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Abstract—We present a novel integrated visualization system that enables interactive visual analysis of ensemble simulations of

the sea surface height that is used in ocean forecasting. The position of eddies can be derived directly from the sea surface
height and our visualization approach enables their interactive exploration and analysis.The behavior of eddies is important in
different application settings of which we present two in this paper. First, we show an application for interactive planning of
placement as well as operation of off-shore structures using real-world ensemble simulation data of the Gulf of Mexico. Off-shore
structures, such as those used for oil exploration, are vulnerable to hazards caused by eddies, and the oil and gas industry relies
on ocean forecasts for efficient operations. We enable analysis of the spatial domain, as well as the temporal evolution, for
planning the placement and operation of structures.Eddies are also important for marine life. They transport water over large
distances and with it also heat and other physical properties as well as biological organisms. In the second application we present
the usefulness of our tool, which could be used for planning the paths of autonomous underwater vehicles, so called gliders, for
marine scientists to study simulation data of the largely unexplored Red Sea.

Index Terms—Ensemble visualization, ocean visualization, ocean forecast, risk estimation

1 INTRODUCTION

OCEAN forecasts are widely used for decision making
in a large range of areas. The oil and gas industry
relies on forecasts to safely operate off-shore structures
for oil exploration. Strong currents, such as eddies, could
severely affect the operations of these platforms. Marine
scientists acquire data using autonomous underwater
gliders whose paths can be optimized when currents are
known beforehand.

Nowadays, these forecasts do not come as single simu-
lation results, but as ensembles of simulations, mapping
uncertainty in the starting conditions, as well as the simu-
lation models themselves, to variation in the ensemble.
Developing efficient tools to visualize and clearly dissem-
inate such forecast outputs and results is becoming a very
important part of the forecasting process. Such tools have
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to be conceived in a way that allows users to easily
extract and clearly identify the necessary information
from large ensembles and the associated statistics repre-
senting the forecast and its uncertainties.

In earlier work [14] we present the first integrated system
for the visual exploration and analysis of these kinds of fore-
casts. Our system handles time-series of multivalued
ensembles of sea surface height data, represented by 2D
heightfields. A set of statistical properties is derived from
the ensemble and can be explored in multiple linked views,
while the complete ensemble is always available for
detailed inspection on demand. Our system enables domain
experts to efficiently analyze ocean forecasts, including their
corresponding uncertainties. In this work we extend our
framework by a more advanced technique for eddy classifi-
cation, which is used in a second application scenario, also
presented in this paper. We present the application of our
framework in two settings. First for planning the placement
and operations of off-shore structures, such as oil platforms
in the Gulf of Mexico, and second, new to this work, to aid
planning the paths of underwater gliders in the Red Sea.

1.1 Ocean Forecast Simulation

The development of a reliable ocean forecasting system
requires models capable of simulating ocean circulation and
an efficient assimilation scheme that, given enough observa-
tions, provides accurate initial conditions for forecasting.
High-resolution 3D general circulation ocean models are
necessary to reproduce complex mesoscale dynamics like in
the Gulf of Mexico [3]. However, such models cannot pro-
vide accurate forecasts of mesoscale variability, such as
eddy shedding events, without data assimilation. A general
circulation ocean model is subject to several sources of
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Fig. 1. Maps of the Areas of Interest. The Gulf of Mexico area is shown in (b). The simulation area for the Red Sea data set extends beyond the area
illustrated in (c). However, for the use case that we present in Section 5.2, only the area shown in (c) is of interest. Map data courtesy of GEBCO,

IHO-IOC GEBCO, NGS, DeLorme.

uncertainties, not only from the poorly known inputs such
as the initial state, and atmospheric and lateral boundary
conditions, but also from the use of approximate parameter-
ization schemes of sub-grid physics and ocean mixing
dynamics. Data assimilation methods address this issue by
constraining model outputs with incoming data.

The important role of uncertainties is now increasingly
recognized in the ocean prediction community for proper
decision making and risk management.

New assimilation methods based on Bayesian filtering
theory have been recently developed by the ocean and
atmospheric communities for efficient propagation and
quantification of uncertainties [7], [15], [16], [17], [18],
[33]. These methods, known as ensemble Kalman filter
methods, follow a Monte Carlo approach to represent the
uncertainties on a state estimate by an ensemble of model
states. These are then integrated forward in time with the
general circulation ocean model to quantify uncertainties
in the forecast. The estimated forecast uncertainties are
then combined with the observation uncertainties to
assimilate the new incoming data using a Kalman filter
correction step [7], before a new forecast cycle begins.
Developing and implementing efficient ensemble Kalman
filters with state-of-the-art ocean and atmospheric models
is a very active area of research.

With the fast-growing high performance computing
resources, the implementation of ensemble Kalman filters
with large ensemble members is now practically feasible
using highly sophisticated general circulation ocean
models. When a filter’s ensemble is available, it is cus-
tomary to calculate various statistical measures of the
ensemble spread as indicators of the uncertainties and of
their evolution in space and time, which are then used in
decision making.

Hoteit et al. [15] developed an ensemble forecasting sys-
tem for the Gulf of Mexico circulation based on the Massa-
chusetts Institute of Technology General Circulation Model
(MITgcm) [25], and the Data Assimilation Research Testbed
(DART) [18]. This system is capable of assimilating various
sets of satellite and in-situ ocean observations. A similar
system covering the Red Sea was developed very recently.
We use these systems as real-world scenarios that illustrate
the new capabilities for analysis and exploration provided
by our visualization approach. Fig. 1 gives an overview of
the areas covered by the forecasting systems.

1.2 Visualization Contributions

We present a GPU-based interactive visualization system
for the exploration and analysis of ensemble heightfield
data, with a focus on the specific requirements of ocean
forecasts. Based on an efficient GPU pipeline, we perform
on-the-fly statistical analysis of the ensemble data, allowing
interactive parameter space exploration. Usually these
kinds of data are visualized by means of parameterization,
e.g., fitting a Gaussian curve and storing only o and . This
requires a priori knowledge of the data, i.e., the distribution
of ensemble members must correspond to a normal or at
least unimodal distribution. One key difference of our
approach is that we do not assume any such properties. The
whole data set, or at least the distribution by means of a his-
togram, is available throughout the pipeline. This allows us
to carry out visualization and computation such as iso-
contour extraction on the original data.

