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Gap Filling of 3-D Microvascular Networks
by Tensor Voting

Laurent Risser*, Franck Plouraboué, and Xavier Descombes

Abstract—We present a new algorithm which merges disconti-
nuities in 3-D images of tubular structures presenting undesirable
gaps. The application of the proposed method is mainly associated
to large 3-D images of microvascular networks. In order to recover
the real network topology, we need to fill the gaps between the
closest discontinuous vessels. The algorithm presented in this
paper aims at achieving this goal. This algorithm is based on the
skeletonization of the segmented network followed by a tensor
voting method. It permits to merge the most common kinds of
discontinuities found in microvascular networks. It is robust, easy
to use, and relatively fast. The microvascular network images were
obtained using synchrotron tomography imaging at the European
Synchrotron Radiation Facility. These images exhibit samples of
intracortical networks. Representative results are illustrated.

Index Terms—Gap filling, skeleton, tensor voting, vessel extrac-
tion, X-ray imaging.

I. INTRODUCTION

THE extraction of vascular networks is an important
problem in numerous medically oriented image analysis

tasks. In this context, many methods for extracting vessel
networks from noisy images have been developed using energy
minimization criteria [1], type combination and multiscale
techniques [2], mathematical morphology [3], and deformable
models [4] to mention just a few. An important issue concerning
these extraction techniques is that they “may cause the bound-
aries of a structure to be indistinct and disconnected” as pointed
out in [4]. In an attempt to solve the problem, some authors
have proposed specific methods associated with the need for
topological preservation in the extraction of vascular networks.
Quek et al. [5] propose the use of digital wave propagation
within the vessels from 3-D noisy gray-scaled images to force
continuity in the resulting segmented network. Nevertheless,
despite the large number of vessel segmentation methods put
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forward, the issue of gap filling has not been addressed very
thoroughly in the context of 3-D medical imaging. It should
not be forgotten that vascular network segmentation methods
aim generally at minimizing the influence of noise so that the
gaps between segmented vessels are implicitly minimized.
However, the resulting networks are often disconnected. To
the best of our knowledge, only two gap filling algorithms for
vascular networks have been developed [6], [7]. Discontinuities
in the network limit the topological analysis, a drawback which
is becoming important in an increasing number of medical
applications [8]. There is indeed a growing demand for better
analysis of microvascular structures [9], the quantification of
which necessitates specific image processing. The interest of
such quantification is to permit a better understanding of the
impact of microvascular structures on the hydrodynamic in-
teractions between arteriolar and veinular systems. Improving
vessel connectivity in such networks is thus a key issue, and it
is the goal of the present paper.

Our work is directed toward a quantitative analysis of the
capillary network organization. High-resolution images of mi-
crovascular networks are of interest in, for example, the study of
strokes, or tumor angiogenesis [16]. The microvascular network
images are obtained by high-resolution X-ray tomography [15].
The contrast between the vessels and the surrounding tissue is
made very strong by injecting a highly concentrated X-ray con-
trast agent into the vascular network. The segmentation of the
resulting 3-D image is thus fast and robust. Nevertheless, the
preparation leaves some discontinuities in the network due to
inhomogeneities in the contrast agent injection. Parts of the mi-
crovascular network are thus disconnected from each other in
the segmented image. We can distinguish three typical cases of
discontinuities.

1) Information is missing in a vessel. In this case, the vessel
observed in the image is divided into two distinct parts
[Fig. 1(a)].

2) Several voxels remain in an area where information is
missing. A small set of connected voxels is, in this case,
pointed to by adjacent vessels whose extremities were
previously identified as terminal segments [Fig. 1(b)].

3) Information is absent just after a bifurcation. This configu-
ration is associated with a vessel extremity pointing at an-
other vessel [Fig. 1(c)].

This lack of information has to be minimized if microvascular
networks are to be analyzed efficiently. For this purpose, we
have developed a new gap filling method suitable for large 3-D
vessel networks.

The paper is organized as follows. Section II reviews the ex-
isting literature on gap filling methods or methods which can



Fig. 1. (a) Two segment ends pointing at each other. (b) Small isolated set
of interconnected vessel voxels between two segment ends. (c) Segment end
pointing at a segment.

Fig. 2. Segments of a network of tubular structures.

be adapted to fill gaps between tubular structures. This review
shows that most of the current gap filling methods which could
have a reasonable algorithmic cost in 3-D are only designed
for the first case of discontinuities listed above. Hence, none of
these pointing methods enables the three typical cases of discon-
tinuities to be filled. This is why we present, in Section III, a new
efficient method based on the tensor voting formalism suited to
our overall problem. The gap filling algorithm is presented in
that section. In Section IV, the algorithm is tested on both real
and phantom networks. Our gap filling algorithm is also com-
pared to three other algorithms. Finally, conclusions are drawn
in Section V.

II. PRIOR WORK ON TUBULAR STRUCTURE GAP FILLING

In order to generalize the notion of imaging a 3-D vascular
network, we will consider it as a network of tubular structures. In
the following, the term segment refers to a part of this network.
A segment may be defined between two bifurcations, between
one bifurcation and one extremity of the tubular structure or
between two extremities of the tubular structure (Fig. 2).

