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Abstract

For autonomous systems that need to perceive the surrounding environment for
the accomplishment of a given task, vision is a highly informative exteroceptive
sensory source. When gathering information from the available sensors, in fact, the
richness of visual data allows to provide a complete description of the environment,
collecting geometrical and semantic information (e.g., object pose, distances, shapes,
colors, lights). The huge amount of collected data allows to consider both methods
exploiting the totality of the data (dense approaches), or a reduced set obtained
from feature extraction procedures (sparse approaches). This manuscript presents
dense and sparse vision-based methods for control and sensing of robotic systems.
First, a safe navigation scheme for mobile robots, moving in unknown environments
populated by obstacles, is presented. For this task, dense visual information is
used to perceive the environment (i.e., detect ground plane and obstacles) and, in
combination with other sensory sources, provide an estimation of the robot motion
with a linear observer. On the other hand, sparse visual data are extrapolated
in terms of geometric primitives, in order to implement a visual servoing control
scheme satisfying proper navigation behaviours. This controller relies on visual
estimated information and is designed in order to guarantee safety during navigation.
In addition, redundant structures are taken into account to re-arrange the internal
configuration of the robot and reduce its encumbrance when the workspace is highly
cluttered.

Vision-based estimation methods are relevant also in other contexts. In the
field of surgical robotics, having reliable data about unmeasurable quantities is of
great importance and critical at the same time. In this manuscript, we present
a Kalman-based observer to estimate the 3D pose of a suturing needle held by
a surgical manipulator for robot-assisted suturing. The method exploits images
acquired by the endoscope of the robot platform to extrapolate relevant geometrical
information and get projected measurements of the tool pose. This method has also
been validated with a novel simulator designed for the da Vinci robotic platform,
with the purpose to ease interfacing and employment in ideal conditions for testing
and validation.

The Kalman-based observers mentioned above are classical passive estimators,
whose system inputs used to produce the proper estimation are theoretically arbitrary.
This does not provide any possibility to actively adapt input trajectories in order
to optimize specific requirements on the performance of the estimation. For this
purpose, active estimation paradigm is introduced and some related strategies are
presented. More specifically, a novel active sensing algorithm employing visual dense
information is described for a typical Structure-from-Motion (SfM) problem. The
algorithm generates an optimal estimation of a scene observed by a moving camera,
while minimizing the maximum uncertainty of the estimation. This approach can
be applied to any robotic platforms and has been validated with a manipulator arm
equipped with a monocular camera.
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Chapter 1

Introduction

In the sensory nervous system of animals, vision typically represents the richest
source of information about the description and the understanding of the surrounding
environment. The huge amount of data processed by the visual system, in fact,
enables to accomplish a variety of complex tasks to provide a comprehensive depiction
of the phenomena experienced around. In particular, the interconnection between the
visual system and the brain, through the visual cortex, additionally allows to generate
a semantic knowledge from the processed data, as well as infer further information,
e.g., about classification of objects, estimation of distances and movements (see
Figure 1.1). As a result, these animals develop skills such as sense of orientation,
self-localization and capability to plan actions and infer consequences while moving,
based on what they currently observe through their eyes.

Figure 1.1. The human
beings process visual in-
formation through the
visual cortex1.

Nature offers several examples of such vision-based
behaviors: ants combine head and body motion to scan
briefly the environment, in order to localize themselves
with respect to the nest, and move on visually guided
paths to search food [1][2]. Honeybees exploit the ap-
parent motion of the optical flow perceived by left and
right images to estimate distances, avoid collisions and
assist landing on edges [3]. Shrimps use photorecep-
tors ultraviolet, spatial and color vision and can adapt
their photoreception capabilities based on the habitat
and the behavior [4]. Human beings are able to accom-
plish very complex visually guided behaviors through the
stereoscopic visual system, that is decisive for semantic
reasoning, action planning and inference of effects and
consequences on the environment. All these examples
show that vision actually represents a fundamental component to assist and guar-
antee autonomy and survival in non-deterministic, highly complex and dynamic
environments.

As trusty replica of animals and human beings, modern robotic platforms are pro-
grammed deliberately to behave analogously and with similar performances. The com-
plete sensory equipment, mounted on the robot platform, is an artificial representation

1Retrieved from https://discoveryeye.org/optic-nerve-visual-link-brain/
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of the sensory nervous system of animals: the data acquired by the sensors are pro-
cessed to implement highly complex behaviors, exactly as animals and human beings
do.

Figure 1.2. Manipulator per-
forming industrial task for Eu-
RoC project. Retrieved from
www.euroc-project.eu/.

Each sensor retrieves heterogeneous measure-
ment either of the internal conditions in which
the robot is operating (proprioceptive sensors), or
of the external surrounding environment (extero-
ceptive sensors). Within this perspective, vision
is typically accomplished through camera sen-
sors of different types. Indeed, usage of camera
sensors is widely and transversely considered as
part of the standard equipment, among different
deployed platforms of robot applications.

Industrial manipulator arms equip camera
sensors to solve complex manufacturing and lo-
gistic tasks, e.g., welding, assembly, packaging,
where the object to be manipulated needs to
be also identified. Interactive manufacturing
has been one of the three industry-relevant chal-
lenges proposed by European Competition Eu-
RoC2, born with the goal of boosting advanced
research-confined technologies on the industrial
field (Figure 1.2). Logistics and inspection were
the other two areas addressed by EuRoC, involv-

ing use of mobile and aerial robots. Particularly, unmanned aerial vehicles (UAV)
are receiving a great boost both in research activities and in industrial and com-
mercial fields. UAVs, in fact, have revealed to be extremely helpful and effective in
addressing exploration, inspection and rescuing tasks (Figure 1.3a)), in particular in
outdoor environments regarding unaccessible areas, e.g., due to natural calamities
or nuclear disasters. Nevertheless, the problem of solving articulated and complex
tasks in human-unaccessible environments has been the great motivation of the
DARPA Robotics Challenge3, that put the focus on human-tailored tasks addressed
by humanoid robots (Figure 1.3b). Indeed, humanoids represent a further huge class
of robotic platforms that is actually facing an increasing interest also outside the
walls of laboratories and research centers, due to their highly redundant structure
and the possibility to control the whole body. Therefore, specific tasks, such as
object manipulation and navigation in complex environments, are achievable by
inspiring and replicating human actions and behaviors. Also in this case, the usage
of vision is fundamental: in all the tasks involved during the DARPA Challenge,
the information acquired by equipped cameras was crucial to identify manipulating
objects and estimate their distances, as well as detect safe areas of uneven terrains
on which steps could be placed.

This holds also for robots employed for the RoboCup, where a team of hu-
manoids NAO compete in soccer matches (Figure 1.3c): the ball, opponents and

2http://www.euroc-project.eu/
3https://www.darpa.mil/program/darpa-robotics-challenge
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(a) (b) (c)

Figure 1.3. (a) Unmanned aerial vehicle (UAV) inspecting a tree with a camera sensor.
Retrieved from [5]. (b) Humanoid robot driving a vehicle during the DARPA Robotics
Challenge. (c) Humanoid robot NAO of the SPQR team involved in the Robocup.

the traversable space on the field are detected by processing images acquired by the
monocular cameras mounted on the robot heads.

In surgical robotics, visual information is required to the surgeon to provide an
enhancement of his/her visual capabilities and improve the performances of surgical
operations. In this particular case, this can be achieved by also considering virtual
or augmented reality systems, where the standard visual information acquired by the
image can be increased by considering augmented reality displays, showing additional
and helpful information to the user observing the scene. Within this context, the
da Vinci robotic system is the most recent and widely-employed example. The 3D
vision system of the master console enables the surgeon to have a close view of the
operating scene, performed by the tele-operated slave manipulators of the system,
in a comfortable way (Figure 1.4).

We want to focus on these two latter classes of robots, i.e., mobile humanoid and
surgical robots. Therefore, in this manuscript we propose some vision-based methods
to solve control and state estimation problems for mobile and surgical robotics. For
humanoid robots, moving within an environment highly populated by obstacles
can be a hard task to achieve, since the actual traversable and safe space can be
reduced. This is a widely addressed problem in literature, solved with different
paradigms that could consider a map building process (e.g., SLAM, path planning)
or reactive strategies to safely navigate among the obstacles. However, there are not
formal results of convergence that can guarantee safety of the robot in particular
benchmark test cases. Therefore, we propose a purely reactive safe navigation scheme
for wheeled and humanoid robots, moving in unknown environments populated by
obstacles, and we show that is possible to formally guarantee safety preservation.
For this task, dense visual information is used to perceive the environment (i.e.,
detect ground plane and obstacles) and, in combination with other sensory sources,
provide an estimation of the robot motion with a linear observer. On the other hand,
sparse visual data are extrapolated in terms of geometric primitives, in order to
implement a visual servoing control scheme satisfying proper navigation behaviors.
This controller relies on visual estimated information and is designed in order to
guarantee safety during navigation. In addition, redundant structures are taken
into account to re-arrange the internal configuration of the robot and reduce its
encumbrance when the workspace is highly cluttered.

Second, the focus is moved on surgical robots, specifically on the da Vinci robotic
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system. In the field of surgical robotics, having reliable data about unmeasurable
quantities is of great importance and critical at the same time. This is particularly
true for semi-autonomous robot-assisted surgical procedures, where knowing the
state of the tools currently handled by the platform (e.g., position and orientation
of a needle) is critical for the success of the operation. Most of efforts in research
relies on neural-networks-based approaches, due to the highly unstructured property
of the surgical environment, that makes the process of image-based identification
really hard. However, the possibility to tackle this problem by considering dynamic
observers has not been largely explored yet. Therefore, in this manuscript, we present
a preliminary study to estimate the 3D pose of a suturing needle held by a surgical
manipulator for robot-assisted suturing, by using a Kalman Filter observer. This is
a relevant problem, since it is important for the surgeon has reliable information
to accomplish tiring tasks such as wound stitching. The method exploits images
acquired by the endoscope of the robot platform to extrapolate relevant geometrical
information and get projected measurements of the tool pose. This method has also
been validated with a novel simulator designed for the da Vinci robotic platform,
with the purpose to ease interfacing and employment in ideal conditions for testing
and validation.

Figure 1.4. Surgeon operating with the da
Vinci robotic system observes the clinical
scene with the 3D vision system of the
master console.

The manuscript is concluded by pre-
senting a preliminary study about the
active sensing paradigm, where the in-
puts of a system of interest are gener-
ated to accomplish some optimality cri-
teria on the estimation performances.
The Kalman-based observers mentioned
above are classical passive estimators,
whose system inputs used to produce
the proper estimation are theoretically
arbitrary. This does not provide any
possibility to actively adapt input tra-
jectories in order to optimize specific
requirements on the performance of the
estimation. For this purpose, active es-
timation paradigm is introduced and some related strategies are presented. More
specifically, a novel active sensing algorithm employing visual dense information
is described for a typical Structure-from-Motion (SfM) problem. The algorithm
generates an optimal estimation of a scene observed by a moving camera, while
minimizing the maximum uncertainty of the estimation. This approach can be
applied to any robotic platforms and has been validated with a free-flying monocular
camera.

In detail, the manuscript is organized as follows: Chapter 2 present the vision-
based navigation problem for wheeled and humanoid robots. Chapter 3 presents the
da Vinci robotic system, along with the developed simulating tools and the needle
pose estimation scheme. Chapter 4 presents the preliminary study about active
sensing paradigm in control systems. Chapter 5 concludes the manuscript.
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Chapter 2

Vision-based navigation for

omnidirectional robots

Figure 2.1. Example of a challenging scenario where the robot can exploit both omnidirec-
tional mobility and body re-orientation.

Mobile robots, by construction, have an infinite workspace inside which they need
to move in a safe way to accomplish tasks in industrial and service contexts. The
potentially unlimited size of their workspace, and the likelihood of changes prevent
or make inefficient to structure the environment geometry and sensory equipment.

Examples include robots employed, e.g., in logistics or for assistive tasks in office-
like environments, typically cluttered and dynamically changing. This is also the case
of robots employed for exploration or rescuing tasks in post-disaster environments,
where critical and precarious conditions of the location make the workspace highly
unstructured and uncertain for the robot, and the deployment of external sensory
services inefficient or impossible.

The examples provided above refer to canonical robot navigation problem, that
is an instance of a more general motion planning problem: the robot is demanded to
move within an environment, that can be unknown and reconstructed on-line (on-line
planning), or assumed as known in advance (off-line planning), in order to satisfy
some particular assigned behavior or reach a predefined goal. The environment
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can be populated by obstacles, thus the robot needs to plan an obstacle-free path
(global approaches)[6], or an instantaneous motion (local approaches)[7], to guarantee
safety. To manage this task, robots exploit information acquired by available sensors,
that can be on-board (encoders, IMU, cameras) or integrated in the environment
(external tracking system, e.g., VICON). In this sense, exteroceptive sensors like
cameras are fundamental to reconstruct reliable geometric information about the
surrounding areas and are crucial to detect and identify possible obstacles.

Furthermore, one typically takes into account also instantaneous motion limita-
tions due to non-holonomic constraints of the robot platform, to generate feasible
paths that can be actually executed by the robot. However, these constraints may
reduce the space of possible configurations and trajectories that can bring the robot
to the goal, or to satisfy its task. On the other hand, omnidirectional robots, both
wheeled and legged, offer a higher degree of manoeuvrability that can ease navigation
in challenging scenarios, like moving sideways in narrow passages (see Fig. 2.1). In
conjunction with a maneuverable platform, navigation in an unstructured, unknown
environment requires also to endow the robot with reactive capabilities allowing to
complete the task while avoiding unsafe contacts with the surrounding environment.

In this chapter, we focus on vision-based navigation problems, where visual
information is necessary for the accomplishment of the task. Specifically, we consider
a local strategy where the robot reactively moves based on the instantaneous
information acquired by sensors. From this point of view, vision-based control
methods like image based visual servoing (IBVS) [8] are particularly appealing due
to the possibility to define the task in the sensor space, without the need of a working
space map nor of the robot pose within the environment. In addition, monocular
cameras are commonly available also on cheap robotic platforms.

Despite the success of humanoid robots in recent years and the quite common
use of omnidirectional wheeled robots in the industrial context, not so many work
address the problem of omnidirectional robot navigation in environment populated by
obstacles [9][10][11]. Indeed, navigation problem for omnidirectional wheeled robots is
not extensively addressed. In [9], an obstacle avoidance navigation scheme is proposed,
where a number of drivable paths are defined to generate the omnidirectional motion
and avoid obstacles, while reaching a visible target. However, the presented method
uses laser scans to perceive the surrounding environments and does not exploit
visual information. Moreover, the pre-specified paths can limit the full potential
of an omnidirectional motion.In [10], a full omnidirectional navigation system is
presented. The proposed scheme solves a simultaneous mapping and localization
(SLAM) problem, while generating an optimized trajectory that exploits the efficient
manoeuvrability of the omnidirectional platform. In the proposed scheme, the
motion is planned in advance, as no reactive behaviours are taken into account, and
visual information is not used.

On the other hand, the vision-based navigation problem for humanoid robots
has been widely addressed. A comprehensive description of the general problem,
highlighting related SLAM and planning tools, is given in [12]. In [13], an energy-
efficient approach for indoor environment exploration is presented. The method
generates the view poses for the inspection based on several constraints, in order
to cover the whole 3D scene. The environment is assumed to be known, thus no
reactive behaviors are designed. In [14], a vision-based navigation framework, with
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obstacles detection, is achieved for a humanoid robot in a learning fashion. The
robot detects and classifies the obstacles in order to identify the traversable space
of the robot. However, the detection requires also the use of laser scan data, along
with the information acquired from monocular camera images. In [15], a vision-
based navigation scheme has been presented for a humanoid robot in a maze-like
environment. The robot processes the images from the camera to extract a pair of
visual guidelines that identifies the navigating corridor, and use an IBVS control
scheme to regulate the robot at the center of the corridor. The scheme considers the
robot moving according to a unicycle motion model, and assumes that the corridor
is large enough to allow safe navigation and is obstacle-free.

In [16], the problem of navigation for a humanoid robot is addressed through
the use of a planner based on a pre-built visual memory. The planner takes into
account the presence of unexpected obstacles and exploits the omnidirectional
motion capabilities of the humanoid robot to implement obstacle avoidance behaviors.
However, since the robot is not able to look towards the direction in which it is
moving, there is no guarantee that other unseen obstacles are successfully avoided.

In the works cited above, the presence of actuation errors in the robot model
has not been considered. This is a relevant aspect since, when system inputs
are not properly actuated (e.g., because of modeling errors, mechanical faults or
external disturbances), the effectiveness of the control can be compromised and
safety not preserved. For this reason, in the following we show different proposed
solution, addressing the problem of safe navigation for omnidirectional robot, both
in the nominal case, i.e., when the robotic system inputs are correctly actuated,
and in the perturbed case, i.e., when the presence of actuation disturbances is
taken into account. Specifically, this issue is addressed in two different ways, based
on information extracted by the available sensors. In one case, the disturbance
is rejected through the augmentation of the considered visual task, by defining
additional visual features to be regulated in the image. In the other case, the robot
velocity is estimated through a Kalman Filter combining optical flow-based ego-
motion visual measurements with inertial and odometry data extracted from IMU
and joint encoders. Then, a velocity loop is closed to compensate the discrepancy
between actual and nominal inputs.

A part of the discussion described below, concerning navigation of humanoid
robot in nominal conditions, can be found in [17]. At the time of the submission
of this manuscript, the remaining contents, regarding the generalization to mobile
omnidirectional robots and the handling of actuation disturbances, are about to be
submitted on a journal paper[18].

2.1 Problem description and proposed approach

We address the problem of safe navigation for omnidirectional mobile robots, within
an unknown environment cluttered by obstacles. In this context, we assume that the
robot relies on its on-board sensory equipment only, while nothing is assumed about
the geometry of the environment, except for the local flatness of the ground. Within
the on-board sensory equipment, we consider a monocular camera mounted on the
robot platform. The camera is used to perceive the traversable space and possible
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(a) (b)

Figure 2.2. Omnidirectional wheeled (a) and humanoid (b) robot with reference frames of
interest. We also show tilt angle γ and the pan joint angle qp.

