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Aliasing in digital cameras
Aliasing arises in all acqui-
sition systems when the
sampling frequency of the
sensor is less than twice the
maximum frequency of the
signal to be acquired. We
usually consider the spatial
frequencies of the visual
world to be unlimited, and
rely on the optics of the
camera to impose a cut-off.
Thus, aliasing in any cam-
era can be avoided by find-
ing the appropriate match
between the optics’ modu-
lation transfer function
(MTF) and the sampling
frequency of the sensor. In
most digital cameras, however, the focal plane ir-
radiance is additionally sampled by a Color Filter
Array (CFA) placed in front of the sensor, com-
posed of a mosaic of color filters. Consequently,
each photo site on the sensor has only a single chro-
matic sensitivity. Using a CFA, a method first pro-
posed by Bayer,1 allows using one single sensor
(CCD or CMOS) to sample color scenes. Missing
colors are subsequently reconstructed, using a so-
called demosaicing algorithm, to provide a regular
three-color-per-pixel image.

In a CFA image acquisition system, a match
between the optics’ MTF and the sensor’s sam-
pling frequency is more difficult to establish be-
cause the sampling frequencies generally vary for
each color (i.e. filter type). In the Bayer CFA, for
example, there are twice as many green as red and
blue filters (Figure 1a), resulting in different sam-
pling frequencies for green and red/blue. Addi-
tionally, the horizontal and vertical sampling fre-
quency for the green pixels is different from the
diagonal frequency.

Thus, Greivenkamp2 and Weldy3 proposed an
optical system called a birefringent lens that has
varying spatial MTFs depending on wavelength.
With such a lens it is possible to design a camera
where the MTF of the optics matches the sampling
frequency of each filter in the CFA. Thus, a color
image could be reconstructed without artifacts. In
practice, however, this method has not yet been ap-
plied because the resulting images are too blurry.
They have a spatial resolution far lower than the
resolving power of modern CCD or CMOS sen-
sors. Most studies have therefore concentrated on
how to reconstruct aliased images resulting from
CFA camera systems where the optics is designed
to pass high spatial frequencies.

If the captured scene has high spatial frequen-
cies, the demosaiced image can contain visible ar-
tifacts. Depending on the scene content and the spe-
cific demosaicing algorithm used for reconstruction,
they are more or less visible. In general, aliased sig-

Figure 1. (Left) An example of a color filter array, the Bayer Color Filter Array
(Right) The Fourier representation of an image acquired with the Bayer Color Filter
Array.

Continues on page 8.
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Smart camera and active vision:
the active-detector formalism
Active vision techniques attempt
to simulate the human visual sys-
tem. In human vision, head mo-
tion, eye jerks and motions, and
adaptation to lighting variations,
are important to the perception
process. Active vision, therefore,
simulates this power of adapta-
tion. Despite major shortcom-
ings that limit the performance
of vision systems—sensitivity to
noise, low accuracy, lack of re-
activity—the aim of active vi-
sion is to develop strategies for
adaptively setting camera pa-
rameters (position, velocity, ...)
to allow better perception.
Pahlavan proposed that these pa-
rameters be split into four cat-
egories: optical parameters, for
mapping the 3D world onto the
2D image surface; sensory pa-
rameters, for mapping from the
2D image to the sampled elec-
trical signal; mechanical param-
eters, for the positioning and mo-
tion of the camera); and algorith-
mic integration to allow control
of these parameters.

In the active approach to per-
ception we assume that the out-
side world serves as its own
model. Thus, perception in-
volves exploring the environ-
ment allowing many traditional
vision problems to be solved
with low complexity algorithms.
Based on this concept, the meth-
odology used in this work in-
volves integrating imager con-
trol in the perception loop and,
more precisely, in early vision
processes. This integration allows us to design
a reactive-vision sensor. The goal is to adapt
sensor attitude to environment evolution and
the task currently being performed. Such smart
cameras allow basic processing and the selec-
tion of relevant features close to the imager.
This faculty reduces the significant problem of
sensor communication flow. Further, as its
name suggests, an active vision system actively
extracts the information it needs to perform a
task. By this definition, it is evident that one of
its main goals is the selection of windows of
interest (WOI) in the image and the concentra-

Figure 1. Global architecture of the sensor. The blocks drawn with dashed lines
represent optional modules that are not currently implemented.

Figure 2. Prototype of the sensor.

high-level system load; and/or re-
duce communication flow between
the sensor and the host system.

Active detection
Here, we include sensing parameters
in the perception loop by introduc-
ing the notion of active detectors that
control all levels of perception flow.
These consist of hardware ele-
ments—such as a use of a sub-re-
gion of the imager or hardware
implementation using a dedicated
architecture—and software ele-
ments such as control algorithms.

An active detector can be viewed
as a set of ‘visual macro functions’
where a visual task in decomposed
into several subtasks. This is simi-
lar to Ullman’s work1 on the notion
of a collection of ‘visual routines’
representing different kinds of ba-
sic image-processing sub functions.
These can be used in goal-directed
programs to perform elaborate tasks.
By contrast, the active detector con-
sists of both hardware and software.
Thus, in this approach, the sensor
has a key role in the perception pro-
cess, its task more important than
just performing image pre-process-
ing. As a result, the hardware archi-
tecture and implementation are vi-
tal.

