48 research outputs found

    Autonomous model building using vision and manipulation

    Get PDF
    It is often the case that robotic systems require models, in order to successfully control themselves, and to interact with the world. Models take many forms and include kinematic models to plan motions, dynamics models to understand the interaction of forces, and models of 3D geometry to check for collisions, to name but a few. Traditionally, models are provided to the robotic system by the designers that build the system. However, for long-term autonomy it becomes important for the robot to be able to build and maintain models of itself, and of objects it might encounter. In this thesis, the argument for enabling robotic systems to autonomously build models is advanced and explored. The main contribution of this research is to show how a layered approach can be taken to building models. Thus a robot, starting with a limited amount of information, can autonomously build a number of models, including a kinematic model, which describes the robot’s body, and allows it to plan and perform future movements. Key to the incremental, autonomous approach is the use of exploratory actions. These are actions that the robot can perform in order to gain some more information, either about itself, or about an object with which it is interacting. A method is then presented whereby a robot, after being powered on, can home its joints using just vision, i.e. traditional methods such as absolute encoders, or limit switches are not required. The ability to interact with objects in order to extract information is one of the main advantages that a robotic system has over a purely passive system, when attempting to learn about or build models of objects. In light of this, the next contribution of this research is to look beyond the robot’s body and to present methods with which a robot can autonomously build models of objects in the world around it. The first class of objects examined are flat pack cardboard boxes, a class of articulated objects with a number of interesting properties. It is shown how exploratory actions can be used to build a model of a flat pack cardboard box and to locate any hinges the box may have. Specifically, it is shown how when interacting with an object, a robot can combine haptic feedback from force sensors, with visual feedback from a camera to get more information from an object than would be possible using just a single sensor modality. The final contribution of this research is to present a series of exploratory actions for a robotic text reading system that allow text to be found and read from an object. The text reading system highlights how models of objects can take many forms, from a representation of their physical extents, to the text that is written on them

    Vision-based methods for state estimation and control of robotic systems with application to mobile and surgical robots

    Get PDF
    For autonomous systems that need to perceive the surrounding environment for the accomplishment of a given task, vision is a highly informative exteroceptive sensory source. When gathering information from the available sensors, in fact, the richness of visual data allows to provide a complete description of the environment, collecting geometrical and semantic information (e.g., object pose, distances, shapes, colors, lights). The huge amount of collected data allows to consider both methods exploiting the totality of the data (dense approaches), or a reduced set obtained from feature extraction procedures (sparse approaches). This manuscript presents dense and sparse vision-based methods for control and sensing of robotic systems. First, a safe navigation scheme for mobile robots, moving in unknown environments populated by obstacles, is presented. For this task, dense visual information is used to perceive the environment (i.e., detect ground plane and obstacles) and, in combination with other sensory sources, provide an estimation of the robot motion with a linear observer. On the other hand, sparse visual data are extrapolated in terms of geometric primitives, in order to implement a visual servoing control scheme satisfying proper navigation behaviours. This controller relies on visual estimated information and is designed in order to guarantee safety during navigation. In addition, redundant structures are taken into account to re-arrange the internal configuration of the robot and reduce its encumbrance when the workspace is highly cluttered. Vision-based estimation methods are relevant also in other contexts. In the field of surgical robotics, having reliable data about unmeasurable quantities is of great importance and critical at the same time. In this manuscript, we present a Kalman-based observer to estimate the 3D pose of a suturing needle held by a surgical manipulator for robot-assisted suturing. The method exploits images acquired by the endoscope of the robot platform to extrapolate relevant geometrical information and get projected measurements of the tool pose. This method has also been validated with a novel simulator designed for the da Vinci robotic platform, with the purpose to ease interfacing and employment in ideal conditions for testing and validation. The Kalman-based observers mentioned above are classical passive estimators, whose system inputs used to produce the proper estimation are theoretically arbitrary. This does not provide any possibility to actively adapt input trajectories in order to optimize specific requirements on the performance of the estimation. For this purpose, active estimation paradigm is introduced and some related strategies are presented. More specifically, a novel active sensing algorithm employing visual dense information is described for a typical Structure-from-Motion (SfM) problem. The algorithm generates an optimal estimation of a scene observed by a moving camera, while minimizing the maximum uncertainty of the estimation. This approach can be applied to any robotic platforms and has been validated with a manipulator arm equipped with a monocular camera

