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Abstract— For large time-varying data sets, memory and disk limitations can lower the performace of visualization applications.
Algorithms and data structures must be explicitly designed to handle these data sets in order to achieve more interactive rates. The 
Temporal Branch-on-Need Octree (T-BON) extends the three-dimensional branch-on-need octree for time-varying isosurface 
extraction. This data structure minimizes the impact of the I/O bottleneck by reading from disk only those portions of the search 
structure and data necessary to construct the current isosurface. By performing a minimum of I/O and exploiting the hierarchical 
memory found in modern CPUs, the T-BON algorithm achieves high performance isosurface extraction in time-varying fields. This 
paper extends earlier work on the T-BON data structure by including techniques for better memory utilization, out-of-core isosurface 
extraction, and support for nonrectilinear grids. Results from testing the T-BON algorithm on large data sets show that its performance 
is similar to that of the three-dimensional branch-on-need octree for static data sets while providing substantial advantages for time- 
varying fields.

Index Terms— Isosurface, time-dependent scalar field visualization, multiresolution methods, octree, bricking, unstructured grid 
visualization, out-of-core visualization.
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1 In t ro d u c t io n

R esearchers in many science and engineering fields rely 
on insight gained from instruments and simulations 

that produce discrete samplings of three-dimensional scalar 
fields. Visualization methods allow for more efficient data 
analysis and can guide researchers to new insights. Isosur­
face extraction is an important technique for visualizing 
three-dimensional scalar fields. By exposing contours of 
constant value, isosurfaces provide a mechanism for 
understanding the structure of the scalar field. These 
contours isolate surfaces of interest, focusing attention on 
important features in the data, such as material boundaries 
and shock waves, while suppressing extraneous informa­
tion. Several disciplines, including medicine [1], [2], 
computational fluid dynamics (CFD) [3], [4], and molecular 
dynamics [5], [6], have used this method effectively.

Understanding the dynamic behavior of a data set 

requires the visualization of its changes with respect to 

time. However, most high performance computers possess 

neither the disk space nor the amount of memory necessary 

to store and manipulate large1 time-varying data sets 

efficiently. While visualization research has begun to 

address this problem [7], [8], data sets from both computa­

tional and measurement sources have continued to increase 

in size, putting pressure on storage systems. Simulations 

that compute and store multiple time steps further increase

1. Our test data sets range in size from 8.4MB to 537MB per time step.
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the demand for storage space, commonly producing data 
sets on the order of one half to one gigabyte per time step 
with hundreds of time steps. With this vast amount of data 
to process, visualization programs may become slow and 
unwieldy, consuming large amounts of time reading multi­
ple files from disk and performing swapping due to limited 
physical memory. Without a high degree of interactivity, 
the user loses the visual cues necessary to understand the 
structure of the field, reducing the effectiveness of the 
visualization.

We present an algorithm for isosurface extraction in 
time-varying fields that minimizes the impact of the I/O  
bottleneck. By reading only those portions of the data and 
search structure necessary to construct the current isosur­

face, the Temporal Branch-on-Need Octree (T-BON) makes 
efficient use of both I/O  and memory, greatly accelerating 
isosurface extraction for large dynamic data sets. This work 
builds on a previous paper [9] and extends that work by 
presenting methods for improving memory behavior, 
isosurface extraction in curvilinear and unstructured grids, 
and out-of-core isosurface extraction.

In the following sections, we first discuss related work 
and then present our algorithm for extracting isosurfaces in 

time-varying fields. We introduce several improvements on 
the previously published T-BON algorithm which provide 
better performance and better generality. We then provide 
experimental results, demonstrating the performance of the 
algorithm on several large time-varying data sets. Finally, 
we draw conclusions and suggest directions for future 
work.

2 P r e v io u s  W o r k

A number of different techniques have been introduced to 
increase the efficiency of isosurface extraction over the
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Fig. 1. Two-dimensional example of the branch-on-need algorithm (from 
Wilhelms and van Gelder [12]). The branch-on-need strategy produces 
fewer nodes when the dimensions of the data are not powers of two.

linear search proposed in the Marching Cubes algorithm 

[10], [11]. Wilhelms and van Gelder [12] describe the 
branch-on-need octree (BONO), a space-efficient variation 

on the traditional octree. Their data structure partitions 
the cells in the data based on their geometric positions. 

Extreme values (minimums and maximums) are propa­
gated up the tree during construction such that only 

those nodes that span the isosurface, i.e., those with 

minvalue < isovalue < maxvalue, are traversed during the 

extraction phase.
The branch-on-need octree resembles the even-subdivi- 

sion octree, but partitions the cells more efficiently when the 

dimensions of the volume are not powers of two. Fig. 1 
compares the strategies in two dimensions. The even- 
subdivision strategy divides the volume in each direction at 

each level of the tree, while the branch-on-need strategy 
partitions the volume such that the 'Tower" subdivision in 

each direction covers the largest possible power of two cells. 