Based on our framework we present a novel workflow
for planning the placement and operation of off-shore
structures such as oil rigs as well as for planning the
paths of autonomous sea vehicles, such as gliders used
for data acquisition in marine research. While we focus
on the visualization and analysis of ocean forecast data,
the presented framework could also be used for the
exploration of heightfield ensembles from other fluid
earth systems, such as weather forecasting or climate sim-
ulation, but also completely unrelated fields, such as for
exploration of ensemble segmentation data [13].

2 RELATED WORK

Uncertainty and ensemble visualization are widely recog-
nized as important topics in the field of visualization, which
has resulted in a large body of related work in recent years.
In the following overview, we restrict ourselves to key pub-
lications in uncertainty and ensemble visualization, as well
as selected publications from other areas related to the tech-
niques presented in this paper.

Uncertainty Visualization. A good introduction to uncer-
tainty visualization is provided by Pang et al. [30], who
present a detailed classification of uncertainty, as well as
numerous visualization techniques. Johnson and Sander-
son [19] give a good overview of uncertainty visualization
techniques for 2D and 3D scientific visualization, includ-
ing uncertainty in surfaces. For a definition of the basic
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concepts of uncertainty and another overview of visuali-
zation techniques we refer to Griethe and Schumann [9].
Riveiro [40] provides an evaluation of different uncer-
tainty visualization techniques for information fusion.
Rhodes et al. [39] present the use of color and texture to
visualize uncertainty of iso-surfaces. Brown [1] employs
animation for the same task. Grigoryan and Rheingans
[10] present a combination of surface and point-based ren-
dering to visualize uncertainty in tumor growth. Uncer-
tainty information is provided by rendering point clouds
in areas of large uncertainty, as opposed to crisp surfaces
in more certain areas.

In recent work Pothkow et al. [35], [36] as well as Pfaffel-
moser et al. [31] present techniques to extract and visualize
uncertainty in probabilistic iso-surfaces. Pfaffelmoser and
Westermann [32] describe a technique for the visualization
of correlation structures in uncertain 2D scalar fields. They
use spatial clustering based on the degree of dependency of
a random variable and its neighborhood.

Saad et al. [41] present a system which models and visu-
alizes uncertainty in segmentation data based on a priori
shape and appearance knowledge.

Ensemble Visualization. Pang, Kao and colleagues present
early work on visualization of ensemble data [20], [21], [23],
[24]. While the authors do not use the term ensemble, these
works deal with the visualization of what they call spatial
distribution data, which they define as a collection of n val-
ues for a single variable in m dimensions. These are essen-
tially ensemble data. The authors adapt standard
visualization techniques to visualize these data gathered
from various sensors, e.g., satellite imaging or multi-return
Lidar. Frameworks for visualization of ensemble data
gained from weather simulations include Ensemble-Vis by
Potter et al. [38] and Noodles by Sanyal et al. [44]. These
papers describe fully featured applications focused on the
specific needs for analyzing weather simulation data. They
implement multiple linked views to visualize a complete set
of multidimensional, multivariate and multivalued ensem-
bles. While these frameworks provide tools for visualizing
complete simulation ensembles including multiple dimen-
sions, to solve the problem presented in this work we focus
on heightfield ensemble data.

Matkovic et al. [26] present a framework for visual anal-
ysis of families of surfaces by projecting the surface data
into lower-dimensional spaces. Piringer et al. [34] describe
a system for comparative analysis of 2D function ensem-
bles used in the development process of powertrain sys-
tems. Their design focuses on comparison of 2D functions
at multiple levels of detail. Healey and Snoeyink [11] pres-
ent a similar approach for visualizing error in terrain
representation. There, the error, which can be introduced
by sensors, data processing or data representation, is mod-
eled as the difference between the active model and a
given ground truth.

Several published extensions of box plots have inspired
our time-series view. Hintze and Nelson [12] introduce vio-
lin plots to give an indication of the distribution using the
sides of the box. Esty and Banfield [6] combine box and per-
centile plots to add the complete distribution to the plot
while keeping the simplicity of box plots. Potter et al. [37]
combine quartile, moment and density plots, based on the
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histogram, to create summary plots. The density of curves
in 1D function plots can be visualized effectively using ker-
nel density estimation [22]. Our histogram view that shows
the distribution of surfaces embedded in 3D passing
through each (z,y) position is similar in spirit to such
approaches, but for primitives of one dimension higher.

3 SyYSTEM DESIGN

This section describes our system for the visual analysis
of multivalued sea surface height data gathered from
ocean forecasts. The foundation for the visual exploration
of the data comprises an extensive analysis of the data,
which is described in Section 3.1. We compute a set of
standard statistics to indicate variation at each grid point
over the ensemble. For both of the applications that we
present in Section 5, position and movement of eddies is
of particular interest. The position of these eddies can
directly be derived from the sea surface height. In addi-
tion to the statical analysis we compute the eddy centers
for all ensemble members as well as the probability of
belonging to an eddy for each grid point.

For efficient exploration of the data we provide multiple
linked views (Section 3.2) as shown in Fig. 2. Two spatial
views, in 3D (Fig. 2a) and 2D (Fig. 2b) provide an overview
of the spatial relationships. The 2D view is also used for
defining the area of interest as well as defining potential
platform positions and glider paths. For a more detailed
inspection we provide a histogram view (Fig. 2c) for a single
position in time and space as well as a time-series view
(Fig. 2d) which provides detailed information for a user-
defined set of positions in time and space.

The analysis of the data is completely visualization-
driven. Statistical properties are computed on the fly only
when needed and for any user-defined subset of the ensem-
ble, to allow inspection of the parameter space of the simu-
lation. Using a completely GPU-based computation and
visualization pipeline as presented in Section 4 allows
updates of these data at interactive rates.