    Anthropomorphic Robot Design and User Interaction Associated with Motion

    Get PDF
    Though in its original concept a robot was conceived to have some human-like shape, most robots now in use have specific industrial purposes and do not closely resemble humans. Nevertheless, robots that resemble human form in some way have continued to be introduced. They are called anthropomorphic robots. The fact that the user interface to all robots is now highly mediated means that the form of the user interface is not necessarily connected to the robots form, human or otherwise. Consequently, the unique way the design of anthropomorphic robots affects their user interaction is through their general appearance and the way they move. These robots human-like appearance acts as a kind of generalized predictor that gives its operators, and those with whom they may directly work, the expectation that they will behave to some extent like a human. This expectation is especially prominent for interactions with social robots, which are built to enhance it. Often interaction with them may be mainly cognitive because they are not necessarily kinematically intricate enough for complex physical interaction. Their body movement, for example, may be limited to simple wheeled locomotion. An anthropomorphic robot with human form, however, can be kinematically complex and designed, for example, to reproduce the details of human limb, torso, and head movement. Because of the mediated nature of robot control, there remains in general no necessary connection between the specific form of user interface and the anthropomorphic form of the robot. But their anthropomorphic kinematics and dynamics imply that the impact of their design shows up in the way the robot moves. The central finding of this report is that the control of this motion is a basic design element through which the anthropomorphic form can affect user interaction. In particular, designers of anthropomorphic robots can take advantage of the inherent human-like movement to 1) improve the users direct manual control over robot limbs and body positions, 2) improve users ability to detect anomalous robot behavior which could signal malfunction, and 3) enable users to be better able to infer the intent of robot movement. These three benefits of anthropomorphic design are inherent implications of the anthropomorphic form but they need to be recognized by designers as part of anthropomorphic design and explicitly enhanced to maximize their beneficial impact. Examples of such enhancements are provided in this report. If implemented, these benefits of anthropomorphic design can help reduce the risk of Inadequate Design of Human and Automation Robotic Integration (HARI) associated with the HARI-01 gap by providing efficient and dexterous operator control over robots and by improving operator ability to detect malfunctions and understand the intention of robot movement

    Model-Based Environmental Visual Perception for Humanoid Robots

    Get PDF
    The visual perception of a robot should answer two fundamental questions: What? and Where? In order to properly and efficiently reply to these questions, it is essential to establish a bidirectional coupling between the external stimuli and the internal representations. This coupling links the physical world with the inner abstraction models by sensor transformation, recognition, matching and optimization algorithms. The objective of this PhD is to establish this sensor-model coupling

    Development of the huggable social robot Probo: on the conceptual design and software architecture

    Get PDF
    This dissertation presents the development of a huggable social robot named Probo. Probo embodies a stuffed imaginary animal, providing a soft touch and a huggable appearance. Probo's purpose is to serve as a multidisciplinary research platform for human-robot interaction focused on children. In terms of a social robot, Probo is classified as a social interface supporting non-verbal communication. Probo's social skills are thereby limited to a reactive level. To close the gap with higher levels of interaction, an innovative system for shared control with a human operator is introduced. The software architecture de nes a modular structure to incorporate all systems into a single control center. This control center is accompanied with a 3D virtual model of Probo, simulating all motions of the robot and providing a visual feedback to the operator. Additionally, the model allows us to advance on user-testing and evaluation of newly designed systems. The robot reacts on basic input stimuli that it perceives during interaction. The input stimuli, that can be referred to as low-level perceptions, are derived from vision analysis, audio analysis, touch analysis and object identification. The stimuli will influence the attention and homeostatic system, used to de ne the robot's point of attention, current emotional state and corresponding facial expression. The recognition of these facial expressions has been evaluated in various user-studies. To evaluate the collaboration of the software components, a social interactive game for children, Probogotchi, has been developed. To facilitate interaction with children, Probo has an identity and corresponding history. Safety is ensured through Probo's soft embodiment and intrinsic safe actuation systems. To convey the illusion of life in a robotic creature, tools for the creation and management of motion sequences are put into the hands of the operator. All motions generated from operator triggered systems are combined with the motions originating from the autonomous reactive systems. The resulting motion is subsequently smoothened and transmitted to the actuation systems. With future applications to come, Probo is an ideal platform to create a friendly companion for hospitalised children

