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A portable motion analysis system that can accurately measure body movement kinematics and 

kinetics has the potential to benefit athletes and coaches in performance improvement and injury 

prevention. In addition, such a system can allow researchers to collect data without limitations of 

time and location. In this dissertation, a portable multi-sensor human motion analysis algorithm 

is been developed based on inertial measurement technology. The algorithm includes a newly 

designed coordinate flow chart analysis method to systematically construct rotation matrices for 

multi-Inertial Measurement Unit (IMU) application. Using this system, overhead throwing is 

investigated to reconstruct arm trajectory, arm rotation velocities, as well as torque and force 

imposed on the elbow and shoulder. Based on this information, different motion features can be 

established, such as kinematic chain timing as demonstrated in this work. Human subject 

experiments are used to validate the functionality of the method and the accuracy of the 

kinematics reconstruction results. Single axis rotation rig experiments are used to shown that this 

multi-IMU system and algorithm provides an improved in accuracy on arm rotation calculation 

over the conventional video camera based motion capture system. Finally, a digital filter with 

switchable cut-off frequency is developed and demonstrated in its application to the IMU-based 

sports motion signals.  The switchable filter method is not limited only to IMUs, but may be 

applied to any type of motion sensing technology. With the techniques developed in this work, it 

will be possible in the near future to use portable and accurate sports motion analysis systems in 

training, rehabilitation and scientific research on sports biomechanics. 

MULTI-SENSOR INERTIAL MEASUREMENT SYSTEM FOR ANALYSIS OF 
SPORTS MOTION 

 
Minmin Zhang, PhD 

University of Pittsburgh, 2014
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1.0  INTRODUCTION 

Ever since the beginning of the written history of human society, sports have been playing an 

important role in recreation, fitness, cultural communication and even politics. From the first 

organized Olympic Games in 776 BC to the soccer, baseball and golf leagues organized in many 

countries today, sports is no longer merely a way for entertaining but an enormous business that 

incents more and more people to become professional athletes. According to the statistics of the 

United States Department of Labor 16,500 jobs are registered as athletes and sports competitors. 

This number is predicted to increase by 22% until 2020, which is faster than the growth rate of 

other professions Besides professional athletes, ordinary people from everywhere of the world 

also enjoy the pleasure and healthy lifestyle from participation in sports activities, whether it 

involves well-equipped club games or street soccer popular in many developing countries. 

However, at the same time individuals gain the physical and mental benefits from sports, 

millions of people suffer injuries or asymptomatic pathologies, with different level of intensity, 

caused by drastic competition or inappropriate training. For example, a torn anterior cruciate 

ligament (ACL) will affect a soccer athlete’s performance, and even suspend his or her career 

(Ekstrand, Hägglund et al. 2011), asymptomatic pathology of the shoulder or elbow joint is a 

common among baseball pitchers (Limpisvasti, ElAttrache et al. 2007), and ‘tennis elbow’ is a 

common injury for tennis players that requires long term treatment (Zeisig, Fahlström et al. 

2010). Additionally, an increasing number of youth athletes experience serious injuries even 
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before starting a professional career (Emery, Hagel et al. 2010; Fleisig, Andrews et al. 2011). 

Two of the fast-growing  trends in sports, commercialization and popularization, point to an 

increasing need for complete knowledge on sports biomechanics that can aid coaching, training, 

injury prevention and rehabilitation.  

Towards this aim, both the academic community and professional sports teams have put 

enormous effort into studying the biomechanics underlying different types of sports motion. 

Within them, throwing motion has received intensive interest. As throwing is a rapid motion of 

the upper extremity that occurs in a short time, drastic stress and load is imposed on associated 

joints, thus increasing the injury risk level. However, more progress is necessary to fully 

understand the motion and its effects on joint health. Take the baseball pitching motion as an 

example, although numerous research works have been carried out in recent years to understand 

the relationship between pitching performance, associated joint load and injury risk, we still do 

not have conclusive knowledge regarding pitching biomechanics (Oyama 2012). Even in 

literatures, some conclusions disagree with each other. For example, researchers believe pitchers 

throwing higher velocity may be more susceptible to elbow and shoulder injuries (Bushnell, Anz 

et al. 2010; Hurd, Jazayeri et al. 2012). Werner et. al. (Werner, Suri et al. 2008), however, 

believes that higher ball velocity can be obtained by proper technique and does not necessarily 

incur high joint loads. One of the fundamental reasons for this slow progress is that the 

‘communication’ between the academic society and sports participants, including professional 

teams, amateur players, and parents, is relatively low and inefficient. This judgment is explained 

in two ways: on one hand, coaches and athletes are hardly able to apply innovative research 

discoveries in training or real games because they cannot evaluate players’ physical condition 

and performance in a quantitative and real-time way. For example, a recent study (Hurd, Jazayeri 
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et al. 2012) found elbow distraction force, or elbow adduction moment, is positively associated 

with pitching velocity, which suggested that talented high school pitchers may have higher 

possibility in elbow injury. Unfortunately, coaches cannot apply this knowledge in training to 

estimate injury risk for teen players, since there is no tool available to quantitatively monitoring 

the pitching motion, much less determine joint moment. On the other hand, the prevalent data 

collection methods for lab research involve the use of video cameras, and are carried out in 

restricted scenarios.  Typically a target group of athletes is recruited to perform sports operations 

in a lab environment with a data collection setup that includes reflective markers attached to 

body segments. As is well known, performance is highly related to the level of cognitive and 

somatic anxiety, which is affected by environmental factors (Krane, Joyce et al. 1995; Craft, 

Magyar et al. 2003). As a result, it is reasonable to question that data and analysis results taken 

under a lab environment is more or less deviated from those under real training and game 

situations. Additionally, limited numbers of subjects and trials in lab research limits the 

generality of the conclusions (Oyama 2012). In order to overcome this dilemma and improve the 

communication efficiency between the academic society and sports industry, as well as 

potentially benefit non-professional sports amateurs on performance evaluation and injury 

prevention, this study focuses on the development of a low cost, portable sports motion analysis 

system based on inertial measurement technology. The system under study records body segment 

kinematics information, i.e. linear acceleration and rotation rate, to quantitatively reconstruct 

body segmental motion and to calculate kinetic quantities.  

To validate the capability and demonstrate the applications of this inertial measurement 

based sports motion analysis system, this work has designed the system and data processing 

algorithm to be applicable to the throwing motion. It is able to quantitatively reconstruct the 
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body segmental trajectories and rotation velocities of the upper extremity motion, and calculate 

the joint moments and forces associated with the elbow and shoulder. It is worth mentioning that 

this system, including the motion reconstruction algorithm, can be used for any other type of 

sports motion with minor changes. Such a system will have promising applications in the 

following areas: 

1) Training and coaching: real time accurate measurement of body motion will enable 

objective performance evaluation and instruction intervention; 

2) Injury prevention: real time joint load monitoring and injury risk estimation; 

3) Research: unlimited data collection and motion analysis under real training and game 

situations. 

The framework of the motion analysis algorithm, which is designed to reconstruct both 

kinematics and kinetics of sports motion, is demonstrated in Figure 1. The ‘IMU Deployment’ 

block indicates that two IMUs were placed on the arm to study the throwing motion in this work. 

The coordinate flow chart is a newly designed graphical tool to visualize the coordinate frame 

transformation problem and systematically construct the rotation matrices. The kinematic 

reconstruction algorithm is designed to calculate body segment trajectories, linear/rotational 

velocity and so forth for kinematics analysis. The inverse dynamics model uses kinematics 

results, rotation matrices and anatomical parameters as inputs to calculate joint moments and 

force for kinetics analysis. The ‘Low-pass filter’ block indicates the digital filter designed in this 

work to process non-stationary sports motion signals. 

Generally following the structure of the algorithm framework, this dissertation is organized 

as follows: Chapter 2 will provide background of the techniques used in this work and related 

literature; Chapter 3 introduces the coordinate flow chart method to analyze the coordinate frame 
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transformation problem and construct rotation matrices. This method will play an essential role 

in both of kinematics and kinetics analysis; Chapter 4 explains kinematics reconstruction as well 

as kinematic chain analysis of throwing; inverse dynamics model and kinetics analysis is 

explained in Chapter 5; towards the common non-stationary sports motion signal processing 

problem, a low pass filter with switchable cut-off frequency is introduced in Chapter 6; Chapter 

7 presents conclusions for the work presented; a detailed sensor calibration procedure is 

described in the appendix. 

 

 

Figure 1 Framework of the motion analysis algorithm 
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2.0  BACKGROUND AND LITERATURE REVIEW 

The throwing motion is the representative sports motion under investigation in this work. A 

multi-sensor alignment and motion analysis strategy will be designed to be adapted to throwing 

motion analysis. It is worth mentioning that work described in the following chapters can be 

readily adjusted and expanded to any kind of sports motion. This chapter briefly reviews the 

studies on throwing motion and current methods for motion capture, and then emphasizes the 

overview of inertial measurements for human motion study. 

2.1 THE KINEMATIC CHAIN OF THROWING 

A typical throwing motion can be pitching a baseball, spiking a volleyball, throwing a football 

and serving a tennis ball, etc. A key goal of the thrower is to generate the highest possible speed 

of the distal end of the upper extremity, i.e. hand.  However, due to the limited capability of 

muscles associated with wrist and hand, an efficient pitching technique cannot merely rely on 

these muscles to generate desired throwing velocity. Pitchers usually make use of the sequencing 

movement of the whole body to accumulate moment from proximal to distal, e.g. movements of 

body segments are incited as the sequence of lower extremity, hip, upper torso, upper arm, 

forearm, and finally hand. This sequence is called the kinematic chain (Hirashima, Kadota et al. 

2002; Hirashima, Yamane et al. 2008; Seroyer, Nho et al. 2010). Early researchers identified the 
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kinematic chain sequence timing by linear velocity of body segment ends. For example, the 

velocity magnitude of the hip, shoulder, elbow and wrist reach their peak values in sequence. 

Marshall et. al. (N. Marshall and Elliott 2000) revealed the important role of long-axis rotations 

of the arm segments in the kinematic chain during the tennis serve, which is also considered as 

an overhead throwing  motion. Thus, this dissertation will use body segment rotational velocity 

to determine the kinematic chain timing.  

Recent work found that a proper coordination of the kinematic chain will not only improve 

performance, but also reduce the risk level of injuries. Aguinaldo et. al. (Aguinaldo, Buttermore 

et al. 2003) found that higher level pitchers have delayed trunk rotation with less humeral 

internal rotation torque. Werner et al (Werner, Suri et al. 2008) have related some of the 

temporal and spatial characteristics of kinematic chain to the ball velocity, for instance a shorter 

interval between the events of stride foot contact and maximum shoulder external rotation is in 

favor of increased ball velocity. Although academic society has agreed that knowledge of 

optimizing throwing mechanics, i.e. the coordination of the kinematic chain, can provide 

valuable information for training, injury prevention, rehabilitation and performance improvement 

(Limpisvasti, ElAttrache et al. 2007), limited research has been done in detailed study of the 

kinematic chain of throwing. Seroyer, et. al. (Hirashima, Yamane et al. 2008) provided a spatial 

description of a proper kinematic chain of overhead pitching from a professional pitcher. 

However, this study involved qualitative visual assessment, and was carried out with a complex 

high speed camera setup. Sakiko Oyama (Oyama 2012) reviewed the state-of-the-art in 

biomechanics studies of the baseball pitching mechanism, and pointed out that a potential barrier 

to acquiring knowledge of ‘proper’ pitching technique  is the unavailability of appropriate 

motion capture tools. Still in the same review paper, authors also noted that most injury related 
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research included limited number of subjects and trials, which limited the generalizability of 

these conclusions.  

The inspection of literature mentioned above indicates that quantitative reconstruction of the 

kinematic chain can provide important information on performance evaluation, injury prevention 

and rehabilitation. For this reason, a tool that is able to capture the kinematic information and 

then reconstruct the spatial and temporal sequence of the kinematic chain will be preferred by 

coaches, physicians and sports biomechanics researchers.  

2.2 OVERVIEW OF MOTION CAPTURE TECHNOLOGIES 

Nowadays, the prevalent method to learn human motion biomechanics is using vision based 

motion capture systems. The commercial solutions are available from Motion Analysis 

Corporation (MotionAnalysis 2013), Vicon (Vicon 2013), Qualysis AB (Qualisys 2013), etc. As 

shown in Figure 2, the principle of this kind of system is to use cameras to capture light reflected 

by retro-reflective markers and determine the markers’ locations in a pre-defined coordinate 

frame.  

 

 

Figure 2 Demonstration of vision based motion capture system 
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The typical accuracy level when measuring low speed and small range of motion is  63±5 

micron (Windolf, Götzen et al. 2008). Besides providing the kinematics, the time-location data 

can be input into inverse dynamics models, for instance, OpenSim (Delp, Anderson et al. 2007), 

to calculate segmental and joint forces and moments incurred by motion. Despite the popularity 

of the vision based technique in biomechanics studies, some inherent limitations of these systems 

have hindered the research progress, especially in high speed sports motion study. The video 

cameras are usually working at a speed of 200 fps. One may get 1000 fps capability with a costly 

hardware setup, such as Vicon T10S (Vicon 2013). Some peak events in sports motion change 

abruptly over a very short duration, for instance, the total time of a typical baseball pitching 

motion is 0.145 sec and the acceleration part (from maximum upper arm external rotation to ball 

release) is 0.029 sec (Stodden, Fleisig et al. 2005), which means a video camera can obtain 29 

samples for the complete pitching event and only 6 samples for the acceleration stage if working 

at 200 fps. Besides, data collection volume is also limited due to file limitation, complex setup as 

well as other factors (Barris and Button 2008) .  

Another essential limitation has been discussed more frequently in recent years. While using 

the marker location data to calculate the linear (and or angular) velocity (and/or acceleration), 

numerical derivatives are unavoidable in data processing, which implies measurement error and 

signal noise will be magnified. This situation can be even worse when high speed motion is 

involved, such as jumping, falling, and typical sports operations. In order to suppress noise 

introduced by numerical differentiation, a low-pass digital filter is usually applied to location 

data recorded by optical instruments. However, this low-pass filter will also distort those high 

speed motion signals of interests since they consist of components distributed in the high 
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frequency domain (Ismail and Asfour 1999; Wachowiak, Rash et al. 2000; Kristianslund, 

Krosshaug et al. 2012; Loh, Li et al. 2012).   

In recent years, the markerless video camera based motion capture system has received more 

and more attentions. Based on computer vision technology, it is able to identify subjects’ 

movements without deployment of markers. An example product based on this technology is 

Microsoft Xbox Kinect, as shown in Figure 3. Although it has improved mobility compared to 

the marker based video camera system, it still has most of the disadvantages of video camera 

systems. Besides, it has additional limitations on small segment motion detection, and 

background noise removal. (Weinland, Ronfard et al. 2011).  

 

 

Figure 3 Microsoft Xbox Kinect 

A second type of motion capture system makes use of bending sensors to measure joint angles, 

such as the CyberGlove demonstrated in Figure 4. It is designed for one degree freedom angle 

measurement. However, it suffers from the same numerical differentiation error issue as that of 

video camera system. 
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Figure 4 CyberGlove II (CyberGlove) 

Another kind of motion capture device makes use of magnetism as an external signal source, 

for example the hand and finger motion capture device as shown in Figure 5 (Ma, Mao et al. 

2011). The combination of magnetic signals received by the sensor array attached on the wrist 

are used to identify the position and attitude of fingers (Vinjamuri, Crammond et al. 2009; Ma, 

Mao et al. 2011). This idea can be a good choice when the motion of interest is in a limited 

range, in which case reference magnets and sensors can be deployed closely to avoid 

environmental interference. However, as for the motion to be reconstructed in this study which 

features high speed and large range of motion, it is difficult to deploy magnets and sensors to 

identify arm motion during throwing.  

Figure 5 Structure of the magnetic hand motion tracking system (Ma, Mao et al. 2011) 
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Due to the requirement on high speed sports motion analysis and inherent limitations of 

current motion capture technologies, researchers and physicians are looking for alternatives. 

Among them, the inertial measurement technology is a promising candidate.  

2.3 INERTIAL MEASUREMENT TECHNOLOGY 

The term inertial measurement sensor in this study refers to a microelectromechanical (MEMS) 

gyroscope or accelerometer. The commercially available inertial measurement unit (IMU) 

integrates one or several gyroscopes and accelerometers with appropriate alignment to detect 

multi-axis angular rate and linear acceleration respectively. Some units may also include MEMS 

magnetometers. Although magnetometers do not measure motion using inertial transduction 

methods, their measurement of environmental magnetism can also be made useful in data 

processing algorithms designed in this work. With the fast developing MEMS manufacturing 

technology, MEMS inertial sensors are becoming smaller and more capable. The following 

sections offer a brief overview of inertial sensors and inertial measurement units on the market.  

2.3.1 Angular Rate Gyroscopes 

The MEMS gyroscope is based on Coriolis effect (Liu, Zhang et al. 2009) with a simplified 

structure shown in Figure 6 (Piyabongkarn, Rajamani et al. 2005). The vibrating mass reacts to 

the Coriolis acceleration while the inertial frame of the sensor undergoes a rotation. Nowadays, 

some commercially available gyroscopes, for example, ST L3G4200D (STMicroelectronics 

2013) with the working scenarios shown in Figure 7, use a single driving mass to detect three 
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axes of rotation, which allow even smaller packaging and lower cost. The driving mass consists 

of four parts: M1, M2, M3 and M4. While rotation is applied along each axis, the corresponding 

part of the driving mass will be deflected, and thus generate different output.  

 

 

Figure 6 Simplified structure of suspended mass vibrating gyroscope (Piyabongkarn, Rajamani et al. 2005) 

 

Figure 7 Demonstration of single driving mass gyroscope (STMicroelectronics 2013) 

2.3.2 Accelerometers 

In the inertial sensing market, MEMS accelerometers can be categorized according to the type of 

its sensing scheme: capacitive, piezoelectric, piezoresistive, resonance, etc. Within them, the 

capacitive type has many advantages compared to its counterparts: good DC response and noise 

performance, high sensitivity, relatively low drift and low temperature sensitivity (Acar and 
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Shkel 2003). For this reason, the capacitive MEMS accelerometer is popular in IMU design. A 

typical structure of the capacitive MEMS accelerometer consists of suspended silicon structures 

attached to the substrate that is free to move depending on the sensed acceleration. Differential 

capacitors are constructed by independent fixed plates and plates attached to the moving mass. 