This results in fewer nodes, allowing the tree to be traversed 

more efficiently.
Recent methods have focused on partitioning the cells 

based on their extreme values. Livnat et al. [13] introduced 
the span space, where each cell is represented as a point in 

2D space. The point's x-coordinate is defined by the cell's 

minimum value and the y-coordinate by the maximum 
value. The NOISE algorithm described in [13] uses a kd-tree 

to organize the points. Shen et al. [14] use a lattice 

subdivision of span space in their ISSUE algorithm. This 

simplifies and accelerates the search phase of the extraction, 

as only one element in the lattice requires a full min-max 

search of its cells. This acceleration comes at the cost of a 

less efficient memory footprint than the kd-tree.
The Interval Tree technique introduced by Cignoni et al.

[15] guarantees worst-case optimal efficiency. Cells, repre­
sented by the intervals defined by their extreme values, are 
grouped at the nodes of a balanced binary tree. For any

isovalue query, at most one branch from a node is 
traversed.

An alternate technique is to propagate the isosurface 
from a set of seed cells. Itoh et al. [16], [17], Bajaj et al. [18], 
and van Kreveld et al. [19] construct seed sets that contain 
at least one cell per connected component of each isosur­
face. The isosurface construction begins at a seed and is 
traced through neighboring cells using adjacency and 
intersection information.

An algorithm to improve I/O  performance and allow 
efficient isosurface extraction on data sets larger than 
physical memory was described by Chiang et al. [7], [8]. 
An interval tree is built on disk using a two-level hierarchy. 
Cells are first grouped into meta-cells and a meta-interval 
defined. These meta-intervals are then composed into an 
interval tree, which is divided into disk block-sized groups 
to allow efficient transfer from disk.

Weigle and Banks [20] consider time-varying scalar data 
as a four-dimensional field. They construct an "isovolume" 
for each isovalue, representing the volume swept by the 
isosurface over time. Imposing a time constraint on the 
iso volume yields an instantaneous surface. This method 
elegantly captures temporal coherence, but its high execu­
tion time makes it impractical for large data sets.

Shen [21] proposed the Temporal Hierarchical Index 
Tree to perform isosurface extraction on time-varying data 
sets. This method classifies the data cells by their extreme 
values over time. Temporal variation of cells is defined 
using lattice subdivision, extending the ISSUE algorithm. 
Nodes in the tree contain cells with differing temporal 
variation and are paged in from disk as needed to extract an 
isosurface at a particular time step. At every time step, an 
ISSUE search [14] is performed at each node. In order to 
accelerate the full min-max search, an Interval Tree is 
constructed in those lattice elements that may require such 
a search. The Temporal Hierarchical Index Tree shows 
significant improvement in storage requirements over 
construction of a span-space search structure which treats 
each time step as an independent data set. It achieves this 
while retaining an efficient search strategy for isosurface 
extraction.

Shen's work clearly accelerates the search for isosurfaces 
in time dependent data. However, at each time step, the 
entire data domain (time step) is loaded into physical 
memory. The isosurface extraction process potentially 
needs to access all of the time steps in a time-varying data 
set. If all time steps do not simultaneously fit into physical 
memory, I/O  can become a bottle neck. As noted by 
Wilhelms and Van Gelder [12], for a particular iso value, 
large portions of the data not containing the isovalue need 
not be examined. Similarly, these same large portions of the 
data need not be read from disk when constructing an 
isosurface. For time dependent data sets, this savings can be 
significant and has led us to develop a method aimed at 
exploiting this observation.

3 Te m p o r a l  B r a n c h -o n -Nee d  O c t r e e  (T-BON)

To provide high interactivity for isosurface extraction, an 
algorithm's underlying data structure must use memory 
and I/O  efficiently. Experimental comparisons [22] between
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a number of three-dimensional isosurface algorithms show 
that the branch-on-need octree provides an efficient 
structure for isosurface extraction. The BONO has low 
memory overhead and exploits spatial coherence and 
memory layout to yield low execution times, making it 
ideal for performing isosurface extraction in time-varying 
fields.

Both time-varying algorithms discussed in Section 2 [20], 
[21] attempt to capture the temporal coherence of the 
isosurface. They reason that, given one isosurface at a given 
time step, a high probability exists that that isosurface will 
pass through the same neighborhood on the next time step. 
Data structures that utilize temporal coherence could 
predict where in the hierarchy to search on the next time 
step. However, in order to construct triangles, an isosurface 
extraction algorithm must interpolate along cell edges, 
using the data values at each vertex. Therefore, the data for 
the next time step must reside in memory before interpola­
tion and isosurface construction can begin. If all time steps 
cannot fit in memory, the algorithm must fetch the data 
from disk, causing a bottleneck in the I/O  system. The 
design of the T-BON data structure attempts to accelerate 
isosurface extraction by minimizing this bottleneck rather 
than by exploiting temporal coherence in the isosurface.

