11 research outputs found

    Vision-based estimation of altitude from aerial images

    Get PDF
    One of the wide engineering fields is aircraft technologies and one of the most common needs for Airplane or UAV is estimating the altitude, which is some time difficult to estimate due to weather fluctuations and instability of the main parameters like pressure and speed. However, a combination of different sensors has been used to estimate altitude to guarantee an accurate reading and it is the method used these days. To overcome this problem is to use more capable technology such as machine vision based system to estimate the altitude, as advantages light weight, intelligence and accuracy, cheaper than commercial sensors as well as, computationally inexpensive. In this paper, we propose a vision-based system that can perform altitude estimation from aerial images. The satisfactory experimental results demonstrate the effectiveness of the proposed system

    Exploiting Attitude Sensing in Vision-Based Navigation for an Airship

    Get PDF
    An Attitude Heading Reference System (AHRS) is used to compensate for rotational motion, facilitating vision-based navigation above smooth terrain by generating virtual images to simulate pure translation movement. The AHRS combines inertial and earth field magnetic sensors to provide absolute orientation measurements, and our recently developed calibration routine determines the rotation between the frames of reference of the AHRS and the monocular camera. In this way, the rotation is compensated, and the remaining translational motion is recovered by directly finding a rigid transformation to register corresponding scene coordinates. With a horizontal ground plane, the pure translation model performs more accurately than image-only approaches, and this is evidenced by recovering the trajectory of our airship UAV and comparing with GPS data. Visual odometry is also fused with the GPS, and ground plane maps are generated from the estimated vehicle poses and used to evaluate the results. Finally, loop closure is detected by looking for a previous image of the same area, and an open source SLAM package based in 3D graph optimization is employed to correct the visual odometry drift. The accuracy of the height estimation is also evaluated against ground truth in a controlled environment

    Hybrid Marker-less Camera Pose Tracking with Integrated Sensor Fusion

    Get PDF
    This thesis presents a framework for a hybrid model-free marker-less inertial-visual camera pose tracking with an integrated sensor fusion mechanism. The proposed solution addresses the fundamental problem of pose recovery in computer vision and robotics and provides an improved solution for wide-area pose tracking that can be used on mobile platforms and in real-time applications. In order to arrive at a suitable pose tracking algorithm, an in-depth investigation was conducted into current methods and sensors used for pose tracking. Preliminary experiments were then carried out on hybrid GPS-Visual as well as wireless micro-location tracking in order to evaluate their suitability for camera tracking in wide-area or GPS-denied environments. As a result of this investigation a combination of an inertial measurement unit and a camera was chosen as the primary sensory inputs for a hybrid camera tracking system. After following a thorough modelling and mathematical formulation process, a novel and improved hybrid tracking framework was designed, developed and evaluated. The resulting system incorporates an inertial system, a vision-based system and a recursive particle filtering-based stochastic data fusion and state estimation algorithm. The core of the algorithm is a state-space model for motion kinematics which, combined with the principles of multi-view camera geometry and the properties of optical flow and focus of expansion, form the main components of the proposed framework. The proposed solution incorporates a monitoring system, which decides on the best method of tracking at any given time based on the reliability of the fresh vision data provided by the vision-based system, and automatically switches between visual and inertial tracking as and when necessary. The system also includes a novel and effective self-adjusting mechanism, which detects when the newly captured sensory data can be reliably used to correct the past pose estimates. The corrected state is then propagated through to the current time in order to prevent sudden pose estimation errors manifesting as a permanent drift in the tracking output. Following the design stage, the complete system was fully developed and then evaluated using both synthetic and real data. The outcome shows an improved performance compared to existing techniques, such as PTAM and SLAM. The low computational cost of the algorithm enables its application on mobile devices, while the integrated self-monitoring, self-adjusting mechanisms allow for its potential use in wide-area tracking applications