Although the problem of extracting tubular structures has not
been widely addressed in 3-D, it has been the object of much
attention in 2-D. For example, in the field of remote sensing,
the extraction of road networks requires gap filling. Blockages,
crossroads, shadows, and variations of the background or road
intensity may cause gaps in the road network. In this context,
Rochery et al. have improved a road extraction algorithm by
using higher-order active contours [10]. This method is inspired

by the active contours [11]. The evolution equation is modi-
fied by adding a force which makes neighboring regions attract
one another. Bicego et al. [12] look for parallel straight lines
in small subimages of streets using a Hough transform. The re-
sulting small segments are then used to initialize a contour fol-
lowing algorithm, which starts in a direction perpendicular to
the image gradient. In [13], road network midlines are first ex-
tracted. The midline endpoints are thus easily detected. They be-
come the seeds of the gap filling algorithm. The nearby seeds are
then compared with one another through a cost function and are
merged. In [14], Lacoste et al. apply a global optimization so-
lution with simulated annealing for gap filling in line networks.
The cost function depends on the configuration of the overall
line endpoint pairs.

Perceptual organization techniques [17] are especially inter-
esting for the problem of gap filling in vascular networks. These
techniques aim at grouping the primitives contained in a data set
into perceptual structures. These primitives are usually called
tokens. For example, Parent and Zucker [18] give a reliability
measure on whether two isolated segment ends seem to be on
the same arc of a circle. Experiments have been carried out on
biomedical images to merge vessel pieces. In [19]–[21] gaps
between tokens are filled with a fine to coarse process. Local
junctions between tokens are processed first. Then the tokens
are recursively redefined, so that larger tokens are compared for
coarser junctions and so on. In [22], several features are dis-
tinguished in shape boundaries. They are thus merged locally
without feedback. A good overview of perceptual organization
techniques can be found in [23].

A rich expansion of perceptual organization techniques is
tensor voting [24]. This technique was initially developed
in order to reconstruct shapes from point clouds. It allows
simultaneous communication among various types of tokens.
Moreover, the information exchange between tokens uses
tensor fields rather than scalar ones as in other methods. The
communication is thus much richer. The initial 3-D tensor
voting frameworks are extended to N-D in [25]. In [26], the
curvature is added into the communication parameters. A
multiscale algorithm for boundary inference is presented in
[23]. Two methods adapted from tensor voting can be found
in [27] and [28]. In [27], gray level images are filtered with
Gabor filters. A tensor field is thus created using the directional
features obtained from the filtering. The tensor field is used to
fill gaps between segments. In [28], tensor voting is applied to
curve endpoints in order to extrapolate and merge them. Tex-
tures are also extrapolated with N-D tensor voting. Therefore,
tensor voting provides an interesting formalism for gap closure
procedures in vessel networks.

III. METHOD

A. General Presentation

The key idea of the proposed algorithm is the use of three
types of tokens: segment-end tokens, segment tokens, and is-
land tokens (Fig. 3). Those tokens provide an efficient basis for
the description of disconnected networks. The segment-end to-
kens contain information which allow isolated segment ends to



Fig. 3. Surface and skeleton of the sample of a segmented vascular network.
The three kinds of tokens can be distinguished: (a) segment-end token; (b) island
token; (c) segment token. A segment has to be long enough to be considered as
a segment token. Hence, one of the segments here is not a segment token.

be described, while one segment token describes a segment ex-
cept its extremities. The island tokens allows small sets of inter-
connected voxels to be specified.

The general algorithm is as follows. The initial vascular
network images are considered as already segmented. We first
skeletonize the networks. Skeletonization extracts the medial
axis voxels from the shape described in the segmented image
and associates each medial axis voxel with its distance to the
nearest shape boundary. This description composes a homo-
topic, thin version of the shape. The shape becomes simply
connected, a property which allows an easy description of
the network to be made. The three types of tokens are then
identified all over the skeletonized network. The tokens are thus
used to fill gaps in the network by a method based on the tensor
voting formalism. This efficient method is the main purpose of
this paper. Once the gap filling process has been completed, the
improved image is reconstructed.

B. Initial Data

As already mentioned, the images are assumed to be already
segmented. The 1-voxels represent the shape and the 0-voxels
the background. Any segmentation method can be processed
since the segmented data represent a set of tubular structures
without holes which entirely fill the tubular structure. These
holes have to be filled because they change the topology of the
tubular network. The method we use to fill discontinuities is pre-
sented in Section IV.

C. Skeletonization

Skeletons are widely used in vascular network study
[29]–[32]. They reduce an object shape to the set of its medial
points. Each medial point is associated with its coordinates
and distance to the nearest object shape boundary. In 2-D,
a skeleton is invertible. In 3-D, an invertible skeleton is a
surface structure [33], [34]. However several skeletonization
algorithms [30], [31], [34]–[36] provide a noninvertible curve
structure in 3-D. Even for flattened shapes, these algorithms do
not give rise to local surfaces, or shrink to nothing. Moreover,
in the special case of nearly tubular shapes, the curve skeleton

Fig. 4. (a) A segmented shape. (b) Skeleton of the shape. The points are the
elements of the skeleton.

of the shape represents a negligible loss of information. Curve
skeletons are thus a useful tool for describing tubular structure
networks. They give an optimal representation of the data
[37]. Moreover, they allow the segments ends, their orientation
and their size to be easily detected. It can be seen that, for a
shape, skeletonization and inverse skeletonization are the links
between the segmented image representation and the network
representation.

In our application, the skeletonization algorithm has to
strictly preserve the homotopy properties of the original net-
work. Indeed, it would not make sense to change the shape
topology. It also has to roughly verify the medialness property.
Finally, the third property of a skeleton, its thinness, has to be
attained. The skeletonization algorithm class which best fits
our needs is the thinning algorithms class. We thus used the
algorithm proposed by Palágyi et al. [30], [36], which respects
our needs and constraints.

The thinning algorithm is iterative. The voxels on the shape
boundary are removed until they are part of a thin curve. 26-ad-
jacency is adopted for 1-voxels (the shape), 6-adjacency for
0-voxels (the background), and 6-adjacency for the connectivity
between 1-voxels and 0-voxels. The algorithm is subdivided
into cycles of six subiterations. Each subiteration is character-
ized by a deletion direction (up, down, north, south, east, and
west in turn) and is as follows.