The simplified transducer model is shown in Figure 8 (Freescale 2008). When the sensor 

undergoes acceleration, the proof mass deflects from its nominal position, causing an imbalance 

in capacitance between the fixed plates and moving plates. This imbalance will be measured and 

interpreted as acceleration. 

 

Figure 8 Simplified transducer physical model (Freescale 2008) 

Nowadays, some manufacturers have integrated 3-DOF accelerometer, 3-DOF gyroscope 

and 3-DOF magnetometer into a single chip with only 4×4×1(mm) size , for instance, MPU-

9150 from InvenSense Inc. (InvenSense 2013). Manufacturers have made available sensor chips 

that contain orthogonal combinations of rate gyros, accelerometers, and magnetometers.  

Selected commercial sensor chips are listed in Table 1.   

2.3.3 Magnetometers 

Magnetometer is not a type of inertial sensor. However, MEMS magnetometers are often applied 

together with other inertial sensors to provide the heading angle by comparing the magnetic field 
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direction reading of magnetometer and the pre-calibrated local environment magnetic field. 

Magnetometers can be classified into three categories depending on their measurement range of 

the magnetic field strength: low filed (<1 micro Guass), medium field which is also termed as 

earth’s field (1mG – 10G) and high field or bias magnet field(>10G) (Caruso, Bratland et al. 

1998). 

 
Table 1 Selected commercial inertial sensor chips 

Manufacturer Model Category Gyroscope 
(°/s) 

Accelerometer 
(g) Compass Output Size 

(mm) 

InvenSense 

MPU-9250 acc, gyro, compass ±2000 ±16 ±4900µT I2C 3×3×1 

MPU-6050 
MPU-6100 6DOF acc & gyro ±2000 ±16 NA I2C 4×4×0.9 

MPU-3050 3DOF gyro ±2000 NA NA I2C 4×4×0.9 

ITG-3200 3DOF gyro ±2000 NA NA I2C 4×4×0.9 

ST 
LIS331HH 3DOF acc NA ±24g NA I2C 

/SPI 3×3×1 

L3G4200D 3DOF gyro ±2000 NA NA I2C 
/SPI 3×3×1.1 

Honeywell HMC5883L 3DOF compass NA NA ±8 Gauss I2C 3×3×0.9 

AsahiKASEI AK8975 3DOF compass NA NA ±1200µT I2C 4×4×0.75 

 

The common technologies for designing of magnetometers include: search coil, fluxgate, 

SQUID, anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR) and etc. The 

measurement range of different technologies are demonstrated in Figure 9. Thus, depending on 

the requirements of practical applications, one should choose magnetometers which are designed 

by appropriate technology. In human motion tracking applications, magnetometers measure the 

relative direction change of earth’s magnetic field with respective to the sensor’s frame. The 

AMR sensors are ideal candidate for this type of applications. 

The AMR sensor is made of a nickel-iron (or Permalloy) thin film deposited on a silicon 

wafer and is patterned as a resistive strip. Changes of both of magnitude and direction can be 

represented by the voltage output of the Wheatstone bridge of four resistive strips as shown in 
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Figure 10. An example product designed by the AMR technology is Honeywell HMC5883L 

which has a measurement range from milli-Gauss to 8 Gauss (Honeywell).  

 

 

Figure 9 Measurement range of magnetometers (Caruso, Bratland et al. 1998) 

 

 

Figure 10 Circuit demonstration of the AMR sensor (Lenz and Edelstein 2006) 

2.3.4 Inertial Measurement Units 

The inertial measurement unit is a combination of inertial sensor chips, data transmitting or 

storage elements and other peripheral circuits. Depending on the application requirement, 

different types of sensors with different numbers of degrees of freedom (DOF) can be combined 
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to construct the sensing element of an IMU. For example, one gyroscope with one sensitive axis 

and an accelerometer with two sensitive axes can be used to construct a 3 DOF IMU to measure 

2 dimensional plane motion. On the market, there are some vendors that provide IMUs which are 

ready to use, such as Xsens (Xsens 2013), YEI corporation (Yost Engineering 2013), and 

Microstrain (MicroStrain 2013). These IMUs have different capability of sensitivity axes, 

sensing range, and data transmitting and storage method.  The specifications of selected IMU 

products are listed in Table 2.  

 
Table 2 Selected commercial IMU with specifications 

Vendor  Model 
Accelerometer Gyroscope Magnetometer 

DOF Range DOF  Range (°/s) DOF  Rnage 

Xsens 
MTx 3 ± 50 (m/s2) 3 ± 1200 3 ± 750 (mGa) 

MTi 100 3 ± 50 (m/s2) 3 ± 450 3 ± 2 (Ga) 

YEI 

3-Space Data-logging 
(high-G) 3 ±6 / ±12 / ±24 (g)  3 ±250 / ± 500 / ± 2000 3 ± 1.3 (Ga) 

3-Space Wireless 
2.4GHz 3 ±2 / ±4 / ±8 (g) 3 ±250 / ± 500 / ± 2000  3 ± 1.3 (Ga) 

MicroStrain 3DM-GX3-15 3 ±5 (g) 3 ± 300  NA 
 

Based on the motion range and preferred data transmitting/storage method, one can pick a 

commercially available IMU for a specific application. The current study, which features high 

speed sports motion, requires high range accelerometers and gyroscopes to capture the motion 

data without saturation. The YEI 3-Space Data-logging (high-G) provides the highest available 

accelerometer and gyroscope range at the same time, which is ±24 (g) and ± 2000 (°/s) 

respectively. However, strictly speaking, this range is still not enough for a throwing motion 

study. In the baseball pitching motion, the reported upper arm internal rotation of a skilled adult 

is up to 7,000 (°/s) (Fleisig, Andrews et al. 1995). Since the goal of this work is to establish a 

motion analysis system with data processing algorithm, ± 2,000 (°/s) angular velocity range is 
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enough to validate the functionality and demonstrate applications. In order to avoid the 

gyroscope output saturation, subjects will carry out the throwing motion in a low level of 

exertion. In the case of performance evaluation during real games and training, higher range of 

gyroscope must be integrated to sense the body segment rotation along its longitudinal axis. 

Recently, Analog Device has released a single axis high range gyroscope, ADXRS649, which is 

able to measure up to 20,000 (°/s) angular velocity (Devices 2011). This high range gyroscope 

sensor has not been integrated into any commercially available IMU product. The motion 

analysis algorithm presented in this thesis can be easily adjusted to incorporate the higher 

measurement unit as soon as they are available to customers. 

2.4 BIOMECHANICS APPLICATIONS OF INERTIAL MEASUREMENT UNIT 

In 2002, Mayagoitia et. al. (Mayagoitia, Nene et al. 2002) proposed a motion capture system 

solely based on MEMS accelerometers and gyroscopes as an alternative method to the optical 

motion capture system. This inertial sensor based system was limited to reconstructing 2-

dimensional kinematics. Also, the method required perfect alignment of the sensors to the body 

coordinates. Since then, inertial measurement has become a promising technique for human 

motion capture and analysis, and has been the focus of many studies.  

According to the characteristics of the specific motion under study, these works are 

categorized into slow motion and fast motion. In this study, slow motion includes daily human 

motions which are usually in a relaxing and comfortable tempo, for instance, walking, drinking, 

writing and etc. The fast motion is defined to include much more intense motions, such as 

jumping, throwing and kicking. Most sports motions fall into the category of fast motion. Based 
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on the content to be reconstructed, they can be categorized into kinematics study and inverse 

dynamics study. The difference is that kinematics studies involve the calculation of velocity, 

acceleration, and body segment position and attitude, whereas inverse dynamics studies use the 

kinematics information as well as the human body parameters to analyze the joint moments, 

forces or torques applied on body segments. As a result, the two criteria will divide these works 

into four categories shown in Figure 11: 1) kinematics study on slow motion; 2) kinematics study 

on fast motion; 3) kinetics study on slow motion and 4) kinetics study on fast motion.  

It is obvious in Figure 11 that most  inertial measurement work has focused on  studying 

kinematics of slow motion, including gaiting analysis (Mayagoitia, Nene et al. 2002; Sabatini 

2005), reconstructing lower extremity joint angle such as knee, ankle and feet during slow daily 

movement (O’Donovan, Kamnik et al. 2007; Favre, Jolles et al. 2008; Cooper, Sheret et al. 2009; 

Favre, Aissaoui et al. 2009; Liu, Liu et al. 2009; Rouhani, Favre et al. 2011; Rouhani, Favre et al. 

2012), and upper extremity attitude and joint angle reconstruction (Sabatini 2006; Luinge, 

Veltink et al. 2007; Cutti, Giovanardi et al. 2008; De Vries, Veeger et al. 2010; Schepers, 

Roetenberg et al. 2010; El-Gohary and McNames 2012; Lee and Low 2012). Different methods 

have been investigated, which can be generally summarized into two categories: strap-down 

integration (Sabatini 2005) and optimal filters (Sabatini 2006). In the kinematics study of fast 

motion, investigators have used inertial sensors to study sports motions, such as baseball pitching 

(Sagawa, Abo et al. 2009; Koda, Sagawa et al. 2010), baseball bat swing (Ghasemzadeh and 

Jafari 2011) and skiing (Chardonnens, Favre et al. 2012). In this area, researchers are interested 

in not only reconstructing kinematics quantities, but also interpreting these quantities into sports 

performance indicators, for instance reconstructing kinematic chain timing (Ghasemzadeh and 

Jafari 2011; Chardonnens, Favre et al. 2012). 
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Figure 11 Categories of inertial measurement studies based motion analysis work 

Since the inverse dynamics problem is more complicated, only a few works have been 

related to kinetics study of slow motion (Mihelj 2006; Schepers, Koopman et al. 2007; Faber, 

Kingma et al. 2010). No studies could be found on the topic of studying kinetics of fast motion 

using inertial sensors. One of the reasons for this unbalanced distribution is that the inertial 

sensor capability has been limited as explained in the previous section. With the increasing 

measurement range of accelerometers and gyroscopes, academic society will pay more attention 

to using inertial sensors to analyze fast motion, especially sports motions. The multi-sensor 

based sports motion analysis strategy presented in this thesis will begin to fill the gaps in using 

inertial sensor for fast motion analysis, both kinematics and kinetics, as shown in Figure 11.  



21 
 

3.0  COORDINATE FRAME TRANFORMATION AND ROTATION MATRIX 

CONSTRUCTION 

The commercially available IMU used in this study is 3-Space Data-logging sensor (YEI 

Technology TSS-DL-HH) illustrated in Figure 12. It integrates three types of sensors: a tri-axial 

accelerometer, a tri-axial rate gyroscope and a tri-axial magnetometer. The accelerometer and 

gyroscope record linear acceleration and angular velocity, respectively, of the IMU itself in a 

synchronous way, while the magnetometer detects magnetic field of the environment. However, 

in biomechanics applications, the task of IMUs is reconstructing not only its own motion, but 

also the dynamics of body segments on which these sensors are attached. Assuming the arm 

segments are rigid bodies, two IMUs are able to provide sufficient information for arm motion 

analysis. As shown in Figure 13, one IMU is attached on the wrist, while the other one is 

attached on upper arm. The algorithm established in the following sections does not have strict 

requirements on the IMU’s location.  

 

 

Figure 12 The IMU with sensitive axes label 
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Figure 13 IMUs on the pitching arm 

3.1 INTRODUCTION OF COORDINATES FLOW CHART 

In order to obtain anatomical motion quantities, for example, shoulder internal/external rotation, 

kinematic quantities captured by IMUs should be transformed to corresponding anatomical 

coordinate frames. The deployment in Figure 13 indicates that a total of five coordinate frames 

need to be defined, which are shown in Figure 14. The name of each coordinate frame and its 

axes is listed as follows: 

Fg (Xg, Yg, Zg): global coordinate frame; 

Fum (Xum, Yum, Zum): upper arm coordinate frame;  

Fium (Xium, Yium, Zium): coordinate frame of IMU deployed on upper arm; 

Ffm (Xfm, Yfm, Zfm): forearm coordinate frame;  

Fifm (Xifm, Yifm, Zifm): coordinate frame of IMU deployed on forearm.  

The axis directions of the five coordinate frames are determined as follows: the direction of 

global frame Fg is defined according to the specific project. In this study, Yg
 is horizontal and 
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toward the throwing target, while Xg is perpendicular to Yg and points to the right side if the 

subject is standing face to the target. The axis directions of the two IMUs are pre-defined and 

labeled as shown in Figure 12. The two anatomical frames, Fum and Ffm are defined while the 

throwing arm is in anatomical neutral posture: subject is standing still with arm pointing 

vertically downward, elbow fully extended and palm facing towards anterior direction (as shown 

in Figure 13). Then the origins of the two frames are fixed to the distal ends of the two arm 

segments respectively, i.e. elbow and wrist. The longitudinal axes of the two arm segments, 

forearm and upper arm, are defined as Zfm and Zum respectively, with their senses being positive 

in the vertically upward direction. Yfm and Yum are horizontal and towards the anterior direction, 

while Xfm and Xum are also horizontal and towards lateral direction. The anatomical frames are 

fixed to their respective body segment as soon as they are defined. A special case that is useful in 

calibration and in setting up the initial attitude is when the subject stands on the test field, faces 

the target with throwing arm in anatomical neutral posture, the coordinate frames Fum, Ffm and Fg 

are aligned with each other, but with their origins offset by fixed translations. 

 

 

Figure 14 Definition of coordinate frames 

In three dimensional human motion analysis, anatomical, kinematic and kinetic quantities are 

represented by 3×1 vectors which are written as �⃑�𝑣12  in this work. The subscript 1 represents 
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content of this vector while the superscript 2 indicates the coordinate frame in which this vector 

is expressed. For example, the relative position of shoulder to elbow is a vector which can be 

represented in upper arm frame as 𝐿𝐿𝑠𝑠𝑠𝑠/𝑒𝑒𝑒𝑒
𝑢𝑢𝑢𝑢 = [0 0 𝑙𝑙]𝑇𝑇, where l is the length of the upper arm. 

When the attitude of the upper arm needs to be determined, this vector must be expressed in the 

global coordinate frame, i.e. 𝐿𝐿𝑠𝑠𝑠𝑠/𝑒𝑒𝑒𝑒
𝑔𝑔  to provide meaningful information. In this example, 𝐿𝐿𝑠𝑠𝑠𝑠/𝑒𝑒𝑒𝑒

𝑢𝑢𝑢𝑢  

and 𝐿𝐿𝑠𝑠𝑠𝑠/𝑒𝑒𝑒𝑒
𝑔𝑔  are the same vector in space, but expressed in two different coordinate frames: Fum 

and Fg respectively. This coordinate frame transformation of a vector expression can be realized 

by a rotation matrix. A rotation matrix is a 3×3 matrix in 3 dimensional space, and is written as 

𝑅𝑅𝑎𝑎𝑒𝑒 in this work. 𝑅𝑅𝑎𝑎𝑒𝑒 represents transformation of a vector expression from frame a to frame b. 

According to the matrix theory, a pure rotation matrix without scaling has the following 

properties: 

Property 1: �⃑�𝑣1𝑒𝑒 = 𝑅𝑅𝑎𝑎𝑒𝑒 ∙ �⃑�𝑣1𝑎𝑎 ( 1 ) 

Property 2: 𝑅𝑅𝑎𝑎𝑒𝑒 = (𝑅𝑅𝑒𝑒𝑎𝑎)𝑇𝑇 ( 2 ) 

Property 3: ‖𝑟𝑟𝑖𝑖‖ = �𝑐𝑐𝑗𝑗� = 1 (𝑖𝑖 = 1,2,3 𝑗𝑗 = 1,2,3) ( 3 ) 

Property 4: 𝑟𝑟𝑖𝑖 ∙ 𝑟𝑟𝑗𝑗 = 0 𝑎𝑎𝑎𝑎𝑎𝑎 𝑐𝑐𝑖𝑖 ∙ 𝑐𝑐𝑗𝑗 = 0 (𝑖𝑖 = 1,2,3 𝑗𝑗 = 1,2,3 𝑖𝑖 ≠ 𝑗𝑗) ( 4 ) 

Property 5: 𝑅𝑅𝑎𝑎𝑒𝑒 = 𝑅𝑅𝑛𝑛−1𝑒𝑒 ∙ 𝑅𝑅𝑛𝑛−2𝑛𝑛−1 ⋯𝑅𝑅12 ∙ 𝑅𝑅𝑎𝑎1 ( 5 ) 

where 𝑟𝑟𝑖𝑖 means row i and 𝑐𝑐𝑗𝑗 means column j of any rotation matrix 𝑅𝑅𝑎𝑎𝑒𝑒 .  In Property 1, �⃑�𝑣1𝑎𝑎and �⃑�𝑣1𝑒𝑒 

are the same vector but represented in Fa and Fb respectively. The rotation matrix 𝑅𝑅𝑎𝑎𝑒𝑒 transforms 

the vector expression from Fa to Fb without changing the physical quantity of the vector. 

Property 2 indicates the opposite direction of coordinate frame transformation can be realized by 

transpose of the rotation matrix. Property 3 means the magnitude of each row 𝑟𝑟𝑖𝑖 and column 𝑐𝑐𝑗𝑗 is 

unity; this property is valid for pure rotation without scaling. Property 4 indicates orthogonality 
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between rows or columns. Property 5 indicates that the combined effect of multiple coordinate 

frame transformations is equal to a single transform from the start frame to the end frame. 

The coordinate frame transform analysis could be simple and intuitive when a small number 

of frames are involved. However, as more and more IMUs are networked to study the arm 

segments and even the whole body motion, a large number of coordinate frames are involved 

which imply a complicated and sometimes tedious analysis and calculation. Inspired by the 

finite-state machine (FSM) theory in computer programming (Chow 1978) and discrete event 

system control (Ramadge and Wonham 1989), a graphical tool is designed to deal with the 

coordinate frames transform issue, which is named the Coordinate Flow Chart (CFC) in this 

work.  