Smart architecture based on
FPGA and CMOS imaging
Our work is based on the use of a
CMOS imager that allows full ran-
dom-access readout and a massive
FPGA architecture. There are sev-
eral options for the choice of an im-

ager and a processing unit. It is important to
consider an active detector as a visual control
loop: the measure is the image and the system
to control is the sensor. For a given visual prob-
lem, the active detector must optimize and serve
the sensor in order to achieve the task. For this
reason, the architecture of this active vision sen-
sor can be viewed as a set of parallel control
loops where the bottleneck is the imager. In-
deed, actual CMOS imagers have a sequential
behavior and their acquisition rates are slowed
in comparison with actual dedicated architec-
tures performances.

The global architecture shown in Figure 1

Continues on page 9.

tion of processing resources on it: the notion
of local study becomes predominant.

Another important feature is the control of
sensing parameters. As explained above, ac-
tive vision devices generally focus on optical
parameters (such as zoom, focus, and aperture),
mechanical parameters (such as pan and tilt)
and sometimes algorithmic integration (for ex-
ample, early biologically-inspired vision sys-
tems). Thus, the visual sensor requires its own
level of autonomy in order to: perform pre-pro-
cessing, like the adjustment of sensing param-
eters or automatic WOI tracking; reduce the
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Reflectance-sensitive retina
It is well established that intelligent
systems start with good sensors.
Attempts to overcome sensor defi-
ciencies at the algorithmic level
alone inevitably lead to inferior and
unreliable overall-system perfor-
mance: inadequate or missing in-
formation from the sensor cannot
be made up in the algorithm. For
example, in image sensors there is
nothing we can do to recover the
brightness of the image at a par-
ticular location once that pixel satu-
rates. Sensors that implement some
processing at the sensory level—
computational sensors—may pro-
vide us with a level of adaptation
that allows us to extract environ-
mental information that would not
be obtainable otherwise.

Most present and future vision
applications—including automo-
tive, biometric, security, and mo-
bile computing—involve uncon-
strained environments with unknown and
widely-varying illumination conditions. Even
when an image sensor is not saturated, the vi-
sion system has to account for object appear-
ance caused by variations in illumination. To
illustrate this, the left panel of Figure 1 shows
a set of face images captured under varying
illumination directions by a CCD camera. Even
to a human observer, these faces do not readily
appear to belong to the same person. We have
recently introduced a reflectance perception
model1 that can be implemented at the sensory
level and which largely removes the illumina-
tion variations as shown in the right panel of
Figure 1. These images appear to be virtually
identical. Using several standard face-recog-
nition algorithms, we have shown that recog-
nition rates are significantly improved when
operating on the images whose variations due
to the illumination are reduced by our method.2

In the most simplistic model, image intensity
I(x,y) is a product of object reflectance R(x,y)
and the illumination field L(x,y), that is
I(x,y)=R(x,y)L(x,y). An illumination pattern L is
modulated by the scene reflectance R and to-
gether they form the radiance map that is col-
lected into a camera image I. R describes the
scene. In essence, R is what we care about in
computer vision. When the illumination field L
is uniform, I is representative of R. But L is rarely
uniform. For example, the object may occlude
light sources and create shadows.

Obviously, estimating L(x,y) and R(x,y) from
I(x,y) is an ill-posed problem. In many related
illumination compensation methods, including
Retinex,1,4 a smooth version of the image I is
used as an estimate of the illumination field L.

Figure 1. The reflectance-sensitive retina removes illumination-induced
variations (simulation results). The input images on the left are taken under
varying illumination directions, resulting in substantial appearance changes.
Our reflectance-recovery method largely removes these, resulting in virtually
uniform appearance across different illumination conditions as shown on the
right.

Figure 2. The resistive grid that minimizes energy J(I),
therefore finding the smooth version of the input image I.
Perceptually important discontinuities are preserved
because the horizontal resistors are controlled with the
local Weber-Fechner contrast.

Figure 3. Horizontal intensity line profiles through the
middle of subject’s eyes in top middle picture of
Figure 1. The thin black line in the top graph is the
original image’I(x,y), the thick gray line is the
computed L(x,y), and the bottom graph is R(x,y) =
I(x,y)/L(x,y).

If this smooth version does not
properly account for discontinuities,
objectionable ‘halo’ artifacts are
created in R along the sharp edges
in the image.

In our method, L is estimated with
the resistive network shown in Fig-
ure 2. Here, we use a one-dimen-
sional example to keep the notation
simple. The image pixel values are
supplied as voltage sources and the
solution for L is read from the nodal
voltages. To preserve discontinuities,
the horizontal resistors are modulated
proportionally to the Weber-Fechner
contrast5 between the two points in-
terconnected by the horizontal resis-
tor. Therefore, the discontinuities
with large Weber-Fechner contrast
will have a large resistance connect-
ing the two points: smoothing less
and allowing voltage at those two
points to be kept further apart from
each other. Formally, in the steady-

state, the network minimizes the energy it dissi-
pates as expressed by equation J(I) shown in
Figure 2. The first term is the energy dissipated
on the vertical resistors Rv; the second term is
the energy dissipated on the horizontal resistors
Rh.

