
Accelerated Isosurface Extraction
in Time-Varying Fields

Philip M. Sutton and Charles D. Hansen, M em ber, IEEE

Abstract— For large time-varying data sets, memory and disk limitations can lower the performace of visualization applications.
Algorithms and data structures must be explicitly designed to handle these data sets in order to achieve more interactive rates. The
Temporal Branch-on-Need Octree (T-BON) extends the three-dimensional branch-on-need octree for time-varying isosurface
extraction. This data structure minimizes the impact of the I/O bottleneck by reading from disk only those portions of the search
structure and data necessary to construct the current isosurface. By performing a minimum of I/O and exploiting the hierarchical
memory found in modern CPUs, the T-BON algorithm achieves high performance isosurface extraction in time-varying fields. This
paper extends earlier work on the T-BON data structure by including techniques for better memory utilization, out-of-core isosurface
extraction, and support for nonrectilinear grids. Results from testing the T-BON algorithm on large data sets show that its performance
is similar to that of the three-dimensional branch-on-need octree for static data sets while providing substantial advantages for time-
varying fields.

Index Terms— Isosurface, time-dependent scalar field visualization, multiresolution methods, octree, bricking, unstructured grid
visualization, out-of-core visualization.

--------------------- ♦ ---------------------

98 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 6, NO, 2, APRIL-JUNE 2000

1 In t ro d u c t io n

R esearchers in many science and engineering fields rely
on insight gained from instruments and simulations

that produce discrete samplings of three-dimensional scalar
fields. Visualization methods allow for more efficient data
analysis and can guide researchers to new insights. Isosur­
face extraction is an important technique for visualizing
three-dimensional scalar fields. By exposing contours of
constant value, isosurfaces provide a mechanism for
understanding the structure of the scalar field. These
contours isolate surfaces of interest, focusing attention on
important features in the data, such as material boundaries
and shock waves, while suppressing extraneous informa­
tion. Several disciplines, including medicine [1], [2],
computational fluid dynamics (CFD) [3], [4], and molecular
dynamics [5], [6], have used this method effectively.

Understanding the dynamic behavior of a data set

requires the visualization of its changes with respect to

time. However, most high performance computers possess

neither the disk space nor the amount of memory necessary

to store and manipulate large1 time-varying data sets

efficiently. While visualization research has begun to

address this problem [7], [8], data sets from both computa­

tional and measurement sources have continued to increase

in size, putting pressure on storage systems. Simulations

that compute and store multiple time steps further increase

1. Our test data sets range in size from 8.4MB to 537MB per time step.

• P.M. Sutton is with Lawrence Livermore National Laboratory, PO Box

808, L-561, Livermore, CA 94550. E-mail: psutton@llnl.gov.

• C.D. Hansen is with the Department of Computer Science, University of

Utah, 50 S. Central Campus Dr., 3190 MEB, Salt Lake City, UT 84124.

E-mail: hansen@cs. utah.edu.

Manuscript received 15 Mar. 2000; accepted 3 Apr. 2000.

For information on obtaining reprints of this article, please send e-mail to:

tvcg@computer.org, and reference IEEECS Log Number 111481.

the demand for storage space, commonly producing data
sets on the order of one half to one gigabyte per time step
with hundreds of time steps. With this vast amount of data
to process, visualization programs may become slow and
unwieldy, consuming large amounts of time reading multi­
ple files from disk and performing swapping due to limited
physical memory. Without a high degree of interactivity,
the user loses the visual cues necessary to understand the
structure of the field, reducing the effectiveness of the
visualization.

We present an algorithm for isosurface extraction in
time-varying fields that minimizes the impact of the I/O
bottleneck. By reading only those portions of the data and
search structure necessary to construct the current isosur­

face, the Temporal Branch-on-Need Octree (T-BON) makes
efficient use of both I/O and memory, greatly accelerating
isosurface extraction for large dynamic data sets. This work
builds on a previous paper [9] and extends that work by
presenting methods for improving memory behavior,
isosurface extraction in curvilinear and unstructured grids,
and out-of-core isosurface extraction.

In the following sections, we first discuss related work
and then present our algorithm for extracting isosurfaces in

time-varying fields. We introduce several improvements on
the previously published T-BON algorithm which provide
better performance and better generality. We then provide
experimental results, demonstrating the performance of the
algorithm on several large time-varying data sets. Finally,
we draw conclusions and suggest directions for future
work.

2 P r e v io u s W o r k

A number of different techniques have been introduced to
increase the efficiency of isosurface extraction over the

1077-2626/00/$10.00 t: 2000 IEEE
Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276286420?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:psutton@llnl.gov
mailto:tvcg@computer.org

SUTTON AND HANSEN: ACCELERATED ISOSURFACE EXTRACTION IN TIME-VARYING FIELDS 99

Even Subdivison Strategy Branch-on-Need Strategy

1 Node

o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

Root

o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

1 Node

4 Nodes

o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

Level 1

o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

4 Nodes

12 Nodes

o o o o O o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

Level 2

o o o o o o
o o o o o o
o o o o o o
o o o o o o
o o o o o o

9 Nodes

Fig. 1. Two-dimensional example of the branch-on-need algorithm (from
Wilhelms and van Gelder [12]). The branch-on-need strategy produces
fewer nodes when the dimensions of the data are not powers of two.

linear search proposed in the Marching Cubes algorithm

[10], [11]. Wilhelms and van Gelder [12] describe the
branch-on-need octree (BONO), a space-efficient variation

on the traditional octree. Their data structure partitions
the cells in the data based on their geometric positions.