Sections 3.1 and 3.2 review the construction and traversal 
of the T-BON data structure, as presented in [9]. The 
original method reduces I/O  latency, but does not fully 
exploit the I/O  system design. Section 3.3 describes a 
method for further reducing the effect of the I/O  bottleneck. 
Section 3.4 presents techniques for extending the T-BON 
data structure to include curvilinear and unstructured 
grids, generalizing the underlying octree structure, which 
was designed for rectilinear grids. Finally, Section 3.5 
presents two out-of-core algorithms based on the T-BON 
data structure, allowing systems with limited memory to 
perform isosurface extraction on data sets larger than main 
memory.

3.1 Construction
A preprocessing step builds a branch-on-need octree for 
each time step in the data and stores it to disk in two 
sections. The information common to all trees is saved only 
once. This includes the general infrastructure of the tree, 
such as branching factors and pointers to children or 
siblings. This information can be created knowing only the 
size of the data in each dimension. Extreme values for the 
nodes are computed and stored separately, as these values 
can vary at each time step and the T-BON does not utilize 
temporal coherence.

3.2 Basic Search Algorithm
Before any isovalue queries, the tree infrastructure is read 
from disk and recreated in memory. Queries are then 
accepted in the form (timestep, isovalue). The algorithm 
initially fetches the root node of the octree corresponding to 
timestep from disk. If the extreme values stored in the root 
node span isovalue, the algorithm next fetches all children 
of the root node from disk. This process, shown in Fig. 2, 
repeats recursively until reaching the leaf nodes. If the 
extreme values in a leaf node span isovalue, the algorithm 
computes the disk blocks containing data points needed by

(i) (ii) (iii) 
.(C)

Fig. 2. The T-BON recursively brings the children of nodes that span the 
isovalue (indicated by shading) into memory (a, b). At the leaf level, the 
algorithm finds the data points needed for the isosurface (black blocks), 
then reads blocks containing such points (c(i), c(iii)) from disk, skipping 
blocks that contain only unnecessary data (c(ii)). A second pass through 
the tree constructs the isosurface using only the data in memory.

that leaf and inserts those blocks into a list. Once the 
algorithm has been brought into memory all nodes required 
to construct the current isosurface, it traverses the block list 
and reads the required data blocks sequentially from disk. 
This block read capitalizes on the fact that I/O  systems 
optimize for such large-scale transfers. Some extraneous 
data transfers may occur, as the algorithm may not require 
all points in the block, but randomly accessing the data file 
to read strictly the required points would incur large 
penalties as the disk head moves between tracks and waits 
for the data to rotate into the proper position. Once all the 
required data points reside in memory, the algorithm 
traverses the tree a second time to construct the isosurface.

Since the T-BON data structure does not exploit temporal 
coherence, changing timestep requires the algorithm to 
repeat the above process for the new isosurface query. If the 
user performs two sequential queries to the same timestep, 
the process changes to avoid rereading identical data. The 
T-BON data structure maintains two lists, identifying nodes 
and disk blocks currently in memory. By referencing these 
lists, the algorithm only needs to transfer differential nodes 
and data blocks from disk. Purging these lists when 
timestep changes invalidates all data in memory, causing 
the algorithm to revert to its default behavior of reading all 
required nodes and data from disk. Interpolation and 
triangle construction times dominate the additional list 
processing and incremental I/O , so execution time gen­
erally equates with performing a search with the tree and 
data already in memory.

3.3 Bricking
Although the basic T-BON algorithm exploits the I/O  
system design by reading blocks of data, it demonstrates 
poor I/O  performance when transferring individual nodes. 
To circumvent this bottleneck, the algorithm can transfer a 
number of nodes at once. The T-BON method packs nodes 
into disk blocks in order to read a number of nodes at once.
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(a) (b)

Fig. 3. Isosurfaces from curvilinear and unstructured data sets, (a) Shows an isosurface from the Impinging Jet computational fluid dynamics 
simulation, using a circular curvilinear grid, (b) Depicts an isosurface from an electrical simulation of a human torso, performed on an unstructured 
grid.

This strategy, called node bricking, was used by Chiang 

et al. [8] in their out-of-core algorithm to achieve better I/O  

performance. They pack D  binary tree nodes into one disk 
block-sized node with branching factor (maximum number 

of children) of order 0(B ). They compose these block-sized 

nodes into a meta-tree, which the algorithm traverses to 
extract an isosurface. The T-BON algorithm transfers bricks 

of nodes from disk during the first pass tree traversal, but 

simplifies the algorithm in [8] by not constructing a second 
tree with these meta-nodes. By maintaining and traversing 

the original tree, the T-BON algorithm minimizes the 
number of extraneous nodes read. Additionally, traversal 

time represents a minute fraction of total execution time, so 
traversing the original tree, as opposed to a meta-tree, 

effectively incurs no penalty.

