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Abstract

Archetypes are extreme points that synthesize data representing "pure" individual types.

Archetypes are assigned by the most discriminating features of data points, and are almost

always useful in applications when one is interested in extremes and not on commonal-

ities. Recent applications include talent analysis in sports and science, fraud detection,

profiling of users and products in recommendation systems, climate extremes, as well as

other machine learning applications.

The furthest-sum Archetypal Analysis (FS-AA) (Mørup and Hansen, 2012) and the

Fuzzy Clustering with Proportional Membership (FCPM) (Nascimento, 2005) propose

distinct models to find clusters with extreme prototypes. Even though the FCPM model

does not impose its prototypes to lie in the convex hull of data, it belongs to the framework

of data recovery from clustering (Mirkin, 2005), a powerful property for unsupervised

cluster analysis. The baseline version of FCPM, FCPM-0, provides central prototypes

whereas its smooth version, FCPM-2 provides extreme prototypes as AA archetypes.

The comparative study between FS-AA and FCPM algorithms conducted in this dis-

sertation covers the following aspects. First, the analysis of FS-AA on data recovery from

clustering using a collection of 100 data sets of diverse dimensionalities, generated with

a proper data generator (FCPM-DG) as well as 14 real world data. Second, testing the

robustness of the clustering algorithms in the presence of outliers, with the peculiar be-

haviour of FCPM-0 on removing the proper number of prototypes from data. Third, a

collection of five popular fuzzy validation indices are explored on accessing the quality

of clustering results. Forth, the algorithms undergo a study to evaluate how different

initializations affect their convergence as well as the quality of the clustering partitions.

The Iterative Anomalous Pattern (IAP) algorithm allows to improve the convergence of

FCPM algorithm as well as to fine-tune the level of resolution to look at clustering results,

which is an advantage from FS-AA. Proper visualization functionalities for FS-AA and

FCPM support the easy interpretation of the clustering results.

Keywords: Archetypal analysis; Fuzzy proportional membership; Clustering data recov-

ery; Fuzzy data generator; Fuzzy validation indices.
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Resumo

Arquétipos são pontos extremos que sintetizam dados que representam tipos indivi-

duais “puros”. Arquétipos são constituídos pelas características mais descriminantes dos

atributos dos pontos, e são quase sempre uteis em aplicações onde o interesse está em

extremos e não em características gerais. Aplicações recentes onde este conceito tem sido

aplicado incluem analise de talento em desporto e ciência, detecção de fraude, descrição

de perfis de consumidores e produtos em sistemas de recomendação, eventos climáticos

extremos, entre outras aplicações de aprendizagem automática.

Tanto a soma mais distante da Análise de Arquétipos (FS-AA) (Mørup e Hansen, 2012)

como o Agrupamento Difuso com Pertença Difusa por Proporção (FCPM) (Nascimento,

2005) propõem modelos distintos para encontrar partições com protótipos extremos.

Apesar de o modelo do FCPM não impor aos seus protótipos que estejam na fronteira

do dados, ele pertence à abordagem de recuperação de dados das partições encontradas

(Mirkin, 2005), uma propriedade forte para analise não super-visionada de agrupamento

difuso. O modelo base do FCPM, o FCPM-0, encontra protótipos centrais enquanto que a

versão menos restringida, o FCPM-2, encontra protótipos extremos, como o AA.

O estudo comparativo entre os algoritmos FS-AA e FCPM realizados nesta disserta-

ção cobre os seguintes aspetos. Primeiro, a análise do FS-AA em recuperar os dados das

partições encontradas usando uma coleção de 100 conjuntos de dados de diversas dimen-

sionalidades, gerados através de um gerador de dados próprios (FCPM-DG) e com 14

conjuntos de dados do mundo real. Segundo, testar a robustez dos algoritmos na presença

de pontos atípicos, com o comportamento peculiar do FCPM-0 em remover o número

correto de protótipos do espaço dos dados. Terceiro, uma coleção de cinco índices de vali-

dação difusa populares são explorados para avaliar a qualidade das partições encontradas.

Quarto, os algoritmos são sujeitos a um estudo para avaliar como diferentes inicializações

afetam a sua convergência assim como a qualidade das partições encontradas. O algo-

ritmo Padrões Anômalos Iterativos não só permite melhorar a convergência do algoritmo

do FCPM, como também afinar o nível de resolução para observar as partições encontra-

das, o que é uma vantagem do FS-AA. Funcionalidades de visualização próprias para o

FS-AA e o FCPM suportam a fácil interpretação dos resultados.
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1
Introduction

1.1 Motivation

Throughout the history of Mankind, scientists have always tried to classify what sur-

rounds us with well-defined proprieties and clear boundaries. Here, an object, emotion,

propriety, either belonged to one class, or to another. From this classification, everything

was sorted in well-defined classes, and specific names were coined to address each one of

them.

However, the world that surround us is not as clear shaped as we would like it to be,

and the presence of randomness, and lack of clear classifications affects the distributions

in such organized groups.

From such uncertainty, the theory of Fuzzy sets was created by Zadeh, 1965 to accom-

modate these notions and deal with such imprecise and blurry frontiers. Now, problems

where the difficulty in classification is present, might not be credited to random variables,

but to the intrinsic nature of the problem, where a sharply defined criteria is absence

(Zadeh, 1965). These Fuzzy sets could be used in cluster analysis, or pattern-recognition

(Bellman et al., 1966).

The definition of c-partition space (Ruspini, 1969) followed, creating the foundations

for what would later be the first fuzzy clustering algorithm. This led to the creation of

the fuzzy ISODATA, by Dunn, 1973, that was later generalized by Bezdek, 1981, bringing

forth the first Fuzzy c-means (FCM). This algorithm assigns memberships values to each

individual in a data set, allowing it to be related to several groups. These groups are

represented by a single point, located in center of the group.

However, in some cases, it’s more interesting to find "pure types"instead of those cen-

tral representations. Types that can be seen as the origin of information, the individuals
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CHAPTER 1. INTRODUCTION

from which all other ones withdraw their characteristics, Archetypes. The Merriam-

Webster dictionary (Archetype, 2018) defines them as "the original pattern or model of

which all things of the same type are representations or copies". Such concept is rather

useful in many applications, as an "ideal type" can be interpreted as a model, or an ex-

treme of some environment.

Good examples of the usefulness of such types are medical environments, where a

data set contains several patients and the description of their illness symptoms. When

the archetypes of such data sets are found, it’s possible to describe the "true form" of the

illnesses present in such group. Here, diseases can be perfectly profiled, without being

"contaminated" with symptoms of other illness, as it usually happens when using "central

types".

The Mental Disorders data set is one of the best examples of a medical data set, to

understand the usefulness of archetypes (Nascimento, 2005). It contains 44 patients,

with 17 psychosomatic features describing 4 psychiatric disorders: depressed (D), maniac

(M), simple schizophrenic (Ss) and paranoid schizophrenic (Sp). Figure 1.1 contains

four archetypes found for this data set. The archetypes can then been seen as the "true

form" of the four psychiatric disorders, given the extreme features that each one contain,

Figure 1.1a.
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Figure 1.1: Demonstration of the usefulness of the archetypes with a data set of mental
disorders. The archetypes were found through the implementation provided in Mørup
and Hansen, 2012. On left, the percentile plot, showing the extreme values of the features
with a red line, for each archetype. On right, the mixture plot, with the data points plotted
according to their memberships, i.e., their distance to the archetypes. It’s also possible to
observe how the archetypes successfully identify the four mental disorders.

The concept of archetypes also allows for benchmarking, as, in this scenario, "ideal

types" are the individuals (real or not) from which all the others must be compared to.

Other applications such as sports, fraud detection, products recommendation systems,

and so on, have found an extraordinary usefulness in such concepts.

Despite the usefulness of such cluster analysis methods, they all have been dominated
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1.1. MOTIVATION

by learning from data rather than theoretical based instructions. Indeed, the clusters to

be retrieve from data not only depend on the data by itself, but also on the user’s goals

and on the degree of granularity one wants to analyse the grouping of data. To deeply un-

derstand the clustering structure present in data Mirkin, 2005 proposed a data-recovery

paradigm where the retrieved clusters must be treated as "ideals" representation of the

data. These representations could then be used for recovering the original data back from

its "ideal" format. Therefore, not only use the data for finding clusters, but also use the

clusters for recovering the original data.

This principle has been incorporated in fuzzy clustering by Nascimento, 2002 with the

model of Fuzzy Clustering with Proportional Membership (FCPM) for mining typological

structures from data. The fuzzy proportional membership extends the classical fuzzy

memberships since it’s involved in the reconstruction of the observations from the clusters.

The FCPM provides a family of clustering criteria, FCPM-m, with fuzziness parameter

(m = 0,1,2), leading to cluster structures with central prototypes (FCPM-0, FCPM-1),

closely matching the FCM, as well as cluster structures with extreme prototypes (FCPM-

2), close to the concept of archetypal types, found by the Archetypal Analysis (Cutler and

Breiman, 1994).

The greatest experimental contribution of Nascimento, 2002, was the creation of an

artificial data generator, based on the model of the FCPM, alongside a Matlab (MATLAB,

2015) based platform. This platform allows for experimentation, with the FCPM model,

using the data generator, a visualization tool and post-processing, with well-known clus-

tering indices.

Mørup and Hansen, 2012 proposed an effective AA algorithm, with a variant of the

projected gradient for the alternating optimization (AO) algorithm, which guarantees a

faster convergence. As in this implementation of the AA, the FCPM also uses a variant of

the project gradient method for the AO. As such, both algorithms need careful initializa-

tions. For the location of the seeds, Mørup and Hansen, 2012 proposed the Furthest-Sum

(FS) method to initialize the AA algorithm. The method finds c pre-defined data points,

that are furthest way from the centre of the data, to be used as seeds. This method re-

sembles the Iterative Anomalous Pattern (IAP), that showed good results when applied

to the problem of unsupervised segmentation of Sea Surface Temperature (SST) images

with the Fuzzy c-Means (Nascimento and Franco, 2009). For the FCPM, the problem of

initialization is address by running the algorithm several times, with pseudo-random

seeds.

Despite the theoretical and emerging areas of application where archetypal analysis

(AA) has shown success, it still lacks a systematic method to correctly validate the number

of archetypes to be used, as it still relies on the simplistic elbow method. Also, no study

has been conducted on the analysis of data recovery from its clusters, in particular, from

the archetypes.

Both algorithms also lack a depth study regarding their behaviour in the presence of

3



CHAPTER 1. INTRODUCTION

outliers. This is extremely important, as the archetypes are located in the convex hull of

the data, and the FCPM-2 has extreme prototypes.

1.2 Objectives

The main goal of this dissertation is four-fold:

1. To systematically analyse the data recovery properties of the archetypal analysis

algorithm;

2. To experimentally compare the FCPM with AA clustering using proper synthetic

generated data, as well as real-world data in the framework of the data recovery paradigm;

3. To develop an experimental validation protocol for AA, using a fusion strategy of

fuzzy validation indices, to overcome the simplistic existing analysis of AA validation, by

the elbow method;

4. To study the influence of different initializations in the clustering solutions pro-

vided by the algorithms.

1.3 Main Contributions

The main goal of this dissertation is to experimentally compare one version of Archetypal

Analysis, the Furthest-Sum Archetypal analysis (FS-AA) algorithm (Cutler and Breiman,

1994) with the Fuzzy Clustering with Proportional Membership (FCPM) (Nascimento,

2002). This way, the main contributions of the dissertation are:

1. To experimentally compare the FCPM with the Furthest-Sum Archetypal Analysis

(FS-AA) algorithm in the framework of data recovery. This goal is achieved using synthetic

data generated from different space dimensionalities with a proper data generator of the

FCPM model, the FCPM-DG. Also, a collection of diverse real-world data had been

applied;

2. To develop an experimental validation protocol for AA exploring five premier

fuzzy validation indices, to overcome the simplistic existing AA validation scheme with

the elbow method;

3. To analyse the robustness of the FS-AA and FCPM algorithms in the presence of

outliers;

4. To study the influence of different initialization strategies on the FS-AA and FCPM

algorithms respecting the quality of found partitions.

The first, second and third contributions lead to the creation of a paper, published

and presented in 19th International Conference on Intelligent Data Engineering and

Automated Learning, IDEAL 2019 (Mendes and Nascimento, 2018)
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1.4 Organization

This document is organized in 5 chapters, including this one.

Chapter 2 is dedicated to partitional soft clustering. It serves the purpose of intro-

ducing the algorithms that will be used throughout this work. The chapter starts by

introducing the FCM, proposed by Bezdek, 1981, that only finds "central types", and

walks towards an algorithm that only finds "pure types" (AA), introducing in the middle,

one that finds both of them (FCPM). For each model, its method is introduced, followed

by a reference to an implementation to solve its clustering criterion. Then, its main char-

acteristics are shown. Finally, a short review on the areas of application where the model

has found success.

At the end of the chapter, the three models are compared against each other, high-

lighting their main differences, and stressing the problems that all of them share.

In 3 chapter the focus is on the use of artificial data sets and on the generation of

such sets. Here, its underline the benefits and importance of using artificial data sets. By

presenting the problems that occur when a practitioner doesn’t use artificial data, and

the benefits when it does, it becomes clear why such data sets have an important role in

unsupervised learning. Data generators with cluster tendency for the algorithms used in

this work will then be introduced.

The 4 chapter starts by setting up the theoretical framework on the need of validation

indices in clustering. It then follows to the paradigm of data recovery, and on how to

assess it. Then, several validation indices are introduced, together with strategies on how

to join them and use them as one. In the end, some visualization techniques to inspect

fuzzy partitions and help in the evaluation of the results are introduced.

Chapter 5 presents the results of the experimental study and a discussion on the find-

ings. First, on the capability of the AA on recovering archetypes, using multidimensional

artificial data, generated with respect to the FCPM original model, and compared against

the FCPM. Then, the data is augmented with outliers, and the sensitivity of the algo-

rithms regarding the augmented data is tested. Third, the algorithms are methodically

studied with unsupervised validation fuzzy clustering indices, to evaluate the quality of

the found fuzzy partitions, regarding the number of clusters, with real data. In the end, a

study comparing how different initializations affect the clustering results, exploring the

Furthest Sum and the Iterative Anomalous Pattern (IAP). This comparison was extended

to include the Iterative Furthest Prototype (IFP) algorithm, a modification to the IAP.

Chapter 6 presents the conclusions and future work of this thesis.
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2
Partitional Soft Clustering

In this chapter, it’s explored the first Fuzzy c-Means and two other algorithms, with the

same fuzzy framework, that explore the notion of "pure types", the Fuzzy c-Means Via

Proportional Membership Model and the Archetypal Analysis. For each of the models

that will be presented, it will be given a description, followed by the implementation.

Then, its main characteristics and a review of the main applications.

In the end of the chapter, the 3 of them are compared against each other.

2.1 Fuzzy c-Means

The Fuzzy c-means (FCM) is introduced in this section and follows the definition of Bezdek,

1981.

2.1.1 Method

Given X = x1,x2, ...,xn, a data set, with p attributes, it’s possible to partition X into c

clusters, with c ∈ {2, ...,n − 1}, that represent a structure of X. The fuzzy partition space

is organized in a c × n matrix U = [uik], with uik i = 1, ..., c, k = 1, ...,n denoting the fuzzy

membership value of xk to the cth cluster. This matrix is called the fuzzy partition matrix

and satisfies the following constraints:

0 ≤ uik ≤ 1, f or all i = 1, ..., c, k = 1, ...,n, (2.1)

c∑
i=1

uik = 1, f or all k = 1, ...,n, (2.2)

0 <
n∑
k=1

uik < n, f or all i = 1, ..., c. (2.3)
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The first constraint (2.1) states that the membership values belongs to the interval

[0,1]. The second constraint (2.2) implies that the total membership of each entity, xk ,

is equal to one, i.e., their membership are exhaustive regarding the c clusters. Finally,

constraint (2.3) states that no cluster is empty.

Formally, findU = u1,u2, ...,un, the fuzzy membership matrix, and V = v1,v2, ...,vc, the

cluster prototypes, that minimize the square-error objective function clustering criterion:

Jm(U,V ,X) =
c∑
i=1

n∑
k=1

(uik)
md2(xk ,vi), (2.4)

where m ∈ ]1,∞) is a parameter which determines the degree of fuzziness of the resulting

clusters and d2(xk ,vi) is the Euclidean norm. There are several norms (Höppner et al.,

1999), but throughout this will only the Euclidean norm will be used, as experiments

with others is not in the scope of this work. One of the most famous way to minimize the

clustering criteria (2.4) is the Alternating Optimization Algorithm (AO) (Bezdek, 1981).

2.1.2 Algorithm

The problem of minimizing the clustering criteria (2.4) represents a non-linear optimiza-

tion problem that can be solved using a wide range of methods. In this work, as mentioned

before, the focus will be on the alternating optimization algorithm, as it is the most widely

used optimization method and the simplest one. Bezdek, 1981 used this method and the

implementation of Balasko et al., 2005 follows the same structure (Algorithm 1) and it’s

distributed in Matlab.