Once L(x,y) is computed, the I(x,y) is divided
to produce R(x,y). Figure 3 illustrates this pro-
cess. It can be observed that the reflectance
variations in shadows are amplified and ‘pulled
up’ to the level of reflectance variations in the
brightly-illuminated areas. All the details in the
shadow region, which are not ‘visible’ in the
original, are now clearly recognizable. We are
currently designing an image sensor that imple-
ments this form of adaptation on the sensor chip
before the signal is degraded by the readout
and quantization process.

Vladimir Brajovic
The Robotics Institute
Carnegie Mellon University, USA
E-mail: brajovic@cs.cmu.edu
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Color processing for digital cameras
Digital capture is becoming mainstream
in photography, and a number of new
color processing capabilities are being
introduced. However, producing a pleas-
ing image file of a natural scene is still
a complex job. It is useful for the ad-
vanced photographer or photographic
engineer to understand the overall digi-
tal camera color processing architecture
in order to place new developments in
context, evaluate and select processing
components, and to make workflow
choice decisions.

The steps in digital camera color pro-
cessing are provided below.1 Note that
in some cases the order of steps may be
changed, but the following order is rea-
sonable. Also, it is assumed that propri-
etary algorithms are used to determine
the adopted white2 and the color-render-
ing transform.3

• Analog gains (to control sensitivity
and white balance, if used)

• Analog dark-current subtraction (if
used)

• A/D conversion
• Encoding nonlinearity (to take

advantage of noise characteristics to
reduce encoding bit-depth require-
ments for raw data storage, if used)

This is the first raw-image data-storage
opportunity
• Linearize (undo any sensor and

encoding nonlinearities; optionally
clip to desired sensor range)

• Digital dark-current subtraction (if
no analog dark-current subtraction)

• Optical flare subtraction (if per-
formed)

This is the last raw image data storage oppor-
tunity (before significant lossy processing)
• Digital gains (to control sensitivity and

white balance, if used)
• White clipping (clip all channels to same

white level; needed to prevent cross-
contamination of channels in matrixing)

• Demosaic (if needed)
• Matrix (to convert camera color channels

to scene color channels)
This is the scene-referred image data storage
opportunity (standard scene referred color
encodings include scRGB4 and RIMM/ERIMM
RGB)5

• Apply color rendering transform (to take
scene colors and map them to pleasing
picture colors)

• Apply transform to standard output-
referred encoding.

This is the output-referred image-data storage
opportunity (standard output-referred color

are that many of the decisions affect-
ing the appearance of the final picture
have not yet been made. Control of the
appearance is relinquished to the down-
stream processing. If a raw file is ex-
changed, the white-balance and color-
rendering choices made after exchange
can produce a variety of results, some
of which may be quite different from
the photographer’s intent. Scene-re-
ferred image data has undergone white
balancing (so the overall color cast of
the image is communicated), but the
color rendering step offers many oppor-
tunities for controlling the final image
appearance. Output-referred exchange
enables the photographer to communi-
cate the desired final appearance in the
image file, thereby ensuring more con-
sistent output.

Current open-image exchange sup-
ports output-referred color encodings
like sRGB. Generally it is recom-
mended that output-referred images be
exchanged for interoperability, al-
though a raw or scene-referred image
may be attached to allow other process-
ing choices to be made in the future, or
by other parties after exchange.

Proprietary component choices
These include the methods for: deter-
mining the adopted white, flare subtrac-
tion, demosaicing (if needed), determin-
ing the matrix from camera color to
scene color,10 and  determining the
color-rendering transform. A camera’s
color reproduction quality will depend

on each of these components. Generally, it is
good to consider them independently, though
one component may partially compensate for
deficiencies in another. For example, if flare
subtraction is omitted, a saturation boost in the
camera-color-to-scene-color matrix or the
color-rendering step may help, but the quality
obtained will generally not be as good. Also, if
the job of one step is deferred to another, im-
age-data exchange in open systems is degraded:
there may be no standard way to communicate
that some operation was deferred.

Optional proprietary step:
scene relighting
Some scenes have variable lighting, or very
high dynamic ranges due to light sources or
cavities in the scene. Proprietary scene re-light-
ing algorithms attempt to digitally even out the
scene illumination.11 This can make scenes look
more like they do to a human observer, because

Figure 1. Top left: raw image data with analog dark-current
subtraction and gamma = 2.2 encoding nonlinearity, but no analog
gains. Top right: “camera RGB” image data, after flare subtraction,
white balancing and demosaicing (displayed using gamma = 2.2).
Bottom left: scene-referred image data, after matrixing to scRGB
color space (displayed using gamma = 2.2). Bottom right: sRGB
image data, after color rendering and encoding transforms.