Extreme values (minimums and maximums) are propa­
gated up the tree during construction such that only

those nodes that span the isosurface, i.e., those with

minvalue < isovalue < maxvalue, are traversed during the

extraction phase.
The branch-on-need octree resembles the even-subdivi-

sion octree, but partitions the cells more efficiently when the

dimensions of the volume are not powers of two. Fig. 1
compares the strategies in two dimensions. The even-
subdivision strategy divides the volume in each direction at

each level of the tree, while the branch-on-need strategy
partitions the volume such that the 'Tower" subdivision in

each direction covers the largest possible power of two cells.

This results in fewer nodes, allowing the tree to be traversed

more efficiently.
Recent methods have focused on partitioning the cells

based on their extreme values. Livnat et al. [13] introduced
the span space, where each cell is represented as a point in

2D space. The point's x-coordinate is defined by the cell's

minimum value and the y-coordinate by the maximum
value. The NOISE algorithm described in [13] uses a kd-tree

to organize the points. Shen et al. [14] use a lattice

subdivision of span space in their ISSUE algorithm. This

simplifies and accelerates the search phase of the extraction,

as only one element in the lattice requires a full min-max

search of its cells. This acceleration comes at the cost of a

less efficient memory footprint than the kd-tree.
The Interval Tree technique introduced by Cignoni et al.

[15] guarantees worst-case optimal efficiency. Cells, repre­
sented by the intervals defined by their extreme values, are
grouped at the nodes of a balanced binary tree. For any

isovalue query, at most one branch from a node is
traversed.

An alternate technique is to propagate the isosurface
from a set of seed cells. Itoh et al. [16], [17], Bajaj et al. [18],
and van Kreveld et al. [19] construct seed sets that contain
at least one cell per connected component of each isosur­
face. The isosurface construction begins at a seed and is
traced through neighboring cells using adjacency and
intersection information.

An algorithm to improve I/O performance and allow
efficient isosurface extraction on data sets larger than
physical memory was described by Chiang et al. [7], [8].
An interval tree is built on disk using a two-level hierarchy.
Cells are first grouped into meta-cells and a meta-interval
defined. These meta-intervals are then composed into an
interval tree, which is divided into disk block-sized groups
to allow efficient transfer from disk.

Weigle and Banks [20] consider time-varying scalar data
as a four-dimensional field. They construct an "isovolume"
for each isovalue, representing the volume swept by the
isosurface over time. Imposing a time constraint on the
iso volume yields an instantaneous surface. This method
elegantly captures temporal coherence, but its high execu­
tion time makes it impractical for large data sets.

Shen [21] proposed the Temporal Hierarchical Index
Tree to perform isosurface extraction on time-varying data
sets. This method classifies the data cells by their extreme
values over time. Temporal variation of cells is defined
using lattice subdivision, extending the ISSUE algorithm.
Nodes in the tree contain cells with differing temporal
variation and are paged in from disk as needed to extract an
isosurface at a particular time step. At every time step, an
ISSUE search [14] is performed at each node. In order to
accelerate the full min-max search, an Interval Tree is
constructed in those lattice elements that may require such
a search. The Temporal Hierarchical Index Tree shows
significant improvement in storage requirements over
construction of a span-space search structure which treats
each time step as an independent data set. It achieves this
while retaining an efficient search strategy for isosurface
extraction.

Shen's work clearly accelerates the search for isosurfaces
in time dependent data. However, at each time step, the
entire data domain (time step) is loaded into physical
memory. The isosurface extraction process potentially
needs to access all of the time steps in a time-varying data
set. If all time steps do not simultaneously fit into physical
memory, I/O can become a bottle neck. As noted by
Wilhelms and Van Gelder [12], for a particular iso value,
large portions of the data not containing the isovalue need
not be examined. Similarly, these same large portions of the
data need not be read from disk when constructing an
isosurface. For time dependent data sets, this savings can be
significant and has led us to develop a method aimed at
exploiting this observation.

3 Te m p o r a l B r a n c h -o n -Nee d O c t r e e (T-BON)

To provide high interactivity for isosurface extraction, an
algorithm's underlying data structure must use memory
and I/O efficiently. Experimental comparisons [22] between

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

100 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 6, NO. 2, APRIL-JUNE 2000

a number of three-dimensional isosurface algorithms show
that the branch-on-need octree provides an efficient
structure for isosurface extraction. The BONO has low
memory overhead and exploits spatial coherence and
memory layout to yield low execution times, making it
ideal for performing isosurface extraction in time-varying
fields.

Both time-varying algorithms discussed in Section 2 [20],
[21] attempt to capture the temporal coherence of the
isosurface. They reason that, given one isosurface at a given
time step, a high probability exists that that isosurface will
pass through the same neighborhood on the next time step.
Data structures that utilize temporal coherence could
predict where in the hierarchy to search on the next time
step. However, in order to construct triangles, an isosurface
extraction algorithm must interpolate along cell edges,
using the data values at each vertex. Therefore, the data for
the next time step must reside in memory before interpola­
tion and isosurface construction can begin. If all time steps
cannot fit in memory, the algorithm must fetch the data
from disk, causing a bottleneck in the I/O system. The
design of the T-BON data structure attempts to accelerate
isosurface extraction by minimizing this bottleneck rather
than by exploiting temporal coherence in the isosurface.

Sections 3.1 and 3.2 review the construction and traversal
of the T-BON data structure, as presented in [9]. The
original method reduces I/O latency, but does not fully
exploit the I/O system design. Section 3.3 describes a
method for further reducing the effect of the I/O bottleneck.
Section 3.4 presents techniques for extending the T-BON
data structure to include curvilinear and unstructured
grids, generalizing the underlying octree structure, which
was designed for rectilinear grids. Finally, Section 3.5
presents two out-of-core algorithms based on the T-BON
data structure, allowing systems with limited memory to
perform isosurface extraction on data sets larger than main
memory.

3.1 Construction
A preprocessing step builds a branch-on-need octree for
each time step in the data and stores it to disk in two
sections. The information common to all trees is saved only
once. This includes the general infrastructure of the tree,
such as branching factors and pointers to children or
siblings. This information can be created knowing only the
size of the data in each dimension. Extreme values for the
nodes are computed and stored separately, as these values
can vary at each time step and the T-BON does not utilize
temporal coherence.