1) The 1-voxels which have a 0-voxel as direct neighbor in
the direction are taken into consideration.

2) The new value of those voxels will depend on their
neighborhood. For each direction , a set of

six masks of size and their rotations around
is defined. These masks are described in [36]. A voxel
under consideration is then to be deleted if its
neighborhood matches at least one of the given set of
masks.

The six subiteration cycle is repeated until no voxel is deleted
in a cycle. For further information on the thinning algorithm,
refer to [30] or [36]. Note that any other thinning algorithm
which respects our constraints could be used. Fig. 4 illustrates
the result of the thinning algorithm.

The thinning algorithm provides a collection of disarranged
skeleton voxels which correspond to the medial points of the



Fig. 5. Notations used for the skeleton description.

shape. They are merged and ordered in the step of skeleton
pruning as follow. They are gathered in a chains set where each
chain contains the skeleton voxels of a segment. In each chain,
the skeleton voxels are ordered following their proximity. The
following notations will be used. A skeleton voxel is an ele-
ment. Each element contains its coordinates and the distance to
the nearest boundary of the described shape. For a tubular shape,
this distance is the radius of the shape local section. Each chain
of elements is an S-segment (Fig. 5).

Before pruning, the S-segment endpoints must be char-
acterized as either isolated endpoints or node endpoint. Let

be the 1-voxels in the neighborhood of
. Since 26-adjacency was adopted for 1-voxels, an isolated

endpoint is characterized by ,
a line element by and a node
endpoint by .

The pruning step will order the elements in each S-segment
following their connectivity. The pruning algorithm is described
in Appendix I. It is noteworthy that the algorithm outputs two
lists and . For each node, the identifiers of the connected
S-segments are gathered together in a sublist of . The list
indicates the coordinates of the isolated S-segment endpoints in
the pruned skeleton.

Boundary fluctuations may result in some extraneous
skeleton branches. We consider as an extraneous branch a
S-segment which has only one extremity connected to an other
S-segment and which has a length smaller than 1.5 times the
radius of the connected S-segments. Tests have shown that
about 10% of the S-segments of our skeletonized networks
could thus be considered as small extraneous skeleton branches.
Of those 10%, about 8% are useful for the reconstruction of the
network. Likewise, on a network where 134 gaps are closed
if those extraneous skeleton branches are removed, none of
these gap closures are lost if the branches are not removed.
Finally, one can note that no fake junction is observed whether
the extraneous skeleton branches are removed or not. We then
consider that those small S-segments are more of help than a
hindrance. Hence, they are not filtered.

Finally, in order to provide smoother skeletons, the integer
coded coordinates of the skeleton elements are cast into float
coded coordinates. The coordinates of the skeleton elements
within the S-segments are thus smoothed by linear filtering. The
isolated curve endpoint coordinates are not changed and further
estimation of segment end direction is thus improved.

It should be noted that our gap filling method could be used
directly on a skeletonized network since the lists and are
known.

D. Tokens Used

The end and the size of each S-segment are immediately
identified in the skeleton. The isolated S-segment endpoints are
saved in the list . The orientation of each S-segment end is
easily estimated by computing the coordinates of the skeleton
S-segment endpoint minus the coordinates of an element near
the endpoint. Each end-segment orientation is generally dif-
ferent.

Let be the threshold number of S-segment elements which
differentiates an island from a segment. We take ele-
ments. In order to define the tokens, we will distinguish three
kinds of S-segments:

1) 0-segments, which have no connection to another S-seg-
ment;

2) 1-segments, which have just one end connected to another
S-segment;

3) 2-segments, which have their two ends connected.
The tokens are then defined as follows.
• Segment-end token: A nonconnected segment end. The

S-segment size is larger than elements. Coordinates and
a direction certainty are associated with each segment-end
token. It can be seen that the 1-segments of size smaller
than or equal to elements do not generate segment-end
tokens. Indeed, due to their size, their directional aspect is
not relevant.

• Island token: A 0-segment whose size is smaller than or
equal to elements. Coordinates of the element at the
middle of the S-segment are associated with each island
token. There is, however, neither a directional aspect, nor
a volume associated with it.

• Segment token: A 0-segment of size larger than el-
ements or a 1-segment of size larger than elements
or a 2-segment of size larger than 3 elements. For the
1-segments and 0-segments, the segment token expression
must not interact with the segment-end token expression.
A margin of elements is thus left close to the endpoints.
For the 2-segments, at least one element of the segment
must not be an endpoint. A chain of element tokens is
associated with each segment token. These element tokens
are the elements of the corresponding S-segment, plus the
following internal information: coordinates, radius, and
direction uncertainty around the segment tangent. The
radius expresses the volume of each element.

One can remark that 0-segments which are larger than el-
ements and smaller than elements only generate two seg-
ment-end tokens. Their directional aspect is indeed significant
and a margin of elements is required by their two segment-end
tokens, so that they do not generate an island token or a segment
token. On those S-segments, junctions are then only possible at
their extremities.

E. Construction of Tensor and Scalar Fields

Two fields are required for the gap filling algorithm: a tensor
field and a scalar field . Each field can be seen as a 3-D



image of tensors for and of scalars for . Both and are of
. This size has to be large enough to contain the whole

network. The initial segmented image size plus small margins is
the best choice. The tokens will express themselves in and .

Let be the token map. The tokens express their coordi-
nates and their identifier in this map. An identifier is given to
each token. Each segment-end token or island token expresses
itself in the token map by giving its identifier value to the voxels
corresponding to its coordinates. The segment token identifier
takes the whole segment volume except close to its endpoints.
In Fig. 7(a), the three kinds of tokens are illustrated using a token
map.