Continues on page 8.

encodings include sRGB,6 sYCC,7 ROMM
RGB)8

Workflow choices
The primary workflow choice is the image
state for storage or exchange. The standard
options are ‘raw’, ‘scene-referred’ and ‘out-
put-referred’.9 The advantage of storing the
image earlier in the processing chain is that
decisions about subsequent processing steps
can be changed without loss, and more ad-
vanced algorithms can be used in the future.
The most lossy steps are white-clipping and
color rendering. However, the white-clipping
step is not needed if the camera to scene ma-
trix does not need to be applied (i.e. the cam-
era color channels can be encoded as scene
color channels without matrixing), and care-
fully-designed color rendering transforms can
minimize color rendering loss.

The disadvantages of exchanging image data
using the raw or scene-referred image states
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Real-time image processing
in a small, systolic, FPGA architecture
The need for high-performance com-
puter architectures and systems is
becoming critical in order to solve
real image-processing applications.
The implementation of such systems
has become feasible with micropro-
cessor technology development:
however, conventional processors
cannot always provide the computa-
tional power to fulfill real-time re-
quirements due to their sequential
nature, the large amount of data, and
the heterogeneity of computations
involved. Moreover, new trends in
embedded system design restrict fur-
ther the use of complex processors:
large processing power, reduced
physical size, and low power con-
sumption are hard constraints to
meet.1 On the other hand, the inher-
ent data- and instruction-level par-
allelism of most image-processing
algorithms can be exploited to speed
things up. This can be done through
the development of special-purpose
architectures on a chip based on par-
allel computation.2

Within this context, our research
addresses the design and develop-
ment of an FPGA hardware architec-
ture for real-time window-based im-
age processing. The wide interest in
window-based or data-intensive pro-
cessing is due to the fact that more
complex algorithms can use low-
level results as primitives to pursue
higher-level goals. The addressed
window-based image algorithms in-
clude generic image convolution, 2D
filtering and feature extrac-
tion, gray-level image mor-
phology, and template
matching.

Our architecture consists
of a configurable, 2D, sys-
tolic array of processing el-
ements that provide through-
puts of over tens of giga op-
erations per second (GOPs).
It employs a novel address-
ing scheme that significantly
reduces the memory-access
overhead and makes explicit
the data parallelism at a low
temporal storage cost.3 A
specialized processing ele-
ment, called a configurable
window processor (CWP),

was designed to cover a broad range
of window-based image algorithms.
The functionality of the CWPs can be
modified through configuration reg-
isters according to a given application.

Figure 1 shows a block diagram
of the 2D systolic organization of the
CWPs.4 The systolic array exploits
the 2D parallelism through the con-
current computation of window op-
erations through rows and columns
in the input image. For each column
of the array there is a local data col-
lector that collects the results of
CWPs located in that column. The
global data collector module collects
the results produced in the array and
sends them to the output memory.

As a whole, the architecture op-
eration starts when a pixel from the
input image is broadcast to all the
CWPs in the array. Each concur-
rently keeps track of a particular
window-based operation. At each
clock cycle, a CWP receives a dif-
ferent window co-efficient W—
stored in an internal register—and an
input image pixel P that is common
to all the CWPs. These values are
used to carry out a computation,
specified by a scalar function, and
to produce a partial result of the win-
dow operation. The partial results are
incrementally sent to the local reduc-
tion function implemented in the
CWP to produce a single result when
all the pixels of the window are pro-
cessed. The CWPs in a column start
working progressively: each a clock

cycle delayed from the pre-
vious one as shown in Fig-
ure 1. The shadowed squares
represent active CWPs in a
given clock cycle.

A fully-parameterizable
description of the modules of
the proposed architecture was
implemented using VHDL.
The digital synthesis was tar-
geted to a XCV2000E-6
VirtexE FPGA device. For an
implemented 7×7 systolic-ar-
ray prototype, the architecture
provides a throughput of
3.16GOPs at a 60MHz clock
frequency with a power con-

Figure 1. Block diagram of the 2D systolic array of configurable window
processors (CWPs) for window-based image processing. D is a delay line
or shift register and LDC is a local data collector.

Figure 2. Performance of the proposed architecture for a
512×512 gray level image with different window sizes.

Figure 3. Input image (left) and the output images for LoG filtering (middle) and gray-level
erosion (right). Continues on page 9.
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Cameras with inertial sensors
Inertial sensors attached to a camera can pro-
vide valuable data about camera pose and move-
ment. In biological vision systems, inertial cues
provided by the vestibular system play an im-
portant role, and are fused with vision at an early
processing stage. Micromachining enables the
development of low-cost single-chip inertial sen-
sors that can be easily incorporated alongside the
camera’s imaging sensor, thus providing an ar-
tificial vestibular system. As in human vision,
low-level image processing should take into ac-
count the ego motion of the observer. In this ar-
ticle we present some of the benefits of combin-
ing these two sensing modalities.

