in a dataset

q A fixed value in ℜ for which an isosurface has to be generated

r Number of triangles in a triangle strip

S A set of all isosurface points corresponding to a fixed value in a domain

V Finite set of points spanning a domain

vi Elements of set V

v Vertex of a cell

W Set of values of a scalar field sampled at points of V

wi Elements of set W

 ix

CHAPTER 1

INTRODUCTION

Extracting isosurfaces is one of the most widely used and effective techniques for

visualizing scientific data. It is an effective technique for understanding the distribution

of scalar fields in a three-dimensional data set.

An isosurface can be defined as a constant density function on a 3D data set.

More precisely, a scalar volume data set [13] is a pair (V, W), where V = {vi ∈ ℜ3, i=

1,…,n} is a finite set of points comprising a domain Ω ⊂ ℜ3, and W = {wi ∈ ℜ, i = 1,..,n}

is a corresponding set values of a scalar field f(x,y,z), sampled at the points of V, i.e., wi =

f(vi). Given a value q ∈ ℜ, the set S(q) = {p ∈ Ω | f(p) = q} is called the isosurface of

field f corresponding to the value q.

Often it is useful to study the distribution of scalar fields by repeated generation

of isosurfaces corresponding to different scalar values q. This feature is supported in most

visualization tools and applications. Most physical real world problems generate such

huge amounts of data that the cost of generating an isosurface becomes high in terms of

time and resources. Efficient algorithms are therefore necessary for fast and accurate

isosurface generation.

 1

The representation of the data set in 3D space can be summarized as follows [13].

To begin with, a grid Σ is given. Σ is formed by subdividing the domain Ω into small

hexahedra or tetrahedra, termed ‘cells’, whose vertices are at the points of V and whose

values are in W. Thus each point on the grid Σ is the pair (vi, wi), i=1,..,n. Consider a cell

ej ∈ Σ, that has vertices vj1,.., vjk. ej is called an ‘isosurface cell’ if, for a fixed q ∈ ℜ, mini

{wji} ≤ q ≤ maxi {wji}.

The process of generating an isosurface occurs in four stages -

(1) Finding isosurface cells: Given a value q, Σ is searched for isosurface cells.

(2) Determining the topology of the surface inside each isosurface cell: Based on the

cell topology, there are only a specific number of ways in which a surface can

pass through a cell. This is discussed in the Marching cubes method [1] in

Chapter 2.

(3) Vertex computation: This is done by linear interpolation of the field along the

edges that the isosurface intersects. (These vertices, called isosurface vertices,

will be joined to form triangles at a later stage. Thus the isosurface will be

approximated as a set of triangles inside each isosurface cell).

(4) Surface normal computation: For each vertex so formed, the normal to the surface

at that point is calculated.

 2

1.1 RELATED WORK

 Techniques like the Marching Cubes algorithm, that visits every cell in a dataset

to find isosurface cells, can be very time consuming when the dataset is large. Many

techniques have been developed that aim to reduce the time taken by the cell selection

stage. These techniques can be grouped as algorithms that sort cells according to their

scalar values, algorithms that use space-subdivision for cell classification like the Octrees

method [4], and algorithms based on seed set and range based approaches. The first two

techniques work best for a structured volume and are difficult to apply to unstructured

grids. Also, the number of cells visited is O(n) [4,5], where n is the total number of cells.

However, algorithms based on seed set approaches and range-based approaches can be

applied to both structured and unstructured grids. The computation time for the

isosurfacing process for these algorithms is much less than O(n) [6,9].

The range-based methods use an interval [a,b] of a cell’s scalar values, ‘a’ being

the cell’s minimum scalar and ‘b’ being the cell’s maximum scalar. The isosurface cells

are located by looking for an interval where a ≤ q ≤ b where q is the desired isovalue.

Algorithms based on this approach include K-d trees [9], Lattice classification [6], and

Interval trees [13]. The number of cells visited in these algorithms is less than O(n), but

they require over O(n) time for the construction of the data structures in the initialization

stage. The second approach is the seed set based method [7,8,10]. In this method, the

preprocessing step generates a seed set, which is a set of cells in a volume chosen based

on certain conditions. By traversing the seed set, it is possible to find at least one cell that

 3

belongs to a desired isosurface. Using a propagation algorithm [8] that recursively visits

adjacent cells (cells that share a face with a given cell), the entire isosurface is generated.

Algorithms developed on the seed set based approach include the Extrema Graph method

[8], and the Contour Tree method [7].

The Extrema Graph method extracts local maxima and minima, and connects

them by arcs of cells in the volume. It then generates two sorted cell lists based on the

maximum and minimum values of the cells on the boundary. This is done so that disjoint

parts of an isosurface can be located. When a value is given, cells in the Extrema Graph

and the boundary cell lists are searched to find at least one isosurface cell. The rest of the

isosurface is propagated from these cell(s). The disadvantage with this method is having

to maintain the boundary cell list. Also, complexity of the algorithm is dependent on the

number of extremum points in the data set [8].

The Contour Tree method overcomes the need to store boundary cells by finding

not only extrema points, but also saddle points, and connects them all using a tree

structure. The preprocessing time for this method is more than O(n) [7].

The Extrema Graph method was later extended to develop the Extrema Skeleton

method [12]. In this method, the extremum points in a volume are found as in the

Extrema Graph method, but instead of connecting the extrema points by a graph, a

technique called Volume Thinning is used. The Volume Thinning technique is an

 4

extension of the method used for image recognition. The Extrema Skeleton generated

serves as the seed set. The Extrema Skeleton aims at preserving the topology of a given

volume while connecting all the extrema in the volume. The skeleton contains at least

one cell for every isosurface in the volume. The Extrema Skeleton method does not

require more than O(n) computation time for preprocessing since the preprocessing

technique involves visiting cells a constant number of times [12]. The number of cells in

the skeleton is estimated as O(n1/3 m) [12], where m is the number of extremum points.

The time for finding the isosurface cells is estimated as O(n1/3 m + k) [12] , where k is the

number of isosurface cells.

1.2 PROBLEM STATEMENT

Many modern day applications generate large quantities of data. Therefore, it is

worth exploring techniques that reduce the time taken for finding isosurface cells. The

VTK package uses the Marching Cubes algorithm to find isosurfaces. So, it was

hypothesized that substituting the Marching Cubes algorithm with a more efficient

algorithm would provide an improvement in the processing time. To test this hypothesis,

the Extrema Skeleton algorithm was chosen. Various reasons shown below contributed

to this choice :

• Compared to the Marching Cubes algorithm, the number of cells searched by the

Extrema Skeleton algorithm is smaller.

• Preprocessing time is smaller than most methods that use sorting techniques.

• This algorithm can be applied to both structured and unstructured grids.

 5

This thesis is an investigation of the hypothesis that the Extrema Skeleton algorithm will

decrease the time taken for isosurface extraction in a given simple structured data set,

compared to the Marching Cubes algorithm used by the VTK package.

1.3 OBJECTIVES

This thesis focuses on the following objectives to investigate the hypothesis

described in the problem statement of Section 1.2 :

• Implement the Extrema Skeleton algorithm for the graphics package Visualization

Toolkit (VTK) for simple structured grids consisting of voxels.

• Determine the time and number of cells visited for multiple isosurfaces generated

in the same volume and compare it with the existing method in the package for

finding isosurfaces viz., the Marching Cubes method.

Results of this study indicated that the Extrema Skeleton method was faster than

Marching Cubes for most of the datasets tested. While for some datasets, the time

improvement was significant, for others the time gained was negligible. It was concluded

that implementing the Extrema Skeleton method for VTK speeds up the software by at

least 10% for simple datasets with less than 10% isosurface cells. Detailed results and

discussion are presented in Chapter 4.

1.4 APPLICATIONS

Continuous extraction of isosurfaces is particularly useful in applications where

the distribution of scalar values is important. Examples of such applications include

 6

visualizing distribution of temperature or pressure in fluid flow, and visualizing Magnetic

Resonance (MR) scan data for extracting images of skin, soft tissues at various depths,

bone structure, and organs from a single set of scanned data.

 7

CHAPTER 2

LITERATURE REVIEW

The simplest way to compute isosurfaces is to visit each cell and determine

whether the surface of interest passes through it. The isosurface is then approximated as a

set of points or triangles inside the cells, as described in the Marching Cubes method [1].

Since this requires that all the cells in a given data set be visited, the time required for it is

always O(n) [1], where n is the number of cells in the data set. This would be a

disadvantage for particularly large values of n, since not all cells are isosurface cells.

Hence, different approaches aimed at reducing the number of non-isosurface cells visited

were proposed by different researchers. Sections 2.2 through 2.6 discuss some of the

algorithms that were developed on this idea. The algorithms discussed below are the

Marching Cubes method [1], Span filtering [5], Octrees [4], Issue algorithm [6], Contour

trees [7], and Extrema graph method [8] .