3.2 Basic Search Algorithm
Before any isovalue queries, the tree infrastructure is read
from disk and recreated in memory. Queries are then
accepted in the form (timestep, isovalue). The algorithm
initially fetches the root node of the octree corresponding to
timestep from disk. If the extreme values stored in the root
node span isovalue, the algorithm next fetches all children
of the root node from disk. This process, shown in Fig. 2,
repeats recursively until reaching the leaf nodes. If the
extreme values in a leaf node span isovalue, the algorithm
computes the disk blocks containing data points needed by

(i) (ii) (iii)
.(C)

Fig. 2. The T-BON recursively brings the children of nodes that span the
isovalue (indicated by shading) into memory (a, b). At the leaf level, the
algorithm finds the data points needed for the isosurface (black blocks),
then reads blocks containing such points (c(i), c(iii)) from disk, skipping
blocks that contain only unnecessary data (c(ii)). A second pass through
the tree constructs the isosurface using only the data in memory.

that leaf and inserts those blocks into a list. Once the
algorithm has been brought into memory all nodes required
to construct the current isosurface, it traverses the block list
and reads the required data blocks sequentially from disk.
This block read capitalizes on the fact that I/O systems
optimize for such large-scale transfers. Some extraneous
data transfers may occur, as the algorithm may not require
all points in the block, but randomly accessing the data file
to read strictly the required points would incur large
penalties as the disk head moves between tracks and waits
for the data to rotate into the proper position. Once all the
required data points reside in memory, the algorithm
traverses the tree a second time to construct the isosurface.

Since the T-BON data structure does not exploit temporal
coherence, changing timestep requires the algorithm to
repeat the above process for the new isosurface query. If the
user performs two sequential queries to the same timestep,
the process changes to avoid rereading identical data. The
T-BON data structure maintains two lists, identifying nodes
and disk blocks currently in memory. By referencing these
lists, the algorithm only needs to transfer differential nodes
and data blocks from disk. Purging these lists when
timestep changes invalidates all data in memory, causing
the algorithm to revert to its default behavior of reading all
required nodes and data from disk. Interpolation and
triangle construction times dominate the additional list
processing and incremental I/O , so execution time gen­
erally equates with performing a search with the tree and
data already in memory.

3.3 Bricking
Although the basic T-BON algorithm exploits the I/O
system design by reading blocks of data, it demonstrates
poor I/O performance when transferring individual nodes.
To circumvent this bottleneck, the algorithm can transfer a
number of nodes at once. The T-BON method packs nodes
into disk blocks in order to read a number of nodes at once.

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

SUTTON AND HANSEN: ACCELERATED ISOSURFACE EXTRACTION IN TIME-VARYING FIELDS 101

(a) (b)

Fig. 3. Isosurfaces from curvilinear and unstructured data sets, (a) Shows an isosurface from the Impinging Jet computational fluid dynamics
simulation, using a circular curvilinear grid, (b) Depicts an isosurface from an electrical simulation of a human torso, performed on an unstructured
grid.

This strategy, called node bricking, was used by Chiang

et al. [8] in their out-of-core algorithm to achieve better I/O

performance. They pack D binary tree nodes into one disk
block-sized node with branching factor (maximum number

of children) of order 0(B). They compose these block-sized

nodes into a meta-tree, which the algorithm traverses to
extract an isosurface. The T-BON algorithm transfers bricks

of nodes from disk during the first pass tree traversal, but

simplifies the algorithm in [8] by not constructing a second
tree with these meta-nodes. By maintaining and traversing

the original tree, the T-BON algorithm minimizes the
number of extraneous nodes read. Additionally, traversal

time represents a minute fraction of total execution time, so
traversing the original tree, as opposed to a meta-tree,

effectively incurs no penalty.

While block reads optimize for I/O system performance,

the octree traversal's cache performance may suffer because

of the data layout. The octree subdivides the spatial volume
in three dimensions, in contrast to the one-dimensional data
stream obtained from reading blocks. Reordering the data

to optimize for octree traversal can improve both memory

and I/O performance. Cox and Ellsworth [23] show that

cubed storage, which provides better locality of reference
than one-dimensional flat storage, greatly improves out-of­

core visualization performance. The T-BON algorithm

utilizes this technique, also called data bricking, by
implementing the formula for cubed storage given in Sakas

et al. [24] and used by Parker et al. [25]. As in the node

bricking technique, the T-BON data structure does not use
the meta-cell method as presented in [25], again simplifying

the calculations and minimizing extraneous data transfers.

For some data sets, especially where isosurfaces lie against
the grain of the array order, cubed storage may allow the

T-BON algorithm to transfer fewer bricks from disk. In such

data sets, a single brick of cubed data would contain more

required data points than a single flat block.

3.4 Additional Grid Types
The Branch-On-Need Octree design relies on the regularity
of the underlying grid. However, many simulations and

measurements use nonrectilinear grids to create data sets.
To extract isosurfaces from a larger number of data sets, the

T-BON data structure must take into account these different

types of grids. Fig. 3 shows sample isosurfaces from two

simulation data sets that use different grid types. Fig. 3a

depicts an isosurface from the Impinging Jet curvilinear

data set. Curvilinear data sets strongly resemble rectilinear

grids—they define vertex positions explicitly in space, as

opposed to the implicit positions in rectilinear grids.

Additionally, many curvilinear data sets contain multiple

"zones," or grids, any of which may contain portions of the

isosurface. The T-BON algorithm handles these grids in

much the same way as rectilinear grids. The data structure

stores vertex positions along with the tree structure and

reads these points from disk before execution begins.