Figure 1 shows a stereo-camera pair with an
inertial measurement unit (IMU), as-
sembled with three capacitive accelerom-
eters and three vibrating structure gyros.
The 3D-structured world is observed by
the visual sensor, and its pose and motion
are directly measured by the inertial sen-
sors. These motion parameters can also
be inferred from the image flow and
known scene features. Combining the two
sensing modalities simplifies the 3D re-
construction of the observed world. The
inertial sensors also provide important cues about
the observed scene structure, such as vertical and
horizontal references. In the system, inertial sen-
sors measure resistance to a change in momen-
tum, gyroscopes sense angular motion, and ac-
celerometers change in linear motion. Inertial
navigation systems obtain velocity and position
by integration, and do not depend on any exter-
nal references, except gravity.

The development of Micro-Electro-Me-
chanical Systems (MEMS) technology has en-
abled many new applications for inertial sen-
sors beyond navigation, including aerospace
and naval applications. Capacitive linear ac-
celeration sensors rely on proof mass displace-
ment and capacitive mismatch sensing. MEMS
gyroscopes use a vibrating structure to mea-
sure the Coriolis effect induced by rotation, and
can be surface micromachined providing lower-
cost sensors with full signal-conditioning elec-
tronics. Although their performance is not suit-
able for full inertial navigation, under some
working conditions or known system dynam-
ics they can be quite useful.

In humans, the sense of motion is derived
both from the vestibular system and retinal vi-
sual flow, which are integrated at very basic
neural levels. The inertial information enhances
the performance of the vision system in tasks
such as gaze stabilisation, and visual cues aid
spatial orientation and body equilibrium. There
is also evidence that low-level human visual
processing takes inertial cues into account, and
that vertical and horizontal directions are im-
portant in scene interpretation. Currently-

available MEMs inertial sensors have perfor-
mances similar to the human vestibular system,
suggesting their suitability for vision tasks.1

The inertial-sensed gravity vector provides
a unique reference for image-sensed spatial
directions. If the rotation between the inertial
and camera frames of reference is known, the
orthogonality between the vertical and the di-
rection of a level plane image vanishing point
can be used to estimate camera focal distance.1

When the rotation between the IMU and cam-
era is unknown from construction, calibration
can be performed by having both sensors mea-
suring the vertical direction.2 Knowing the ver-
tical-reference and stereo-camera parameters,
the ground plane is fully determined. The
collineation between image ground-plane
points can be used to speed up ground-plane
segmentation and 3D reconstruction (see Fig-
ure 2).1 Using the inertial reference, vertical
features starting from the ground plane can also

be segmented and matched across the stereo
pair, so that their 3D position is determined.1

The inertial vertical reference can also be
used after applying standard stereo-vision tech-
niques. Correlation-based depth maps obtained
from stereo can be aligned and registered us-
ing the vertical-reference and dynamic-motion
cues. In order to detect the ground plane, a his-
togram in height is performed on the vertically-
aligned map, selecting the lowest local peak
(see Figure 3). Taking the ground plane as a
reference, the fusion of multiple maps reduces
to a 2D translation and rotation problem. The
dynamic inertial cues can be used as a first ap-
proximation for this transformation, providing

a fast depth-map registration method.3 In
addition, inertial data can be integrated
into optical flow techniques. It does this
by compensating camera ego motion, im-
proving interest-point selection, match-
ing the interest points, and performing
subsequent image-motion detection and
tracking for depth-flow computation. The
image focus of expansion (FOE) and cen-
tre of rotation (COR) are determined by
camera motion and can both be easily

found using inertial data alone, provided that
the system has been calibrated. This informa-
tion can be useful during vision-based naviga-
tion tasks.

Studies show that inertial cues play an im-
portant role in human vision, and that the no-
tion of the vertical is important at the first stages
of image processing. Computer-vision systems
for robotic applications can benefit from low-
cost MEMS inertial sensors, using both static
and dynamic cues. Further studies in the field,
as well as bio-inspired robotic applications, will
enable a better understanding of the underly-
ing principles. Possible applications go beyond
robotics, and include of artificial vision and
vestibular bio implants.

Jorge Lobo and Jorge Dias
Institute of Systems and Robotics
Electrical and Computer Engineering
Department
University of Coimbra, Portugal
E-mail: {jlobo, jorge}@isr.uc.pt
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Figure 1. Stereo cameras with an inertial
measurement unit used in experimental work.

Figure 2. Ground-plane 3D-reconstructed patch.

Figure 3. Aligned depth map showing histogram
for ground-plane detection.
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Color artifact reduction in digital, still, color cameras
The tessellated structure of the color
filter array overlaid on CMOS/CCD
sensors in commercial digital color
cameras requires the use of a consid-
erable amount of processing to recon-
struct a full-color image. Starting with
a tessellated color array pattern—the
Bayer Color Array is popularly used,
and some other common filter-array
tessellations are shown in Figure 1—
we need to reconstruct a three-chan-
nel image. Clearly, missing data (col-
ors not measured at each pixel) needs
to be estimated. This is done via a pro-
cess called demosaicing that intro-
duces a host of color artifacts.
Broadly, these can be split into two
groups: so-called zipper and confetti
artifacts.1 The former occur at loca-
tions in the image where intensity
changes are abrupt, and the latter
when highly intense pixels are sur-
rounded by dark pixels (usually a re-
sult of erroneous sensors). These ar-
tifacts may be reduced through a se-
ries of ‘good’ choices that range from
the lens system to the choice of a very
dense sensor (lots of photosites): used
in conjunction with processing steps
for correction.