Let be the tensor voting field. This discrete second order
tensor field has the same size as the token map. Each
tensor is represented by a 3 3 matrix. The tokens as a whole
express their direction certainty in . Let us break into sev-
eral tensor fields, each expressing a token directional aspect. Let

, be the tensor field created by the th seg-
ment-end token, , the tensor field created by
the th island token and , the tensor field cre-
ated by the th segment token. Thus, for all points

(1)

This formula represents the communication between tokens.
The construction and expression of each token shows numerous
similarities with the stick voting fields and ball voting fields
proposed in [23] or other papers of Medioni et al. In those pa-
pers, the tensor fields express a direction uncertainty. Due to the
token expression, we consider in this paper that a direction cer-
tainty is more natural to consider. Our tensor fields thus have an
embedded direction certainty. The construction of each kind of
tensor field is described in the next subsection.

F. Segment-End Tokens Expression

The segment-end tokens express an orientation certainty.
Their tensorial expression thus is close to a stick voting field
of [23]. We assume a point close to the S-segment end .
The tangent to the S-segment in is . First, and are
chosen as normalized unit vectors . Let

be such that

(2)

The vector is the oriented tangent at to the circle
which contains and and which is tangent to at (Fig. 6).

As in [23], is weighted as follows:

(3)

Fig. 6. Arc of circle C used for the construction of the tensor field expressing
a segment-end token represented with dotted lines between points O and P.

Fig. 7. Different classes of tokens and their associated tensor fields. (a) The
letters refer to different token classes: A: segment-end tokens; B: island tokens;
C: segment token. In the following figures, the energy E(T) associated with
each tensor T such that E(T ) = ( T ) is represented. (b)
Energy of segment-end voting fields E(TE). (c) Energy of an island voting
field E(TI). (d) Energy of segment voting fields E(TS). The segment token
volume does not contain the field.

where is the length of the arc of the circle and its
curvature. The coefficient is the scale of the analysis and the
influence ratio between the proximity and the curvature. The
choice of these coefficients is discussed in Section III-A. The
tensor is then defined from as , where

is the tensor product. At , the tensor then corresponds to
the vote of the segment-end token located at . Fig. 7(b) shows
the energy of voting fields generated by segment-end tokens to
illustrate the concept. We denote by segment-end voting fields
those voting fields.

G. Island Tokens Expression

The island tokens express a lack of preferential orientation.
Their tensorial expression is then close to a ball voting field of
[23]. Let be the center point of the S-segment representing an
island token and a point close to . The vector is then
weighted as in previous case except that the length of the arc of



the circle is replaced by the distance between and and the
curvature is no longer used

(4)

The tensor is then defined from vector
. At , the tensor corresponds to the vote of the island

token located at . Fig. 7(c) shows the energy of a voting field
generated by an island token. The notation island voting fields
is used for this kind of voting fields.

H. Segment Tokens Expression

Each element token of a segment token has an uncertainty
of orientation around an axis. This axis is the segment token tan-
gent at . In order to build the tensor voting field of a segment
token we first create a vector field. Let be a point near a given
segment token.

At , the vector field is equal to with
the nearest element token to . Its norm is then the distance
to the skeleton. The algorithm for this vector field creation is
described in Appendix II. In this algorithm, the scalar field
has the radius of the nearest element token . The points
such that are thus within the segment token.
If is not within the segment token, its distance to the segment
boundary is . As for the other tokens, each
vector outside the segment token is thus weighted

(5)

The tensor is then defined from vector
. At , the tensor corresponds to the vote of the segment

token at the nearest point to of its skeleton. Fig. 7(d) shows
the energy of voting fields generated by segment tokens. We use
the notation segment voting field for those voting fields.

I. Scale and Curvature Expression

The coefficients and of (3)–(5) express the curvature and
the scale, respectively, in the weights of the tensor fields. Eval-
uating the parameters and is not convenient since they are
dependent coefficients. In order to find a more intuitive way of
fixing and , we deduce them from a characteristic length
and a characteristic angle . To illustrate those parameters, let
us consider the creation of a segment-end voting field. Let be
the origin of this voting field and the normal vector which
represents the direction certainty at . The point is such that

and the point such that
and the angle . Note that represents the an-
gular wideness of the stick voting field and not the relative angle
between two close S-segment ends. The curvature of the circle
which passes through points and is , as illustrated
with dotted points in Fig. 8. The tangent to this circle at is .

We consider that the weight of this voting field at the point
is times smaller than at . Likewise, the weight at is

Fig. 8. Notations used for the calculation of c and � from L and �.

Fig. 9. Segment-end voting fields for different values of L and �. (a) L =

28 �m and � = 45 . (b) L = 21 �m and � = 45 . (c) L = 21 �m and
� = 25 .

times smaller than at . Following these lines, the coefficients
and are given by

(6)

Fig. 9 illustrates three segment-end voting fields for different
values of and .

Notice that, as explained in [24] or [38], for points which are
farther than 90 along a spherical surface, a circular arc is not
the most likely continuation. In practice, we then only consider
the points such as for a segment-end
voting field construction.

For an island voting field or a segment voting field we only
consider a distance for which the weight is times smaller
than at the origin. The parameter is equal to .