Figure 2.3. The pose of the robot in the world frame Fw is denoted by the position (x, y)
and the orientation θ.

obstacles by extracting proper information from acquired images. In addition, we
want to take into account the possibility that the system inputs are not properly
actuated, e.g., due to modeling errors or mechanical faults. With reference to
Fig. 2.2 and Fig. 2.3, we consider the following frames of interest: (i) the world
inertial frame Fw; (ii) the camera frame Fc, with z-axis along the camera principal
axis and defined according to the "right-bottom" convention; (iii) the robot frame
Fr, with the x- and y-axis directed along forward and left directions of the platform,
respectively. The orientation of the camera with respect to Fr is expressed through
pan and tilt angles, denoted by qp and γ, respectively. The projection on the ground
of the camera position in Fw is given by the pair of coordinates (x, y). Denoting
by θ the absolute orientation of the robot body with respect to yw, the absolute
camera orientation is given by θc = θ + qp. Assuming a planar motion, the robot
commands for navigation, expressed in Fr, are: (i) the Cartesian linear velocities vx

and vy; (ii) the angular velocity ωz, denoting the change of orientation of the robot
body. Finally, we assume that the robot can also actuate the camera pan angle qp

through a joint velocity up, so as to control the camera orientation independently
from that of the body.

Given these working conditions, the most direct approach would be to steer the
robot toward regions of maximum clearance from image obstacles, while moving
in the direction of the gaze of the camera and changing the internal configuration
of the robot in presence of narrow passages generated by obstacles. Therefore, we
first proposed an approach that allows the navigation of omnidirectional robots in a
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priori unknown environments, populated by obstacles of any shape, possibly with
narrow passages, that consists in the following aspects:

• enforce a motion model that aligns the direction of motion with the gaze of
the camera;

• visual servoing techniques to regulate suitable visual features, processed in the
camera images, to a desired value which maximizes the averaged distance of
obstacles images to the image plane ordinate axis;

• internal robot reconfiguration to favor narrow passage crossing.

These behaviors are achieved in the following way: to allow proper reconfiguration
of the robot, we consider a decoupled control of the camera pan angle qp with
respect to the control of the robot body orientation. This is combined with the
explicit enforcement of a constraint imposed on vx and vy, to change and align
the instantaneous direction of motion of the platform with the (varying) camera
principal axis. As a result, the robot/camera system always moves in the direction
of its optical axis.

We observe that maximizing the distance of obstacles to the image center, in
general, does not imply that the robot is moving with the maximum clearance
to all the workspace obstacles. However, in case of navigation along a corridor,
the constraint on the camera velocity allows to formally prove convergence to the
corridor bisector, similarly to [19]. With respect to [19], the approach proposed
here does not rely on geometric assumptions about the environment and it allows
for the presence of obstacles of any shape and uses omnidirectional walk to cross
narrow passages. In the following, we propose a general navigation scheme for the
considered problem, as it has been presented above.

Specifically, the scheme considers a preliminary image processing procedure to
generate the proper visual features required for the control strategy. Then, the
described navigation behaviors are achieved by proposing different vision-based
control strategies. We evaluate and compare the effectiveness of such strategies both
when the system correctly actuates the control inputs (nominal case), and when
the presence of actuation disturbances in the robotic system is taken into account
(perturbed case). As will be seen, in both cases, to guarantee safety for the robot
any time during navigation, it is important to ensure that motion direction and the
the gaze of the camera are kept aligned. This requirement can be disregarded during
the transient response of some visual controllers, thus compromising safety of the
robot during navigation.

For these reasons, we finally propose a further controller, that aims to directly
compensate the error between the actual velocity and the desired velocity, in order
to cope with the scenarios when the alignment constraint is not ensured. The actual
robot velocity is obtained through a Kalman Filter that fuses a vision-based velocity
measurement, recovered from dense optical flow, with inertial and proprioceptive
measurements, coming from IMU and joint encoders.

In the next Section, we present the navigation algorithm realizing omnidirectional
navigation in the considered conditions.
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(a) Optical flow. (b) Planar flow. (c) Dominant plane.

Figure 2.4. Main steps of the image processing algorithm.

2.2 Omnidirectional Navigation Algorithm

To satisfy the proposed objectives, the proposed algorithm consists in two main
modules: (i) a perception module, where a preliminary image processing procedure
detects obstacles in the image and extracts the suitable visual features for the tasks;
(ii) a vision-based control module, that uses the visual information extracted in
the perception module to accomplish a properly defined task. We will detail this
procedure in the next paragraph.

2.2.1 Perception

The images acquired by the monocular camera are used to generate the proper
visual features required to the control strategy. For this purpose, we adopted a
RANSAC-based algorithm for the detection of the dominant plane, meant as the
appearance of the traversable space in the camera image. The method uses a measure
of the dense optical flow evaluated between a pair of consecutive images, describing
the apparent motion of the workspace on the image plane. In the following, we
briefly summarize this algorithm, that is fully described in [20].

At each time instant, the algorithm first computes the dense optical flow image,
to have a measurement of the apparent motion of each image pixels. Computing the
optical flow is equivalent to solve the following equation:

∂I(x, y, t)
∂x

ẋ +
∂I(x, y, t)

∂y
ẏ +

∂I(x, y, t)
∂t

= 0 (2.1)

where x = (x, y)T is a generic pair of coordinates of the gray-scale image I(x, y, t) at
time t. The equation (2.1) is a well-known ill-posed problem, so optical flow solving
methods typically adopt additional constraints to generate a consistent measurement
of the optical flow [21] [22] [23]. Whatever implementation is chosen, the resulting
optical flow image corresponds to a vector field u(x, y, t) = (ẋ, ẏ) of velocity vectors.

Then, by observing that points on the ground plane move differently in the image
with respect to points related to other objects of the scene, the computed optical
flow is used to estimate the apparent motion of the ground, that is referred as planar
flow. So, comparing the measured optical flow with the estimated planar flow allows
to distinguish pixels lying on the ground from pixels belonging to other objects. Such
planar flow is built by robustly estimating the 3 × 3 homography matrix H induced
by the plane between two consecutive camera images, in a RANSAC fashion.

Specifically, under the assumption that the camera motion between two subse-
quent camera frames is small, H can be approximated to an affinity transformation
applied on the point correspondences x ↔ x′:
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x′ = Hx ≈
[

A b

0T 1

]

x (2.2)

where x = (x, y, 1)T and x′ = (x′, y′, 1)T are the vectors of homogeneous coordinates
of x and x′ respectively, A is a 2 × 2 matrix and b is a two-dimensional vector.
The coefficients A and b are robustly estimated with the following RANSAC-based
method, for each pair of subsequent frames I(x, y, t) and I(x, y, t + 1):

1. a minimal set of correspondences x ↔ x′ is randomly chosen among the optical
flow field u(x, y, t). Since we need to estimate 6 parameters, three pairs of
points are required:

xi′ = xi + u(xi, yi, t), i = 1, 2, 3 (2.3)

2. A model
(

Â, b̂
)

is instantiated from the three random correspondences x ↔ x′,
by arranging and solving (2.2) in the form

Mh = 0 (2.4)

where M is a matrix of proper coefficients, and h = (a11, a12, a21, a22, b1, b2)T

is the vector of unknown entries of Â and b̂.

3. For each point x in the image, the estimated planar flow vector is computed:

û(x, y, t) = x̂′ − x = Âx + b̂ − x (2.5)

and determine the consensus set, i.e. the set of points such that

‖u(x, y, t) − û(x, y, t)‖ < ǫ (2.6)

4. the dominant plane image d(x, y, t) is built as

d(x, y, t) =

{

255, if ‖u(x, y, t) − û(x, y, t)‖ < ǫ

0, otherwise
(2.7)

5. If the size of the consensus set (inliers) is greater than a given threshold T ,
the coefficients (A, b) are robustly re-estimated using all the detected inliers,
and the algorithm terminates. Otherwise, a new set of three correspondences
x ↔ x′ is randomly selected again and the procedure is repeated. If, after N
trials, the threshold is not reached, the largest consensus set is used to get the
final robust estimation of A and b.

Erosion and dilation operators are further applied to d(x, y, t), to remove salt-
and-pepper noise and obtain the final image in Fig. 2.4c. At the end of the process,
white pixels in d(x, y, t represent the ground as the traversable space for the robot,



12 2. Vision-based navigation for omnidirectional robots

(a) (b) (c) (d)

Figure 2.5. Visual features recurring in: (a) a general case of environment cluttered by
obstacles; (b) an ill-conditioned case where one of the obstacle is missing and the centroid
is placed on the image border; (c) ill-conditioned case where both centroids are missing;
(d) a simplified scenario with a clear corridor.

while black pixels represent the obstacle region. This information is used to compute
the visual features required for the proposed control strategy.

Specifically, each connected area of image pixels represents an obstacle Oi. For
each Oi, we compute the corresponding centroid in normalized camera coordinates
ci,s = (xi,s, yi,s) (s = {l, r} depending on the considered side of the image):

ci,s =
1

Ni,s

Ni,s
∑

j=1

xj (2.8)

where Ni,s is the area of Oi. Then, we generate the point features cl = (xl, yl) and
cr = (xr, yr)

cl = 1
nl

∑nl

i=1 ci,l

cr = 1
nr

∑nr

i=1 ci,r

(2.9)

as the average of all the nl and nr centroids ci,l and ci,r on the left and right side
of the image, respectively. Finally, we define the following visual features (Fig. 2.5)

xm =
1
2

(xl + xr)

ym = (yl − yr)
(2.10)

where xm denotes the abscissa of the middle point between cl and cr, while ym is
the difference of ordinates. As will be explained in the next Section, the choice of
these visual features is motivated by the fact that regulating both xm and ym to 0
is equivalent to maximize the distances of the robot from the workspace obstacles.
When navigating in a corridor, this corresponds to navigating along the corridor
bisector.

It is worth noting that, in principle, the definitions (2.10) are well-defined if at
least one obstacle is visible on both side of the image. However, this may be not true
in general, since obstacles may appear only in one (or either) side of the image. In
these cases, xm and ym are ill-conditioned. To address these scenarios, the position
of a missing centroid is fictitiously assigned on the image border, with ordinate equal
to the latest available value (see Fig. 2.5b-2.5c). Obviously, this expedient will alter
the motion of xm and ym on the image. As will be clear in next Section, while this
artifact has not a strong influence on the dynamics of xm, it may significantly affect
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the dynamics of ym, and the satisfaction of the control objectives considered for the
task may not be guaranteed.

Finally, we evaluate the minimal image distance d = |xmax,l −xmin,r| between the
contours of right and left obstacle areas, where xmax,l (resp., xmin,r) is the abscissa
of the rightmost (resp., leftmost) pixel in the set of contours of left (resp., right)
obstacles. This value is assumed as a measure of the passage width, and we use it
to generate a reference value q∗

p for the control of the camera pan angle according to
the following criterium:

q∗
p =















qp,max, if d < tl

0, if d > th

qp,max − ( d−tl

th−tl
) ∗ qp,max, if tl < d < th

(2.11)

where qp,max is the maximum pan joint position allowed, and tl =
{

t−
l , t+

l

}

and th =
{

t−
h , t+

h

}

, experimentally found, are evaluated through an hysteresis thresholding, to
get a measurement of dx,min robust to the image noise, and such that tl < th. This
definition has the following meaning: when the measured distance d is sufficiently
high (i.e., when the passage width is large enough), the orientation of the camera is
not modified and the robot moves in the direction of the torso orientation. When d
goes below the threshold dmax (i.e., when the passage width is reducing), q∗

p varies
linearly from 0 to qp,max, value reached for d ≤ dmin. When the camera pan angle
qp successfully reaches q∗

p and the direction of motion is aligned with the camera
principal axis through (2.12), the robot moves sideways, minimizing its encumbrance
in the workspace and risk of collision. It is worth to highlight that in principle
the 3D width of the available free space could be computed from geometric and
projective reasoning, using the information that is already available. This would
allow to precisely evaluate the thresholds required for the computation of q∗

p. This
is an aspect that will be investigated in the future.

2.2.2 Vision-based control

The desired navigation behaviors described in the previous section can be achieved
by considering the following control objectives: (i) enforce the alignment between
the direction of motion and the gaze of the camera; (ii) maximize the clearance
from obstacles on the image plane; (iii) control the camera pan angle based on the
amount of perceived traversable space.

The control objective (i) is easily formalized by requiring that

{

vx = v cos(qp)

vy = v sin(qp)
(2.12)

where v =
√

v2
x + v2

y is the norm of the linear velocity vector. Satisfying this
constraint is crucial for the success of the navigation task. Therefore, for the
control strategies that will be presented in this section, we consider as performance
evaluation metrics the alignment error between the camera principal axis and the
robot motion direction. Formally, denoting by v̂ = 1/v[vx, vy]T the motion direction
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image plane
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V6

Figure 2.6. Geometric entities recurring in the proof of Proposition.

and by ẑg = [cos qp, sin qp] the camera principal axis vector projected on the ground,
the alignment error is computed as

φ = cos−1(v̂T ẑg) (2.13)

To satisfy the control objectives (ii) and (iii), we exploit the visual information
extracted through image processing, as shown in Sect. 2.2.1, i.e., the visual features
xm and ym and the image obstacle distance d. Therefore, in the reminder of this
chapter, we first determine the relationship between the velocity of the visual features
xm and ym and the robot velocity input available for control, in Sect. 2.2.3. Then,
in Sect. 2.2.4, we show different control schemes that, using this visual information,
steers the robot among the environment obstacles while enforcing the motion model
to align with the camera gaze, and reconfiguring to favor narrow passage crossing. In
particular, the proposed controllers guarantee exponential convergence of the camera
frame to the center of a corridor with the optical axis aligned with the corridor
bisector. Based on the size of the traversable space, the robot body is oriented so as
to reduce its transversal encumbrance. This behavior is obtained by exploiting the
humanoid omnidirectional walk allowing robot velocity directions outside its sagittal
plane.

2.2.3 Dynamics of the visual features

For each obstacle Oi detected on the image, the dynamics of the corresponding
centroid ci,s is related to the 6-D camera velocity vc by [24]:

ċi,s = Li,svc (2.14)

where

Li,s =

[

Lx
i,s

L
y
i,s

]

=
1

Ni,s

Ni,s
∑

j=1









− 1
Zj

, 0,
xj

Zj
, xjyj , −1 − x2

j , yj

0, − 1
Zj

,
yj

Zj
,1 + y2

j , −xjyj , −xj









(2.15)

is the average of the interaction matrices related to the Ni,s pixels (xj , yj), with
depth Zj , that constitute Oi.
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Figure 2.7. Geometric reconstruction of depth of points lying on the ground.

The reader observes that, given the definition of centroid (2.8), the corresponding
dynamics as given in (2.15) assumes that the area Ni,s is constant, i.e., the appearance
of the obstacle occupies always the same number of pixels in the image. Clearly, this
is not always true, as the area of an object projected on the image plane changes
as the camera is approaching. In addition, the limited field-of-view also alters the
areas of the obstacles, when they enter or exit from the image plane, in a way that
is not predictable if we do not make any a priori assumption about the geometry of
the environment. However, when the dynamics of both camera and environment are
slow with respect to the control rate (as in this case), this approximation will not
affect the system performance.

Furthermore, since images are acquired from a monocular camera, we do not
know the exact depth Zj of each point, but we can reconstruct geometrically the
depth of the points lying on the ground. Specifically, denoting by hc and γ the height
and the tilt angle of the camera, respectively, we can reconstruct geometrically the
depth Zj of a point Xj lying on the ground as

Zj =
hc cos ǫ

sin (γ + ǫ)
(2.16)

where ǫ = atan2(yj , f), being yj the pixel ordinate of the point Xj projected on the
image plane, and f is the focal length of the camera. Therefore, to evaluate 2.15,
we consider an approximation of Zj by projecting the corresponding point xj on the
ground, thus over-estimating the real value of the depth. Visual servoing schemes
are typically robust to these types of approximations, as explained in [8]. In the
experimental section, we will show that these approximations provides satisfactory
results. We also highlight that the geometric concept of centroid comes from the
discrete definition of geometric image moments. Since we are assuming that the
obstacle points lie on the ground, one could also use the dense definition of moments
in a more elegant way, as only the three parameters of the ground plane would have
been involved. This alternative has not been validated but it will be investigated in
the future.
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From (2.10) and (2.15), we derive the dynamics of xm and ym as

[

ẋm

ẏy

]

=















1
2





1
nl

nl
∑

il=1

Lx
il

+
1
nr

nr
∑

ir=1

Lx
ir





1
nl

nl
∑

il=1

L
y
il

− 1
nr

nr
∑

ir=1

L
y
ir















vc =

[

Lxm

Lym

]

vc = Lvc (2.17)

The dynamics of the visual features can be related to the robot 6-D velocity vr via
[

ẋm

ẏm

]

= L cW r vr = Jmvr, (2.18)

with cW r the twist velocity transformation matrix:

cW r =

(

cRr
cSr

cRr

0 cRr

)

, (2.19)

cRr the rotation matrix expressing the robot frame with respect to the camera
frame, and cSr the skew matrix associated to the translation of the robot frame
with respect to the camera frame. Both cRr and cSr can be deduced from the robot
proprioception.

Finally, assuming planar motion, and taking into account the contribution of the
pan joint velocity q̇p, the relationship between the dynamics of the features xm and
ym and the desired control inputs is given by

[

ẋm

ẏm

]

= Jvr =

[

Jx
vx

Jx
vy

Jx
ωz

Jx
ωz

Jy
vx

Jy
vy

Jy
ωz

Jy
ωz

] [

vr

up

]

= Jvr + Jωz up (2.20)

being vr = [vx vy ωz] and Jωz the third column of the 3 × 2 submatrix J of Jm.
Note that the effect of q̇p on the feature velocity is identical to that of ωz under the
assumption that camera pan and robot rotation axes are aligned.

Given the dynamics (2.20), we propose different visual control strategies to solve
the described navigation problem, as detailed in the next paragraph.

2.2.4 Control design

Our objective is to define a controller that orients the robot body along the direction
of maximum clearance to the environment obstacles, while considering internal
reconfiguration of the robot structure to address narrow passage crossings.

This behavior is obtained by regulating a) a properly defined visual error to zero,
and b) the head pan joint qp to a desired value q∗

p. In defining the visual error a
reasonable choice would be to keep the obstacles symmetrical with respect to the
vertical axis of the image plane. We can achieve this by acting on the visual feature
xm. In particular, we showed in [17] the relationship between the regulation of xm to
zero and the regulation of the robot pose, in case of navigation in a straight corridor
without obstacles. This is resumed with the following result:
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Proposition: Assuming navigation along a straight corridor without obstacles, the
regulation of the visual feature xm to zero, under the constraint (2.12), implies
convergence of the camera position and orientation to the corridor bisector., i.e.:

xm → 0 =⇒ (x, θc)T → (0, 0)T (2.21)

Proof: Placing the origin of the world reference frame Fw at the center of the corridor,
the corridor guidelines, i.e., the lines at the intersection between the floor and the
walls, are represented through the world frame homogeneous coordinates of two
points belonging to each line:

r1 = (−1, 0, −d)T and r2 = (−1, 0, d)T

where d is the semidistance between the two guidelines. These lines project on the
image plane as:

r̂1 = P −T r1 = (a1, b1, c1)T , r̂2 = P −T r1 = (a2, b2, c2)T

where P is the projection matrix relating 3-D points of the cartesian space with 2-D
points of the image plane [25]:

P =







fu cos θc −fu sin θc −fux cos θc

−fv sin γ sin θc −fv cos θc sin γ fv(h cos γ + x sin γ sin θc)
cos γ sin θc cos γ cos θc h sin γ − x cos γ sin θc






. (2.22)

with fu, fv the focal lengths in pixel along the image plane axes. The ordinate y of
camera position has been omitted since it is irrelevant for the considered control
problem (i.e., only the distance to the bisector is controlled and not the position along
the corridor as the robot goal is to move forward). For details on the computation
of P , refer to [19].