Algorithm 1 The Fuzzy c-means Algorithm
function FCM(X,c,m,epsilon) % c ∈ {2, ...,n− 1}, m > 1, ε > 0

Initialize U randomly.
repeat for l = 1,2, ...

Step 1 Compute the cluster prototypes, vi :

v
(l)
i =

∑n
k=1(u(l−1)

ik )mxk∑n
k=1(u(l−1)

ik )m
, 1 ≤ i ≤ c.

Step 2 Compute the distances:
||xk − v

(l)
i ||

2, 1 ≤ i ≤ c, 1 ≤ k ≤ n.

Step 3 Update the partition matrix:

u
(l)
ik =

1∑c
j=1

(
d2(xk ,vi)
d2(xk ,vj )

)2/(m−1)
, 1 ≤ i ≤ c, 1 ≤ k ≤ n.

until ||U (l) −U (l−1)|| < ε
end function
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2.1.3 Main characteristics

The choice of similarity (or dissimilarity) metric requires that the structure of data is

taken into consideration. For instance, using the Euclidean distance as a measure of

similarity will tend to produce circular clusters, which may not be in accordance with

the data structure. This led to several modifications on the original model (Bezdek et al.,

1999; Li and Lewis, 2016). The choice ofm is also important, as different values ofm leads

to different results in the partitions. Whenm→∞, the partitions approachU = [1/c], that

corresponds to entirely fuzzy ones. Contrariwise, when m approaches 1 the partitions

become more and more crisp, reducing the algorithm to a hard c-means, when m reaches

1.

The number of clusters is a user dependent parameter and a crucial one as it deeply

influences the clustering results.

Starting the algorithm by initializing U , or V , and how they are initialized is very

important as it holds a significant impact in the convergence of the algorithm, storage

and speed. Although the algorithm is guaranteed to converge to a local minimum (Bezdek,

1981), distinct initializations may lead to different locals.

The prototypes found by the FCM are, usually, "central types", located in the center

of the cluster. Such propriety is visible on the first step of the FCM algorithm (1), where

each vi is the weighted mean of the points in each ci .

Finally, the epsilon, ε, needs to be chosen, as it controls the termination of the algo-

rithm and its quality for the final clusters.

2.1.4 Areas of Application

Due to its ease of use and interpretability, as it presents less strict results than hard clus-

tering, the Fuzzy c-Means is very popular and widely spread amongst several industries.

These proprieties make the Fuzzy c-Means very useful in the decision-making process

of such industries. Some of them are, the businesses world (Tufan and Hamarat, 2003;

Stetco et al., 2013; Bose and Chen, 2015; Schafer et al., 2015), the energy sector (Alia,

2014; Sert et al., 2015; Jahromi et al., 2016; Maity et al., 2016), chemistry (Liu et al., 2016),

medicine and health care (Fenza et al., 2012; Huang et al., 2014; Ferreira et al., 2015;

Karami et al., 2015; Ahmad, 2016), web classification (Ansari et al., 2015; Tsekouras and

Gavalas, 2013; Cosma and Acampora, 2016), big data analysis (Găceanu and Pop, 2012;

Li et al., 2015; Xianfeng and Pengfei, 2015), machine learning (Wang et al., 2012; Wu

et al., 2014), pattern recognition and image classification (John et al., 2015; Majumdar

et al., 2015; Khormali and Addeh, 2016), times-series prediction (Yolcu, 2013; Izakian

et al., 2015; Peng et al., 2015), robust design (D’Urso et al., 2014), meteorological data

(Sun et al., 2010; Li et al., 2011), just to name a few. Li and Lewis, 2016 provide an

extensive overview on emerging domains of application of fuzzy clustering.
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2.2 Fuzzy c-Means via Proportional Membership Model

Most approaches on fuzzy clustering, specially the Fuzzy c-Means method, previously

described, find a membership degree for each entity to express its proximity to each

prototype. This framework makes the cluster structure determined from the data but

fails to provide a feedback on the generation of the data from the cluster structure.

To tackle this problem, Nascimento, 2005 proposed a framework for mining for ty-

pological structures. The definition of typology is stated as "Study of or analysis or

classification based on types or categories", according to the Merriam-Webster dictionary

(Typology, 2018). The motivation of this approach is to define the underling fuzzy c-

partition in such a way that the membership of an entity to a cluster not only expresses

the belongingness of the entity to the cluster, but also expresses the proportion of the

clusters prototypes present in the entity. This means that, an entity xi , with a membership

of 0.60 to cluster A and 0.40 to cluster B, reflects 60% of the prototype A and 40% of the

prototype B. This type of membership function has been coined Fuzzy Clustering with

Proportional Membership (Nascimento et al., 2003).

2.2.1 Method

The FCPM model assumes that the data is generated according to the cluster structure:

observed data = model data + noise. (2.5)

Here, it’s assumed the existence of some prototypes which serve as "ideal" patterns to

data entities. The meaning of "ideal" patterns is something that the researcher needs to

define as an entity that would ideally typify the characteristics of a cluster.

Given data matrix Y, preprocessed from X by shifting the origin to the gravity center

of all the entities, and rescaling features by their ranges:

ykh =
xkh − ah
sh

, (2.6)

with ah = x̄h and sh =maxk(xkh)−mink(xkh), then, Y = [ykh] is a n ×p entity-to-feature data

table, with k = 1, ..,n;h = 1, ...,p. Based on the assumption (2.5), a generic proportional

membership model was defined, where the membership value uik is not just a weight, but

an expression of the proportion of vi which is present in yk , is assumed. This assumption

translates to the following model that instantiates the generic model 2.5:

ykh = uikvih + eikh, (2.7)

where eikh are the residuals values and as small as possible. From this generic model, a

generic Square-Error Criterion, for the clustering criterion was defined. This criterion is

defined as fitting each data point to a share of each of the prototypes, represented by the

degree of membership. By minimizing all the residual values in the generic model (2.7)

via the squared-error, the goal is achieved:
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E0(U,V ) =
c∑
i=1

n∑
k=1

p∑
h=1

(ykh −uikvih)2, (2.8)

with the fuzzy constraints

0 ≤ uik ≤ 1, f or all i = 1, ..., c, k = 1, ...,n, (2.9)

and
c∑
i=1

uik = 1, f or all k = 1, ...,n. (2.10)

However, as this criterion is too strong and unrealistic sometimes (Nascimento, 2005),

an adaptation of the squared error (2.8) was made, creating a smooth version. Here, only

meaningful proportions, those with high membership values, are to be taken into account

in the assumption (2.5). To smooth this influence, a weight was put on the squared

residuals in the squared error (2.8), with a power of m (m = 0,1,2) of the corresponding

uik , creating the smooth squared error, the FCPM-m:

Em(U,V ) =
c∑
i=1

n∑
k=1

p∑
h=1

umik(ykh −uikvih)2, (2.11)

also subject to the constraints (2.9) and (2.10). Now, the influence of high residual values,

eikh, are smoothed. In this new clustering criterion, the choice of m highly influences the

position of the prototypes. Note that (2.8) is a special case of (2.11), for m = 0.

The Alternation Optimization (AO) is adopted to minimize the smooth squared error

in (2.11). First, initialize V with pseudo-random values, generated in the data space, and

update U from this V . Then, alternate between minimizing the membership matrix, U

given the centroids, V̂ and minimizing V , given the updated Û . Stop when the algorithm

converges. The prototypes feature values are derived by the first order condition of

minimizing the clustering criterion 2.11 as:

v
(t)
ih =

〈(
u

(t)
i

)m+1
, yh

〉
〈(
u

(t)
i

)m+1
,u

(t)
i

〉 . (2.12)

The process of finding the membership matrix U is not so simple. Due to the con-

straints (2.9) and (2.10), the minimization of the clustering criterion (2.11) with respect

to U requires an iterative process on its own, as is not analytically derivable. This lead

to the development of a new variant of the Gradient Projection Method (GPM). Now,

two different iterations are need for each step of the minimization process, a major iter-

ation and a minor one. Each major represents a step in the full process of minimizing

the smooth squared error (2.11). Within each major iteration, there is a minor one, to

calculate U . Updating U requires several steps, that comes from the gradient projection

method. As the theoretical framework of this update is outside of the scope of this work,
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the pseudo-code for the minor iteration will not be presented. For a detailed explanation

of the foundations of the FCPM algorithm and its variations, please consult Nascimento,

2005.

2.2.2 Algorithm

Algorithm 2 presents the major iteration of the FCPM-m.

Algorithm 2 The FCPM-m Algorithm - The major iteration
function FCPM(Y , c,T1,T2, ε) % ε > 0

V (0)← {v(0)
i }

c
i=1 % initialize V

U (0) % initialize U from the V
t1← 0
repeat

t2← 0
U (t2)←U (t1)

repeat
t2← t2 + 1
for k = 1, ...,n do

dk← computeD(V (t1),u
(t2−1)
k )

ut2k ← ComputeP rojection(dk) % Minor iteration
end for

until (|U (t2) −U (t2−1)|err < ε || t2 = T2)
t1← t1 + 1
U (t1)←U (t2)

V (t1)← computeV (U t1) % from (2.12)
until (|V (t1) −V (t1−1)|err < ε || t1 = T1)
return (V (t1),U (t1))

end function

2.2.3 Main characteristics

As in the FCM, the number of prototypes chosen requires some thought, especially if m =

0. A bad choice on this number may lead to the non-convergence of the FCPM algorithm,

as it may shift some of the prototypes to infinity. In the conducted experimental study

(Nascimento et al., 2003), when the FCPM algorithm did converge, the number of major

iterations was quite small. Combining these two characteristics allowed to define another

stopping criteria: if the number of major iterations, when m = 0, exceeds a large number,

it means that the algorithm did not converge. The calculations in the original work

suggests a number above 100, for the major iterations and 10000 for the minor iterations.

These limits are adopted in this work. Proprieties such as the ε, or the initialization also

need some careful thought.

The prototypes derived by the FCPM-0, or the non-smoothed model (2.8), are ideal

types, since they have extreme subset of features. Each entity contains uik (a membership

12
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value) of it, plus the residuals. In this view, both the prototypes and the memberships are

reflected on the model of the data.

Observing the generic model (2.7), it is possible to see that it can be treated as a device

to reconstruct the data from the model. Furthermore, the trivial structure where all the

entities are prototypes it’s not a solution, as it doesn’t minimize the squared error (2.8) to

its absolute minimum.

In the FCPM model, the data has to be shifted to the origin of the space gravity, that,

according to the model, allows for a greater discrimination through attributes (see Fig.

4.3, Nascimento, 2005, p.99).

2.2.4 Areas of Application

Nascimento, 2005 divided the experiments of the FCPM model into two parts. First, a

study of the model with artificial data sets, randomly generated wrt the FCPM model, to

prove for the underlying assumptions of the model. Then, a study with real-world data

sets.

These artificial data sets were constructed from a specific data generator, that builds

the data accordingly to the model of the FCPM, with the original prototypes as extremes

points. The artificial data served the purpose of studying the performance of the FCPM

regarding the following proprieties:

1. To examine how the FCPM was able to recover the original prototypes from which

the data had been generated and compare it to the ones retrieved by the FCM;

2. To observe the behaviour of the FCPM-0, while it shifts prototypes to outside the

data space, and use it as an index of the number of clusters present in the data;

3. To study the performance of the FCPM when more clusters than those from which

data has been generated were specified;

4. To compare the fuzzy partitions retrieved by FCPM against the FCM ones.

The dimensionality of the data sets generated ranged from 5 to 180, and the number

of original prototypes, from 3 to 6. Due to the different behaviour that the data sets

presented in the experiments, it was possible to partition the sets into 3 different types,

regarding their dimensionality, small, medium and high. The experiments with artificial

data sets were divided in 2 parts. First, the algorithms had to find the same number of

prototypes as the ones that were generated. Then, they had to look for more than the ones

generated. Some of the conclusions are presented next.

On the number of clusters found: When the dimensionality is low or intermediate, all

the algorithms, FCPM-m (m = 0,1,2) and FCM found the correct number of clusters. For

the higher type of dimensionality, only FCPM-1 and FCPM-2 found the correct number

of clusters. For FCM some prototypes converge to the same stationary point and, for

FCPM-0 some initial prototypes had been removed from the data cloud.

13
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On the proximity to the original prototypes and the ones found by the FCM: When

m = 0,1, the prototypes found were closer to ones found by the FCM, and further from

the original ones, as the prototypes for these models tend to be central points. As for the

FCPM-2, found the closest to the originals, making it the furthest from the ones found

by the FCM. The only exception being when the FCPM-0 shifts the prototypes to infinity.

These results are transversal to all the types of dimensionality.

On partition separability: For FCPM-0 and FCPM-1 had partitions more contrasting

than the ones the FCM found. The FCPM-2 had the fuzziest partitions.

On the number of iterations: the FCPM-1 and FCPM-2 had less than the FCM. For the

FCPM-0, the number did not differ much from that in the FCM. Even so, the time it took

for the FCPM algorithms to run was longer due to the minor iterations of the gradient

projection method.

The algorithms had then to search for more prototypes than the ones generated, c′ =

c0 + 1.

For the small dimensional data sets, FCM, FCPM-1 and FCPM-2 found c′ = c0 + 1,

while the FCPM-0 removes the extra from the data space, c′ = c0.

For the intermediate, all the algorithms found the correct number of prototypes, c′ =

c0. The FCM and FCPM-1 because the extra prototype almost always converges to another

one. As for the FCPM-0 and FCPM-2, they remove the extra from the data space.

Finally, for the high dimensional data sets, the FCM and FCPM-0 had "degenerate"

solutions. For the FCM, several of the prototypes overlap, and for the FCPM-0, more than

one was pushed out of the data space, preventing the algorithm to converge. For FCPM-1

and FCPM-2, they found c′ = c0 + 1.

The previous proprieties were also tested with real-world data sets. First, the Mental

Disorders data set (Nascimento, 2005), providing some interesting results regarding the

capacity of the FCPM-2 to find typological structure, especially for capturing Archetypal

Types. This data set becomes particularly interesting due to its nature, "in which cluster

prototypes, syndromes of mental conditions, are indeed extreme with regard to patients"

(Nascimento, 2005, p.119). In this data set, there is always a subset of features that

have extreme values and distinctly separate each class. So, each disease can then be

characterized by an ’archetypal patient’, that exhibit extreme psychosomatic values, and

thus, defining a syndrome of mental conditions, or an ’underlying type’ (Nascimento,

2005). Not only was the FCPM-2 able to reveal this extremes types (the underlying

topology), but was also able to perform such discovery when the data set was modified by

adding less expressed cases, i.e., the data set was augmented with artificial patients that

exhibit less severe syndromes. These results show how much is the FCPM-2 sensitive to

the most "discriminating" features.

Other data sets from the UCI Machine Learn (Lichman, 2013) were tested with results

concordant with the artificial data sets results.
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2.3 Archetypal Analysis

Sometimes, one wish not to represent a group by its mean, or a prototype that lies in the

center of the group, but by some sort of "pure type", an extreme point, based on all the

other individuals on the data set. Thus, a more general idea than in the FCPM model,

is taken by archetypal analysis, where not only the points are a convex combination of

the prototypes, but the prototypes are also a convex combination of the points, creating

this "pure types". Such model was proposed by Cutler and Breiman, 1994. They used

a statistical method to discover this "pure types", by synthesizing a set of multivariate

observations through a few points, which lie on the boundary of the data scatter, i.e. on

the convex hull.

In Archetypal analysis (AA) each individual is represented as a mixture of "pure

points" or, archetypes, and, each one is restricted to be a mixture of the individuals. This

method can be used as a dimensionality reduction or as a clustering algorithm, where

each archetype is easily interpretable by human experts.

2.3.1 Method

Formally, we want to find a matrix Z = z1, z2, ..., zc of archetypes, given a data set X =

x1,x2, ...,xn, where X has n observations and p attributes and Z has c archetypes and p
attributes.

So, each archetype, zj , is a convex combination of the data points

zj =
n∑
i=1

xi .bij , (2.13)

constrained to

bij ≥ 0, (2.14)

and

n∑
i=1

bij = 1. (2.15)

Equation (2.14) makes the archetypes resemble the data and (2.15) is so that the

archetypes are convex mixtures of the data.

Then the data are best approximated by a convex combination of the archetypes,

minimizing

||xi −
c∑
j=1

zj .aji ||2, (2.16)

constrained to

aji ≥ 0, (2.17)
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and
c∑
j=1

aji = 1. (2.18)

Again, the model imposes a restriction of positivity (2.17), making each point a mean-

ingful combination of the archetypes, and (2.18), imposes that each point is a mixture of

archetypes. In order to find a suitable choice of archetypes, z1, z2, ..., zc, it’s necessary to

minimize the residual sum of squares (RSS):

RSS(c) = min
a,b

n∑
i=1

||xi −
c∑
j=1

zj .aji ||2 =
n∑
i=1

||xi −
c∑
j=1

n∑
k=1

xk .bkj .aji ||2. (2.19)

Sometimes it’s simpler to use the matrix notation of the RSS, making the former

equation (2.19) as

RSS(c) = ||X −ZA||2 = ||X −XBA||2. (2.20)

To minimize the RSS and find the Z matrix So, to find this Z matrix, we need to

discover both the A and B matrices which requires an alternating optimization algorithm.