J. Saliency Map

As already proposed in [23] or [24] we compute the saliency
map to a curve through the tensor voting field [Fig. 12(a)].
Let , , and be the eigenvalues
of the tensor with

. We compute the eigenvalues with the Jacobi al-
gorithm of [39]. Since our choice for the tensor construction
differs from those of [23] and [24], we self-consistently define
the saliency to a curve at the point [ ] as

(7)

We illustrate this choice in Fig. 10 where the vector field as-
sociated with the left segment-end token is drawn in the vicinity
of its extremity. On the other hand, the vector field associated
with the right segment token is also drawn. One can see that both
vector fields are closely collinear in the region in between the
segments. This collinearity induces that the resulting tensor map
will have a large energy, leading to a high saliency map value,



Fig. 10. Vector fields generated by a segment-end token (segment 1 end) and
a segment token (segment 2). These fields are tensorized in order to permit the
tokens communication.

which is precisely what is needed. Equation (7) then leads to
high values for points which provide continuity of segments.

K. Token Junction

The tokens are merged with paths following the watersheds
of the saliency map [Fig. 12(b) and (c)]. Paths are generated
iteratively. Each segment-end token is the seed of a path. Let
be a point of a path and a direction associated with . The
point is estimated as follows:

(8)

The direction is thus

(9)

The path is stopped according to four criteria.
1) It leads to another segment-end token. The two S-segments

are then joined by the path [Fig. 11(a)].
2) It leads to a segment token. The segment token is divided

at the nearest element token to the junction point. The
segment-end token joins the segment token at this point
[Fig. 11(b)].

3) It leads to an island token. The segment-end token is then
joined to the island token by the path [Fig. 11(c)]. The is-
land token and its contribution to the tensor voting field are
deleted. The expression of the newly created segment-end
token is added to the tensor voting field [Fig. 11(d)]. An-
other watershed path thus starts from the end of the new
segment to try to reach another junction.

4) It is stopped if the value of the saliency map is lower than
a given threshold, if it reaches the boundary of the image
or if its length is larger than a fixed threshold.

A junction list is created in order to avoid joining two tokens
twice. This list also avoids the creation of artifact cycles between
three segment-end tokens. The radii of the S-segments created
depend on the radii in the segment-end tokens. When two seg-
ment-end tokens are joined, the radii are interpolated. If a seg-
ment-end token is joined to a segment token or an island token,
the radius of the segment-end token is the same throughout the
junction S-segment.

At each iteration, the junction test between the path and a
token is computed using the token map . When a path joins a

Fig. 11. Different cases of paths. (a) Segment-end token to segment-end token.
(b) Segment-end token to segment token. (c) Segment-end token to island token
(part 1). (d) Segment-end token to island token (part 2).

Fig. 12. (a) Saliency map. (b) Filled skeleton. (c) Filled skeleton with volume.
(d) Dense Volume reconstruction.

token identifier, the token is then immediately recognized. The
whole algorithm is then of order with the number of
segment-end tokens. It is thus especially suitable for large net-
works.

L. Dense Volume Reconstruction

The volume is reconstructed within an image of the same
size as the initial image. For each repaired skeleton element,
the voxels having a distance to the element center smaller than
the element radius are 1-voxels. The other voxels are 0-voxels
[Fig. 12(d)].



Fig. 13. Deterioration of a reference network. (a) Reference network. (b) De-
teriorated network. 30 gaps have been created. Their mean size is 12 pixels. 50
islands have been injected for a size of 300 � 340 pixels.

IV. APPLICATION: GAP FILLING IN MICROVASCULAR

NETWORKS

A. Presentation

Our gap filling method was tested both on phantom networks
and on real intracortical microvascular networks. The phantom
networks were used in order to validate the method. They were
obtained from clean reference networks which were artificially
damaged. The comparison of their repair with the reference net-
works was then possible. Our algorithm was also compared to
other algorithms. After this validation, the algorithm was tested
on real intracortical microvascular networks. We also discuss
how the parameters were chosen. All calculations were carried
out on a Linux PC with an Intel Xeon 2,13-GHz processor and
4 GB of RAM. Each volume rendering has been obtained using
Amira software.

B. Phantom Networks

1) Presentation: The validation of our gap filling method
requires the comparison of reconstructed networks with an ideal
result. It is also interesting to compare the efficiency of our gap
filling method with other approaches. Hence, we compared our
new method with a Bayesian Ising model, with mathematical
morphology tools and with an active contour method.

2) Phantom Networks Creation: In order to simplify the
comparison, the phantom networks are planar. A set of three
small, thin networks was extracted from real intracortical
networks. These samples are especially clean. They were then
projected onto a plane. The crossings between segments due to
the projection were erased. Then the networks were repaired
with our tensor voting algorithm so that it could not improve
them any more. These networks are the reference networks.

Damaged networks are obtained using the reference net-
works. Their deterioration is controlled. It is thus possible to
measure the efficiency of the damaged network reconstruction.
The deterioration is processed as follows. A given proportion
of elements of the network is the center of gaps. The size of
each of these gaps follows a Gaussian law. Once the network
is disconnected, noise is added to the background. Finally, a
given density of islands is homogeneously distributed around
the disconnected network. Fig. 13 illustrates the deterioration
of a reference network.

3) Methods Used for Comparison: Our gap filling method
was compared to two well-known methods and a more sophis-
ticated one. The first method is based on the Ising model and

the second on mathematical morphology. Furthermore, we test
a standard phase field model as a third choice.

The Ising model [40] is a Bayesian model which evaluates
the probability of repairs from a deteriorated image. In order
to be highly probable, the repaired image must share a proper
balance between the deteriorated image and an homogeneous
image. One parameter governs the relative importance of the
initial image to the homogeneous one. In order to generate
and test a wide range of combinations of possible repaired
images and avoid falling into a local probability maximum,
simulated annealing was used. It adds three other parameters
to the method, an initial temperature, a decaying factor and the
total number of iterations. The simulated annealing combined
with the Ising model allowed the deteriorated image to be
homogenized. Hence, the gaps between vessel like structures
tended to be closed, as illustrated in Fig. 16(a), (d), and (g).