    Design, Control, and Evaluation of a Human-Inspired Robotic Eye

    Get PDF
    Schulz S. Design, Control, and Evaluation of a Human-Inspired Robotic Eye. Bielefeld: Universität Bielefeld; 2020.The field of human-robot interaction deals with robotic systems that involve humans and robots closely interacting with each other. With these systems getting more complex, users can be easily overburdened by the operation and can fail to infer the internal state of the system or its ”intentions”. A social robot, replicating the human eye region with its familiar features and movement patterns, that are the result of years of evolution, can counter this. However, the replication of these patterns requires hard- and software that is able to compete with the human characteristics and performance. Comparing previous systems found in literature with the human capabili- ties reveal a mismatch in this regard. Even though individual systems solve single aspects, the successful combination into a complete system remains an open challenge. In contrast to previous work, this thesis targets to close this gap by viewing the system as a whole — optimizing the hard- and software, while focusing on the replication of the human model right from the beginning. This work ultimately provides a set of interlocking building blocks that, taken together, form a complete end-to-end solution for the de- sign, control, and evaluation of a human-inspired robotic eye. Based on the study of the human eye, the key driving factors are identified as the success- ful combination of aesthetic appeal, sensory capabilities, performance, and functionality. Two hardware prototypes, each based on a different actua- tion scheme, have been developed in this context. Furthermore, both hard- ware prototypes are evaluated against each other, a previous prototype, and the human by comparing objective numbers obtained by real-world mea- surements of the real hardware. In addition, a human-inspired and model- driven control framework is developed out, again, following the predefined criteria and requirements. The quality and human-likeness of the motion, generated by this model, is evaluated by means of a user study. This frame- work not only allows the replication of human-like motion on the specific eye prototype presented in this thesis, but also promotes the porting and adaption to less equipped humanoid robotic heads. Unlike previous systems found in literature, the presented approach provides a scaling and limiting function that allows intuitive adjustments of the control model, which can be used to reduce the requirements set on the target platform. Even though a reduction of the overall velocities and accelerations will result in a slower motion execution, the human characteristics and the overall composition of the interlocked motion patterns remain unchanged

    Peripersonal Space in the Humanoid Robot iCub

    Get PDF
    Developing behaviours for interaction with objects close to the body is a primary goal for any organism to survive in the world. Being able to develop such behaviours will be an essential feature in autonomous humanoid robots in order to improve their integration into human environments. Adaptable spatial abilities will make robots safer and improve their social skills, human-robot and robot-robot collaboration abilities. This work investigated how a humanoid robot can explore and create action-based representations of its peripersonal space, the region immediately surrounding the body where reaching is possible without location displacement. It presents three empirical studies based on peripersonal space findings from psychology, neuroscience and robotics. The experiments used a visual perception system based on active-vision and biologically inspired neural networks. The first study investigated the contribution of binocular vision in a reaching task. Results indicated the signal from vergence is a useful embodied depth estimation cue in the peripersonal space in humanoid robots. The second study explored the influence of morphology and postural experience on confidence levels in reaching assessment. Results showed that a decrease of confidence when assessing targets located farther from the body, possibly in accordance to errors in depth estimation from vergence for longer distances. Additionally, it was found that a proprioceptive arm-length signal extends the robot’s peripersonal space. The last experiment modelled development of the reaching skill by implementing motor synergies that progressively unlock degrees of freedom in the arm. The model was advantageous when compared to one that included no developmental stages. The contribution to knowledge of this work is extending the research on biologically-inspired methods for building robots, presenting new ways to further investigate the robotic properties involved in the dynamical adaptation to body and sensing characteristics, vision-based action, morphology and confidence levels in reaching assessment.CONACyT, Mexico (National Council of Science and Technology