Elementary components constructing a CFC include coordinate frame, transform line, and 

transform condition. Figure 12 depicts a sample CFC.  A coordinate frame is represented by an 

ellipse, which is labeled by its name. Transform lines (solid or dashed) connect any two frames 

with an arrowhead indicating the transform operation direction. The transform condition is 

associated with a transform line, and consists of a time series of rotation matrices that transform 

the vector expression from current frame to target frame at every time instant. Since in real 

applications, the initial rotation matrix and its following instantaneous rotation matrices are 

usually obtained by different mathematical methods, the transform condition is explicitly written 

as initial transform condition 𝑅𝑅𝑎𝑎𝑒𝑒(0), and instantaneous transform condition 𝑅𝑅𝑎𝑎𝑒𝑒(𝑎𝑎 > 0) (that is, a 

rotation at any time instant after the initial time). 

Two basic coordinate frame transform scenarios are defined as direct transform (Figure 15), 

and indirect transform (Figure 16). A transform operation is considered to be direct when the 

transform conditions, both initial rotation matrix 𝑅𝑅𝑎𝑎𝑒𝑒(0)  and instantaneous rotation matrices 



26 
 

𝑅𝑅𝑎𝑎𝑒𝑒(𝑎𝑎 > 0) , can be obtained by methods established in section 3.3 (IMU-body segment 

alignment procedure)  and 3.4 (instantaneous rotation matrix updating procedure) . For example, 

the transform between the IMU frame and the body segment it is attached on can be obtained by 

the alignment procedure explained in section 3.3. However, the transform between the IMU 

frame and the body segment frame the IMU is not attached on, for instance transform between an 

IMU attached on the forearm and the upper arm anatomical frame, has to involve other 

coordinate frame transform operations. This will be considered as an indirect transform.  

In a direct frame transform scenario, shown as Figure 15, the line on the top demonstrates a 

transform operation from Fa to Fb which is realized by rotation matrices 𝑅𝑅𝑎𝑎𝑒𝑒(0) and 𝑅𝑅𝑎𝑎𝑒𝑒(𝑎𝑎 > 0). 

The line on the bottom has an opposite direction indicating transform operation from Fb to Fa. 

From Property 2 of rotation matrices, it is obvious that when a transform condition of one 

transform direction is obtained, the opposite direction can be easily calculated by the matrix 

transpose operation.  

 

 

Figure 15 Direct frame transform 

 

Figure 16 Indirect frame transform 
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When the rotation matrices between two coordinate frames are not available, an indirect 

frame transform can be established via intermediate frame(s). For instance, in Figure 16, the 

frame transform operation from Fa to Fb is achieved by two intermediate steps of transform: 

 Fa  → Fi: 𝑅𝑅𝑎𝑎𝑖𝑖 (0),𝑅𝑅𝑎𝑎𝑖𝑖 (𝑎𝑎 > 0) ( 6 ) 

 Fi  → Fb: 𝑅𝑅𝑖𝑖𝑒𝑒(0),𝑅𝑅𝑖𝑖𝑒𝑒(𝑎𝑎 > 0) ( 7 ) 

From Property 5, the indirect frame transform steps can be combined as:  

 Fa  → Fb: �
𝑅𝑅𝑎𝑎𝑒𝑒(0) = 𝑅𝑅𝑖𝑖𝑒𝑒(0) ∙ 𝑅𝑅𝑎𝑎𝑖𝑖 (0)

𝑅𝑅𝑎𝑎𝑒𝑒(𝑎𝑎 > 0) = 𝑅𝑅𝑖𝑖𝑒𝑒(𝑎𝑎 > 0) ∙ 𝑅𝑅𝑎𝑎𝑖𝑖 (𝑎𝑎 > 0)
 ( 8 ) 

The number of intermediate frames can be more than 1 in large scale coordinate frame network. 

While multiple intermediate frames are involved, the transform condition is obtained by 

multiplication of transform matrices following the sequence of the transform path.  

3.2 COORDINATE FLOW CHART OF THROWING ARM 

As shown in Figure 14, five coordinate frames have been defined for motion analysis of two arm 

segments during throwing. Based on the coordinate flow chart theory introduced in the previous 

section, the CFC of a two-segment throwing arm is constructed in Figure 17: two IMU frames 

Fium and Fifm, two anatomical frames Fum and Ffm, and the global frame Fg are placed at arbitrary 

topology. Four direct transforms can be built and demonstrated by solid lines: 

Fium → Fg: transform from upper arm IMU frame to global frame; 

Fifm → Fg: transform from forearm IMU frame to global frame; 

Fium → Fum: transform from upper arm IMU frame to upper arm frame; 
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Fifm → Ffm: transform from forearm IMU frame to forearm frame; 

These direct transform conditions can be obtained by IMU and arm segment alignment 

procedure (section 3.3), IMU initial attitude calibration procedure (section 3.4.1), and 

instantaneous IMU attitude updating procedure (section 3.4.2). To simplify the CFC, the 

transform line is only shown in one direction. Three indirect transforms are indicated by dashed 

lines in Figure 17 which can be obtained by combined direct transforms. 

 

 

Figure 17 CFC of two segment pitching arm 

3.3 ALIGNMENT MATRIX 

The alignment matrix is the rotation matrix that correlates the IMU coordinate frame and that of 

the corresponding body segment to which the IMU is attached. In this work, two alignment 

matrices need to be established, 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  and 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 . In some applications, the IMU is considered to 

be attached firmly with its coordinate axes coinciding with the subject’s axes (Liu, Liu et al. 

2009; Sagawa, Abo et al. 2009; El-Gohary and McNames 2012). However, in real situations, 
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especially human motion analysis, the alignment cannot be guaranteed due to the uneven muscle 

surface. Thus, the misalignment between IMU frame and body segment frame is unknown and 

will dramatically degrade the accuracy of kinematics and dynamics reconstruction thereafter. In 

the work reported by Brennan et. al. (Brennan, Zhang et al. 2011), error caused by ignoring 

alignment matrix is evaluated using an instrument gimbal. The results demonstrated that the 

alignment is an important factor in evaluation of biomechanics using IMUs.  

In the literature, various alignment methods have been proposed. They share a common idea: 

when a known direction motion, linear acceleration or rotation, is imposed on the IMU, the 

mathematical correlation that exists between the known motion vector and IMU digital reading 

vector is:  

 �⃑�𝑣𝑒𝑒 = 𝑅𝑅𝑖𝑖𝑒𝑒 ∙ �⃑�𝑣𝑖𝑖 ( 9 ) 

where �⃑�𝑣𝑒𝑒  is the motion vector with known direction, linear acceleration or rotation along 

anatomical axes, while �⃑�𝑣𝑖𝑖 is the sensor output vector recorded by IMU and represented in the 

IMU frame. Assume the body segment frame has axes (𝑋𝑋𝑒𝑒 𝑌𝑌𝑒𝑒 𝑍𝑍𝑒𝑒) and the IMU frame has 

axes (𝑥𝑥𝑖𝑖 𝑦𝑦𝑖𝑖 𝑧𝑧𝑖𝑖). The elements of the rotation matrix 𝑅𝑅𝑒𝑒𝑖𝑖  can be written as (Diebel 2006): 

 𝑅𝑅𝑒𝑒𝑖𝑖 = �
cos(𝑋𝑋𝑒𝑒, 𝑥𝑥𝑖𝑖) cos(𝑌𝑌𝑒𝑒, 𝑥𝑥𝑖𝑖) cos(𝑍𝑍𝑒𝑒 ,𝑥𝑥𝑖𝑖)
cos(𝑋𝑋𝑒𝑒,𝑦𝑦𝑖𝑖) cos(𝑌𝑌𝑒𝑒 ,𝑦𝑦𝑖𝑖) cos(𝑍𝑍𝑒𝑒 ,𝑦𝑦𝑖𝑖)
cos(𝑋𝑋𝑒𝑒 , 𝑧𝑧𝑖𝑖) cos(𝑌𝑌𝑒𝑒 , 𝑧𝑧𝑖𝑖) cos(𝑍𝑍𝑒𝑒 , 𝑧𝑧𝑖𝑖)

� = �
𝑋𝑋𝑥𝑥 𝑌𝑌𝑥𝑥 𝑍𝑍𝑥𝑥
𝑋𝑋𝑦𝑦 𝑌𝑌𝑦𝑦 𝑍𝑍𝑦𝑦
𝑋𝑋𝑧𝑧 𝑌𝑌𝑧𝑧 𝑍𝑍𝑧𝑧

� ( 10 ) 

where cos(𝑋𝑋𝑒𝑒, 𝑥𝑥𝑖𝑖) means cosine of the angle between the two coordinate axes, 𝑋𝑋𝑒𝑒 and 𝑥𝑥𝑖𝑖. When 

a motion vector along the 𝑋𝑋𝑒𝑒 axis is imposed on the IMU, the normalized sensors triplet output is 

the first column of 𝑅𝑅𝑒𝑒𝑖𝑖 . Repeating the same procedure for 𝑌𝑌𝑒𝑒 and 𝑍𝑍𝑒𝑒 will fully determine the 9 

elements of 𝑅𝑅𝑒𝑒𝑖𝑖 . The key is choosing appropriate motion vectors. Favre et. al.(Favre, Jolles et al. 

2008; Favre, Aissaoui et al. 2009) applied hip abduction/adduction movement without any 

movement of knee joint, thereby allowing the alignment matrices of the IMUs on thigh and 
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shank to be determined. Luinge, H. et. al. (Luinge, Veltink et al. 2007) applies pronation and 

supination movement to align the IMU and forearm coordinate frames. In order to eliminate the 

effect of sensor noise, integration of gyroscope or accelerometer readings over time is usually 

used.  

In this work, the alignment procedure is carried out after the IMUs have been firmly attached 

to the throwing arm of the subject. While the arm is in the anatomical neutral posture, the upper 

arm frame and forearm frame axes directions are defined as in Figure 18(a). The two anatomical 

planes, sagittal plane and coronal plane, are marked as SP and CP respectively as shown in 

Figure 18(b).  The subject then performs the following two-step procedure: 

Step 1: The subject stands still at the standard anatomical neutral posture for around 5 

seconds to allow the accelerometers to record the vertical gravity vector which is coincident with 

anatomical axes 𝑍𝑍𝑢𝑢𝑢𝑢 and 𝑍𝑍𝑖𝑖𝑢𝑢; 

Step 2: The subject performs shoulder flexion/extension rotation in sagittal plane (SP) which 

lets the gyroscopes capture the angular velocity about the horizontal axis toward the lateral side, 

i.e. 𝑋𝑋𝑢𝑢𝑢𝑢 and 𝑋𝑋𝑖𝑖𝑢𝑢, shown as in Figure 18(b).  The rotation is completed 5 times. 

Mathematically, the process amounts to finding three unknown columns, 𝒄𝒄𝑖𝑖 , of the two 

alignment matrices,  𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢  and 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 , whose matrix form can be noted as 𝑅𝑅𝑖𝑖∗𝑢𝑢∗𝑢𝑢 = [𝒄𝒄1 𝒄𝒄2 𝒄𝒄3]. 

The accelerometer readings from each IMU at step 1 are marked as STA as shown in Figure 19. 

Acceleration reading over this quiet time is averaged and normalized to unity to get the third 

column 𝒄𝒄3 of the respective IMU’s alignment matrix. One of the rotation direction (positive or 

negative) of gyroscope readings from each IMU at step 2 are labelled as ROTi, and  integrated 

with respect to time and normalized to unity to get the vector 𝒄𝒄1𝑡𝑡 . Then the second and first 

columns of the respective IMU’s alignment matrices are calculated by Eqs. ( 11 ) and ( 12 ): 
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 𝒄𝒄2 =
𝒄𝒄3 × 𝒄𝒄1𝑡𝑡

‖𝒄𝒄3 × 𝒄𝒄1𝑡𝑡‖
 ( 11 ) 

 𝒄𝒄1 =
𝒄𝒄2 × 𝒄𝒄3
‖𝒄𝒄2 × 𝒄𝒄3‖

 ( 12 ) 

 

 

Figure 18 Alignment procedures; SP: sagittal plane, CP: coronal plane 

Assuming the IMUs are firmly attached on the arm segments without relative motion, the 

instantaneous rotations are also determined by the alignment matrix, i.e. 

 �
𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (0) = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑎𝑎 > 0)
𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 (0) = 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 (𝑎𝑎 > 0) ( 13 ) 

 

 

Figure 19 Alignment procedure data 
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3.4 QUATERNION BASED ROTATION MATRIX CONSTRUCTION 

This section discusses another method to construct direct coordinate transforms between two 

frames in Figure 17, namely the transforms from the IMU frames to the global frame: Fium → Fg 

and Fifm → Fg. While the IMU is moving arbitrarily in three dimensional space, the attitude of 

the coordinates Xi-Yi-Zi is changing all the time, indicated in Figure 20. Here subscript i stands 

for IMU frame, and could be either Fium or Fifm. Meanwhile, the accelerometer is detecting the 

superposition of the vertically upward reactive force GR caused by gravity (Lobo and Dias 2003) 

and the IMU’s linear acceleration a. In other words, this combined acceleration is projected onto 

the IMU coordinate frame which has unknown attitude. In order to obtain the expression of 

IMU’s linear acceleration a in global frame, the rotation matrices that relate the IMUs’ frames to 

the global frame must be obtained to transform the acceleration expression in IMU frame to the 

global frame. In this two segment arm case shown in Figure 17, 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢
𝑔𝑔  and 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢

𝑔𝑔  need to be 

determined.  

 

 

Figure 20 Acceleration measurement and coordinate frames 

Several mathematical methods have been developed to describe the attitude of a rigid body 

and deal with the vector rotation problem, such as Euler angles, unit quaternion, direction cosine 

matrix and so forth (Diebel 2006). In this study, the quaternion based rotation matrix 
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construction technique is applied considering its ease of programming and calculation, as well as 

the fact that it does not have a singularity problem which is associated with the Euler angle 

representation (Diebel 2006). The Eq. ( 14 ) shows different forms of the four element 

quaternion. It has scalar part 𝑞𝑞0 and vector part e, which contains the rotation information that 

relates two different coordinate frames: frame 1 has rotated with respect to the unit direction 

vector [𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 𝑢𝑢𝑧𝑧] through an angle 𝜃𝜃 to frame 2. According to the definition, the norm of the 

quaternion, calculated as in Eq. ( 15 ), must be unity in order to assure a pure rotation without 

scaling (Kuipers 1999; Diebel 2006).  

 𝐪𝐪 = �

𝒒𝒒𝟎𝟎
𝒒𝒒𝟏𝟏
𝒒𝒒𝟐𝟐
𝒒𝒒𝟑𝟑

� = �𝒄𝒄𝒄𝒄𝒄𝒄
𝜽𝜽
𝟐𝟐

𝒖𝒖𝒙𝒙𝒄𝒄𝒔𝒔𝒔𝒔
𝜽𝜽
𝟐𝟐

𝒖𝒖𝒚𝒚𝒄𝒄𝒔𝒔𝒔𝒔
𝜽𝜽
𝟐𝟐

𝒖𝒖𝒛𝒛𝒄𝒄𝒔𝒔𝒔𝒔
𝜽𝜽
𝟐𝟐
� = �𝒒𝒒𝟎𝟎𝒆𝒆 � ( 14 ) 

 
‖𝐪𝐪‖ = �𝒒𝒒𝟎𝟎𝟐𝟐 + 𝒒𝒒𝟏𝟏𝟐𝟐+𝒒𝒒𝟐𝟐𝟐𝟐 + 𝒒𝒒𝟑𝟑𝟐𝟐 ( 15 ) 

3.4.1 Initial rotation matrix 

The initial quaternion represents the attitude of the IMU at the beginning of motion. While the 

IMU is in any stationary attitude, the only inertial force imposed on the accelerometer is the 

gravitational reactive force GR, whose direction is strictly aligned with +𝑍𝑍𝑔𝑔 axis in the global 

coordinate frame.  Consider the IMU on upper arm, i.e. ium for example, the normalization of 

the accelerometer output �𝑎𝑎𝑥𝑥𝑖𝑖𝑢𝑢𝑢𝑢 𝑎𝑎𝑦𝑦𝑖𝑖𝑢𝑢𝑢𝑢 𝑎𝑎𝑧𝑧𝑖𝑖𝑢𝑢𝑢𝑢�  during this stationary period, which is shown as 

the right side of the Eq. ( 16 ), is the projection of the unit axis +𝑍𝑍𝑔𝑔 onto the Fium coordinates: 

 [𝑟𝑟1 𝑟𝑟2 𝑟𝑟3] =
�𝑎𝑎𝑥𝑥𝑖𝑖𝑢𝑢𝑢𝑢 𝑎𝑎𝑦𝑦𝑖𝑖𝑢𝑢𝑢𝑢 𝑎𝑎𝑧𝑧𝑖𝑖𝑢𝑢𝑢𝑢�

|𝑮𝑮𝑮𝑮|  ( 16 ) 
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To reach the initial quaternion, the intermediate step is to calculate the corresponding Euler 

angles sequence (ϕ θ ψ), relating the initial attitude of Fium with Fg, which is derived as follows 

(Diebel 2006):  

 �
𝜙𝜙
𝜃𝜃
𝜓𝜓
� = �

atan2(𝑟𝑟2, 𝑟𝑟3)
− asin(𝑟𝑟1)

0
� ( 17 ) 

where the definition of the four quadrant inverse tangent function is:   

 atan2(𝑦𝑦, 𝑥𝑥) = �
atan(𝑦𝑦 𝑥𝑥⁄ ) 𝑖𝑖𝑖𝑖 𝑥𝑥 > 0    

atan(𝑦𝑦 𝑥𝑥⁄ ) − 𝜋𝜋 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0 ∧ 𝑦𝑦 < 0
atan(𝑦𝑦 𝑥𝑥⁄ ) + 𝜋𝜋 𝑖𝑖𝑖𝑖 𝑥𝑥 < 0 ∧ 𝑦𝑦 > 0