The method based on mathematical morphology [41], [43]
has the following features. The deteriorated image is closed with
a set of structuring elements. Each closure produces a partially
repaired image. The repaired image is the union of all partially
repaired images. The structuring elements used are thin seg-
ments of same length with several orientations. For example,
a structuring elements set can be a set of thin segments of 15
voxels in length, with orientations of 0 , 30 , 60 , 90 , 120 ,
and 150 with the axis of the 2-D image.

A brief introduction to phase field models is given in [42].
Since the contrast of our images is very high, a common active
contours method would only find well injected vessel bound-
aries. By forbiding any change in the contour topology, a single
contour which contains the whole vascular network could also
arbitrarily connect the different connected components and fill
the gaps. However, a phase field model might be suited to our
problem. This approach consists in defining an energy associ-
ated to the contour of the image described by a phase field. This
energy contains an internal term which tends to minimize the
contour length and the surface defined by the internal part of the
contour. It also contains an external term which tends to split the
image into two regions in which the pixel values are modelled by
two different Gaussian distributions. Following the gradient of
this energy, the contour converges to a local minimum of the en-
ergy. In our case, applying this scheme leads to a contour which
almost only delineates the different connected components ob-
tained by thresholding.

Higher order active contours (HOAC) could have also been
used. Nevertheless, HOACs introduce some long range interac-
tions which define some stable shapes different from the circle.
Especially, some particular models, leading to bars as stable
shapes, have been applied to the problem of road detection [10].
However, these models require the definition of an interaction
function dedicated to each specific application. They involve a
double integral leading to time consuming algorithms. Besides,
the extension of this approach to 3-D is still an open issue.
Hence, the application of such a model to our problem is out
of the scope of this paper. Besides, at the current time, these
methods do not reach our time constraints to deal with 3-D vol-
umes.

4) Parameter Influence: The parameters of the three methods
have been varied so as to obtain the best possible results. We



Fig. 14. Gap filling algorithm efficiency on a 2-D damaged sample in function
of the characteristic length (L) and the characteristic angle (�). The percentage
of good junctions is 100 times the number of good junctions over the number of
gaps to fill. Likewise, the percentage of false junctions is 100 times the number
of false junctions over the number of gaps to fill.

Fig. 15. Illustration of the results presented Fig. 14. Deteriorated networks are
blue. Gaps to fill [image (a)] or filled (other images) are white. (a) Reference
network. (b) L = 5 voxels and � = 45 . (c) L = 15 voxels and � = 45 .
(d) L = 30 voxels and � = 45 . (e) L = 15 voxels and � = 15 . (f) L =
15 voxels and � = 60 .

first focus on the characteristic parameter influence of the tensor
voting procedure. Results are shown in Figs. 14 and 15. A char-
acteristic length of 15 voxels and a characteristic angle of 45
provide the best results for reasonable computation times. One
can see that computation times clearly depend on the charac-
teristic length but not on the characteristic angle. The results
are relatively stable between small to optimal parameter values.
For high parameter values, the number of good junctions tends
to diminish and false junctions are observed. Indeed, excessive
characteristic lengths allow the junction between segment-ends
and nonneighbor segments. One can also note that characteristic
angles higher than 60 should not be used since the path in the
token junction step (Section III-K) tends to loop. The path then
leaves the cone having an angular width of 45 where the seg-
ment-end voting fields are designed.

For information, the best results for the Ising method are ob-
tained when the simulated annealing initial temperature is 10,
the decaying factor equal to 10 and the total number of iteration
set to 5000. Furthermore, the optimal structuring elements ori-
entations set of mathematical morphology is 0 , 15 , 45 , ,
165 for a 10 voxels length. Finally, the best results for the phase
field models are given when the diffusion coefficient of the in-
ternal energy term is set to 1000 while the parameter associated
with the external term is chosen equal to 3270.

Fig. 16. Comparison of three gap closure methods with optimal parameters
efficiency on three samples. (a), (d), (g) Ising method. (b), (e), (h) Mathematical
morphology method. (c), (f), (i) Tensor voting method.

5) Tests Results: Fig. 16 illustrates the gap closure, for op-
timal parameters, with three methods on the deteriorated net-
work presented in Fig. 13 and two other networks. In terms of
computations times, the Ising model and the mathematical mor-
phology method are faster than the tensor voting method. For
example, result of image Fig. 16(a) requires 116 s when results
of images Fig. 16(b) and (c), respectively, require 4 and 74 s.
However, it can be seen that the tensor voting method gives
much better results than the other two methods. One key point
here is to realize that the Ising and mathematical morphology
methods do not use any directional information about segments.
The whole shape topology can be modified. For example, it can
be seen on the left side of Fig. 16(a) and (b) that two parallel seg-
ments may become a single segment. On the other hand, small
nodes may be entirely filled. This comparison shows that these
two standard methods do not yield satisfactory results.

Fig. 17 illustrates the comparison between the phase field
method and the tensor voting method. Phase field method is
faster than tensor voting. For example, the results of the image
Fig. 17(c) require 68 s whilst the results of the image Fig. 17(d)
take 23 s. The whole shape topology can also be modified by
phase field models. For example, one can see at the top of im-
ages Fig. 17(d) and (f) the merging of two closed segments.
Nevertheless, such merging is not possible anymore when other
parameters are used for the phase field model, as illustrated in
image Fig. 17(e). The results that are exhibited by this standard
method are however much better than those obtained with the
other ones.