3.1 Analysis

Statistical Analysis. The goal of the statistical analysis is to
provide information on the distribution of the members
within the ensemble. Therefore, for each grid point, we
compute a histogram of the sea surface height at this posi-
tion over all ensemble members. Based on the histograms
we compute a kernel density estimation to approximate the
continuous probability density function (pdf). For visualiza-
tion we assemble the 1D pdfs in a 3D volume by placing
each pdf at the appropriate position in the grid.

For each grid point a number of statistical properties
including range, mean, median, maximum mode, standard
deviation, variance, skewness and kurtosis are computed,
based on the 1D histograms. Similar to the probability den-
sity functions these values are then assembled in the origi-
nal grid to form 2D scalar fields, which are divided into two
groups of different semantics. While mean, median and
maximum mode are treated as additional, synthetic surfa-
ces, the other properties are added as meta information, for
example to color-code the surfaces.
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Fig. 2. System Overview. Our system for exploration of ocean forecast ensembles consists of four main views. The simulated ocean surface, or a
derived version like the mean surface for a single point in time, can be shown in 3D or 2D (a) and (b) . The histogram view (c) shows the complete dis-
tribution of the ensemble at a selected position, while the time-series view (d) shows the distribution and the resulting operational risk at a selected

position for multiple samples along time.

Eddy Tracking. A very simple approach to automatically
identifying eddies based on the sea surface height only is to
look at the absolute height values. Clockwise rotating
eddies will push the water up while counterclockwise rota-
tion will lead to a drop in sea surface height. Based on a
threshold, each grid point can be classified as belonging to
an eddy or not. In our application this threshold is user-
defined and can be modified at any time. The classification
as well as the resulting risk estimate (see below) for the
complete ensemble will be updated accordingly on the fly.

Chaigneau et al. [2] present a more advanced technique
for automatic eddy identification. Their method is based on
actual flows on the sea surface. Chaigneau et al. use satellite
measurements of the sea surface height as input for their
method. In absence of a measured velocity field they derive
the geostrophic velocity field [8] (U(k,z,y,t),V(k, z,y,t))
from the gradients of the sea surface height H(k, z,y,t) as:

— _§ . E;_H 7 (1)
Y
g 0H
V= A (2)
with g the gravitational acceleration and f the Coriolis
parameter, k the ensemble member,  and y the spatial
dimensions and ¢ the temporal dimension. While Chaigneau
et al. are constrained by the fact that they only use the mea-
sured sea surface height as input, any velocity field repre-
senting the surface flow, such as results from the simulation,
can be used as input. When using the geostrophic velocity
field, the extracted streamlines match to iso-contours of H.
With given sea surface height and velocity fields the
method consists of four steps:

1. Using a moving window approach, local extrema in
H are tagged as potential eddy centers.

2. Streamlines on the velocity field, around each poten-
tial eddy center, are computed. Closed streamlines,

i.e., taking a full 360 degree turn, within a limited
area and with limited wiggling, indicate the charac-
teristic circular eddy currents. For this we employ
the winding angle algorithm as presented by Sadar-
joen et al. [42], [43].

3. Extrema for which no closed streamline can be
found, such as extrema close to the boundary of the
data set, are dropped from the list of potential eddy
centers. The remaining candidates will be considered
eddy centers.

4.  Closed streamlines for each eddy center are clus-
tered. The outermost streamline for each eddy center
identifies the boundary of the eddy.

Flood-filling the outermost streamlines classifies each

grid point inside as corresponding to an eddy.

Risk Estimate. Both eddy tracking methods introduced
above result in a binary map M (k, z,y,t) for each member
k of the ensemble that is true if M(k,z,y,t) is classified as
an eddy and false otherwise. Assuming that all realiza-
tions for one sample in time (assimilation cycle) ¢ are
equally probable, we define the eddy probability P,(z,y,t)
or risk for each position in space and time as the fraction
of the members in the ensemble where the bit is set in
these maps for this position:

n

1 1, if M(k,z,y,t) is true,
Pe(z,y.t) =—- ;{ 0, else, (3)

where n is the total number of realizations for a single
assimilation cycle.

This is especially important for the oil rig-operation
application we present in Section 5.1. The strong currents of
eddies pose large risks to deep sea oil exploration. Hence
we also call this property risk estimate. In addition to the
uncertainty information that can be gathered for each posi-
tion, the risk estimate map also provides an idea of the posi-
tional uncertainty. This can clearly be seen in Fig. 3. Eddies
that are at similar positions and of similar size over all
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Fig. 3. Spatial Uncertainty can be seen using the risk estimate. The two
figures show the risk for the same region but different assimilation
cycles. In (a) the eddy can be classified with little uncertainty, indicated
by the sharp features. In (b) the fuzzy boundary indicates larger spatial
uncertainty.

members at a single point in time have sharp boundaries
(a), while eddies with a lot of variation will show up in the
visualization with fuzzy boundaries (b).

3.2 Visual Forecast Exploration

Our system targets the interpretation of forecasts for differ-
ent applications. Since the different applications have differ-
ent requirements, we provide a set of four main views,
which are used in different combinations depending on the
application scenario. Fig. 2 shows our application with the
main views plus a unified settings panel. The views are two
spatial views showing the surface data themselves, one in
3D (a), the other one in 2D (b), a linked histogram view (c)
as well as a time-series view (d) .

2D View. The simple 2D view shown in Fig. 2b is a com-
mon tool for visualizing heightfield data and familiar to
domain scientists.

The main function of the view is to provide a first over-
view of the data. Therefore it provides two ways to visualize
2D scalar fields. The scalar field can be visualized directly
by pseudo coloring the scalar values, or indirectly by
extracting iso-contours from the scalar field which can then
be rendered as curves in this view. Typically the topogra-
phy of the mean sea surface height for a single point in time
is rendered by extracting iso-contours for several interesting
height values. Uncertainty information can be provided for
example by rendering the variance scalar field in the back-
ground. In general the view is completely user configurable.
Any of the scalar fields, including any of the original height-
fields from the ensemble, can be rendered directly or by
means of iso-contouring.