Under the considered working conditions, the corridor walls appear on the image
plane as two triangles (see in Fig. 2.6), with vertexes V i, i = 1, . . . , 3 and V j ,
j = 4, . . . , 6. Computed xl and xr respectively as the averaged abscissa of each of
the two triangles, using the equation of the projected lines, we have:

xm =
1
2

(xl + xr) = k1
x

cθc

+ k2 tan θc, (2.23)

with k1 = fu/6h(hi cos γ/fv − 2 sin γ), k2 = −fu/6(hi sin γ/fv + 2 cos γ) constants
depending on the camera intrinsic and extrinsic parameters, and on the height of
the image plane hi.

From (2.23) it follows that xm = 0 implies x = −k2/k1 sin θc. Of the locus of
points described by this last equation only (x, θc) = (0, 0) is a stable equilibrium
point. In fact, the visual task xm = 0 is satisfied at all times only if the camera is
aligned with the corridor bisector due to the enforced mobility model of the camera
that keeps the optical axis always aligned with the direction of motion. In other
words, if the robot does not move along the bisector the camera will move toward one
of the two corridor walls. This will perturb the symmetric position of the obstacles
centroids in the image plane provided that

k2/k1 > 0 ⇒ tan γ >
hi

2fv
, (2.24)
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i.e., the robot camera is sufficiently tilted toward the floor, a condition satisfied by
our operational setup. Equation (2.24) is derived from geometric reasoning. �

Remark: Despite the proof of the proposition above refers to a corridor scenario
(i.e., a straight traversable space between two walls projected as triangles in the
image), the notion of "corridor" can be meant as a general definition, referring to
the traversable space between any pair of obstacles. In this more general sense, even
if we do not formally prove that the robot distances from workspace obstacles are
maximized, an effective obstacle avoidance behavior can still be accomplished.

From the proposition above we assert that, to guarantee safety for the robot in
the workspace, we can focus on regulating xm on the image plane. Therefore, the
navigation task is formally formulated via the error vector

e =

[

ev

ep

]

(2.25)

where ev is some visual error and ep = qp − q∗
p. The definition of ev - and so the

corresponding control law - depends on the type of IBVS controller designed for the
task.

In addition, we require that the proposed controllers consider also the presence
of actuation disturbances on the considered system. Specifically, we consider distur-
bances acting on the linear velocity inputs, i.e., the actual linear velocity executed
by the robot is given by

vx = v̄x + ∆vx

vy = v̄y + ∆vy
(2.26)

where v̄{x,y} denote the nominal inputs computed by the chosen control strategy,
and ∆v{x,y} the disturbances acting on the corresponding components.

In the following, we propose some possible control strategies. In the first two
cases, we exploit the Null-Space Projector (NSP) of the defined task.

1D IBVS with Null-Space Projection

In this first formulation, we consider the visual task ev = ev = xm. Therefore, the
dynamics of the error is given by the first row of (2.20), with the task Jacobian
given by Jx. Specifically, since the matrix Jx has size 1 × 3, and we have 3 available
inputs for the control, the corresponding null-space N (Jx) has dimension 2. In
particular, when xm = 0, a basis of N is given by

B1 =

















cos qp

sin qp

0






,







−Zyr/f
0

sin qp

















, (2.27)

from which we observe that the first vector is equivalent to the unit vector describing
the direction of the principal axis of the camera in Fr. In this perspective, the
following control law with projection in the null-space

vr = −J#
x

(

Kxmxm + Jx
ωz

up

)

+ (I3 − J#
x Jx)v∗

up = −Kpep
(2.28)
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Figure 2.8. Simulation results for an omnidirectional wheeled robot navigating in a straight
corridor under the 1D-IVBS + NSP control, in nominal conditions. (a) Position Error x.
(b) Orientation error θc. (c) Alignment error φ.

being J# = JT (JJT )−1 the pseudo-inverse of Jx and v∗ = [v cos qp, v sin qp, 0]T a
desired velocity, guarantees the exponential convergence of xm to 0. In addition we
observe that, spanning the null-space (2.27) with the coefficients {v, 0}, we also
ensure that (2.12) is satisfied, at the regulation point, through the projection in the
null-space (I3 − J#

x Jx).
The first equation of (2.28) allows to directly compute the three Cartesian velocity

inputs vx, vy and ωz from the evaluation of the visual error ev = xm. However, we
remark that (2.27) holds only for xm = 0, i.e., when the error dynamics has reached
a stable equilibrium point. Under this condition, the control law (2.28) can be also
written as

vr = −J#
x Jx

ωz
up + v∗

up = −Kpep
(2.29)

since the desired vector v∗ ∈ N (Jx). When this is not true, i.e., during the
transient response of the system, the basis of the null-space does not coincide with
(2.27), and the projection in the null-space (I3 − J#

x Jx) is required to not perturb
the regulation of xm. Figure 2.8 shows the control results of an omnidirectional
wheeled robot, navigating within a straight corridor clear from obstacles. The figure
shows that, by regulating the visual feature xm to 0 on the image plane, the robot
successfully achieves the navigation task, as both the Cartesian position error x and
the orientation error θc converge to 0 (Figures 2.8a-2.8b). In addition, the alignment
error φ between the motion direction and the camera principal axis is regulated to 0
as desired. However, it is worth to highlight that, since the control (2.28) is able to
enforce (2.12) only when the visual task is regulated, the robot could move along
hazardous trajectories that can increase the risk of collisions against undetected
obstacles, (see Figure 2.15).

Figure 2.9 shows the same simulation results, compared with the perturbed
scenario in which actuation disturbances act on the system. Specifically, assuming
to simulate as actuation disturbance ∆vx = 0.01 m/s and ∆vx = 0.025 m/s, we
observe that the control (2.28) is no more able to regulate the Cartesian pose of
the robot along the bisector of the corridor (see Figure 2.9a-2.9b), that actually
converges on a parallel of the bisector. Similarly, the alignment error φ converges to
a non-zero value, resulting in a motion direction that persistently differs from the
camera principal axis.
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Figure 2.9. Simulation results for an omnidirectional wheeled robot navigating in a straight
corridor under the 1D-IVBS + NSP control, considering as actuation disturbances
∆vx = 0.01 m/s and ∆vy = 0.025 m/s. (a) Position Error x. (b) Orientation error θc.
(c) Alignment error φ.

2D-IBVS with Null-space projection

We consider, in this case, both the visual features xm and ym defined in (2.10).
Therefore, we define the navigation task as ev = (xm, ym)T , with dynamics given by
(2.20). This choice is motivated by the observation that, when moving along the
bisector of the corridor, the measured centroids are at the same height on the image
plane. We can then consider the visual error vector ev = [xm, ym]T .

The matrix J is now 2 × 3, so the dimension of the associated null-space N (J)
is 1. In detail, one finds that, for ev = 0, a basis for the null-space is given by

B2 =

















cos qp

sin qp

0

















(2.30)

that, as in the previous case, is the unit vector describing the direction of the principal
axis of the camera in Fr. So, in order to guarantee the exponential convergence of
ev to 0, we design the following control law

vr = −J# (Kev + Jωz up) +
(

I3 − J#J
)

v∗ (2.31)

for K > 0. As for (2.28), the controller successfully aligns the motion direction with
the camera principal axis only if ev = 0. In this case, (2.31) simplifies as

vr = −J#Jωz up + v∗ (2.32)

Instead, for ev 6= (0, 0)T , the expression of B2 is not equivalent to (2.30) and the
same considerations about the transient response, detailed for the controller 1D-IBVS
+ NSP, can be concluded.

In Figure 2.10, simulation results of the wheeled robot in the straight corridor
are shown. We observe that the robot pose is successfully regulated to the bisector
of the corridor, and that the alignment error φ between the camera principal axis
and the motion direction is zeroed through the null-space projection.

In addition, this control reveals to be robust to the presence of actuation distur-
bances, as shown in Figure 2.11a-2.11b: the Cartesian position and orientation of
the robot is successfully regulated to zero despite the system actuates values of vx
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Figure 2.10. Simulation results for an omnidirectional wheeled robot navigating in a
straight corridor under the 2D-IVBS + NSP control, in nominal conditions. (a) Position
Error x. (b) Orientation error θc. (c) Alignment error φ.
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Figure 2.11. Simulation results for an omnidirectional wheeled robot navigating in a
straight corridor under the 2D-IVBS + NSP control, considering as actuation disturbances
∆vx = 0.01 m/s and ∆vx = 0.025 m/s. (a) Position Error x. (b) Orientation error θc.
(c) Alignment error φ.

and vy that differs from the nominal ones. Therefore, the robot correctly brings to
the center of the corridor, thus maximizing distances from the walls. This is also
reflected in the plot of Figure 2.11c, where the alignment error φ is highlighted: the
regulation of the motion direction towards the camera principal axis is not affected
by the presence of actuation errors on the system, and the error is finally regulated
to zero.

Nevertheless, during the transient response of the system, under the control
(2.31), the robot may move along paths leading to collisions, as for the control
1D-IBVS + NSP, due to the null-space projector that violates (2.12) while still
regulating ev. Indeed, the system exhibits abrupt and hasty trajectories, that could
be motivated by the fictitious centroids positioning on the image borders, when no
obstacles are detected on the image. Specifically, the workaround is critical and
significantly alters the dynamics of ym. This issue is enhanced by the fact that the
image features extracted from the image (i.e., the obstacle centroids) do not really
coincide with the same 3D space points, as they are computed based on the parts of
obstacles appearing in the image. Therefore, while a regulation of the feature ym is
achieved at steady-state, it is not easy to study the behavior of the system along its
transient response, as the dynamics used to describe the feature motion may not be
consistent.

For this reason, we propose in the next paragraph a further control scheme that
gets rid of the issues related to the transient response, by considering only the feature
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Figure 2.12. Simulation results for an omnidirectional wheeled robot navigating in a straight
corridor under the 1D-IVBS control with explicit assignment, in nominal conditions. (a)
Position Error x. (b) Orientation error θc. (c) Alignment error φ.

xm and actually exploiting the steady-state version of them, without recurring to a
control scheme with null-space projector.

1D-IBVS with explicit assignment

Consider again the visual task given by ev = xm, with dynamics given by the first
row of (2.20). To satisfy the constraint (2.12) at all times, we design a control scheme
that consider an explicit assignment of (2.12) on the two Cartesian velocity inputs
vx and vy. This actually excludes vx and vy to be assigned through the evaluation of
the visual task, that is actually in charge of generating the proper angular velocity
ωz. Therefore, the control law is designed as follows

ωz = (Jx
ωz

)−1(−Kmxm − Jx
vx

vx − Jx
vy

vy) − up

up = −Kpep,
(2.33)

where vx and vy are assigned as (2.12), while Km and Kp to denote positive control
gains. Figure 2.12 shows the simulation results for this controller, for a wheeled
robot moving along a straight and clear corridor. We observe that this controller
successfully regulates the Cartesian pose on the corridor bisector (see Fig. 2.12). In
addition, the control shows a short transient time to regulate the alignment error
to 0 (Fig. 2.12c), due to the explicit assignment on vx and vy that satisfies (2.12).
Indeed, in the nominal conditions in which the robot velocities are properly actuated,
the settling time of φ depends only on the time required by the robot actuators to
achieve the reference values (2.12).

However, when considering the presence of actuation disturbances in the system,
this controller is not able to regulate the position and orientation errors to zero
(see Fig. 2.13a-2.13b), since the constraint (2.12) is persistently violated, as no
feedback information is taken into account to correct the error. As a result, the
robot converges along a trajectory that is parallel to the corridor bisector.

In the following paragraph, we present a comparison analysis that highlights
similarities and differences of the proposed controllers.

2.2.5 Discussion

In Figure 2.14, we reported the simulation results of the three proposed controllers,
for an omnidirectional wheeled robot navigating in a straight corridor, in the ideal
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Figure 2.13. Simulation results for an omnidirectional wheeled robot navigating in a
straight corridor under the 1D-IVBS control, considering as actuation disturbances
∆vx = 0.01 m/s and ∆vx = 0.025 m/s. (a) Position Error x. (b) Orientation error θc.
(c) Alignment error φ.

Time [s]

0 10 20 30 40 50 60

|x
| 
[m

/s
]

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1D-IBVS + NSP

2D-IBVS + NSP

1D-IBVS

(a)

Time [s]

0 10 20 30 40 50 60

|3
c
| 
[d

e
g
]

0

5

10

15

20

25

30

35

1D-IBVS + NSP

2D-IBVS + NSP

1D-IBVS

(b)

Time [s]

0 10 20 30 40 50 60

?
 [
d
e
g
]

0

20

40

60

80

100

120

140

160

180

1D-IBVS + NSP

2D-IBVS + NSP

1D-IBVS

(c)

Figure 2.14. Comparison of regulation errors. From left to right: (a) Cartesian position
error x; (b) Cartesian orientation error θc; (c) alignment error φ between motion direction
and camera principal axis.

case in which the control inputs are correctly actuated by the system. While the
regulation of errors is successfully achieved at steady-state as expected, it is worth
to highlight the different behaviors of the controllers during the transient response
of the system. Specifically, we observe that 1D-IBVS outperforms the controllers the
1D-IBVS+NSP and 2D-IBVS+NSP showing a lower settling time of the alignment
error φ, thus reducing the possibilities to collide against unseen and unexpected
obstacles. As already explained in the previous paragraph, this difference is due
to the explicit assignment of the constraint (2.12) on the control inputs vx and
vy, that forces the system to move in the desired direction independently from the
regulation of the visual task. Formally, we can describe this behavior in terms of
task-priority formulation. Indeed, the controller 1D-IBVS correspond to a controller
that assigns the alignment constraint (2.12) a higher-order priority, while keeping
the visual task as lower-order priority task, and solved in the null-space of (2.12). In
this fashion, the controller 1-IBVS+NSP inverts the priorities of the two considered
tasks, since the visual task is first solved through the pseudo-inverse of J , leaving
the alignment constraint as a lower-level priority task to be satisfied only when xm

has been regulated to 0.

However, when we consider the presence of actuation disturbances in the system,
we have already observed in the previous paragraph that 1-IBVS is no more able
to regulate the Cartesian and the alignment errors to zero, with the effect that the
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Figure 2.15. Transient response comparison, with an omnidirectional wheeled robot
navigating in a straight corridor: (a)-(b)-(c) Safe trajectory generated under the control
(2.33). (d)-(e)-(f) Unsafe trajectory generated under the control (2.28), due to the
violation of the constraint (2.12) during the transient response.
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Figure 2.16. Comparison of regulation errors when the system is affected by actuation
disturbances. From left to right: (a) Cartesian position error x; (b) Cartesian orientation
error θc; (c) alignment error φ between motion direction and camera principal axis. Here
∆vx = 0.01 m/s and ∆vy = 0.025 m/s.

robot converges towards a trajectory that is parallel to the corridor bisector. In this
case, in fact, only the control 2D-IBVS+NSP successfully regulates the Cartesian
position and orientation to zero, along with the alignment error φ.

This behavior is due to the task augmentation considered for this controller,
where the feature ym is taken into account as additional visual information. Indeed,
this allows to balance the visual and the Cartesian tasks, so as to satisfy two control
objectives in the image space (the features xm and ym) with two control objectives
defined in the workspace (the position x and the orientation θc). However, the
longer settling time of the alignment error φ still makes the system prone to possible
collisions with unseen obstacles, and the safety in the navigation task could be
compromised.

Given all these considerations, we propose a further scheme that takes the
advantages of the proposed controllers. In detail, observing that the constraint (2.12)
should have a higher priority with respect to the visual task, to guarantee safety
in the navigation task, we consider a formulation of the visual controller as given
by (2.33). However, to take into account also the presence of actuation errors, that
both 1D-IBVS controls are not able to handle, we consider a direct velocity error
by relying on an estimation of the robot velocity. Then, an external control loop
is closed on the linear velocity components, in order to ensure that the alignment
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constraint between the motion direction and the robot gaze is satisfied even when
vx and vy are not properly actuated.

In the next Section, we describe the Kalman Filter observer, designed to estimate
the robot velocity.

2.3 Kalman Filter for Velocity estimation

In this section, we describe the derivation of the Kalman Filter designed for the
estimation of the navigation velocity of the robot. The filter fuses data coming
from the proprioceptive sensors (IMU, encoders), with an optical flow-based velocity
measurement, extracted from the image. In particular, the acceleration data from
the IMU are used for the prediction step of the filter, in order to propagate the
estimation of the robot velocity. Then, the update step refines the estimation
through the velocity measurements provided by the remaining sensors: a vision-
based velocity estimation method takes advantage of the optical flow computed for
the reconstruction of the dominant plane, in order to generate a velocity measurement
of the camera, while the encoders provide information about the measurement of
the velocity generated through differential kinematics1[26]. In detail, our goal is to
estimate the vector ξ = [vT

I ωI ]T of the linear and angular velocity, expressed in the
reference frame attached to the IMU of the robot, FI . Considering the accelerometer
data u = aI as the input of the system, the discrete-time stochastic propagation
model of the state vector ξ can be written as

ξk+1 = ξk + ∆T

[

I3

03

]

uk + nk (2.34)

with nk ∼ N (0, Nk) is a Gaussian random variable of the process noise with zero
mean and covariance matrix Nk. Since direct measurements of the robot velocity are
available from vision and differential kinematics, the measurement model describing
the predicted output of the system is simply

yk =

[

I6

I6

]

ξk + w̄k (2.35)

where w̄k = [wV IS wDK ]T ∼ N (0, W̄ k) is the Gaussian random variable with zero
mean and covariance matrix

W̄ k =

[

W V IS,k 06

06 W DK,k

]

(2.36)

being wV IS,k ∼ N (0, W V IS,k) and wDK,k ∼ N (0, W DK,k). From (2.34) and (2.35),
the standard equations of the Kalman Filter can be applied for the estimation of
the state vector ξ̂k at time k, as well as its associated covariance matrix P k [27].

