5,445 research outputs found

    Relational visual cluster validity

    Get PDF
    The assessment of cluster validity plays a very important role in cluster analysis. Most commonly used cluster validity methods are based on statistical hypothesis testing or finding the best clustering scheme by computing a number of different cluster validity indices. A number of visual methods of cluster validity have been produced to display directly the validity of clusters by mapping data into two- or three-dimensional space. However, these methods may lose too much information to correctly estimate the results of clustering algorithms. Although the visual cluster validity (VCV) method of Hathaway and Bezdek can successfully solve this problem, it can only be applied for object data, i.e. feature measurements. There are very few validity methods that can be used to analyze the validity of data where only a similarity or dissimilarity relation exists – relational data. To tackle this problem, this paper presents a relational visual cluster validity (RVCV) method to assess the validity of clustering relational data. This is done by combining the results of the non-Euclidean relational fuzzy c-means (NERFCM) algorithm with a modification of the VCV method to produce a visual representation of cluster validity. RVCV can cluster complete and incomplete relational data and adds to the visual cluster validity theory. Numeric examples using synthetic and real data are presente

    A scalable multi-core architecture with heterogeneous memory structures for Dynamic Neuromorphic Asynchronous Processors (DYNAPs)

    Full text link
    Neuromorphic computing systems comprise networks of neurons that use asynchronous events for both computation and communication. This type of representation offers several advantages in terms of bandwidth and power consumption in neuromorphic electronic systems. However, managing the traffic of asynchronous events in large scale systems is a daunting task, both in terms of circuit complexity and memory requirements. Here we present a novel routing methodology that employs both hierarchical and mesh routing strategies and combines heterogeneous memory structures for minimizing both memory requirements and latency, while maximizing programming flexibility to support a wide range of event-based neural network architectures, through parameter configuration. We validated the proposed scheme in a prototype multi-core neuromorphic processor chip that employs hybrid analog/digital circuits for emulating synapse and neuron dynamics together with asynchronous digital circuits for managing the address-event traffic. We present a theoretical analysis of the proposed connectivity scheme, describe the methods and circuits used to implement such scheme, and characterize the prototype chip. Finally, we demonstrate the use of the neuromorphic processor with a convolutional neural network for the real-time classification of visual symbols being flashed to a dynamic vision sensor (DVS) at high speed.Comment: 17 pages, 14 figure

    DesignSense: A Visual Analytics Interface for Navigating Generated Design Spaces

    Get PDF
    Generative Design (GD) produces many design alternatives and promises novel and performant solutions to architectural design problems. The success of GD rests on the ability to navigate the generated alternatives in a way that is unhindered by their number and in a manner that reflects design judgment, with its quantitative and qualitative dimensions. I address this challenge by critically analyzing the literature on design space navigation (DSN) tools through a set of iteratively developed lenses. The lenses are informed by domain experts\u27 feedback and behavioural studies on design navigation under choice-overload conditions. The lessons from the analysis shaped DesignSense, which is a DSN tool that relies on visual analytics techniques for selecting, inspecting, clustering and grouping alternatives. Furthermore, I present case studies of navigating realistic GD datasets from architecture and game design. Finally, I conduct a formative focus group evaluation with design professionals that shows the tool\u27s potential and highlights future directions

    Mining Extremes through Fuzzy Clustering

    Get PDF
    Archetypes are extreme points that synthesize data representing "pure" individual types. Archetypes are assigned by the most discriminating features of data points, and are almost always useful in applications when one is interested in extremes and not on commonalities. Recent applications include talent analysis in sports and science, fraud detection, profiling of users and products in recommendation systems, climate extremes, as well as other machine learning applications. The furthest-sum Archetypal Analysis (FS-AA) (Mørup and Hansen, 2012) and the Fuzzy Clustering with Proportional Membership (FCPM) (Nascimento, 2005) propose distinct models to find clusters with extreme prototypes. Even though the FCPM model does not impose its prototypes to lie in the convex hull of data, it belongs to the framework of data recovery from clustering (Mirkin, 2005), a powerful property for unsupervised cluster analysis. The baseline version of FCPM, FCPM-0, provides central prototypes whereas its smooth version, FCPM-2 provides extreme prototypes as AA archetypes. The comparative study between FS-AA and FCPM algorithms conducted in this dissertation covers the following aspects. First, the analysis of FS-AA on data recovery from clustering using a collection of 100 data sets of diverse dimensionalities, generated with a proper data generator (FCPM-DG) as well as 14 real world data. Second, testing the robustness of the clustering algorithms in the presence of outliers, with the peculiar behaviour of FCPM-0 on removing the proper number of prototypes from data. Third, a collection of five popular fuzzy validation indices are explored on accessing the quality of clustering results. Forth, the algorithms undergo a study to evaluate how different initializations affect their convergence as well as the quality of the clustering partitions. The Iterative Anomalous Pattern (IAP) algorithm allows to improve the convergence of FCPM algorithm as well as to fine-tune the level of resolution to look at clustering results, which is an advantage from FS-AA. Proper visualization functionalities for FS-AA and FCPM support the easy interpretation of the clustering results

    Fuzzy cluster validation using the partition negentropy criterion

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04277-5_24Proceedings of the 19th International Conference, Limassol, Cyprus, September 14-17, 2009We introduce the Partition Negentropy Criterion (PNC) for cluster validation. It is a cluster validity index that rewards the average normality of the clusters, measured by means of the negentropy, and penalizes the overlap, measured by the partition entropy. The PNC is aimed at finding well separated clusters whose shape is approximately Gaussian. We use the new index to validate fuzzy partitions in a set of synthetic clustering problems, and compare the results to those obtained by the AIC, BIC and ICL criteria. The partitions are obtained by fitting a Gaussian Mixture Model to the data using the EM algorithm. We show that, when the real clusters are normally distributed, all the criteria are able to correctly assess the number of components, with AIC and BIC allowing a higher cluster overlap. However, when the real cluster distributions are not Gaussian (i.e. the distribution assumed by the mixture model) the PNC outperforms the other indices, being able to correctly evaluate the number of clusters while the other criteria (specially AIC and BIC) tend to overestimate it.This work has been partially supported with funds from MEC BFU2006-07902/BFI, CAM S-SEM-0255-2006 and CAM/UAM project CCG08-UAM/TIC-442

    Cluster validity in clustering methods

    Get PDF

    Robust unsupervised small area change detection from SAR imagery using deep learning

    Get PDF
    Small area change detection using synthetic aperture radar (SAR) imagery is a highly challenging task, due to speckle noise and imbalance between classes (changed and unchanged). In this paper, a robust unsupervised approach is proposed for small area change detection using deep learning techniques. First, a multi-scale superpixel reconstruction method is developed to generate a difference image (DI), which can suppress the speckle noise effectively and enhance edges by exploiting local, spatially homogeneous information. Second, a two-stage centre-constrained fuzzy c-means clustering algorithm is proposed to divide the pixels of the DI into changed, unchanged and intermediate classes with a parallel clustering strategy. Image patches belonging to the first two classes are then constructed as pseudo-label training samples, and image patches of the intermediate class are treated as testing samples. Finally, a convolutional wavelet neural network (CWNN) is designed and trained to classify testing samples into changed or unchanged classes, coupled with a deep convolutional generative adversarial network (DCGAN) to increase the number of changed class within the pseudo-label training samples. Numerical experiments on four real SAR datasets demonstrate the validity and robustness of the proposed approach, achieving up to 99.61% accuracy for small area change detection
    • …
    corecore