While block reads optimize for I/O  system performance, 

the octree traversal's cache performance may suffer because 

of the data layout. The octree subdivides the spatial volume 
in three dimensions, in contrast to the one-dimensional data 
stream obtained from reading blocks. Reordering the data 

to optimize for octree traversal can improve both memory 

and I/O  performance. Cox and Ellsworth [23] show that 

cubed storage, which provides better locality of reference 
than one-dimensional flat storage, greatly improves out-of­

core visualization performance. The T-BON algorithm 

utilizes this technique, also called data bricking, by 
implementing the formula for cubed storage given in Sakas 

et al. [24] and used by Parker et al. [25]. As in the node 

bricking technique, the T-BON data structure does not use 
the meta-cell method as presented in [25], again simplifying 

the calculations and minimizing extraneous data transfers. 

For some data sets, especially where isosurfaces lie against 
the grain of the array order, cubed storage may allow the 

T-BON algorithm to transfer fewer bricks from disk. In such 

data sets, a single brick of cubed data would contain more 

required data points than a single flat block.

3.4 Additional Grid Types
The Branch-On-Need Octree design relies on the regularity 
of the underlying grid. However, many simulations and 

measurements use nonrectilinear grids to create data sets. 
To extract isosurfaces from a larger number of data sets, the

T-BON data structure must take into account these different 

types of grids. Fig. 3 shows sample isosurfaces from two 

simulation data sets that use different grid types. Fig. 3a 

depicts an isosurface from the Impinging Jet curvilinear 

data set. Curvilinear data sets strongly resemble rectilinear 

grids—they define vertex positions explicitly in space, as 

opposed to the implicit positions in rectilinear grids. 

Additionally, many curvilinear data sets contain multiple 

"zones," or grids, any of which may contain portions of the 

isosurface. The T-BON algorithm handles these grids in 

much the same way as rectilinear grids. The data structure 

stores vertex positions along with the tree structure and 

reads these points from disk before execution begins. 

Interpolation calculations reference these points rather then 

computing them from implicit points.
Fig. 3b shows an isosurface from an electrical simulation 

of a human torso. This simulation uses an unstructured 

grid, where tetrahedral cells replace the hexahedral cells of 

a regular grid. The lack of spatial hierarchy in these cells 

makes using a BONO-based algorithm difficult. A collection 

of hexahedral cells can combine to form a larger hexahe­

dron, but tetrahedral cells may not share this property. 

Parker et al. [26] construct a spatial hierarchy over 

unstructured data by computing a maximum resolution 

based on the number of tetrahedra in the volume. They 

rectilinearly subdivide the volume to this resolution, where 

each leaf node maintains a linked list of the tetrahedra it 

contains. The T-BON algorithm takes advantage of its 

inherent octree structure to adaptively subdivide the 

volume, producing fewer nodes than a full subdivision in 

regions of sparse tetrahedra. Fig. 4 demonstrates this 

strategy in two dimensions. By producing fewer nodes, 
this method uses less memory and disk space.

The adaptive subdivision algorithm preprocesses the cell 

data using a modified version of the algorithm presented by 

Parker et al. [26]. This preprocess fully subdivides the 

volume to a certain resolution, then performs intersection 

tests on each tetrahedral cell to determine which 

subvolumes contain portions of that cell. Each subvolume 

maintains a list of all cells contained by that subvolume. 

Finally, the preprocess concatenates these lists into a single
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Fig. 4. Comparing adaptive refinement to full-resolution subdivision, (a) Shows the full-resolution scheme of Parker et al. [26]. Using the octree 
structure of the T-BON to perform adaptive refinement, as shown in (b), results in fewer nodes in sparse and empty regions.

array, which it writes to disk. A second preprocessing 
program constructs a BONO over the sub volumes. The 
T-BON preprocessing algorithm then traverses the BONO 
using a user-specified threshold. If all children of a node 
contain fewer cells than this threshold, the children merge 
their linked lists into a single cell list, removing duplicate 
cells if necessary. The T-BON then collapses the children, 
making their parent a leaf node and assigning it the merged 
list. This process continues in a bottom-up manner until all 
nodes contain a number of cells greater than or equal to the 
threshold value. Finally, the process writes the condensed 
tree and lists to disk, using less storage space than the full- 
resolution decomposition.