To remove these artifacts, the pro-
cessing can either be done during or
after the demosaicing step. Before we
consider how these artifacts are re-
moved/reduced, we need to bear in
mind that the objective of commercial
electronic photography is not so much
the accurate reproduction of a scene,
but a preferred or pleasing reproduc-
tion. In other words, even if there are
errors introduced by the artifact re-
moval stage, so long as the image ‘looks’ good,
the consumer remains satisfied.2

As alluded to earlier, the reduction of arti-
facts could be performed during or after the
demosaicing step. However, it is common to
perform the artifact reduction at both stages of
the image processing chain. Most demosaicing
techniques make use of the fact that the human
visual system is preferentially sensitive in the
horizontal and vertical directions when com-
pared to other directions (diagonal). When per-
forming demosaicing, depending upon the
strength of the intensity change in a neighbor-
hood (horizontal, vertical, or diagonal) estima-
tion kernels are used3 that may be fixed or adap-

(a) (b)

(c) (d)

(e)

Figure 1. Popularly used color filter
array tessellations. R, G, B, C, M,
Y, W, stand for red, green, blue,
cyan, magenta, yellow and white
respectively. (a) A RGB Bayer
Array. (b) A CMYW rectangular
array. (c,d) Color arrays used in
some Sony cameras. (e) A
relatively new hexagonal sensor
used in some Fuji cameras.

tive.4,5 These are determined by operations over
local neighborhoods—the goal being to inter-
polate along edges rather than across them
(which leads to zipper errors).

Once a full-color image has been generated
after demosaicing a filter-array image, the ar-
tifacts are either highly pronounced or relatively
subdued depending on the technique used and
image content. Most color-image-processing
pipelines implement another collection of post-
processing techniques to make the images ap-
pealing.

Most professional and high-end consumer
cameras also have a post demosaicing noise-
reduction step: usually a proprietary algorithm.

However, a common algorithm
used to reduce color artifacts is a
median filter. Such artifacts usually
have a salt-and-pepper type distri-
bution over the image, for which
the median filter is well suited. The
human eye is known to be highly
sensitive to sharp edges: we prefer
sharp edges in a scene to blurred
ones. Most camera manufacturers
use an edge-enhancement step such
as unsharp masking to make the
image more appealing by reducing
the low-frequency content in the
image and enhancing the high fre-
quency content. Another technique
is called coring, used to remove de-
tail information that has no signifi-
cant contribution to image detail
and behaves much like noise. The
term coring originates from the
manner in which the technique is
implemented. Usually a represen-
tation of the data to be filtered is
generated at various levels of de-
tail, and noise reduction is achieved
by thresholding (or ‘coring’) the
transform coefficients computed at
the various scales. How much cor-
ing needs to be performed (how
high the threshold needs to be set)
is a heuristic.

Rajeev Ramanath and Wesley
E. Snyder
Department of Electrical and
Computer Engineering
NC State University, USA
E-mail: rajeev.ramanath@ieee.org
and wes@eos.ncsu.edu
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nals cannot be recovered easily and only com-
plicated methods using non-linear iterative pro-
cessing4 or prior knowledge5 are able to effec-
tively deal with this.

By studying the nature of aliasing in digital
cameras, we have found a demosaicing solu-
tion that does not require excessive optical blur
or complicated algorithms. As shown in Fig-
ure 1(b) and described formally elsewhere,6 the
Fourier spectrum of an image acquired with a
Bayer CFA image has a particular pattern. Lu-
minance (i.e. R + 2G + B) is localized in the
center, and chrominance, composed of two
opponent chromatic signals (R-G, -R+2G-B),
are localized in the middle and corner of each
side. The Fourier representation of a CFA im-
age thus has the property of automatically sepa-
rating luminance and opponent chromatic chan-
nels and projecting them in specific locations
in the Fourier domain. Consequently, it is pos-
sible to directly estimate the luminance and
chrominance signals with low- and high-pass
filters, respectively, and then to reconstruct a
color image by adding estimated luminance and
estimated and interpolated chrominance.6,7

Note, however, that luminance and opponent
chromatic signals share the same two-dimen-
sional Fourier space. Artifacts may result in the
demosaiced image if their representations over-
lap (aliasing).

Using the Fourier representation thus also
helps to illustrate the artifacts that may occur
when applying any demosaicing algorithm:
blurring occurs when luminance is estimated
with a filter that is too narrow-band. False col-
ors are generated when chrominance is esti-
mated with a filter bandwidth that is too broad,
resulting in high frequencies of luminance in-
side the chrominance signal. Grid effects oc-
cur when luminance is estimated with a band-
width that is too broad, resulting in high fre-
quencies of chrominance in the luminance sig-
nal. And, finally, water colors are generated
when chrominance is estimated with a filter
bandwidth that is too narrow. With many
demosaicing algorithms, the two most visible
effects are blurring and false color. For visual
examples of the different artifacts, see Refer-
ence 7.