2.1 MARCHING CUBES

The Marching Cubes algorithm [1] creates triangle models of constant density

surfaces from 3D data. The algorithm deals with surface reconstruction and involves the

creation of a surface model from 3D data. The model usually consists of 3D volume

elements (voxels) or polygons. A certain density value corresponding to the surface that

is desired to be visualized is specified. Surface reconstruction then takes place in two

stages. The algorithm first locates the surface corresponding to the specified value and

 8

creates triangles. Then, it creates normals to the surface at each vertex of the triangle to

construct a visualizable image.

This method addresses all four processing stages for isosurface extraction listed in

Chapter 1. The first two steps, finding the isosurface cells and determining the topology

of the surface, are performed in the same pass.

2.1.1 Finding Isosurface Cells and Determining the Topology of the Surface

The algorithm determines how a surface intersects a logical cube, created from

eight pixels, and then moves on (marches) to the next cube until the whole image is

constructed. To find how a surface intersects a cube, the algorithm assigns a “1” to all

vertices in the cube for which the data value at the vertex exceeds or equals the value of

the surface. If not, it assigns a value “0”. The vertices with value ‘1” are considered

inside or on the isosurface while the vertices with value “0” are outside the surface of

interest. The surface intersects all those cube edges such that one vertex is outside and

another is inside the surface. Based on this, the topology and the location of the surface

inside the cube are determined. Since a regular cube has eight vertices, and the state of

each vertex can either be inside or outside a given surface, there are 28 = 256 cases for

surface-edge intersection. For the purpose of triangulation, the number of cases is

reduced by the application of two different symmetries as described by Lorensen [1]. The

cases resulting from the two different symmetries are the same and so finally, the total

number of cases is reduced to 14. One of the symmetries occurs since the topology of the

 9

surface inside the cube is unchanged if the relationship of the surface value to the “0” and

“1” value of the vertices is interchanged. The vertices with value “1” are changed to

value “0” and vice versa. Thus, only cases with zero to four vertices whose values are

greater than the surface value are taken into consideration. This reduces the number of

cases to 128. The number of cases is further reduced to 14 by applying rotational

symmetry. Figure 2.1 shows an illustration of the 14 basic cases.

2.1.2 Vertex Computation and Surface Normal Computation

Vertex computation and surface normal computation are the two final steps of the

isosurface extraction process. An eight-bit index is created for each case based on the

state of each of the eight vertices. This index is then used as a pointer to look up the

appropriate list of intersected edges for the respective case in the table of surface-edge

intersections. Using this entry, the surface intersection along the edge is interpolated.

Finally, normals are created at the resulting triangle vertices to produce Gouraud-shaded

images.

Marching cubes is a simple, yet a very powerful algorithm and is used in many

applications even today. The algorithm visits every cell in the data set. The complexity of

the algorithm is O(n) since every cell is visited once [1]. This might become a

disadvantage in the case of a large data set. To find the isosurface corresponding to a new

value, the whole data set is visited once again. There is no stored information from a

 10

Figure 2.1: Triangulated Cubes (Image courtesy of
Kitware, Inc. and taken from [1])

 11

previously generated isosurface, and there is no carry over information from the previous

iteration.

2.2 SPAN FILTERING

The Span Filtering method, proposed by Gallagher [5], focuses on the first stage

in the isosurface extraction process, i.e., finding isosurface cells. Any polygonization

algorithm could be used in conjunction with this search method, to achieve the same end

result as the final three stages of the isosurface extraction process listed in Chapter 1.

This algorithm classifies or sorts cells according to the values in a cell and

generates a compressed data representation for speeding up isosurface generation. The

range of data values is divided into sub ranges, termed “buckets”. Every cell is classified

based on which bucket its minimum value falls in and the number of buckets the

particular cell’s range spans. In a “span list” cells are grouped based on their span, and

within each group, cells are grouped further according to their starting bucket value.

There is a list for groups that belongs totally to one bucket, one for groups that span more

than K buckets, and one for groups whose span is greater than the previous lists. The

search algorithm for this method has a complexity of O(n) [5].

2.3 OCTREES

As in the case of the Span Filtering method, the Octrees algorithm, proposed by

Wilhelms [4], focuses only on the cell selection stage of the isosurface extraction process.

 12

While Wilhelms used the Octrees algorithm for finding the isosurface cells, the

polygonization of those isosurface cells was performed using the Marching Cubes

subroutines (determining the topology of the surface, vertex computation, and surface

normal computation), discussed in Section 2.1.

Octrees are hierarchical data structures based on the decomposition of three-

dimensional space, that recursively divide 3D space into eight sub-volumes [4]. The root

of the octree refers to the entire volume. Every coordinate direction is divided into a

“lower” half space and an “upper” half space to create octants. A volume that has 2n-1 and

2n cells can be represented by an octree of depth ‘n’. Wilhelms [4] discusses the usage of

summary at each node of the octree for the entire subvolume beneath it for isosurface

generation. Thus, only areas of the tree that correspond to the value of interest need to be

explored. For isosurface extraction, the maximum and minimum values of the data within

a node’s sub-region are maintained. Given a value for which the corresponding isosurface

has to be extracted, only those nodes whose minimum values are not greater than the

given value and whose maximum values are not less than the given value are traversed.

Nodes for which this condition fails, and the entire branch below them, are not traversed.

The number of cells visited in this method in general is twice the number of

isosurface cells [4]. The tree is sensitive to the underlying data it represents and so if the

data contains many fluctuations or noise, then most of the tree needs to be traversed.

 13

Also, the method requires significant setup time. So, the pre-computed results have to be

stored effectively for any speed advantages.

2.4 ISOSURFACE PROPAGATION

The Isosurface Propagation algorithm proposed by Speray and Kennon [3]

combines the cell selection stage and the polygonization step. This method does not

make clear distinctions between the surface topology determination, vertex computation,

and surface normal computation steps. Instead, polygons are generated as and when

isosurface cells are found.

The propagation algorithm does not require much preprocessing. It uses cell

adjacency to propagate itself through the face of cells. It requires a data structure that

maintains the IDs of adjacent cells for each cell. When a cell that is intersected by an

isosurface is specified, all its adjacent cells are put into a queue. Each cell is then

extracted from the queue to check whether the surface of interest passes through it. If so,

the adjacent cells of the newly found isosurface cell are added to the queue. This process

is done until the queue becomes empty. The algorithm requires manual specification of

the starting cell and is not very useful for generating isosurfaces without it.

2.5 EXTREMA GRAPH

The Extrema Graph method [8] focuses on the cell selection stage of the

isosurface extraction process. The Marching Cubes subroutines or any other

 14

polygonization algorithm could be used in conjunction with the Extrema Graph method

to generate the isosurface.

This method is based on generating a small seed set for a given data set. In the

seed set based approach, a small set of cells from the data set is first generated. Given a

fixed isovalue, the algorithm searches the seed set for a “hit” cell, or cells that contain the

surface of interest. Using these cells as the starting point, the adjacent cells of each of

these cells, i.e., the cells that share a face with a specified cell, are searched recursively,

as in a propagation algorithm described in Section 2.4. This is done until all the cells that

contain the isosurface are found. A polygonization algorithm, like Marching Cubes [1], is

used to create triangles for isosurface generation. The preprocessing phase of the

algorithm examines the values at the vertex of every cube in the volume and generates a

set of extrema1 points. The algorithm makes the following assumptions [8]:

1) if the isosurface is closed, then there are extrema points both inside and outside

it2.

2) if an isosurface is open then it intersects the boundary of the volume.

1 Definition: Let ‘e1’ be a hexahedral cell in a given dataset and let v11, v12, v13, …, v18, be the vertices of this
cell. Let e2, e3, e4, e5, e6, e7, e8 be the seven cells that have the vertex v11, vi2, .. , vi8, where i = 2,3…,8. In
other words, they are connected to e1 by 0 or more cell edges and the vertex v11 is a common vertex of all
the eight cells. The vertex v11 is termed a minimum if v11 < vij, (or equivalently, a maximum if v11 > vij), for
all i,j = 1,2,3,..,8 (i,j ≠ 1,1). If v11 is either a maximum or a minimum, then it is called an extremum point.

2 A closed isosurface divides the dataset into two disjoint finite sets each of which must contain at least one
extremum point.