Interpolation calculations reference these points rather then

computing them from implicit points.
Fig. 3b shows an isosurface from an electrical simulation

of a human torso. This simulation uses an unstructured

grid, where tetrahedral cells replace the hexahedral cells of

a regular grid. The lack of spatial hierarchy in these cells

makes using a BONO-based algorithm difficult. A collection

of hexahedral cells can combine to form a larger hexahe­

dron, but tetrahedral cells may not share this property.

Parker et al. [26] construct a spatial hierarchy over

unstructured data by computing a maximum resolution

based on the number of tetrahedra in the volume. They

rectilinearly subdivide the volume to this resolution, where

each leaf node maintains a linked list of the tetrahedra it

contains. The T-BON algorithm takes advantage of its

inherent octree structure to adaptively subdivide the

volume, producing fewer nodes than a full subdivision in

regions of sparse tetrahedra. Fig. 4 demonstrates this

strategy in two dimensions. By producing fewer nodes,
this method uses less memory and disk space.

The adaptive subdivision algorithm preprocesses the cell

data using a modified version of the algorithm presented by

Parker et al. [26]. This preprocess fully subdivides the

volume to a certain resolution, then performs intersection

tests on each tetrahedral cell to determine which

subvolumes contain portions of that cell. Each subvolume

maintains a list of all cells contained by that subvolume.

Finally, the preprocess concatenates these lists into a single

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

102 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 6, NO. 2, APRIL-JUNE 2000

Fig. 4. Comparing adaptive refinement to full-resolution subdivision, (a) Shows the full-resolution scheme of Parker et al. [26]. Using the octree
structure of the T-BON to perform adaptive refinement, as shown in (b), results in fewer nodes in sparse and empty regions.

array, which it writes to disk. A second preprocessing
program constructs a BONO over the sub volumes. The
T-BON preprocessing algorithm then traverses the BONO
using a user-specified threshold. If all children of a node
contain fewer cells than this threshold, the children merge
their linked lists into a single cell list, removing duplicate
cells if necessary. The T-BON then collapses the children,
making their parent a leaf node and assigning it the merged
list. This process continues in a bottom-up manner until all
nodes contain a number of cells greater than or equal to the
threshold value. Finally, the process writes the condensed
tree and lists to disk, using less storage space than the full-
resolution decomposition.

3.5 Out-of-Core Algorithms
Systems with limited memory can perform isosurface
extraction using an out-of-core technique. These algorithms
swap data between disk and memory more efficiently than
the virtual memory system, allowing the user to visualize
data sets larger than main memory. We examine two
related out-of-core algorithms based on the T-BON data
structure. Both make use of dynamic data structures that
resemble a hardware cache. These structures can store a
user-defined number of node or data bricks during
traversal. A cache 'Tine" in this structure contains memory
for a single brick, a 'Valid" bit, and a number indicating the

time of last access to the brick. The out-of-core algorithms
must clear all valid bits when the time value of the
isosurface query changes since the T-BON does not utilize
temporal coherence. Both algorithms use the time of last
access and a least recently used (LRU) scheme to determine
which brick to replace when the cache fills.

The first and most flexible out-of-core algorithm uses
two of these dynamic structures, one for node bricks and

one for data bricks. To use the least amount of memory, this
algorithm uses a depth-first search traversal of the tree. A
preprocess reorders node bricks, originally packed in a
breadth-first manner, into a depth-first pattern and stores
the reordered bricks to disk. An iterative depth-first
traversal uses a stack to keep track of which node bricks
reside in memory. The data brick cache must contain space
for a minimum of eight bricks since a cell along a brick
boundary may reference points in eight neighboring bricks.
To avoid rereading bricks already in memory, the list of
data bricks updates the LRU fields of any resident brick
required by the current node before selecting a brick to
replace.

The second out-of-core algorithm performs better than
the algorithm above, at the expense of a higher memory
requirement. This method initially allocates space for one
full BONO and reads nodes from disk as in the basic in-core
algorithm. However, this technique uses a dynamic cache
structure for the data bricks. Since the memory required to
store the data dominates the memory required for the tree,
this technique still presents substantial storage savings. The
user can still tune the memory usage by altering the size of
the dynamic data structure, although to a lesser extent than
in the first algorithm. This methods offers higher perfor­
mance because it accesses the node and data files sequen­
tially, as opposed to the random access required by the first
method. This capitalizes on the I/O system design, which
optimizes for sequential access, and therefore minimizes
latency due to disk head movement.

4 R esults

The T-BON algorithm was tested using a number of
computational fluid dynamics (CFD) simulation data sets.

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

SUTTON AND HANSEN: ACCELERATED ISOSURFACE EXTRACTION IN TIME-VARYING FIELDS 103

(a) (b)

Fig. 5. Isosurfaces from test data sets, (a) Depicts an isosurface from the RAGE simulation, showing the bubbles formed by Rayleigh-Taylor
instability, (b) Shows an isosurface from the Jet Shockwave simulation, demonstrating the instabilities in a supersonic jet.

The original Rage data set contains 512 x 512 x 512 points

per time step and represents a simulation of the Rayleigh-

Taylor hydrodynamic instability, where two fluids of
different densities mix. Each data point contains a single

floating-point value representing the density at that grid

point. Fig. 5a shows a sample isosurface from this data set.

The label "Rage512" designates the original data set, while

"Ragel28" represents a subsampled version of the data,

containing 128 x 128 x 128 points per time step, or a

sampling of every fourth point in each dimension from

the Rage512 data set. The jet shockwave data set, labeled

"Jet256," contains 256 x 256 x 256 points per time step, each
corresponding to a one-byte unsigned character value. This

data set simulates the Kelvin-Helmholz instability in a

supersonic jet. Fig. 5b displays a sample isosurface from this

data set. The jet shockwave data set and all versions of the
Rage data set use rectilinear grids to implicitly denote

positions of the data points in space.
The Impinging Jet data set represents a jet simulation

using three curvilinear grids, totaling 877,568 data points

per time step. The Torso data set represents an electrical

simulation of a human torso using an unstructured grid.