    Robot mediated communication: Enhancing tele-presence using an avatar

    Get PDF
    In the past few years there has been a lot of development in the field of tele-presence. These developments have caused tele-presence technologies to become easily accessible and also for the experience to be enhanced. Since tele-presence is not only used for tele-presence assisted group meetings but also in some forms of Computer Supported Cooperative Work (CSCW), these activities have also been facilitated. One of the lingering issues has to do with how to properly transmit presence of non-co-located members to the rest of the group. Using current commercially available tele-presence technology it is possible to exhibit a limited level of social presence but no physical presence. In order to cater for this lack of presence a system is implemented here using tele-operated robots as avatars for remote team members and had its efficacy tested. This testing includes both the level of presence that can be exhibited by robot avatars but also how the efficacy of these robots for this task changes depending on the morphology of the robot. Using different types of robots, a humanoid robot and an industrial robot arm, as tele-presence avatars, it is found that the humanoid robot using an appropriate control system is better at exhibiting a social presence. Further, when compared to a voice only scenario, both robots proved significantly better than with only voice in terms of both cooperative task solving and social presence. These results indicate that using an appropriate control system, a humanoid robot can be better than an industrial robot in these types of tasks and the validity of aiming for a humanoid design behaving in a human-like way in order to emulate social interactions that are closer to human norms. This has implications for the design of autonomous socially interactive robot systems

    Advances in humanoid control and perception

    Get PDF
    One day there will be humanoid robots among us doing our boring, time-consuming, or dangerous tasks. They might cook a delicious meal for us or do the groceries. For this to become reality, many advances need to be made to the artificial intelligence of humanoid robots. The ever-increasing available computational processing power opens new doors for such advances. In this thesis we develop novel algorithms for humanoid control and vision that harness this power. We apply these methods on an iCub humanoid upper-body with 41 degrees of freedom. For control, we develop Natural Gradient Inverse Kinematics (NGIK), a sampling-based optimiser that applies natural evolution strategies to perform inverse kinematics. The resulting algorithm makes very few assumptions and gives much more freedom in definable constraints than its Jacobian-based counterparts. A special graph-building procedure is introduced to build Task-Relevant Roadmaps (TRM) by iteratively applying NGIK and storing the results. TRMs form searchable graphs of kinematic configurations on which a wide range of task-relevant humanoid movements can be planned. Through coordinating several instances of NGIK, a fast parallelised version of the TRM building algorithm is developed. To contrast the offline TRM algorithms, we also develop Natural Gradient Control which directly uses the optimisation pass in NGIK as an online control signal. For vision, we develop dynamic vision algorithms that form cyclic information flows that affect their own processing. Deep Attention Selective Networks (dasNet) implement feedback in convolutional neural networks through a gating mechanism that is steered by a policy. Through this feedback, dasNet can focus on different features in the image in light of previously gathered information and improve classification, with state-of-the- art results at the time of publication. Then, we develop PyraMiD-LSTM, which processes 3D volumetric data by employing a novel convolutional Long Short-Term Memory network (C-LSTM) to compute pyramidal contexts for every voxel, and combine them to perform segmentation. This resulted in state-of-the-art performance on a segmentation benchmark. The work on control and vision is integrated into an application on the iCub robot. A Fast-Weight PyraMiD-LSTM is developed that dynamically generates weights for a C-LSTM layer given actions of the robot. An explorative policy using NGC generates a stream of data, which the Fast-Weight PyraMiD-LSTM has to predict. The resulting integrated system learns to model the effects of head and hand movements and their effects on future visual input. To our knowledge, this is the first effective visual prediction system on an iCub
    corecore