 ( 18 ) 

With the Euler angle triplets in Eq. ( 17 ), the initial quaternion, indicated by n=0 in Eq. ( 19 

), and its corresponding rotation matrix can be calculated based on quaternion algebra theories 

(Kuipers 1999; Diebel 2006): 

 𝐪𝐪𝑛𝑛=0 = �

𝑐𝑐𝜙𝜙/2𝑐𝑐𝜃𝜃/2𝑐𝑐𝜓𝜓/2 + 𝑠𝑠𝜙𝜙/2𝑠𝑠𝜃𝜃/2𝑠𝑠𝜓𝜓/2
−𝑐𝑐𝜙𝜙/2𝑐𝑐𝜃𝜃/2𝑐𝑐𝜓𝜓/2 + 𝑠𝑠𝜙𝜙/2𝑐𝑐𝜃𝜃/2𝑐𝑐𝜓𝜓/2
𝑐𝑐𝜙𝜙/2𝑠𝑠𝜃𝜃/2𝑐𝑐𝜓𝜓/2 + 𝑠𝑠𝜙𝜙/2𝑐𝑐𝜃𝜃/2𝑠𝑠𝜓𝜓/2
𝑐𝑐𝜙𝜙/2𝑐𝑐𝜃𝜃/2𝑠𝑠𝜓𝜓/2 − 𝑠𝑠𝜙𝜙/2𝑠𝑠𝜃𝜃/2𝑐𝑐𝜓𝜓/2

� ( 19 ) 

 𝑅𝑅𝑖𝑖
𝑔𝑔(𝐪𝐪𝑛𝑛=0) = �

𝑞𝑞𝑛𝑛,0
2 + 𝑞𝑞𝑛𝑛,1

2 − 𝑞𝑞𝑛𝑛,2
2 − 𝑞𝑞𝑛𝑛,3

2 2�𝑞𝑞𝑛𝑛,1𝑞𝑞𝑛𝑛,2 − 𝑞𝑞𝑛𝑛,0𝑞𝑞𝑛𝑛,3� 2�𝑞𝑞𝑛𝑛,1𝑞𝑞𝑛𝑛,3 + 𝑞𝑞𝑛𝑛,0𝑞𝑞𝑛𝑛,2�
2�𝑞𝑞𝑛𝑛,1𝑞𝑞𝑛𝑛,2 + 𝑞𝑞𝑛𝑛,0𝑞𝑞𝑛𝑛,3� 𝑞𝑞𝑛𝑛,0

2 − 𝑞𝑞𝑛𝑛,1
2 + 𝑞𝑞𝑛𝑛,2

2 − 𝑞𝑞𝑛𝑛,3
2 2�𝑞𝑞𝑛𝑛,2𝑞𝑞𝑛𝑛,3 + 𝑞𝑞𝑛𝑛,0𝑞𝑞𝑛𝑛,1�

2�𝑞𝑞𝑛𝑛,1𝑞𝑞𝑛𝑛,3 + 𝑞𝑞𝑛𝑛,0𝑞𝑞𝑛𝑛,2� 2�𝑞𝑞𝑛𝑛,2𝑞𝑞𝑛𝑛,3 + 𝑞𝑞𝑛𝑛,0𝑞𝑞𝑛𝑛,1� 𝑞𝑞𝑛𝑛,0
2 − 𝑞𝑞𝑛𝑛,1

2 − 𝑞𝑞𝑛𝑛,2
2 + 𝑞𝑞𝑛𝑛,3

2
� ( 20 ) 

where c and s are simplified expression of cos and sin functions. The subscript 𝑎𝑎 = 0 indicates 

the initial quaternion calculation. For instantaneous rotation matrices explained in the next 

section, 𝑎𝑎 = 1,2,⋯𝑘𝑘.  

It is worth mentioning that the yaw angle 𝜓𝜓 is set to zero because only a vertical reference 

vector (gravity reactive force) is used for the initial orientation calculation. To correct the yaw 

angle, the environmental magnetism was usedand calibrated as shown in Figure 21. The IMU is 

placed on a 4 feet tall wood stand and aligned such that its coordinate frame is coincident with 
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the predefined global coordinate frame. Then the magnetometer’s reading determines the angle 𝛼𝛼 

between 𝑋𝑋𝑔𝑔 and the horizontal component of the environmental magnetism, 𝑀𝑀ℎ. 

 
 

 
(a) Environmental magnetism calibration   (b) heading angle compensation 

Figure 21 Initial heading angle calculation 

Assume the magnetometer’s reading at the arbitrary stationary period is 𝑴𝑴𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡. Apply the 

rotation matrix obtained in Eq. ( 20 ) on 𝑴𝑴𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡 , and take the first two elements to get its 

horizontal component 𝑀𝑀ℎ
′  as in Eq. ( 21 ): 

 𝑀𝑀ℎ
′ = 𝒆𝒆12 ∙ �𝑅𝑅𝑖𝑖

𝑔𝑔(𝐪𝐪𝑛𝑛=0) ∙ 𝑴𝑴𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡� ( 21 ) 

where 𝒆𝒆12 is the operational matrix to take the first two components of 𝑴𝑴𝑠𝑠𝑡𝑡𝑎𝑎𝑡𝑡, 

 𝒆𝒆12 = �1 0 0
0 1 0� ( 22 ) 

Assume the counterclockwise angle from 𝑀𝑀ℎ to 𝑀𝑀ℎ
′  is 𝛼𝛼′, then the yaw angle is corrected to 

be: 

 𝜓𝜓 = 𝛼𝛼 + 𝛼𝛼′ ( 23 ) 

And then plug the newly updated yaw angle into Eq. ( 19 ) and ( 20 ) to get the fully determined 

initial quaternion and rotation matrix.  
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3.4.2 Instantaneous rotation matrix 

After the initial quaternion is determined, the instantaneous quaternion will be changing while 

the IMU is undergoing arbitrary rotations. The function for updating the instantaneous 

quaternion is given by Eq. ( 24 ):  

 𝑎𝑎
𝑎𝑎𝑑𝑑
𝐪𝐪 =

1
2
Ω�𝛚𝛚𝑖𝑖� ∙ 𝐪𝐪 ( 24 ) 

where the 4×4 matrix Ω�𝛚𝛚𝑖𝑖� is constructed by 𝛚𝛚𝑖𝑖: the angular velocity vector expressed with 

respect to the IMU coordinate frame, i.e. the output of the gyroscope. Detailed mathematical 

derivation can be found in (Kuipers 1999; Diebel 2006).  

 Ω�𝛚𝛚𝑖𝑖� = �

0 −𝜔𝜔𝑥𝑥
𝜔𝜔𝑥𝑥 0

−𝜔𝜔𝑦𝑦 −𝜔𝜔𝑧𝑧
𝜔𝜔𝑧𝑧 −𝜔𝜔𝑦𝑦

𝜔𝜔𝑦𝑦 −𝜔𝜔𝑧𝑧
𝜔𝜔𝑧𝑧 𝜔𝜔𝑦𝑦

0 𝜔𝜔𝑥𝑥
−𝜔𝜔𝑥𝑥 0

� ( 25 ) 

This updating process will possibly deviate the quaternion from its unity norm. A practical 

manipulation in (Sabatini 2006; Wang, Hsu et al. 2010) has been applied in this work, i.e. at 

every step, the updated quaternion will is  forced to be normalized to unity: 

 𝐪𝐪𝑛𝑛+ =
𝐪𝐪𝑛𝑛−

‖𝐪𝐪𝑛𝑛−‖
 ( 26 ) 

where the superscript (-) represents the result calculated by Eq. ( 26 ) at time step n, and (+) 

means the normalized quaternion which will be applied for the following steps and rotation 

matrix calculation. Since the quaternion at every sample moment is available, the instantaneous 

rotation matrix can be determined by Eq. ( 20 ). 
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3.5 CHAPTER SUMMARY 

This chapter has established the essential theoretical fundamentals of the coordinate frame flow 

chart towards the coordinate frame transformation problem involved in multi-IMU application. 

On the basis of this newly developed method, the CFC of the two-segment throwing arm, as well 

as the associated coordinate frame transforms have been built. Some of the transformations were 

directly obtained by the alignment procedure (3.3) and the instantaneous rotation matrix updating 

procedure (3.4). Some of the indirect transforms were formed by superposition of multiple direct 

transforms suggested by the CFC.   

The CFC can be systematically expanded to involve more coordinate frames to analyze even 

whole body movement and different types of motions. On the basis of the rotation matrices 

obtained in this chapter, anatomical arm rotations will be explained in detail in the next chapter.  
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4.0  UPPER EXTREMITY KINEMATIC ANALYSIS FOR THROWING 

Overhead throwing is a representative kinematic chain motion involving all body segments from 

the feet to the hand. Theoretically, multiple IMUs must be placed on all of these body segments 

to get the complete kinematic chain motion. In order to keep the work in a compact form while 

still delivering enough necessary information regarding reconstruction of the kinematic chain, 

only throwing arm kinematics and dynamics are studied in this work by using two IMUs. The 

motion analysis procedures developed in the following chapters can later be extended to whole 

body kinematic or kinetic study without much modification. This chapter focuses on kinematics 

analysis and is divided into two sections. Section 4.1 explains how to reconstruct the trajectory 

of the throwing arm for spatial analysis of the kinematic chain while section 4.2 focuses on 

quantitatively analyzing the timing of arm segment rotations, which could be a useful tool for 

temporal analysis of the kinematic chain. Experimental validation is also carried out and results 

for each study will be addressed in respective sections. Section 4.3 briefly summarizes this 

chapter. 
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4.1 UPPER EXTREMITY TRAJECTORY RECONSTRUCTION 

4.1.1 Theory and method 

During the throwing motion, the accelerometer undergoes a combination of gravitational 

acceleration and the IMU’s own linear acceleration. This combined acceleration projects to the 

IMU’s coordinate frame whose orientation is changing all the time. With the initial and 

instantaneous rotation matrices obtained in section 3.4, the expression of accelerometer output 

can be transformed into Fg. Thus, the gravitational acceleration can be removed to get the IMU’s 

acceleration:  

 𝒂𝒂𝑖𝑖𝑢𝑢𝑢𝑢
𝑔𝑔 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢

𝑔𝑔 ∙ 𝒂𝒂𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢 − 𝑮𝑮𝑮𝑮𝑔𝑔 ( 27 ) 

 𝑮𝑮𝑮𝑮𝑔𝑔 = [0 0 |𝑔𝑔|]𝑇𝑇 ( 28 ) 

where 𝒂𝒂𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢  is the output of the accelerometer, i.e. acceleration of the IMU on upper arm 

(indicated by subscript ium) expressed in the IMU frame (indicated by the superscript ium). The 

coordinate frame transform operation (indicated by 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢
𝑔𝑔 ) will transform the expression from 

Fium into Fg. 𝑮𝑮𝑮𝑮𝑔𝑔 is the gravitational reaction acceleration expressed in Fg. The integration of 

𝒂𝒂𝑖𝑖𝑢𝑢𝑢𝑢
𝑔𝑔  with respect to time leads to velocity and trajectory of the IMU observed in the global 

frame: 

 𝒗𝒗𝑖𝑖𝑢𝑢𝑢𝑢
𝑔𝑔 = �𝒂𝒂𝑖𝑖𝑢𝑢𝑢𝑢

𝑔𝑔 ∙ 𝑎𝑎𝑑𝑑 ( 29 ) 

 𝒄𝒄𝑖𝑖𝑢𝑢𝑢𝑢
𝑔𝑔 = �𝒂𝒂𝑖𝑖𝑢𝑢𝑢𝑢

𝑔𝑔 ∙ 𝑎𝑎𝑑𝑑2 ( 30 ) 

The kinematics of the IMU on the forearm can be obtained by the same way demonstrated by 

Eqs ( 27 ) to ( 30 ). 
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Since the arm segments are assumed to be rigid bodies, the trajectory of the arm can be 

reconstructed on the basis of the position of the IMU and the attitude of the arm segment in Fg. 

The position vector of the proximal end (shoulder) and distal end (elbow) relative to the IMU can 

be written as three element column vectors in the upper arm coordinate system, and likewise the 

position vector of the elbow can be written as a vector in the forearm coordinate system:  

 𝒍𝒍𝑠𝑠𝑠𝑠/𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = [0 0 𝑙𝑙1]𝑇𝑇 ( 31 ) 

 𝒍𝒍𝑒𝑒𝑒𝑒/𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = [0 0 −𝑙𝑙2]𝑇𝑇 ( 32 ) 

 𝒍𝒍𝑒𝑒𝑒𝑒/𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 = [0 0 𝑙𝑙3]𝑇𝑇 ( 33 ) 

where 𝑙𝑙1, 𝑙𝑙2 and 𝑙𝑙3 are scale values measured as soon as the IMUs are deployed on subject’s arm 

from the geometric center of sensors to bony locations. According to the coordinate directions 

defined in Figure 18, positive or negative signs are assigned appropriately.  

To transform these position vectors from Fum and Ffm to Fg, the indirect coordinate frame 

transform is constructed as shown in Figure 22.  

 

 

Figure 22 Indirect transform from upper arm frame to global frame 

Then, the position vectors in Fg can be determined: 

 𝒄𝒄𝑠𝑠𝑠𝑠
𝑔𝑔 = 𝑅𝑅𝑢𝑢𝑢𝑢

𝑔𝑔 ∙ 𝒍𝒍𝑠𝑠𝑠𝑠/𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 + 𝒄𝒄𝑖𝑖𝑢𝑢𝑢𝑢

𝑔𝑔  ( 34 ) 

 𝒄𝒄𝑒𝑒𝑒𝑒(𝑢𝑢𝑢𝑢)
𝑔𝑔 = 𝑅𝑅𝑢𝑢𝑢𝑢

𝑔𝑔 ∙ 𝒍𝒍𝑒𝑒𝑒𝑒/𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 + 𝒄𝒄𝑖𝑖𝑢𝑢𝑢𝑢

𝑔𝑔  ( 35 ) 
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 𝒄𝒄𝑒𝑒𝑒𝑒(𝑖𝑖𝑢𝑢)
𝑔𝑔 = 𝑅𝑅𝑖𝑖𝑢𝑢

𝑔𝑔 ∙ 𝒍𝒍𝑒𝑒𝑒𝑒/𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 + 𝒄𝒄𝑖𝑖𝑖𝑖𝑢𝑢

𝑔𝑔  ( 36 ) 

 𝒄𝒄𝑤𝑤𝑡𝑡
𝑔𝑔 = 𝒄𝒄𝑖𝑖𝑖𝑖𝑢𝑢

𝑔𝑔  ( 37 ) 

Eqs. ( 35 ) to ( 37 ) will be calculated for every sample time instant, although (t) is omitted in 

parameter expression. The location of IMU on the forearm (ifm) is very close to the wrist, thus 

the position vector of the wrist (𝒄𝒄𝑤𝑤𝑡𝑡
𝑔𝑔 ) is considered to be equivalent to that of the IMU on the 

forearm (𝒄𝒄𝑖𝑖𝑖𝑖𝑢𝑢
𝑔𝑔 ) as shown in Eq. ( 37 ). Due to various error sources existing in the sensor, 

measurement and calculation, the elbow position calculated by the two methods, Eqs. ( 35 ) and ( 

36 ), may have different results. However, the anatomical constraint does not allow any ‘break’ 

of the joint, so the corrected elbow position is obtained by: 

 𝒄𝒄𝑒𝑒𝑒𝑒
𝑔𝑔 = 𝑤𝑤 ∙ 𝒄𝒄𝑒𝑒𝑒𝑒(𝑢𝑢𝑢𝑢)

𝑔𝑔 + (1 − 𝑤𝑤) ∙ 𝒄𝒄𝑒𝑒𝑒𝑒(𝑖𝑖𝑢𝑢)
𝑔𝑔  ( 38 ) 

where 𝑤𝑤 and (1 − 𝑤𝑤) are  weight factors that express the reliability of the results calculated by 

Eqs. ( 35 ) and ( 36 ) respectively. In this work, the two IMUs are assumed to accumulate same 

amount of error. Thus, 𝑤𝑤 = 0.5 is used for elbow trajectory correction. 

4.1.2 Results and application example 

Two IMUs were firmly placed on the throwing arm by elastic bands and medical tape as shown 

in Figure 13. The measurement specification of the IMUs in use is listed in Table 3. The IMUs 

are calibrated as explained in Appendix A.  

The IMU alignment procedure was performed to obtain the alignment matrices, as explained 

in section 3.3. As mentioned in A.2.1, the bias of the gyroscope was calibrated before every trial. 

Taking account of the fact that the output of the gyroscope while stationary is actually zero 

angular velocity, the subject was asked to stand still at rest posture for 5 seconds which allowed 
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the gyroscope to record zero velocity output. Meanwhile, during this period, the accelerometer 

was measuring gravity and magnetometer was measuring pre-calibrated environmental magnetic 

field. These sensor outputs are used for initial attitude calculation. After this 5 second stationary 

period, the subject was asked to throw a foam ball at a low level of exertion which ensured that 

the motion would not saturate the inertial sensors (in particular the angular rate gyros).  

 
Table 3 Manufacturer specification of the IMU. 

Sensor type Range Sensitivity 

Accelerometer ±24(g) 0.012 (g/digit) 

Gyroscope ±2,000 (°/sec) 0.07 (°/sec/digit) 

Magnetometer 1.3 (Ga) 5 (mGa/digit) 

 

The procedures are summarized as follows: 

Step 1: System calibration and initialization: the IMUs were calibrated following the 

calibration protocol explained in 0; 

Step 2: Sensor deployment: two IMUs were attached on the upper arm and the forearm 

respectively; 

Step 3: IMU alignment: the subject was asked to stand still with throwing arm at anatomical 

neutral posture for 5 seconds, then perform shoulder flexion/extension with elbow fully extended 

in sagittal plane for 5 repetitions. More details can be found in section 3.3; 

Step 4: Throwing motion: the subject was asked to hold a foam ball stationary for 5 seconds, 

then throw the ball towards the target using baseball pitching technique but at low level of 

exertion.  
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The flow chart of the data processing algorithm for reconstructing the IMU and arm 

trajectories is shown in Figure 23. In this flow chart, ellipse shapes indicate data sets while 

rectangular shapes stand for subroutines of the data processing algorithm. 