C. Real Networks

1) Description of Images: The real network images were ob-
tained using synchrotron tomography imaging at the European
Synchrotron Radiation Facility (ESRF) [15]. The resolution is



Fig. 17. Comparison of two gap closure methods efficiency. (a) Reference net-
work. (b) Deteriorated network. 14 gaps have been created. (c) Gap closure with
Tensor voting. (d)–(f) Results obtained with the phase field model/standard ac-
tive contour.

Fig. 18. (a) Isosurface of a sample. Scale bar is 100 �m. (b) Slice representing
a badly injected vessel in gray levels.

about one micron, so that a 3-D image of the entire vascular net-
work can be obtained on volumes as large as 8 [Fig. 18(a)].
The image contrast between the vessels and the surrounding
tissues is very good. The vascular network was then binarized
with hysteresis thresholding, leading to a very satisfactory re-
sult. However, the observed vascular network contains some dis-
continuities [Fig. 18(b)].

Small discontinuities within the vessels were filled in a simple
and efficient way. We used a morphological closure operator
with a cube structuring element. The size of this struc-
turing element was set to the maximum typical size of disconti-
nuities within the data. In order to fill the last discontinuities of
background voxels remaining within the vessels, all connected
sets of 0-voxels having sizes under a given threshold became
1-voxels. The segmented images were thus clean enough for the
skeletonization.

Twenty networks were tested with our gap filling method.
They contain from 5000 to 100 000 segments. Their mean di-
ameter is 9.24 m for a standard deviation of 5.41 m.

2) Gaps Characterization: Our gap filling method requires
two parameters, a characteristic length and a characteristic angle
(Section III-A). In order to define them, we have studied the
mean size of the gaps that we would have filled manually. We
also characterized the tortuosity of the segments and took into
account the segment diameters.

Fig. 19. Extraction of a sample of the network. The segments are colored ac-
cording to their radius. Scale bar is 100 �m (73 voxels). (a) Full network. (b)
Sample of the network.

Fig. 20. Illustration of tortuosity estimation.

A typical sample of size voxels was ex-
tracted from a network (Fig. 19). The gaps of this sample were
then detected and their sizes measured. This detection was su-
pervised. In this sample, 31 gaps were detected. In those gaps,
10 are segment end to segment end gaps, 10 are segment end to
island gaps, and 11 are segment end to segment gaps. A student
test shows that, depending on the gap type, the mean gap size
is the same in a confidence interval of 95%. The mean size of
these gaps is 13.6 voxels (19.0 m) for a standard deviation of
4.27 voxels (5.99 m). One can note that, in the typical sample,
the mean vessel diameter is 8.44 m for a standard deviation of
3.61 m. These values are slightly smaller than those found for
all studied networks because the typical sample does not contain
very large vessels. This is not penalizing for the tests because al-
most all the gaps were found on segments having a diameter in
the range of 4–8 voxels (5.6–11.2 m). Those segments are cap-
illary vessels.

In order to estimate the segment tortuosity according to
their diameter, we used the following method. The segments
are broken down into several classes according to their
mean diameter. Likewise several distances are considered.
Let us consider now the angle between the line which
passes through a point of a segment of and the point at the
curvilinear distance on the same segment and the line which
passes through the same point and the point at the curvilinear
distance in the other direction (Fig. 20). For each class of
segment and each distance the mean angle is finally
computed. Fig. 21 gives the results for two networks. This
figure shows that thin vessels are more tortuous than wide ones,
especially for distances greater than 14 m.

3) Parameter Definition: From the statistical analysis pre-
sented in the previous section the gap size does not depend on
the vessel diameter in our samples. However, the vessel tortu-
osity at the gaps scale is higher for thin vessels than for wide



Fig. 21. Tortuosity estimation on two real 3-D networks. (a) First network. (b)
Second network.

ones. It thus seemed interesting to adapt the curvature param-
eter of the tensor fields to segment diameter. The scale param-
eter only depends on the mean gap size.

We used the characteristic length and the characteristic
angle developed in Section III-A. The mean gap size (13.6
voxels) was used for length . For the angle we used a coarse
model. Its value was set to 40 for diameters smaller than or
equal to 15 m (10,7 voxels) and to 20 for wider diameters.
We could also have used a finer model. The key idea here is that
the parameters of the tensor fields can be easily adapted to the
shape of the network.

4) Results: The results look perceptually natural. About 90%
of the junctions which would have been connected by an expert
are filled. This point is developed in Section IV-D. For a net-
work of 318 segments embedded in an image of voxels, the
procedure takes 5 min and 35 s and requires 372 Mo. For a net-
work of 2745 segments embedded in an image of voxels,
the procedure takes 49 min and 29 s and requires 2839 Mo. The
average computation times and the amount of memory required
are proportional to the image size. In order to limit the memory
required in large images, the gap filling algorithm is applied in
a sliding window. We use a sliding window of size voxels
for our tests. With this sliding window the treatment of a net-
work of 57197 segments embedded in an image of voxels
[Fig. 19(a)] takes 19 h and 12 min and requires only 1215 Mo.
Almost all the computational time is spent on tensor map con-
struction. Each tensor map is computed one point after another
in a window surrounding the expressed token. Computational
time could then be significantly improved with a more sophisti-
cated tensor map construction.

D. Noise Influence

The influence of noise on our gap filling algorithm is now
evaluated. Reference networks described in Sections IV-B and
IV-C are now considered whilst creating artificial gaps in those
networks. Several densities of noise islands are homogeneously
injected into the networks as well as gaps. The noisy networks
are then treated with our gap filling method. Figs. 22 and 23
represent noisy and gap filled networks.

The proportion of gaps filled versus noise is then evaluated.
The number of fake junctions over the expected number of
junctions is also computed. Fake junctions are due to two
segment-end tokens joining the same noise island. They are
uncommon and are only found on very noisy networks.