In addition to presenting information to the user, the
2D view is also used for interaction. We provide a simple
painting interface in this view to allow the definition of
an area of interest. The user can select rectangles or
directly paint interesting regions on the map, allowing
arbitrary free-form selections, which will then be
highlighted in both the 2D and 3D views. Furthermore
the view enables the creation and editing of points and
paths of interest. This allows probing positions, which
could be potential positions for placing an off-shore struc-
ture (see Section 5.1) or defining and adjusting the path
for a glider (Section 5.2).

3D View. The 3D view (Fig. 2a) provides the same fea-
tures for visualization as the 2D view plus several
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Fig. 4. 3D Probability Density Function at a user-selected position. The
surface is color-mapped with the variance. The large spread in areas of
high variance is clearly visible in the volume rendering.

additional tools for a more detailed spatial and temporal
inspection. Typically, in the 3D view the height values of
the displayed surface are mapped to the third dimension,
freeing pseudo-coloring and iso-contours for additional
information. An additional benefit of the 3D view is that it
is possible to use volume rendering for showing details of
the distribution of the ensemble. Similar to approaches pre-
sented by Pothkow et al. [35], [36], as well as Pfaffelmoser
et al. [31], we depict the actual distribution of the ensemble
as a volume around the surface. Instead of using a paramet-
ric representation of the data based on mean and variance,
we allow rendering the full probability density function, of
the distribution, as presented in Section 3.1, to allow
detailed inspection of the actual data. However, since at this
point the user usually has picked a set of points of interest,
to avoid unnecessary occlusion, we do not render the com-
plete volume, but a small subset of adjustable size, which
essentially works like a volumetric cursor (see Fig. 4). The
user can simply probe the data by hovering with the mouse
over a position of interest, and the probability density vol-
ume is then rendered around the picked position.

Histogram View. Another way to inspect the distribution
in detail is the histogram view shown in Fig. 2¢c. This view
shows the histogram of all height values of the ensemble as
well as the probability density function for a selected
(z,y)-position. To provide spatial context the histogram is
positioned according to the actual height values and the bin
corresponding to the surface that is currently shown in the
3D view is highlighted. The histogram is laid out with the
sea surface height on the y-axis and the number of surfaces
on the z-axis. This layout deviates from the conventional
layout for a histogram where usually the bins are mapped
to the horizontal axis, but in our case the sea surface height
intuitively maps to the vertical axis. Similar to the volumet-
ric representation in the 3D view, the position is defined by
picking directly in any of the spatial views. When the user
moves the mouse over the surface, the histogram view is
updated on the fly to show the histogram at the current
mouse position.
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Time-Series View. The time-series view (Fig. 2d) provides
detailed information on single positions over time, by
means of a glyph, specifically designed to convey the most
important information for the applications presented in Sec-
tion 5. The glyphs are positioned side by side, along the x-
axis of the view. In general, each of these glyphs can show
data from any desired point in time and space. We will
show in Section 5 how this can be used to provide different
semantics for this view depending on the application. For
planning the operations of an oil platform at a fixed position
the x,y coordinate is fixed, while each glyph presents the
information for a sample along the timeline. For planning
the glider paths the path is sampled along the time-series,
providing distinctive x,y-coordinates for each point in time.

Fig. 5 shows a detailed description of the glyph, which is
inspired by the violin plots, introduced by Hintze and
Nelson [12]. While the shape of the violin plot is symmetric,
the left and the right side of our glyph can be defined by
two different properties. In the example in Fig. 5, the left
side shows the pdf for the distance to the closest eddy center
from the position of the glyph, while the right side shows
the pdf of the sea surface height as described in Section 3.1.
For the different applications the glyph can be configured
by the user, for example for comparing two positions for
placement the pdfs of the two positions can be used on the
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two sides of the glyph. However, the most important appli-
cation is displaying sea surface height distributions. There-
fore we decided to use the same vertical layout as described
above for the histogram view. The glyph is positioned on
the y-axis according to the actual height values, making the
position not only comparable to other glyphs at different
positions in the view, but also to the user-defined threshold
for the simple, absolute height-based eddy classification,
indicated by the horizontal red line. The mean values of
both properties are indicated by a black bar on their respec-
tive sides of the glyph. Additionally, the glyphs are pseudo-
colored according to one of the two versions of the risk esti-
mates described in Section 3.1. Information on the uncer-
tainty of the data can immediately be retrieved from the
shape of the glyph: A large spread or variation in the sur-
face positions over the ensemble, indicating larger uncer-
tainty, results in a large glyph, while little uncertainty
results in less variation and more compact glyphs.

4 GPU-BASED PIPELINE

To allow interactive updates of the statistics, we have imple-
mented a completely GPU-based analysis and visualization
pipeline presented in Section 4.1. A detailed performance
analysis is presented in Section 4.2.

4.1 Implementation
Our GPU-based analysis and visualization pipeline is illus-
trated in Fig. 6. In the remainder of this section, numbers in
brackets refer to this figure. The pipeline is divided into two
main parts: The statistical analysis and iso-surface extrac-
tion is carried out using CUDA, while the visualization is
based on OpenGL and GLSL shaders. All data are shared
between the two parts of the pipeline, so that after the initial
upload of the ensemble onto the GPU no expensive bus
transfer is necessary. Since usually only a small part of the
ensemble is required by the visualization, a streaming
approach would be possible for data sets that are larger
than GPU memory, but we currently assume that the data
set fits into GPU memory.