2.3.2 Algorithm

Solving the convex combinations for the archetypes (2.13) and for the data points (2.16),

while minimizing the residual sum of squares (2.19) is a non-trivial task, as using a

general-purpose constrained non-linear least squares algorithm is only practical for the

smallest of the problems, due to its high computational costs (Damle and Sun, 2016;

Mørup and Hansen, 2012; Chen et al., 2014; Eugster and Leisch, 2009; Bauckhage and

Thurau, 2009).

To solve the clustering criterion (2.19) for optimal coefficients aji and bij , Cutler and

Breiman, 1994 proposed an alternating constrained least squares algorithm.

This method alternates between finding the best a’s for a given set of b’s, and finding

the best b’s for a given set of a’s. Each step demands the solution of several convex least

squares (CLS) problems of the form:

Given u and t1, ..., tq, find w1, ...,wq to minimize

||u −
q∑
k=1

wktk ||2, (2.21)

subject to wk ≥ 0 for k = 1, ...,q and
∑q
k=1wk = 1. With each solution of the CLS, the

RSS in (2.19) is reduced. The algorithm stops when a threshold for the reduction has been

achieved or enough time has passed.

Given some initialization of the archetypes Z = z1, z2, ..., zc, start by finding the best

aji , solving n CLS problems. To find them, is necessary to minimize for the aji in the
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convex combination of the archetypes (2.16) for each i, subject to the constraints (2.17)

and (2.18). Each of this CLS problems has n observations and c variables.

Next, recalculate the archetypes, z̃1, z̃2, ..., z̃c, from the updated aji , solving the system

of linear equations given from the RSS (2.20) for Z̃.

With the new Z̃, find the best bij from the convex combination of the data points

(2.13), solving c CLS problems, subject to the constraints (2.14) and (2.15), where each of

this problems has n variables and p observations.

Update the archetypes Z = z1, z2, ..., zc with: Z = XB

Finally, compute the RSS and evaluate the improvement.

To solve the several CLS problems, Cutler and Breiman, 1994 implemented a penal-

ized version of the Non-Negative Least Squares (NNLS) algorithm.. Using this penalized

version of the NNLS, ũ and t̃1, t̃2, ..., t̃k can be found by adding an extra element M to u an

to t1, ..., tq in the generic CLS model (2.21):

||ũ −
p∑
k=1

wk t̃k ||2 = ||u −
p∑
k=1

wktk ||2 +M2||1−
p∑
k=1

wk ||2, (2.22)

that is minimized under non-negativity restrictions. The value M can enforce the equality

constraint to be approximately satisfied, by setting it to large values, and thus, dominating

the second term, while maintaining the non-negativity constraint. There are several

methods to increase the efficiency of the algorithm (Damle and Sun, 2016; Mørup and

Hansen, 2012; Chen et al., 2014; Eugster and Leisch, 2009; Bauckhage and Thurau, 2009).

In this work, the implementation of Mørup and Hansen, 2012 will be the one used.

Besides some modifications to increase the speed, e.g. the FurthestSum method to select c

points close to the data boundary, and as far from each other as possible, this approach

uses a simple projected gradient method to solve the AA problem. In this implementation

the authors set the maximum number of iterations to 500. This limit is also adopted in

this work.

2.3.3 Main Characteristics

Cutler and Breiman, 1994 demonstrated that for c>1, the archetypes that minimize the

RSS (2.19) fall on the convex hull of the data, making the archetypes extremes data-values.

For c=1, the sample mean minimizes the RSS. Also, there is no condition that makes the

archetypes being observables points, and this can be seen as a drawback (Vinué et al.,

2015).
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Another interesting propriety of the archetypes is that they do not nest, i.e., as more

archetypes are found, the existing ones can change, trying to get a better grasp of the

shape of the data.

The convergence of the alternating optimization is also proven, although, without

guarantee that it will be to a global minimum. Thus, it’s advised that several runs of the

algorithm are performed, with different initial seeds.

To select the number of archetypes to use, Cutler and Breiman, 1994 suggested the

use of the "elbow criterion". This method consists on running the algorithm several times,

for different numbers of archetypes, and use the "flattening"of the curve of the RSS values

to choose a proper value.

The presence of outliers can also impose a problem. Usually, in clustering applica-

tions, there is always the need to pre-process the data and deal with the outliers, but, due

to the imposition on the location of the archetypes, on the convex hull of the data, archety-

pal analysis can be quite sensitive to them and may need special attention (I. Epifanio,

2013; Cutler and Breiman, 1994; Chen et al., 2014; Eugster and Leisch, 2011). However,

archetypes are not outliers (Eugster and Leisch, 2011) as the definition for both of them

are profoundly and significantly different. It is important to stress this difference as the

misunderstanding is quite easy to make.

2.3.4 Areas of Application

Even though it presents some problems, AA has found its way into several industries, as

it presents a singular way to cluster the data, retrieve their representatives as archetypes,

and use particular visualization techniques to interpret the found groups. Some of them

are the gaming and behaviour analysis (Drachen et al., 2012; Sifa and Bauckhage, 2013;

Pirker et al., 2016), sports (Eugster, 2012; Vinué and Epifanio, 2017), physics (Stone and

Cutler, 1996; Stone, 2002; Chan et al., 2003), medicine and health care (Huggins et al.,

2007; Römer et al., 2012; Thøgersen et al., 2013; Fehrman et al., 2017), benchmarking

and profiling (Porzio et al., 2006; Porzio et al., 2008; Eugster, 2012; Seiler and Wohlrabe,

2013; Ragozini and D’Esposito, 2015), banking (Yeh and Lien, 2009), computer vision

(Marinetti et al., 2006; Marinetti et al., 2007; Thurau and Bauckhage, 2009; Xiong et al.,

2013) and nominal observations (Seth and Eugster, 2016).

2.4 Comparing FCM, FCPM and AA

Although the 3 methods find fuzzy clusters, they have substantial differences, that lead

to fuzzy partitions with distinct characteristics, and, consequently, need different inter-

pretation for the results.

First, their aim is different, and that translates to distinct clustering criteria. This

means that each one of them have its own way of minimization. As an example, the FCM
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uses a simple alternation optimization, where the FCPM-m requires an iterative process

of its own in the alternation optimization.

Second, the location of the prototypes. While the FCM construct the prototypes as the

mean of the clusters, the FCPM-m pushes them to the frontier of the data cloud. In AA,

the points that represents clusters, are not prototypes, but archetypes, and are located,

almost exclusively, in the convex hull of the data.

As the value of m for the FCPM-m can be any value from {0,1,2}, the same cannot be

said about the FCM, as values different than m = 2 may give poor results (Bezdek, 1981).

The interpretation of the results varies according to the model: In the FCM, the

membership degree is viewed as the proximity to a cluster center; In the FCPM-m, the

membership also says how much of the prototype is expressed in the entity; In the AA,

the archetypes are extremes points, characterized by a subset of features of the feature

space taking extreme values.

However, they still share some problems:

1. The need to a careful initialization of the algorithm;

2. The choice on the number of clusters;

3. The similarity (or dissimilarity) function to use;

4. The sensibility to outliers;

5. The speed of convergence;
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3
On Clustering Manifolds

3.1 Generating Data with Cluster Tendency

When introducing a new algorithm, or an improvement of an existing one, the researchers

should perform an extensive and systematic study with different types of data. Only then,

it’s possible to have a concise and clear evaluation of the algorithm. This would enable

any researcher who desires to improve an algorithm, or perform a comparative study,

to have a simple method of doing it. This is particularly important when there is no

ground truth, that is the case of unsupervised learning (Zimmermann, 2015). However,

researchers often only use a few, and specific data sets (either artificial or from the real-

world), measuring only the times of execution, comparing the number of found clusters

and assessing the quality of the found clusters with validation indices. Although this is a

valid, and necessary approach, it lacks an exhaustive evaluation regarding the behaviour

of the algorithm. Zimmermann, 2015 summarized this problem in three aspects:

1. There is no way of quantitatively evaluate the performance of the algorithms.

These algorithms, more often than not, are not reassessed with additional data after

their publication, or compared with other algorithms. Proprieties such as transitivity are

assumed in most cases.

Proprieties such as transitivity are assumed in most cases. For instance, improvements

to an algorithm are tested against the same portfolio of data sets, which may led to some

unjustified generalizations (Zimmermann, 2015). These generalizations may led to the

observation of the desired proprieties, with small and restricted artificial data, that do

not uphold with real-world data (Zimmermann, 2015).

2. There is no empirical evidence of how to choose good parameters settings. This
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leads to a poor understanding about the relationship between the parameters and results.

The behaviour of the algorithm might only be known for a small set of settings, making

it hard to understand how small changes influence its behaviour.

3. If the algorithm is really mining the generative processes underlying the data, or,

if all relationships captured are meaningful.

Without a clear answer to these questions, it’s not possible to assess if the algorithm

is truly fulfilling the purpose for which it was build. Meaning that, even if the patterns

are successfully identified, it lacks the knowledge to know how those patterns relate to

the process that generated the data. It becomes ambiguous how to exploit those patterns

in the original domains (Zimmermann, 2015).

To systematically answer the previous problems, it’s necessary to use several hetero-

geneous artificial data sets, in which it’s possible to control the dimensionality of the data

space, the number of initial clusters, the underlying distribution, among other param-

eters (Pei, Yaling; Zaiane, Osmar, 2006; Albuquerque et al., 2011; Zimmermann, 2015;

Adä and Berthold, 2010). Only by means of this variation, can a complete evaluation

of an algorithm be provided. This implies that, before an algorithm is confronted with

real-world data sets, it needs to be tested against artificial data, therefore, assessing that

the algorithm does in fact behave as proven by the theory, and presents the results ex-

hibited with the artificial data. By following this framework, new data sets are easier to

approach by knowing which tools to use, the parameters settings, and, most importantly,

what conclusions can be drawn from the results (Zimmermann, 2015).

With this idea in mind, artificial data sets will be used to compare the FCPM-m and

the AA before using real-world data. Note that this is a comparative study, and the

exhaustive study of the individual behaviour of each one of them is out of the scope of

this work, as both of them have already undergone an individual evaluation (Nascimento,

2005; Madaleno, 2017). Two data generators are considered in this work, one for each

model. These data generators will presented in the next sections.

3.1.1 FCPM Data Generator

To evaluate the FCPM, Nascimento, 2002 developed a data generator (Figure 3.1) ac-

cording to the FCPM model, the FCPM-DG. This generator was build following the

assumptions of the underlying FCPM model. (1) That the model of data generated con-

tains a cluster structure; (2) In the mentioned structure, any entity bears a proportion of

each prototype, that is a model or ideal point.

In this data generator, the parameters are randomly generated from user defined

intervals. First, the minimum and maximum for the dimensionality of the data space (p),

[min_DimP, max_DimP]. Then, the interval for the number of clusters (c0) to be generated,
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[min_C, max_C]. Finally, from [min_PtsClt, max_PtsClt], it comes the minimum and

maximum for the number of entities to be generated within each cluster (n1,n2, ...,nc0
).

The data generator was designed as it follows:

1. Define the c0 clusters directions using the following technique: from a pre-specified

hyper-cube with side length [min_HCube, max_HCube], generate random vectors oi ∈
IRp(i = 1, ..., c0). Then, their gravity center o is taken as the origin of the space. Each

cluster direction is taken as the segment −−→ooi . In the original work, the values for the

hyper-cube were [−100.0;100.0].

2. Define two p-dimensional sampling boxes, for each i (i = 1, ..., c0). The first box,

within bounds Ai = [(1− percent_DSeg).oi , (1 + percent_DSeg).oi] (e.g. [0.9.oi ,1.1.oi]) and

the other, within Bi = [o,oi]. Then, for each box Ai generate randomly a small percentage

of points, percent_PtsOrgVs (e.g. 0.2ni). Generate, also randomly, the remaining points

(1− percent_P tsOrgV s).ni (e.g. 0.8ni) for each box Bi .

3. All data generated (including the c0 original prototypes) are normalized by center-

ing to the origin and scaling by the range of features.

Besides the dimensionality of the data space, the number of the cluster and the number

of entities within each cluster, the length of the cube ([min_HCube, max_HCube]), the

side length of box Ai (percent_DSeg) and the percentage of points to generate in box

Ai (percent_PtsOrgVs) are also user defined parameters. The randomly generated items

were withdrawn from a uniform distribution in the interval [0,1]. Figure 3.1 contains a

example of a synthetic data set.

Figure 3.1: Example of the architecture of the FCPM data generator, using the three best
principal components, on a 3D projection. This example contains six original prototypes
and two illustrative boxes, A3 and B3, for prototype 3. Original from Nascimento, 2005
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3.1.2 AA Data Generator

There are no references in the literature for a data generator for the underlying model of

Archetypal Analysis. Even so, it’s possible to somehow build a simple generator (AA-DG),

that builds data that resembles the model of AA (Figure 3.2).

One approach is to take in consideration the model of AA (2.20). The data matrix, X,

is derived from the following expression,

X = ZA, (3.1)

in which the matrix A needs to follow the constrains of the AA model, namely, all its

values must be positive (2.17), and the columns must sum to one (2.18). Mørup and

Hansen, 2012 applied this principle1, and their idea is followed here.

A matrix Ã is created, where the constrain 2.18 is relaxed, in a sense that the sum of

its columns might not be exactly 1, but the mean of the sums is close to 1. Then, generate

c points on the surface of p-sphere, with radius 1, that will represent the archetypes.

This generation can be done either with an artificial sampling, or manually selecting the

location of the archetypes. There are several ways in the literature on how to sample

points on the surface of an m-sphere, here the Marsaglia, 1972 method is used. This

creates the Z̃, as the constrains for Z are overlooked. In the end, the data matrix is given

as,

X = Z̃Ã. (3.2)

It is also possible to add noise to the data, by multiplying the points with a uniform

distribution up to a percentage. Figure 3.2 contains two data sets, one with noise, another

without.

Figure 3.2: Two artificial data sets, with the archetypes equidistant. On the left the data
set was generated without noise, and on the right, with 0.2 of noise.

1On the matlab code provided by the authors
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This data generator, although it allows to observe the behaviour of the algorithm

regarding the recovery archetypes, it doesn’t allow for much more, and it comes with

some problems. First, it is not possible to control the separability of the clusters, or the

compactness. Second, generating points on a hyper-sphere it’s a non-trivial task, most

of the time leading to points to close to each other. Third, it is highly dependent on

input parameters, to make the sum of Ã be close to 1, as these values change with the

dimensionality of the space. Finally, and most important, there is no guaranty that data

generated follows the archetypal model.

There are other ways to generate this data. One way is to define a set of archetypes and

compute its convex hull, then, create the smallest hyper-cube containing the convex hull,

generate points with a uniform distribution inside this hyper-cube, retaining only those

that are inside the convex hull. Repeat until the number of points inside the convex hull

is the desired. This generator is not dependent on the input parameters, as the previous

one, making it easier to use. Except for the location of the original archetypes, it fails to

consider the underlying model of AA.

This is still a open research problem.

3.2 Initializations Strategies with Extreme Points

As Mørup and Hansen, 2012 state, it’s useful to initialize the AA algorithm with extreme

points. This section is dedicate to introduce such methods. First, the Furthest Sum.

Second, the Iterative Anomalous Pattern, and a modification to the original algorithm to

return extreme seeds.

3.2.1 Furthest Sum Algorithm

The Furthest Sum Algorithm, proposed in Mørup and Hansen, 2012, is a method that

takes in consideration the location of the archetypes and as such, it selects c points in the

convex hull of the data to be used as seeds. It iteratively chooses points further from the

center of data, and as far way as possible from each other. The c number is a user defined

parameter. The authors also proved that the c selected points are guaranteed to lie in the

minimal convex set of unselected data points.

3.2.2 Iterative Furthest Point Algorithm

As demonstrated in Nascimento and Franco, 2009, the Iterative Anomalous Pattern (IAP)

presented good results with the FCM, in unsupervised segmentation of Sea Surface Tem-

perature (SST) images. This method, not only serves as an initialization scheme for an

algorithm, but it’s also capable of acting as an indicator of the number of clusters present

in the data.