Fig. 22. Noise influence on a planar phantom network. The deteriorated net-
work is dark blue. The gaps filled are white. Yellow noise islands surrounding
the vessels. We consider a thickness of 20 voxels. (a) 5.94 noise islands for
10 voxels. (b) 198 noise islands for 10 voxels.

Fig. 23. Noise influence on a sample of 3-D network. The deteriorated network
is blue and red. The gaps filled are white. Yellow noise islands surrounding
the vessels. (a) 40 noise islands for 10 voxels. (b) 1280 noise islands for
10 voxels.

Fig. 24. Noise influence. Circles represent the percentage of good junctions.
Stars represent the number of fake junctions over the expected number of junc-
tions multiplied by 100. (a) Three-dimensional network of Fig. 22. (b) Three-di-
mensional network of Fig. 23.

As presented in Fig. 24, the number of good junctions is high
and stable for moderately noisy networks. One can note that
the voting field encodes proximity as well as continuity, so that
two closely-packed vessels will not be merged into one. Then
some gaps are not filled. For highly noisy networks, the number
of good gaps filled decreases almost linearly in the semi-loga-
rithmic representations of Figs. 24, indicating a noticeable influ-
ence on the noise ratio. At this stage, the gaps that are not filled
anymore are mainly associated with segment-end tokens useful
for the network reconstruction which join noisy islands.



Fig. 25. Gap filling algorithm efficiency vs mean gap length and with given
a characteristic length (15 �m) and angle (30 ). The 2-D and 3-D reference
networks are the same as those of Figs. 22 and 23.

E. Gap Size Influence

Finally, we test the influence of gap size on our gap filling
algorithm. As in the previous subsection, reference networks
described in Sections IV-B and IV-C are considered whilst cre-
ating artificial gaps in those networks. Gaps are homogeneously
distributed in the networks. For each damaged network, their
lengths follow a Gaussian law. Each reference network is then
damaged according to several mean lengths. Standard values
of the lengths are 0.3 times the mean lengths. Fig. 25 presents
our gap filling algorithm’s efficiency with fixed characteristic
lengths and angles. The algorithm is very efficient for mean
lengths lower than or equal to the characteristic length. The
percentage of junctions decreases linearly for mean lengths
slightly higher than the characteristic length. Then for higher
mean lengths the algorithm is absolutely inefficient. Likewise,
no fake junctions have been observed for our networks. This
is due to the fact that the vessels are far enough from each
other compared to the characteristic length of the chosen voting
fields. A proper reparametrization of the voting field method
might partially overcome this substandard performance.

V. CONCLUSION

We have proposed a new method for filling gaps in large
3-D images of tubular structures. The algorithm is designed so
as to be robust to the typical configurations of gaps in such
networks. The use of skeletons allows a robust and fast algo-
rithm to be used. The information required for the description of
tubular structure shapes is indeed minimized using curve skele-
tons. This tensor voting algorithm also avoids the comparison of
token pairs. The whole algorithm is then of order with
the number of segment-end tokens. It is thus especially suited to
large networks. Tensor fields however require a large amount of
memory. Nevertheless, this memory can be minimized using a
sliding window. The method has been tested on high-resolution
images of intracortical vascular networks. The network was im-
proved by the joining of tokens that would have been perceptu-
ally attributed to the same vessel. The procedure was also robust
to moderate noise compared to other methods. An interesting
characteristic of our gap filling procedure is that it does not re-
quire numerous parameters or manual interventions. Moreover,
its parameters can be intuitively fixed. The proposed method
should prove very useful in the reconstruction of the topology of
microvascular networks. We hope that it will help the analysis
of network structures, so that the vascular territory of arteriolar

vessels may now be investigated. Finally, it is interesting to note
that the proposed method can be used for posttreating medical
images, in angiography or scanners for example. The formalism
can also be easily generalized to any other dimension, including
2-D, with a large number of applications.

APPENDIX I
SKELETON PRUNING ALGORITHM

This algorithm takes as input the thinned image . The
image is traversed. When a 1-voxel of is found, its corre-
sponding S-segment is extracted from the image and added to
the skeleton.

{1: Initialization}

Create a new list { will contain the list of the
S-segment identifiers connected to the node }

Create a new list { will contain the list of the isolated
S-segment end identifiers}

Create a new list { will contain the list of the S-segments}

{2: Segment Pruning}

for all 1-voxel of do

{ is traversed pixel after pixel}

if is on a S-segment extremity then

The S-segment which contains is traversed

This S-segment is added to

This S-segment is removed from

if the first S-segment extremity is a node then

The S-segment identifier is added to

else

The S-segment end identifier is added to

end if

if the second S-segment extremity is a node then

The S-segment identifier is added to

else

The S-segment end identifier is added to

end if

end if

end for

APPENDIX II
VECTOR MAP CREATION AROUND A S-SEGMENT

The algorithm takes as input a binarized image and a S-seg-
ment . The S-segment comes from . A null scalar field



and a null vector field are also taken into consideration. Both
and have the same size as . A vector map is created around

the S-segment . Each point of the vector field indicates the
closest element of . Each point of the scalar field which is
not in the shape of has for value the distance to the closest el-
ement of . This value is 0 otherwise. The map is propagated.
A list indicates the points already processed.

{1: Vector Map Initialization}

the considered maximum distance to the S-segment.

Create the list

for all Element in do

the coordinates associated to .

for all Point do

Put in

end for

end for

{2: Vector Map Creation.}

while do

for all in the 26-neighbouroud of each point of
do

if and (
or ) then

Put in

if then

end if

end if

end for

end while
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