3.5 Out-of-Core Algorithms
Systems with limited memory can perform isosurface 
extraction using an out-of-core technique. These algorithms 
swap data between disk and memory more efficiently than 
the virtual memory system, allowing the user to visualize 
data sets larger than main memory. We examine two 
related out-of-core algorithms based on the T-BON data 
structure. Both make use of dynamic data structures that 
resemble a hardware cache. These structures can store a 
user-defined number of node or data bricks during 
traversal. A cache 'Tine" in this structure contains memory 
for a single brick, a 'Valid" bit, and a number indicating the 

time of last access to the brick. The out-of-core algorithms 
must clear all valid bits when the time value of the 
isosurface query changes since the T-BON does not utilize 
temporal coherence. Both algorithms use the time of last 
access and a least recently used (LRU) scheme to determine 
which brick to replace when the cache fills.

The first and most flexible out-of-core algorithm uses 
two of these dynamic structures, one for node bricks and

one for data bricks. To use the least amount of memory, this 
algorithm uses a depth-first search traversal of the tree. A 
preprocess reorders node bricks, originally packed in a 
breadth-first manner, into a depth-first pattern and stores 
the reordered bricks to disk. An iterative depth-first 
traversal uses a stack to keep track of which node bricks 
reside in memory. The data brick cache must contain space 
for a minimum of eight bricks since a cell along a brick 
boundary may reference points in eight neighboring bricks. 
To avoid rereading bricks already in memory, the list of 
data bricks updates the LRU fields of any resident brick 
required by the current node before selecting a brick to 
replace.

The second out-of-core algorithm performs better than 
the algorithm above, at the expense of a higher memory 
requirement. This method initially allocates space for one 
full BONO and reads nodes from disk as in the basic in-core 
algorithm. However, this technique uses a dynamic cache 
structure for the data bricks. Since the memory required to 
store the data dominates the memory required for the tree, 
this technique still presents substantial storage savings. The 
user can still tune the memory usage by altering the size of 
the dynamic data structure, although to a lesser extent than 
in the first algorithm. This methods offers higher perfor­
mance because it accesses the node and data files sequen­
tially, as opposed to the random access required by the first 
method. This capitalizes on the I/O  system design, which 
optimizes for sequential access, and therefore minimizes 
latency due to disk head movement.

4 R esults

The T-BON algorithm was tested using a number of 
computational fluid dynamics (CFD) simulation data sets.
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(a) (b)

Fig. 5. Isosurfaces from test data sets, (a) Depicts an isosurface from the RAGE simulation, showing the bubbles formed by Rayleigh-Taylor 
instability, (b) Shows an isosurface from the Jet Shockwave simulation, demonstrating the instabilities in a supersonic jet.

The original Rage data set contains 512 x 512 x 512 points 

per time step and represents a simulation of the Rayleigh- 

Taylor hydrodynamic instability, where two fluids of 
different densities mix. Each data point contains a single 

floating-point value representing the density at that grid 

point. Fig. 5a shows a sample isosurface from this data set. 

The label "Rage512" designates the original data set, while 

"Ragel28" represents a subsampled version of the data, 

containing 128 x 128 x 128 points per time step, or a 

sampling of every fourth point in each dimension from 

the Rage512 data set. The jet shockwave data set, labeled 

"Jet256," contains 256 x 256 x 256 points per time step, each 
corresponding to a one-byte unsigned character value. This 

data set simulates the Kelvin-Helmholz instability in a 

supersonic jet. Fig. 5b displays a sample isosurface from this 

data set. The jet shockwave data set and all versions of the 
Rage data set use rectilinear grids to implicitly denote 

positions of the data points in space.
The Impinging Jet data set represents a jet simulation 

using three curvilinear grids, totaling 877,568 data points 

per time step. The Torso data set represents an electrical 

simulation of a human torso using an unstructured grid. 

This data set contains 168,706 points and 1,081,280 tetra­
hedral cells.

Results in this section represent two types of experi­

ments. The first tests the dynamic behavior of the T-BON 

data structure by holding the isovalue constant and varying 

the time value. This corresponds to observing the change in 
an isosurface of interest over time. The T-BON optimizes for 

this behavior. The second experiment type holds the time 

value constant and varies the isovalue. This corresponds to 
searching for a surface of interest and effectively tests the 

behavior of the algorithm on a static data set. All 
experiments ran on a single dedicated processor of an SGI 

Origin 2000 (32 250MHz R10000 processors) with 8GB of 
memory.

Many of the results below display values for "speedup." 

These values use a pure BONO approach for comparison. 
Experimental comparisons [22] show that the branch-on- 

need octree is the best known geometric acceleration 

technique for three-dimensional static data sets. Since it 
demonstrates good performance and memory behavior and 

provides the basis for the T-BON algorithm, this technique 

represents the fairest comparison for time-varying data sets. 