In the reminder of this section, we briefly describe the vision-based velocity
estimation method adopted to generate the velocity measurement from the camera.

1The filter designed this way is meant to be general for any omnidirectional robot platform.
However, the derivation of the measurement of the velocity through differential kinematics changes
based on the type of robot adopted for the navigation task.
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2.3.1 Velocity estimation based on optical flow

The visual measurement of the robot velocity is obtained through an optical-flow-
based estimation method presented in [28] and also resumed in [29]. The algorithm
considers the apparent motion of the camera pixels measured by the optical flow, to
extract a subset of motion vectors that can consistently describe the motion of the
camera. The subset is obtained through a pipeline of outlier rejection criteria, and
is initialized with the dominant plane mask detected during the visual processing
phase2, in order to consider only pixels lying on the ground with known depth. The
considered rejection criteria are:

• the pixel lies on the edges of the ground (detected by Canny operator);

• the motion vector direction points downwards;

• the motion vector magnitude stays within a lower and an upper bound;

• the u- and v-components of the motion vector stays within a confidence interval
defined by the average and the standard deviation of all the motion vectors on
the left and right sides of the image.

The subset of remaining motion vectors is used to generate a consistent measurement
of the camera velocity (and so, of any other reference frame attached to the robot
structure) by solving the following least-square problem:

vc = arg min
χ

‖L̂
c

χv − ˆ̇xp‖2 − q̇p (2.37)

where L̂χ and ˆ̇x′ are built by stacking the interaction matrix Li and the motion
vector ẋ of each inlier pixel, respectively. Since we are interested in reconstructing
the velocity of the robot body, the solution of (2.37) discards the contribution of the
head pan joint velocity q̇p = [0T q̇p]T , that can produce erroneous measurements of
the angular velocity ωz when the head is rotating due to a non-zero up control input.

To conclude this section, we observe that, once the ego-motion of the robot is
known, and since information about camera height and tilt is given, it is possible
to predict the value of the optical flow of each pixel whose corresponding 3D point
belongs to the ground. This is a redundant information that can be used to "double-
check" the validity of the estimated ground plane. However, this aspect has not been
discussed and it can be investigated in the future.

2.4 1D-IBVS with velocity estimation

In view of the issues related to the control schemes introduced in Sect. 2.2.5, and
assuming to have a reliable estimation of the current robot velocity, we present a
controller that directly evaluates the error between the desired linear velocity v̄

(given by (2.12), and the actual velocity v executed by the robot. This control

2Since the optical flow has been already computed for the dominant plane detection process, we
can directly use it of this measurement process,thus saving computational time of the solution.
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scheme is derived by considering an ideal model for the center of mass of the robot,
i.e.,

{

v̇x = ax

v̇y = ay
. (2.38)

Then, defining the error exy = [ex, ey]T = [vx − v̄x, vy − v̄y]T , to guarantee exponen-
tial convergence to zero, we define the control inputs

ax = ˙̄vx − Kvxex

ay = ˙̄vy − Kvy ey.
(2.39)

with kvx > 0, kvy > 0. Finally, integrating both sides of (2.39) we get the corre-
sponding velocity-level control law

vx = v̄x − Kvx

∫ t

0
ex(τ)dt

vy = v̄y − Kvy

∫ t

0
ey(τ)dt.

(2.40)

i.e., the control assumes the nominal velocity v̄ as a feed-forward velocity, while
zeroing the discrepancy between v̄ and v in terms of position drifting. In fact, the
control law ensures to zero the error ev, thus guaranteeing the velocity direction
and the robot gaze to be aligned. In the next Section, we show both simulation and
experimental results to validate the effectiveness of the controller.

2.5 Simulations and Experiments

To validate the control scheme with velocity estimation, we performed simulations in
the simulation environment V-REP, by employing both an omnidirectional wheeled
platform and a humanoid robot NAO. A pair of experiments has also been performed
on a real NAO robot.

In the following, we show the results obtained with the considered platforms.

2.5.1 Wheeled robot

To simulate an omnidirectional wheeled robot in the considered navigation conditions,
we used an omnidirectional Youbot platform. Specifically, to show the possible
mobility limitations due to a cumbersome structure, we added two manipulator
arms on the top of the chassis, along with a monocular actuated camera mounted on
the top of the platform and pointing downwards. This is a feasible and not limited
setup, since, for particular applications, an omnidirectional robot with manipulation
capabilities could be necessary and employed [30].

For the evaluated simulations, we placed the camera on the robot at 45 cm
from the ground, oriented with a tilt angle γ = 15◦. The acquired camera images
have a resolution of 320 × 240. However, we considered a region of interest (ROI)
of the source image to exclude detection of far objects (to avoid the robot reacts
too fast) and close objects. This prevents the robot to react too fast and, at the
same time, avoids that the projection of the arms on the image, when moving
sideways, occludes the view of the environment and generates false detections. The
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Figure 2.17. Two simulation scenarios with an omnidirectional wheeled robot: (a) ne-
gotiating a curve; (b) addressing a T-junction; (c)-(d) Alignment error φ in the two
considered scenarios.

maximum linear velocity allowed for the robot is v = 0.095m/s. The thresholds for
the evaluation of narrow passages are evaluated through an hysteresis mechanism
and change between a pair of lower and upper values, to prevent false readings due to
image processing noise. So we set dmin = {165, 180} pxl and dmax = {185, 195} pxl.
For the estimation of the robot velocity, we only considered the vision-based veloc-
ity measurement for the update step of the filter. Then, the covariance matrices
considered for the estimation are Nk = diag

(

10−10, 10−10, 10−10, 10−1, 10−1, 10−1
)

,
W V IS,k = diag

(

10−9, 10−9, 10−8, 10−8, 10−8, 10−8
)

. For the control law with veloc-
ity estimation, we set the control gains Kxm = 0.5, Kp = 0.45, Kvx = Kvy = 0.9.
Finally, we simulated an actuation disturbance on the linear velocity components by
setting ∆vx = 0.01m/s and ∆vx = 0.025m/s.

We considered several navigation scenarios. In Figure 2.17, we show the trajectory
performed by the robot during a curve negotiation and a T-junction, and the
corresponding alignment errors φ evaluated during the simulations. Specifically, in
Figure 2.17a, the robot moves along the bisector of the first part of the corridor,
to maximise distances from the walls and guarateeing safety. When addressing
the curve, the robot successfully detects the corner and turns in the direction of
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Figure 2.18. (a) Navigation scenario of a Youbot omnidirectional platform in simulated
environment, where narrow passages are taken into account, due to the presence of
obstacles along the path. (b) Comparison among the ground truth (GT) robot velocity
(blue), the vision-based velocity measurement (green) and the velocity estimated with
the Kalman Filter (red). (c) Comparison between the reference velocity (blue) given
by (2.12) and the true robot velocity (red), after applying the control law (2.40). (d)
Alignment error φ between the camera principal axis and the motion directions.

the second part of the corridor, avoiding collisions with walls during the turn and
recovering the center of the corridor. On the other hand, Figure 2.17b shows the
robot addressing a T-junction. Since there is not an explicit logic in the controller,
when the robot reaches the junction it selects one of the two directions based on the
appearance of the corridor in the image. At the T-junction a direction of motion
could of course be commanded if a specific task would require the robot to move in
a preferred direction.

Also in this case, the robot is able to recover the center of the corridor after
finishing the curve. Figure 2.17c-2.17d show the alignment errors φ corresponding to
the considered scenarios: we highlight that φ is properly regulated to zero even in
presence of non-zero actuation disturbances. Moreover, the settling time to regulate
the error to zero and align the motion direction with the camera principal axis is
very short, thus the safety in the navigation is preserved.

In Fig. 2.18a, we considered a straight long corridor with a narrow passage and a
pair of obstacles. The picture also shows the navigation pattern and the trajectory
executed by the robot: whenever the robot detects a narrow passage upcoming
along the path, the controller re-orients the robot by acting on the camera pan angle
qp, allowing the robot to safely cross the passage. In addition, the controller also
takes into account actuation disturbances ∆vx and ∆vy injected in the system by
estimating the current navigation velocity of the robot (Fig. 2.18b) and corrects
properly the velocity commands through (2.40), in order to constantly satisfy (2.12).
Fig. 2.18c shows the tracking of the true robot velocity with respect to the reference
values, while Fig. 2.18d shows the alignment error φ between the camera principal
axis and motion directions.
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(a) (b)

Figure 2.19. Two navigation scenarios for a humanoid robot: (a) negotiating a turn, (b)
addressing a T-junction.

Figure 2.20. NAO navigates along a straight corridor and avoids an obstacle by walking
sideways.

2.5.2 Humanoid robot

For the simulations with a humanoid robot, we used the small robot NAO. This
robot is equipped with two cameras, mounted on the top and bottom of the forehead.
Since the robot shoulder could occlude the field of view of the bottom camera
when NAO turns the head, we chose to use the top camera. The optical flow has
been computed through the Lucas-Kanade implementation available in the OpenCV
open-source library. NAO is also equipped with a built-in walking engine in the
NAOqi library, by which it is possible to send to the robot the linear and angular
velocity command vx, vy and ωz.

The main issue in implementing the proposed control scheme on a humanoid
robot lies in the sway motion that typically affects the walking pattern of the
robot. This has very drastic effects on all the vision-based measurement processes
involved in the navigation scheme, as the acquired images can be blurred and the
generated optical flow is prone to noise. While it is possible to identify and isolate
the sway motion from the overall motion of the robot [31], satisfying results are
also achieved by filtering out the generated oscillations in the affected signals [32].
Therefore, we applied a low-pass filter on the detected dominant plane image, as
well as on the sensor measurements used for the estimation of the robot velocity. In
addition, the oscillations also generate erroneous acceleration measurements, due
to the projection of the gravity vector g = [0, 0, g]T along the x- and y-axis of FI .
We compensate such projections to generate reliable data for the Kalman Filter.



2.5 Simulations and Experiments 31

(a)

Time [s]

0 50 100 150 200 250F
o
rw

a
rd

 V
e
lo

c
it
y
 [
m

/s
]

-0.1

0

0.1

0.2

Estimated v
x

VIS

GT

KIN

KF

Time [s]

0 50 100 150 200 250

L
a
te

ra
l 
V

e
lo

c
it
y
 [
m

/s
]

0

0.05

0.1

0.15

0.2

Estimated v
y

VIS

GT

KIN

KF

(b)

Time [s]

0 50 100 150 200 250F
o
rw

a
rd

 V
e
lo

c
it
y
 [
m

/s
]

-0.1

0

0.1

0.2

v
x
 actuation comparison

True

Nominal

Time [s]

0 50 100 150 200 250

L
a
te

ra
l 
V

e
lo

c
it
y
 [
m

/s
]

0

0.05

0.1

0.15

0.2

v
y
 actuation comparison

True

Nominal

(c)

Time [s]

0 50 100 150 200 250

V
e
lo

c
it
y
 d

ir
e
c
ti
o
n
 a

lig
n
m

e
n
t 
E

rr
o
r 

[d
e
g
]

0

20

40

60

80

100

Alignment error

(d)

Figure 2.21. (a) Navigation scenario of a humanoid NAO robot in simulated environment,
with the presence of obstacles along the path. (b) Comparison among the ground
truth (GT) robot velocity (blue), the vision-based velocity measurement (green), the
kinematics-based velocity measurement (cyan) and the velocity estimated with the
Kalman Filter (red). (c) Comparison between the reference velocity (blue) given by
(2.12) and the true robot velocity (red), after applying the control law (2.40). (d)
Alignment error φ between the camera principal axis and the motion directions.

By measuring the torso angles α and β w.r.t. g through NAOqi, the compensated
acceleration a is computed from the raw measurement â as a = â − gb, where
b = (sin β cos β sin α cos β cos α)T .

In the considered simulation, we set γ = 11.45◦. This angle allows a proper
view on the scene, and also free motion of the pan angle qp without risking colli-
sions between the head and the shoulders. The maximum velocity norm allowed
is v = 0.0476 m/s, while dmin = {100, 133} pxl and dmax = {140, 145} pxl. For
the estimation of the robot velocity, we considered filtered vision- and kinematics-
based velocity measurements in the update step of the Kalman Filter, with covari-
ances matrices W V IS,k = diag

(

10−6, 10−6, 10−6, 10−7, 10−7, 10−7
)

and W KIN,k =
diag

(

10−9, 10−9, 10−9, 10−8, 10−8, 10−8
)

, respectively. The control gains are set to
Kxm = 0.4, Kp = 0.05, Kvx = Kvy = 0.04. Finally, we simulated an actuation
disturbance by injecting a term ∆vx = 10%v.

Also in this case, we considered several navigation scenarios. In Figure 2.19,
we show the navigation scenarios of curve negotiation and T-junction addressing.
On the other hand, in Figure 2.20 we tested the effectiveness of the navigation
algorithm when obstacles other than a corridor walls are present in the environment.
In particular, we put a plant in the middle of a corridor with non-parallel walls, to
create a narrow passage that the robot has to cross by maximizing the clearance to
the obstacles. The reference pan angle q∗

p is computed in accordance to eq. (2.11),
where we set tl = {90, 130}, tr = {110, 140}. The robot starts walking off the
corridor center, but it quickly converges to its bisector. Next, when the plant
becomes visible in the image plane, the minimum distance d between left and right
obstacles decreases and drops below tl. The camera changes orientation with respect
to the torso of the robot, that rotates to reduce the visual error, according the
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(a) (b) (c) (d)

Figure 2.22. Experiment with a real NAO. Top: snapshots of the robot moving in the
corridor. Bottom: corresponding image procesisng. In the first snapshot a narrow
passage is detected and used to set the desired value of q∗

p for camera rotation. When the
camera orientation is equal to the desired value, the robot reaches the passage, as shown
in the second snapshot. The third and the fourth snapshots show the robot re-aligning
the camera with the sagittal plane, in correspondence of a wider free space.

control law (2.33). This induces the robot to walk sideways reducing the lateral
encumbrance while traversing the narrow passage. When the obstacle disappears
from the image, the minimum distance d exceeds th and the robot aligns the camera
again with the torso, restoring the standard walking. This allows to successfully
cross the narrow passage reducing the risks of collisions. When the robot is beyond
the obstacle, the center of the corridor is recovered after the original configuration is
accomplished.

A scenario with multiple obstacles, instead, is shown in in Fig. 2.21 with the
corresponding simulation results. In Fig. 2.21a, we show the trajectory and the
internal reconfiguration of the robot when approaching narrow passages: the control
compensates the actuation disturbance estimated by the Kalman Filter (as shown
in Fig. 2.21b) and allows to properly track the reference velocity determined trough
(2.12)(shown in Fig 2.21c). The alignment error φ between the camera principal axis
and the motion directions is shown in Fig. 2.21d.

2.5.3 Experiments with the humanoid robot NAO

Experiments to validate the filter and the control framework have been performed
with the humanoid robot NAO. To give a quantitative measurement of the accuracy
of the estimated velocity, and provide a highly reliable external measurement of the
velocity as ground truth, we used a VICON Motion Capture System3. The ground
truth data are generated by placing a number of markers on the surface of the
robot head, denoting a new reference frame Fm. Then, a least-square-based camera-
VICON calibration procedure is run to estimate the homogeneous transformation
matrix mT c between the the frame Fm (detected by the VICON system) and the
robot camera frame Fc.

The scenario reconstructed is similar to the one shown in the simulations, and
adapted to the robot size. A straight corridor with a narrow passage has been

3https://www.vicon.com/
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2.23. Experiments with the robot navigating in a straight corridor with a narrow
passage, and a simulated perturbation ∆vx = 20%vmax. Top: snapshots of the navigation
achieved without external control loop on the linear velocity components. Bottom:
snapshots of the navigation achieved through velocity estimation and external control
loop on the linear velocity components. On the bottom of each snapshots, the relevant
steps of image processing have been highlighted: (i) optical flow field (yellow); (ii) inliers
flow field for vision-based measurement (cyan); (iii) dominant plane image with xl, xr

and xm; (iv) command panel.

installed through wood panels and a patched carpet, as depicted in Figure 2.22-2.23.
In Fig. 2.22, we showed the effectiveness of the control in nominal conditions, i.e.,
when no actuation disturbances are acting on the robotic system. A narrow passage
is created at the beginning of the corridor, so the camera rotates to the desired value
q∗

p = 90◦ when the robot begins to move. The direction of the gaze determines the
direction of the driving velocity, so the robot moves sideways when the walls are
closer. When the space between walls becomes wider the camera rotates to reach
the desired value of q∗

p = 0◦ and realigns with the robot sagittal plane.

To simulate a disturbance on the actuation of the linear velocity, we explicitly
added a term ∆vx = 20%vmax to the command vx sent to the robot. In Fig. 2.23,
we highlight the effects of the external control loop based on the estimation of
velocity: in (Fig. 2.23a-2.23b-2.23c-2.23d), the robot is navigating without taking
into account the estimation of the current velocity. When the robot starts walking,
the perturbation acts on the direction parallel to the camera principal axis, while it
affects the perpendicular direction as the robot rotates to reconfigure itself. In this
latter case, the constraint (2.12) is violated, and the robot is not moving along the
camera principal axis direction.

On the other hand, when the robot moves under the 1D-IBVS control with
velocity feedback (2.40) (see Fig. 2.23e-2.23f-2.23g-2.23h), that takes into account
the current estimation of the robot velocity, the proper control inputs compensating
the motion direction are computed, and the robot motion converges towards the
reference values given by (2.12), thus reducing the alignment error of the motion
direction with the camera principal axis to 0 (see Fig 2.24). As a result, the robot
passes through the narrow passage without colliding with walls and recovers the
center of the corridor.
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Figure 2.24. Navigation results of a humanoid NAO robot in experimental session. (a)
Comparison among the ground truth (GT) robot velocity (blue), the vision-based velocity
measurement (magenta), the kinematics-based velocity measurement (green) and the
velocity estimated with the Kalman Filter (red). (c) Comparison between the reference
velocity (blue) given by (2.12) and the true robot velocity (red), after applying the control
law (2.40). (d) Comparison of alignment errors φ between the first experiment without
velocity estimation and correction (red) and the second one with velocity correction
(blue).