    Multi-Sensor Inertial Measurement System for Analysis of Sports Motion

    Get PDF
    A portable motion analysis system that can accurately measure body movement kinematics and kinetics has the potential to benefit athletes and coaches in performance improvement and injury prevention. In addition, such a system can allow researchers to collect data without limitations of time and location. In this dissertation, a portable multi-sensor human motion analysis algorithm is been developed based on inertial measurement technology. The algorithm includes a newly designed coordinate flow chart analysis method to systematically construct rotation matrices for multi-Inertial Measurement Unit (IMU) application. Using this system, overhead throwing is investigated to reconstruct arm trajectory, arm rotation velocities, as well as torque and force imposed on the elbow and shoulder. Based on this information, different motion features can be established, such as kinematic chain timing as demonstrated in this work. Human subject experiments are used to validate the functionality of the method and the accuracy of the kinematics reconstruction results. Single axis rotation rig experiments are used to shown that this multi-IMU system and algorithm provides an improved in accuracy on arm rotation calculation over the conventional video camera based motion capture system. Finally, a digital filter with switchable cut-off frequency is developed and demonstrated in its application to the IMU-based sports motion signals. The switchable filter method is not limited only to IMUs, but may be applied to any type of motion sensing technology. With the techniques developed in this work, it will be possible in the near future to use portable and accurate sports motion analysis systems in training, rehabilitation and scientific research on sports biomechanics

    Fusion de données capteurs étendue pour applications vidéo embarquées

    Get PDF
    This thesis deals with sensor fusion between camera and inertial sensors measurements in order to provide a robust motion estimation algorithm for embedded video applications. The targeted platforms are mainly smartphones and tablets. We present a real-time, 2D online camera motion estimation algorithm combining inertial and visual measurements. The proposed algorithm extends the preemptive RANSAC motion estimation procedure with inertial sensors data, introducing a dynamic lagrangian hybrid scoring of the motion models, to make the approach adaptive to various image and motion contents. All these improvements are made with little computational cost, keeping the complexity of the algorithm low enough for embedded platforms. The approach is compared with pure inertial and pure visual procedures. A novel approach to real-time hybrid monocular visual-inertial odometry for embedded platforms is introduced. The interaction between vision and inertial sensors is maximized by performing fusion at multiple levels of the algorithm. Through tests conducted on sequences with ground-truth data specifically acquired, we show that our method outperforms classical hybrid techniques in ego-motion estimation.Le travail réalisé au cours de cette thèse se concentre sur la fusion des données d'une caméra et de capteurs inertiels afin d'effectuer une estimation robuste de mouvement pour des applications vidéos embarquées. Les appareils visés sont principalement les téléphones intelligents et les tablettes. On propose une nouvelle technique d'estimation de mouvement 2D temps réel, qui combine les mesures visuelles et inertielles. L'approche introduite se base sur le RANSAC préemptif, en l'étendant via l'ajout de capteurs inertiels. L'évaluation des modèles de mouvement se fait selon un score hybride, un lagrangien dynamique permettant une adaptation à différentes conditions et types de mouvements. Ces améliorations sont effectuées à faible coût, afin de permettre une implémentation sur plateforme embarquée. L'approche est comparée aux méthodes visuelles et inertielles. Une nouvelle méthode d'odométrie visuelle-inertielle temps réelle est présentée. L'interaction entre les données visuelles et inertielles est maximisée en effectuant la fusion dans de multiples étapes de l'algorithme. A travers des tests conduits sur des séquences acquises avec la vérité terrain, nous montrons que notre approche produit des résultats supérieurs aux techniques classiques de l'état de l'art

    MEMS Technology for Biomedical Imaging Applications

    Get PDF
    Biomedical imaging is the key technique and process to create informative images of the human body or other organic structures for clinical purposes or medical science. Micro-electro-mechanical systems (MEMS) technology has demonstrated enormous potential in biomedical imaging applications due to its outstanding advantages of, for instance, miniaturization, high speed, higher resolution, and convenience of batch fabrication. There are many advancements and breakthroughs developing in the academic community, and there are a few challenges raised accordingly upon the designs, structures, fabrication, integration, and applications of MEMS for all kinds of biomedical imaging. This Special Issue aims to collate and showcase research papers, short commutations, perspectives, and insightful review articles from esteemed colleagues that demonstrate: (1) original works on the topic of MEMS components or devices based on various kinds of mechanisms for biomedical imaging; and (2) new developments and potentials of applying MEMS technology of any kind in biomedical imaging. The objective of this special session is to provide insightful information regarding the technological advancements for the researchers in the community
    corecore