 15

2.5.1 Finding Extrema Points

Itoh [8] defines extrema points as grid points whose scalar values are maximum

or minimum in all cells that share them. To find the extremum points, the scalar values at

the vertices of each cell are compared with one another, beginning with the first cell in

the dataset. Consider the case for finding minima - in each cell, the vertex v with the

least scalar value is marked as the minima. It is unmarked later if the scalar value of v is

not the minimum in another cell that contains v as one of its vertices. When all cells are

processed in this manner, this will leave a few vertices marked as mimima. The same

procedure is followed to find the maximas. A vertex that is marked either maxima or

mimima is an extremum point.

2.5.2 Generating Extrema Graphs

An extrema graph is defined as a set of arcs that connects two extrema points. To

start with, an extrema point is chosen as the ‘start’ point. Several extrema points closer to

the ‘start’ point are chosen as ‘candidates’, and one of them is chosen as the ‘destination’

point. The vector of the arc between the start point and the destination point is calculated.

Beginning with a cell one of whose vertex is the ‘start’ point, the arc is traversed. This is

done until the cell containing the destination point is reached. Two classes, class Arc and

class Graph are used to maintain information about the cells that are traversed after arc

formation, and for holding the final extrema graph information. The cell ID of each

traversed cell is inserted into a list. If the traversal crosses the boundary of the volume,

the traversal is abandoned and the next available closest destination point is chosen for

 16

starting a new traversal. Flags are maintained for every extrema point to check how it is

connected to another extrema. To begin with, the flag of an extrema point is its grid point

ID. When it is connected with another extrema, the flag that has the larger value is

replaced with the flag ID of the extrema with a smaller flag ID value. In addition, flag

values of other extrema that are connected to this one are substituted with the new small

value. This is done so that when choosing a destination point an extrema point with the

same flag value as the start point is not selected.

2.5.3 Generating Sorted Boundary Cell Lists

Boundary cells are defined as those cells in the volume that have one or more

faces that are not connected to any other cell [8]. Two structures, a BCELL and a BLIST

are used for maintaining sorted boundary cell list. The minimum and maximum values

are defined for each boundary cell and two lists based on each cell’s minimum and

maximum are formed using a quick sort algorithm.

2.5.4 Generating Isosurfaces

Given a value q, the algorithm generates an isosurface corresponding to the value

using the propagation algorithm. First, the seed set, i.e., the extrema graph and the sorted

boundary cell lists, are searched for any cells that contain the specified isosurface. To

begin with, the minimum value sorted cell list is traversed, only until the minimum value

becomes greater than the value specified. If the maximum value of the visited cell is

higher than the value specified, the cell is considered as an isosurface cell. The arcs are

 17

searched next for any occurrence of isosurface cells. The given value is compared against

the maximum-minimum value for each arc to check if the given value lies between these

two values. If so, then all cells in that arc are visited. When an isosurface cell is found, its

ID is put into a FIFO. After traversal of the cell list and the graph is completed, a cell is

removed from the FIFO and the isosurface is generated for it. The cells that share a face

with this cell are then pushed into this queue and the process is carried on recursively

until the FIFO is empty (as described in the propagation algorithm in Section 2.4).

The number of cells in the boundary cell lists is estimated as O(n2/3) [8], and the

number of cells in the extrema graphs is estimated as O(n1/3) [8]. The cost of isosurface

generation for this algorithm is estimated as O(n2/3) [8]. The number of cells intersected

by the isosurface is estimated as O(n1/3) [8]. The worst-case estimate for the number of

arcs in this algorithm as given in [9] is O(n). This happens when the data exhibits small

perturbations and each node is an extrema, in which case each cell is an arc by itself.

2.6 CONTOUR TREE

The reviewed literature for the Contour Tree method [11] focuses on the

procedure for finding isosurface cells using this method. It does not address the surface

topology determination, vertex computation, or the surface normal computation steps in

detail. Any polygonization algorithm could be used in conjunction with the Contour Tree

method to complete the isosurface generation process for a given data set.

 18

The Contour Tree method is also a seed set based method. The algorithm

proposed by Kreveld [11], aims at connecting not only extremum points but also saddle

points in an unstructured volume. In an unstructured volume, it is possible to have voids

and through-holes. A through-hole is a topological feature that increases the genus3 of an

object. A void is an empty space enclosed by a disjoint part of the boundary of a volume

[11]. Figure 2.2 shows a void and a through-hole in a volume.

Consider the case where a volume contains a through-hole. It is possible that an

isosurface in the volume has 2 or more disjoint parts because of the existence of the

through-hole. In this case, an Extrema Graph might not contain cells that intersect all the

disjoint parts of the isosurface. In order to counter this flaw, the Extrema Graph has to

either maintain a sorted boundary cell list or preserve the topology of the through-holes

so that it intersects all the disjoint parts of every isosurface in the volume.

Figure 2.2: Through-hole and Void in a Volume (taken from [12])

3 In common terminology, genus represents the number of holes in an object.

 19

The contour tree method overcomes the need to maintain a sorted boundary cell

list. It does this by connecting the saddle points in a volume using a tree in addition to

connecting the extremum points. A saddle point is defined as a point that is a stationary

point, but is not an extremum point [18]. The method generates a tree by traversing cells,

starting from the local maximum points, merges or splits at the saddle points and

terminates at the local minimum points. The cells in the contour tree are then traversed

and cells are selected to form a seed set in a manner such that the scalar range across the

tree is not missed out. The method requires over O(n) [12] time for the computation of

the tree structure. But the seed set formed is much less than the number of cells obtained

from using extrema graphs and sorted boundary cell list. This successfully preserves all

the topological features of the volume and a sorted cell list is not required.

2.7 EXTREMA SKELETON FOR FAST ISOSURFACE GENERATION

Itoh [10] describes in detail the steps involved in finding the isosurface cells using

the Extrema Skeleton method. This method focuses on the acceleration of the cell

selection stage and uses the Propagation algorithm to generate an isosurface.

This is a seed set based method that counters the problems associated with

datasets containing voids and through-holes (discussed in Section 2.6) by using volume

thinning (discussed in Section 2.7.1). The aim of the algorithm is to reduce the number of

non-isosurface cells visited by forming a seed set. To begin with, the seed set is searched

 20

to find isosurface cells. Using the isosurface cells thus found, the entire isosurface can be

generated by isosurface propagation.

This is achieved by a two part preprocessing stage. In the first part, extremum

points are extracted from the given volume using the method described in Section 2.5.1.

The process involves visiting every cell and its adjacent cells once, to compare the scalar

values and extract the extremum points. All cells that have any of these extremum points

as one of their vertices are marked as extrema cells. Since the number of adjacent vertices

of a vertex is constant for a given cell type, the computation time for extremum point

extraction is O(n) [12].

In the second stage, the extrema cells are connected by cells in the data set

selected using the volume thinning method to form an extrema skeleton. This extrema

skeleton intersects all the disjoint parts of any given isosurface in the volume. The

extrema skeleton is formed only once for a given dataset. This skeleton can be used until

the visualization application terminates.

The pseudo code [10] describing the various steps in the algorithm is shown in

Figure 2.3. When an isovalue is specified by the user, the extrema skeleton is first

searched to find the cells that are intersected by the isosurface. The neighbors of these

cells are then visited recursively until the entire isosurface is extracted.

 21

void main(){

/* preprocessing */

ExtractExtremumPoints();

VolumeThinning();

/* isosurfacing process */

while(1){

specify an isovalue;

Extract_isosurfaceCells_from_skeleton();

IsosurfacePropagation();

}

}

Figure 2.3: Pseudo Code for the Extrema Skeleton Algorithm (taken from [10])

 22

2.7.1 Summary of the Volume Thinning Method

The extrema skeleton algorithm is described for an unstructured dataset composed of

hexahedral cells in general. The volume thinning method is an extension of the image

thinning method [12]. Image thinning generates the skeleton of the pixels of a painted

area while trying to preserve the features of the image itself.

The first stage marks all the extrema cells in the volume. The marked cells are

retained as part of the extrema skeleton. To begin with, the implementation assumes that

the skeleton is made up of all cells in the dataset. Each “unmarked” cell on the boundary

of the volume is then visited and many of them are eliminated based on certain conditions

discussed later in Chapter 3. In order to determine whether a cell needs to be retained as

part of the skeleton, the nodes and edges shared by a cell’s neighbors are considered. If

the shared node or edge is on the boundary of non-eliminated cells, then the cell under

consideration is retained. If the node or the shared edge is on the inside, then it is possible

to traverse from one neighbor cell to another through their shared nodes or edges in the

absence of the cell being considered. The method finally generates a one cell wide

skeleton for the given volume which contains extrema cells and cells that are necessary to

preserve the topological features in a volume. The order in which the cells are visited

determines the shape of the skeleton and the number of cells in it.

 23

CHAPTER 3

IMPLEMENTATION FOR VTK

 The Extrema Skeleton algorithm described in Section 2.7 was implemented for

the graphics package Visualization Toolkit (VTK) [15], version 3.2.