 

 

Figure 23 Flow chart of the kinematics reconstruction algorithm 

In Figure 23, [Alignment algorithm] consists of Eq. ( 10 ) to ( 13 ) explained in section 3.3. 

The <throwing test data> is divided into <stationary data> and <dynamic data>. The <stationary 

data> goes through the [initial quaternion calculation] algorithm demonstrated by Eqs. ( 16 ) to ( 

23 ), while the <dynamic data> as well as <initial quaternion> and <gyroscope bias> is 

processed by the instantaneous [kinematics reconstruction] procedure shown by Eqs. ( 24 ) to ( 

26 ) and ( 30 ). The [rigid body kinematics] algorithm rebuilds the arm segment kinematics based 

on results obtained above. The algorithm software and data processing procedure has been 

programmed and tested in Matlab (Inc. 2012). 

Results of arm segment trajectory reconstructed by IMU data are shown in Figure 24. The 

series of red and blue lines represent position of the upper arm and forearm, respectively, at each 

sample time instant. The point of view is defined as follows: the subject stands with left shoulder 

(right hand thrower) towards the target, and faces the observer. Thus, the view from the observer 

is side view, and the view towards the target is the back view. The start point can be identified 



44 
 

from the side view plot. The elbow starts at the (0, 0) position where the upper arm and forearm 

create an angle in front of the body with the hands together (the so-called “set position” for a 

pitcher), which is also the ready posture of the subject. The two black lines represent trajectories 

of the IMUs. However, before application of the anatomical constraint, the error and inaccurate 

anatomy measurement cause mismatch of 𝒄𝒄𝑒𝑒𝑒𝑒(𝑢𝑢𝑢𝑢)
𝑔𝑔  and 𝒄𝒄𝑒𝑒𝑒𝑒(𝑖𝑖𝑢𝑢)

𝑔𝑔 . This error is obvious in Figure 

24, as the forearm and upper arm are disconnected at each sample moment, which can be 

identified by the gap between blue lines and red lines. After applying the anatomical constraint, 

the corrected arm trajectory plot is shown in Figure 25. 

With this arm trajectory plot, coaches or players are able to visually identify the throwing 

mechanics, and can use that information to make decisions for improvements. As shown in 

Figure 26, different stages of throwing motion can be identified from the arm trajectory, 

however, the transition from one stage to the next is somewhat subjective and, with the exception 

of quantitative information, the arm trajectory plot is essentially the same as analyzing high-

speed video. Because IMU hardware is potentially able to sample at over 1,000 Hz, the data 

allows coaches or players to see small details of arm motion.  It will be shown in the following 

sections that the IMU-based data can provide much more insight into the throwing motion than 

simply arm trajectory. 
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Figure 24 Arm trajectory reconstruction without anatomical constraint  

 

Figure 25 Arm trajectory reconstruction with anatomical constraint  

 



46 
 

 

Figure 26 Visual identification of throwing mechanics based on trajectory plot 

4.1.3 Experimental validation with video camera based motion capture system 

In this section, a validation experiment is designed in order to validate the functionality of the 

system for trajectory reconstruction of the overhead throwing motion. The experimental setup is 

shown in Figure 27.  The Vicon motion capture system was applied to provide reference motion 

data for validation purposes. A set of reflective markers were attached at body landmarks on the 

subject. While the subject performed throwing motions, the two systems captured and recorded 

kinematics data simultaneously. To be more specific, the Vicon system recorded position data of 

those reflective markers while IMUs collected acceleration and angular velocity data of arm 

segments. The Vicon system was calibrated to 1 mm accuracy for location data, which was 

accurate enough for validating the kinematics reconstruction system designed in this work. The 

test lab, video camera based motion capture system as well as its data processing were provided 

by Human Movement & Balance Laboratory of University of Pittsburgh. All of the experiment 

protocol design, test procedure and data processing have been reviewed and approved by 
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Institutional Review Board of the University of Pittsburgh. Consent was obtained from each test 

subject prior to participation in the test. Test data and any privacy information were all saved in 

secured lab computer in University of Pittsburgh with authorized access and password.   

 
 

 

Figure 27 Validation experiment setup  

The trajectory calculated by the IMU data was compared to the location data recorded by the 

markers attached on the two IMUs. The trajectory comparison breaks down into three axes, as 

shown in Figure 28. The three plots on left column are show the comparison of the IMU and 

marker deployed on the forearm, while the right column shows the comparison of the upper arm 

IMU and its marker.  

The difference between the two sets of results is quantified in Table 4. RMSE represents the 

root mean square error between the two trajectories under comparison, shown as Eq. ( 39 ),  

 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 = �
1
𝑁𝑁
��𝑅𝑅𝑢𝑢(𝑘𝑘) − 𝑅𝑅𝚤𝚤�(𝑘𝑘)�

2
𝑁𝑁

𝑘𝑘=1

 ( 39 ) 
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Figure 28 Displacement comparison between IMU and Vicon marker 

Because the Vicon system and the IMU system are recording data at different start moments 

and different sampling frequencies, the Vicon system’s sample time series will be used as 

reference for interpolating IMU’s data. In Eq. ( 39 ), 𝑺𝑺𝒎𝒎(𝒌𝒌) is the position of the markers at 

sample time instant k, while 𝑺𝑺𝒊𝒊� (𝒌𝒌) is the position calculated by the IMU data and interpolated 

into sample time instant k which is same as that of Vicon system result. The RMSE is divided by 

the motion range on each respective axis to produce % of RMSE: 

 % 𝑜𝑜𝑖𝑖 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 =
𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑖𝑖

�𝑅𝑅𝑢𝑢,𝑖𝑖,𝑢𝑢𝑎𝑎𝑥𝑥 − 𝑅𝑅𝑢𝑢,𝑖𝑖,𝑢𝑢𝑖𝑖𝑛𝑛�
 ( 40 ) 

where 𝑅𝑅𝑢𝑢,𝑖𝑖,𝑢𝑢𝑎𝑎𝑥𝑥  and 𝑅𝑅𝑢𝑢,𝑖𝑖,𝑢𝑢𝑖𝑖𝑛𝑛  are maximum and minimum marker positions for axis i, so that 

�𝑅𝑅𝑢𝑢,𝑖𝑖,𝑢𝑢𝑎𝑎𝑥𝑥 − 𝑅𝑅𝑢𝑢,𝑖𝑖,𝑢𝑢𝑖𝑖𝑛𝑛� is the travel range of the marker on axis i. 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅𝑖𝑖 is calculated by Eq. ( 39 ) 

for a specific axis. The correlation coefficient shown in the last column of Table 5 indicates the 

similarity of the two trajectories. 

In Table 4, it is indicated that using the IMUs for kinematics reconstruction is a feasible 

approach. The IMU hardware specification limited the accuracy level in this work, which is, 

however, still good enough for system validation purposes. The IMUs are working at 250 Hz in 
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this work due to hardware limits. If a higher sampling frequency is achieved by using better 

design of sensor hardware, more accurate results can be obtained in future work. 

Table 4 Trajectory comparison results of Vicon system and IMU system 

  Axis RMSE (m) % of RMSE Correlation coefficient 

Forearm IMU 
X 0.0191 6.37% 0.965 
Y 0.1434 7.15% 0.996 
Z 0.0132 2.64% 0.999 

Upper arm IMU 
X 0.0272 6.8% 0.989 
Y 0.1043 6.52% 0.997 
Z 0.0184 6.13% 0.997 

 

Note 1: The validation was carried out based on the comparison between IMU trajectory 

calculated by IMU itself and a video camera system. The specific anatomical bony landmark 

trajectory, e.g. trajectory of the shoulder, was not evaluated. The reasons are: from the Eqs. ( 34 ) 

to ( 37 ), the accuracy of bony landmark trajectory reconstruction depends on the accuracy of the 

IMU’s trajectory, arm segment attitude and position vector, for example 𝒄𝒄𝑖𝑖𝑢𝑢𝑢𝑢
𝑔𝑔 , 𝑅𝑅𝑢𝑢𝑢𝑢

𝑔𝑔  and 𝒍𝒍𝑠𝑠𝑠𝑠/𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢  

respectively in Eq. ( 34 ). Since the arm segments have uneven and changeable skin surface 

during motion, the accurate anatomical measurement, 𝒍𝒍𝑠𝑠𝑠𝑠/𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢  , is very hard to achieve. The 

direct comparison of anatomical spot trajectory will contain unpredictable error in 𝒍𝒍𝑠𝑠𝑠𝑠/𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 , which 

will degrade the functionality and accuracy of the algorithm designed in this work. Thus this 

section has validated IMU’s trajectory calculation accuracy, and the arm segment attitude 

calculation is implicitly validated by the following arm rotation velocity validation. Thus, the 

anatomical segment trajectory accuracy will not be evaluated explicitly here. It is worth 

mentioning that if a redundant IMU network is applied to a single body segment, as well as 

application of some anatomical constraint, a better anatomical location measurement could be 

achieved.  
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Note 2: Multiple trials were taken in the experiment validation. However, many trials 

showed large amount of difference between the IMU calculated trajectory and video camera 

captured trajectory. A close investigation showed this issue was due to the inertial sensor 

hardware limitation. All three sensor chips, accelerometer, gyroscope and magnetometer, are 

enable to record data. At the 250Hz frequency, these particular inertial sensors lose data 

frequently. If the data loss happened during key the dynamic period of the test (particularly the 

acceleration stage of the throw), the integration process of the algorithm would have large 

deviation from the true trajectory. Thus, statistical analysis on the trials that includes this data 

cannot present a fair evaluation of the algorithm. The best case is presented here to demonstrate 

the feasibility of the algorithm.  

4.2 UPPER EXTREMITY ROTATIONS RECONSTRUCTION 

4.2.1 Theory and method 

The upper extremity rotations being investigated in this work are upper arm internal and external 

rotation, elbow flexion and extension, and forearm pronation and supination.  For simplification, 

these terms will be annotated as upper arm IN/EX, elbow FX/ES, and forearm PN/SN.  The 

graphical demonstration of the three upper extremity rotations is shown in Figure 29. 

During the process of a typical overhead throwing motion, the acceleration stage is mainly 

made up of by upper arm internal rotation, elbow extension, and forearm pronation. For this 

reason, these three directions are defined as positive, while their counterparts are negative. The 

detailed explanation of the upper extremity rotations is as follows: 
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Figure 29 Demonstration of arm rotations under reconstruction.  

(a) Upper arm IN/EX: the rotation of the upper arm along its longitudinal axis, which is Zum 

as defined in section 3.1. The direction is defined as positive (+Zum)  while rotating internally, 

and negative while rotating externally (-Zum) ; 

(b) Elbow flexion/extension: for the purpose of simplification and ease in calculation, this 

rotation is represented by change  of the angle between the two longitudinal axes of upper arm 

(Zum) and forearm (Zfm), the direction is defined as positive for extension (+), and negative for 

flexion (-); 

(c) Forearm pronation/supination: the rotation of the forearm along its longitudinal axis, 

which is Zfm as defined in section 3.1. The direction is defined as positive for pronation (+Zfm) 

and negative for supination (-Zfm). 

 

 

 



52 
 

Upper arm IN/EX: 

The upper arm is connected to its proximal segment, i.e. upper torso. The measured angular 

velocity by IMU attached on the upper arm is the absolute rotation velocity of the upper arm 

which is superposition of the upper torso rotation and the upper arm rotation about its own 

anatomical axes. Thus, the proximal segment rotation must be subtracted from the IMU 

measurement. In this work, only two IMUs are deployed on arm segments, thus the upper torso 

rotation is neglected for simplification. Because the upper torso rotation is much slower than the 

upper arm, this assumption will not introduce significant error in calculation results. If a third 

IMU is applied and attached at the position of the scapula, the upper torso rotation can be 

subtracted to get better results.  

In order to calculate the anatomical rotation of upper arm, the physical quantities should be 

transformed into Fum. The CFC of this rotation is established as shown in Figure 30. Then the 

equation to calculate the upper arm IN/EX is: 

 𝝎𝝎𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢(𝑑𝑑) = 𝒌𝒌 ∙ �𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑑𝑑) ∙ 𝝎𝝎𝑖𝑖𝑢𝑢𝑢𝑢

𝑖𝑖𝑢𝑢𝑢𝑢(𝑑𝑑)� ( 41 ) 

 𝜔𝜔𝐼𝐼𝑁𝑁 𝐸𝐸𝐸𝐸⁄ (𝑑𝑑) = 𝒆𝒆3𝑇𝑇 ∙ 𝝎𝝎𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢(𝑑𝑑) ( 42 ) 

where 𝝎𝝎𝑖𝑖𝑢𝑢𝑢𝑢
𝑖𝑖𝑢𝑢𝑢𝑢(𝑑𝑑) is angular velocity captured by the gyroscope deployed on the upper arm, it is a 

3×1 vector and expressed in coordinates of Fium. The rotation matrix 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 (𝑑𝑑) transforms the 

gyroscope output into upper arm frame Fum at every sample instant, which is anatomical rotation 

rate. 𝒆𝒆3𝑇𝑇 = [0 0 1]  is an operational vector taking the third element from the upper arm 

rotation velocity vector. With the assumption that the inertial/external rotation velocity is linearly 

distributed on the forearm, which means the proximal side of forearm has zero velocity of 

internal/external rotation while the distal side has the largest value. Since the IMU on the 



53 
 

forearm is not strictly attached on the distal side, a linear interpolation correction factor k is used 

to get upper arm IN/EX:  

 𝒌𝒌 = �

1 0 0
0 1 0

0 0
𝑙𝑙𝑢𝑢𝑢𝑢

𝑙𝑙𝑖𝑖𝑢𝑢𝑢𝑢/𝑠𝑠𝑠𝑠

� ( 43 ) 

where 𝑙𝑙𝑢𝑢𝑢𝑢 is the length of the forearm while  𝑙𝑙𝑖𝑖𝑢𝑢𝑢𝑢/𝑠𝑠𝑠𝑠is the distance from IMU on upper arm to 

the shoulder.   

 

 

Figure 30 CFC for upper arm IN/EX calculation 

Elbow FX/ES: 

The elbow FX/ES angle is defined as the angle between the longitudinal axes of the forearm 

and the upper arm. Define the directional vector of the two longitudinal axes in their own 

coordinate frames, 𝒆𝒆𝑠𝑠𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢  and 𝒆𝒆𝑠𝑠𝑓𝑓𝑢𝑢

𝑖𝑖𝑢𝑢 : 

 𝒆𝒆𝑠𝑠𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = ([0 0 1]𝑇𝑇)𝑢𝑢𝑢𝑢 ( 44 ) 

 𝒆𝒆𝑠𝑠𝑓𝑓𝑢𝑢
𝑖𝑖𝑢𝑢 = ([0 0 −1]𝑇𝑇)𝑖𝑖𝑢𝑢 ( 45 ) 

These two directional vectors are constant while expressed in their own frames. However, 

mathematically, in order to calculate the angle between the two attitude vectors, they must be 

expressed in the same frame Fg. From the CFC shown in Figure 31, the upper arm attitude vector 

will go through the transform: Fum → Fium → Fg while the forearm attitude vector will go 

through the transform: Ffm → Fifm → Fg. 
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Figure 31 CFC for elbow FX/ES calculation 

The corresponding equations are: 

 𝒆𝒆𝑠𝑠𝑢𝑢𝑢𝑢
𝑔𝑔 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢

𝑔𝑔 (𝑑𝑑) ∙ 𝑅𝑅𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢(𝑑𝑑) ∙ 𝒆𝒆𝑠𝑠𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢  ( 46 ) 

 𝒆𝒆𝑠𝑠𝑓𝑓𝑢𝑢
𝑔𝑔 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢

𝑔𝑔 (𝑑𝑑) ∙ 𝑅𝑅𝑖𝑖𝑢𝑢
𝑖𝑖𝑖𝑖𝑢𝑢(𝑑𝑑) ∙ 𝒆𝒆𝑠𝑠𝑓𝑓𝑢𝑢

𝑖𝑖𝑢𝑢  ( 47 ) 

at every sample time instant the angle between the upper arm and forearm is  

 𝛽𝛽(𝑑𝑑) = arccos�
𝒆𝒆𝑠𝑠𝑢𝑢𝑢𝑢
𝑔𝑔 (𝑑𝑑) ∙ 𝒆𝒆𝑠𝑠𝑓𝑓𝑢𝑢

𝑔𝑔 (𝑑𝑑)

�𝒆𝒆𝑠𝑠𝑢𝑢𝑢𝑢
𝑔𝑔 (𝑑𝑑)� ∙ �𝒆𝒆𝑠𝑠𝑓𝑓𝑢𝑢

𝑔𝑔 (𝑑𝑑)�
� ( 48 ) 

and the angular velocity of the elbow FX/ES is: 

 𝜔𝜔𝐹𝐹𝐸𝐸 𝐸𝐸𝐸𝐸⁄ (𝑑𝑑) =
𝑎𝑎
𝑎𝑎𝑑𝑑
�𝛽𝛽(𝑑𝑑)� ( 49 ) 

 Forearm PN/SN: 

 

Figure 32 Demonstration of elbow flexion/extension and forearm pronation/supination 
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Assume the elbow is a hinge joint, which means the forearm is restricted to the plane defined 

by Yum and Zum. The rotation velocity at the proximal end of the forearm (labeled as fm(px)) is the 

superposition of upper arm rotation and elbow FX/ES which is also the relative rotation of the 

fm(px) to distal end of the upper arm (abbreviated as um(ds)). 