For IAP algorithm, X = [xkh], a n× p entity-to-feature data matrix, with k = 1, ..,n; h =

1, ...,p, needs to be preprocessed into Y , by shifting X the origin to the gravity center, the
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grand mean. The center of Y is the point Oy = 01,02, ...,0p. It then uses the total data

scatter of all data points,

T (Y ) =
n∑
i=1

p∑
h=1

y2
ih, (3.3)

and the relative contribution of a cluster (St ,vt) to the data scatter as

W ((St ,vt)) =
|St |

∑p
h=1 v

2
th

T (Y )
, (3.4)

as measures to evaluate the found anomalous patterns. |St | is the cardinality of cluster St,

To find tth anomalous pattern, the algorithm initializes the new cluster seed v∗, as

the farthest point from O. Then, it defines St as the set of entities closer to c∗ than to

the origin Oy : St = {yi ∈ Y : d(yi , c∗) < d(yi ,Oy)}. The new centroid v is computed as the

gravity center of St. This new centroid is then compared with the old one. If v∗ ≈ v,

St is considered as the tth anomalous patter and vt = v its centroid: (St ,vt). Otherwise,

define v∗ = v and continuously update St until the new centroid no longer differs from

the previous.

Update the Y by removing the points assigned to the found cluster, Yt+1 = Yt\St, and

repeat this process until one of the following stopping criteria is met: i) All entities have

been assigned; ii) The tth cluster has a relative contribution (Eq. (3.4)) to the data scatter

(Eq. (3.3)) lower than a pre-specified value, τ ; iii) The total contribution of the first t

clusters reaches pre-specified threshold, δ; iv) The number of found clusters reaches a

pre-specified value, t == kmax.

In this work, two different settings for the stopping conditions of the IAP were used:

- First: τ , δ and kmax were set to large enough values, in order to allow the algorithm

to assign all entities to clusters. Then, all clusters with a relative contribution of 5%

(W ((St ,vt)) > 0.05) were selected. The threshold value of 0.05 was fixed empirically as

a result of running several experiments and observing the relative contributions of the

found clusters. Here, not only the algorithm returns the seeds to initialize an algorithm,

but also return the number of groups, k. This setting was named IAP (s ≥ 0.05).

- Second: the number of clusters to retrieved was restricted to the number of labels in

the data set: kmax = c0. Here, the algorithm returns the first c0 clusters found, independent

of their relative contribution to the data scatter. This setting was named IAP (k == c0).

Since this study focuses on retrieving extremes ideal points and the IAP algorithm

returns the seeds as means points of the clusters, the algorithm was modified to return

the seeds as extreme points of the clusters. In this version, for each anomalous pattern

found, instead of returning v as the gravity center, it returns the initial seed of the cluster,
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the farthest point from Oy . For the stopping criteria, it uses the same threshold of 0.05,

as in the IAP (s ≥ 0.05) and it was coined the Iterative Furthest Point, IFP (s ≥ 0.05).

3.3 Assessing the Quality of Fuzzy Partitions

A fundamental problem in cluster analysis is how to evaluate the clustering results, i.e.,
given some input parameters, how well the resulting partitions represent the natural or

underlying grouping of the data (Dunn, 1973; Bezdek, 1973; Kryszczuk and Hurley, 2010;

Arbelaitz et al., 2013; Chouikhi et al., 2015). This is a non-trivial problem and requires

careful thought. Otherwise, without a systematic evaluation process, it’s not possible

to infer conclusions about the results, without being susceptible to bias or inadequate

interpretations. From this necessity, indices to evaluate the performance of the clustering

algorithms become a well-address problem in the literature (Bezdek, 1973; Dunn, 1973).

Such indices, known as the Clustering Validity Indices (CVI), not only allow the com-

parison of different algorithms, but also, the results of the same algorithm with different

parametrizations. This is especially important for algorithms that are highly dependent

on input parameters, e.g. the number of clusters, which is rarely known beforehand.

Although there are several CVI’s proposed in the literature, none of them is capable of

providing a good measurement on its own (Arbelaitz et al., 2013; Chouikhi et al., 2015).

It’s has become standard to use several CVI’s and combining them with a fusion strategy

(Yera et al., 2017; Kryszczuk and Hurley, 2010).

Even with evaluation indices, it’s not always possible to understand the results of the

clustering process, how the data is organized or what is the clustering tendency, specially

in data sets with high dimensionality. Although the validation process can assess the

goodness of results, and indirectly, how appropriate were the chosen parameters, visu-

alization techniques are a must, as they bring the human insight to the whole process.

Since a cluster algorithm always fits the data to the clustering model, this human knowl-

edge becomes even more indispensable to understand the adequateness of the clustering

solution.

Also, in the real world, the users of a clustering process, most often than not, are not

experts in machine learning, and, as such, the results often require an interpretation and

translation of number and metrics to human perception.

This chapter is divided in three distinct parts. First, a discussion on data recovery, as

a way to evaluate the clustering result when using artificial data. Then, a brief review on

existing CVI’s, and fusions strategies to combine them. In the end, a section dedicated to

the visualization techniques.
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3.3.1 The Clustering Data Recovery

As proposed by Mirkin, 2005, one way of understanding, not only the structure of data,

but also the effectiveness of the clustering algorithm, is the data recovery paradigm men-

tioned in the Introduction. This paradigm is useful to study the AA and FCPM due to the

algorithms treating the groups representatives as ideal types.

By using artificial data, where the data points are generated from "ideal types" (e.g.
the FCPM-DG, from Section 3.1.1), it becomes possible to measure the data recovery of

an algorithm, and assess its ability in recovering the original clusters. This is done by

measuring the difference between the found prototypes, V ′ = {v′j}c
′

j=1, and the original

ones, V = {vj}cj=1, where c represents the number of prototypes generated and c′ the

number of retrieved. The closer to the original prototypes are the retrieves, the higher is

the data recovery capacity of the algorithm.

To compute this distance, Nascimento, 2005 introduced a Dissimilarity Coefficient D,

defined as squared relative quadratic mean error between the original prototypes V , and

the found ones V ′,

D(V ′ ,V ) =

∑c
i=1

∑p
h=1(v′ih − vih)2∑c

i=1
∑p
h=1 v

2
ih +

∑c
i=1

∑p
h=1 v

′2
ih

. (3.5)

When applying D, if the number of found prototypes (c′) by an algorithm is smaller

than the original ones (c), only (c′) "reference" prototypes participate in (3.5). This mea-

sure is non-negative and it equals to 0 when vih = v′ih, for all i = 1, ..., c;h = 1, ...,p. When

the components of each vi and v′i are in the same orthants, then D is not greater than 1.

The Dissimilarity Coefficient requires a matching between the retrieved prototypes

and the found ones. This matching is done using a K-NN distances with K = min(c′ , c0).

In the event of a tie between two prototypes, one of them is matched to its next closest

reference prototype.

3.3.2 Five Premier Fuzzy Validation Indices

The CVIs are divided according to the source of information they use to assess the clus-

tering results. If they use the labels of the data set, that is information not contained in

the clustering solution, they are external validation indices, otherwise, they are internal

validation indices.

Even though it’s always good practice to use external validation indices when ground

truth is available, the classification boundaries are not well-defined in fuzzy clustering.

As such, these indices were not considered for the comparison of the algorithms in this

work.

The internal validation indices evaluate the clustering solution by measuring pro-

prieties of the final cluster structure, such as the compactness of the clusters, how well

separated are the final clusters, or the (dis)similarities between clusters. The external

indices work by comparing the clustering solution to the labels of the data set, assessing
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the capacity of the algorithm in finding a cluster structure that relates to the ground

truth.

To this date, aside from one (very) recent proposal (Suleman, 2017), there are no

mentions in the literature of validation indices for archetypal analysis. Although there

are several fuzzy clustering indices (Chouikhi et al., 2015; Arbelaitz et al., 2013), only 5

of them were considered. These indices are implemented in the R language toolbox in

Ferraro and Giordani, 2015:

1. Partition Entropy (PE): This index measures the separation of clusters by looking

at the information entropy of the memberships values (ui),

P E(c) =
1
n

c∑
i=1

n∑
j=1

uij log2uij . (3.6)

It’s contained in the interval 0 ≤ P E ≤ log2c, with c as the number of clusters. The

minimal value of PE (0) corresponds to the optimal number of clusters.

2. Partition Coefficient (PC): It measures the "overlap" between clusters by averaging

through the squared memberships,

P C(c) =
1
n

c∑
i=1

n∑
j=1

u2
ij . (3.7)

It’s contained in the interval 1
c ≤ P C ≤ 1, with c as the number of clusters. The maxi-

mal value of PC corresponds to the optimal number of clusters.

3. Modified Partition Coefficient (MPC): It’s the PC normalized,

MPC(c) = 1− c
c − 1

(1− P C(c)), (3.8)

to be contained in 0 ≤MPC ≤ 1. As in the PC, its maximum value corresponds to the

optimal number of clusters.

4. Xie-Beni (XB): This index computes the ratio between the sum of the squared

within-cluster distances weighted by the respective memberships to the power ofm (com-

pactness of clusters), and the minimum squared distance between all pairs of prototypes

(separation of the clusters), multiply by the number of points (N ),

XB(c) =

∑c
i=1

∑n
j=1u

m
ij ||Vi −Xj ||

2

Nmin
i,j
||Vi −Vj ||2

. (3.9)

The within-cluster distances are computed with respect to the norm used in the clus-

tering algorithm. This index does not contain a maximum value, but is confined to the
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lower bound of 0, that is the optimal value. In this work, m = 2

5. Fuzzy Silhouette Index (FSI): This index is an adaptation of the Average Silhouette

Width Criterion, or Crisp Silhouette (CS), made for hard clustering algorithms. In the CS,

for each point j ∈ {1,2, ...,N }, its silhouette (sj ) it’s computed as the difference between the

average distance of j to all the other points of the cluster to which j belongs (apj), and the

average distance of j to all the points in the closest neighbouring cluster (bqj ,q , p),

sj =
bqj − apj

max{apj ,bqj}
, (3.10)

normalized by the maximum between aj and bj . In the end, CS is defined by the average

of all sj ,

CS =
1
N

N∑
j=1

sj . (3.11)

The FSI differs from the CS by not averaging the sj with an arithmetic mean, but with

a weighted average, where the weight of each term is the difference between the first (upj )

and second (uqj) largest elements in the fuzzy matrix U , to the power of α, for the each

point,

FSI =

∑N
j=1(upj −uqj )αSj∑N
j=1(upj −uqj )α

. (3.12)

The FSI is contained in 0 ≤ FSI ≤ 1. The higher the FSI value, the better is the cluster-

ing solution. In this work α = 1.

3.3.3 Visualization of Fuzzy Partitions

To get a sense of the raw data, the features distributions and characteristics, the most

common techniques from data analysis will suffice.

To visualize data in low dimensions, two dimensionality reduction techniques were

used, Principal Components Analysis (PCA) and Sammon mapping Sammon, 1969.

The first technique (PCA) focus on reducing dimensionality preserving the variances

of the data.

Consider a p-dimensional data set X. The quality of the projection of X, into a r-

dimensional space Y, r < n, obtained from PCA can be reflected by the quantity

R =

∑r
j=1(λj )2∑p
j=1(λj )2

, (3.13)

with λ as the eigenvalues of the covariance matrix. R measures the ratio of the total

variance of the data captured by the r-projection.
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Contrary to PCA, the Sammon Mapping, is a non-linear mapping that tries to preserve

the interpattern distances, and projecting it in a 2D space. Balasko et al., 2005 provides

an implementation for the Sammon mapping. This implementation in 2D, also plots the

memberships values with a contour map, of the resulting clustering solutions, for the

PCA and Sammon mapping. Figure 3.7 shows an example of both visualizations, with

the contour maps.

The discussed clustering algorithms are extremely dependent on input parameters,

so, a necessity arises on how to systematically discover a good set of parameters.

One of the most important parameters, is the number of clusters to choose, as it deeply

influences the clustering results. From this necessity, the Visual Assessment of Tendency

(VAT) was introduced by Bezdek and Hathaway, 2002. This technique serves as a visual

heuristic to inspect the cluster tendency of the data and the underlying number of clusters.

It uses an ordered dissimilarity matrix (the pair-wise Euclidean distance fo the data) to

plot the Ordered Dissimilarity Image (ODI).

Retrieving the number of clusters from the ODI is relatively easy, particularly for data

sets with well separated clusters (Hu and Hathaway, 2008). It’s only necessary to follow

the diagonal of the ODI and count the number of squared shaped dark blocks. A well

separated data set results in more noticeable squares, Figure 3.3.
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Figure 3.3: Plots for 4 different synthetic data sets and their corresponding ODI, with an
increasing difficulty in retrieving the number of clusters. Each data set is composed of 150
points, evenly distributed in 3 clusters, with each cluster having an uniform distribution.
From left to right, the clusters become closer, and the corresponding ODI becomes harder
to evaluate. In the first ODI (E) it’s easy to see the correct number of clusters. In contrast,
the last ODI (H) gives no valuable input as the number of clusters present in the data.
Even such cases, the ODI tells that the data set does not contain a clear cluster structure.

Even with the previous techniques, is not always easy to determine the correct number

of clusters, e.g. Figure 3.3. For the AA, Cutler and Breiman, 1994 suggested finding this

number a posterior by plotting the value of the Residual Sum of Squares (RSS) (Eq. 2.19)
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Figure 3.4: On the left, an artificial data set, generated according to the AA-DG. It con-
tains 3 archetypes, that are not equidistant. On the top right, the SSE plot for the artificial
data showing the flattening of the curve on the 3th archetype, which is in agreement
with the process of generation for the artificial data set. The three bottom right plots
correspond to the percentiles plots for each archetype shown in the left plot.

against the number of archetypes, as a heuristic to know how many archetypes are a good

fit for the data. As in the "knee" plot used for the PCA, it’s also necessary to look for a

flattening of the curve. Since the implementation Mørup and Hansen, 2012 was used, the

number of optimal clusters was determined by plotting the number of archetypes against

the Sum of Square Errors (SSE), Figure 3.4.

To further explore the AA results with visualizations techniques, Cutler and Breiman,

1994 also suggested the use percentile profiles to compare archetypes, and mixtures plots

to visualize the fuzzy memberships values.

Since archetypes are "extreme types", it’s exceptionally useful to analyse the composi-

tion of each individual and how they differ from each other. To that end, a bar plot can

be created, with the percentile values of each feature in an archetype as compared to the

data, hereinafter referred as the percentile plot (Figure 3.4).

Mixture plots, or simplex visualizations (Seth and Eugster, 2015) are a useful tech-

nique to help relate the entities to the archetypes, through the fuzzy memberships values

found by the AA. Cutler and Breiman, 1994 only used ternary plots (3 archetypes), but

some authors extended it to p archetypes. Seth and Eugster, 2015 provide a detailed

explanation about these visualization technique, and how this projections are possible.

Some of their approaches are used here and were implemented to add additional features

to the plots.

To build these mixtures plots, the archetypes are projected equidistantly on a circle,

forming a polygon. Then, the data points are projected as convex combinations of the

archetypes, using the fuzzy memberships values provided by the archetypal analysis.
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Figure 3.5: Top left: a mixture plot with the points coloured in function of how close they
are to the archetypes, e.g., they aim at representing the distribution of the memberships
of each point to each archetype; Top Right: A mixture plot with the plots represented
according to their higher membership value; Bottom left: a mixture plot with the points
coloured, as in the top right, and shaped according to their class; Bottom right: Mixture
plot with the points coloured according to their class and shaped according to their high-
est membership value; The data used for the mixture plots is the same as in Figure 3.4.

In these plots, the points that lie outside of the boundary defined by the polygon are

projected to its frontier, Figure 3.5. The last 3 figures in the plot can also be seen as a

transformation to crisp clustering, hardening the partition by maximum membership

value, i.e. points are assigned to the cluster of maximum belongingness. A drawback of

the mixture plot is the inability of representing solutions with only two archetypes.

However, the archetypes are not typical equidistant to each other. With the intention

of trying to observe this unconformity, Seth and Eugster, 2015 proposed to rearrange the

archetypes on a circle according to the distances in the original space. This implies an

optimal order of the vertices, according to the distance. To solve this problem, a simple

hill climbing algorithm is sufficient to find this optimal order, as normally the number of

archetypes is usually small, Figure 3.6. Note that these two plots are the same as in the C

and D in Figure 3.5, but with the archetypes rearranged.

The difference between PCA and Sammon mapping is visible in Figure 3.7, where

both projections contain the contour map for the fuzzy memberships of a Fuzzy c-Means

run.
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A
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Class2 Arc2
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Class3 Arc1
Class3 Arc2
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Figure 3.6: On the left, a mixture plot with the distances preserved and the points shaped
according to their highest membership value. On the right, a mixture plot with the
distances preserved, and with the points coloured according to their class and shaped
according to their highest membership value. Remembering how the 1st archetype is
further from the 3rd than the 2nd (Figure 3.4), these plots represent this situation with
good accuracy.
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a Synthetic data with 5 clusters.

b PC projection (R=100%). c Sammon mapping projection.