3.1 ISOSURFACING IN VTK

3.1.1 Components of a Scene

The process of generating an image using a computer is called rendering [15]. For

rendering images in 3D, there are techniques that simulate the interaction of objects (or

actors) with lights and camera to generate images. A combination of actors, lights, and

camera constitute a scene.

There are eight basic objects that are used to render a scene in VTK [15].

• vtkRenderMaster, creates a rendering window.

• vtkRenderWindow, manages a window on the display device. One or more

renderers can draw into an instance of vtkRenderWindow.

• vtkRenderer, coordinates the rendering process involving lights, camera and

actors.

• vtkLight, a source of light, illuminates the scene.

• vtkCamera, defines the view position, focal point and other viewing properties of

the scene.

 24

• vtkActor, represents an object rendered in the scene.

• vtkProperty, defines the appearance of an actor like color.

• vtkMapper, the geometric representation for an actor, interfaces the geometric

structure to the graphics library.

Since visualization transforms data into images and accurately represents information

about data, it deals with the issues of Transformation and Representation. Transformation

is the process of converting data into graphics primitives for display, while representation

deals with the internal representation of data and graphics primitives. Thus a visualization

model is characterized by a functional model, and an object model. The functional model

represents the transformations as functions. The object model specifies representations as

objects. Examples of a functional and an object model are shown in Figure 3.1 and Figure

3.2 respectively.

 In the functional model, the oval blocks indicate operations (processes) performed

on data, and the rectangular blocks show the data stores (objects) that represent and

provide access to data. Data stores are shown within two horizontal lines. Arrows

leading into a block indicate input and arrows leading out of a block indicate output. The

blocks sometimes have parameters or variables that serve as additional inputs. Processes

that create data with no inputs are called Source Objects. Processes that only take data

inputs and create no data outputs are called Sinks. Processes that consume data inputs and

give as output transformed data are called Filters.

 25

Figure 3.1: Functional Model (Image courtesy of
Kitware, Inc. and taken from [15])

 26

vtkStructuredPoints

vtkStructuredGrid vtkUnstructuredGrid vtkPolyData

vtkDataSet

vtkPointSet

vtkStructuredData

vtkObject

Figure 3.2: Example of Object Model (Image courtesy of
Kitware, Inc. and taken from [15])

 27

The object model represents the objects in the system, their properties and their

relationship with other models in the system. In VTK, the Object Modeling Technique

(OMT) developed at GE is used [15]. In the OMT representation, object classes are

represented as solid rectangles and instances of objects are represented as dotted

rectangles. The object name, variables and methods that operate on the object are given

inside the rectangle. Each rectangle has lines dividing it into sections that show the object

name, variables and methods separately. Line segments are drawn between related

objects to represent the relationship between them. Inheritance is depicted by a triangle,

with the parent class at the apex of the triangle and the derived class at the base of the

triangle. The inheritance tree grows top-down. Figure 3.2 shows an example of the

dataset object model in VTK.

3.1.2. Visualization Pipeline

The functional model of data visualization is also referred to as the visualization

pipeline or the visualization network. The pipeline consists of objects to represent data

(data objects) and objects to operate on data (process objects). Figure 3.3 shows a

visualization pipeline.

Data objects represent information. They provide methods to create, access and

delete information. Direct modification of information is not allowed except through

formal object methods.

 28

Figure 3.3: Visualization Pipeline (Image courtesy of
Kitware, Inc. and taken from [15])

 29

Process objects are objects that operate on data inputs and generate data outputs. They are

further classified into Source objects, Filter objects or Mapper objects, depending on

whether they initiate, maintain or terminate the data flow in the visualization pipeline.

Source objects that interface to data stored in files are called Reader objects. They read

data from an external file and produce a data object. Filter objects require one or more

data inputs and generate one or more data outputs. Mapper objects correspond to sinks in

the functional model. They consume one or more data inputs and terminate the data flow

in the pipeline. Mapper objects usually transform data inputs into graphics primitives.

They can also write data to a file or interface with another software system.

3.1.3 Executing the Pipeline

 The complete process of causing each process object to operate is called the

execution of the network or the pipeline [15]. In general, a process object should be

executed only when all its input objects are up-to-date. This requires synchronization of

all the process objects in the network, beginning with the source object. This

synchronization is done by explicit control or by implicit control as shown in Figure 3.4.

 Explicit control means directly controlling the execution of the process objects. A

centralized executive is used to track the changes to the network, make explicit

dependency checks to coordinate the network, and execute only those objects whose

inputs have changed .

 30

Figure 3.4: Explicit and Implicit Network Execution (Image courtesy of
Kitware, Inc. and taken from [15])

 31

Implicit execution means that an object is executed only if its local input parameters

change. The two main steps involved in implicit execution are Update() and Execute().

Referring to figure 3.4(b), when output is requested from object E, it requests input from

its input object D. Chain E-D-B-A back propagates the Update() method until the source

object A is encountered. The source object A then executes if there is a change in itself or

its external inputs. The output from A is then passed to its requesting object B. B calls the

Execute() method since its input has changed. Thus, every object in the chain A-B-D-E

checks to see whether itself or its inputs have changed, and executes via the Execute()

method. The chain ends when the initial requesting object E executes and terminates.

Scalar isosurfacing in VTK is done using implicit execution. The filter object that

is used to extract isosurfaces in VTK is the vtkContourFilter class. vtkContourFilter class

is a general filter used for generating isosurfaces. This class object accepts any dataset as

input and generates polygonal data, like triangles, as output. While the vtkContourFilter

class can deal with any cell type, it is up to the individual cell type class to provide the

method for contouring (isosurfacing in this case). The pseudo code for generating an

isosurface is shown in Figure 3.5. The isosurface generation process begins when the

actor sends a request to be rendered.

 32

 33

Figure 3.5: Pseudo Code for Generating an Isosurface in VTK

int main(int argc, char** argv) {

create_render window_to_display_resulting_image() ;

create_renderer() ;

read_datafile_using vtkStructuredGridReader() ;

/** output of above is structured grid **/

create_vtkContourFilter object();

set the structured grid as input to the object();

create a mapper();

create actor();

set mapper as actor’s mapper();

set the output of the vtkContourFilter object as the

input of mapper();

add actor to renderer();

render the scene();

}

3.2 IMPLEMENTATION OF THE EXTREMA SKELETON ALGORITHM FOR

VTK: DETAILS AND METHODOLOGY

The extrema skeleton algorithm was adapted and implemented for simple

structured grids composed of voxel cells in VTK. The volume had no voids or through-

holes. The strategy was to keep the flow of execution the same as in VTK and deviate

only at the point of isosurface generation. Therefore, the implementation started with

using the same structured grid reader, render window, renderer, light, mapper and actor

classes as in the regular implementation using VTK. The vtkContourFilter class however

was modified slightly for use with the Extrema Skeleton Method. For any given

isovalue, the seed cell list was first searched for the occurrence of isosurface cells.

Isosurface propagation was then used to find all remaining isosurface cells. These cells

were passed to the vtkContourFilter class for polygonization.

Figure 3.6 summarizes the flow of data and the logical steps of the

implementation in both VTK and in the Extrema Skeleton method. The flow of the

program can be summarized using the pseudo code shown in Figure 3.7. The algorithm

was implemented in C++. VTK has many interfaces for programming, like tcl/tk and

Java. The possibility of programming in Java was explored, since Java has the advantages

of garbage collection. However, there are limitations with regard to deriving classes, and

accessing class variables. The number of functions available to program through the

interface is also somewhat limited.

 34

 35

vtk ct StructuredGrid Obje

pixels

triangles triangles

all isosurface cells

isosurface cells
from seed cell list

seed cells list

vtkVolThinCell

vtkNode

vtkStructuredGrid Object

Extract isosurface using
vtkContourFilter

Initialize data structures

Render

Image

Extract Extrema points

Find seed cell list

Extract isosurface cells
from seed cells

Isosurface propagation

Extract isosurface

vtkStructuredGrid

vtkNode, vtkVolThinCell

Figure 3.6: Implementation of Marching Cubes and Extrema
Skeleton Methods in VTK

Read

External File
MARCHING CUBES EXTREMA SKELETON

 36

Figure 3.7: Pseudo Code for Implementation of Extrema
Skeleton Algorithm in VTK

void main(int argc, char** argv) {

create render window to display resulting image ;

create renderer ;

read datafile using vtkStructuredGridReader ;

/** preprocessing for forming extrema skeleton **/

create and initialize data structure to extract extremumPoints ;

create and initialize data structures to form seed cell list ;

extract Extremum points ;

form Seed Cell List ;

/** end preprocessing **/

create contour filter ;

setinput of contour filter as output of vtkStructuredGridReader ;

for(i=0; i < number of contours; i++) {

 find cells corresponding to value i from Seed Cell List;

 queue neighbors of above found cells; //isosurface propagation

}

 pass isosurface cells found above to modified vtkContourFilter ;

 create mapper ;

 set output of vtkContourFilter as input to mapper ;

 create actor ;

 set above mapper as actor’s mapper ;

 add actor to renderer() ;

 render scene ;

}

 3.2.1. Data Structures Used for the Extrema Skeleton Method

The vtkContourFilter class was modified and a private member variable IsIsoCell

of type vtkIdList was added. This list was used to store the IDs of all isosurface cells.