 𝝎𝝎𝑖𝑖𝑢𝑢(𝑝𝑝𝑥𝑥)
𝑖𝑖𝑢𝑢 = 𝑅𝑅𝑢𝑢𝑢𝑢

𝑖𝑖𝑢𝑢 ∙ �𝝎𝝎𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 + 𝝎𝝎𝐹𝐹𝐸𝐸 𝐸𝐸𝐸𝐸⁄

𝑢𝑢𝑢𝑢 � ( 50 ) 

where 𝝎𝝎𝐹𝐹𝐸𝐸 𝐸𝐸𝐸𝐸⁄
𝑢𝑢𝑢𝑢  is the vector form of the elbow FX/ES expressed in Fum, with the value of the 

elbow FX/ES and calculated by:  

 𝝎𝝎𝐹𝐹𝐸𝐸 𝐸𝐸𝐸𝐸⁄
𝑢𝑢𝑢𝑢 = [𝜔𝜔𝐹𝐹𝐸𝐸 𝐸𝐸𝐸𝐸⁄ 0 0]𝑇𝑇 ( 51 ) 

𝝎𝝎𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 is the angular velocity of the upper arm expressed in Fum and implicitly calculated by Eq. ( 

43 ). The remaining term in Eq. ( 50 ) is  the rotation matrix 𝑅𝑅𝑢𝑢𝑢𝑢
𝑖𝑖𝑢𝑢. Since there is no direct 

transform between Ffm and Fum, an indirect transform is established as shown in the CFC as 

shown in Figure 33. 

 

 

Figure 33 CFC of indirect transform from upper arm to forearm 
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The indirect coordinates frame transform from Fum to Ffm is established as: 

 Fum → Ffm = Fum → Fium → Fg → Fifm → Ffm ( 52 ) 

and the forearm PN/SN rotation is obtained by: 

 𝜔𝜔𝑃𝑃𝑁𝑁 𝐸𝐸𝑁𝑁⁄ (𝑑𝑑) = 𝒆𝒆3𝑇𝑇 ∙ �𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 (𝑑𝑑) ∙ 𝝎𝝎𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑖𝑖𝑢𝑢(𝑑𝑑) −𝝎𝝎𝑖𝑖𝑢𝑢(𝑝𝑝𝑥𝑥)
𝑖𝑖𝑢𝑢 (𝑑𝑑)� ( 53 ) 

4.2.2 Experiment validation with video camera based motion capture system 

The Vicon motion capture system setup is the same as that explained in Section 4.1.2. Since the 

throwing motion is a complex combination of multiple rotations, a simple experiment routine is 

designed to validate the feasibility of the IMU system in reconstructing the anatomical rotations 

explained in previous sections. During the test, the subject went through the following test 

procedure (detailed protocol includes warm up, calibration and so forth, which is not listed here; 

each step can be carried out at any general arm orientation, unless otherwise specified): 

a) Forearm PN/SN: keeping the upper arm still, rotate the forearm along the longitudinal 

axis to carry out the pronation/supination twice as shown in Figure 29 (c); 

b) Upper arm IN/EX: rotate the upper arm along the longitudinal axis to carry out the 

internal/external rotation twice, as shown in Figure 29 (a); 

c) Elbow FX/ES: flex and extend the elbow to carry out the elbow extension/flexion twice, 

as shown in Figure 29 (b); 

d) Combined rotation: fully extend the elbow, and rotate the upper arm and forearm along 

their longitudinal axis at the same time, as shown in Figure 29 (d).  

Each subject completed each step listed above a total of 10 times, within which 5 cycles were 

performed at a slow speed (about 20% of subject’s maximum capability) and 5 cycles were 
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performed at a fast speed (about 50% of subject’s maximum capability). The slow speed and fast 

speed were subjectively controlled by the subjects, and were used in order to validate the system 

under a large range of rotation velocities. Figure 34 shows a group of example results of the 

angular velocity comparison between the multi-IMUs system (black solid line) and Body-Builder 

(BB) model of the Vicon motion capture system (red solid line).  

As depicted in Figure 34, the general trend of the anatomical arm rotations calculated by the 

two methods match each other very well. It is clear that the multi-IMU system’s results contain 

more high frequency motion information. This is because the marker location data has been 

passed through a low pass filter before numerical differentiation, which may exclude those high 

frequency components. The quantitative comparison results are listed in Table 5. For each 

subject, each arm rotation task was completed 10 times, which means a total 10 trials for each 

rotation were achieved. For example, subject 1 has 10 trials for forearm PN/SN, 10 trials for 

upper arm IN/EX, 10 trials for elbow FX/ES, and 10 trials for combined longitudinal rotation.  

The first column of data in Table 5 for each task shows the range of peak values for the 

particular measure. For instance, subject 1 completed 10 trials of forearm PN/SN, producing 

peak values of forearm rotational velocity ranging from 178 °/s to 635 °/s. The second column of 

data in Table 2 for each task presents the mean value (µ) and standard deviation (σ) of the 

normalized root mean square error (RMSE, comparing BB results to IMU results) for the total 

duration of the task.  

The normalized RMSE is defined as the RMSE between the results of the two systems 

divided by the range of peak angular velocity values (from column 1), as shown in Eq. ( 54 ) 

 𝑁𝑁𝑜𝑜𝑟𝑟𝑁𝑁𝑎𝑎𝑙𝑙𝑖𝑖𝑧𝑧𝑁𝑁𝑎𝑎 𝑅𝑅𝑀𝑀𝑅𝑅𝑅𝑅 =
�∑ �𝑣𝑣𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑣𝑣𝑖𝑖𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑛𝑛�

2𝑛𝑛
𝑖𝑖=1

𝑣𝑣𝑢𝑢𝑎𝑎𝑥𝑥
𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑛𝑛 − 𝑣𝑣𝑢𝑢𝑖𝑖𝑛𝑛

𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑛𝑛 × 100% ( 54 ) 
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where  𝑣𝑣𝑖𝑖𝐼𝐼𝐼𝐼𝐼𝐼  is the angular velocity calculated by the multi-IMU system and interpolated in 

accordance with the sampling rate of 𝑣𝑣𝑖𝑖𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑛𝑛, the angular velocity calculated by Vicon motion 

capture system. 

Since the peak value of the rotation velocity is an important index of performance evaluation, 

and has even been related to injury (Bushnell, Anz et al. 2010; Hurd, Jazayeri et al. 2012), the 

difference between the peak values calculated by the two systems is also provided, which is 

calculated as: 

 𝑝𝑝𝑁𝑁𝑎𝑎𝑘𝑘 𝑣𝑣𝑎𝑎𝑙𝑙𝑢𝑢𝑁𝑁 𝑎𝑎𝑖𝑖𝑖𝑖𝑖𝑖𝑁𝑁𝑟𝑟𝑁𝑁𝑎𝑎𝑐𝑐𝑁𝑁 =
𝑣𝑣𝑝𝑝𝑒𝑒𝑎𝑎𝑘𝑘𝐼𝐼𝐼𝐼𝐼𝐼 − 𝑣𝑣𝑝𝑝𝑒𝑒𝑎𝑎𝑘𝑘𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑛𝑛

𝑣𝑣𝑝𝑝𝑒𝑒𝑎𝑎𝑘𝑘𝑉𝑉𝑖𝑖𝑉𝑉𝑉𝑉𝑛𝑛 × 100% ( 55 ) 

There are 4 peaks within each trial, thus a total of 40 difference measures for peak value 

difference can be obtained for each rotation task. The mean value and standard deviation of the 

40 numbers is listed below the normalized RMSE and placed in parentheses in Table 5.  In 

summary, the normalized RMSE shows the averaged difference over the complete time history, 

and the peak value difference shows the most significant difference. The results in Table 5 

indicate that there is large difference between the peak value calculations of the two systems. 

The worst case happened in the upper arm IN/EX rotation during combined motion of subject 3, 

which is 69.0±39.5%. Meanwhile the normalized RMES is 9.0±1.5%, which suggests that most 

of the difference occurred at the peak values. 

 
Table 5 Normalized RMSE and peak value difference of angular velocity. 

 Forearm PN/SN Upper arm IN/EX Elbow FX/ES Forearm PN/SN in  
combined motion 

Upper arm IN/EX in  
combined motion 

 
Range 
(°/s) µ ± σ (%) Range 

(°/s) µ ± σ (%) Range 
(°/s) µ ± σ (%) Range 

(°/s) µ ± σ (%) Range 
(°/s) µ ± σ (%) 

Sub-01 178-635 4.1±0.5 
(7.4±7.4) 25-445 12.4±5.6 

(-23.9±11.0) 117-320 7.2±2.6 
(6.6±7.3) 125-406 6.7±1.3 

(5.9±10.9) 58-280 5.7±1.0 
(28.5±31.8) 

Sub-02 230-600 3.8±0.5 
(16.6±14.5) 98-231 6.5±1.5 

(7.8±9.5) 95-240 12.9±4.9 
(20.1±40.7) 130-520 11.1±2.8 

(12.9±23.7) 100-370 8.6±2.3 
(54.9±53.0) 

Sub-03 200-634 2.7±0.4 
(4.3±6.2) 80-445 3.5±0.5 

(9.8±10.3) 108-350 5.5±0.7 
(11.5±3.5) 94-550 5.9±1.0 

(43.6±11.6) 58-340 9.0±1.5 
(69.0±39.5) 
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Figure 34 Anatomical arm rotation comparison 
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The anatomical rotation is identified by its direction or the sign of the velocity value. For 

instance, from the anatomical definitions of Figure 29(a), an angular velocity data point above 

zero in Figure 34(b) signifies upper arm internal rotation, while external rotation is indicated by a 

data point below zero. In this way, the kinematic chain timing is determined by the zero-

crossings of the angular velocity plots. The mean values (µ) and standard deviations (σ) of the 

zero-crossing timing difference between the two systems are listed in Table 6.  

 
Table 6 Angular velocity cross zero timing comparison 

 
Forearm PN/SN Upper arm IN/EX Elbow EX/FX Forearm PN/SN  

in combined motion 
Upper arm IN/EX  

in combined motion 

µ (s) σ (s) µ (s) σ (s) µ (s) σ (s) µ (s) σ (s) µ (s) σ (s) 

Sub-01 -0.008 0.044 -0.004 0.033 -0.002 0.129 -0.002 0.065 -0.003 0.046 

Sub-02 -0.007 0.026 -0.003 0.026 -0.013 0.029 -0.033 0.060 0.024 0.060 

Sub-03 -0.009 0.034 -0.012 0.040 -0.006 0.091 0.0004 0.065 -0.04 0.081 

 

Most of the cross zero timing difference is less than 0.01s, and is even smaller than the 

sampling interval of the Vicon motion capture system. The worst case, -0.04±0.081, happened at 

the upper arm IN/EX of combined motion of subject-03. The small difference between zero-

crossing points demonstrates the feasibility of the multi-IMU system in kinematic chain timing 

reconstruction. 

4.2.3 Experiment validation with single axis rotation rig 

The validation results in the previous section illustrate the differences between the multi-IMU 

system developed in this work and video camera based motion capture system, especially at peak 

rotational velocities. The possible error sources could be due to the multi-IMUs, the Vicon 

motion capture system and even the subjects in the test. With regard to the multi-IMU system, 
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possible error sources include IMU calibration errors, sensor specification drift, misalignment 

between the IMU and anatomical frames, integration errors during the quaternion updating 

process, body measurement error and relative motion between IMUs and body segments. 

Potential errors associated with the video camera motion capture system include noise introduced 

by numerical differentiation, loss of sight of the markers, relative motion between markers and 

skin, as well as measurement error of bony landmarks. Because the arm segments are not strict 

rigid bodies, the rotation axes might not be constant. The amount of this inconsistency may vary 

from subject to subject, and thus deteriorate the accuracy of both the IMU algorithm and Vicon 

motion capture system. As a result, the comparison to the video camera motion capture system 

demonstrates the feasibility of the method developed in this paper, but is not able to make a fair 

judgment on the accuracy of the algorithm. It is of significant value to identify these error 

sources and investigate how they affect the accuracy of the two systems, e.g. IMU based system 

and video camera based system. Considering that the focus of this study is on developing the 

IMU-based anatomical rotation reconstruction algorithm and validating its feasibility and 

accuracy, a single axis rotation rig was designed to further investigate the accuracy of the 

algorithm itself by isolating other unknown error sources and eliminating their effects on the 

results. 

As shown in Figure 35, the aluminum IMU holder can be rotated by the manual handle at 

arbitrary speed. The angular displacement is recorded by the optical encoder (5000 

pulses/revolution) which is installed co-axial to the rotation axis, and considered as an accurate 

reference for validation purposes. 
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Figure 35 Experimental setup for single axis rotation rig validation. 

Before the test, the IMU was attached to the holder firmly, similar to how it is attached to the 

forearm of during the human subject experiments. Without sacrificing generality, the IMU was 

arbitrarily attached to the holder and the alignment procedure introduced in section 3.3 was 

carried out to obtain the alignment matrix. In this setup, the IMU frame has the same meaning as 

in section 2.3, and a frame affixed to the rotating shaft takes the place of the forearm and upper 

arm frames. In this way, errors due to skin movement (inconsistent rotation axes) have been 

eliminated. The potential errors are now isolated to inaccuracy of IMU’s calibration, parameter 

drift, and errors of the algorithm (for instance, integration error associated with the quaternion 

updating process). Note that since this rig has only one rotation axis, it cannot imitate the elbow 

FX/ES or any other multi segment movement, but it can be used to mimic the upper arm 

internal/external rotation, and the forearm pronation/supination. 

During the test with the rotation rig, the handle was rotated manually clockwise and 

counterclockwise for two cycles, which mimicked the forearm PN/SN or upper arm IN/EX 

rotation. The angular displacement captured by the optical encoder was recorded at 50Hz and 

differentiated with respect to time to get the rotational velocity. An example comparison plot is 

shown in Figure 36, where the difference between the two systems is hardly visible. For 

statistical purpose, three different attitudes of the IMU on the holder were tested. For each 

attitude, 5 trials were obtained. Example results are shown in Figure 37. The blue solid lines 
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indicate the angular velocity recorded by encoder while the black solid line represents the 

difference between the IMU results and encoder results.  

 
 

 

Figure 36 Comparison between IMU and single axis rotation rig 

 

 

Figure 37 Comparison results on the single axis rotation rig. 
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The quantitative results are presented in Table 7. The mean values of the normalized RMSE 

between IMU system and rotation rig encoder data are less than 1%, while the peak value 

difference is from 0.7% to 1.89%, both of which are significantly improved compared to the 

validation results in the previous section. The mean value of zero-crossing timing difference is 

less than 1 sample interval. The paired t-test indicates that at the significance level of 0.95, there 

is no difference in zero-crossing timing for the two systems.  These results suggest that the IMU 

is capable of accurately capturing segment rotations, and that the differences observed between 

IMU and video motion capture results are not due to IMU calibration, parameter drift, or the 

algorithm developed in this paper. 

 
Table 7 Validation results of the single axis rotation rig experiment. 

 
Attitude 1 Attitude 2 Attitude 3 

µ σ µ σ µ σ 
Normalized RMSE 0.6 (%) 0.2(%) 0.8(%) 0.2(%) 0.8(%) 0.1(%) 

Peak value difference 0.7(%) 0.5(%) 1.7(%) 0.2(%) 1.9(%) 0.6(%) 
Zero-crossing  timing 

difference -0.001(s) 0.008(s) -0.002(s) 0.009(s) -0.002(s) 0.008(s) 

 

4.2.4 Kinematic chain timing of throwing motion 

With the method and algorithm developed in this paper, the throwing motion can be decomposed 

into a combination of anatomical rotations, as shown in Figure 39 using an example data set. The 

complete throwing motion ranges from t=0s to t=2s. The stage from t=0s to t=0.5s is the early 

cocking period and is not shown in Figure 39. According to the zero-crossing timing of these 

rotational velocities, different anatomical rotation stages can be identified. At time t=1.46s, the 

elbow starts to extend, which is also considered to be the start point of the acceleration period of 

the throwing motion in this paper. The elbow extension ends at t = 1.71s. At time t = 1.59s, the 
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upper arm internal rotation begins, and it ends at t = 1.78s. Forearm pronation occurs over the 

time period from t = 1.77s to t=1.84s, which is located at the late stage of the acceleration 

period. The timing bars aligned at the bottom of Figure 39 clearly demonstrate the sequence as 

anatomical rotations propagate to complete the acceleration period of the throwing motion. It is 

worth mentioning that before each accelerating rotation, there is a period of opposite direction of 

rotation (also observed in the plots). For example, before the elbow extension, there is an elbow 

flexion period, which occurs from t = 0.88s to t =1.46s, in order to accumulate potential energy 

to boost the acceleration. Roach et. al. (Roach, Venkadesan et al. 2013) have studied this 

potential energy accumulation phenomenon in throwing motions using a video camera motion 

capture system, as shown in Figure 38. However, in the acceleration phase, the motion sequence 

of shoulder internal rotation, shoulder flexion and elbow extension was not identified. As Figure 

39 illustrates, the multi-IMU system, using the zero-crossing method of angular rates, enables a 

straight-forward way to detail the timing of these anatomical rotations and analyze the kinematic 

chain of throwing more accurately. 

 

 

Figure 38 Decomposed rotations of a throwing motion 
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Figure 39 Anatomical rotation velocity and kinematic chain timing of throwing motion.  

The kinematic chain timing plot, shown in Figure 39, can be projected onto the arm 

trajectory plot, as demonstrated in Figure 40, in order to accurately identify the critical events. 

For example, using this method, the arm position and attitude can be inspected at the start of 

acceleration stage. Then appropriate adjustments of arm posture can be made to improve 

performance.  Note that this method removes all subjectivity of identifying phases of the arm 

motion that were highlighted in Fig. 26. 

  

 

Figure 40 Kinematic chain timing represented on arm trajectory plot 
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4.3 CHAPTER SUMMARY 

In this chapter, the throwing motion kinematics is reconstructed based on the method developed 

in Chapter 3. The trajectory of arm segments during throwing is calculated and validated by the 

video camera based motion capture system. The best case demonstrated the feasibility of the 

newly developed method. The error can be reduced when the hardware is improved on sampling 

frequency and data transmit reliability.  