This data set contains 168,706 points and 1,081,280 tetra­
hedral cells.

Results in this section represent two types of experi­

ments. The first tests the dynamic behavior of the T-BON

data structure by holding the isovalue constant and varying

the time value. This corresponds to observing the change in
an isosurface of interest over time. The T-BON optimizes for

this behavior. The second experiment type holds the time

value constant and varies the isovalue. This corresponds to
searching for a surface of interest and effectively tests the

behavior of the algorithm on a static data set. All
experiments ran on a single dedicated processor of an SGI

Origin 2000 (32 250MHz R10000 processors) with 8GB of
memory.

Many of the results below display values for "speedup."

These values use a pure BONO approach for comparison.
Experimental comparisons [22] show that the branch-on-

need octree is the best known geometric acceleration

technique for three-dimensional static data sets. Since it
demonstrates good performance and memory behavior and

provides the basis for the T-BON algorithm, this technique

represents the fairest comparison for time-varying data sets.

The three-dimensional BONO algorithm performs isosur­

face extraction in time-varying fields by reading all nodes

and all data into memory whenever the time value in the

isosurface query changes. When the three-dimensional

BONO method receives two successive isosurface queries

with the same time value but different isovalues, it does not

reread the data for the given time step, but simply begins

isosurface extraction using the data resident in memory. In

contrast, the T-BON algorithm resolves two queries with

the same time value by incrementally reading the additional

nodes and data needed to construct the isosurface.

4.1 Bricking Results
Table 1 shows results from the Rage512 data set using the

basic T-BON algorithm, the algorithm using node bricking,

and the algorithm using both node and data bricking. This

table shows the best, average, and worst case per query

speedups, averaged over eight representative isovalues and

five time steps. Times for the basic algorithm (the "No

Bricking" section) are not identical to those given in [9]—a

cleaner implementation has improved the average and

TABLE 1
Results for a Dynamic Data Set—Rage512

No Bricking

Min Average Max

speedup 3.51 3.80 4.43

triangles 4,822,484 4,342,715 5,062,684

% nodes read 7.32 6.70 7.59

% data read 12.09 11.13 12.09

Node Bricking

Min Average Max

speedup 3.32 6.14 7.21

triangles 4,777,764 4,342,715 5,003,372

% nodes read 32.63 31.35 32.95

% data read 11.72 11.13 12.50

Node and Data Bricking

Min Average Max

speedup 4.85 6.62 7.56

triangles 4,777,764 4,342,715 5,003,372

% nodes read 32.63 31.15 32.95

% data read 13.91 13.37 14.61

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

104 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 6, NO. 2, APRIL-JUNE 2000

TABLE 2
Results for a Dynamic Data Set—Jet256

No Bricking

Min Average Max

speedup 3.41 8.26 10.85

triangles 365,672 179,785 104,636

% nodes read 4.40 2.32 1.50

% data read 21.12 9.92 4.05

Node Bricking

Min Average Max

speedup 7.80 23.06 32.70

triangles 368,078 179,785 513,484

% nodes read 30.93 17.53 38.45

% data read 20.43 9.92 26.22

Node and Data Bricking

Min Average Max

speedup 7.98 23.82 34.25

triangles 365,672 179,785 513,484

% nodes read 30.93 17.53 38.45

% data read 9.42 5.47 12.26

worst case speedups for both data sets. Table 2 shows
results for similar experiments on the Jet256 data set,
averaged over eight representative isovalues and ten time
steps. Tables 1 and 2 also show the percentages of nodes
and data read in the best, average, and worst cases, along
with the number of triangles constructed in each case.

These tables show large speedups over the BONO
algorithm. The T-BON's lower I/O latency produces a
factor of 3.8 improvement (average case) in the Rage512
data set and an 8.3 times speedup for the Jet256 data set.
The BONO algorithm must read in large amounts of
unnecessary data before constructing an isosurface, while,

TABLE 3
Results for a Static Data Set—Rage512

No Bricking

Min Average Max

speedup 0.80 1.07 3.73

triangles 4,017,388 4,342,715 3,992,268

% nodes read 6.40 1.00 0.18

% data read 10.86 1.54 0.00

Node Bricking

Min Average Max

speedup 0.97 1.31 4.64

triangles 5,062,684 4,342,715 3,992,268

% nodes read 24.56 3.00 0.15

% data read 12.09 1.86 0.00

Node and Data Bricking

Min Average Max

speedup 1.07 1.56 6.18

triangles 5,062,684 4,342,715 3,992,268

% nodes read 32.90 4.08 0.064

% data read 14.19 2.55 0.078

TABLE 4
Results for a Static Data Set—Jet256

No Bricking

Min Average Max

speedup 0.58 1.43 10.12

triangles 320,236 179,785 104,636

% nodes read 0.63 0.49 0.063

% data read 0.00 1.35 0.049

Node Bricking

Min Average Max

speedup 0.95 3.08 28.92

triangles 106,890 179,785 102,000

% nodes read 0.00 3.86 0.00

% data read 0.00 1.45 0.00

Node and Data Bricking

Min Average Max

speedup 0.90 3.02 28.92

triangles 107,614 179,785 105,420

% nodes read 0.043 2.58 0.085

% data read 0.16 1.20 0.34

even in the worst case of minimum speedup, the T-BON
reads in less than 10 percent of the nodes and less than a
third of the data for both data sets.

By better exploiting the design of the I/O system,
bricking further improves performance. Bricking only the
nodes produces a large increase in speedup—average case
speedups increase by factors of 1.6 and 2.8 for the Rage512
and Jet256 data sets, respectively. In the worst case, node
bricking may slow the algorithm because of the extra
computation (shown in Table 1 under "Node Bricking").
Bricking both nodes and data results in further small
improvements and can lead to large improvements in the
worst cases. For example, the worst case speedup for the
Rage512 data set improves by 38 percent over the basic
algorithm by using node and data bricking.