Figure 3.7: On top, an artificial data set with 400 points, and 5 clusters. The FCM was
run searching for 4 clusters, resulting in a prototype being in the middle of two clouds of
points. On the bottom left, a PC projection, where it seems as the 3 clusters are continuous.
In the bottom right, the Sammon mapping, that clearly shows this two clouds are isolated
from the third one. The clusters centers are in red in all plots.
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4
Comparing Fuzzy Proportional Membership

Algorithm with Archetypal Analysis

To accomplish the goals proposed in the beginning of the dissertation, the algorithms were

subject to a manifold of experiments, with different settings and a diverse data collection.

This chapter describes those experiments, as well as their results. It’s organized in three

sections, where each one corresponds to a different study.

The first section focused on using synthetic data, and its divided in two parts. First,

a comparative analysis of the data recovery proprieties and efficiency of the AA and the

FCPM-m algorithms. Second, using the same synthetic data but augmented with outliers,

the same analysis was made but as a measure of the of the algorithms in presence of

outliers. The FCPM-0 behaviour, in shifting prototypes to outside the space was also

studied as a possible indicator of the number of true clusters.

In the second section, the algorithms were run with real-world data and evaluated

with fuzzy internal validation indices and visualization techniques. By applying those

indices, it was possible to compare the algorithms, and observe which indices are more

suitable for each algorithm. The visualization techniques allowed to validate the results

for the AA algorithms.

In the final section, it’s explored how the initialization of the algorithms can affect their

efficacy (quality of the found partitions that it’s quantitatively evaluated by validation

indices) and efficiency (measure by the iterations needed to converge).

4.1 Comparative Study with Synthetic Data

As already stressed in the previous chapters, when studying an algorithm, it’s extremely

important to first use synthetic data with known statistical proprieties. Following this

approach, the algorithms were analysed with 82 synthetic data sets generated by the
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FCPM-DG (Section 3.1.1). These data sets are divided in three dimensionality sets, ac-

cording to the ratio (r) between the data set dimensionality (p) and number of original

prototypes (c0) (Nascimento, 2005):

- low dimensionality (r ≤ 5): with 19 data sets, r =
{

5
3 ,

15
3

}
;

- medium dimensionality (5 < r < 25): with 52 data sets, r =
{

20
3 ,

40
4 ,

50
4 ,

100
5

}
;

- high dimensionality (r ≥ 25): with 12 data sets, having r =
{

180
6

}
.

To measure the data recovery proprieties of the algorithms, i.e. their ability in retriev-

ing the originals prototypes, the dissimilarity index D (Eq. (3.5) in Section 3.3.1) between

the original DG prototypes (VOrg ) and the retrieved archetypes/prototypes, was applied.

4.1.1 Data Recovery Analysis on Synthetic Data

This experiment has two objectives: to study the ability of the AA algorithm in recovering

archetypes on multidimensional synthetic data; to compare the data recovery propri-

eties of the AA algorithm with the ones of the FCPM-0 and FCPM-2, already obtained

in Nascimento, 2005.

The AA algorithm was initialized by the Furthest Sum method (described in Sec-

tion 2.3.2). Each algorithm was run 5 times, and the results are the average of the dissim-

ilarity index D, of those 5 runs.

Table 4.1: Average Dissimilarity (D) values of AA archetypes to FCPM-DG originals VOrg
and to FCPM2, FCPM-0 prototypes.

Dimensionality AA vs VOrg AA vs FCPM-2 AA vs FCPM-0 FCPM-2 vs VOrg FCPM-0 vs VOrg
Small 0.008 0.006 0.109 0.021 0.156

Medium 0.007 0.001 0.167 0.011 0.200
High 0.006 0.000 0.217 0.005 0.228

The first column shows how the AA archetypes closely match the original ones. This

is a clear indication of the ability of the AA algorithm to retrieve extreme prototypes,

that are ideal points, and to reconstruct the original data from those retrieved ideal

clusters. The AA archetypes are also very close to the prototypes found by the FCPM-2

(Figure 4.1). This is natural, as Nascimento, 2005 derived that the FCPM-2 always finds

extreme prototypes, matching the FCPM-DG original ones, and the archetypes of the AA

are located in the convex hull of the data (Cutler and Breiman, 1994).

A close inspection to the values of the AA and FCPM-2 (first and fourth column)

allows to see that, as the dimensionality increases, the prototypes found by the FCPM-2

became closer to the originals, than the archetypes found by the AA (Figure 4.1c).

For the FCPM-0, where the prototypes are typically central points (Figure 4.1), there

is an increase in the dissimilarity, when compared to AA and FCPM-2. Also, in high

dimensional spaces, the algorithm sometimes removes one of its prototypes out of the

data space, resulting in a higher dissimilarity value.

38



4.1. COMPARATIVE STUDY WITH SYNTHETIC DATA

-2

-1

2

0

1

2

0

210-2 -1-2

Originals
AA
FCPM-2
FCPM-0

a

-2

0
-2

-1

2 1

0

0 2

1

-1

2

-2

Originals
AA
FCPM-2
FCPM-0

b

-4

-2

0

5

2

4

0
50-5 -5

Originals
AA
FCPM-2
FCPM-0

c

Figure 4.1: PC projection for the 3 dimensionalities, showing the archetypes/prototypes
found and the VOrg , for the data recovery study. In (a) for a small dimensional data set
(R=99%) (n=97, p=20, c=3). In (b) for a medium dimensional data set (R=99%) (n=318,
p=40, c=4). In (c) for a high dimensional data set (R=74%) (n=799, p=180, c=6). For the
high dimensional data sets (c), it’s possible to observe how the FCPM-2 prototypes are
closer to the originals than the AA archetypes.
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Figure 4.2: Fuzzy memberships evolution for the partitions found by the AA and FCPM-2,
for a medium dimensional data set (n=97, p=20, c=3), showing how both algorithms find
solutions that match the data generation process of the FCPM-DG.

The cluster structure and memberships values of the AA solutions match with the

generation process of the FCPM-DG, and are very similar to the solutions of the FCPM-2

(Figure 4.2).

Table 4.2: Average number iterations needed for the converge of the 3 algorithms, across
the 3 dimensionalities. Where the major and minor iterations are described in Sec-
tion 2.1.2

Dimensionality AA FCPM-0 FCPM-2
Iterations Major Minor Major Minor

Small 196 40 472 10 407
Medium 188 65 733 12 583

High 174 100 1935 34 1281
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The FCPM-m algorithms consistently have fewer major iterations than the AA algo-

rithm, Table 4.2. However its running time is higher because the current implementation

is not yet optimized. Contrary to the AA, where the number of iterations doesn’t seem to

depend on the dimensionality, the number of iterations necessary in the FCPM increases

with it. The FCPM-0 reaches the maximum number of iterations due to its behaviour of

removing extra prototypes out of the data space.

To run the algorithms for high dimensional data set (n=799, p=180, c=6, Figureº4.1c),

in a Personal Computer, with a windows 10, Intel(R) Core (TM) i5-3337U CPU @ 1.80GHz,

6Gb RAM, NVidia 630M (with 2GB dedicated memory), on 64 bit architecture (the results

are the mean of 5 runs):

- AA: 1.80 seconds for 179 iterations;

- FCPM-2: 67.41 seconds (one minute and twelve seconds) for 33 major iterations

(with 967 minor iterations);

- FCPM-0: 492.97 seconds (eighth minutes and twenty one seconds) for 83 major

iterations (with 6666 minor iterations).

4.1.2 Outliers Influence on the Clustering Solutions

After studying the behaviour of the algorithms with synthetic data, it becomes interesting

to repeat the study, in the same data, but augmented with outliers. Here, an outlier is

defined as a point that does not belong to the original data generated from the FCPM-DG,

and is far away from the center of data. The robustness of the algorithms to outliers is

measured as their ability in retrieving the original prototypes (VOrg ), i.e., their capacity

in finding cluster solutions as close as possible to the ones found in the previous study.

This implies that, not only the outliers shouldn’t be retrieved as ideal points, but also

reconstructing them from the retrieved ideal clusters should not be possible.

The 82 data sets were augmented first one, then with two outliers. The generation of

outliers followed the Interquartile Range (IQR) method (Han et al., 2017, p.554).

The first outlier was created in the following way: for each data set, each feature is

computed by summing the mean of the data feature with the corresponding standard

deviation multiplied by five. This way, it’s guaranteed that the outlier is indeed an extreme

point regarding of the considered data set. The second outlier is symmetric to the first

one, with respect to the mean, in a sense that the multiplication of the standard deviation

by five is subtracted to the mean of the data feature. Figure 4.3b contains an example of

a data set with outliers.

The study was conducted with 5 distinct parameter settings, varying the number of

outliers and the number of prototypes that the algorithms had to search. In the first

two settings the algorithms had to search for the same number of prototypes from which

the data was generated, k = c0, first with one outlier, (out = 1), then with two outliers

(out = 2). Then, they had to search for one more, k = c0 + 1, again, with one outlier first,

(out = 1), and then with two (out = 2). In the final setting, they had to search for two
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Figure 4.3: a) Boxplot for an artificial data set of small dimensionality (n=37, p=5, c=3).
On the x-axis is the indices of every feature and in the y-axis the corresponding feature
value. The red crosses indicate features that are above the 75th percentile, or bellow 25th

percentile. b) This plot is the same as a), but with the upper and lower fences discrimi-
nated. The lower and upper fences are computed from the IQR method and correspond
to 1.5 ∗ IQR, below the 25th percentile and above the 75th percentile, respectively. Two
outliers computed from the described method are also displayed, in green the first outlier
and in light blue, the second.

more, k = c0 + 2, with the data augmented with two outliers (out = 2).

All the algorithms were initialized with the Furthest Sum method and run 5 times

each. The results in Table 4.3 contains the Dissimilarity index for each setting and dimen-

sionality. Table 4.4 contains the mode and median for the number of prototypes that the

FCPM-0 shifts outside of the data space, for each different setting and dimensionality.

The results in Table 4.3 are also compared to the values in Table 4.1, that contain the

data recovery values for the data sets without outliers.

Table 4.3: Average Dissimilarity D values for the outliers experiments, with the respective
standard deviation (std).

k=c0 k=c0 + 1 k=c0 + 2
dim Out=1 Out=2 Out=1 Out=2 Out=2

AA fcpm0 fcpm2 AA fcpm0 fcpm2 AA fcpm0 fcpm2 AA fcpm0 fcpm2 AA fcpm0 fcpm2
Small (Mean) 0,344 0,775 0,281 0,434 0,579 0,407 0,013 0,326 0,074 0,310 0,650 0,552 0,013 0,434 0,012

(std) 0,300 0,284 0,251 0,343 0,293 0,341 0,006 0,322 0,136 0,147 0,356 0,091 0,013 0,366 0,006
Medium (Mean) 0,519 0,604 0,461 0,339 0,511 0,610 0,009 0,186 0,010 0,159 0,475 0,580 0,008 0,180 0,006

(std) 0,300 0,254 0,194 0,345 0,282 0,254 0,004 0,173 0,006 0,085 0,332 0,093 0,003 0,166 0,005
High (Mean) 0,475 0,430 0,486 0,265 0,625 0,683 0,006 0,174 0,002 0,048 0,292 0,490 0,006 0,260 0,003

(std) 0,210 0,254 0,025 0,306 0,184 0,021 0,001 0,096 0,001 0,019 0,129 0,028 0,001 0,213 0,001

For the AA: When k = c0, out = 1, k = c0, out = 2 and k = c0 + 1, out = 2 it usually

puts the archetype(s) near the outlier(s) (Figures 4.4, A.4), or between an original and an

outlier (Figures A.1, 4.5). Sometimes it also stops putting archetypes near the outliers

and puts them near the originals (Figure A.3).

In k = c0 + 1, out = 1 and k = c0 + 2, out = 2, when there as many extra(s) archetype(s)
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Table 4.4: Mode (round to unity) of the number of prototypes that the FCPM-0 shifts to
outside of data space.

k=c0 k=c0 + 1 k=c0 + 2
dim Out=1 Out=2 Out=1 Out=2 Out=2

Small (mode) 1 2 1 2 2
Medium (mode) 1 0 1 2 2

High (mode) 0 1 0 2 2

as the number the outliers, it always put the extra(s) archetype(s) in the outlier(s) (Fig-

ure A.6, A.7), resulting in D values similar to the ones in Table 4.1.

For the FCPM-2: In k = c0, out = 1 and k = c0, out = 2 the FCPM-2 always puts the

prototype(s) near the outlier(s) (Figure 4.4). In k = c0, out = 2, it always put at least one

prototype near an outlier (Figure A.3).

In k = c0 + 1, out = 1 and k = c0 + 2, out = 2, when there as many extra(s) archetype(s)

as the number the outliers, it always put the extra(s) prototypes(s) in the outlier(s) (Fig-

ures A.6). However, in some small dimensional data sets, it puts two of the prototypes

near the same original (Figure A.5), resulting in a high D value.

For the FCPM-0: In small and medium dimensionalities, typically shifts outside of

data space as many prototypes as the number outliers. For the k = c0, out = 1, k =

c0, out = 2 and k = c0 + 1, out = 2 settings the remaining prototypes are accommodated

between the clusters (Figure 4.4).

In the k = c0 + 1, out = 1 and k = c0 + 2, out = 2 settings, the FCPM-0 finds the true

number of clusters by shifting the prototypes.

For the high dimensional data sets, it’s only in the k = c0 + 1, out = 2 and k =

c0 + 2, out = 2 settings that it presents the behaviour of shifting as many prototypes

as outliers. In the remaining settings, when there is only one outlier, it doesn’t shift any

prototype (Figure A.2). Finally, in the presence of two outliers, it only shifts one.

In summary, for the settings where the algorithms had to search for the same number

of prototypes from which the data was generated (the 1st and 2nd , with k = c0), both the

AA and the FCPM-2 were easily influenced by the presence of outliers. From these 3

settings, it’s possible to conclude that the AA is more robust in retrieving extreme ideal

points in the presence of outliers (generated by the previously described method), than

the FCPM-2.

For the 3rd and 5th settings, where the number of prototypes that the algorithms

had to search was equal to the number of prototypes from which the data was gener-

ated plus the number of outliers, both the AA and the FCPM-2 algorithms had similar

behaviours as in the data sets without outliers. These two settings showed that both

algorithms are capable of safely retrieving extremes ideal points, as long as they have

extra(s) archetype(s)/prototype(s) to put in the outlier(s).
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Figure 4.4: Principal components projection (R=99%) for the first setting (k = c0, out = 1)
of a data set of small dimensionality (n=62, p=5, c=3). It can be observed that both the
AA and the FCPM-2 put one archetype/prototype near the outlier. One of the FCPM-0
prototypes is outside of data space and another in the middle of two clusters.
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Figure 4.5: Principal components projection (R=99%), for the fourth setting (k = c0 +
1, out = 2) of a medium dimensional data set (n=205, p=15, c=3). One of the archetypes
is between an outlier and an original. Two FCPM-2 prototypes near both outliers.

The number of iterations necessary for the AA to converge, it’s always higher in the

presence of outliers, Table 4.5, than in the study without outliers (Table 4.2). Contrary to

the previous results, the AA algorithm is now influenced by the increase of dimensionality.

This result and the high number of iterations necessary for the AA to converge, indicates

that this algorithm is sensible to outliers.

The FCPM-2 iterations are constantly low and in some settings, very close to the values

of data without outliers.

The FCPM-0 shows an increase in the number of iterations, in the small and medium

43



CHAPTER 4. COMPARING FUZZY PROPORTIONAL MEMBERSHIP

ALGORITHM WITH ARCHETYPAL ANALYSIS

Table 4.5: Average and standard deviations of iterations (round to the closest integer) by
setting, for each algorithm, in each dimensionality. Here, only the major iterations of the
FCPM are displayed.

k=c0 k=c0 + 1 k=c0 + 2
dim Out=1 Out=2 Out=1 Out=2 Out=2

AA fcpm0 fcpm2 AA fcpm0 fcpm2 AA fcpm0 fcpm2 AA fcpm0 fcpm2 AA fcpm0 fcpm2
Small (Mean) 381 97 18 318 80 28 294 89 13 324 94 19 486 100 18

(std) 136 10 21 168 32 26 126 20 4 125 13 26 41 0 3
Medium (Mean) 477 84 15 445 73 31 162 81 18 381 91 15 490 97 27

(std) 72 25 12 66 29 33 52 23 6 59 14 9 30 6 6
High (Mean) 500 75 27 454 96 20 192 90 33 388 93 33 487 94 37

(std) 0 20 1 43 8 3 20 11 0 53 7 0 19 9 0

dimensionalities. In high dimensional data sets, this algorithm doesn’t reach the maxi-

mum number of iterations, as it does with the data without outliers.

In all settings, the FCPM-2 not only has a higher efficiency in the number of iterations

than the AA, but also, the convergence process does not seem to be influenced by the

outliers.