The vtkContourFilter::Execute() function was modified to use the IsIsoCell ID list and

polygonize isosurface cells only. The following classes were also used in the

implementation for VTK:

vtkNode

This class represents a point on the grid and is used mainly to record the extremum points

in the data set. It has scalar information pertaining to a grid point and has the following

member variables:

• A float variable called ‘scalar’ which holds the scalar value of each grid point.

• Boolean variables Max, Min. - A grid point is an extremum point if it has only one

of its boolean variables set to true. The position of the node is stored in the

internal representation of a cell in VTK and so this information is not duplicated

here.

vtkVolThinCell

This class represents the type of cells the volume is made of. A cell ei has the following

variables associated with it :

 37

• neighborList - an ID list of type vtkIdList, which contains the index of each of

the adjacent cells, ei,1, ei,2, …, ei,6 of cell ei. Each non-existent neighbor is

represented by –1 in the list.

• ‘eliminated’ – a boolean variable to indicate whether or not a cell has been

eliminated from the extrema skeleton.

• CellType – an integer that shows the number of neighbors the cell has.

vtkExtremumPtsList

The functions of this class are used to find the extremum points in the data set and has the

following member variable :

• extremumPtsList, of type vtkIdList, used to store the ID of the extremum points in

the data set.

vtkSeedCellList

The functions of this class are used to form the extrema skeleton. The member variables

are integer arrays, of type vtkIdList, that are used to store or point to ID of cells and

vertices. They are listed below.

• seedCellList, of type vtkIdList, used to store the ID of the cells selected to

form the seed list.

• neighbList, used to point to the neighbor IDs of a cell.

• ptCellList, used to point to the ID of all the cells that have a particular grid

point as one of their vertices (i.e., share a vertex).

 38

• nodeList, used to point to the ID of all the nodes of a cell.

neighbList, ptCellList and nodeList are all pointers of type vtkIdList. No memory is

allocated for these members.

3.2.2 Implementation Procedure

In the main loop of the program, both the vtkNode and the vtkVolThinCell

structures were initialized. Using the functions in the vtkStructuredGrid class, the scalar

value for each point on the grid was retrieved from the vtkScalars data structure. This was

used to initialize the vtkNode data structure. The neighbors for each cell in the volume

were determined by finding out the list of cells that share all four nodes on the face of a

cell. This information was stored in the neighbList member variable of the

vtkVolThinCell class instance of that cell. A cell was classified based on the number of

neighbors it had and also whether the cell was an extrema cell [10]. Accordingly, cells

with no neighbors were of type ‘0’, cells with one neighbor were of type ‘1’, cells with

two neighbors were of type ‘2’, and so on. All extrema cells were classified as ‘-1’. So, a

voxel cell could be of type ‘i’= -1,0, 1, 2,…, 6 . The cell type ‘i’ for each cell was also

stored in the vtkVolThinCell class instance of the respective cell.

Finding extremum points

Extremum points were extracted using the method described in Section 2.5.1.

 39

Forming the extrema skeleton

To start with, all cells touching the extrema points were marked as type ‘-1’.

These cells were retained as part of the skeleton and were not removed until the skeleton

was formed. In the initialization stage, the boolean variable ‘eliminated’ in the

vtkVolThinCell class instance of all cells was set to false and all cells were assumed to be

a part of the extrema skeleton. Each cell was then visited in the order in which it occurred

in the structured grid object in VTK and was considered for elimination. If the cell was of

type ‘-1’ then its ID was added to the seedCellList array. All other cells were considered

for elimination based on the conditions shown in Figure 3.8 [10]. The connectivity

between a cell and its non-eliminated neighbors was checked. If a cell’s non-eliminated

neighbors could be traversed through their shared faces without having to pass through

the cell in question, the cell in question was eliminated. For example, if ei is the cell that

had non-eliminated neighbors ej and ek, and if ek could be reached from ej by traversing

through their shared faces without traversing through ei, then ei can be eliminated. When

a cell was eliminated, its cell type was changed to ‘0’, its boolean variable ‘eliminated’

was set to true, and the cell type of all its non-eliminated neighbors was changed from ‘i’

to ‘i-1’, i>0. All type ‘0’ and type ‘1’ cells were automatically eliminated since there

were no conditions to be checked for and since removing them did not affect the

connectivity of their neighboring cells. Since the cell type of neighbor cells was

continually updated during the thinning process, conditions for type ‘6’ cells were not

required, because the type ‘6’ cells would change to some other cell type during the

process.

 40

Figure 3.8: Conditions for Hexahedral Cells (taken from [10])

 41

Finding isosurface cells from the skeleton

Given a value, the seed cell list was searched for any cells intersected by the

surface of interest. Upon finding ‘hit’ cells, the IDs of all such cells were stored in an

integer array of type vtkIdList. These cells were then used as the starting points for

isosurface propagation, described in Section 2.4, to find all the isosurface cells. This final

list of isosurface cells was set as the IsIsoCell list member variable of the

vtkContourFilter.

3.3 POLYGONIZATION

The vtkContourFilter class is used to generate surface contouring primitives

(points, lines, polygons) depending on the input cell type. In the case of voxel cells, the

primitives are triangles. The usual path for executing polygonization in VTK can be

summarized as follows:

The two stages – cell selection stage, and polygonization stage are executed in the same

function. Upon finding an isosurface cell, the surface inside the cell is determined for all

desired isovalues. The vtkContourFilter class initializes all the necessary data structures

for creating and storing polygonal data. Then, for each cell in the data set and for each

isovalue, it calls the Contour() function of the appropriate cell type (in this case,

vtkHexahedron::Contour()). The contour method for the vtkHexahedron class creates an

index based on which vertices of the cell are outside or inside the surface (i.e., based on

whether the scalar at the vertices of the cube is greater than, less than, or equal to the

desired isovalue). This index is then used as a pointer to look up the appropriate list of

 42

intersected edges for the respective case in a table of surface-edge intersections. Using

this entry the point of intersection of the surface along the respective edges is found using

linear interpolation. The new points so created are checked for uniqueness using

vtkMergePoints object.

The vtkMergePoints class is a concrete implementation of the abstract class

vtkLocator. The abstract class, vtkLocator, is a spatial search object used to locate points

in 3D. It works by dividing a specific region in space into a regular array of “rectangular

buckets”. Each bucket contains a list of points. These buckets can be quickly found in

response to queries like point location. Locator objects are generally organized as tree

structures and typically work as follows. Points or cells are first inserted into the tree

structure. A point or cell will be associated with a certain bucket. When geometric

operations are performed, they are first performed on the buckets, and if the operation

turned out positive, more expensive operations are performed on the points and cells in

the bucket.

After the newly created points are checked for uniqueness using the

vtkMergePoints::InsertUniquePoint() function, sets of points that form non-degenerate

triangles (triangles whose vertices are non-coincident) are inserted into a vtkPolyData

object. The vtkPolyData class is a concrete implementation of the vtkDataset class. It

represents a geometric structure consisting of vertices, lines, polygons and triangle strips.

 43

Point attributes, such as scalars, are also represented [15]. The vtkPolyData object holds

the newly created polygonal data, i.e., vertices of the newly created triangles.

3.4 RESOLVING PERFORMANCE PROBLEMS

 In the implementation of the Extrema Skeleton algorithm for VTK, the same

procedure for generating polygonal data described in Section 3.3 was used. However,

instead of applying the procedure on all the cells in the dataset (which is the case in

Marching Cubes), only the isosurface cells that were chosen using the Extrema Skeleton

algorithm underwent polygonization. When the list of isosurface cells was passed as

input to vtkContourFilter, the polygonization time taken was longer than expected. This

delay was attributed to the vtkMergePoints::InsertUniquePoint function. The

InsertUniquePoint function checks for uniqueness of newly created points of intersection

of the surface on cell edges. The delay was found to be due to insufficient memory

allocation (memory allocation was proportional to the number of isosurface cells) to the

input parameters to the vtkMergePoints object. To overcome this problem, the input

parameters were initialized with memory proportional to the total number of cells in the

dataset. This change resulted in a significant reduction in the polygonization time.