2.6 Conclusions

In this chapter, we presented a vision-based navigation method for omnidirectional
robots. Different visual schemes have been proposed, that maximize the the distances
of the robot from obstacles by regulating suitable visual features in the camera
image. We highlighted that, using the camera as only source of information, for the
generation of the control inputs, is not enough to handle actuation disturbances
or undesired transient response. Therefore, we further proposed a control scheme
based on the estimation of the current robot velocity with a simple Kalman Filter,
fusing data coming from the other on-board sensors of the robot. We showed the
effectiveness of our method in simulation, both with a wheeled and a humanoid
robot, and with an experiment, where a humanoid robot NAO is employed. Future
works will consider dynamic environments where also moving obstacles are taken
into account. In addition, the the heuristic logic adopted to change the reference
q∗

p can also be robustified with a finite-state-machine. Finally, an accurate analysis
of robustness on the system will be done, to quantitatively evaluate the effects of
actuation disturbances on the system.
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Chapter 3

Vision in Surgical Robotics

Figure 3.1. Reconstructed liver from patient CT scan image. Image retrieved from [33].

The wide expansion of robotic technologies in the recent years has encountered
significant interest also in healthcare and medical contexts. The introduction of
robotic systems and other related subjects in these fields (e.g., computer vision,
control and state estimation problems, visual semantic reasoning, biomedical signal
analysis, human-robot interaction) enabled a relevant growth in the applicability
and in the performances of standard rehabilitative and surgical robotics.

Rehabilitative robotics concerns the employment of robotic systems and devices
as active instruments demanded to the rehabilitation of patients, whose research has
started in the late 80’s [34][35][36][37][38]. During the latest years, several prototypes
and devices have been continually developed, from robot-assisted powered wheelchairs
[38], to arm-rehabilitative robotic systems [39], until to the modern and pioneering
exoskeletons[40][41] and soft gloves [42].

While a strong contribution to this field has been given by research subjects
concerning robot modeling, biomechanical signal analysis and force interaction, the
deployment of visual data and related machine vision and vision-based algorithms has
found wide application in clinical and surgical contexts, specifically for preoperative
planning, intra-operative surgical procedures and postoperative evaluation as image-
based therapies[43][44][45][46](Figure 3.1). Within this context, the major influence
that robot technologies has exerted so far refers to the novel robot-assisted surgical
procedures that brought to the definition of the Minimally Invasive Robotic Surgery
(MIRS). MIRS refers to the set of clinical and surgical procedures that exploit the
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Figure 3.2. da Vinci robotic system.

high accuracy and reliability of robotic systems to reduce the invasiveness of typical
surgical procedures. This consists in reducing the size of incisions executed on the
patient, thus minimizing the pain, the healing time of wounds and eventual clinical
complications. For all these reasons, laparoscopic surgery is the field in which MIRS
flourished most, thanks also to the development of the extensively employment of
the da Vinci robotic system (Figure 3.2).

One of the great advantages in employing robotic systems for MIRS is related
to the possibility to enhance the degree of autonomy for procedures that are still
executed by surgeons, through the introduction of autonomous robot operation
modes. This is not a straightforward problem because several procedures, performed
by surgeons, are repetitive and tiring tasks, and can increase the operation time,
costs and complications risks. Suturing is one of these procedures. From this point
of view, automatic suturing presents many challenges related to both perception and
manipulation. Left alone the interaction with soft tissues, an automatic suturing
procedure has to deal with the difficulty of perception in an unstructured and highly
noisy environment for needle and thread detection and tracking. The circular shape
of the suturing needle encouraged the development of a family of color-based and
model-based approaches for detection and tracking.

Therefore, needle detection and tracking are prerequisites to assist the suturing
process, where information of interest can be retrieved from endoscopic images.
Tracking the suturing needle is important because allows assistance functions for
correct needle repositioning and surroundings knowledge. The task is challenging
due to eventual occlusions that may occur during the procedure when treating tissue,
moving camera, cluttered background and unconstrained motion.

A very common vision technique employed for image-based object detection is
image segmentation [47]. In order to perform image-based needle detection, both
available image source and needle type are crucial information to know. Percutaneous
needle insertion, for instance, typically handle ultrasound (US) images or volumes,
coming from a 2D or 3D US probe, for costs and safety reasons [48], [49], [50]. The
needle type usually determines the adopted vision technique: Hough Transform
(HT), for instance, is used for line detection in case of symmetrical-tipped needles,
because they typically follow a straight path in the tissue [51], [52]. In [53], HT is
used also for curved needle detection in 2D US images.

For automatic suturing, image source usually comes from an endoscopic camera
system. However, most needle detection techniques are usually color-based [54], [55],
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[56], [57], and detecting the needle tip instead of the full needle body could result in a
failing approach. On the other hand, the drawback of color-based approaches is that
they depend on the light conditions of the environment. Furthermore, reflections
of the surroundings on the metallic surface of the needle may result in a varying
needle color that is hard to identify with respect to the background.

For this reason, needle geometrical information can be taken into account and
used as support for previous color-based detection inferences. Ellipse fitting is
typically performed for this step, as 2D projection of 3D circles on the image plane
[58], [59]. Geometry-based approaches are definitely more elegant and powerful, but
they are computationally expensive from a pratical point of view.

The applications mentioned above can also be distinguished by considering the use
of markers on the surgical instruments. While this can enhance the object detection
in the image [56], [60], their use can be irrealistic, because surgical instruments are
supposed to be autoclavable and alternatively used through a trocar. In any case,
even markerless approaches assume at least to color the needle in advance, to ease
the detection [57], [61]. Once the needle is detected in the image plane, tracking
means to be able to refresh information about its position, based on - more synthetic
- information coming from previous frames of the input video stream. For instance,
region of interest (ROI) can be defined to reduce the overall computations for image
segmentation [58], or needle pose estimation can be achieved through an external
tracking device and projective geometrical considerations [59].

Authors in [62] present a RANSAC-based method for needle detection, where
3D needle pose reconstruction is achieved with the use of a stereo camera. However,
the method does not run in real time and cannot be used for tracking. In [63], the
3D needle pose is adaptively reconstructed by relying on the observations of needle
tip and junction, but tracking is not faced. Finally, [64] presents a method for a
colored-needle tracking that involves a partial needle pose reconstruction and the
use of markers. However, none of these works takes advantage of the kinematics
information available from the robot, that are typically high-frequency and can ease
the needle detection and tracking problem. Due to the circular shape of the suturing
needle, a family of model-based approaches for detection and tracking are proposed
in the literature. Some of them focus only on the needle recognition without taking
into account the 3D pose estimation. E.g. in [62] and in [65], respectively, stereo
and mono camera, in an unstructured environment, are used to track the needle in
the image plane. On the other hand, in [63] and in [64], the 3D pose estimation
is calculated using, respectively, an adaptive method based on the position of the
two needle extremities (tip and junction point), and a method based on the needle
geometry information in addition to the use of markers. This two approach have
in common to consider a more structured environment respect to the previous.
Furthermore, all these methods propose a purely vision-based needle recognition
and tracking, without exploiting the high-rate information (≥ 200 Hz) from robot
kinematics on the pose of the end-effector holding the needle. This information can
be used both to restrict the image region in which the detection can be performed
and to provide a prediction of needle pose in the Cartesian space which benefits
from the dynamical model knowledge of the needle grasped by the robotic surgical
instrument.

In this chapter, we propose an approach for needle detection and tracking based
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Figure 3.3. Reference frames.

on Kalman filtering, that combines visual information, extracted from a monocular
camera, with the robot kinematics. Beside providing a fast and reliable needle pose
estimation, the proposed method is robust with respect to scene variations as in case
of partially needle occlusion or of needle re-grasping operation, as well as external
disturbances perturbing the needle pose. In addition, the covariance matrices can
be adapted taking into account the particular task that is being performed. In
Section 3.1.2, we show some preliminary results for this problem.

3.1 Suturing Needle Tracking

In this section, we propose a state estimation scheme based on Extended Kalman
Filter (EKF) [66], for the estimation of the pose of a suturing needle, held by a robot
manipulator arm. Formally, with reference to Figure 3.3, we consider the needle
pose Fn, expressed in the base frame Fb of the manipulator holding the needle. The
suturing needle has a typical semi-circular shape, designed to ease executing the
required trajectories to perform stitching and suturing procedures.

The filter provides an estimate of the needle pose ζ = [pn, qn]T , being pn the
true needle position, represented by the coordinates of the circle supporting the
needle shape, and qn its quaternion-based true orientation in Fb. The prediction
step provides a preliminary estimation of the needle pose through the linear and
angular velocities of the gripper provided by the manipulator kinematics. Then, a
vision-based 3D pose reconstruction is used in the filter correction step.

3.1.1 Extended Kalman Filter design

The linear and angular needle velocities [vn, ωn]T are related to the linear and
angular gripper velocities [vg, ωg]T , both expressed in Fb, through the relationship

[

vn

ωn

]

=

[

I3 −
⌊

rgn×

⌋

03 I3

] [

vg

ωg

]

(3.1)



3.1 Suturing Needle Tracking 39

where rgn = pn − pg is the relative position of the needle with respect to the gripper,
expressed in Fb, and ⌊ ∗ ×⌋ is the skew-symmetric matrix operator. From (3.1), we
consider the following continuous-time process dynamics for the state vector ζ

ṗn = vg +
⌊

ωg×

⌋

rgn + wp

q̇n = 1
2Ω(nωg)qn + wq

(3.2)

where nωg is the angular gripper velocity expressed in Fn, w = [wp, wq]T ∼ N (0, W )
is the process noise, and

Ω(ω) =

[

−⌊ω×⌋ ω

−ωT 0

]

. (3.3)

Pose measurements are retrieved through visual information extracted from a monoc-
ular camera. First, a detection algorithm computes the ellipse-shaped projection of
the needle on the image plane. Then, its 3D pose is reconstructed given its size and
the projection of a point (e.g., the tip [67]). So, The measurement model is given by

y = ζ + m (3.4)

where m ∼N (0, M) is the measurement noise. The corresponding error-state vector
is defined as

ζ =
[

p δθ
]T

(3.5)

where p = p − p̂ is the position error and δθ is the 3 × 1 attitude error angle vector,
defined by employing the small-angle approximation on the quaternion error

δq = q ⊗ q̂−1

=

[

δqv
δqs

]

=

[

k̂ sin (δθ/2)
cos (δθ/2)

]

≈
[

1
2δθ

1

]

.

(3.6)

with (k̂, θ) being the corresponding axis-angle representation of the attitude error
described by δq̂. The approximation is reasonable since the rotation can be assumed
to be very small. The reason for the definition of the error vector (3.5) is explained
by considering that only three of the four components of the quaternion vector are
uncertain, since the fourth one is retrieved from the other three components through
the unit norm constraint. As a consequence, from (3.2), (3.4), (3.5) and (3.6), we can
derive the dynamics of the error vector and the measurement error as, respectively,

ṗ =
⌊

ωg×

⌋

p + wp

˙δθ = −
⌊

nωg×

⌋

δθ + wq

= f(ζ) + w (3.7)

and
y = ζ = h(ζ) + m (3.8)

At this point, retrieving the jacobian matrices F c and Hc from (3.7) and (3.8) is
trivial, being



40 3. Vision in Surgical Robotics

F c = ∂f
∂ζ

∣

∣

∣

∣

ζ=ζ
=





⌊

ωg×

⌋

03

03 −
⌊

nωg×

⌋





Hc = ∂h
∂ζ

∣

∣

∣

∣

ζ=ζ
= I6

(3.9)

that are constant with respect to the current estimation ζ.
The equations (3.2),(3.4) and (3.9) are expressed with respect to continuous

time variables. However, when the EKF has to be implemented, the corresponding
discrete-time equations have to be taken into account. In the remainder of this
document, we recap the the computations provided in [68]. So, considering a constant
integration time step ∆T and an average input velocity [v̄g, ω̄g] between the time
instant tk = k∆T and tk+1 = (k + 1)∆T , we have the following discrete-time process
dynamics

pn,k+1 = pn,k + ∆T
(

v̄g +
⌊

ω̄g×

⌋

rgn

)

+ wp,k

qn,k+1 = Θ(nωg,k,n ωg,k+1,n ω̄g)qn,k + wq,k

(3.10)

where

Θ =
(

exp
(

1
2

Ω(nω̄g)∆T

)

+
1
48

(Ω(nωg,k+1)Ω(nωg,k) − Ω(nωg,k)Ω(nωg,k+1)) ∆T 2
)

(3.11)
being

exp
(

1
2

Ω(ω)∆T

)

=















I4 + ∆T
2 Ω(ω), if |ω| → 0

cos
(

|ω|
2 ∆T

)

I4 + 1
|ω| sin

(

|ω|
2 ∆T

)

Ω(ω), otherwise.
(3.12)

The measurement model is simply written as

yk = ζk (3.13)

Finally, the discrete expression of the jacobian matrices F c and Hc are given by

F d = exp (F c∆T ) =

[

exp
(⌊

ωg×

⌋

∆T
)

03

03 Φ

]

Hd = I6

(3.14)

where

Φ =























I3 − ∆T
⌊

ωg×

⌋

+ ∆T 2

2

⌊

ωg×

⌋2
, if |ω| → 0

cos (|ωg|∆T ) I3 − sin (|ωg|∆T )
⌊

ωg

|ωg | ×

⌋

+ (1 − cos (|ωg|∆T )) ωg

|ωg |
ωg

|ωg |

T
, otherwise.

(3.15)
At this point, we are ready to implement the equations of the EKF.
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Prediction

The state prediction is obtained by propagating the state estimation ζ̂ through
(3.10)

p̂n,k+1|k = p̂n,k + ∆T
(

v̄g +
⌊

ω̄g×

⌋

rgn

)

q̂n,k+1|k = Θ(nωg,k,n ωg,k+1,n ω̄g)q̂n,k

(3.16)

while the prediction of the corresponding covariance matrix P is given by

P k+1|k = F d,kP kF T
d,k + F d,kW kF T

d,k∆T (3.17)

Update

In order to correct the state and the covariance matrix, we use the measurement
[p̄n,k+1, q̄n,k+1] at time k + 1 to compute the innovation as

νk+1 =

[

p̄n,k+1 − p̂n,k+1|k

δθ̄

]

(3.18)

where δθ̄ is the 3 × 1 small-angle approximation of the quaternion measurement
error

δq̄ = q̄n,k+1 ⊗ q̂−1
n,k+1|k

≈
[

1
2δθ̄

1

] (3.19)

Then, by taking into account (3.14), the Kalman gain is computed as

Rk+1 = P k+1|k

(

P k+1|k + Mk+1

)−1
(3.20)

Using (3.18) and (3.20), we compute the correction term as

∆ζk+1 =

[

∆pk+1

∆θk+1

]

= Rk+1νk+1 (3.21)

Finally, we can compute the corrected estimation ζ̂k+1 of the state at time k + 1

ζ̂k+1 =

[

p̂n,k+1

q̂n,k+1

]

=

[

p̂n,k+1|k + ∆pk+1

qup,k+1 ⊗ q̂n,k+1|k

]

(3.22)

where, defining δqup,k+1 = 1
2∆θk+1, it is

qup,k+1 =































δqup,k+1
√

1 − δqT
up,k+1δqup,k+1



 , if δqT
up,k+1δqup,k+1 ≤ 1

1
√

1+δqT
up,k+1

δqup,k+1

[

δqup,k+1

1

]

, otherwise

(3.23)

and the corrected covariance matrix P k+1 is given by

P k+1 = P k+1|k − Rk+1P k+1|k (3.24)
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Figure 3.4. The da Vinci Research Kit simulator.

3.1.2 Simulation and Experimental Results

The filter described in the previous section has been validated both in simulations
and experiments, considering a da Vinci robot surgical system. The obtained results
are detailed in the following sections.

Simulation

To validate the presented filter in simulated environment, we exploited the da Vinci
simulator developed for the V-REP virtual environment[69]. The simulator accurately
reproduces the complete da Vinci system patient-side cart and provides the whole
robot kinematics, namely Setup joint (SUJ), Patient Side Manipulators (PSMs),
Endoscopic Camera Manipulator (ECM) (Figure 3.4). In this way, simulating the
robot is a solution providing a low cost and easy to access environment for the
development and proof of new control strategies while minimizing the risk of testing
new algorithms on such a complex system. The entire simulator is designed to be
fully integrated and interfaced with the open-source da Vinci Research Kit (dVRK)
platform, and is programmed through the ROS framework. A detailed description
of the simulator, along with extensions reproducing the Master surgeon console, can
be found at the Appendix A of this manuscript.

To obtain the visual measurement of the needle pose required for the filter, a
vision-based detection of the projected ellipse is achieved through a preliminary
RGB-segmentation performed on a circular Region Of Interest (ROI). The ROI is
centered at the gripper position, and its radius delimits the spherical region where
the needle is supposed to be. Then, the set of pixels resulting from the segmentation
is used to robustly fit the corresponding ellipse with a least-square-based approach.
The detected ellipse is finally employed to recover a 6D pose measurement of the
needle, based on geometric considerations [67].

The simulated setup is intentionally simple, and is depicted in the top left view
in Fig. 3.5a: we considered a green-colored needle with a blue tip, to ehnance the
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(a) (b)

Figure 3.5. (a) Simulation setup for the suturing needle tracking application. (b) Output
of the image processing steps for the visual detection and the EKF-based estimation.

vision-based reconstruction of the proper needle orientation. Figure 3.5b shows
the image processing output of the 3D needle tracking scheme: the circular ROI is
drawn in black, while the output of the vision-based detection and the projection of
the estimated pose of the needle are drawn in red and blue, respectively. Finally,
the projections of the reference frames of the gripper, as well as of the vision-based
reconstructed and the estimated pose, are drawn superposed on the image (RGB
triad for estimation and gripper, CMY triad for the measurement).

Experiment

(a) (b) (c) (d)

Figure 3.6. (a)-(b)-(c): Prediction failure scenario compared with the vision-based corrected
estimation. (d): Detection failure scenario compared with the estimation. The white
circle represents the image area in which the needle is assumed to be found, based on its
radius and the depth of the gripper with respect to the camera.

To evaluate the robustness of needle pose estimation with respect to perturbations
due to the needle-tissues interactions in real experiments, we used a real da Vinci
robotic system, in a simplified experimental setup shown in Fig. 3.6. Typical vision-
related challenges (e.g., shadows, sparkling metal surfaces, small-sized objects) are
not considered to focus on the geometric part of the pose reconstruction. So, an
RGB segmentation procedure and a least-square fitting are sufficient to extract the
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projection of the needle on the image plane [70]. In addition, the needle tip has
been colored to ease the detection of the projective point required for the 3D pose
reconstruction.