4.2 Comparative Study with Real Data

From the previous studies with synthetic data, it was possible to observe: how the AA

algorithm is indeed capable of retrieving extreme prototypes, and how the algorithms

behaves in the presence of data augmented with outliers. Using the knowledge acquired

from these studies, the algorithms were again compared, but with real-world data. This

means that the data generation process, or its clustering structure it’s unknown. the only

information known it’s the labels, that were acquired through observation and expertise

of researchers. The comparison of the algorithm is made using 3 different measures:

(1) fuzzy internal validation indices; (2) Efficiency in convergence; (3) Data recovery

proprieties. Visualization techniques to inspect the clustering results are also applied.

To create a diverse and powerful benchmark to test the algorithms, twelve well-known

data sets from the UCI Machine Learning Repository (Lichman, 2013) were selected. It

also used the mental disorders data set (Nascimento, 2005). As the mental disorders data

set has an extreme tendency, it was counteracted by augmenting the data set with new,

less severe cases, creating the Mental disorders augmented datda set (Nascimento, 2005).

Table 4.6 summarizes this benchmark data by number of entities (n), number of fea-

tures (p), and number of distinct classes (c0). To run the algorithms, the feature corre-

sponding to the label was removed from all data sets. In all experiences, for each data set,

the algorithms were run searching for k = {c0 − 1, c0, c0 + 1} archetypes/prototypes. Each

algorithm was run 5 distinct times, from the same initial seeds, that were computed using

the Furthest Sum method. All data sets were centered and normalized by range.
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Table 4.6: Description of the data sets used.

Data set Number of entities (n) number of features (p) number of distinct classes (c0)
Bank note authentication 1372 4 2

Glass Identification 214 9 6
Indian Liver Patient 579 10 2

Iris 150 4 3/2
Mental Disorders 44 17 4

Mental Disorders augmented 80 17 4
Pima Indians Diabetes 768 8 2

Protein Localization Sites (E. Coli) 366 7 8
Seeds Kernel 210 7 3

Vehicle silhouettes 793 18 4
Wine recognition 178 13 3

Wisconsin Breast Cancer (WBC) 683 9 2
WBC Diagnostic 569 30 2
WBC Prognostic 198 32 2

4.2.1 Assessment of Clustering Solutions

The assessment of the quality of the found clustering partitions was done with the fuzzy

internal validation indices described in Section 3.3.2: Partition Entropy (PE, ↓); Partition

Coefficient (PC, ↑); Modified Partition Coefficient (MPC, ↑); Xie-Beni (XB, ↓); Fuzzy

Silhouette Index (FSI, ↑), with the direction of the arrows (↓/↑) indicating the optimal

value of the index. The values of PE index were normalized to be confined to the interval

[0,1].

For each data set, Table 4.7 presents, the averages of the five internal validation in-

dices, of the five runs. The best value of each index, for a given data set, across the

three algorithms, is highlighted in shade. The second column contains the number of

archetypes/prototypes searched by the algorithms. The number of true classes (c0) is also

highlighted in shade. The last row contains the proportion of the number of data sets

where a given index is the best, for each algorithm.

When computing the FSI value for the FCPM-0, sometimes the toolbox returns NA.

This is due to a division by zero, caused by the FCPM-0 shifting some of its prototypes to

outside the data space.

The significant differences between the proportions of each algorithm for each index,

in the last row of Table 4.7 indicate that the XB index is the more adequate for the AA

algorithm, the FSI for the FCPM-2 and the PE, PC, MPC for the FCPM-0.

These results are concordant with the clustering criterion of each algorithm. The XB

index uses the fuzzy cluster’s center of each cluster as the representative for that cluster,

when evaluating the inter-cluster separation. The FSI uses the average minimum pairwise

distance between objects in each fuzzy cluster, as the separation measure. However, both

the XB and FSI can be seen as adequate to evaluate algorithms that mine extreme ideal

points, as in 11 data sets, for both AA and FCPM-2, these indices are concordant in the

number of clusters.

As for the PE, PC, MPC, they only evaluate the membership values, valuing those

close to 0 or 1, i.e, the less fuzzy the partition is, the better score they achieve.
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Table 4.7: Validation indices values for the real-world data and their counts.

Data AA FCPM-0 FCPM-2
set k PE(↓) PC (↑) MPC(↑) FSI(↑) XB(↓) PE(↓) PC(↑) MPC(↑) FSI(↑) XB(↓) PE(↓) PC(↑) MPC(↑) FSI(↑) XB(↓)

Bank 2 0.701 0.670 0.340 0.603 0.120 0.192 0.912 0.823 0.543 0.323 0.739 0.649 0.299 0.615 0.150
Note 3 0.678 0.535 0.302 0.620 0.105 0.197 0.869 0.803 NA 0.453 0.765 0.507 0.260 0.627 0.113

5 0.461 0.648 0.560 0.650 0.197 0.438 0.635 0.544 0.277 191 0.886 0.401 0.251 0.772 0.094
Glass 6 0.422 0.628 0.553 0.647 0.193 0.324 0.727 0.672 NA 124 0.986 0.261 0.113 0.587 0.127

7 0.426 0.566 0.494 0.607 0.304 0.353 0.659 0.602 NA 166 0.948 0.248 0.123 0.554 0.278

Indian Liver 2 0.053 0.985 0.971 0.769 0.155 0.000 1.000 1.000 0.768 0.158 0.688 0.694 0.388 0.786 0.124
Patient 3 0.468 0.654 0.481 0.619 0.139 0.264 0.820 0.730 NA 0.141 0.754 0.522 0.282 0.604 0.222

Iris 2 0.605 0.726 0.452 0.841 0.069 0.106 0.953 0.906 0.839 0.081 0.498 0.775 0.551 0.859 0.068
3 0.594 0.587 0.380 0.741 0.198 0.228 0.838 0.757 NA 0.109 0.548 0.659 0.489 0.569 0.948
4 0.589 0.508 0.344 0.422 0.476 0.242 0.782 0.710 0.520 324.639 0.610 0.554 0.406 0.340 1.186

Mental 3 0.351 0.773 0.660 0.576 0.244 0.020 0.986 0.979 0.408 0.602 0.790 0.495 0.243 0.586 0.199
Disorders 4 0.359 0.712 0.615 0.594 0.167 0.162 0.860 0.813 0.522 0.356 0.797 0.416 0.221 0.596 0.133

5 0.355 0.774 0.661 0.577 0.243 0.023 0.984 0.976 0.444 0.824 0.788 0.497 0.246 0.588 0.199

Mental 3 0.530 0.633 0.449 0.496 0.177 0.137 0.910 0.865 0.442 0.472 0.818 0.473 0.209 0.521 0.204
Disorders 4 0.493 0.603 0.471 0.527 0.165 0.203 0.812 0.750 0.298 1.234 0.842 0.377 0.169 0.419 0.477

Augmented 5 0.481 0.562 0.452 0.499 0.226 0.108 0.888 0.860 0.353 0.798 0.859 0.314 0.142 0.492 0.272

Pima Indians 2 0.642 0.708 0.416 0.508 0.175 0.186 0.915 0.829 0.456 0.554 0.843 0.600 0.199 0.505 0.268
Diabetes 3 0.690 0.527 0.291 0.431 0.152 0.246 0.821 0.731 0.342 0.662 0.878 0.426 0.139 0.410 0.313

Protein 7 0,437 0,512 0,431 0,639 0,147 0,416 0,495 0,411 0,316 1,64E+27 0,813 0,293 0,175 0,560 0,682
Localization 8 0,445 0,481 0,406 0,621 0,161 0,427 0,468 0,392 0,066 101120,9 0,812 0,257 0,151 0,480 42,822

E. Coli 9 0,449 0,455 0,387 0,544 0,207 0,461 0,407 0,333 0,201 79,473 0,818 0,239 0,144 0,457 23,156

2 0.636 0.711 0.421 0.794 0.075 0.178 0.918 0.835 0.766 0.115 0.576 0.736 0.473 0.794 0.083
Seeds 3 0.621 0.581 0.372 0.690 0.173 0.186 0.880 0.820 NA 0.211 0.642 0.595 0.393 0.683 0.246

4 0.583 0.523 0.364 0.521 0.424 0.260 0.792 0.722 NA 112.158 0.677 0.501 0.334 0.368 1.793

Vehicle 3 0.633 0.574 0.361 0.584 0.194 0.173 0.889 0.833 0.464 0.643 0.774 0.503 0.255 0.588 0.250
Silhouettes 4 0.602 0.511 0.348 0.495 0.198 0.267 0.781 0.708 NA 1.009 0.821 0.394 0.192 0.563 0.204

5 0.571 0.474 0.342 0.437 0.287 0.339 0.674 0.593 0.323 7.560 0.836 0.324 0.155 0.482 4.413

Wine 2 0.557 0.748 0.497 0.545 0.188 0.089 0.959 0.919 0.467 0.479 0.784 0.635 0.269 0.561 0.202
Recognition 3 0.511 0.655 0.483 0.552 0.166 0.184 0.875 0.813 0.541 0.418 0.816 0.476 0.214 0.583 0.175

4 0.516 0.575 0.433 0.539 0.180 0.196 0.843 0.790 0.411 0.541 0.856 0.366 0.155 0.573 0.189

WisconsinBC 2 0.398 0.825 0.649 0.850 0.066 0.092 0.958 0.916 0.795 0.121 0.488 0.785 0.570 0.851 0.075
3 0.356 0.766 0.650 0.795 0.122 0.021 0.985 0.978 0.602 8.213 0.571 0.644 0.466 0.861 0.945

Wisconsin BC 2 0.615 0.720 0.440 0.706 0.097 0.183 0.916 0.833 0.644 0.252 0.751 0.653 0.306 0.676 0.143
Diagnostic 3 0.597 0.604 0.406 0.685 0.112 0.129 0.908 0.862 0.523 0.656 0.811 0.477 0.216 0.616 0.208

Wisconsin BC 2 0,695 0,675 0,350 0,456 0,181 0,040 0,981 0,963 0,291 1,075 0,880 0,577 0,154 0,427 0,288
Prognostic 3 0,668 0,543 0,315 0,433 0,154 0,148 0,892 0,839 0,288 0,740 0,879 0,424 0,136 0,409 0,258

Count 0/14 0/14 0/14 5/14 10/14 14/14 14/14 14/14 0/14 0/14 0/14 0/14 0/14 10/14 4/14

Table 4.8 summarises the best number of clusters respecting the more adequate Val-

idation Indice: Xie-Beni for AA, FSI for FCPM-2, PE, PC or MPC for FCPM-0. The last

row contains the number of times that each algorithm suggested a solution concordant

with the number of classes, c0.

Table 4.8: Suggested number of partitions by the proposed indices, for each algorithm.

Data set c0 AA FCPM-0 FCPM-2
Bank note authentication 2 3 2 3

Glass Identification 6 6 6 5
Indian Liver Patient 2 3 2 2

Iris 3/2 2 2 2
Mental Disorders 4 4 3 4

Mental Disorders augmented 4 4 3 3
Pima Indians Diabetes 2 3 2 2

Protein Localization Sites (E. Coli) 8 7 7 7
Seeds Kernel 3 2 2 2

Vehicle silhouettes 4 3 3 3
Wine recognition 3 3 2 3

Wisconsin Breast Cancer (WBC) 2 2 3 3
WBC Diagnostic 2 2 3 2
WBC Prognostic 2 3 2 2

Number of times k = c0 7/14 6/14 7/14

No algorithm seems capable of systematically find solutions consistent with the num-

ber of labels in the data sets, with the suggested validation indices. However, these
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numbers by themselves do not allow to conclude anything for two reasons: First, to

systematically analyse an algorithm regarding the labels of the data, it’s necessary a com-

prehensive study with external validation indices, this is not done here; Second, there is

no imposition regarding the matching of the cluster structure with the labels of the data

set. One comes from the "natural" organization of the data, and the other from human

expertise.

Given the good fit of each index to the algorithms, there would be no advantage in

exploring fusion strategies for the validation of the algorithms.

Table 4.9 contains the iterations that each algorithm needed to converge for each real-

world data set. In shade, is a comparison between the AA and FCPM-2, to highlight the

algorithm with less iterations. The results presented allow for a relation with the results

in Table 4.2. For the FCPM algorithms, the number of iterations is directly related to

goodness of results, and always low, whereas in the AA, there doesn’t seem to exist a

relation.

Table 4.9: Iterations of each algorithm for each data set.

Data AA FCPM-0 FCPM-2
set k Iterations Major Minor Major Minor

Bank Note 2 406 100 5632 18 478
c0 = 2 3 260 100 5516 92 1707

Glass 5 149 100 9498 34 1722
c0 = 6 6 121 100 9509 48 1911

7 81 100 10000 57 1485

Indian Liver Patient 2 10 4 41 11 428
c0 = 2 3 500 100 704 14 701

Iris 2 182 11 704 9 166
c0 = 3/2 3 202 100 4030 13 646

4 127 100 10000 23 1622

Mental 3 125 15 1505 15 315
Disorders 4 51 100 8289 29 1343
c0 = 4 5 65 100 8452 90 2534

Mental Disorders 3 140 68 4294 12 235
Augmented 4 62 84 8400 30 1405
c0 = 4 5 61 79 7880 46 2303

Pima Indian Diabetes 2 356 26 1667 21 825
c0 = 2 3 190 69 6900 46 1437

Protein Localization 7 221 100 10000 61 5835
E. Coli 8 76 100 10000 58 2983
c0 = 8 9 127 100 10000 40 2849

Seeds 2 354 8 211 9 200
c0 = 3 3 413 100 2534 19 1479

4 222 100 8439 20 1562

Vehicle 3 368 84 4627 13 707
Silhouettes 4 500 100 8400 23 1189
c0 = 4 5 235 100 1000 28 1825

Wine 2 291 28 2249 13 230
Recognition 3 79 68 2294 18 479

c0 = 3 4 84 83 5370 18 705

WisconsinBC 2 97 12 120 9 298
c0 = 2 3 462 6 580 21 1020

WBC Diagnostic 2 209 22 183 12 495
c0 = 2 3 155 18 4320 22 915

WBC Prognostic 2 245 11 1060 26 537
c0 = 2 3 185 100 10000 29 1042
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4.2.2 Data Recovery Analysis on Real Data

To study the data recovery proprieties of the algorithms with real data, it’s first necessary

to select the "ideal" points, that will serve as the reference prototypes (VOrg ) to measure

the data recovery ability of the algorithms by dissimilarity index D (Eq. (3.5)).

To find such points, each data set is partitioned according to its labels, creating c0 dis-

tinct groups. According to the type of prototypes generated by each algorithm (extreme

points in case of AA and FCPM-2, and central points in case of FCPM-0), the c0 reference

prototypes defined for AA and FCPM-2 are those in each cluster of the ground partition

that are furthest way from the grand mean of the data, creating artificial extreme points.

For the FCPM-0, they are the centroid of each cluster of the ground partition.

Table 4.10: Data recovery of the real data, using the dissimilarity index D. Each result is
the mean of 5 runs.

Data set c0 AA FCPM-2 FCPM-0

Bank Note 2 0,369 0,425 0,463

Glass Data 6 0,066 0,001 0,522

Indian Liver Patient 2 0,745 0,773 0,841

Iris Data 3/2 0,369 0,293 0,731

Mental Disorders 4 0,144 0,147 0,187

Mental Disorders Augmented 4 0,249 0,222 0,224

Pima Indian Diabetes 2 0,946 0,977 0,475

Protein Localization E. Coli 8 0,177 0,474 0,550

Seeds 3 0,056 0,061 0,979

Vehicle Silhouettes 4 0,436 0,167 0,978

Wine Recognition 3 0,351 0,334 0,610

WisconsinBC 2 0,198 0,228 0,007

WBC Diagnostic 2 0,568 0,677 0,042

WBC Prognostic 2 0,885 0,963 0,552

Table 4.10 present the results of applying the dissimilarity index to the select refer-

enced prototypes. It’s easy to see as the FCPM-0 and FCPM-2 algorithms are better in the

data recovery with real data than the AA algorithm.

In the Mental Disorders Augmented, it’s also interesting to observe how, despite its

extreme tendency being contradicted, the FCPM-0 and FCPM-2 find the best results.

4.2.3 Visualization and Interpretation of Clustering Results

The visualization techniques presented in Section 3.3.3 are explored here to inspect the

clustering results and visualize the AA clustering solutions of the 14 data sets. Due to the

high number of data sets, only three are presented here, the Wisconsin Breast Cancer, the

Mental Disorders and the Seeds Identification data set. The remaining can be visualized

in Appendix B.

The Wisconsin Breast Cancer (n = 683, p = 9, c0 = 2) aims at tumour classification and

has two classes: benign and malign. From Table 4.8: the XB in AA points to 2 clusters;
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the PE, PC, MPC in the FCPM-0 and the FSI in the FCPM-2, to 3 clusters.

The SSE plot (Figure 4.6) is concordant with the suggested number of clusters for the

AA, and the VAT with the suggested number for the FCPM-0 and FCPM-2.
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Figure 4.6: Plots for the Wisconsin Breast Cancer data set to inspect the number of clusters
present. a) the VAT plot indicating the presence of one big cluster, and two smalls ones.
b) the SSE plot indicating 2 clusters.