Input. The input (1) to our system is a set of heightfields.
These can be part of a simulation ensemble, e.g., from ocean
or weather forecasts, a time-series of some sort, or the

Input (T) 1 Statistical Analysis CUDA ===
| write
1 . —
Ensemble | Uss%r 22{'”9 3D histogram statistical iso contour read
— i focus area computatlon analy5|s extraction
1
el | e e e e ]
\Jrsﬂrid GPU ata )‘\ @' @
| S
e ! @' @ @ _active property
S | 2 area of interest (risk, variance, etc.)  iso contours
heightfield : mask mean, median, (rendered to tex)
set of 2D e . max mode surfaces =
\—J heightfields 3D histogram/pdf g
) T T T em—— -
! Visualization
heightfield , OpenGL+GLSL surface surface volume
i fixed displacement texturing rendering
——— | vertex- Lt/ : .
1 buffer LT =] vertex shader = fragment shader

Fig. 6. Pipeline Overview. The pipeline is divided into two major blocks: The statistical analysis part at the top, and the rendering part shown at the
bottom. Both parts are entirely GPU-based, and all data (middle row) are shared by both parts in GPU memory.
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results of a parameterized segmentation [13]. Even though
we focus on heightfields in this work, the concepts can also
be applied to surfaces in n dimensions as long as the corre-
spondences between all surfaces in the data set are known
for every nD-datapoint. In our framework, we assume the
2D spatial (z,y)-coordinate to be the correspondence
between the surfaces.

Data Representation. Before computation of statistics or
visualization, the ensemble is converted into a 3D texture
(2) and loaded onto the GPU. Every heightfield of the
ensemble will be represented by one slice in this texture.
Additionally, space for the mean, median and maximum
mode heightfield will also be reserved in this texture. The
surfaces are indexed using the original parametrization. If
there is only a single parameter, for example the temporal
samples in a time series, the surface ID corresponds to
the texture index. For higher-dimensional parameter spaces,
e.g., ensemble ID plus time, the linear texture index is com-
puted from the original parameters. This allows the user to
define subranges for each parameter separately, for example
to examine the complete ensemble at a single point in time.

Statistical Analysis. The first step in the statistical analysis
is the creation of the 3D histogram (3). Changes in the param-
eter range trigger an update of the 3D histogram and subse-
quently of the representative surface and property texture.
Since each ensemble member provides exactly one entry to
the histogram per (z, y)-position, rather than using a thread
for each member, we use one thread per (z,y)-position.
Each thread then loops over all selected surfaces and inserts
the corresponding height values into the histogram. This
way, write conflicts can be avoided and no critical sections or
atomic operations are needed. The kernels for the derived
properties are set up in a similar fashion. The desired statisti-
cal property is computed by one thread per (z,y)-position.
The main difference to the histogram computation is that
this results in a single scalar per thread, all of which are then
assembled into a 2D texture. While mean, median and maxi-
mum mode (4) are attached to the 3D heightfield texture to
be used as representative surfaces, the other properties (5)
are copied into a 2D texture available to the visualization
pipeline for texturing the surface. Exploiting the parallelism
of the GPU and eliminating costly bus transfers between
CPU and GPU allows interactive modification of the
parameter range even for ensembles containing several
hundred surfaces. Section 4.2 provides a detailed perfor-
mance analysis.

Iso Contouring. We have implemented marching squares
using CUDA, based on the marching cubes example from
the CUDA SDK [28]. We keep the initial geometric represen-
tation of the contours, for example for use in the 2D view,
but for overlaying the contours onto the 3D surfaces we ren-
der the contours into an offscreen buffer (6), which is then
used for texturing.

Rendering. The rendering pipeline takes advantage of
the fact that all ensemble data are already stored in GPU
memory, which facilitates efficient surface rendering.
Instead of creating new surface geometry every time a
different surface of the ensemble is rendered, a single
generic vertex buffer of fixed size is created. This buffer
covers the entire (z,y)-domain, but does not contain any
height information. The z-value of each vertex is set later
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in the vertex shader. Before transforming the vertex coor-
dinates into view space, the object space (x,y)-coordinates
of the vertex in combination with the ID of the active sur-
face are used to look up the z-value of the current vertex
in the ensemble texture. At this point, the desired surface
geometry is available. In order to be able to visualize the
results of the statistical analysis, the object space coordi-
nates are attached to each vertex as texture coordinates (z
and y are sufficient). In the fragment shader, this informa-
tion can then be used to look up the active statistical
property in the 2D texture. This texture contains the raw
information from the statistical analysis, which is then
converted to the fragment color by a look up in a 1D color
map. We provide a selection of several continuous,
diverging cool-to-warm color maps, as presented by
Moreland [27], but also allow the creation of custom color
maps. These color maps minimally interfere with shad-
ing, which is very important in this case, as shading is an
important feature to judge the shape of a surface. During
testing we realized that using the continuous version
made it very hard to relate an actual value to a color in
the rendering so we decided to optionally provide a dis-
crete version with ten steps. After the surface geometry
has been rendered, a surrounding volume, for example
the 3D probability density function, can be rendered as
well. This is done in a second rendering pass in order to
guarantee correct visibility [45].

Interaction. With the described pipeline in place, a num-
ber of features can be implemented very easily and effi-
ciently. If desired, the user can choose to render any surface
from the ensemble. This requires no data transfer to or from
the GPU, except for the ID of the surface in the ensemble to
render. In addition, it is possible to automatically animate
all surfaces in a predefined range. In the presented applica-
tion this can be useful in two ways; As shown by Brown [1]
animation is a powerful tool for visualizing uncertainty.
The user can choose to animate through all members of a
single sample of the time series to get an impression of the
surface distribution. Second animating the mean surfaces
over the time domain can show the behavior of the eddies.