The three-dimensional BONO algorithm performs isosur­

face extraction in time-varying fields by reading all nodes 

and all data into memory whenever the time value in the 

isosurface query changes. When the three-dimensional 

BONO method receives two successive isosurface queries 

with the same time value but different isovalues, it does not 

reread the data for the given time step, but simply begins 

isosurface extraction using the data resident in memory. In 

contrast, the T-BON algorithm resolves two queries with 

the same time value by incrementally reading the additional 

nodes and data needed to construct the isosurface.

4.1 Bricking Results
Table 1 shows results from the Rage512 data set using the 

basic T-BON algorithm, the algorithm using node bricking, 

and the algorithm using both node and data bricking. This 

table shows the best, average, and worst case per query 

speedups, averaged over eight representative isovalues and 

five time steps. Times for the basic algorithm (the "No 

Bricking" section) are not identical to those given in [9]—a 

cleaner implementation has improved the average and

TABLE 1
Results for a Dynamic Data Set—Rage512

No Bricking

Min Average Max

speedup 3.51 3.80 4.43

# triangles 4,822,484 4,342,715 5,062,684

% nodes read 7.32 6.70 7.59

% data read 12.09 11.13 12.09

Node Bricking

Min Average Max

speedup 3.32 6.14 7.21

# triangles 4,777,764 4,342,715 5,003,372

% nodes read 32.63 31.35 32.95

% data read 11.72 11.13 12.50

Node and Data Bricking

Min Average Max

speedup 4.85 6.62 7.56

# triangles 4,777,764 4,342,715 5,003,372

% nodes read 32.63 31.15 32.95

% data read 13.91 13.37 14.61
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TABLE 2
Results for a Dynamic Data Set—Jet256

No Bricking

Min Average Max

speedup 3.41 8.26 10.85

# triangles 365,672 179,785 104,636

% nodes read 4.40 2.32 1.50

% data read 21.12 9.92 4.05

Node Bricking

Min Average Max

speedup 7.80 23.06 32.70

# triangles 368,078 179,785 513,484

% nodes read 30.93 17.53 38.45

% data read 20.43 9.92 26.22

Node and Data Bricking

Min Average Max

speedup 7.98 23.82 34.25

# triangles 365,672 179,785 513,484

% nodes read 30.93 17.53 38.45

% data read 9.42 5.47 12.26

worst case speedups for both data sets. Table 2 shows 
results for similar experiments on the Jet256 data set, 
averaged over eight representative isovalues and ten time 
steps. Tables 1 and 2 also show the percentages of nodes 
and data read in the best, average, and worst cases, along 
with the number of triangles constructed in each case.

These tables show large speedups over the BONO 
algorithm. The T-BON's lower I/O  latency produces a 
factor of 3.8 improvement (average case) in the Rage512 
data set and an 8.3 times speedup for the Jet256 data set. 
The BONO algorithm must read in large amounts of 
unnecessary data before constructing an isosurface, while,

TABLE 3
Results for a Static Data Set—Rage512

No Bricking

Min Average Max

speedup 0.80 1.07 3.73

# triangles 4,017,388 4,342,715 3,992,268

% nodes read 6.40 1.00 0.18

% data read 10.86 1.54 0.00

Node Bricking

Min Average Max

speedup 0.97 1.31 4.64

# triangles 5,062,684 4,342,715 3,992,268

% nodes read 24.56 3.00 0.15

% data read 12.09 1.86 0.00

Node and Data Bricking

Min Average Max

speedup 1.07 1.56 6.18

# triangles 5,062,684 4,342,715 3,992,268

% nodes read 32.90 4.08 0.064

% data read 14.19 2.55 0.078

TABLE 4
Results for a Static Data Set—Jet256

No Bricking

Min Average Max

speedup 0.58 1.43 10.12

# triangles 320,236 179,785 104,636

% nodes read 0.63 0.49 0.063

% data read 0.00 1.35 0.049

Node Bricking

Min Average Max

speedup 0.95 3.08 28.92

# triangles 106,890 179,785 102,000

% nodes read 0.00 3.86 0.00

% data read 0.00 1.45 0.00

Node and Data Bricking

Min Average Max

speedup 0.90 3.02 28.92

# triangles 107,614 179,785 105,420

% nodes read 0.043 2.58 0.085

% data read 0.16 1.20 0.34

even in the worst case of minimum speedup, the T-BON 
reads in less than 10 percent of the nodes and less than a 
third of the data for both data sets.

By better exploiting the design of the I/O  system, 
bricking further improves performance. Bricking only the 
nodes produces a large increase in speedup—average case 
speedups increase by factors of 1.6 and 2.8 for the Rage512 
and Jet256 data sets, respectively. In the worst case, node 
bricking may slow the algorithm because of the extra 
computation (shown in Table 1 under "Node Bricking"). 
Bricking both nodes and data results in further small 
improvements and can lead to large improvements in the 
worst cases. For example, the worst case speedup for the 
Rage512 data set improves by 38 percent over the basic 
algorithm by using node and data bricking.