The archetypes found by the AA algorithm, for k = 2 represent clear profiles of the

tumours, Figure 4.7b.
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Figure 4.7: Plots for the Wisconsin Breast Cancer data set after the clustering process
with k=2. On the left, a principal components projection (R=98%) with the archetype-
s/prototypes found. It shows how close the AA archetypes and the FCPM-2 prototypes
are. On the right, the percentile plots for the 2 archetypes, with the first tumour as a
benign tumour and the second as a malign one

For k = 3 the algorithm finds a new profile, however, its true meaning is unknown,

Figure 4.8b. It’s definitely a representation for a malign tumour, but only an expert could

interpret its significance.

In this example, it’s easy to understand how the proprieties of the AA can be of

importance for medical diagnosticians. The archetypes are faithful representations of

patients with, or without tumours. And each point, being combination of those two

profiles, represented by its fuzzy membership, allows the physician to closely relate
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Figure 4.8: Plots for the Wisconsin Breast Cancer data set after the clustering process with
k=3. The top plot is a principal components projection (R=98%) with the archetypes/pro-
totypes found, with two of the FCPM-2 prototypes close to each other. On bottom left,
the percentile plots for the 3 archetypes. It contains a new profile, when compared with
k=2, alongside the two profiles that were already discovered for k = 2. On the bottom
right, the mixture plot with the archetypes distances preserved and the labels: Blue for
benign and red for malign. The 2nd and 3rd successfully identifying almost all malign
patients.

its patients to the profiles. More importantly, the set of features most discriminant in

each archetype gives the possibility to extract valuable information, such as the stage of

the tumour, its aggressiveness, or its classification, thus allowing the physician to craft

detailed treatment plans for each patient.

The Mental Disorders data set (n = 44, p = 17, c0 = 4), contains 44 patients, with

17 psychosomatic features (h1 − h17), evenly distributed in 4 distinct mental disorders:

depressed (D), maniac (M), simple schizophrenic (Ss) and paranoid schizophrenic (Sp).

Using the suggested indices, the AA and FCPM-2 algorithms points to 4 clusters, and the
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FCPM-0 to 3. The SSE plot (Figure 4.9) is concordant with the AA and FCPM-2.
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Figure 4.9: Plots for the Mental Disorders data set to inspect the number of clusters
present. On the left, the VAT plot with the ODI very blurry. However it’s still possible to
identify two faint boxes. On the right, the SSE plot clearly indicating 4 clusters.

In Nascimento, 2005 is proven that this data set contains a cluster structure, where

"each disease is characterised by ’archetypal patients’ that show a pattern of extreme

psychosomatic features values defining a syndrome of mental conditions (...)"(Nascimento,

2005, p.120). These "archetypal patients" and extreme features are now analysed in the

context of AA (Figure 4.10). From the percentile plot it’s possible to identify the features

that define each subset: D − {h5,h9,h13};M − {h8,h17};Ss − {h3,h16};Sp − {h8,h11,h15}.
Even with the data set augmented with less severe cases (Figure B.9d), these subset of

features are still present, although less pronounced.

The Seeds Identification Kernel data set (n = 366, p = 7, c0 = 3), contains kernels

belonging to three different varieties of wheat: Kama, Rosa and Canadian. All three

algorithms indicate the presence of 2 clusters in the data. None of the algorithms are

concordant with the suggested number by the VAT and SSE (Figure 4.11).

The archetypes for k = 2 are two distinct profiles for the seeds (Figure 4.12b).

Although the XB index indicates 2 clusters, the solution with 3 archetypes also proves

to be good (Figure 4.13c)
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Figure 4.10: Plots for the Mental Disorders data after the clustering process, with k=4. On
the top, the principal components projection (R=98%) with the archetypes/prototypes
found. On the bottom left, the percentile plot with a threshold on the 90th percentile.
On the bottom right, the mixture plot for the archetypes for k=4, indicating how the AA
successfully identified the patients condition.
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Figure 4.11: Plots for the Seeds Kernel data set to inspect the number of clusters present.
On the left, the VAT, that is very blurry, not containing well-defined blocks. This suggests
the lack of a cluster structure in the data, i.e., the clusters are not well separated. On the
right, the SSE suggesting 3 clusters
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Figure 4.12: Plots for the Seeds Kernel data with k=2. On the left, a principal components
projection (R=99%) with the archetypes/prototypes found for k=2. On the right, the
percentile plot k=2. One of the archetypes has almost all the features in 90th percentile
and the other with almost all below the 20th, showing that they are opposites. This is
expected, as the archetypes must lie on the convex hull of the data.
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Figure 4.13: Plots for the Seeds Kernel data with k=3. On the top, the PC projection
(R=99%) with the archetypes/prototypes found for k=3. Here, one of the archetype shifts,
to accommodate the new one. On the bottom left, the percentile plot for k=3. The first
and second archetypes (Figure 4.13b) are very similar to the founds with k = 2, but with
the second archetype being less pronounced in its features. On the bottom right, the
mixture plot for k=3, with the archetypes distances preserved and the labels: Blue for
Kama, green for Rosa, and red for Canadian. It shoows the good results of the AA for
k = 3 in profiling the seeds and identifying the correct labels.
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4.3 Comparing Initialization Strategies for AA and FCPM

In order to further explore the proprieties of an algorithm, it’s necessary to study its be-

haviour with different initializations, in term of efficacy (values of indices) and efficiency

(iterations necessary to converge). The methods use to initialize the algorithms are the

ones described in 3.2.

The dissimilarity index D, is used to measure the distance of the found archetype-

s/prototypes between the solutions of two different initializations methods. For the glass

data set, where c0 = 6, and the IAP found 3 clusters, the algorithms had to be run again

for k = 3.

The results of this experimental study are organized as follows:

1. One section for each algorithm. In each section, the two versions of the IAP and

the IFP are compared, individually with the FS;

2. In each section, there are four tables. One for each type of initialization, to be

compared with the FS, and a last one with a summary of all three;

3. Each of the first three tables contains the name of the data set, the dissimilarity

index D, the number of iterations and the validation indices values for both initializations.

For the IAP (s ≥ 0.05) and IFP (s ≥ 0.05), the second column contains the number of found

clusters by the IAP. For the IAP (k == c0), this number is the number of classes of the

data set. The highlighted values correspond to the best values in the respective data set.

In the last row, is the proportion of the best value for each measure. For the IAP (s ≥ 0.05)

and the IFP (s ≥ 0.05), last row also contains the proportion of data sets where the k

discovered by the IAP or IFP matches the number of labels of the data set, c0. For each

algorithm, the evaluation is done with the indices proposed on Section 4.2.1;

4. The fourth table contains the last row of each the previous 3 tables, with proportions

of the best values.

4.3.1 Comparing initializations on AA

Table 4.11 contain the results for the comparison between the FS and IAP (s ≥ 0.05).

Except for the Mental Disorders Augmented, all the solutions are of equal efficacy. This

is also proven by the D value, that is constantly null. The FS initialization has a higher

efficiency, as in 8 of the data sets it had fewer iterations.

The analysis of Table 4.12 (FS vs IAP (k == c0)), is similar to the previous setting. Both

initializations have equal efficacy, again, proven by the D measure. The only exceptions

being on the Glass identification and Protein location data sets, where the FS achieves

significant lower values, and the distance (D) between the solutions is at its maximum.

The initialization by FS also has a higher efficiency, as in 9 of the data sets it had fewer
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Table 4.11: Comparing the FS with IAP (s ≥ 0.05) in the AA algorithm. The k represents
the number of suggested clusters by the IAP.

Data IAP FS IAP (s ≥ 0.05)
Set k D Iterations XB (↓) Iterations XB (↓)

Bank (c0 = 2) 3 0 260 0.105 183 0.105
Glass (c0 = 6) 3 0 324 0.118 439 0.118

Indian Liver (c0 = 2) 3 0 500 0.139 500 0.138
Iris (c0 = 3/2) 2 0 182 0.069 438 0.069

Mental (c0 = 4) 4 0 51 0.167 68 0.166
Mental Aug (c0 = 4) 3 0.182 140 0.177 110 0.192
Pima indian (c0 = 2) 2 0 356 0.175 497 0.178

Protein location (c0 = 8) 4 0 119 0.125 181 0.126
Seeds (c0 = 3) 2 0 354 0.075 252 0.075

Vehicle (c0 = 4) 3 0 140 0.194 341 0.194
Wine (c0 = 3) 3 0 79 0.166 84 0.166

WisconsinBC (c0 = 2) 2 0 97 0.066 99 0.066
WBC Diag (c0 = 2) 2 0 209 0.097 205 0.097
WBC Prog (c0 = 2) 3 0 185 0.154 160 0.154

Count 6 8 4 4 1

iterations.

Table 4.12: Comparing the FS with IAP (k == c0) in the AA algorithm.

Data FS IAP (k == c0)
Set k D Iterations XB (↓) Iterations XB (↓)

Bank (c0 = 2) 2 0 406 0.120 441 0.120
Glass (c0 = 6) 6 1 121 0.193 166 0.310

Indian Liver (c0 = 2) 2 0 10 0.155 18 0.155
Iris (c0 = 3/2) 3 0 202 0.198 133 0.198

Mental (c0 = 4) 4 0 51 0.167 68 0.166
Mental Aug (c0 = 4) 4 0 62 0.165 62 0.165
Pima indian (c0 = 2) 2 0 356 0.175 497 0.178

Protein location (c0 = 8) 8 1 76 0.161 243 0.213
Seeds (c0 = 3) 3 0 413 0.173 195 0.173

Vehicle (c0 = 4) 4 0 62 0.198 500 0.198
Wine (c0 = 3) 3 0 79 0.166 88 0.166

WisconsinBC (c0 = 2) 2 0 97 0.066 83 0.066
WBC Diag (c0 = 2) 2 0 209 0.097 205 0.097
WBC Prog (c0 = 2) 2 0 245 0.181 303 0.181

Count 9 3 5 1

For the FS vs IFP (s ≥ 0.05) (Table 4.13), the results are different from the preceding

settings. The efficacy is very similar, with the FS performing slightly better on three

data sets. However, in two of those data sets, the difference is of the order of 0,001, and

therefore is non-significant. In this setting, both initializations have equal efficiency, with

each initialization being better than the other one in 7 data sets.
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Table 4.13: Comparing the FS with IFP (s ≥ 0.05) in the AA algorithm. The k represents
the number of suggested clusters by the IFP.

Data IFP FS IFP (s ≥ 0.05)
Set k D Iterations XB (↓) Iterations XB (↓)

Bank (c0 = 2) 3 0 260 0.105 284 0.105
Glass (c0 = 6) 3 0 324 0.118 397 0.118

Indian Liver (c0 = 2) 3 0 500 0.139 479 0.139
Iris (c0 = 3/2) 2 0 182 0.069 183 0.069

Mental (c0 = 4) 4 0 51 0.167 45 0.167
Mental Aug (c0 = 4) 3 0.182 140 0.177 106 0.192
Pima indian (c0 = 2) 2 0 356 0.175 331 0.175

Protein location (c0 = 8) 4 0 119 0.125 133 0.126
Seeds (c0 = 3) 2 0 354 0.075 265 0.075

Vehicle (c0 = 4) 3 0 140 0.194 399 0.195
Wine (c0 = 3) 3 0 79 0.166 89 0.166

WisconsinBC (c0 = 2) 2 0 97 0.066 84 0.066
WBC Diag (c0 = 2) 2 0 209 0.097 203 0.097
WBC Prog (c0 = 2) 3 0 185 0.154 203 0.154

Count 6 7 3 7 0

Table 4.14 contains the summary of the proportions of the best values, for each mea-

sure. In most settings, the difference between the solutions is minimal, with most of the

times having D = 0. When there is a difference in the solutions, the FS initialization leads

to better XB values. Regarding the efficiency, in the first two settings, where the IAP

returns the seeds as averages of the clusters, the FS always has fewer iterations. However,

in the last setting, where the seeds are extremes, there is a tie between them. This is a

strong suggestion on the advantage of using points located on the boundary of the data

as seeds to improve the efficiency, without influencing the efficacy, for this algorithm.

Another evidence is how the IFP (s ≥ 0.05) (Table 4.14), in 7 of the data sets has less

iterations, contrasting to the 4 data sets in IAP (s ≥ 0.05) (Table 4.14). These results are

expected given the location of the archetypes in the convex hull.

Table 4.14: Summary of the counts from the previous tables for the AA.

FS IAP
Iterations XB (↓) Iterations XB (↓) IAP type

8 1 4 0 IAP (s ≥ 0.05)
9 3 5 1 AP (k == c0)
7 3 7 0 IFP (s ≥ 0.05)

4.3.2 Comparing initializations on FCPM-2

For the FCPM-2 initialized with the AP (s ≥ 0.05) (Table 4.15), the solutions are also very

similar, with the mental disorders augmented being the exception. For the efficacy, there

isn’t a significant difference between the solutions. In the 6 of the data sets with different

FSI values, that difference its only by 0.001 in 5 of those cases. Regarding the efficiency,
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the IAP is better, as in 10 of the data sets it has fewer major iterations, and in 11, fewer

minor.

Table 4.15: Comparing the FS with IAP (s ≥ 0.05) in the FCPM-2 algorithm. The k
represents the number of suggested clusters by the IAP.

Data IAP FS IAP (s ≥ 0.05)
Set k D Major Minor FSI (↑) Major Minor FSI (↑)

Bank (c0 = 2) 3 0.001 92 1707 0.627 92 2462 0.626
Glass (c0 = 6) 3 0 19 855 0.589 13 518 0.588

Indian Liver (c0 = 2) 3 0 14 701 0.604 14 533 0.604
Iris (c0 = 3/2) 2 0 9 166 0.859 7 156 0.859

Mental (c0 = 4) 4 0 29 1343 0.596 16 464 0.596
Mental Aug (c0 = 4) 3 1 12 235 0.521 34 701 0.510
Pima indian (c0 = 2) 2 0 21 825 0.505 11 346 0.505

Protein location (c0 = 8) 4 0 26 1401 0.699 17 542 0.699
Seeds (c0 = 3) 2 0 9 200 0.794 7 170 0.794

Vehicle (c0 = 4) 3 0 12 235 0.588 14 856 0.589
Wine (c0 = 3) 3 0 18 479 0.583 14 354 0.583

WisconsinBC (c0 = 2) 2 0 9 298 0.851 8 234 0.850
WBC Diag (c0 = 2) 2 0 12 495 0.676 10 294 0.675
WBC Prog (c0 = 2) 3 0 29 1042 0.409 15 497 0.408

Count 6 2 3 6 10 11 1

For the FS vs IAP (k == c0) (Table 4.16), the later has better results both in efficacy and

efficiency. With 6 data sets having better FSI values, and 10 with less major and minor

iterations. Also, in this setting there is more divergence between the solutions, with 4

data sets having high D values, where the IAP (k == c0) constantly obtains better FSI

values, with a significant difference from the FS.

As in the IAP (s ≥ 0.0)5 (Table 4.15), the solutions between the IFP (s ≥ 0.05) (Ta-

ble 4.17) and the FS are very similar, with the Augmented Mental Disorders data set

having again, D , 0. Almost all data sets have the same values for the FSI in both initial-

izations. In two of the data sets, the FS achieves higher values by a significant margin. It’s

also noteworthy, in the Glass data set, a peculiar behaviour of different FSI values, but

D = 0.

The IAP initialization is also more efficient, with 7 and 8 data sets having fewer itera-

tions, for the major and minor, respectively.

As shown in Table 4.18 all 3 IAP versions had a higher efficiency, by always having

less iterations. As for the efficacy, the FS was better than IAP (s ≥ 0.05) and IFP (s ≥ 0.05),

despite their solutions being very similar. However, the FCPM-2 had better FSI values

when initialized with the IAP (k == c0), than the FS. This suggests that, for the FCPM-2,

the IAP is more suitable when the algorithm must find as many clusters as the labels of
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Table 4.16: Comparing the FS with IAP (k == c0) in the FCPM-2 algorithm.

Data FS IAP (k == c0)
Set k D Major Minor FSI (↑) Major Minor FSI (↑)

Bank (c0 = 2) 2 0 18 478 0.615 12 382 0.615
Glass (c0 = 6) 6 1 48 1911 0.587 65 3450 0.654

Indian Liver (c0 = 2) 2 0 11 428 0.786 10 251 0.786
Iris (c0 = 3/2) 3 1 13 646 0.569 45 4089 0.759

Mental (c0 = 4) 4 0 29 1343 0.596 16 464 0.596
Mental Aug (c0 = 4) 4 0.159 30 1405 0.419 27 939 0.529
Pima indian (c0 = 2) 2 0 21 825 0.505 11 346 0.505

Protein location (c0 = 8) 8 1 58 2983 0.480 42 3035 0.530
Seeds (c0 = 3) 3 0.001 19 1479 0.683 27 2001 0.689

Vehicle (c0 = 4) 4 0.002 30 1405 0.563 46 998 0.580
Wine (c0 = 3) 3 0 18 479 0.583 13 465 0.583

WisconsinBC (c0 = 2) 2 0 9 298 0.851 10 325 0.850
WBC Diag (c0 = 2) 2 0 12 495 0.676 10 294 0.675
WBC Prog (c0 = 2) 2 0 26 538 0.427 20 400 0.427

Count 5 5 1 9 9 6

Table 4.17: Comparing the FS with IFP (s ≥ 0.05) in the FCPM-2 algorithm. The k repre-
sents the number of suggested clusters by the IFP.

