3,159 research outputs found

    Visual analysis of uncertainties in ocean forecasts for planning and operation of off-shore structures

    Get PDF
    pre-printWe present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations used in ocean forecasting, i.e, simulations of sea surface elevation. Our system enables the interactive planning of both the placement and operation of off-shore structures. We illustrate this using a real-world simulation of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by strong loop currents. The oil and gas industry therefore relies on accurate ocean forecasting systems for planning their operations. Nowadays, these forecasts are based on multiple spatio-temporal simulations resulting in multidimensional, multivariate and multivalued data, so-called ensemble data. Changes in sea surface elevation are a good indicator for the movement of loop current eddies, and our visualization approach enables their interactive exploration and analysis. We enable analysis of the spatial domain, for planning the placement of structures, as well as detailed exploration of the temporal evolution at any chosen position, for the prediction of critical ocean states that require the shutdown of rig operations

    Ovis: A framework for visual analysis of ocean forecast ensembles

    Get PDF
    pre-printWe present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in different application settings of which we present two in this paper. First, we show an application for interactive planning of placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large distances and with it also heat and other physical properties as well as biological organisms. In the second application we present the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for marine scientists to study simulation data of the largely unexplored Red Sea

    Applications of satellite and marine geodesy to operations in the ocean environment

    Get PDF
    The requirements for marine and satellite geodesy technology are assessed with emphasis on the development of marine geodesy. Various programs and missions for identification of the satellite geodesy technology applicable to marine geodesy are analyzed along with national and international marine programs to identify the roles of satellite/marine geodesy techniques for meeting the objectives of the programs and other objectives of national interest effectively. The case for marine geodesy is developed based on the extraction of requirements documented by authoritative technical industrial people, professional geodesists, government agency personnel, and applicable technology reports

    Fit-for-Purpose Information for Offshore Wind Farming Applications—Part-I: Identification of Needs and Solutions

    Get PDF
    The rapid expansion of offshore wind farms (OWFs) in European seas is accompanied by many challenges, including efficient and safe operation and maintenance, environmental protection, and biodiversity conservation. Effective decision-making for industry and environmental agencies relies on timely, multi-disciplinary marine data to assess the current state and predict the future state of the marine system. Due to high connectivity in space (land–estuarial–coastal sea), socioeconomic (multi-sectoral and cross-board), and environmental and ecological processes in sea areas containing OWFs, marine observations should be fit for purpose in relation to multiple OWF applications. This study represents an effort to map the major observation requirements (Part-I), identify observation gaps, and recommend solutions to fill those gaps (Part-II) in order to address multi-dimension challenges for the OWF industry. In Part-I, six targeted areas are selected, including OWF operation and maintenance, protection of submarine cables, wake and lee effects, transport and security, contamination, and ecological impact assessments. For each application area, key information products are identified, and integrated modeling–monitoring solutions for generating the information products are proposed based on current state-of-the-art methods. The observation requirements for these solutions, in terms of variables and spatial and temporal sampling needs, are therefore identified.publishedVersio

    Estimating the economic benefits of regional ocean observing systems

    Get PDF
    We develop a methodology to estimate the potential economic benefits from new investments in regional coastal ocean observing systems in US waters, and apply this methodology to generate preliminary estimates of such benefits. The approach focuses on potential economic benefits from coastal ocean observing information within ten geographic regions encompassing all coastal waters of the United States, and within a wide range of industrial and recreational activities including recreational fishing and boating, beach recreation, maritime transportation, search and rescue operations, spill response, marine hazards prediction, offshore energy, power generation, and commercial fishing. Our findings suggest that annual benefits to users from the deployment of ocean observing systems are likely to run in the multiple $100s of millions of dollars per year. The project results should be considered first-order estimates that are subject to considerable refinement as the parameters of regional observing systems are better defined, and as our understanding of user sectors improves.Funding was provided by the Office of Naval Research under Grant No. N00014-02-1-1037

    Satellite data for the offshore renewable energy sector: Synergies and innovation opportunities