The arm anatomical rotations are the second part of kinematics reconstruction. There element 

rotations, forearm pronation/supination, elbow flexion/extension and upper arm internal/external 

rotation, are reconstructed. The experiment validation showed there was large amount of 

difference between the multi-IMU system and video camera system on anatomical rotation 

calculation. Then the validation on the single axis rotation rig has proven the multi-IMU system 

as well as the algorithm developed in this work is feasible and accurate in anatomical rotation 

calculation. The error was also partially due to the video camera system. 
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5.0  UPPER EXTREMITY KINETICS ANALYSIS FOR THROWING 

In biomechanics studies, inverse dynamics analysis involves the calculation of kinetic quantities, 

for instance joint force and torque, from recorded kinematics data and a skeletal model (Riener 

and Straube 1997; Ren, Jones et al. 2008). Providing quantitative kinetic evidence, it is a useful 

tool for studying the mechanics of the throwing motion, as well as for monitoring and evaluating 

the risk level of injuries related to throwing (Hurd, Jazayeri et al. 2012; Oyama 2012). The 

conventional way to do inverse dynamics analysis is using camera based motion capture system 

to collect human motion data. In this study, a new approach is presented to carry out inverse 

dynamics analysis for throwing motions using multiple IMUs. 

The overall framework of this multi-IMU based inverse dynamics analysis is shown in 

Figure 41. The raw data will go through coordinate frame transform operations in order to 

represent kinematics data in appropriate anatomical frames. Then these data will be input into an 

inverse dynamics model to calculate the kinetics, which includes total force and torque applied 

on the elbow and shoulder joints in this study. 

 
 

 

Figure 41 Overview of the IMU based inverse dynamics analysis 
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5.1 INVERSE DYNAMICS MODEL OF THROWING ARM 

The inverse dynamics model uses kinematic quantities as inputs to calculate forces and torques 

applied on body segments. The arm model applied in this work is a double pendulum model, 

shown in Figure 42(a), which assumes that arm segments are rigid bodies. The elbow and 

shoulder are treated as ball and socket joints with 3-dimensional range of motion. The rigid body 

dynamics model of forearm and upper arm is demonstrated in Figure 42(b) and Figure 42(c) 

respectively (note that the hand is being lumped into the forearm in this model, as discussed in a 

later section). Although different groups of muscles and ligaments are used to generate forces 

and torques to drive the arm during throwing, the inverse dynamics method cannot identify 

kinetics for each muscle and ligament.  Instead, this method can obtain lumped forces and 

torques applied on joints. 

The IMU on the forearm is able to measure the linear acceleration of the spot to which the 

IMU is attached, as well as the angular velocity of forearm. Thus, according to rigid body 

kinematics theory (Greenwood 2006), linear acceleration of the forearm’s center of mass can be 

obtained by Eq. ( 56 ): 

 𝑎𝑎𝑖𝑖𝑢𝑢𝑉𝑉 = 𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 + 𝛼𝛼𝑖𝑖𝑖𝑖𝑢𝑢 × 𝐿𝐿𝑖𝑖𝑢𝑢𝑉𝑉 𝑖𝑖𝑖𝑖𝑢𝑢⁄ + 𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢 × �𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢 × 𝐿𝐿𝑖𝑖𝑢𝑢𝑉𝑉 𝑖𝑖𝑖𝑖𝑢𝑢⁄ � ( 56 ) 

where 𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢 is the linear acceleration of the IMU on the forearm, 𝐿𝐿𝑖𝑖𝑢𝑢𝑉𝑉 𝑖𝑖𝑖𝑖𝑢𝑢⁄  is the distance from 

IMU to forearm’s center of mass. The parameters of Eq. ( 56 ) come with values represented in 

different frames, so coordinate frame transformations must be performed before calculating the 

result. 
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(a) Demonstration of the double pendulum model of arm 

 

 

(b) Rigid body dynamics of forearm 

 

 
(c) Rigid body dynamics of upper arm 

Figure 42 Rigid body dynamics model of 2-segmental arm 

Besides, the reading of the accelerometer is the superposition of IMU’s linear acceleration 

and gravitational reaction acceleration expressed in IMU’s frame. The linear acceleration of this 

IMU in the forearm frame is obtained by: 

 𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 ∙ �𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑖𝑖𝑢𝑢 − 𝑅𝑅𝑔𝑔

𝑖𝑖𝑖𝑖𝑢𝑢 ∙ 𝐺𝐺𝑅𝑅𝑔𝑔� ( 57 ) 

where 𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑖𝑖𝑢𝑢 is the accelerometer’s reading expressed in its own frame, 𝑮𝑮𝑮𝑮𝑔𝑔 = [0 0 9.81]𝑇𝑇 is the 

gravitational reaction acceleration imposed on the accelerometer, and expressed in the global 

frame with unit 𝑁𝑁2 𝑠𝑠⁄ . 𝑅𝑅𝑔𝑔
𝑖𝑖𝑖𝑖𝑢𝑢 will transform the gravitational reaction acceleration into the IMU 
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frame, within which acceleration vector subtraction can be performed to remove the effect of the 

gravitational reaction force on the accelerometer. With Eq. ( 56 ), Eq. ( 57 ) can be rewritten to 

get the center of mass acceleration expressed in the anatomical frame, i.e. Ffm: 

 𝑎𝑎𝑖𝑖𝑢𝑢𝑉𝑉
𝑖𝑖𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 ∙ �𝑎𝑎𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑖𝑖𝑢𝑢 − 𝑅𝑅𝑔𝑔

𝑖𝑖𝑖𝑖𝑢𝑢 ∙ 𝐺𝐺𝑅𝑅𝑔𝑔�+ 𝛼𝛼𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 × 𝐿𝐿𝑖𝑖𝑢𝑢𝑉𝑉 𝑖𝑖𝑖𝑖𝑢𝑢⁄

𝑖𝑖𝑢𝑢 +𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 × �𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 × 𝐿𝐿𝑖𝑖𝑢𝑢𝑉𝑉 𝑖𝑖𝑖𝑖𝑢𝑢⁄
𝑖𝑖𝑢𝑢 � ( 58 ) 

With the similar analysis procedures, elbow acceleration 𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 and acceleration of upper arm 

center of mass 𝑎𝑎𝑢𝑢𝑢𝑢𝑉𝑉𝑢𝑢𝑢𝑢  can be calculated as shown in Eqs. ( 59 ) and ( 60 ) respectively: 

 𝑎𝑎𝑒𝑒𝑒𝑒𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∙ �𝑎𝑎𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢 − 𝑅𝑅𝑔𝑔𝑖𝑖𝑢𝑢𝑢𝑢 ∙ 𝐺𝐺𝑅𝑅𝑔𝑔�+ 𝛼𝛼𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 × 𝐿𝐿𝑒𝑒𝑒𝑒 𝑖𝑖𝑢𝑢𝑢𝑢⁄
𝑢𝑢𝑢𝑢 + 𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢

𝑢𝑢𝑢𝑢 × �𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 × 𝐿𝐿𝑒𝑒𝑒𝑒 𝑖𝑖𝑢𝑢𝑢𝑢⁄

𝑢𝑢𝑢𝑢 � ( 59 ) 

 
𝑎𝑎𝑢𝑢𝑢𝑢𝑉𝑉
𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∙ �𝑎𝑎𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢 − 𝑅𝑅𝑔𝑔𝑖𝑖𝑢𝑢𝑢𝑢 ∙ 𝐺𝐺𝑅𝑅𝑔𝑔�+ 𝛼𝛼𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 × 𝐿𝐿𝑢𝑢𝑢𝑢𝑉𝑉 𝑖𝑖𝑢𝑢𝑢𝑢⁄

𝑢𝑢𝑢𝑢 + 𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢

× �𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 × 𝐿𝐿𝑢𝑢𝑢𝑢𝑉𝑉 𝑖𝑖𝑢𝑢𝑢𝑢⁄

𝑢𝑢𝑢𝑢 � 
( 60 ) 

where 𝛼𝛼𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 , 𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 , 𝛼𝛼𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 , 𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢  are obtained by Eqs. ( 61 ) to ( 64 ) which transform the IMU’s 

raw data into corresponding anatomical coordinate frames: 

 𝛼𝛼𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∙ 𝛼𝛼𝑖𝑖𝑢𝑢𝑢𝑢𝑖𝑖𝑢𝑢𝑢𝑢 ( 61 ) 

 𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 ∙ 𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢

𝑖𝑖𝑢𝑢𝑢𝑢 ( 62 ) 

 𝛼𝛼𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 ∙ 𝛼𝛼𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑖𝑖𝑢𝑢 ( 63 ) 

 𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 ∙ 𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑖𝑖𝑢𝑢 ( 64 ) 

where  𝜔𝜔𝑖𝑖∗𝑢𝑢
𝑖𝑖∗𝑢𝑢 is angular rate measured by gyroscopes, while 𝛼𝛼𝑖𝑖∗𝑢𝑢𝑖𝑖∗𝑢𝑢 is angular acceleration which is 

obtained by one time differentiation of 𝜔𝜔𝑖𝑖∗𝑢𝑢
𝑖𝑖∗𝑢𝑢.  

The anatomical lengths are measured after the sensors have been set up on the subject’s arm. 

For instance, 𝐿𝐿𝑢𝑢𝑢𝑢𝑉𝑉 𝑖𝑖𝑢𝑢𝑢𝑢⁄
𝑢𝑢𝑢𝑢  is the distance from the upper arm center of mass to the IMU on the 

upper arm, and measured from geometrical center of IMU to the average landmark dimension of 

upper arm center of mass reported by Dempster et. al. (Dempster and Gaughran 1967). Rotation 

matrices applied in this section are obtained by the method introduced in the previous section. 
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With the availability of kinematics data, the equations of motion can calculate the lumped 

force and torque applied on the elbow as shown by Eqs. ( 65 ) and ( 66 ): 

 𝐹𝐹𝑒𝑒𝑒𝑒_𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 = 𝑁𝑁𝑖𝑖𝑢𝑢 ∙ �𝑎𝑎𝑖𝑖𝑢𝑢𝑉𝑉

𝑖𝑖𝑢𝑢 − 𝑅𝑅𝑔𝑔
𝑖𝑖𝑢𝑢 ∙ 𝐺𝐺𝑔𝑔� ( 65 ) 

 𝑇𝑇𝑒𝑒𝑒𝑒_𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 = 𝐼𝐼𝑖𝑖𝑢𝑢/𝑒𝑒𝑒𝑒

𝑖𝑖𝑢𝑢 ∙ 𝛼𝛼𝑖𝑖𝑖𝑖𝑢𝑢
𝑖𝑖𝑢𝑢 + 𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 × �𝐼𝐼𝑖𝑖𝑢𝑢/𝑒𝑒𝑒𝑒
𝑖𝑖𝑢𝑢 ∙ 𝜔𝜔𝑖𝑖𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 � − 𝐿𝐿𝑖𝑖𝑢𝑢𝑉𝑉 𝑒𝑒𝑒𝑒⁄
𝑖𝑖𝑢𝑢

× �𝑁𝑁𝑖𝑖𝑢𝑢 ∙ 𝑅𝑅𝑔𝑔
𝑖𝑖𝑢𝑢 ∙ 𝐺𝐺𝑔𝑔� 

( 66 ) 

where 𝐼𝐼𝑖𝑖𝑢𝑢/𝑒𝑒𝑒𝑒
𝑖𝑖𝑢𝑢  is forearm’s moment of inertia matrix about the elbow joint, and the superscript fm 

indicates this vector is represented in forearm frame. 𝑁𝑁𝑖𝑖𝑢𝑢  is the mass of the forearm.  𝐺𝐺𝑔𝑔 =

[0 0 −9.81]𝑇𝑇 is the gravitational acceleration expressed in the global frame.   

For the same reason, the forces and torques associated with the upper arm muscles and 

ligaments are lumped to the shoulder. The corresponding equations of motion are: 

 𝐹𝐹𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = 𝑁𝑁𝑢𝑢𝑢𝑢 ∙ �𝑎𝑎𝑢𝑢𝑢𝑢𝑉𝑉𝑢𝑢𝑢𝑢 − 𝑅𝑅𝑔𝑔𝑢𝑢𝑢𝑢 ∙ 𝐺𝐺𝑔𝑔� − 𝐹𝐹𝑒𝑒𝑒𝑒_𝑢𝑢𝑢𝑢

𝑢𝑢𝑢𝑢  ( 67 ) 

 
𝑇𝑇𝑠𝑠𝑠𝑠_𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = 𝐼𝐼𝑢𝑢𝑢𝑢/𝑠𝑠𝑠𝑠

𝑢𝑢𝑢𝑢 ∙ 𝑎𝑎𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 + 𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 × �𝐼𝐼𝑢𝑢𝑢𝑢 𝑠𝑠𝑠𝑠⁄

𝑢𝑢𝑢𝑢 ∙ 𝜔𝜔𝑖𝑖𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 � − 𝑇𝑇𝑒𝑒𝑒𝑒_𝑢𝑢𝑢𝑢

𝑢𝑢𝑢𝑢 − 𝐿𝐿𝑒𝑒𝑒𝑒 𝑠𝑠𝑠𝑠⁄
𝑢𝑢𝑢𝑢

× 𝐹𝐹𝑒𝑒𝑒𝑒_𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 − 𝐿𝐿𝑢𝑢𝑢𝑢𝑉𝑉 𝑠𝑠𝑠𝑠⁄

𝑢𝑢𝑢𝑢 × �𝑁𝑁𝑢𝑢𝑢𝑢 ∙ 𝑅𝑅𝑔𝑔𝑢𝑢𝑢𝑢 ∙ 𝐺𝐺𝑔𝑔� 
( 68 ) 

where 𝐼𝐼𝑢𝑢𝑢𝑢/𝑠𝑠𝑠𝑠
𝑢𝑢𝑢𝑢  is upper arm’s moment of inertia matrix about shoulder joint, 𝐹𝐹𝑒𝑒𝑒𝑒_𝑢𝑢𝑢𝑢

𝑢𝑢𝑢𝑢  and 𝑇𝑇𝑒𝑒𝑒𝑒_𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢  are 

elbow joint force and torque respectively applied on the upper arm, and demonstrated in Eqs. ( 

69 ) and ( 70 ): 

 𝐹𝐹𝑒𝑒𝑒𝑒_𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢 ∙ (−𝐹𝐹𝑒𝑒𝑒𝑒_𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 ) ( 69 ) 

 𝑇𝑇𝑒𝑒𝑒𝑒_𝑢𝑢𝑢𝑢
𝑢𝑢𝑢𝑢 = 𝑅𝑅𝑖𝑖𝑢𝑢𝑢𝑢𝑢𝑢 ∙ (−𝑇𝑇𝑒𝑒𝑒𝑒_𝑖𝑖𝑢𝑢

𝑖𝑖𝑢𝑢 ) ( 70 ) 
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5.2 EXPERIMENT DEMONSTRATION AND RESULTS 

The experiment validation setup, protocol and procedure are the same as those in the previous 

chapter. In order to validate the functionality and feasibility of the inverse dynamics analysis 

method in this work, only one subject’s data is used. The subject was asked to throw a foam ball 

at a low level of exertion in order to avoid sensor saturation. The kinematics data was recorded 

by the IMUs during throwing. 

The statistical properties of body segments, including weight and center of mass, are listed in 

Table 8 (Dempster and Gaughran 1967).  These statistical values are used in this work. Because 

the hand is lumped to forearm in this model, the ratio of segment mass to the total body mass is 

adjusted to 2.1%, while the distance from proximal end to center of mass is adjusted to 57.3% of 

forearm length. Considering both forearm and upper arm to be ideal cylinders, the inertial 

properties were calculated and listed in Table 9. 

 
Table 8 Properties of body segments 

 Upper arm Forearm & hand 
Distance from proximal 
end to center of mass (%) 43.7 57.3 

Ratio of segment mass to 
the total mass (%) 2.6 2.1 

 

Table 9 Parameters of body segments of subject 

Total mass (kg) 55 
Upper arm length (m) 0.20 
Forearm length (m) 0.22 

Moment of inertia of forearm (kg∙m2) diag (0.0188, 0.0188, 0.0005) 
Moment of inertia of upper arm (kg∙m2) diag (0.0194, 0.0194, 0.0012) 
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Applying these parameters and kinematic data as inputs to the inverse dynamics model, i.e. 

Eqs. ( 56 ) to ( 68 ), kinetics data can be generated. A sample test result on the human subject is 

shown in Figure 43.  

 

 

(a) Decomposed anatomical arm rotations 

 

(b) Magnitude of total force on elbow and shoulder  

 

(c) Magnitude of total torque on elbow and shoulder 

Figure 43 Inverse dynamics results of throwing motion 

Figure 43(a) breaks down the arm motion into anatomical rotations, i.e. upper arm 

internal/external rotation, elbow flexion/extension and forearm pronation/supination. The 

acceleration stage of this sample throw starts at 1.61s when the elbow starts to extend, and 
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continues to 2.04s when the forearm pronation ends. This stage is highlighted by the grey areas 

on the three plots. Figure 43(b) and (c) demonstrates the magnitude of total force and torque 

applied on joints respectively during the throwing motion. From these plots, key events can be 

identified, such as peak torque and peak force of joints, as well as how they relate to anatomical 

rotations. Based on this information, it may be possible to evaluate the injury risk for each joint. 

Projecting the peak joint force onto the arm trajectory plot, as shown in Figure 44, is an 

intuitive way to identify the riskiest moment during throwing and to inspect the movement 

mechanics.  

 

 

(a) Peak shoulder force moment 

 

(b) Joint force demonstrated on arm trajectory plot 

Figure 44 Projection of peak shoulder force moment onto arm trajectory plot 

Another possible application of the inverse dynamics analysis is decomposing the total force 

and joint torque into pre-defined anatomical axes. As shown in Figure 45(a), the total torque on 
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the shoulder has been decomposed into radial and longitudinal direction. Because the moment of 

inertia about the longitudinal direction is relatively much smaller than that of the radial 

directions, the longitudinal component dominates the torque on the shoulder as shown in Figure 

45(b). This decomposition can be carried out on any pre-defined anatomical coordinate axes in 

order to deliver useful information for injury analysis.  