Although the T-BON data structure optimizes for 
dynamic isovalue queries, it must also perform well for 
static queries to be useful. Tables 3 and 4 show the results 
for this static behavior for the Rage512 and Jet256 data sets. 
These experiments use the same isovalues and time steps as 
those in Tables 1 and 2, but hold the time value constant 
and vary the isovalue. These results show that, although the 
basic T-BON can perform much better than the pure BONO 
(best case speedups of 3.73 and 10.12), in the worst case it 
performs half as well. While the BONO reads all nodes and 
data from disk once per time step, the basic T-BON 
algorithm must continually access the disk as the isovalue 
changes, incrementally bringing additional nodes and data 
into memory. Eventually, all nodes and data will reside in 
memory and the performance of the T-BON algorithm will 
converge to that of the BONO. This demonstrates the major 
shortcoming of the previously published T-BON algorithm. 
By not fully exploiting the I/O  system, performance on 
static data sets can suffer.

Tables 3 and 4 show that node bricking, which 
demonstrates much better I/O  behavior, again results in
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TABLE 5
Results for the Curvilinear Impinging Jet Data Set

Dynamic data set
Min Average Max

speedup 1.36 3.05 4.71
# triangles 136,100 109,277 51,601

% nodes read 60.86 51.06 29.67
% data read 61.86 52.08 30.79

Static data set
speedup 1.05 1.32 1.91

# triangles 135,673 109,277 54,348
% nodes read 0.072 0.083 0.0021

% data read 11.63 12.51 1.85

large performance improvements. As in the dynamic case, 
these tables show that the algorithm reads more nodes from 
disk since not all nodes in a brick span the isovalue. 
However, this block read improves performance signifi­
cantly over the base algorithm since it better exploits the 
I/O  system design. Node bricking improves average 
performance by a factor of 1.2 in the Rage512 data set and 
by a factor of 2.2 in the Jet256 data set. Bricking both nodes 
and data causes the T-BON to perform better in the worst 
case (speedup factor of 1.07) than the BONO algorithm for 
the Rage512 data set, but the addition of more computation 
decreases the performance by 5.6 percent in the Jet256 data 
set. However, the T-BON algorithm performs only around 
5 percent worse than the BONO when using node bricking. 
This represents a significant improvement over the 42 per­
cent difference of the basic algorithm and shows that, with 
the addition of bricking, the T-BON algorithm almost never 
performs worse than the BONO implementation.

4.2 Curvilinear and Unstructured Grid Results
Experiments performed on the curvilinear T-BON imple­
mentation used the Impinging Jet data set with 11 isovalues 
and 10 time steps. Table 5 shows the overall behavior for 
both the static and dynamic cases using node and data 
bricking. The isosurfaces in this data set occupy large 
portions of the volume, requiring the algorithm to read 
approximately half the data for the average query. This 
accounts for the lower speedups compared to the same 
technique in the Rage512 and Jet256 data sets. However, 
node and data bricking again ensure that the T-BON 
algorithm never performs worse than the curvilinear BONO 
technique.

The Torso data set contains only a single time step, 
making a fair comparative performance experiment im­
possible. However, experiments that test the adaptive 
subdivision algorithm show the efficacy of this technique. 
The preprocess initially subdivides the volume to a 
resolution of 150 x 64 x 150, then adaptively collapses 
nodes until all nodes contain at least Threshold cells. A 
value of zero for Threshold causes the algorithm to use the 
full resolution subdivision. Table 6 shows total execution 
times for the single time step using 35 isovalues. This table 
shows that the largest improvement occurs when Threshold 
changes from 0 to 1. This corresponds to collapsing empty
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TABLE 6
Adaptive Subdivision Results for the Torso Data Set

Threshold # nodes # subvolumes Execution time
0 206,456 180,000 7.48
1 157,616 137,637 7.12
2 156,616 136,765 7.23
3 155,896 136,138 7.38
4 154,908 135,278 7.16
5 153,868 134,373 7.21

10 149,584 130,638 7.36
20 139,920 122,222 7.22
30 123,906 108,244 7.28
50 102,398 89,469 7.37
100 56,068 49,011 7.50

regions of the volume, but maintaining those portions of the 
tree that contain at least one cell. As Threshold increases, 
performance slowly degrades as the linked lists of cells at 
each node increase in size, causing the algorithm to visit 
more cells that do not contain portions of the isosurface. 
Storage requirements for the tree shrink as Threshold 
increases, a manifestation of the storage/performance 
trade-off inherent in isosurface acceleration techniques. 
Simply collapsing the empty regions by setting Threshold to 
1 provides the best combination of storage space and 
performance.