Data IFP FS IFP (s ≥ 0.05)
Set k D Major Minor FSI (↑) Major Minor FSI (↑)

Bank (c0 = 2) 3 0 92 1707 0.627 87 1571 0.627
Glass (c0 = 6) 3 0 19 855 0.589 16 1073 0.306

Indian Liver (c0 = 2) 3 0 14 701 0.604 20 878 0.604
Iris (c0 = 3/2) 2 0 9 166 0.859 9 165 0.859

Mental (c0 = 4) 4 0 29 1343 0.596 18 450 0.596
Mental Aug (c0 = 4) 3 1 12 235 0.521 34 670 0.510
Pima indian (c0 = 2) 2 0 21 825 0.505 24 1181 0.505

Protein location (c0 = 8) 4 0 26 1401 0.699 21 781 0.699
Seeds (c0 = 3) 2 0 9 200 0.794 7 173 0.794

Vehicle (c0 = 4) 3 0 12 235 0.588 17 946 0.589
Wine (c0 = 3) 3 0 18 479 0.583 11 345 0.583

WisconsinBC (c0 = 2) 2 0 9 298 0.851 6 291 0.851
WBC Diag (c0 = 2) 2 0 12 495 0.676 13 529 0.675
WBC Prog (c0 = 2) 3 0 29 1042 0.409 21 685 0.409

Count 6 5 6 3 7 8 1

the data set.

4.3.3 Comparing initializations on FCPM-0

In the FCPM-0, for the FS vs IAP (s ≥ 0.05) (Table 4.19), the FS has a higher efficacy, as

in 6 data sets for the PE, and 5 for the PC and MP, it has better values. For the efficiency,

the IAP has fewer iterations, both in major and minor, in 7 and 12 data sets respectively.
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Table 4.18: Summary of the counts from the previous tables for the FCPM-2.

FS IAP
Major Minor FSI (↑) Major Minor FSI (↑) IAP type

2 3 6 10 11 1 IAP (s ≥ 0.05)
5 5 1 9 9 6 IAP (k == c0)
5 6 3 7 8 1 IFP (s ≥ 0.05)

In this setting, contrary to the previous experiments, several solutions are different, with

D , 0 in 9 data sets.

Table 4.19: Comparing the FS with IAP (s ≥ 0.05) in the FCPM-0 algorithm. The k
represents the number of suggested clusters by the IAP.

Data IAP FS IAP (s ≥ 0.05)
Set k D Major Minor PE (↓) PC (↑) MPC (↑) Major Minor PE (↓) PC (↑) MPC (↑)

Bank (c0 = 2) 3 0.051 100 5516 0.197 0.869 0.803 100 3458 0.185 0.877 0.815
Glass (c0 = 6) 3 0.601 51 8209 0.159 0.893 0.839 14 1360 0.172 0.872 0.808

Indian Liver (c0 = 2) 3 0.004 100 704 0.264 0.820 0.730 100 523 0.280 0.806 0.709
Iris (c0 = 3/2) 2 0 11 704 0.106 0.953 0.906 7 303 0.106 0.953 0.906

Mental (c0 = 4) 4 0.214 100 8289 0.162 0.860 0.813 100 10000 0.141 0.873 0.831
Mental Aug (c0 = 4) 3 0.480 68 4294 0.137 0.910 0.865 100 1367 0.139 0.914 0.870
Pima indian (c0 = 2) 2 0 26 1667 0.186 0.915 0.829 10 134 0.186 0.915 0.829

Protein location (c0 = 8) 4 1 56 5640 0.181 0.840 0.787 100 10000 0.209 0.828 0.771
Seeds (c0 = 3) 2 0 8 211 0.178 0.918 0.835 8 200 0.178 0.918 0.835

Vehicle (c0 = 4) 3 0.635 68 4294 0.173 0.889 0.833 100 2379 0.157 0.904 0.855
Wine (c0 = 3) 3 0.600 68 2294 0.184 0.875 0.813 18 1760 0.196 0.859 0.788

WisconsinBC (c0 = 2) 2 0 12 120 0.092 0.958 0.916 8 87 0.092 0.958 0.916
WBC Diag (c0 = 2) 2 0 22 183 0.183 0.916 0.833 6 70 0.183 0.916 0.833
WBC Prog (c0 = 2) 3 0.057 100 10000 0.148 0.892 0.839 48 4560 0.213 0.845 0.768

Count 6 3 2 6 5 5 7 12 3 4 4

When the FCPM-0 is initialized with IAP (k == c0) (Table 4.20), it has a higher efficacy,

in 6 data sets. For the major iterations, the FS has 4 data sets with fewer iterations, against

the 3 of the IAP. Regarding the minor iterations, it’s the opposite situation, with the IAP

having 7 data sets with less iterations, and the FS only 6. Again, most of the solutions are

different, with 10 data sets having D , 0.

The solutions of the IAP _M S ≥ 0.05 (Table 4.21) initializations are usually better. In

efficacy, for more than half of data sets it obtains better values for the validation indices.

Regarding the efficiency, the IAP obtains fewer major iterations in 5 data sets, and in 7

data sets, fewer minor. Again, almost all data sets have different solutions.

For the FCPM-0, as in the FCPM-2, the IAP (k == c0) is the more suitable choice

when there is the need to find as many clusters as the labels of the data set (Table 4.22).

Otherwise, the IFP (s ≥ 0.05) is a better choice. Not only has a higher efficacy and effi-

ciency than the FS, but also has a higher efficacy then its original version, IAP (s ≥ 0.05).

Given the tendency of the FCPM-0 in finding more central prototypes, these results were

unexpected.
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Table 4.20: Comparing the FS with IAP (k == c0) in the FCPM-0 algorithm.

Data FS IAP (k == c0)
Set k D Major Minor PE (↓) PC (↑) MPC (↑) Major Minor PE (↓) PC (↑) MPC (↑)

Bank (c0 = 2) 2 0.003 100 5632 0.192 0.912 0.823 100 5786 0.246 0.886 0.772
Glass (c0 = 6) 6 1 100 9509 0.324 0.727 0.672 100 9893 0.280 0.730 0.676

Indian Liver (c0 = 2) 2 0 4 41 0.000 1.000 1.000 4 121 0.000 1.000 1.000
Iris (c0 = 3/2) 3 1 100 4030 0.228 0.838 0.757 100 1697 0.139 0.917 0.875

Mental (c0 = 4) 4 0.214 100 8289 0.162 0.860 0.813 100 10000 0.141 0.873 0.831
Mental Aug (c0 = 4) 4 0.653 84 8400 0.203 0.812 0.750 100 5755 0.185 0.848 0.797
Pima indian (c0 = 2) 2 0 26 1667 0.186 0.915 0.829 10 134 0.186 0.915 0.829

Protein location (c0 = 8) 8 1 100 10000 0.427 0.468 0.392 100 10000 0.454 0.451 0.372
Seeds (c0 = 3) 3 0.006 100 2534 0.186 0.880 0.820 100 1826 0.182 0.883 0.824

Vehicle (c0 = 4) 4 1 84 8400 0.267 0.781 0.708 100 10000 0.355 0.676 0.568
Wine (c0 = 3) 3 0.626 68 2294 0.184 0.875 0.813 73 7340 0.154 0.891 0.836

WisconsinBC (c0 = 2) 2 0 12 120 0.092 0.958 0.916 11 87 0.092 0.958 0.916
WBC Diag (c0 = 2) 2 0 22 183 0.183 0.916 0.833 6 70 0.183 0.916 0.833
WBC Prog (c0 = 2) 2 0.304 11 1060 0.040 0.981 0.963 21 396 0.251 0.883 0.766

Count 4 6 4 4 4 3 7 6 6 6

Table 4.21: Comparing the FS with IFP (s ≥ 0.05) in the FCPM-0 algorithm. The k
represents the number of suggested clusters by the IFP.

Data IFP FS IFP (s ≥ 0.05)
Set k D Major Minor PE (↓) PC (↑) MPC (↑) Major Minor PE (↓) PC (↑) MPC (↑)

Bank (c0 = 2) 3 0.228 100 5516 0.197 0.869 0.803 100 5857 0.203 0.864 0.796
Glass (c0 = 6) 3 1 51 8209 0.159 0.893 0.839 19 1883 0.122 0.910 0.864

Indian Liver (c0 = 2) 3 0.005 100 704 0.264 0.820 0.730 100 865 0.248 0.834 0.751
Iris (c0 = 3/2) 2 0.015 11 704 0.106 0.953 0.906 9 564 0.102 0.954 0.909

Mental (c0 = 4) 4 0.608 100 8289 0.162 0.860 0.813 100 8241 0.141 0.873 0.830
Mental Aug (c0 = 4) 3 0.477 68 4294 0.137 0.910 0.865 100 1679 0.140 0.913 0.870
Pima indian (c0 = 2) 2 0 26 1667 0.186 0.915 0.829 17 839 0.186 0.915 0.829

Protein location (c0 = 8) 4 1 56 5640 0.181 0.840 0.787 100 10000 0.211 0.827 0.770
Seeds (c0 = 3) 2 0.003 8 211 0.178 0.918 0.835 12 577 0.165 0.924 0.848

Vehicle (c0 = 4) 3 0.640 68 4294 0.173 0.889 0.833 100 2011 0.155 0.905 0.857
Wine (c0 = 3) 3 0.600 68 2294 0.184 0.875 0.813 35 3580 0.156 0.887 0.830

WisconsinBC (c0 = 2) 2 0 12 120 0.092 0.958 0.916 12 129 0.092 0.958 0.916
WBC Diag (c0 = 2) 2 0 22 183 0.183 0.916 0.833 13 159 0.183 0.916 0.833
WBC Prog (c0 = 2) 3 0.037 100 10000 0.148 0.892 0.839 100 10000 0.188 0.864 0.796

Count 6 4 6 4 3 3 5 7 7 8 8

Table 4.22: Summary of the counts from the previous tables for the FCPM-0.

FS IAP
Major Minor PE (↓) PC (↑) MPC (↑) Major Minor PE (↓) PC (↑) MPC (↑) IAP type

3 2 6 5 5 7 12 3 4 4 IAP (s ≥ 0.05)
4 6 4 4 4 3 7 6 6 6 IAP (k == c0)
4 6 4 3 3 5 7 7 8 8 IFP (s ≥ 0.05)

4.3.4 Summary

It’s now clear how the behaviour of the algorithms varies according to different initial-

izations. For the AA, it was seen a significant benefit in initializing the algorithm using

extreme points as seeds. This was somewhat expected due to the intrinsic definition of

an archetype. Regarding the FCPM-m, it was observed that different objectives benefits

from distinct initializations, i.e., if the desire is to match the number of clusters with the

the number of labels, is better to use the IAP solution. It’s also possible to conclude that

the FCPM-0 also benefits from extreme points as seeds.
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5
Conclusions and Future Work

This work is an attempt to experimentally analyse a version of Archetypal Analysis, FS-

AA, in the framework of fuzzy clustering, considering the Fuzzy Proportional Member-

ship and the following aspects:

(i) Analysis of Cluster Structure Recovery - this study is conducted assuming no prob-

abilistic distribution on the data sets. The diverse collection of synthetic data sets taken

from the FCPM Data Generator covering small, intermediate, and high dimensional data

on data recovery is, to the best of our knowledge, the first study with a proper data gen-

erator showing how AA is able to reconstruct the archetypes working well with high

dimensional data. This also shows how FS-AA is compatible with FCPM-2 model. The

dissimilarity data recovery index D proved to be effective also for AA.

(ii) Assessing the quality of AA partitions - the popular fuzzy validation indices se-

lected in this study contribute to archetypal analysis to substitute the traditionally used

elbow method that does not work well in real world data with a non proper clear-cut

cluster structure. Specifically, the Xie-Beni index that just considers the clusters proto-

types for evaluating inter-cluster separations shown to be appropriate for FS-AA when

using the archetypes. The FSI, and the collection PC, PE, MPC are more appropriate for

FCPM family because these algorithms provide more clear-cut fuzzy partitions. However,

it must be pointed out that, as is well documented in the literature, there is no best vali-

dation index for all real data sets. One must select suitable indexes for different kinds of

data sets.

(iii) Robustness to the presence of outliers – the conducted study was the first one

conducted on FS-AA as well as for the FCPM algorithms. Despite being a study that

requires extension, it had shown how AA and FCPM-2 are quite robust to the presence of

outliers in finding a good partition, and emphasise the singular behaviour of FCPM-0 of

non-convergence and exploding as many prototypes as the number of archetypes present
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in data.

(iv) Visualizing data Clustering Tendency – The visualization functionalities provided

respond to different proposes. The VAT visualization allows to analyse the intrinsic cluster

tendency (or not) of data sets. The projections on the space of PCA’s as well as measure R

to measure the variance captured by the PCA projection [Nascimento, 2005] very much

fit the FCPM model. Mainly, the percentile and mixture plots are very much appealing

to have a picture of the archetypes respecting their most discriminating features.

(v) Initialization Strategies - on comparing the furthest-sum (FS) algorithm against

the Iterative Anomalous Pattern (IAP) initializations strategies one sees that FS is the

most appropriate for AA. This seems natural since the seeds generated by this process are

guaranteed to lie in the minimal convex set of the data points [REF to Neuro-Computing

2011]. The FCPM algorithms, on the contrary, benefit from the IAP initialization, not only

by improving, in general, the rate of convergence of the algorithms, as well as allowing

the user to fine-tune the level of resolution to look at data.

As future work we propose:

- To improve the validation protocol for AA and FCPM algorithms not only by using

other family of popular unsupervised validation indices as well as using the data not

with the whole set of features but only taking those features that better characterize each

archetype / FCPM ideal point.

- To extend the study on synthetic data with fuzzy internal validation indices.

- To better study stop condition of IAP algorithm.

- To apply the algorithms to a real world application where the concept of archetypes

be useful for clustering analysis.
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Figure A.1: Principal components projection (R=71%), for the first setting, k = c0, out =
1 of a medium dimensionality data set (n=416, p=40, c=4). One of the archetypes is
between two clusters and one FCPM-2 prototype and one archetype in the outlier.
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Figure A.2: Principal components projection (R=71%), for the first setting, k = c0, out = 1
of a high dimensionality data set (n=624, p=180, c=6). The FCPM-0 prototypes are
marked. All of FCPM-0 prototypes are inside the data space.
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Figure A.3: Principal components projection (R=96%), for the second setting (k =
c0, out = 2) of a medium dimensional data set (n=440, p=40, c=4). One of the FCPM-2
prototypes near an outlier, and the other in the data space near an original. All archetypes
are near the originals. One of the FCPM-0 prototypes is outside of the space.

74



-4
-3

-4

-2
-1

-3

0

-2

1
2

-1

3

0

4

1
2
3
4 -4-3-2-101234

Originals

AA

FCPM-2

FCPM-0

outliers

Figure A.4: Principal components projection (R=99%) for second setting, k = c0, out = 2,
for a small dimensional data set (n=70, p=5, c=3). One archetype and one FCPM-2
prototype are near each of the outliers. One FCPM-0 prototype is outside of the data
space and another near one outlier.
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Figure A.5: Principal components projection (R=99%) for third setting, k = c0 +1, out = 1,
of a small dimensional data set (n=62, p=5, c=3). The extra archetype and FCPM-2
prototype near the outlier and two of FCPM-0/FCPM-2 prototypes near the same original.
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p=15, c=3) data set for the fifth setting (k = c0 + 2, out = 2). It shows the extras archetype-
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Figure B.1: Plots for the bank authentication data.
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Figure B.2: Plots for Wisconsin Breast Cancer Diagnostic data.
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Figure B.3: Plots for the Wisconsin Breast Cancer Prognostic data.
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Figure B.4: Plots for the Glass identification data.
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Figure B.5: Plots for the Indian Liver Patient data.
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Figure B.6: Plots for the Iris data.
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Figure B.7: Plots for the Iris data (cont.).
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Figure B.8: Plots for the Mental Disorders data for k = 3.
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Figure B.9: Plots for Mental disorders augmented data.
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Figure B.10: Plots for the Pima Indians Diabetes data.
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Figure B.11: Plots for the Pima Indians Diabetes data (cont.).
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Figure B.12: Plots for the Protein location site data (E. Coli) .
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Figure B.13: Plots for the Vehicle Silhouettes data.
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Figure B.14: Plots for the Wine Recognition data.
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