3,450 research outputs found

    Progressive Analytics: A Computation Paradigm for Exploratory Data Analysis

    Get PDF
    Exploring data requires a fast feedback loop from the analyst to the system, with a latency below about 10 seconds because of human cognitive limitations. When data becomes large or analysis becomes complex, sequential computations can no longer be completed in a few seconds and data exploration is severely hampered. This article describes a novel computation paradigm called Progressive Computation for Data Analysis or more concisely Progressive Analytics, that brings at the programming language level a low-latency guarantee by performing computations in a progressive fashion. Moving this progressive computation at the language level relieves the programmer of exploratory data analysis systems from implementing the whole analytics pipeline in a progressive way from scratch, streamlining the implementation of scalable exploratory data analysis systems. This article describes the new paradigm through a prototype implementation called ProgressiVis, and explains the requirements it implies through examples.Comment: 10 page

    Cybernetics of the mind:learning individual's perceptions autonomously

    Get PDF
    In this article, we describe an approach to computational modeling and autonomous learning of the perception of sensory inputs by individuals. A hierarchical process of summarization of heterogeneous raw data is proposed. At the lower level of the hierarchy, the raw data autonomously form semantically meaningful concepts. Instead of clustering based on visual or audio similarity, the concepts are formed at the second level of the hierarchy based on observed physiological variables (PVs) such as heart rate and skin conductance and are mapped to the emotional state of the individual. Wearable sensors were used in the experiments

    Cybernetics of the mind:learning individual's perceptions autonomously

    Get PDF
    In this article, we describe an approach to computational modeling and autonomous learning of the perception of sensory inputs by individuals. A hierarchical process of summarization of heterogeneous raw data is proposed. At the lower level of the hierarchy, the raw data autonomously form semantically meaningful concepts. Instead of clustering based on visual or audio similarity, the concepts are formed at the second level of the hierarchy based on observed physiological variables (PVs) such as heart rate and skin conductance and are mapped to the emotional state of the individual. Wearable sensors were used in the experiments

    The State-of-the-Art of Set Visualization

    Get PDF
    Sets comprise a generic data model that has been used in a variety of data analysis problems. Such problems involve analysing and visualizing set relations between multiple sets defined over the same collection of elements. However, visualizing sets is a non-trivial problem due to the large number of possible relations between them. We provide a systematic overview of state-of-the-art techniques for visualizing different kinds of set relations. We classify these techniques into six main categories according to the visual representations they use and the tasks they support. We compare the categories to provide guidance for choosing an appropriate technique for a given problem. Finally, we identify challenges in this area that need further research and propose possible directions to address these challenges. Further resources on set visualization are available at http://www.setviz.net

    Big Data Breaking Barriers – First step on a long trail

    Get PDF
    Most data sets and streams have a geospatial component. Some people even claim that about 80% of all data is related to location. In the era of Big Data this number might even be underestimated, as data sets interrelate and initially non-spatial data becomes indirectly geo-referenced. The optimal treatment of Big Data thus requires advanced methods and technologies for handling the geospatial aspects in data storage, processing, pattern recognition, prediction, visualisation and exploration. On the one hand, our work exploits earth and environmental sciences for existing interoperability standards, and the foundational data structures, algorithms and software that are required to meet these geospatial information handling tasks. On the other hand, we are concerned with the arising needs to combine human analysis capacities (intelligence augmentation) with machine power (artificial intelligence). This paper provides an overview of the emerging landscape and outlines our (Digital Earth) vision for addressing the upcoming issues. We particularly request the projection and re-use of the existing environmental, earth observation and remote sensing expertise in other sectors, i.e. to break the barriers of all of these silos by investigating integrated applications.JRC.H.6-Digital Earth and Reference Dat
    corecore