4.3 Out-of-Core Results
Experiments on the more flexible out-of-core algorithm 
described in Section 3.5 used the dynamic Jet256 and 
Ragel28 data sets. The tests queried the T-BON data 
structure with four isovalues and five time steps for each 
data set. Results from varying the sizes of the dynamic data 
structures are shown in Table 7. By using dynamic data 
structures, this algorithm can perform isosurface extraction 
on data sets much larger than its memory footprint. By 
using less than 1 percent of the memory required to store 
the data set, the T-BON-based out-of-core algorithm can 
extract isosurfaces in a reasonable amount of time. For 
better performance using this design, the size of the data 
brick cache must be kept small because the triangle 
construction method accesses it so frequently. The cache 
tags are searched linearly to find the correct brick, so a large 
cache requires a linearly higher average search time.

TABLE 7
Results from the First Out-of-Core Algorithm

Jet256 (Data size: 16.8MB)
Memory Used (MB) Execution Time (s)

T-BON 47 0.25

Out-of-Core 0.12-8.52 7.07 - 8.55

Ragel28 (Data size: 8.4MB)
Memory Used (MB) Execution Time (s)

T-BON 16 0.51
Out-of-Core 0.15-8.4 1.84-4.90
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TABLE 8
Results from the Second Out-of-Core Algorithm

Jet256 (Data size: 16.8MB)

Memory Used (MB) Execution Time (s)

T-BON 47 0.25

Out-of-Core 19.5 0.41

Ragel28 (Data size: 8.4MB)

Memory Used (MB) Execution Time (s)

T-BON 16 0.51

Out-of-Core 5.2 0.78

Experiments on the second out-of-core algorithm de­
scribed in Section 3.5 used the same data sets and queries as 
the first. The T-BON algorithm reads node bricks into a 
static structure and reads data bricks into a dynamic cache 
structure. Table 8 shows results for this algorithm using the 
smallest data brick cache size. This algorithm performs 
better because of better I/O  utilization, decreasing the 
memory requirement by 59 percent for the Jet256 data set 
while increasing the execution time by only 64 percent, as 
opposed to the much higher execution time of the first 
algorithm. For the Rage 128 data set, memory usage is 
decreased by 68 percent while execution time increases by 
only 58 percent.

These two algorithms provide limited memory systems 
with the ability to perform isosurface extraction on large, 
time-varying data sets with reasonable performance. By 
adjusting the parameters of these two algorithms, users can 
choose a suitable compromise between storage space and 
performance based on system configurations.

5 C o n c l u s io n s  a n d  Fu tu re  W o r k

The Temporal Branch-on-Need Octree (T-BON) accelerates 
isosurface extraction in time-varying fields by maintaining a 
low memory profile and minimizing the effects of the I/O  
bottleneck. By transferring only those portions of the tree 
and data necessary to construct the current isosurface, the 
T-BON data structure delivers high performance and 
significant speedups over a static algorithm.

The T-BON algorithm quantifies the acceleration possi­
ble by using a series of three-dimensional data structures 
and selective disk transfers, without exploiting the temporal 
locality of the isosurfaces. It can perform isosurface 
extraction on most of the grid types in common usage, 
including rectilinear, curvilinear, and unstructured. The 
T-BON algorithm can also use out-of-core techniques to 
perform isosurface extraction on systems with limited 
memory.

Several directions for future work exist. Performing 
comparisons between the T-BON algorithm and other time- 
varying algorithms, such as the Temporal Hierarchical 
Index Tree [21] and the four-dimensional field technique 
proposed by Weigle and Banks [20], would quantify the 
benefits of utilizing temporal coherence versus using low 
memory overhead and selective disk transfers. Combining 
the best attributes of the T-BON and temporal coherence 
algorithms might improve performance further for dynamic

data sets. The T-BON data structure does not currently 
utilize temporal coherence, but does not preclude its 
inclusion. For example, a combination of the T-BON and 
Temporal Hierarchical Index Tree data structures could 
capture temporal coherence while providing lower memory 
and I/O  overhead. Instead of constructing an ISSUE data 
structure at each node of the tree, this algorithm could 
substitute a T-BON data structure, allowing it to reduce the 
impact of the 1/O bottleneck.

The technique of selective disk transfers could apply to 
geometric data structures other than the branch-on-need 
octree. For example, Parker et al. [25] use a shallow 
hierarchy, where each node has a large number of children 
(much more than eight). A T-BON implementation using 
this data structure could improve performance for some 
data sets since it could more easily ignore large areas of the 
volume that do not intersect the isosurface.

Investigating additional out-of-core techniques could 
result in better performance for low-memory systems. 
Incorporating the meta-brick strategy of Chiang et al. [7], 
[8] and developing better dynamic data structures could 
benefit this technique.
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