The described visualization techniques can give a very
good impression of the quantitative variation in the data.
Detailed information on the surface distribution can be
gained by animating through or manually selecting individ-
ual surfaces from the ensemble. However, it is hard to get a
good impression of the complete distribution this way. We
therefore provide the possibility to render a cutout of
adjustable size of the pdf of the complete distribution as a
volume on top of the surface geometry (Fig. 4) or show his-
togram and pdf for a selected position in a separate view
(Fig. 2c). The position to investigate can be picked directly
in the 3D view. All information that is required for picking
is already available in our rendering pipeline: We use the
same vertex shader as described before for rendering
the surface into an off-screen buffer of the same size as the
frame buffer. Instead of using the object space coordinates
to look up the scalar values in the fragment shader, we use
the coordinates directly as the vertex color. This way, we
can look up the current mouse position directly in the
downloaded off-screen buffer. With the (z,y)-components
of the resulting volume position, we can then directly look
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TABLE 1
Computation Times for All Properties
50 Surfaces GPU 500 Surfaces GPU 50 Surfaces CPU Speedup
Property w/o  wdep w/o  wdep w/o  wdep w/o w dep
1 Histogram 3.23 3.23 38.56 38.56 19.24 19.24 6.0x 6.0x
2 PDF! 12.93 16.16 12.78 51.34 45.70 64.94 3.5x 4.0x
3 Range 0.71 0.71 11.09 11.09 3.45 3.45 4.9x 4.9x
4 Mean 0.71 0.71 10.89 10.89 3.48 3.48 4.9x 4.9x
5 Median' 0.70 3.93 0.70 39.26 8.78 28.02 12.5x 7.1x
6 Mode! 1.40 4.63 1.41 39.97 4.65 23.89 3.3x 5.2x
7 Variance® 0.72 1.43 10.87 21.76 3.85 7.33 5.3x 5.1x
8 Std Dev®” 0.02 1.45 0.02 32.78 0.14 7.47 7.0x 5.2x
9 Skewness!*0:7:8 0.05 6.13 0.05 72.80 0.16 31.42 3.2x 5.1x
10 Kurtosis™” 0.74 217 10.76 32.52 4.05 11.38 5.5x 5.2x
11 Risk Estimate 1.70 1.70 21.00 21.00 27.93 27.93 16.4x 16.4x
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"ids of additional properties needed for computation.

All times are given in milliseconds. The first column shows ID and name of the property. The columns titled w/o and w dep show the computation time
for a property with and without dependencies. The last two columns show the speedup from CPU to GPU.

up the histogram and probability density distribution for
this position. To facilitate easy comparison, we color the bin
corresponding to the current representative surface differ-
ently than the remaining bins.

4.2 Performance

The performance of the statistical analysis is crucial for
interactive exploration of the parameter space. We have
used the data set of the Gulf of Mexico, described in Section
5 for a performance analysis. The data set consists of a total
of 500 surfaces spread over ten sampled time steps. Since
usually one time step is investigated at a time, we compare
performance for a single forecast time step, consisting of 50
surfaces, as well as the complete data set. Table 1 shows the
resulting computation times.

The computations were performed using an NVIDIA
GeForce GTX 580 with 1.5 GB of graphics memory. The tim-
ings were averaged over 1,000 kernel executions. As all data
stays on the GPU, no bus transfer has to be considered. For
comparison, we also show computation times of a single
time step on the CPU. The computations were carried out
on a workstation with two six-core Xeons (12 physical cores
plus hyper threading) clocked at 3.33 GHz and 48 GB of
main memory. The CPU computations were parallelized
using OpenMP, utilizing 24 threads.

In general, it can be seen in Table 1 that using the
GPU even for 500 surfaces, the slowest update including
skewness and all dependencies plus the probability den-
sity function (which needs to be computed for the histo-
gram and time-series views) still allows for interactive
update rates. Compared to the CPU version, we achieved
a speedup of roughly 5x for all tasks when considering
the dependencies.

The histogram, range, mean, variance, kurtosis and the
risk estimate are calculated directly from the ensemble and
as such the complexity relies solely on the number of surfa-
ces and valid data points per surface. We would expect the

computation time for these values to scale linearly with the
number of surfaces/valid data points, which seems to be in
line with the measured numbers. For larger data sets, how-
ever, it would make sense to compute range, mean, vari-
ance, kurtosis and the risk estimate using the histogram.
This would result in constant time, only depending on the
size of the histogram. For the data sets here, however, the
histogram computation is the limiting factor. The probabil-
ity density function, median and mode are looked up using
the histogram, and therefore there is no difference between
the small and the large data set. Standard deviation and
skewness are implemented as simple combinations of other
surface properties, and thus computation times are also
independent of the number of surfaces. With the dependen-
cies precomputed, the computation of both properties is
trivial, which results in very short computation times.

5 APPLICATION SCENARIOS

This section presents two novel visual workflows for plan-
ning the placement as well as the operations of off-shore
structures (Section 5.1), and for planning underwater glider
paths for efficient data acquisition (Section 5.2), respec-
tively. We have designed our framework with these real-
world scenarios in mind. During this process, we have
worked closely with our domain expert partners, who are
also co-authors of this paper, to specifically address their
needs. Although we have not yet performed a formal evalu-
ation, we can say that the domain experts are very satisfied
with the capabilities provided by our framework, and that
they are eager to integrate it with their daily workflow. The
close integration of views and tools specifically designed for
the tasks at hand, as well as the GPU-based computation
and visualization pipeline, considerably speed up the visual
analysis process. Our collaborators think that this is a big
step forward over the usual approach of combining the
actual computation with plotting the results in MATLAB.
The biggest advantage of our framework over this more



1122

limited approach is provided by the time-series view in our
framework. Even though this is a kind of visualization that
our partners have not used in their standard workflow until
now, they were immediately comfortable with using it in
our framework. They thought that the time-series view
helps tremendously when judging the forecast for a prede-
fined position over several time samples.

5.1 Off-Shore Oil Operations in the Gulf of Mexico
Oil exploration in the deep Gulf of Mexico is vulnerable to
hazards due to strong currents at the fronts of highly non-
linear warm-core eddies [51]. The dynamics in the Gulf of
Mexico are dominated by the powerful northward Yucatan
Current flowing into a semi-enclosed basin. This current
forms a loop that exits through the Florida Straits and
merges with the Gulf Stream. At irregular intervals, the
loop current sheds large eddies that propagate westward
across the Gulf of Mexico. This eddy shedding involves a
rapid growth of non-linear instabilities [4], and the occa-
sional eddy detachment and reattachment make it very dif-
ficult to clearly define, identify, monitor, and forecast an
eddy shedding event [3], [15].