Although the T-BON data structure optimizes for
dynamic isovalue queries, it must also perform well for
static queries to be useful. Tables 3 and 4 show the results
for this static behavior for the Rage512 and Jet256 data sets.
These experiments use the same isovalues and time steps as
those in Tables 1 and 2, but hold the time value constant
and vary the isovalue. These results show that, although the
basic T-BON can perform much better than the pure BONO
(best case speedups of 3.73 and 10.12), in the worst case it
performs half as well. While the BONO reads all nodes and
data from disk once per time step, the basic T-BON
algorithm must continually access the disk as the isovalue
changes, incrementally bringing additional nodes and data
into memory. Eventually, all nodes and data will reside in
memory and the performance of the T-BON algorithm will
converge to that of the BONO. This demonstrates the major
shortcoming of the previously published T-BON algorithm.
By not fully exploiting the I/O system, performance on
static data sets can suffer.

Tables 3 and 4 show that node bricking, which
demonstrates much better I/O behavior, again results in

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

SUTTON AND HANSEN: ACCELERATED ISOSURFACE EXTRACTION IN TIME-VARYING FIELDS

TABLE 5
Results for the Curvilinear Impinging Jet Data Set

Dynamic data set
Min Average Max

speedup 1.36 3.05 4.71
triangles 136,100 109,277 51,601

% nodes read 60.86 51.06 29.67
% data read 61.86 52.08 30.79

Static data set
speedup 1.05 1.32 1.91

triangles 135,673 109,277 54,348
% nodes read 0.072 0.083 0.0021

% data read 11.63 12.51 1.85

large performance improvements. As in the dynamic case,
these tables show that the algorithm reads more nodes from
disk since not all nodes in a brick span the isovalue.
However, this block read improves performance signifi­
cantly over the base algorithm since it better exploits the
I/O system design. Node bricking improves average
performance by a factor of 1.2 in the Rage512 data set and
by a factor of 2.2 in the Jet256 data set. Bricking both nodes
and data causes the T-BON to perform better in the worst
case (speedup factor of 1.07) than the BONO algorithm for
the Rage512 data set, but the addition of more computation
decreases the performance by 5.6 percent in the Jet256 data
set. However, the T-BON algorithm performs only around
5 percent worse than the BONO when using node bricking.
This represents a significant improvement over the 42 per­
cent difference of the basic algorithm and shows that, with
the addition of bricking, the T-BON algorithm almost never
performs worse than the BONO implementation.

4.2 Curvilinear and Unstructured Grid Results
Experiments performed on the curvilinear T-BON imple­
mentation used the Impinging Jet data set with 11 isovalues
and 10 time steps. Table 5 shows the overall behavior for
both the static and dynamic cases using node and data
bricking. The isosurfaces in this data set occupy large
portions of the volume, requiring the algorithm to read
approximately half the data for the average query. This
accounts for the lower speedups compared to the same
technique in the Rage512 and Jet256 data sets. However,
node and data bricking again ensure that the T-BON
algorithm never performs worse than the curvilinear BONO
technique.

The Torso data set contains only a single time step,
making a fair comparative performance experiment im­
possible. However, experiments that test the adaptive
subdivision algorithm show the efficacy of this technique.
The preprocess initially subdivides the volume to a
resolution of 150 x 64 x 150, then adaptively collapses
nodes until all nodes contain at least Threshold cells. A
value of zero for Threshold causes the algorithm to use the
full resolution subdivision. Table 6 shows total execution
times for the single time step using 35 isovalues. This table
shows that the largest improvement occurs when Threshold
changes from 0 to 1. This corresponds to collapsing empty

105

TABLE 6
Adaptive Subdivision Results for the Torso Data Set

Threshold # nodes # subvolumes Execution time
0 206,456 180,000 7.48
1 157,616 137,637 7.12
2 156,616 136,765 7.23
3 155,896 136,138 7.38
4 154,908 135,278 7.16
5 153,868 134,373 7.21

10 149,584 130,638 7.36
20 139,920 122,222 7.22
30 123,906 108,244 7.28
50 102,398 89,469 7.37
100 56,068 49,011 7.50

regions of the volume, but maintaining those portions of the
tree that contain at least one cell. As Threshold increases,
performance slowly degrades as the linked lists of cells at
each node increase in size, causing the algorithm to visit
more cells that do not contain portions of the isosurface.
Storage requirements for the tree shrink as Threshold
increases, a manifestation of the storage/performance
trade-off inherent in isosurface acceleration techniques.
Simply collapsing the empty regions by setting Threshold to
1 provides the best combination of storage space and
performance.

4.3 Out-of-Core Results
Experiments on the more flexible out-of-core algorithm
described in Section 3.5 used the dynamic Jet256 and
Ragel28 data sets. The tests queried the T-BON data
structure with four isovalues and five time steps for each
data set. Results from varying the sizes of the dynamic data
structures are shown in Table 7. By using dynamic data
structures, this algorithm can perform isosurface extraction
on data sets much larger than its memory footprint. By
using less than 1 percent of the memory required to store
the data set, the T-BON-based out-of-core algorithm can
extract isosurfaces in a reasonable amount of time. For
better performance using this design, the size of the data
brick cache must be kept small because the triangle
construction method accesses it so frequently. The cache
tags are searched linearly to find the correct brick, so a large
cache requires a linearly higher average search time.