    Get PDF
    Can satellite data be used to address challenges currently faced by the Offshore Renewable Energy (ORE) sector? What benefit can satellite observations bring to resource assessment and maintenance of ORE farms? Can satellite observations be used to assess the environmental impact of offshore renewables leading towards a more sustainable ORE sector? This review paper faces these questions presenting a holistic view of the current interactions between satellite and ORE sectors, and future needs to make this partnership grow. The aim of the work is to start the conversation between these sectors by establishing a common ground. We present offshore needs and satellite technology limitations, as well as potential opportunities and areas of growth. To better understand this, the reader is guided through the history, current developments, challenges and future of offshore wind, tidal and wave energy technologies. Then, an overview on satellite observations for ocean applications is given, covering types of instruments and how they are used to provide different metocean variables, satellite performance, and data processing and integration. Past, present and future satellite missions are also discussed. Finally, the paper focuses on innovation opportunities and the potential of synergies between the ORE and satellite sectors. Specifically, we pay attention to improvements that satellite observations could bring to standard measurement techniques: assessing uncertainty, wind, tidal and wave conditions forecast, as well as environmental monitoring from space. Satellite–enabled measurement of ocean physical processes and applications for fisheries, mammals and birds, and habitat change, are also discussed in depth

    Marine energy exploitation in the mediterranean region: steps forward and challenges

    Get PDF
    This works aims to describe current perspectives for marine energy exploitation in the Mediterranean basin, highlighting challenges and opportunities as well as the factors that still limit its market deployment. Technologies for the conversion of Marine Energy (ME) into electricity are now ready for full-scale deployment in farms of devices, making the final step from demonstration to operability and commercial exploitation. Although marine energy is more abundant along the Atlantic and Nordic European coasts, significant resources are also available in the Mediterranean Sea, opening up new perspectives for sustainable energy production in sensitive coastal areas and for the economic development of Southern Europe. The implementation of ME converters in the Mediterranean is in fact liable to induce significant technological advancements leading to product innovation, due to the local low energy levels which impose more restrictive constraints on device efficiency and environmental compatibility. In addition, the milder climate allows the testing of concepts and prototypes in the natural environment at more affordable costs, lowering capital risks for new and innovative small and medium enterprises. Research institutions and industrial players in Mediterranean countries have already taken up the challenge, despite the numerous limiting factors that still need to be removed. In particular, the ME sector adds up to the many different traditional maritime activities and to the new ocean-related industries that are developing, potentially exacerbating the competition for the use of marine space in the Mediterranean region and threatening its environmental status. The ME sector needs therefore to design suitable instruments to involve all the relevant stakeholders in a participative public debate as to how to best manage the maritime space. As the prospective sea use patterns are rapidly changing, an adequate international legal and policy framework needs to be designed for the coherent management of sea space, and Marine Spatial Planning needs to be finally implemented by EU Member States also in the Mediterranean area. To this end, the creation of transnational clusters of stakeholders is expected be an effective catalyzer, especially as they can foster the exchange of knowledge and best practices both across European countries and between the North and the South shore of the Mediterranean basin

    OIL SPILL MODELING FOR IMPROVED RESPONSE TO ARCTIC MARITIME SPILLS: THE PATH FORWARD

    Get PDF
    Maritime shipping and natural resource development in the Arctic are projected to increase as sea ice coverage decreases, resulting in a greater probability of more and larger oil spills. The increasing risk of Arctic spills emphasizes the need to identify the state-of-the-art oil trajectory and sea ice models and the potential for their integration. The Oil Spill Modeling for Improved Response to Arctic Maritime Spills: The Path Forward (AMSM) project, funded by the Arctic Domain Awareness Center (ADAC), provides a structured approach to gather expert advice to address U.S. Coast Guard (USCG) Federal On-Scene Coordinator (FOSC) core needs for decision-making. The National Oceanic & Atmospheric Administration (NOAA) Office of Response & Restoration (OR&R) provides scientific support to the USCG FOSC during oil spill response. As part of this scientific support, NOAA OR&R supplies decision support models that predict the fate (including chemical and physical weathering) and transport of spilled oil. Oil spill modeling in the Arctic faces many unique challenges including limited availability of environmental data (e.g., currents, wind, ice characteristics) at fine spatial and temporal resolution to feed models. Despite these challenges, OR&R’s modeling products must provide adequate spill trajectory predictions, so that response efforts minimize economic, cultural and environmental impacts, including those to species, habitats and food supplies. The AMSM project addressed the unique needs and challenges associated with Arctic spill response by: (1) identifying state-of-the-art oil spill and sea ice models, (2) recommending new components and algorithms for oil and ice interactions, (3) proposing methods for improving communication of model output uncertainty, and (4) developing methods for coordinating oil and ice modeling efforts
    corecore