The predictability of these eddy shedding events poses a
major challenge for the oil and gas industry operating in the
Gulf. The presence of these strong currents potentially
causes serious problems and safety concerns for the rig
operators. Millions of dollars are lost every year due to dril-
ling downtime caused by these powerful currents. As oil
production moves further into deeper waters, the costs
related to strong current hazards are increasing accordingly,
and accurate 3D forecasts of currents are needed. These can
help rig operators to avoid some of these losses through
better planning.

We illustrate two different scenarios, planning the place-
ment and planning operations of an off-shore platform,
with a real-world forecast data set of the Gulf of Mexico.
The data set covers the Gulf of Mexico basin between 8.5
degree N and 31 degree N, and 72.5 degree W and 98 degree
W on a 1/10° x 1/10° grid (225 x 255 samples of varying
metrical distance, between 9.5 and 11 km, due to the spheri-
cal grid) with 40 vertical layers. Forecasting experiments
were performed over a six-month period in 1999 between
May and October during which a strong loop current event
occurred (Eddy “Juggernaut”) [29]. The assimilation cycle
was two weeks, resulting in ten temporal samples, each con-
sisting of 50 ensemble members.

Planning Phase. While the accessibility of an existing res-
ervoir is the key factor when planning an oil platform, ocean
forecasts can provide valuable additional information. Mod-
ern drilling techniques to some extent allow flexible paths
and thus considerable flexibility for the actual placement of
a platform. However, the complexity of the path has impli-
cations on the cost of drilling. On the other hand, slight
changes of the position might move a platform from an area
that is strongly affected by eddy shedding, which leads to
long downtimes, to a less affected area, overall resulting in
more efficient operations.

Planning the placement of an off-shore structure
requires a complete overview of the ensemble in the spa-
tial domain, but also of all available time steps. Fig. 7
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Fig. 7. Spatial Exploration for placement planning consists of four main
steps: Definition of the area of interest based for example on reservoir
reachability (a), general overview (b), time-series analysis (c) and
detailed analysis for verification (d). Please use Adobe Reader > 9 to
enable animations.

outlines all necessary steps. First, the user defines the area
of interest (defined by factors not available in the ocean
forecast, like reservoir reachability) in the 2D view
(Fig. 7a) for example by painting directly on the map. In
Fig. 7b, the sea level of the mean surface for a single sam-
ple in time is mapped to the third dimension. The stan-
dard deviation is used for pseudo-coloring in the 3D view.
By animating over all assimilation cycles, the user can
now get an overview of the mean sea level at the selected
area of interest, as well as the corresponding uncertainties.
Besides the 3D view, animation can also be used in the 2D
view, showing the sea level using iso-contours and
pseudo-coloring (inset). While the animation is very effec-
tive to give a first impression of the changing sea level, it
is challenging to derive qualitative results. Therefore, in
the next step, the user can look at iso-contours from the
mean surfaces, or risk estimates of multiple assimilation
cycles in a single view. The contour for a single selected
sea level and maximum allowed risk is extracted for all
cycles and rendered on the mean surface. The selected sea
level, as well as the maximum risk, can be changed on the
fly (compare the animation in Fig. 7c). Starting with a low
sea level and zero risk, the user can gradually approach a
suitable compromise of available positions, critical sea sur-
face height and risk, to narrow down the area of interest to
a few points. Once a compromise is found, the ensemble
distribution can be probed interactively at the interesting
positions, to verify the results using the histogram view
(Fig. 7d). At this point, the area for placement is narrowed
down significantly. Positions for potential placement can
now be defined and edited on the map in the 2D view or
by entering coordinates directly. The operational phase for
these samples can then be simulated identically to the
actual operational analysis (see below).
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Fig. 8. Time-Series Comparison for two positions (indicated by the
markers in the insets) that are in close proximity. The upper left position
is mapped to the left side of the glyphs, the lower right position to the
right side. The left side of the glyphs shows a position which exhibits
very little risk only for the first and last sample of the time-series. Moving
the position slightly results in several time steps which would definitely
require a shutdown of operations (right side of the glyphs).

Operational Phase. Most of the ensemble analysis for plan-
ning operations and unavoidable downtimes is carried out
in the time-series view shown in Fig. 2d. For a detailed expla-
nation of the glyph used in the view, see Section 3.2. For plan-
ning the operations, the view shows the complete available
time-series at a single user-defined spatial position, corre-
sponding to an actual, or potential oil rig. The most impor-
tant information here is the risk estimate described in
Section 3.1. Each glyph is color coded according to the risk at
the corresponding point in time. We provide a set of stan-
dard color maps for coloring the glyphs. The color map is
also freely customizable, most importantly to adapt to the
acceptable risk. A good color map should highlight three
cases based on the risk estimate: Points in time which are
safe for operation with a high certainty, time steps where the
rig needs to be shut down with large certainty, and finally
uncertain times. We found the green to yellow to red diverg-
ing color map, as used in Fig. 2d to be a good fit, with the
green and red mapping to the percentages which indicate
safe operations and a high risk, respectively, and the yellow
to percentages indicating the need for additional inspection.

The actual operation planning is a recurring process with
only a few future assimilation cycles available at a time.
Assuming a color map as described, after loading the data
the user can immediately identify safe and unsafe points in
time from the color of the corresponding glyphs. Only
uncertain points in time need further investigation. The
main factor to consider for these cases is the spread or
uncertainty of the distribution. A compact glyph corre-
sponds to a distribution with little uncertainty. Here, the
risk estimate can immediately be used for making a decision
to shut down the rig. A large glyph in general indicates
large uncertainty. Here, the user must carefully weigh sev-
eral properties: Are ensemble members in the critical range
close to the critical sea level or far above, is the distribution
skewed to either side, etc. This information can be derived
from the glyph or the user can inspect the raw results from
the statistical analysis to make a final decision.