In general, algorithms that totally remove
aliasing artifacts do not exist. However, in the
case of a CFA image, the artifacts are not due to
‘real’ aliasing because they correspond to inter-
ference between luminance and chrominance:

two different types of signals. This is certainly
why many demosaicing methods work quite
well. With our approach, one can optimally re-
construct the image without having recourse to
any complicated de-aliasing methods. Our
demosaicing-by-frequency-selection algorithms
gives excellent results compared to other pub-
lished algorithms and uses only a linear approach
without any prior knowledge about the image
content.7 Also, our approach allows us to explic-
itly study demosaicing artifacts that could be
removed by tuning spectral sensitivity functions,8

optical blur, and estimation filters.
Further information about this work and

color illustrations are available at:
http://ivrgwww.epfl.ch/
index.php?name=EI_Newsletter

David Alleysson* and Sabine Süsstrunk†
*Laboratory of Psychology and
Neurocognition
Université Pierrre-Mendes, France
E-mail: David.Alleysson@upmf-grenoble.fr
†Audiovisual Communications Laboratory
School of Communications and Computing
Sciences
Ecole Polytechnique Fédérale de Lausanne,
Switzerland
E-mail: sabine.susstrunk@epfl.ch
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Aliasing in digital cameras
Continued from the cover.

the human visual system also attempts to com-
pensate for scene lighting variability. Scene re-
lighting algorithms should be evaluated based
on how well they simulate real scene re-light-
ing, and the appearance of scenes as viewed
by human observers. It is important to remem-
ber that re-lit scenes will then be color rendered;
sometimes these two proprietary steps are com-
bined to ensure optimal performance.

Jack Holm
Hewlett-Packard Company, USA
E-mail: jack.holm@hp.com
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presents the different modules of our device.
The blocks drawn with dashed lines represent
optional modules that are not currently imple-
mented. The first prototype (see Figure 2) is
composed of three parts: the imager, the main
board, and the communications board. The first
board includes a CMOS imager, analog/digi-
tal converter and optics. The main board is the
core of the system: it consists of a Stratix from
Altera; several private memory blocks; and, on
the lower face of the board, an optional DSP
module that can be connected for dedicated
processing and an SDRAM module socket that
allows the memory to be extended to 64 Mb.
The communications board is connected to the
main board and manages all communications
with the host computer. On this card, we can
connect a 3D accelerometer, zoom controller,

Smart camera and active vision:
the active-detector formalism

and motor controller for an optional turret.
 Our initial results show high speed tracking

of a gray-level template (see Figure 2). Accord-
ing to the size of the window, the acquisition
rate varies from 200-5500 frames per second.2

François Berry and Pierre Chalimbaud
LASMEA Laboratory, Université Blaise
Pascal, France
E-mail: {berry, chalimba}@lasmea.univ-
bpclermont.fr
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Continued from page 2.

Real-time image processing in a small
systolic FPGA architecture

sumption estimation of 1.56W. The architecture
uses 6118 slices, i.e. around 30% of the FPGA.
The architecture was validated on a RC1000-PP
FPGA AlphaData board. The performance im-
provement on the software implementation run-
ning on a Pentium IV processor is more than an
order of magnitude.

The processing times for a window-based
operation on 512×512 gray-level images for
different window sizes are plotted in Figure 2.
The array was configured to use the same num-
ber of CWPs as the window size. For all the
cases it was possible to achieve real-time per-
formance with three to four rows processed in
parallel. The processing time for a generic win-
dow-based operator with a 7×7 window mask
on 512×512 gray-level input images is 8.35ms,
thus the architecture is able to process about
120 512×512 gray-level images per second.
Among the window-based image algorithms al-
ready mapped into and tested are generic con-
volution, gray-level image morphology and
template matching. Figure 3 shows a test im-
age and two output images for LoG filtering
and gray-level erosion.

According to theoretical and experimental
results, the architecture compares favorably
with other dedicated architectures in terms of
performance and hardware resource. Due to its
configurable, modular, and scalable design, the
architecture constitutes a platform to explore

more complex algorithms such as motion esti-
mation and stereo disparity computation,
among others. The proposed architecture is well
suited to be the computational core of a com-
pletely self-contained vision system due to its
efficiency and compactness. The architecture
can be coupled with a digital image sensor and
memory banks on a chip to build a compact
smart sensor for mobile applications.

César Torres-Huitzil and Miguel Arias-
Estrada
Computer Science Department
INAOE, México
E-mail: {ctorres, ariasm}@inaoep.mx
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Figure 3. High speed tracking of a gray-level
template (32×32 at ~2000 frames per second).

Tell us about your
news, ideas, and
events!
If you're interested in sending in
an article for the newsletter, have
ideas for future issues, or would
like to publicize an event that is
coming up, we'd like to hear from
you. Contact our technical editor,
Sunny Bains (sunny@spie.org) to
let her know what you have in
mind and she'll work with you to
get something ready for publica-
tion.