TABLE 7
Results from the First Out-of-Core Algorithm

Jet256 (Data size: 16.8MB)
Memory Used (MB) Execution Time (s)

T-BON 47 0.25

Out-of-Core 0.12-8.52 7.07 - 8.55

Ragel28 (Data size: 8.4MB)
Memory Used (MB) Execution Time (s)

T-BON 16 0.51
Out-of-Core 0.15-8.4 1.84-4.90

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

106 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL 6, NO. 2, APRIL-JUNE 2000

TABLE 8
Results from the Second Out-of-Core Algorithm

Jet256 (Data size: 16.8MB)

Memory Used (MB) Execution Time (s)

T-BON 47 0.25

Out-of-Core 19.5 0.41

Ragel28 (Data size: 8.4MB)

Memory Used (MB) Execution Time (s)

T-BON 16 0.51

Out-of-Core 5.2 0.78

Experiments on the second out-of-core algorithm de­
scribed in Section 3.5 used the same data sets and queries as
the first. The T-BON algorithm reads node bricks into a
static structure and reads data bricks into a dynamic cache
structure. Table 8 shows results for this algorithm using the
smallest data brick cache size. This algorithm performs
better because of better I/O utilization, decreasing the
memory requirement by 59 percent for the Jet256 data set
while increasing the execution time by only 64 percent, as
opposed to the much higher execution time of the first
algorithm. For the Rage 128 data set, memory usage is
decreased by 68 percent while execution time increases by
only 58 percent.

These two algorithms provide limited memory systems
with the ability to perform isosurface extraction on large,
time-varying data sets with reasonable performance. By
adjusting the parameters of these two algorithms, users can
choose a suitable compromise between storage space and
performance based on system configurations.

5 C o n c l u s io n s a n d Fu tu re W o r k

The Temporal Branch-on-Need Octree (T-BON) accelerates
isosurface extraction in time-varying fields by maintaining a
low memory profile and minimizing the effects of the I/O
bottleneck. By transferring only those portions of the tree
and data necessary to construct the current isosurface, the
T-BON data structure delivers high performance and
significant speedups over a static algorithm.

The T-BON algorithm quantifies the acceleration possi­
ble by using a series of three-dimensional data structures
and selective disk transfers, without exploiting the temporal
locality of the isosurfaces. It can perform isosurface
extraction on most of the grid types in common usage,
including rectilinear, curvilinear, and unstructured. The
T-BON algorithm can also use out-of-core techniques to
perform isosurface extraction on systems with limited
memory.

Several directions for future work exist. Performing
comparisons between the T-BON algorithm and other time-
varying algorithms, such as the Temporal Hierarchical
Index Tree [21] and the four-dimensional field technique
proposed by Weigle and Banks [20], would quantify the
benefits of utilizing temporal coherence versus using low
memory overhead and selective disk transfers. Combining
the best attributes of the T-BON and temporal coherence
algorithms might improve performance further for dynamic

data sets. The T-BON data structure does not currently
utilize temporal coherence, but does not preclude its
inclusion. For example, a combination of the T-BON and
Temporal Hierarchical Index Tree data structures could
capture temporal coherence while providing lower memory
and I/O overhead. Instead of constructing an ISSUE data
structure at each node of the tree, this algorithm could
substitute a T-BON data structure, allowing it to reduce the
impact of the 1/O bottleneck.

The technique of selective disk transfers could apply to
geometric data structures other than the branch-on-need
octree. For example, Parker et al. [25] use a shallow
hierarchy, where each node has a large number of children
(much more than eight). A T-BON implementation using
this data structure could improve performance for some
data sets since it could more easily ignore large areas of the
volume that do not intersect the isosurface.

Investigating additional out-of-core techniques could
result in better performance for low-memory systems.
Incorporating the meta-brick strategy of Chiang et al. [7],
[8] and developing better dynamic data structures could
benefit this technique.

A c k n o w l e d g m e n t s

This work was supported in part by the C-SAFE DOE ASCI
Alliance Center, the DOE Advanced Visualization Technol­
ogy Center (AVTC), and a grant from Lawrence Livermore
National Laboratory. The Rage data set is courtesy of Robert
Weaver (Los Alamos National Laboratory). The Jet Shock­
wave data set was obtained from the Advanced Visualiza­
tion Technology Center data repository at Argonne
National Laboratory (http://avtc-data.mcs.anl.gov/). The
Impinging Jet data set was obtained from the NASA archive
(http://www.nas.nasa.gov/Software/DataSets/) and the
Torso data set is courtesy of Ruth Klepfer from the
University of Utah.

R e f e r e n c e s

[1] W.E. Lorensen, "Marching through the Visible Man," Proc.

Visualization 1995, pp. 368-373, Oct. 1995.
[2] U. Tiede, T. Schiemann, and K.H. Hohne, "H igh Quality

Rendering of Attributed Volume Data," Proc. Visualization 1998,

pp. 255-262, Oct. 1998.

[3] J.M. Favre, "Towards Efficient Visualization Support for Single­
Block and Multi-Block Datasets," Proc. Visualization 1997, pp. 423­

428, Oct. 1997.
[4] P.D. Heermann, "Production Visualization for the ASCI One

Teraflops Machine," Proc. Visualization 1998, pp. 459-462, Oct.

1998.

[5] M. Lanzagorta, M.V. Krai, J.E. Swan II, G. Spanos, R. Rosenberg,

and E. Kuo, "Three-Dimensional Visualization of Microstruc­

tures," Proc. Visualization 1998, pp. 487-490, Oct. 1998.

[6] C.R.F. Monks, P.J. Crossno, G. Davidson, C. Pavlakos, A. Kupfer,

C. Silva, and B. Wylie, "Three Dimensional Visualization of

Proteins in Cellular Interactions," Proc. Visualization 1996, pp. 363­

366, Oct. 1996.
[7] Y. Chiang and C.T. Silva, " I /O Optimal Isosurface Extraction,"

Proc. Visualization 1997, pp. 293-300, Oct. 1997.
[8] Y. Chiang, C.T. Silva, and W.J. Schroeder, "Interactive Out-of-Core

Isosurface Extraction," Proc. Visualization 1998, pp. 167-174, Oct.