The target experimental system is a da Vinci Research Kit robot (DVRK) [71].
Fig. 3.6 shows some preliminary results to prove the advantages in employing both
robot kinematics and visual information for the needle pose estimation. During
grasping, the needle is assumed as a rigid body attached to the gripper, and its pose
can be predicted through robot kinematics, provided an initial estimate. However,
since the needle-gripper transformation is not rigid, external disturbances (e.g.,
contact with tissues, slippages) can alter its pose, as shown in Fig (3.6a)-(3.6b)-
(3.6c), where the needle pose has been explicitly changed. Robot kinematics can
not cope with these disturbances, the prediction fails and propagates the error on
the next iterations (top). The vision-based correction of our filter allows to detect
the needle movements due to disturbances, and adjust the estimation accordingly
(bottom). On the other hand, Fig (3.6d) shows a scenario where the vision-based
detection fails, because the projected ellipse of the circular needle is degenerate on
the image plane of the camera (top). However, kinematics information provided by
the robot allows to maintain a stable estimation of the needle, even when this is not
clearly visible. The figures are extracted from the videos that can be found at the link
http://www.diag.uniroma1.it/~labrob/research/ekfNeedleTracking.html.

3.1.3 Conclusion

In this chapter we proposed an EKF-based approach to estimate the pose of the
suturing needle during robot-assisted laparoscopic procedures. The filter fuses
the kinematic information from the robot proprioceptive sensors with the visual
information provided by a monocular endoscopic camera. The use of robot kinematics
allows to restrict the region of interest in processing the image, thus speeding up
computations, and renders the estimation robust with respect to visual occlusions.
On the other hand, visual information allows to catch possible unmodeled motions
of the needle, e.g., slippage or movements due to the interaction with tissues. Future
work include development of robust image processing algorithms for the detection
of the needle in realistic experimental setups. In vitro and ex-vivo experiments are
planned to validate the approach in increasingly challenging conditions.
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Chapter 4

Active Sensing for state

estimation

In this manuscript, we presented two different applications where the state of a
dynamic system is estimated through dynamic observers, using visual information.
In the way in which they have been presented, the described Kalman Filters solved
an observability problem, where the internal state of the system is reconstructed from
the known inputs and outputs. In particular, the proposed observers are instances
of a classical passive paradigm, where the system inputs are assumed to be given,
and knowing the outputs is enough to guarantee the observability property for the
system. However, for more complex dynamic non-linear systems, the reconstruction
of the internal state may be not straightforward, since the observability property
depends also on the inputs provided to the system. In particular, for a given non-
linear system, there could exist some input trajectories that do not allow to fully
reconstruct a reliable estimation of the state, making the system unobservable. In
literature, these trajectories are referred as singular inputs.

To prevent the system from applying such inputs, the classical observability
paradigm has to be reconsidered, to take into account the possibility to actively
affect the inputs of the system. Modeling an estimation problem by enforcing
optimality criteria on the system input trajectories is referred as active sensing or
active estimation. Therefore, solving an active sensing problem is equivalent to
analyze the observability property of the considered system. While the canonical
Observability Rank (OR) provides a binary information about the observability
of the system, there exist several mathematical tools that actually measure the
degree of observability of the system with specific metrics. In [72], the active sensing
control problem is addressed for nonlinear differentially flat systems. The proposed
method considers a multiple-constraint optimization problem, to minimize on-line
the maximum uncertainty of an EKF over a trajectory, by using the Observability
Gramian. In a more recent work[73], the authors generalize the problem to take into
account process and measurement noise, by exploiting the solution of the Continuous
Riccati Equation. Authors in [74] address the problem of minimizing the maximum
uncertainty of the pose estimation for a micro aerial vehicle, by designing an optimal
path planner based on the photometric information acquired through the images of
an equipped camera.
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The active paradigm for state estimation is widely employed for Structure-from-
Motion (SfM) problems. SfM is a vision-based technique aimed at estimating the
3D geometric structure of scene observed by a moving camera, starting from the
2D acquired visual information and the motion of the camera. While SfM is a well-
established and known problem in computer vision, only recently novel frameworks
addressing the problem in active sense have been proposed. A framework addressing
the SfM problem in active fashion is proposed in [75], where the Observability
Rank Condition (ORC) is exploited as metrics to evaluate the observability of the
considered system. The presented framework is meant as a general method and can
be applied to actively estimate different geometric primitives, e.g., 3D straight lines
[76], points [77], spheres, cylinders[78] and planes[79][80]. In [81], the active SfM
problem is solved by only using the linear velocity components. In other related
works, active SfM schemes are managed to formulate a coupled framework with
visual servoing control schemes [82][83][84].

In this chapter, we present a preliminary study of an active SfM problem for
plane estimation, using the framework described in [75]. However, with respect to
the related works [79][80], we do not use sparse visual data to reconstruct the planar
scene, but we exploit a dense representation of the visual information.

As shown in Chapter 2, using dense visual data from the camera images allows to
gather a huge amount of information, that can be used to robustly estimate geometric
entities or the motion of the camera. Dense data are also exploited to design novel
Visual Servoing (VS) schemes. Authors in [85][86] present an approach employing
photometric information of all image pixels, taking into account the intensity values
and the lighting model of the scene. While showing promising results in terms of
accuracy, this method becomes intractable for large-size images. In addition, it relies
on the computation of the spatial image gradient, that is typically an error-prone
operator. Other possible direct dense VS schemes consider also wavelet[87], Gaussian
mixtures[88] and depth maps[89].

Among the consistent related literature, an efficient representation of visual dense
data that keep limited the size of the problem is given by weighted photometric
moments [90]. With respect to the canonical and well-established image moments[24],
weighted photometric moments are computed on the entire image and are robust
to the appearance/disappearance of new portions of the scene in the image, thus
enlarging the possible basin of convergence of the system.

However, for a visual servoing or a state estimation problem, choosing the most
suitable set of moments is not a trivial issue. In [91], this problem is addressed
by considering a weighted sum of image moments, whose weights are adaptively
modified to select the best set of moments over time.

Within this perspective, the active SfM scheme proposed in this chapter considers
weighted photometric moments to describe the visual dense information acquired
by a monocular camera. In particular, we consider a weighted sum of moments to
adaptively select the proper set of moments that maximize specific criteria on the
estimation process. As a result, the considered measurement of the visual dense
information is expressed as a weighted sum of weighted photometric moments.
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4.1 Problem formulation

The addressed Structure-from-Motion problem considers the reconstruction of a
planar scene, through the known motion of a moving camera. In this first formulation
of the problem, we consider the camera as a free-flying object that can instantaneously
move in any direction with velocity v = (vT , ωT )T , without workspace limitations
or non-holonomic constraints. The planar scene is formalized through the equation
nT X +d = 0, where n is the unit vector perpendicular to the plane, d is the distance
of the plane from the camera and X represents a generic point lying on the plane.

The proposed SfM scheme, presented below, is an instance of the general frame-
work shown in [75], where a function of weighted photometric moments is assumed
as measurable component of the considered system for the estimation task.

The reminder of the chapter is organized as follows: Section 4.2 briefly summarizes
the derivation of the dynamics of photometric moments given in [90]. Section 4.3
describes the general active SfM scheme used to estimate the geometric information
of the scene. Section 4.4 shows some preliminary results.

4.2 Weighted Photometric moments

Visual servoing (VS) schemes based on photometric moments have been introduced
to cope with the critical issues arising in standard geometric approaches. Indeed,
these could be typically compromised when preliminary image processing steps
(e.g., primitive extraction, tracking and matching), required to generate the visual
features, are not reliable or effective. Photometric moments are based on the
luminance information acquired by the camera image and, as for the geometric
moments, reveal to be more efficient than methods that directly employ luminance
data, due to the capability to synthetize dense information without significantly
scaling-up the size of the problem.

As seen in Chapter 2, a significant problem in VS schemes is the limited field-of-
view (FOV) of the camera, that reduces the convergence domain of the considered
system and produces inconsistencies in the acquired visual data, due to the image
portions that enter to or exit from the image plane. To cope with this phenomenon,
the authors in [90] considers a weighting function in the classical formulation of
photometric moment. Formally, the weighted photometric moment of order p + q is
defined as

mpq =
∫ ∫

π
xpyqw (x) I (x) dxdy (4.1)

where π is the image plane and x = (x, y) ∈ π is a given pixel of the image, I (x)
is the intensity level of the image in x and w (x) is a weight associated to x. As
a visual feature, the derivative of mpq can be related to the camera velocity vc,
through the interaction matrix Lmpq :

ṁpq = Lmpq vc (4.2)

with Lmpq =
[

Lm
vx
pq

L
m

vy
pq

Lm
vz
pq

Lm
ωx
pq

L
m

ωy
pq

Lm
ωz
pq

]T
. Assuming image brightness
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constancy and that the considered scene is planar, the entries of Lmpq are given by

Lm
vx
pq

= Am∇x
p+1,q + Bm∇x

p,q+1 + Cm∇x
p,q

L
m

vy
pq

= Am∇y
p+1,q + Bm∇y

p,q+1 + Cm∇y
p,q

Lm
vz
pq

= −Am∇x
p+2,q − Bm∇x

p+1,q+1 − Cm∇x
p+1,q − Am∇y

p+1,q+1 − Bm∇y
p,q+2 − Cm∇y

p,q+1

Lm
ωx
pq

= −m∇x
p+1,q+1 − m∇y

p,q − m∇y
p,q+2

L
m

ωy
pq

= m∇x
p,q + m∇x

p+2,q + m∇y
p+1,q+1

Lm
ωz
pq

= −m∇x
p,q+1 + m∇y

p+1,q

(4.3)
where (A, B, C)T = −n/d parametrize the pose of the observed plane with respect
to the camera, and

m∇x
p,q =

∫ ∫

π
xpyqw (x) Ixdxdy

m∇y
p,q =

∫ ∫

π
xpyqw (x) Iydxdy

(4.4)

being Ix and Iy the two components of the spatial gradient of the image. Since the
image gradient computation is an error-prone step, applying the Green’s Theorem,
the expressions (4.4) is written without the dependence from Ix and Iy as

m∇x
p,q = −pmp−1,q −

∫ ∫

π
xpyq ∂w

∂x
I (x) dxdy +

∮

∂π
xpyqw (x) I (x) dy

m∇y
p,q = −qmp,−1 −

∫ ∫

π
xpyq ∂w

∂y
I (x) dxdy −

∮

∂π
xpyqw (x) I (x) dx.

(4.5)

This way, the expression of the interaction matrix depends only on the form of the
weighting function w(x). Specifically, for w (x) = 1 ∀x, assuming that it is I (x) = 0
on the boundary of the image, substituting (4.5) in (4.3) results in the following
entries of the interaction matrix:

Lvx
mpq

L
vy
mpq

Lvz
mpq

Lωx
mpq

L
ωy
mpq

Lωz
mpq

=

−A (p + 1) mp,q − Bpmp−1,q+1 − Cpmp−1,q

−Aqmp+1,q−1 − B (q + 1) mp,q − Cqmp,q−1

A (p + 1 + 3) mp+1,q + B (p + q + 3) mp,q+1 + C (p + q + 2) mp,q

qmp,q−1 + (p + q + 3) mp,q+1

−pmp−1,q − (p + q + 3) mp+1,q

pmp−1,q+1 − qmp+1,q−1

(4.6)

However, this formulation requires that the image has a uniformly colored black back-
ground. This can be a strong limitation, also because the appearance/disappearance
of new image portions cannot be handled.

To take into account this requirement, a non uniform weighting function is
selected. Specifically, for K > 0 and a > 0, the weighting function

w (x, y) = K exp−a(x2+y2)2

(4.7)

assigns higher weights to a centered circular area of image pixels, while exponentially
decreasing values are assigned approaching to the image borders, in which they are
assumed equal to 0 (see Figure 4.1). The resulting interaction matrix is given by
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Figure 4.1. Graphical representation of the weighting function w (x, y) = K exp−a(x2
+y2)2

.

Lmp,q = Lup,q + 4aLwp,q (4.8)

where Lup,q is the matrix given in (4.6), and Lwp,q =
[

Lvx
wp,q

L
vy
wp,q Lvz

wp,q
Lωx

wp,q
L

ωy
wp,q Lωz

wp,q

]

results in

Lvx
wp,q

= 4aA (mp+4,q + mp+2,q+2) +
+ 4aB (mp+3,q+1 + mp+1,q+3) +
+ 4aC (mp+3,q + mp+1,q+2)

L
vy
wp,q = 4aA (mp+3,q+1 + mp+1,q+3) +

+ 4aB (mp+1,q+4 + mp+2,q+2) +
+ 4aC (mp,q+3 + mp+2,q+1)

Lvz
mpq

= − 4aA (mp+5,q + 2mp+3,q+2 + mp+1,q+4) +
− 4aB (mp+4,q+1 + 2mp+2,q+3 + mp,q+5) +
− 4aC (mp+4,q + 2mp+2,q+2 + mp,q+4)

Lωx
mpq

= − 4a (mp+4,q+1 + 2mp+2,q+3 + mp,q+3 + mp+2,q+1 + mp,q+5)
L

ωy
mpq = 4a (mp+3,q + mp+1,q+2 + mp+5,q + 2mp+3,q+2 + mp+1,q+4)

Lωz
mpq

= 0

(4.9)

From the expression above, we highlight that the interaction matrix of a weighted
photometric moment mp,q of order (p, q) has a recursive definition that requires the
knowledge of higher order moments up to the order (p + q + 5).

A general control or estimation scheme that uses this representation of visual
information typically selects a proper set of photometric moments to accomplish the
considered task. Nevertheless, for given input and output system trajectories, some
orders of moments may be more significant than others. Therefore, the choice of the
set of moments to use for the task becomes crucial.

Within this perspective, the choice of a linear combination of weighted photo-
metric moments, with coefficients adaptively selected, is a reasonable solution to
optimize the performances of the considered SfM problem [91], as shown in next
section.



50 4. Active Sensing for state estimation

4.3 Active SfM scheme

In this section, we recapitulate and adapt the general active SfM scheme proposed
in [75], to handle a set of weighted photometric moments and a corresponding
linear combination of them. The goal of the active framework is to optimize the
camera velocity and the linear coefficients, in order to find the most descriptive
and informative set of weighted photometric moments, while generating the desired
camera trajectory that optimizes specific criteria of the estimation process.

Specifically, we denote by mw(θ) a linear combination of moments up to a given
fixed order (p, q), whose coefficients are collected in a vector θ:

mw(θ) = θT mp,q (4.10)

where mp,q = [m01, m10, m11, m20, . . . , mp,q]T . Observe that the vector mp,q of
considered moments does not contain the zero-order moment m00. This is a deliberate
design choice since, in practice, m00 is around two orders of magnitude higher than
other moments. Thus, considering m00 in mp,q can unintentionally neglect the
effects of all other moments, as its dynamics would be far too dominant.

This type of representation falls in the design choice presented in [91], considering
a weighting function with a polynomial basis of fixed degree, where a maximum order
of moments is chosen a priori. However, it is worth to highlight that the authors
also propose a constrained polynomial basis, that takes into account additional
constraints to guarantee that the resulting function zeroes at the image borders,
along with its derivative. These boundary requirements allow to handle possible
appearance/disappearance of image portions in/from the image plane, and needs a
higher order polynomial basis to take into account the constraints on the borders.
Nevertheless, we showed that this issue is successfully addressed by employing the
weighted photometric moments (4.1). Therefore, we discard this latter design choice
and keep a simpler solution with a fixed order polynomial basis.

The coefficients θ play the role of weights, as they can be regulated to optimize
some desired criteria in the estimation task, by assigning higher importance to more
informative moments, and penalizing moments providing a small contribution for
the reconstruction of the scene. As a result, in the formulation of our problem, such
coefficients are assumed as parts of the inputs of the considered system, as described
in the next paragraph.

4.3.1 System dynamics

Specifically, a typical SfM problem is formulated by considering the state vector
x = (xT

m xT
u )T , where xm and xu represent the measurable and unmeasurable

components of the state, respectively. The dynamics of x is given by
{

ẋm = fm(xm, xu, u, t) + ΩT (t)xu

ẋu = fu(xm, xu, u, t)
(4.11)

where u is the input of the system, Ω is a time-varying known matrix and fm and
fu are sufficiently smooth functions. The matrix ΩΩT is referred as observability
matrix and plays an important role for the satisfaction of the estimation task. Indeed,
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the full rankness of ΩΩT is a possible metrics to evaluate the Observability Rank
Condition (ORC), thus it is a necessary and sufficient condition for the convergence
of the estimation error.

The measurable component represents the visual measurements taken into account
for the problem. In our case, we consider three linear combinations of photometric
moments (4.10), by considering three different parameters vectors θ1, θ2 and θ3,
i.e.,

xm =







mw(θ1)
mw(θ2)
mw(θ3)






=







θT
1

θT
2

θT
3






mp,q = ΘT mp,q (4.12)

The unmeasurable component xu encodes the geometric information that is intended
to be estimated. In our case, we consider

xu = −n/d = (A, B, C)T (4.13)

Differentiating (4.12) and (4.13) with respect to time, we get

ẋm =
d
dt

(

ΘT mp,q

)

=
d
dt

ΘT mp,q + ΘT d
dt

mp,q =

= Θ̇
T

mp,q + ΘT ṁp,q =

= Θ̇
T

mp,q + ΘT L̄mp,q v

ẋu = xuxT
u v − ⌊ω⌋×xu

(4.14)

where ⌊∗⌋× denotes the skew-symmetric matrix of its argument, and L̄mp,q =
(

Lm00
, Lm01

, . . . , Lmp,q

)T is built by stacking the interaction matrices defined in
(4.8) for each moment in mp,q. Separating the contributions of linear and angular
velocity in L̄mp,q , we write

ẋm = Θ̇
T

mp,q + ΘT
(

L̄
v
mp,q

(xu)v + L̄
ω
mp,q

ω
)

=

= Θ̇
T

mp,q + ΘT
(

L̄
xu

mp,q
(v)xu + L̄

ω
mp,q

ω
)

=

= Θ̇
T

mp,q + ΘT L̄
ω
mp,q

ω + ΘT L̄
xu

mp,q
(v)xu

(4.15)

where we exploited the linearity of the dynamics (4.9) with respect to the plane
parameters, i.e., L̄

xu

mp,q
(v)xu = L̄

v
mp,q

(xu)v. Comparing the expressions above with
(4.11), we get the following correspondences

fm(xm, xu, u, t) = Θ̇
T

mp,q + ΘT L̄
ω
mp,q

ω

fu(xm, xu, u, t) = xuxT
u v − ⌊ω⌋×xu

Ω = L̄
xu T

mp,q
(v)Θ

u = (vT , θT )T

(4.16)
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4.3.2 Observer dynamics

The goal of the proposed strategy is to estimate the unmeasurable component
xu, while satisfying some optimality criteria on the performance of the estimation.
Specifically, we want to generate the optimal camera velocity v and the vector of
parameters θ to maximize a given conditioning measurement of ΩΩT , so as to
minimize the convergence rate of the designed observer. We highlight that, given
the form of Ω in (4.16), the performances of the structure reconstruction and the
estimation process depend only on the linear velocity v. This is a typical aspect of
the SfM schemes, and allows to consider the camera angular velocity ω as additional
degrees of freedom to satisfy other objectives (e.g., achieving a given control task).