Deadline for the next edition,
14.2, is:

19 January 2004: Suggestions for
special issues and guest editors.

26 January 2004: Ideas for ar-
ticles you'd like to write (or read).

26 March 2004: Calendar items
for the twelve months starting
June 2004.

Continued from page 5.
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acquisition of frames per second is accelerated
since the images are very small. The frame-
grabber size is also dramatically reduced. Com-
bined, these two effects make the exploitation
of differential algorithms especially interesting.
Such image-processing algorithms systemati-
cally apply simple operations to the whole im-
age, computing spatial and temporal differ-
ences. These can be computationally intensive
for large images and the simultaneous storage
of several frames for computing temporal dif-
ferences can be a hardware challenge. Log-
polar image-data reduction can therefore con-
tribute to the effective use of differential algo-
rithms in real applications.7

In addition to the selective reduction of in-
formation, another interesting advantage of log-
polar representation is related to polar coordi-
nates. In this case, approaching movement
along the optical axis in the sensor plane has
only a radial coordinate. This type of move-
ment is often present with a camera on top of a
mobile platform like an autonomous robot. If
the machine is moving along its optical axis,
the image displacement due to its own move-
ment has only a radial component. Thus, com-

plex image-processing algorithms are simpli-
fied and accelerated.3,7,8 Further, the hardware
reduction achieved in storing and processing
images, combined with the density of program-
mable devices, make possible a full image-pro-
cessing system on a single chip.9 This approach
is especially well suited to systems with power
consumption and hardware constraints. We
would argue it is the natural evolution of the
reconfigurable architectures employed for au-
tonomous robotic navigation7 systems.

This work is supported by the Generalitat
Valenciana under project CTIDIA/2002/142.

Jose A. Boluda and Fernando Pardo
Departament d’Informa`tica
Universitat de Vale`ncia, Spain
E-mail: Jose.A.Boluda@uv.es
http://www.uv.es/~jboluda/
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taking advantage of data reduction and polar coordinates.
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Space-variant image processing: taking advantage of
data reduction and polar coordinates.
The human retina exhibits a non-uniform
photo-receptor distribution: more resolution at
the center of the image and less at the periph-
ery. This space-variant vision emerges as an
interesting image acquisition system, since
there is a selective reduction of information.
Moreover, the log-polar mapping—as a par-
ticular case of space-variant vision—shows in-
teresting mathematical properties that can sim-
plify several widely-studied image-processing
algorithms.1-4 For instance, rotations around the
sensor center are converted to simple transla-
tions along the angular coordinate, and
homotheties (linear transformations) with re-
spect to the center in the sensor plane become
translations along the radial coordinate.

The sensor (with the space-variant density
of pixels) and computational planes are called
the retinal and cortical planes, respectively. The
resolution of a log-polar image is usually ex-
pressed in terms of rings and number of cells
(sectors) per ring. A common problem with this
transformation is how to solve the central sin-
gularity: if the log-polar equations are strictly
followed, the center would contain an infinite
density of pixels that cannot be achieved. This
problem of the fovea (the central area with
maximum resolution) can be addressed in dif-
ferent ways: the central blind spot model,
Jurie’s model,5 and other approaches that give
special transformation equations for this cen-
tral area. Figure 1 shows an example of a log-
polar transformation. At the left there is a Car-
tesian image of 440×440 pixels; at the center
is the same image after a log-polar transforma-
tion with a central blind spot that gives a reso-
lution of 56 rings with 128 cells per ring. No-
tice there is enough resolution at the center to
perceive the cat in detail. The rest of the image
is clearly worse than the Cartesian version, but

this is the periphery of the image. This retinal
image occupies less than 8 kB: the equivalent
Cartesian image is around 189 kB (24 times
larger). The computational plane of the image
is shown in Figure 1 (right).

The best way to obtaining log-polar images
depends on the available hardware and soft-
ware. The simplest approach is to use software
to transform a typical Cartesian image from a
standard camera. This is done using the trans-
formation equations between the retinal plane
and the Cartesian plane. Since the transforma-
tion parameters can be tuned online, this solu-
tion is flexible. However, it can be an exces-
sively-time-consuming effort if the computer
must first process these images in order to per-
form another task. The other option is the
purely-hardware solution: the log-polar trans-
formation made directly from a sensor with this
particular pixel distribution. An example of a
log-polar sensor is a CMOS visual sensor de-
signed with a resolution of 76 rings and 128

cells per ring.6 The fovea is comprised of the
inner 20 rings that follow a linear- (not log-)
polar transformation to avoid the center singu-
larity. This method fixes the image transfor-
mation parameters and is not flexible.

As an intermediate approach, a circuit that
performs a Cartesian to log-polar image trans-
formation can be implemented on a program-
mable device. This solution gives the advan-
tage of speed while retaining flexibility: the
transformation parameters can be changed on
the fly. Moreover, the complexity and density
of current reconfigurable devices represent a
new trend in computer architecture, since it is
possible to include microprocessors, DSP
cores, custom hardware, and small memory
blocks in a single chip.

The log-polar image data reduction has sev-
eral positive consequences for the processing
system. The first and most obvious is that the

Figure 1. Left: A 440×440 Cartesian image. Center: A 128×56 log-polar image. Right: The computational
image.

Continues on page 10.