 44

CHAPTER 4

RESULTS AND DISCUSSION

The implementation of the extrema skeleton method for VTK was compiled and

run on the Redhat Linux 7.2 operating system on a PC with a 500 MHz Pentium III

processor and 512 MB of RAM. The VTK implementation of isosurface generation using

the vtkContourFilter class was compared against the implementation of the Extrema

Skeleton method for VTK in terms of the time taken to generate multiple isosurfaces, the

number of cells searched for finding the isosurface and the time taken for the

preprocessing stage. The timing scheme for both methods is shown in Figure 4.1. The

getrusage system call was used to obtain total time for contouring and rendering the

resulting image. getrusage returns the current resource usage for the program that calls

it. The syntax for this function is getrusage (int who, struct rusage *usage) where who is

either RUSAGE_SELF or RUSAGE_CHILDREN. This function contains several

member variables that provide useful information on system resource usage for the

calling program. One such member variable timeval ru_utime was used to record the

user time taken until getrusage was called in the program. Time taken to execute a set of

statements in the program was determined by taking the difference between the recorded

time value before the first statement and the recorded time value after the last statement.

 45

 46

T
E

S

MARCHING CUBES EXTREMA SKELETON

To
g

ta
l t

im
e

to
 c

re
at

e
is

os
ur

fa
ce

 u
si

n
vt

kC
on

to
ur

Fi
lte

r Ti
m

e
to

fin

d
se

ed

ce
ll

lis
t

Ti
m

e
to

 fi
nd

ex

tre
m

um

po
in

ts

In
iti

al
iz

at
io

n
tim

e

pixels

triangles triangles

all isosurface cells

isosurface cells
from seed cell list

seed cells list

vtkVolThinCell

vtkNode

vtk ctStructuredGrid Obje
vtkPoi calarsnts, vtkSvtkStructuredGrid Object

Extract isosurface
using

vtkContourFilter

Initialize data structures

Render

Image

Extract Extrema points

Find seed cell list

Extract isosurface cells
from seed cells

Isosurface propagation

Extract isosurface

VtkStructuredGrid, vtkPoints, vtkScalars

vtkNode, vtkVolThinCell

T
M

C

I E
S

E
E

S
S E

S

To
ta

l t
im

e
fo

r i
so

su
rf

ac
e

ge
ne

ra
tio

n

Figure 4.1: Timing Scheme for Comparing the Marching Cubes
Algorithm with the Extrema Skeleton Algorithm

Read

External File

To
ta

l p
re

-p
ro

ce
ss

in
g

tim
e

4.1 DATASETS TESTED

Table 4.1 gives the sizes of the datasets used for comparing the two methods. The

datasets Ellipsoid.vtk, Hyperboloid.vtk, and Paraboloid.vtk were generated by taking

structured grids of differing sizes and assigning scalar values to each point in the grid

using equations for an ellipsoid, hyperboloid, and paraboloid respectively. Equations and

ranges used to generate these datasets are shown in Appendix A. FlowFrame1.vtk and

FlowFrame20.vtk contain real data that were provided by the Computational Mechanics

Research Group (CMRG) at the University of Tennessee Space Institute, Tullahoma.

These datasets were generated by CMRG from studying the flow of water around a solid

object. AllIso.vtk was generated to compare the two algorithms in the case where all

cells in the dataset were isosurface cells. The scalar value for every point on the grid of

this dataset was either –1 or 1, and no two consecutive points on the grid had the same

value. Thus, if an attempt were made to generate isosurfaces between values –1 and 1, all

cells would be isosurfaces cells. The procedure used to generate AllIso.vtk was also used

to generate ZeroIso.vtk and SomeIso.vtk. However, when testing ZeroIso.vtk the

isovalues to be searched were chosen such that none of the cells in the dataset contained

the search values. In the dataset SomeIso.vtk, less than 1% of the scalar values were

arbitrarily changed so that some of the cells in the dataset contained the search values.

Figure 4.2 shows some of the properties of the datasets tested. The graph shows

the fraction of seed cells and the fraction of isosurface cells for each dataset. Small seed

cells fraction indicates that the dataset is simple with a regular well-defined distribution

 47

Table 4.1: Size of Datasets

Dataset # No. of Points Number of Cells
ZeroIso.vtk 293,301 280,000
SomeIso.vtk 293,301 280,000
Ellipsoid.vtk 23,001 20,480

Hyperboloid.vtk 58,466 54,000
Paraboloid.vtk 69,741 64,000

FlowFrame1.vtk 371,385 353,600
FlowFrame20.vtk 371,385 353,600

AllIso.vtk 52,521 48,000

 48

0.0%

20.0%

40.0%

60.0%

80.0%

100.0%

120.0%

ZeroIso.vtk SomeIso.vtk Hyperboloid.vtk Paraboloid.vtk Ellipsoid.vtk FlowFrame1.vtk FlowFrame20.vtk AllIso.vtk

Fraction of Seed Cells Fraction of Isosurface Cells

Figure 4.2: Dataset Characteristics

 49

of scalar values in the grid. Large seed cells fraction indicates that the dataset is complex

with a significant fluctuation of scalar values from cell to cell. The fraction of isosurface

cells in a dataset depends on the scalar values and the isosurfaces being extracted. The

datasets ZeroIso.vtk, SomeIso.vtk, Hyperboloid.vtk, Paraboloid.vtk, and Ellipsoid.vtk are

simple datasets4 with less than 10% isosurface cells. The datasets FlowFrame1.vtk and

FlowFrame.vtk are complex datasets5 with more than 10% isosurface cells. The dataset

AllIso.vtk is a simple dataset with 100% isosurface cells.

Isosurfaces extracted from each dataset tested except ZeroIso.vtk and

SomeIso.vtk are shown in Appendix B. No polygons were generated for ZeroIso.vtk

because no isosurface cells were found in the grid. Very few polygons (corresponding to

disjoint parts of an isosurface) were generated for SomeIso.vtk to be visualized.

Additional datasets based on regular shapes like sphere and cylinder were also generated

and visualized by extracting multiple isosurfaces. These are shown in Appendix C.

4.2 RESULTS

The time taken for the various preprocessing stages is given in Table 4.2. The

number of extrema points and the number of seed cells for each dataset is given in Table

4.3. Ten isosurfaces were generated for each dataset. Table 4.4 shows the number of

isosurface cells present in each dataset. The table also compares the total number of cells

searched by each method. Table 4.5 lists the time taken to find all the isosurfaces plus

4 Datasets with <50% seed cells.
5 Datasets with >50% seed cells.

 50

Table 4.2: Time for Various Preprocessing Stages (microseconds per cell)

Dataset # IES EES SES TPPES=IES+EES+SES TPPMC

ZeroIso.vtk 11.64 6.50 6.04 24.18 0
SomeIso.vtk 11.64 6.46 6.39 24.50 0
Ellipsoid.vtk 12.04 6.30 5.74 24.07 0

Hyperboloid.vtk 11.88 6.25 5.94 24.06 0
Paraboloid.vtk 11.72 5.86 5.86 23.44 0

FlowFrame1.vtk 11.79 6.84 6.48 25.11 0
FlowFrame20.vtk 11.65 6.87 6.48 25.00 0

AllIso.vtk 12.29 6.46 6.04 24.79 0
IES – Initializing data structures for extrema skeleton method
EES – Time for finding extremum points for extrema skeleton method
SES – Time for finding seed cell list for extrema skeleton method
TPPES – Total preprocessing time for extrema skeleton method
TPPMC – Total preprocessing time for marching cubes method

Table 4.3: Seed List and Extremum Points for the Extrema Skeleton Method

Dataset # No. of Extremum
Points

No. of Cells in
Seed List

ZeroIso.vtk 51 3,578

SomeIso.vtk 64 20,591

Ellipsoid.vtk 2 551

Hyperboloid.vtk 2 113

Paraboloid.vtk 2 138

FlowFrame1.vtk 11,460 208,806

FlowFrame20.vtk 11,239 204,873

AllIso.vtk 41 2,418

 51

Table 4.4: Number of Isosurface Cells and Cells Searched for Ten Isosurfaces

No. of Cells Searched
Dataset #

No. of
Isosurface

Cells
Extrema
Skeleton

Marching
Cubes

ZeroIso.vtk 0 35,780 2,800,000

SomeIso.vtk 92 206,680 2,800,000

Ellipsoid.vtk 10,302 99,950 204,800

Hyperboloid.vtk 3,288 43,000 540,000

Paraboloid.vtk 15,490 81,190 640,000

FlowFrame1.vtk 388,548 2,816,010 3,536,000

FlowFrame20.vtk 397,619 2,805,020 3,536,000

AllIso.vtk 480,000 480,000 480,000

Table 4.5: Time for Generating Ten Isosurfaces (microseconds per cell)

Extrema Skeleton Marching Cubes
Dataset #

TES TMC

ZeroIso.vtk 0.96 16.14

SomeIso.vtk 1.93 16.18

Ellipsoid.vtk 2.96 17.04

Hyperboloid.vtk 6.56 19.69

Paraboloid.vtk 16.11 23.44

FlowFrame1.vtk 38.07 40.16

FlowFrame20.vtk 38.72 40.72

AllIso.vtk 214.17 212.50
TES – Time taken by extrema skeleton method for generating isosurfaces.
TMC – Time taken by marching cubes method for generating isosurfaces.