To reconstruct the unmeasurable component xu, a possible non-linear observer
scheme is given by

{

˙̂xm = fm(xm, xu, u, t) + ΩT (t)xu + Hξ
˙̂xu = fu(xm, x̂u, u, t) + ΛΩ(t)P ξ

(4.17)

where H > 0, Λ = ΛT > 0 and P = P T > 0 are tuning parameters of the
non-linear observer, so one can act on them to satisfy specific conditions. Without
loss of generality, we consider P = αI and Λ = βI, α > 0, β > 0. Denoting
by ξ = xm − x̂m and z = xu − x̂u the measurable and the unmeasurable errors,
respectively, the dynamics of the estimation error e = [ξ, z]T is given by











ξ̇ = −Hξ + ΩT z

ż = −ΛΩP ξ + (fm(xm, xu, u, t) − fm(xm, x̂u, u, t)) =
= −ΛΩP ξ + g(e, t)

(4.18)

where g(e, t) is a vanishing perturbation, since g(0, t) = 0, ∀t. In particular, it is
shown that matrices Λ and P are tuned to attenuate g(e, t), while keeping the norm
of ΩΩT limited. On the other hand, the matrix H is tuned to shape the damping
factor of the error during the transient. Specifically, H is chosen as

H = V DV T (4.19)

where V is the matrix whose columns are the singular vectors of Ω, according to
the SVD decomposition UΣV T = Ω, and D = diag(2σi

√
αβ), being σi the singular

values of Ω. To optimize the system inputs and minimize the convergence rate of
the estimation, we consider to maximize the determinant of the observability matrix:

ρ = det(ΩΩT ) (4.20)

By differentiating (4.20) with respect to time, we end up with the following relation-
ship

ρ̇ = Jvv̇ + Jθθ̇ + Jmṁp,q (4.21)

where Jv, Jθ, Jm are Jacobian matrices that can be computed in closed-form
from Ω. The expression (4.21) states that, to affect and maximize the determinant ρ
of the matrix ΩΩT , we can drive the system inputs v̇ and θ̇ towards the directions
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given by Jv and Jθ. Specifically, they are computed as

Jv =

[

. . . tr

(

adj
(

ΩΩT
) ∂ΩΩT

∂vi

)

. . .

]

Jθ =

[

. . . tr

(

adj
(

ΩΩT
) ∂ΩΩT

∂θi

)

. . .

]

(4.22)

where, given the form of Ω in (4.16), we can compute the terms

∂ΩΩT

∂vi
=

∂
¯L

xu T

mp,q
(v)

∂vi
ΘΘT L̄

xu

mp,q
(v) + L̄

xu T

mp,q
(v)ΘΘT ∂

¯L
xu

mp,q
(v)

∂vi

= M + MT

∂ΩΩT

∂θi
= L̄

xu T

mp,q
(v)∂Θ

∂θi
ΘT L̄

xu

mp,q
(v) + L̄

xu T

mp,q
(v)Θ∂Θ

∂θi

T
L̄

xu

mp,q
(v)

= N + NT

(4.23)

From (4.16), since the norm of Ω (thus, the determinant) is related to the norm of
v, to avoid that ΩΩT is increased by only increasing v, for the generation of the
desired inputs we consider to keep ‖v‖ = const as additional constraint. Similarly,
we also consider to keep ‖θ‖ to prevent an undesired increase of the noise in the
maximization of ρ. In detail, defining κv = 1

2‖v‖2, κθ = 1
2‖θ‖2, and denoting by

κv,d and κθ,d the corresponding desired values, to generate the proper inputs that
maximize ρ, while keeping the norm of the input quantities constant, we finally
design the following update rules























v̇ = v
‖v‖2 Kv,1(κv,d − κv) + Kv,2

(

I − vvT

‖v‖2

)

JT
v

θ̇ = θ
‖θ‖2

Kθ,1(κθ,d − κθ) + Kθ,2

(

I − θθT

‖θ‖2

)

JT

θ

(4.24)

The optimization rules expressed above maximize the determinant ρ as observability
measure of the observability matrix ΩΩT of the SfM task. This is done by acting
both on the camera linear velocity v and on vector of parameters θ representing the
coefficients of the linear combination of photometric moments. This way, the most
informative image moments are adaptively selected to optimize the observability
conditions of the considered estimation task.

4.4 Simulation results

To validate the presented scheme, we considered a simulated scenario where a free-
flying camera sensor moves over a planar scene, as depicted in Figure 4.2a. A simple
texture with colored circles has been considered to provide informative data to the
observed plane (Figure 4.2b).
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(a) (b)

Figure 4.2. (a) A free-flying camera sensor moving over a planar scene in the V-REP
simulation environment. (b) Texture adopted for the plane.

For the considered simulation, we set p = q = 2 as the maximum order of
image moments to be propagated and considered in the vector mp,q. At time
t0 = 0 we considered ξ0 = 0 and z0 = [0.5, 1, − 0.5]T , with initial camera velocity
v0 = [−0.1, 0.1, − 0.1]T and θ0 randomly selected in the range [−1, 1]. The
matrices Λ and P are set such that αβ = 1000, while Kv,1 = Kθ,1 = 1.0, Kv,2 = 3.0
and Kθ,2 = 7.0. We ran two different simulations: in the first case, we only optimized
the camera velocity v, while leaving the parameters θ constant over time during
the simulation (i.e., setting Kθ,2 = 0). In the second case, we considered the full
optimization scheme by also considering the maximization of ρ with respect to the
system inputs θ̇. Figure 4.3 shows related plots of a comparison between the two
considered scenarios. It is noticeable how the optimization of the θ coefficients
strongly affects the overall performance of the estimation process: Figure 4.3a
shows that, when the θ are optimized, the determinant ρ of ΩΩT reaches a higher
value with a peak of ≈ 1.7 · 10−4, compared to the case in which the θ are left
unchanged, where a value of ≈ 2.5 · 10−6 is reached as maximum. This has effects
on the convergence rate of the estimation process. Figure 4.3b highlights that the
optimization of both v and θ allows to achieve quick convergence of the z error
in about 8s, while the only optimization of v is not sufficient to achieve smooth
convergence before 14s. This can be also appreciated in terms of error on the
components n and d describing the equation of the plane. Specifically, recalling that
n and d are retrieved from xu as n = − xu

‖xu‖ and d = 1/‖xu‖, we evaluate the errors

ed = d − d̂ and en = arccos(nT n̂), whose evaluations are shown in Figure 4.3c 4.3d.
After convergence, the estimation error on the d component is around ≈ 10cm, while
the error on the n component is ≈ 5◦.
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Figure 4.3. Plots related to the simulations performed to validate the active SfM scheme,
with comparison between the case in which both v and θ are optimized, and the case
in which θ are left unchanged. (a) Determinant ρ of the observability matrix ΩΩT .
(b) Unmeasurable error z. (c) Unit normal vector error en. (d) Distance error ed.
(e) Measurable component error ξ in case of full optimization. (f) Convergence of
the estimated plane coefficients xu towards the ground truth values, in case of full
optimization.

4.5 Conclusions

In this chapter, we addressed the problem of active perception for a Strucure-from-
Motion problem, in case of a planar scene observed by a moving camera. For the
purpose, an active framework has been adapted to handle dense visual information
in terms of photometric image moments. This prevented to employ critical image
processing steps that could introduce undesired noise in the measurement process.
In addition, a weighted expression of moments also allowed to manage discontinuities
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due to appearance/disappearance of content image from the camera plane. Such
moments have been combined by generating a weighted sum whose coefficients are
adaptively changed to select the best moment set in terms of information gain for
the estimation process. Specifically, the determinant of the observability matrix
associated to the problem has been chosen as metrics to maximize, in order to
minimize the convergence rate of the estimation. Some preliminary results have
been presented in simulated scenario, showing the validity and the effectiveness of
the approach. Future works will consider a fair comparison with well-known and
widely-used set of moments, to compare the effects of the active coefficients with
respect to feature set established a priori. Furthermore, an experimental session on
a robot manipulator arm is planned, in order to make the validation of the presented
method more robust.
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Chapter 5

Conclusions

This manuscript presented vision-based methods for control and state estimation
of robotic systems. First, a safe navigation scheme for mobile robots, moving in
unknown environments populated by obstacles, has been presented. For the purpose,
dense visual information has been exploited to perceive the environment (i.e., detect
ground plane and obstacles) and, in combination with other sensory sources, provide
an estimation of the robot motion with a linear observer. On the other hand, sparse
visual data have been extracted in terms of geometric primitives, in order to propose
several visual servoing control schemes satisfying proper navigation behaviors. A
comparative discussion has been proposed, and finally a controller with velocity
feedback, relied on visual estimated information, has been designed to guarantee
safety during navigation.

For surgical robotics, we presented a Kalman-based observer to estimate the 3D
pose of a suturing needle held by a surgical manipulator for robot-assisted suturing.
The method exploited images acquired by the endoscope of the robot platform to
extrapolate relevant geometrical information and get projected measurements of the
tool pose. This method has also been validated with a novel simulator designed for
the da Vinci robotic platform, with the purpose to ease interfacing and employment
in ideal conditions for testing and validation.

Finally, an active estimation paradigm has been introduced. In particular, a
novel active sensing algorithm employing visual dense information has been described
for a typical Structure-from-Motion (SfM) problem. The algorithm generated an
optimal estimation of a scene observed by a moving camera, while minimizing the
maximum uncertainty of the estimation. This approach can be applied to any robotic
platforms, and has been validated in simulation with a free-flying camera.
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Appendix A

V-REP da Vinci Simulator

The da Vinci Research Kit (dVRK) [71] is an open-source mechatronic platform
obtained from the first-generation of Intuitive Surgical System and provided with
controllers and software developed at Johns Hopkins University LCSR and Worcester
Polytechnic Institute AIM Lab [92]. The research community sharing the dVRK
is composed by over 30 research institutions across the world, which provides an
idea of the importance of this open platform in technology-oriented research for
robot-aided surgery. By default the daVinci is a master-slave robot scaling the
motion, attenuating tremor and enhancing precision of the surgeon that remotely
control the system. Despite teleoperation is the primary control mode, sensor-
based shared control of robot trajectories is under development to augment surgeon
abilities [93]. Thus, the open research platform is suitable to enhance both research
in haptic teleoperation [94] and in semi-autonomus control [95]. In the last two
decades, surgical simulation has strongly widespread thanks to the progress in robotic
surgery [96]. Simulation and virtual reality support different research fields from
industry to entertainment up to surgical robotics. In the surgical field, simulators
are mainly developed for training to allow surgeons acquiring basic robotic skills
as well as more complex maneuvers before performing live surgery. In the face of
cost/effectiveness ratio, simulators are a solution to allow students learning the base
techniques for robot-assisted surgery. The state of the art of simulators currently
available is constituted by: Robotic Surgery Simulator (RoSS) [97], SimSurgery
Education Platform (SEP) [98], da Vinci Trainer [99], da Vinci Skills Simulator [100],
Robotix Mentor [101] and Chiron [102]. In [103] a comparative evaluation of some
of these simulators is provided to help users in selecting an appropriate device for
their needs. Besides the training capabilities of each system, all of them provide
modules for EndoWrist manipulation, camera control, needle control and clutching,
and a realistic representation of the da Vinci workspace. The described simulators
are designed specifically for surgeons’ training and do not provide a virtual reality
simulator of the whole robot kinematics, namely Setup joints (SUJ), Patient Side
Manipulators (PSMs), Endoscopic Camera Manipulator (ECM). On the other hand,
simulating the robot is a solution providing a low cost and easy to access environment
for the development and proof of new control strategies while minimizing the risk of
testing new algorithms on such a complex system. Furthermore, it is a valuable tool
for safely testing out new technology, e.g. new surgical tools and sensors [104, 105].
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Figure A.1. The da Vinci Research Kit V-REP simulator.

In a wide community sharing the dVRK a free simulator is a benefit for the progress
of the research whereas the uniqueness of the robot, received as a donation from
Intuitive Surgical, and the difficulty of replacing components in case of malfunctioning.
Furthermore, a simulator will also profit educational purposes as it enables students
to easily approach the system and work in total safety. A brief description of the
most advanced open source software packages for robotic simulation can be found
in [106]. The use of open source robot simulators allows creating a virtual model of
a robot, simulating components and sensors and testing new tools design, control
strategies and integrating learning in a simulation environments. In this paper, the
dVRK simulator is realized using V-REP [107]. The choice is motivated by the
versatility and simplicity of this software for multi-robot applications. V-REP is
based on a distributed control architecture. Each object/model can be individually
controlled via an embedded script, a plugin, a ROS or BlueZero node, a remote
API client, or a custom solution. Controllers can be written in C/C++, Python,
Java, Lua, Matlab or Octave. Therefore, the simulator can be easily interfaced
with the real surgeon master console, and new objects and robots can be imported
in the scene by using a graphical interface. The developed simulator includes the
kinematics of the SUJ, PSMs, ECM and the camera sensor and it is interfaced with
the ROS framework. Moreover, four scenes are already created and ready for use.

The complete simulator, together with the four developed application scenes, is
available at https://github.com/unina-icaros/dvrk-vrep.git.

The rest of this appendix is organized as follows: first, we describe the kinematics
of the robotic arms included in the simulator; then, the V-REP models, focusing on
the simulated scene and on the simulator performances, and the control architecture,
focusing on the ROS-based infrastructure, are reported. After the description of the
simulator, we also present an extension to reproduce the Master surgeon console,
through the employment of a pair of haptic devices and a virtual reality head-set
display.
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A.1 da Vinci Simulator

A.1.1 The da Vinci surgical system kinematic model

The full dVRK is a decommissioned first generation da Vinci Surgical System
consisting of two/three PSMs, one ECM, and two MTMs. All the slave side
manipulators are mounted on a SUJs that allows the manual spatial positioning
of the arm bases. We include in the simulated environment all the patient side
manipulators composed of two PSMs and an ECM mounted on the SUJ. In the next
sections, a brief description of the arms kinematics is reported.

Setup Joint arm kinematics

The two PSMs and the ECM are mounted on an articulated robotic structure
composed by three or, in the newest versions, four arms SUJs1. The two PSMs are
located at the end of two 6-degree-of-freedom (DoFs) arms (that we indicate hereafter
as SUJ-PSMs) while the ECM is located at the end of a 4-DoFs arm (SUJ-ECM). All
the robotic arms in the SUJs are not actuated by motors but it is possible to control
breaks in each joint and read the angular position using potentiometers [71]. Denoting
with qsp = [qsp,1, . . . , qsp,6] the vector of the SUJ-PSMs arms generalized coordinates,
the homogeneous transformation matrix2 T B

AP(qsp) ∈ SE(3), representing the pose
of the SUJ-PSMs end effector frame AP : {Oap; xap, yap, zap} with respect to the
base frame B : {Ob; xb, yb, zb}, can be easily computed applying the standard
DH convention to the kinematic chain {J1, . . . , J6} of Fig. A.2 (see Table A.1
where a2 = 0.58m, a3 = 0.56m and d4 = 0.425m). Moreover, denoting with
qse = [qse,1, . . . , qse,4] the vector of the SUJ-ECM arm generalized coordinates, the
pose of the SUJ-ECM end effector frame AE : {Oae; xae, yae, zae} with respect to the
base frame B : {Ob; xb, yb, zb}, defined by the homogeneous transformation matrix
T B

AE(qse) ∈ SE(3), can be computed considering only the first four rows in Table A.1.
Notice that, two constant homogeneous transformation matrix T AP

BP ∈ SE(3) and
T AE

BE ∈ SE(3) must be considered to complete che kinematics description and link
AP and AE (respectively the last SUJ-PSM and SUJ-ECM frames) to the base
frames BP and BE of the PSMs and of the ECM described in Sec. A.1.1 and A.1.1,
respectively (see Fig. A.2).

Table A.1. DH parameters of the SUJ

link joint ai αi di θi

1 P 0 0 qse,1 −
2 R a2 0 − qse,2

3 R a3 0 − qse,3

4 R 0 −π/2 − qse,4

5 R 0 π/2 −d4 qse,5

6 R 0 0 − qse,6

1In this work we consider the three arm version of the SUJs.
2Hereafter, we use the matrix notation T a

b , where the superscript a denotes the frame in which
vector components are expressed, the subscript b the current frame. E.g., T B

AP denotes the pose of
the SUJ-PSM attach point expressed in the base frame.
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Figure A.2. SUJs kinematic description.

PSM arm kinematics

Each PSM is a 7-DoF actuated arm, which moves a surgical instrument about a
Remote Center of Motion (RCM), i.e., a fixed fulcrum point that is invariant to
the configuration of the PSM joints [108, 109]. The first 6 DoFs correspond to
Revolute (R) or Prismatic (P) joints, combined in a RRPRRR sequence. The last
DoF corresponds to the opening and closing motion of the gripper. The homogeneous
transformation matrix T BP

G (qp) ∈ SE(3) (where qp = [qp,1, . . . , qp,6] indicates the
vector of the PSM generalized coordinates), representing the pose of the gripper
frame G : {Og; xg, yg, zg} with respect to the base frame BP : {Obp; xbp, ybp, zbp},
can be easily computed by choosing the origin of frame BP in the RCM point
and applying the standard DH convention to the kinematic chain {J1, . . . , J6} of
Fig. A.3b (see Table A.2, where a5 = 0.0091 m).

Table A.2. DH parameters of the PSM

link joint ai αi di θi

1 R 0 −π/2 − qp,1

2 R 0 −π/2 − qp,2

3 P 0 0 qp,3 −
4 R 0 π/2 − qp,4

5 R a5 −π/2 − qp,5

6 R 0 −π/2 − qp,6

ECM arm kinematics

The ECM is a 4-DoF actuated arm, which moves the endoscopic camera about
the RCM through revolute and prismatic joints, combined in a RRPR sequence.
The homogeneous transformation matrix T BC

C (qe) ∈ SE(3) (with the vector qe =
[qe,1, . . . , qe,4]), representing the pose of the camera frame C = {Oc; xc, yc, zc} with
respect to the base frame BC = {Obc; xbc, ybc, zbc}, can be easily computed by
choosing the origin of frame CB in the RCM point and applying the standard DH
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(a) (b)

Figure A.3. (a) ECM kinematic description. (b) PSM kinematic description.

convention to the kinematic chain {J1, . . . , J4} of Fig. A.3a (parameters are given in
Table A.3, where d4 = 0.007m).