Fig. 8 shows a comparison for two positions that are in
close proximity, selected for potential placement at the
boundary of the eddy shedding area. The spatial distance
is less than 30 km (compare the positional markers in the
insets of Fig. 8). While the position mapped to the left
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Fig. 9. Slocum Glider as used by the University of Southern California
(courtesy of Smith et al. [47]).

side of the glyphs would allow minimal downtimes (only
two of the samples of the time-series exhibit any risk,
which is also very low) the position mapped to the right
side of the glyphs exhibits a very different result. For this
position, six out of the ten samples show a sea surface
height that will certainly be above the critical level. In
addition even the first two samples, which overall are less
risky, expose a large amount of uncertainty. Using this
comparison one can immediately see that the position
mapped to the left side of the glyphs will allow much

more efficient operations.

5.2 Planning Glider Paths in the Red Sea

The Red Sea has recently attracted attention from several
scientific communities, for its unique physical and biologi-
cal variability. It is characterized by high temperature and
salinity due to its location, surrounded by hot deserts,
resulting in high evaporation and negligible precipitation,
as well as its isolation from the worlds oceans. Besides the
negligible Suez Canal in the north, the only connection to
other large bodies of water is through the strait of Bab el
Mandeb, a narrow and shallow channel.

The Red Sea is bordered by high mountain ranges that
constrain the winds to be closely aligned along the axis of the
basin except at a few locations where gaps in the mountains
exist. The horizontal circulation in the Red Sea consists of
multiple eddies, driven by these strong winds. These eddies
strongly influence the exchange of biological organisms and
also transport heat and other physical properties. Nowa-
days, so-called gliders, autonomous underwater vehicles
(see Fig.9), are used to record the physical, chemical and bio-
logical properties of the eddies, such as temperature, salinity
or chlorophyll content.

We illustrate the use of our system for the scenario of
planning glider paths using an ensemble simulation data
set for the Red Sea. The data set covers the Red Sea and
extends towards the east through the Gulf of Aden to the
Arabian Sea and the Persian Gulf. The exact covered area
extends from 9 degree N to 30 degree N, and 32 degree E
to 77 degree E on a 1/10° x 1/10° (corresponding to 9.6 to
11 km) grid with 50 vertical layers. The months of Janu-
ary to March 2004 were simulated and the assimilation
cycle was three days, resulting in a data set of 30 sampled
time steps, with of 50 members, each consisting of
450 x 210 samples.

Underwater gliders [5], [46], [49] are autonomous sea
vehicles consuming very little energy. They move without
a propeller, only by means of changing their volume, for
example by de- or inflating an external oil bladder, and
shifting of weight. Recently Smith et al. [48] proposed
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Fig. 10. Detailed Glider Path Analysis. The video shows the editing of the path of a glider. When a control point is moved (2D view, right) the sample
positions for the time series along the resulting path are recomputed, triggering updates in the time-series view (left) for detailed analysis.Please use

Adobe Reader > 9 to enable the video.

improving glider operations by the use of an ocean model
and Kalman filtering. The reasons to use ocean forecasts
when planning the paths of a glider are diverse. Naturally,
the positions of moving eddies are important when one
wants to sample data inside these eddies. In addition to
this, the energy consumption of the gliders can be judged
more precisely when currents along the path are known.
Strong currents can also be used as an accelerator, to mini-
mize energy consumption or move the gliders to a desired
position more quickly.

In our system, planning the path of a glider is similar to
planning the position of an off-shore structure, as described
in Section 5.1. First, the user gathers an overview of the
eddy positions and their movements over time, using any
of the spatial views. Again, the exploration starts with the
definition of an area of interest. After that, the user would
look at the eddy probability map (or risk estimate), as well
as the eddy centers in the 2D and 3D spatial views. In com-
bination with the visualization of the eddy centers, animat-
ing over the eddy probability maps of the different samples
of the time-series one can easily identify moving and more
stationary eddies and plan the path accordingly. The path
itself is then defined by placing waypoints in the 2D view.
By assigning a velocity to the glider, the positions along the
resulting path, corresponding to the available samples of
the time-series of the forecast, can be computed. Waypoints
can be edited, simply by dragging them within the 2D
view. The available positions will automatically be recom-
puted on the fly. The positions along the path, for which
forecast data is available are highlighted in the spatial
views, with extra emphasis on the point in time which is
currently active in the view. All available positions can be
shown in the time-series view. When planning a path, the
view behaves differently compared to planning a single
fixed position, as described above. While the x-axis still cor-
responds to the time, each glyph does not only reflect a
point in time, but is also created from the data at the grid
point along the path computed for this point in time. Fig. 10
shows typical adjustments to a path. The user drags one of
the waypoints, resulting in variations of the length of the
adjacent path segments and thus updates of the positions of

the available samples of the time-series along the path.
The time-series view updates immediately, showing the
detailed information for each of the positions along the
path over time.

6 CONCLUSION

In this work we have presented an interactive, integrated
system for the visualization, exploration and analysis of
heightfield ensemble data. The core of our framework,
which consists of statistical analysis and rendering, is imple-
mented in an efficient GPU-based pipeline. We have illus-
trated the utility of our framework for two real-world
applications based on ocean forecasting. We developed the
system in close collaboration with domain expert partners,
who now use it on a regular basis. For the future we would
like to conduct a formal user study.

In the current state our framework requires the whole
data set to be available in GPU-memory at any point in the
pipeline. Even though GPU-memory is getting larger and
larger, this is an obvious problem when scaling to very large
data. However, the statistics can all be computed based on
the histogram. For the future we plan to implement a
streaming approach for computing the histogram, i.e., load-
ing the data into GPU memory in slabs and computing the
histogram slab by slab. Since the histogram is of constant
size, this would eliminate the problem of computing statis-
tics for very large data.

We would also like to explore the possibilities to deploy
our framework in a broader set of application scenarios, dif-
ferent from ocean forecasting. While visualization of weather
and climate forecasts are obvious targets, completely differ-
ent areas like analysis of time series of geospatial measure-
ments [50] might also profit from this kind of analysis. In
previous work [13] we present the application of our frame-
work for interpretation of seismic tomography data.
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