 52

the time taken for polygonization for both methods. All times are expressed in units of

microseconds per cell in the dataset. The number of polygons created for each dataset by

both algorithms is shown in Table 4.6. Graphs based on the tabulated results are shown

in Figures 4.3 through 4.5. Graphical and tabulated results are discussed in Section 4.3.

4.3 DISCUSSION OF RESULTS

Based on Figure 4.3, it is evident that the total preprocessing time per cell for the

Extrema Skeleton method is constant. Therefore, preprocessing time is proportional to

the number of cells in the dataset. For a given dataset, the preprocessing time is the same

irrespective of how many isovalues are searched.

Table 4.6: Number of Polygons Generated for Ten Isosurfaces

Dataset # Extrema Skeleton Marching Cubes

ZeroIso.vtk 0 0

SomeIso.vtk 92 92

Ellipsoid.vtk 20,600 20,600

Hyperboloid.vtk 6,571 6,571

Paraboloid.vtk 30,229 30,229

FlowFrame1.vtk 890,358 890,358

FlowFrame20.vtk 914,258 914,258

AllIso.vtk 960,000 960,000

 53

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

45.00

50.00

ZeroIso.vtk SomeIso.vtk Hyperboloid.vtk Paraboloid.vtk Ellipsoid.vtk FlowFrame1.vtk FlowFrame20.vtk AllIso.vtk

M
ic

ro
se

co
nd

s
pe

r C
el

l

Figure 4.3: Preprocessing Time for the Extrema Skeleton Method

 54

0.00

50.00

100.00

150.00

200.00

250.00

Zero
Iso

.vt
k

Som
eIs

o.v
tk

Hyp
erb

olo
id.

vtk

Para
bo

loi
d.v

tk

Ellip
so

id.
vtk

Flow
Fram

e1
.vt

k

Flow
Fram

e2
0.v

tk

AllIs
o.v

tk

M
ic

ro
se

co
nd

s
pe

r C
el

l

Extrema Skeleton Marching Cubes

Figure 4.4: Comparison of Time for Generating Ten Isosurfaces

 55

-100.0%

-75.0%

-50.0%

-25.0%

0.0%

25.0%

50.0%

75.0%

100.0%

0.000 0.200 0.400 0.600 0.800 1.000 1.200

(Fraction of Isosurface Cells) + 0.08 x (Fraction of Seed Cells)

 (T
M

C
 -

T E
S)

%
 F

as
te

r =
 --

--

* 1
00

 T
M

C

Ex
tr

em
a

Sk
el

et
on

Fa

st
er

M
ar

ch
in

g
C

ub
es

Fa

st
er

Figure 4.5: Performance of Extrema Skeleton Method

 56

For all datasets except AllIso.vtk, the number of cells searched by the Extrema

Skeleton algorithm for finding all isosurface cells was found to be less than the number

of cells searched by the Marching Cubes algorithm. Since all cells in AllIso.vtk were

isosurface cells, the total number of cells searched by both algorithms was the same. The

results are shown in Table 4.4.

Table 4.5 compares the time taken by each algorithm to generate ten isosurfaces

on different datasets. The results are plotted in Figure 4.4. This figure indicates that

while the Extrema Skeleton method was significantly faster for some datasets, the time

taken was comparable but still less than the Marching Cubes method for other datasets.

Performance of the Extrema Skeleton method depends on two parameters - the fraction of

seed cells and the fraction of isosurface cells in the dataset. The time taken by the

Extrema Skeleton method is in fact the sum of the time taken to find isosurface cells

(corresponds to the fraction of seed cells plus fraction of isosurface cells) and the time

taken to polygonize the isosurface cells (corresponds to the fraction of isosurface cells).

Total time for the Extrema Skeleton method however depends predominantly on the

fraction of isosurface cells because polygonization is a time consuming operation. Figure

4.5 graphically represents the relationship between the performance of Extrema Skeleton

Method, the dataset characteristics (fraction of seed cells), and the isovalues being

searched (fraction of isosurface cells). For the datasets tested, performance of the

Extrema Skeleton method was recorded by determining how much faster the Extrema

 57

Skeleton method was compared to the Marching Cubes method according to the formula:

% Faster = (TMC – TES)/TMC * 100

Performance was then plotted against ‘Dataset Parameter’ where,

Dataset Parameter = (Fraction of Isosurface cells) + 0.08 x (Fraction of Seed cells)

Dataset Parameter was chosen in the form shown above for the following reasons:

a) Performance primarily depends on the fraction of isosurface cells.

b) The constant “0.08” in the equation was chosen because the average time to

process a non-isosurface cell was found to be approximately 8% of the average

time taken to process an isosurface cell.

It was found that as the value of Dataset Parameter increased, performance of the

Extrema Skeleton method decreased. It can be concluded from Figure 4.5 that, for the

simple datasets tested, the Extrema Skeleton method was at least 31% faster. For the

remaining datasets tested, the Extrema Skeleton method was marginally (<5%) faster.

The number of polygons generated when ten isosurfaces were extracted is shown

in Table 4.6 for each dataset. In every case, the number of polygons generated was equal

for both methods. This indicates that the Extrema Skeleton method gives the same end

result as the Marching Cubes method by searching fewer cells.

In comparing the timing results of both methods, preprocessing time for the

Extrema Skeleton method was not considered. This is because preprocessing time is

independent of the isovalues searched and also independent of how many isosurfaces are

 58

extracted. Preprocessing time for a given dataset depends only on its size. If

preprocessing time were included in the the timing results when comparing the two

methods, performance of the Extrema Skeleton method could be bettered by simply

extracting more isosurfaces. This point is illustrated in Figure 4.6. Timing results were

compared by extracting 10 isosurfaces and 25 isosurfaces from the dataset SomeIso.vtk.

Results show that for 10 isosurfaces, Marching Cubes was faster while for 25 isosurfaces,

the Extrema Skeleton Method was faster. For both cases, preprocessing time was the

same.

4.4 COMPARING RESULTS WITH PREVIOUS WORK

Itoh [10] compared the performance of the Extrema Skeleton method with other

algorithms that require preprocessing. Results of his study indicated that the

preprocessing time for the Extrema Skeleton method was in most cases less than the

preprocessing time for other methods. He also found that the preprocessing time for the

Extrema Skeleton method increased linearly with the size of the dataset. His

observations match the findings of the current study. Itoh also found that the time taken

by the Extrema Skeleton method depends on the size of the dataset and the number of

extremum points, but primarily on the number of isosurface cells. This is consistent with

the observations of the current study where the performance of the Extrema Skeleton

method was observed to depend on the fraction of isosurface cells and the fraction of

seed cells (depends on extremum points and dataset size) in the dataset. Further

 59

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

Extrema Marching Extrema Marching

Ti
m

e
(s

ec
on

ds
)

10 Isosurfaces 25 Isosurfaces

Pr
ep

ro
ce

ss
in

g
Ti

m
e

Pr
ep

ro
ce

ss
in

g
Ti

m
e

Is
os

ur
fa

ci
ng

 T
im

e

Is
os

ur
fa

ci
ng

 T
im

e

Is
os

ur
fa

ci
ng

 T
im

e

Is
os

ur
fa

ci
ng

 T
im

e

Figure 4.6: Amortization of Preprocessing Time for the Extrema Skeleton Method

 60

comparison of the results is restricted by the differences between the type of datasets

tested, and type of dataset cells. The type of datasets tested in the current work

represented a structured grid. Datasets tested by Itoh were all unstructured grids.

Similarly, while the datasets tested in the current work comprised of hexahedral cells,

datasets tested by Itoh comprised of tetrahedral cells.

4.5 CONCLUSIONS

As stated in the problem statement described in Section 1.2, the objective of this

thesis was to investigate the hypothesis that the Extrema Skeleton algorithm will decrease

the time taken to extract isosurfaces from a given dataset, when compared to the

Marching Cubes algorithm in the VTK package. The intent was to decrease the

computing time by reducing the number of cells searched. This hypothesis was found to

be true for most but not all of the datasets tested. Conclusions from this study are listed

below:

1. Preprocessing time for the Extrema Skeleton method is linearly proportional to

the size of the dataset.