Table A.3. DH parameters of the ECM

link joint ai αi di θi

1 R 0 −π/2 − qe,1

2 R 0 −π/2 − qe,2

3 P 0 0 qe,3 −
4 R 0 0 d4 qe,4

The robotic arms have been modeled starting from the CAD models included
in [110] except for the SUJs. We realized the kinematic chain of each robotic arm
by linking mesh and joints in a joint-respondable-visual sequence. The dynamics
parameters of the PSM links have been identified through the method described in
[109]. At the end of the endoscope link, two cameras have been included to simulate
the binocular vision system of the real dVRK endoscope. We set a resolution for
the cameras at 320 × 288 pixels, i.e., half the resolution of the real endoscope, that
results a trade-off option to have a good resolution and a good simulated sampling
time.

A.1.2 Control architecture

The presented V-REP simulator has been developed to be fully integrated into the
dVRK control infrastructure. Therefore, we used the high-level ROS framework
to link the simulator to the low-level control [92]. This allows the user to use the
simulator in different modalities: (i) telemanipulated using the dVRK MTMs; (ii) in
combination with the real robotic PSMs and ECM, to implement augmented reality
algorithms; (iii) as standalone, by controlling the simulated robot using the ROS
framework (e.g., through C++, MATLAB and Python ROS nodes), or directly in
V-REP using the embedded scripts.

With reference to Fig. A.4, the control architectures of the dVRK, described in
detail in [111], is composed of: (i) a hardware interface to communicate through
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Figure A.4. Control architecture.

the fire-wire bus with the embedded actuator controllers and implementing the
safety checks; (ii) a low level layer implementing all the algorithms for the inverse
kinematics, impedance master control etc.; (iii) a mid-level layer implementing
the ROS communication and the high level controllers. The communication be-
tween the da Vinci simulator, supposed to be running in a dedicate computer,
and the dVRK console is implemented through ROS topics. In detail, we use the
v_repExtRosInterface to publish the state of the robot joints (PSMs, SUJ, ECM)
and the gripper state for the PSMs. Moreover, the simulator subscribes to two topics
sensor_msgs::joint_state to control the robots joints motion from ROS.

Considering the computer configuration described in the previous section, all
the joints and objects topics, included the cameras topics, are streamed at 60 Hz
3. If the vision sensors in the scene are disabled, the joints and objects topics are
streamed at 220Hz.

This architecture allows to easily interface the simulator with the mid level
control of the dVRK (for commanding the simulated robot through MTMs) or to
other ROS-integrated input device (e.g., haptic devices).

In the next Section, we present a number of V-REP example scenes, describing
a comprehensive set of possible applications that can be realized with our simulator,
in order to highlight its functionalities.

A.1.3 Example scenes

The possibility to include different robots, dynamic objects, devices and sensors
allows to easily extend the simulator capabilities through the creation of advanced
V-REP scenes. In this work, we propose different scenes to show the potentialities
addressing the implementation aspects, and representing common applications for
robotic surgery research.

3The simulation requires to be run in threaded-rendering mode, in order to decouple the rendering
and the control scripts and speed up the execution.
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Figure A.5. Simulated environment.

Hence, we show the development of advanced control strategies, e.g., visual servoing
or vision-based object tracking, augmented reality and simulation of rigid objects
dynamics and interaction (see Fig. A.5).

In detail, we propose:

• Two training scenes, developed to show the the capability of the simulated
robot interacting with rigid dynamic objects;

• A suturing scene, developed to show the possibility to easily integrate aug-
mented reality information inside the simulated environment, and show an
example of combination of autonomous and tele-operated task execution (as-
sisted suturing);

• A needle tracking and a visual servoing scene, showing the potentiality of
the environment to implement advanced vision-based algorithms, through the
information acquired from the simulated vision system.

In order to effectively use the dVRK in surgical scenarios, surgeons spend a huge
amount of time training in simulation. Intuitive Surgical provides surgical platforms
and simulators embedding training modules for robotic skills, procedural tasks and
complete robotic procedures. In this context, simulation is very important since it
can provide scores information about the surgeon skills. However, these simulators
are costly and not completely exploitable by roboticists, whose aim is to use the
robot for research purposes. Novel engineers may equally need to train themselves
to develop and test novel control strategies. To this end, we provide two V-REP
scenes in which non-surgical training tasks are proposed, namely: pick & place,
and peg on board. However, the high versatility of V-REP allows easy development
and implementation of other training tasks and/or assistive strategies. Figure A.6
contains snapshots of the proposed scenes taken from the ECM left camera.

The scenes have been realized by developing and importing CAD models of
the training setup into the scene. Embedded V-REP functions, allowed to create
respondable and simplified dynamic entities used to simulate contacts and interaction
among objects. Moreover, the control architecture presented in Sect. A.1.2 allows
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Figure A.6. (a) Training and suturing scene setup. Upper row: two examples of training
tasks, (a) peg on board; (b) pick and Place. Lower row: augmented reality suturing
scene, (c) wound registration; (d) stitches planning and execution.(b) Visual servoing
scene setup. Right-top: image plane features; right-bottom: camera velocities.

to easily interface the simulated robot with the MTMs or other input devices (e.g.
haptic devices). Finally, a proximity sensor integrated between the needle driver
pads has been used to simulate objects grasping.

A.2 Extension of the Simulator: a portable da Vinci

(a)

V-REPportable da Vinci Application 

OpenHaptics

LibOVR

Haptic Thread

Rift Thread

Child scripts
PSM scripts

ECM script

Environment

V-REP Remote APIs

(b)

Figure A.7. (a) The presented portable da Vinci simulated system. (b) Module and device
communication scheme of the portable da Vinci application.

To fully reproduce the experience of controlling the da Vinci system, it is
necessary to simulate also the Master console. Specifically, the Master console of
the da Vinci has two main purposes: (i) sends commands to the PSMs through the
pair of MTMs; (ii) shows the images acquired by the cameras mounted on the ECM,
through a two-channel 3D vision system. To implement these two functionalities in
our simulator, we consider a pair of haptic interfaces to simulate the pair of MTMs,
while the 3D vision system is replicated through the use of a virtual reality headset.
We highlight that, when using the console to control the patient-side manipulators,
the 3D vision system displaying the images acquired by the endoscopic cameras is
fixed, and the surgeon has no possibility to directly control the camera perspective
view. By using a virtual reality headset in our setup, instead, we allow the user to
freely move the head-mounted display (HMD) and directly control the ECM through
the movements of his head. Along with providing a fully immersive experience,
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this actually extends the potentials of the real robotic system, as the camera view
changes in a more intuitive way.

In detail, we considered a pair of Geomagic Touch4 haptic interfaces and the
Oculus Rift5 virtual reality headset, as devices required to faithfully reproduce the da
Vinci Master console in a low-cost and easy-to-access fashion, thus realizing a portable
da Vinci simulated system. Such functionalities are easily implemented through the
native SDK of the devices, made available by the manufacturer companies to access
the internal states of the devices. We use the OpenHaptics library to read data and
command the Geomagic Touch devices, while the Oculus Rift functionalities are
implemented through the Oculus PC SDK and the LibOVR library. In particular,
the communication mechanism of the simulator, required to exchange data between
the simulated robot and user applications, was based on the Robot Operating System
(ROS) framework that runs under Linux systems.

However, employing the above-mentioned libraries to program the considered
devices makes the overall system not easily interfaced for Linux-based frameworks,
as a full support and compatibility is granted only for Windows-based systems. For
this reason, we modified the overall simulation system, to remove the ROS-dependent
parts, and exploited the remote V-REP APIs6, to interface the virtual environment
with an external application. In Figure A.7b, the overall scheme of the proposed
simulator is presented: our application communicates with the Geomagic and Oculus
devices through their corresponding libraries OpenHaptics and LibOVR, to read the
state of the device and acquire specific information (e.g., tool position and velocity),
or send specific commands (e.g., rendering a given force feedback on the haptic tools).
The application communicates with each device on a separated thread, to keep the
corresponding data acquisition rate unaffected. At the beginning of each simulation,
the application enables a remote communication with the external V-REP simulator,
through the use of remote V-REP API simxStart and automatically starts the
simulator environment through the remote API simxStartSimulation. Then, while
the simulation is running, for each iteration of the simulation loop, the application
asks for the current joint configuration of the tele-operated PSMs end ECM, along
with the current images acquired by the vision sensor objects, mounted at the end-
effector of the ECM to simulate the endoscopic camera. This information is retrieved
through the simxGetJointPosition and simxGetVisionSensorCharImage remote
V-REP APIs, respectively.

In the reminder of this section, we further detail the connection of the employed
devices with our application and the V-REP environment.

A.2.1 Connecting the Oculus Rift device

When the ROS-dependent parts of the simulator are removed, the connection between
the Oculus Rift SDK and V-REP can be initialized. The Oculus Rift hardware
kit considers an infrared-based positional tracking system called Constellation (see
Fig. A.8a). The Constellation device provides accurate high-rate measurements of
the frame Fr attached to the HMD, expressed with respect to reference frame Ft

4https://www.3dsystems.com/haptics-devices/touch
5https://www.oculus.com/
6http://www.coppeliarobotics.com/helpFiles/en/remoteApiOverview.htm
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(a) (b)

Figure A.8. (a) The Constellation device; (b) The reference frames Fr and Ft defined on
the Oculus display and the Constellation tracking system, respectively.

attached to the Constellation device (see Fig. A.8b). To properly tele-operate the
end-effector (i.e., the endoscopic cameras) of the ECM through the movements of the
Oculus HMD, the corresponding velocities have to be kept consistent. In detail, we

first query the LibOVR library to extract the 6D velocity vector tvr =
[

tvT
r

tωT
r

]T
,

denoting the linear and angular velocity of the Oculus display expressed in Ft, along
with the rotation matrix tRr, expressing the orientation of the Oculus display with
respect to Ft. Once the data are available, we get the 6D Oculus display velocity
vector expressed in its own frame Fr:

rvr =

[

tRT
r 03×3

03×3
tRT

r

]

tvr (A.1)

To consistently generate the joint velocity vector q̇C = [q̇1 q̇2 q̇3 q̇4]T of the ECM,
we need to consider the corresponding 6 × 4 Jacobian matrix JC = [Jv, Jω]T in the
end-effector frame C, that can be easily reconstructed from the direct kinematics
summarized in the DH Table shown in Table A.3. Finally, we consider a fixed
rotation matrix CRr, to correctly match the motion directions of the Oculus Rift
display with the endoscopic cameras of the ECM. Therefore, the 6D vector that
maps the user’s head motion to the end-effector of the ECM is given by

CvC =

[

CvC
CωC

]

=

[

CRr 03×3

03×3
CRr

]

rvr (A.2)

However, since the ECM is a 4-DoF manipulator, we cannot assign an arbitrary 6D
Cartesian velocity to the cameras, but only 4 out of the 6 space dimensions. For
this reason, we implemented a user-enabled switching mechanism to alternatively
control: (i) the orientation of the cameras, through the three revolute joints of the
arm; (ii) the position along the longitudinal axis of the arm, corresponding to the
z-axis of the camera frame C, through the prismatic joint of the arm (as shown in
Fig. A.3a). This assignment is equivalent to command the cameras in an open-loop
control scheme, as no feedback on the current velocity of the end-effector is taken
into account. This is a reasonable assumption, motivated by the presence of a human
in the loop, able to correct possible actuation inaccuracies guaranteeing accurate
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head motion tracking by cameras. Therefore, we designed a decoupled control of the
position and the orientation of the ECM cameras as follows:







q̇1,2,4 = J#
ω

CωC , if orientation control enabled

q̇3 = CvC,z , if position control enabled
(A.3)

being q̇1,2,4 = [q̇1, q̇2, q̇4]T the vector of the revolute joint velocities and q̇3 the
prismatic joint velocity, while J#

ω denotes the pseudo-inverse matrix of Jω. We
assumed that the user chooses which control has to be enabled, through a keyboard
input. When choosing a given control, the joint velocities involved in the unused
scheme are set to 0. The overall content implementing the interfacing of the
application with the Oculus Rift is realized in our application on the separate thread,
referred as riftCallback. Within the scope of this function, a proper OpenGL
context is created to correctly render the images acquired from the pair of vision
sensor objects in the V-REP scene. Then, the values of joint velocities are computed
as described above, and used to directly command the joint position of the ECM in
the V-REP environment, through the remote API simxSetJointPosition.

A.2.2 Connecting the Geomagic Touch devices

The communication between the pair of Geomagic Touch haptic devices and the
left and right PSM of the da Vinci system is achieved in an analogous way. Each
Geomagic Touch device is a 6DoF interface equipped with joint encoders that
measure the full pose of the Haptic Interface Point (HIP) of the stylus held by
the user (see Figure A.9. In addition, the devices provide a 3-DoF force feedback,
which allows the user to touch and manipulate virtual objects, or reproduce physical
contacts of tele-operated objects.

Similarly to the procedure described for the Oculus Rift and the ECM, the
velocity vectors of the PSM end-effector (i.e, the grippers) and the HIP of the haptic
device have to be kept consistent, to properly tele-operate the PSMs through the
movements of the stylus. In detail, with reference to Figure A.9 and for each haptic
device, we query the OpenHaptics library to extract the 6D velocity vector BGvH

and the rotation matrix BGRH, denoting the current linear and angular velocity and
the orientation of the reference frame FH, attached to the HIP of the device, in the
base frame FBG of the Geomagic Touch. Therefore, we compute the 6D velocity
vector of the HIP, expressed in its own frame FH:

HvH =

[

BGRT
H 03×3

03×3
BGRT

H

]

BGvH (A.4)

To determine the desired joint velocity q̇p of the considered PSM, we compute the
corresponding 6 × 6 Jacobian matrix JG in the gripper frame FG , reconstructed
from the DH Tabls shown in Table A.2. Finally, to match the motion directions of
the HIP, commanded by the user, with the motion of the gripper, we consider a
rotation matrix GRH that takes into account the orientation of the gripper frame
FG shown in Figure A.3b. Specifically, we compute the reference gripper velocity
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Figure A.9

Figure A.10. Reference frames of interest, where the Haptic Interface Point (HIP) is
highlighted.

GvG , expressed in FG as

GvG =

[

GvG
GωG

]

=

[

GRH 03×3

03×3
GRH

]

HvH (A.5)

In this case, the 7DoFs of the PSM (with the last one demanded to command the
opening and closure of the gripper) allows to command a ful 6D desired Cartesian
velocity. Therefore, the tele-operation of the PSM through the open-loop controls
sent by the haptic device is achieved as

q̇p = J−1
G

GvG (A.6)

As for the control of the ECM through the Oculus Rift, we remark that the choice
of the open-loop control adopted is motivated by the statement that the human user
is present in the control scheme, and can directly compensate possible regulation
errors of the grippers.

A typical issue in tele-operation tasks is the geometrical heterogeneity between
master and slave workspaces (i.e., the haptic device and the PSM of the da Vinci
system, respectively). Specifically, the Gemoagic Touch has a limited workspace,
due to the short length of the links and the finite positional ranges of the joints.
However, the size and the kinematic chain of the PSM is different, thus also the
corresponding workspace in which the end-effector (i.e., the gripper of the PSM)
moves is distinct. A common workaround that handles this discrepancy considers
the use of a clutch-based mechanism, to enable/disable the tele-operation of the
slave with the master device upon explicit command of the user. This way, when
the HIP of the Geomagic Touch has reached the workspace limits of the device, the
tele-operation can be disabled and the user can purposely relocate the stylus in
a favourable configuration to further move the HIP in the desired direction. This
behaviour is implemented through one of the buttons mounted on the stylus of the
Geomagic Touch.

The related components of the proposed application, implementing the commu-
nication with the Geomagic Touch devices and the computation of the desired joint
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velocity values, are realized in a separate thread, within the function hapticCallback.
Within this function, both devices are queried to retrieve the current state of the
HIP through the related OpenHaptics APIs. From the retrieved data, the desired
joint velocity vector q̇p is generated and used to directly command the simulated
PSM of the da Vinci system in the V-REP environment, through the remote API
simxSetJointPosition.

A.2.3 Simulation results

To show the effectiveness of the simulator and the tele-operation scheme described in
the previous sections, we considered the pick-and-place simulated training scenario,
already introduced in Section A.1.3.

The scene has been realized by developing and importing CAD models of a
training setup, composed of a set of small rigid objects and three cups, into the
scene (see Figure A.11a). These objects are positioned on a table placed in front of
the simulated da Vinci system.

The goal of the training is to move the pair of PSMs through the Geomagic Touch
devices, in order to grasp and place the little coloured objects in the corresponding
cup with the same colour. The entire scene is observed by the user through the
Oculus Rift HMD, showing the images acquired by the ECM positioned on top
of the table (see Figure A.11b). Contacts and interactions among objects have
been simulated by creating respondable and simplified dynamic entities through the
embedded V-REP functions.

To help the user in the satisfaction of this task and increase his sensory experience,
we implemented additional features that exploit the functionalities of the simulator
and the devices connected to the system, as depicted in Figure A.11c. Specifically, we
exploited the distance calculation module of V-REP to compute, at each simulation
time step, the distance di,s (s = {l, r} based on which PSM is considered) of the i-th
grasping object from both the grippers. Among all the possible di,s, we evaluate the
minimum distance and, if it goes below a given threshold, render an attractive force
fa directed towards the object. When the object is sufficiently close for grasping, we
exploit the second button placed on the surface of the stylus of the Geomagic Touch
device, to enable the grasping and attach the object to the gripper of the considered
PSM. At this point, tele-operating the PSM allows to move the grasped object at
any location and place it over the corresponding cup. Finally, the user can release
the grasp and let the object fall in the cup, by pressing again the second button of
the stylus.

On the other hand, for demonstration purposes, we also implemented a repulsive
force frep on the planar surface of the table, to give the user the tactile experience
of a contact of the gripper with a highly rigid object. Future developments of the
simulator will consider the possibility to physically interact in a realistic way also
with the other objects of the scene.

This simulator has been also presented to the Maker Faire 2018 of Rome. During
the event, several people of different ages, mainly non-expert users, proposed to
test the simulator and experience the training scenario, as depicted in Figure A.12.
Despite some initial difficulties due to the lack of confidence with the system and
the equipped devices, most of them were able to successfully tele-operate the PSM
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(a) (b) (c)

Figure A.11. (a) Pick-and-place training scene. (b) Representation of the functionalities
implemented in the training scenario.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure A.12. Workstation and several non-expert users testing the portable da Vinci
Simulator at Maker Faire 2018 of Rome.

and the ECM of the da Vinci system through the pair of Geomagic Touch devices
and the Oculus Rift display, declaring their satisfaction for the impressive immersive
experience.
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