1998.

[9] P. Sutton and C.D. Hansen, "Isosurface Extraction in Time-

Varying Fields Using a Temporal Branch-on-Need Tree (T-BON),"

Proc. Visualization 1999, pp. 147-153, Oct. 1999.

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

http://avtc-data.mcs.anl.gov/
http://www.nas.nasa.gov/Software/DataSets/

SUTTON AND HANSEN: ACCELERATED ISOSURFACE EXTRACTION IN TIME-VARYING FIELDS 107

[10] W.E. Lorensen and H.E. Cline, "Marching Cubes: A High
Resolution 315 Surface Construction Algorithm," Computer Gra­
phics, vol. 21, pp. 163-169, July 1987.

[11] G. Wyvill, C. McPheeters, and B. Wyvill, "Data Structure for Soft
Objects," The Visual Computer, vol. 2, no. 4, pp. 227-234, 1986.

[12] J. Wilhelms and A. van Gelder, "Octrees for Faster Isosurface
Generation," ACM Trans. Graphics, vol. 11, no. 3, pp. 201-227, July
1992.

[13] Y. Livnat, H. Shen, and CR. Johnson, "A Near Optimal Isosurface
Extraction Algorithm Using the Span Space," IEEE Trans.
Visualization and Computer Graphics, vol. 2, no. 1, pp. 73-84, Mar.
1996.

[14] H. Shen, C.D. Hansen, Y. Livnat, and C.R. Johnson, "Isosurfacing
in Span Space with Utmost Efficiency (Issue)," Proc. Visualization
1996, pp. 287-294, Oct. 1996.

[15] I5. Cignoni, I5. Marino, C. Montani, E. Puppo, and R. Scopigno,
"Speeding Up Isosurface Extraction Using Interval Trees," IEEE
Trans. Visualization and Computer Graphics, vol. 3, no. 2, pp. 158­
170, Apr.-June 1997.

[16] T. Itoh and K. Koyamada, "Automatic Isosurface Propagation
Using an Extrema Graph and Sorted Boundary Cell Lists," IEEE
Trans. Visualization and Computer Graphics, vol. 1, no. 4, pp. 319­
327, Dec. 1995.

[17] T. Itoh, Y. Yamaguchi, and K. Koyamada, "Volume Thinning for
Automatic Isosurface Propagation," Proc. Visualization 1996,
pp. 303-310, Oct. 1996.

[18] C.L. Bajaj, V. Pascucci, and D.R. Schikore, "Fast Isocontouring for
Improved Interactivity," Proc. 1996 Sump. Volume Visualization,
pp. 39-46, Oct. 1996.

[19] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and 15.
Schikore, "Contour Trees and Small Seed Sets for Isosurface
Traversal," Proc. 13th Ann. Sump. Computational Geometry, pp. 212­
220, Tune 1997.

[20] C. Weigle and DC Banks, "Extracting Iso-Valued Features in
4-Dimensional Scalar Fields," Proc. 1998 Symp. Volume Visualiza­
tion, pp. 103-110, Oct. 1998.

[21] H. Shen, "Isosurface Extraction in Time-Varying Fields Using a
Temporal Hierarchical Index Tree," Proc. Visualization 1998,
pp. 159-164, Oct. 1998.

[22] P.M. Sutton, C.D. Hansen, H. Shen, and 15. Schikore, "A Case
Study of Isosurface Extraction Algorithm Performance," Proc. Joint
F,urographics-lEEE TCVG Symp. Visualization, to appear, May 2000.

[23] M. Cox and D. Ellsworth, "Application-Controlled Demand
Paging for Out-of-Core Visualization," Proc. Visualization 1997,
pp. 235-244, Oct. 1997.

[24] G. Sakas, M. Grimm, and A. Savopoulos, "Optimized Maximum
Intensity Projection (Mil5)," Proc. Eurographics Rendering Workshop
1995, Tune 1995.

[25] S. Parker, P. Shirley, Y. Livnat, C. Hansen, and P. Sloan,
"Interactive Ray Tracing for Isosurface Rendering," Proc. Visua­
lization 1998, pp. 233-238, Oct. 1998.

[26] S. Parker, M. Parker, Y. Livnat, I5. Sloan, C. Hansen, and I5. Shirley,
"Interactive Ray Tracing for Volume Visualization," IEEE Trans.
Visualization and Computer Gravities, vol. 5, no. 3, pp. 238-250 Tuly-
Aug. 1999.

Philip M, Sutton recently joined the visualiza­
tion group at Lawrence Livermore National
Laboratory, after completing the requirements
for an MS in computer science at the University
of Utah. His interests include large-scale time-
varying scientific visualization, parallel visualiza­
tion algorithms, and computer graphics. He
received a BS in engineering and applied
science from Caltech in 1997.

Charles D, Hansen received a BS in computer
science from Memphis State University in 1981
and a PhD in computer science from the
University of Utah in 1987. He is an associate
professor of computer science at the University
of Utah. From 1997 to 1999, he was a research
associate professor in computer science at the
University of Utah. From 1989 to 1997, he was a
technical staff member in the Advanced Com­
puting Laboratory (ACL) located at Los Alamos

National Laboratory, where he formed and directed the visualization
efforts in the ACL. He was a Bourse de Chateaubriand postdoctoral
fellow at INRIA, Rocquencourt, France, in 1987 and 1988. His research
interests include large-scale scientific visualization, parallel computer
graphics algorithms, massively parallel processing, 3D shape repre­
sentation, and computer vision. He is a member of the IEEE and the
IEEE Computer Society.

Authorized licensed use limited to: The University of Utah. Downloaded on August 28, 2009 at 18:12 from IEEE Xplore. Restrictions apply.