2. For simple datasets with less than 10% isosurface cells and complex datasets with

less than 5% isosurface cells, the Extrema Skeleton method is at least 10% faster

than the Marching Cubes method.

3. For complex datasets with greater than 10% isosurface cells and any dataset with

greater than 15% isosurface cells, the speedup gained by the Extrema Skeleton

method is insignificant.

 61

4. Real data is usually not based on smooth functions. Therefore, users of VTK are

expected to encounter datasets that have at least 30% seed cells. Users are also

very likely to deal with datasets having less than 10% isosurface cells.

Therefore, implementing the Extrema Skeleton method for the VTK software is

worthwhile because VTK users deal with datasets for which the Extrema Skeleton

method is significantly faster and also with datasets for which the Extrema

Skeleton is marginally faster than the Marching Cubes method.

 62

LIST OF REFERENCES

 63

LIST OF REFERENCES

[1] W.E.Lorensen, and H.E.Cline, “Marching Cubes: A High Resolution 3D Surface

Construction Algorithm,” ACM Computer Graphics, Vol. 21, No. 4, pp. 163-170,
July 1987.

[2] Doi, and A. Koide, “An Efficient Method of Triangulating Equivalued Surfaces

by Using Tetrahedral Cells,” IEICE Transactions, Vol. E74, No. 1, pp. 214-224,
1991.

[3] D. Speray, and S. Kennon, “Volume Probe: Interactive Data Exploration on

Arbitrary Grids,” Computer Graphics, Vol. 24, No. 5, pp. 5-12, 1990.

[4] J.Wilhelms, and A.Van Gelder, “Octrees for Faster Isosurface Generation,” ACM

Transactions on Graphics, Vol. 11, No. 3, pp. 201-227, July 1992.

[5] R.S.Gallagher, “Span Filtering: An Optimization Scheme for Volume

Visualization of Large Finite Element Models,” IEEE Visualization ‘91, pp. 68-
74, 1991.

[6] H.W.Shen, C.D.Hansen, Y.Livnat, C.R.Johnson, “Isosurfacing in Span Space

with Utmost Efficiency (ISSUE),” Visualization ’96 Conf. Proc., pp. 287-294,
San Francisco, October 1996.

[7] M. Van Kreveld, R.Van Oostrum, C.Bajaj, V.Pascucci, and D.Schikore, “Contour

Trees and Small Seed Sets for Isosurface Traversal,” In Proc. 13th ACM
Symposium on Computational Geometry, pp. 212-220, 1997.

[8] T. Itoh, and K. Koyamada, “Isosurface Generation by Using Extrema Graphs ,”

IEEE Computer Society Press Reprint, pp. 77-83, 1994.

[9] Y.Livnat, H.W.Shen, and C.R.Johnson, “Near Optimal Isosurface Extraction

Algorithm Using the Span Space,” IEEE Transactions on Visualization and
Computer Graphics, Vol. 2, No. 1, pp. 73-84, March 1996.

[10] T.Itoh, Y.Yamaguchi, and K.Koyamada, “Fast Isosurface Generation Using the

Volume Thinning Algorithm,” IEEE Transactions on Visualization and Computer
Graphics, Vol. 7, No. 1, pp. 32-46, January-March 2001.

[11] T. Itoh, and K. Koyamada, “Automatic Isosurface Propagation Using an Extrema

Graph and Sorted Boundary Cell Lists,” IEEE Transactions on Visualization and
Computer Graphics, Vol. 1, No. 4, pp. 319-327, December 1995.

 64

[12] T.Itoh, Y.Yamaguchi, and K.Koyamada, “Volume Thinning for Automatic
Isosurface Propagation,” IEEE Visualization ’96 Conf. Proc., pp. 303-310, 1991.

[13] P. Cignoni, P. Marino, C. Montani, E. Puppo, and R. Scopigno, “Speeding Up

Isosurface Extraction Using Interval Trees,” IEEE Transactions on Visualization
and Computer Graphics, Vol. 3, No. 2, pp. 158-170, April-June 1997.

[14] C.T.Howie, and E.H.Blake, “The Mesh Propagation Algorithm for Isosurface

Construction,” Computer Graphics Forum (Eurographics), Vol. 13, No. 3, pp. C-
65-74, 1994.

[15] W.Schroeder , K.M.Martin , W.E.Lorensen, “The visualization toolkit (2nd ed.):

an object-oriented approach to 3D graphics,” Prentice-Hall, Inc., Upper Saddle
River, NJ, 1998.

[16] S.Rottger, M.Kraus, and T.Ertl, “Hardware-Accelerated Volume and Isosurface

Rendering Based on Cell-Projection,” In Proc. Visualization 2000, IEEE
Computer Society Technical Committee on Computer Graphics, pp. 109-116,
2000.

[17] J.W.Durkin, and J.F.Hughes, “Nonpolygonal Isosurface Rendering for Large

Volume Datasets,” Proceedings of Visualization ’94, IEEE, pp. 293-300, 1994

[18] MathWorld.com, http://mathworld.wolfram.com/SaddlePoint.html, August 2003.

 65

http://mathworld.wolfram.com/SaddlePoint.html

APPENDIX

 66

APPENDIX A

Equations Used to Generate Datasets

 67

The following equations were used to generate the datasets Ellipsoid.vtk, Paraboloid.vtk,
and Hyperboloid.vtk:

Ellipsoid.vtk

1
256464

),,(
222

−++=
zyxzyxf

f(x,y,z) was assigned as the scalar value at the point (x,y,z).

Data was generated in the range (0,0,0) to (10,4,8) using a step size of 0.25. This range
will yield the section of the ellipsoid shown in Figure B-1.

Hyperboloid.vtk

1
256464

),,(
222

−−+=
zyxzyxf

f(x,y,z) is assigned as the scalar value at the point (x,y,z).

Data was generated in the range (0,0,0) to (6,9,8) using a step size of 0.2. This range will
yield the section of the hyperboloid shown in Figure B-2.

Paraboloid.vtk

() zyxzyxf −+= 222),,(

f(x,y,z) is assigned as the scalar value at the point (x,y,z).

Data was generated in the range (0,0,0) to (1,4,2) using a step size of 0.05. This range
will yield the section of the paraboloid shown in Figure B-3.

 68

APPENDIX B

Isosurfaces Extracted From the Datasets Tested

 69

View 1 View 2

Figure B-1: Ten Isosurfaces Extracted from Ellipsoid.vtk

 70

 View 1 View 2

 Figure B-2: Ten Isosurfaces Extracted from Hyperboloid.vtk

 71

View 1 View 2

Figure B-3: Ten Isosurfaces Extracted from Paraboloid.vtk

 72

 View 1 View 2

 Figure B-4: Ten Isosurfaces Extracted from FlowFrame1.vtk

 73

 View 1 View 2

Figure B-5: Ten Isosurfaces Extracted from FlowFrame20.vtk

 74

View 1 View 2

Figure B-6: Ten Isosurfaces Extracted from AllIso.vtk

 75

APPENDIX C

Visualization of Regular Objects

 76

Figure C-1: Isosurfaces Extracted from Data Generated
Using Equation of a Sphere

 Figure C-2: Isosurfaces Extracted from Data Generated
Using Equation of a Cylinder

 77

VITA

Subha Mahaadevan was born in Chennai, India on April 29, 1976. She attended schools

in Chennai and Pondicherry, India. She received her Bachelor of Science degree in

Mathematics from the University of Madras in 1996, and her Master of Science degree in

Mathematics from Pondicherry (Central) University in 1998. She got her Diploma in

Software Engineering and Systems Management in 1999 from the National Institute of

Information Technology, Chennai, before coming to the University of Tennessee Space

Institute to pursue Master of Science in Computer Science. She is currently employed at

the Center for Laser Applications, UTSI, as Senior IT Technologist-II.

 78

	University of Tennessee, Knoxville
	Trace: Tennessee Research and Creative Exchange
	12-2003

	Isosurface Extraction in the Visualization Toolkit Using the Extrema Skeleton Algorithm
	Subha Parvathy Mahaadevan
	Recommended Citation

	ISOSURFACE EXTRACTION
	IN THE VISUALIZATION TOOLKIT
	USING THE EXTREMA SKELETON ALGORITHM
	ACKNOWLEDGEMENTS
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF SYMBOLS
	CHAPTER 1
	CHAPTER 2
	LITERATURE REVIEW

	CHAPTER 3
	Finding extremum points
	Forming the extrema skeleton
	Finding isosurface cells from the skeleton

	CHAPTER 4
	RESULTS AND DISCUSSION
	Table 4.1: Size of Datasets
	Table 4.3: Seed List and Extremum Points for the Extrema Ske