 

(a) Decomposition of the shoulder torque 

 

(b) Magnitude of radial and longitudinal torque on shoulder 

Figure 45 Decomposition of the shoulder torque into radial and longitudinal directions 

5.3 CHAPTER SUMMARY 

This chapter has presented a new approach to carry out inverse dynamics analysis of throwing 

motions using the multi-IMU system designed in the previous chapters. A rigid body skeletal 

model of the throwing arm is built to calculate the kinetics quantities associated with elbow and 
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shoulder. A human subject experiment was presented to illustrate the method’s use in measuring 

the kinetics of the throwing motion. The accuracy of this method will be validated in the future 

as it requires comparison to known standard force/torque measurement in a multiple body 

system. This method will enable monitoring of throwing kinetics with wearable IMUs, and may 

open the door to quantitative kinetics monitoring and injury risk evaluation. 
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6.0  DIGITAL FILTER DESIGN FOR SPORTS MOTION SIGNAL 

Depending on the sensor signal types, numerical differentiation on raw data will be unavoidable 

in human motion signal processing. For example, in order to obtain angular acceleration of body 

segments for inverse dynamics calculations, a single differentiation at each time point must be 

applied on the gyroscope’s output. This operation will introduce large errors because noise 

contained in raw data will be magnified by differentiation. The often-used solution is to design a 

low-pass filter to suppress noise before numerical differentiations. However, studies in recent 

years have reported that this method will also distort high frequency components in motion 

signals, which becomes more problematic as motion’s speeds increase. Sometimes, those high 

frequency contents contain important information in specific human motion, for instance the 

impact force applied on the knee joint when jumping (Bisseling and Hof 2006; Kristianslund, 

Krosshaug et al. 2012). The throwing motion under study in this work is also such a case because 

high frequency signals dominate the acceleration stage of the throwing motion. In this chapter, 

the signal property will be investigated and a new digital filter will be designed to remove noise 

while keeping high frequency content during the dynamic period. 
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6.1 DRAWBACK OF THE CONVENTIONAL LOW-PASS FILTER  

In order to investigate the effect of digital filters on sports motion signals, a baseline angular 

velocity signal of throwing motion was created. In the first place, a single axis gyroscope’s 

digital reading was taken from a sample throwing motion. To remove the influence of unknown 

noise, a 3rd order Butterworth filter with normalized cutoff frequency of 0.3 was applied to get a 

smooth baseline angular velocity signal as shown in Figure 46(a). From the beginning to the 

sample point 900 is a quiet period, while sample points 900 to 1400 is a dynamic period, which 

is followed by another quiet period again to the end. A single numerical differentiation was 

applied on this angular velocity signal to obtain the baseline angular acceleration as shown in 

Figure 46(b). Note the increase in noisiness of the differentiated signal, although the numerical 

acceleration signal is still close to zero during the quiet periods. 

 

 
(a) baseline angular velocity signal 

 

 
(b) baseline angular acceleration signal 

Figure 46 Baseline signal of angular velocity and angular acceleration 
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Noises with different characteristics can be superposed on the baseline signal to study the 

effect of the digital filter. A white noise signal with magnitude 50 was superposed on the 

baseline angular velocity signal to represent the noisy signal and to demonstrate the feasibility of 

a new digital filter design for use in dynamic sports motion data. 

Unsurprisingly, numerical differentiations will magnify noises significantly. As shown in 

Figure 47, only a single differentiation was performed on the noisy angular velocity to obtain the 

angular acceleration signal (red), which is compared to the baseline numerical angular 

acceleration (blue). The noise was magnified throughout the whole time history of the signal. For 

a camera-based motion capture system, this problem would be even worse since two numerical 

differentiation steps must be applied on marker position data to calculate both linear and angular 

accelerations.  

 

 
Figure 47 Effect of numerical differentiation on noise 

The conventional method to deal with noise in motion capture system signals, both of IMU 

and video camera based system, is to apply a low-pass filter on the raw data before any 

numerical differentiations. To reproduce the drawbacks of this method, a low-pass filter (3rd 

order Butterworth filter with normalized cutoff frequency = 0.1) was applied on the noisy 

angular velocity signal to remove noise, and then a single differentiation was applied to get the 



81 
 

numerical angular acceleration signal. Figure 48 demonstrates the comparison between the 

filtered angular acceleration and its baseline signal. The noise at the still period was effectively 

removed by the low-pass filter. However, because the high frequency components dominate the 

dynamic period (roughly from sample points 900 to 1400) of throwing motion, this low-pass 

filter distorted the real signal content, especially those spikes which may contain important 

information on performance. In order to overcome the drawbacks of conventional low-pass 

filters, i.e. removing noise effectively without large distortion of the dynamic period signal, a 

switchable cut-off frequency low-pass filter will be developed in the next section.  

 

Figure 48 Comparison of LP filtered angular acceleration and baseline signal 

6.2 FILTER DESIGN 

Throwing motion consists of a quiet period and a dynamic period. The dynamic period includes 

acceleration and follow through stages which have relative higher signal magnitude and faster 

change rate compared to the quiet period which mainly contains cocking stage. An ideal filter, 

intuitively, should have switchable cut-off frequency which is able to remove high frequency 

noise during the quiet period while keep the high frequency signal components during the 

dynamic period. The wavelet transform is able to provide time information of discontinuities in a 
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signal. It is applied in this work to detect stage change time between quiet and dynamic periods. 

The structure of the filter designed in this work is shown in Figure 49. The raw motion data will 

go through a wavelet transform to get the stage change time information, which will decide the 

moment that the cut-off frequency needs to be switched. Then the raw motion data will be passed 

through this low-pass filter using different cut-off frequencies. It is worth noting that only two 

different cut-off frequencies are included in the switchable low-pass filter in this work because 

two different stages, quiet and dynamic, are defined in throwing motion signal. If more stages 

can be recognized during throwing, more cut-off frequencies can be included to treat different 

stages of the signal.  

 

 

Figure 49 Structure of adaptive filter 

After error and trial, a one-layer wavelet transform is applied in this work, whose structure is 

shown in Figure 50(a). A one-layer transform will decompose the raw signal (S) into level-1 

approximation (A1) and level-1 detail (D1). The wavelet function applied is ‘db1’ as shown in 

Figure 50(b). The wavelet toolbox in Matlab was used to demonstrate the prototype of this 

digital filter.  
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(a) one layer wavelet transform      (b) db1 wavelet function  

Figure 50 Wavelet transform structure and wavelet function 

After applying the one-layer wavelet transform on the noisy angular velocity signal S, A1 

and D1 components are shown in Figure 51. D1 contains the high frequency component of the 

signal S. During the still period, most of the high frequency components are white noise. During 

the dynamic period, high frequency components on the D1 plot include both white noise and the 

high frequency motion signal. Thus, the stage change can be recognized on the D1 plot.  Namely, 

a threshold of D1 amplitude is used to recognize a stage change. 

 

 

Figure 51 Wavelet transform of motion signal. A1: level 1 approximation; D1: level 1 detail. 

After error and trial, a threshold of ±100 is applied on D1 to detect stage change time as t1 

and t2, as shown in Figure 52. Therefore the dynamic period was determined to be from moment 

t1 to t2.  
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Figure 52 Stage change time captured by threshold =±100 

The switchable cut-off frequency low-pass filter (SLP) was based on a 3rd-order Butterworth 

filter whose general form is shown in Eq. ( 71 ): 

 𝐻𝐻(𝑧𝑧) =
𝑏𝑏(0) + 𝑏𝑏(1)𝑧𝑧−1 + 𝑏𝑏(2)𝑧𝑧−2 + 𝑏𝑏(3)𝑧𝑧−3

𝑎𝑎(0) + 𝑎𝑎(1)𝑧𝑧−1 + 𝑎𝑎(2)𝑧𝑧−2 + 𝑎𝑎(3)𝑧𝑧−3
 ( 71 ) 

In this work, only two different stages were recognized by the wavelet transform, thus two 

normalized cut-off frequencies were predefined:  𝜔𝜔𝑛𝑛 = 0.1 for the quiet period and 𝜔𝜔𝑛𝑛 = 0.3 for 

the dynamic period. Their corresponding parameter values are listed in Table 10.  

After applying the SLP on the noisy angular velocity signal, a single differentiation was 

applied on the filtered signal to get the angular acceleration signal, which is compared to its 

baseline signal in Figure 53 (note that the blue line in Fig. 44 is the same as that in Fig. 37(b)). 

 
Table 10 Value of digital filter parameters 

𝜔𝜔𝑛𝑛 𝑎𝑎(0), 𝑎𝑎(1),𝑎𝑎(2), 𝑎𝑎(3) 𝑏𝑏(0), 𝑏𝑏(1), 𝑏𝑏(2), 𝑏𝑏(3) 

0.1 1, -2.3741, 1.9294, -0.5321 0.0029, 0.0087, 0.0087, 0.0029 

0.3 1, -1.1619, 0.6959, -0.1378 0.0495, 0.1486, 0.1486, 0.0495 
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Figure 53 Comparison of SLP filtered angular acceleration and baseline signal 

The comparison of Figure 47, Figure 48 and Figure 53 can draw the qualitative conclusion 

that the SLP filter is able to remove noise effectively during quiet periods and avoid signal 

distortion during the dynamic periods. The quantitative analysis is as follows: Table 11 lists the 

RMSE of processed angular acceleration data compared to the baseline signal at different stages. 

Note that the numbers in this table are based on the digital readings so are in units of bits. A 

perfect filter would result in RMSE values of zero, indicating that the filter returns an exact 

replica of the original (noiseless) signal.  It is obvious that the conventional low pass filter can 

remove the noise during quiet periods but still has large errors during dynamic periods.  The SLP 

filter, on the other hand, is almost as effective in removing quite period noise, but has improved 

fidelity during the dynamic period. 

 
Table 11 RMSE of processed signal compared to baseline signal at different stages:  

NLP: no filter, LP: conventional low-pass filter, SLP: switchable cut-off frequency filter 

 Quiet period Dynamic period 

NLP 41.29 42.45 

LP 1.99 26.41 

SLP 2.12 19.69 
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In order to compare the effect of different filters on the peak values, four spikes were picked 

as shown in Figure 54. The comparison was performed between the filtered and baseline signals. 

The relative error e is defined as   

 𝑁𝑁 =
�𝑝𝑝𝑖𝑖 − 𝑝𝑝𝑒𝑒�

𝑝𝑝𝑒𝑒
× 100% ( 72 ) 

where  𝑝𝑝𝑒𝑒 is the peak value of baseline signal, 𝑝𝑝𝑖𝑖 is peak value of a filtered signal. The results 

are listed in Table 12. 

 
(a) error of NP on peak values 

 
(b) error of LP on peak values 
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(c) error of SLP on peak values 

Figure 54 Peak value data points for comparison between NP, SLP and LP processed data 

Table 12 Peak value error comparison 

 1 2 3 4 

NLP 16.4% 13.0% 12.8% 20.6% 

LP 54.7% 23.5% 14.7% 12.1% 

SLP 3.5% 1.3% 0.4% 3% 

 

From Table 12, the LP filter distorted the peak values up to 54.7%, which introduced a large 

error in angular acceleration calculation. The SLP filter designed in this work has an significant 

improvement to retain the accuracy of peak values. 

6.3 CHAPTER SUMMARY  

This chapter has addressed the common problem associated with filter design for human motion 

signals. A switchable cut-off frequency low-pass filter is designed. It contains a digital wavelet 

transform to detect stage change timing. Then a set of cut-off frequencies will be applied on 

different stages in order to remove the noise effectively throughout the signal while still keeping 

the high frequency content during the dynamic period. The quantitative comparison results have 
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demonstrated that the switchable cut-off frequency low-pass filter is able to lower the peak value 

error to 3.5% compared to 54.7% of conventional low-pass filter, while suppressing the high 

frequency noise at quiet period.  
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7.0  CONCLUSION 

This dissertation has described a multi Inertial Measurement Unit based human sports motion 

analysis system. Towards the rotation matrix construction problem, the coordinate flow chart has 

been designed to visualize the coordinate frame transformation procedure and systematically 

construct 3-dimensional rotation matrices. With this newly designed analysis tool, a complete 

human motion kinematics and kinetics reconstruction algorithm have been developed thereafter, 

and applied to throwing motion with two inertial sensors.  

In the kinematics study, the linear velocities and trajectories of arm segments were 

reconstructed. The experimental validation indicated that there was less than 7.2% difference on 

one axis between the IMU calculated trajectory and the video camera recorded marker trajectory. 

Considering there were sensor hardware limitations that affect the accuracy, the validation 

results were acceptable to prove the algorithm was feasible and accurate to reconstruct the arm 

segment trajectories. The second part of the kinematic study was calculation of anatomical 

rotations of the throwing arm, including forearm pronation/supination, elbow flexion/extension 

and upper arm internal/external rotation. The experimental validation indicated that results of the 

multi-IMU system and video camera system generally match each other very well. The 

normalized RMSE was 2.7±0.4 % at the best case. However, there was a large amount of 

difference on peak rotational velocities calculated by the two systems. In order to validate the 

peak rotational velocity calculation accuracy of the algorithm designed in this work, a single axis 
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rotation rig test was carried out to prove that the algorithm developed in this work was accurate.  

Test results using the rotation rig showed that the inertial measurement algorithm produced 

1.9±0.6 % normalized RMSE even at the worst case. Zero crossing times were also validated to 

be accurate, which is essential in kinematic chain timing reconstruction. 

 The inverse dynamics study started with the establishment of a rigid body skeletal model of 

the throwing arm. The kinematics data was input into the model to generate lumped torque and 

force imposed on shoulder and elbow joints. The human subject experiment verified the 

functionality and feasibility of the inverse dynamics analysis procedure.  

In the last part of this dissertation, a low-pass digital filter with switchable cut-off frequency 

was designed to improve the noise suppression of numerical differentiation on human sports 

motion signals. A discrete wavelet transform was used to detect the transition from quiet periods 

and dynamic periods during the throwing event. Two different low-pass filters with pre-defined 

cut-off frequencies were then applied on different stages of the motion signal in order to suppress 

noise during the quiet period without adding distortion during the dynamic period.  

The motion analysis algorithm developed in this work is expandable to include any number 

of IMUs and can be applied to any type of sports motion. This dissertation has made 

contributions to human motion analysis in the following aspects: 

1. Sports motion analysis algorithm 

a. Designed the coordinate flow chart method which enables a systematic way to 

construct rotation matrices, and an expandable framework for multi-IMU 

applications; 
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b. Developed a motion analysis algorithm which is able to calculate arm trajectories, 

anatomical rotations, and torques and forces on joints, for various kinematics and 

kinetics analyses of human motion. 

2. Algorithm validation: 

a. Validated the accuracy of kinematics results by human subject experiments, and 

showed that the algorithm developed in this work is feasible for human sports 

motion reconstruction;  

b. Validated the accuracy of rotation reconstruction results on a single axis rotation 

rig, and proved that the multi-IMU system provides better accuracy on arm 

rotations calculation than the video camera system. 

3. Sports mechanics study: 

a. Demonstrated kinematic chain timing construction by multi-IMU system, and 

showed more details on rotation sequence than previous work; 

b. Demonstrated kinetic analysis applications using multi-IMU system, including 

locating  instant  of highest joint load during throwing. 

4. Digital filter design: 

a. Designed a digital low-pass filter which is able to suppress noise during quiet 

periods while still keep high frequency components of signal during dynamic 

periods. 

Sensor hardware limitation is the biggest challenge for wide application of this algorithm and 

motion analysis system. With the increasing sensor measurement range, this motion analysis 

algorithm will play a more and more important role in sports related training, coaching, 

rehabilitation and scientific research in near future. 



92 
 

APPENDIX 

CALIBRATION OF INERTIAL MEASUREMENT UNIT 

 

  

Most commercially available IMUs have been calibrated by vendors before delivery to 

customers. However, due to the inherent parameters that cause drifting of the MEMS motion 

sensors, re-calibrations must be carried out by users before using the IMUs. The measurement 

parameters of the sensors, especially the bias of the MEMS rate gyroscopes is affected by 

environment temperature and moisture (Choa 2005; El-Diasty, El-Rabbany et al. 2007), and 

random drifting. This parameter drifting will cause an unbounded error accumulation in 

calculating kinematic quantities which involves numerical integrations.  

The IMU calibration procedure involves comparing known physical quantities to sensor 

outputs to determine the measurement parameters, such as sensitivity, bias and other factors. An 

ideal calibration, which requires creating an accurate known physical quantity, usually means 

expensive instruments, for instance, a turntable generating constant accurate angular velocity. In 

addition, due to the fact mentioned above that these parameters are changing over time, frequent 

calibrations are needed to maintain accurate measurements. For these reasons, a simple and low 

cost method to calibrate the IMU is necessary no matter for the purpose of lab use or commercial 

applications.  
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Different methods for calibrating inertial sensors and magnetometers are proposed in the 

literature. The underlying common point is making use of naturally existing physical quantities 

to calibrate sensors. For example, when the IMU is held stationary, the accelerometer is 

measuring gravity while the magnetometer is measuring the environmental magnetic field. As 

for the gyroscope, the time integration of the gyroscope output during a pre-defined rotation will 

be compared to the known angle it has rotated (Jurman, Jankovec et al. 2007; Fong, Ong et al. 

2008).  

Calibration methods can be classified into three categories: Min-Max(Aggarwal, Syed et al. 

2008), ellipsoid fitting (Gietzelt, Wolf et al. ; Skog and Händel 2006; Jurman, Jankovec et al. 

2007; Fong, Ong et al. 2008; Bonnet, Bassompierre et al. 2009; Vasconcelos, Elkaim et al. 

2011), and filter design.  Combinations of these methods are also employed. The fundamental 

principle of the Min-Max method is alignment of the sensor’s sensitive axis parallel and 

antiparallel to the direction of the reference physical quantity. Then, the bias and sensitivity can 

be calculated by the minimum and maximum sensor output of each axis. For sake of its ease for 

use, the Min-Max approach will be applied in this work for accelerometer calibration. Because 

the rotation motion will not affect the magnetic field measurement, and since the environmental 

magnetism direction is unknown, the ellipsoid fitting method is suitable for magnetometer 

calibration. Since accurate angle measurement is easier to obtain than angular velocity, the 

gyroscope output will be integrated with respect to time to compare with a known angle 

increment. The following sections will explain the details of these calibration procedures.  
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A.1 INERTIAL SENSOR AND MEASUREMENT MODEL 

The vendor’s specification for IMUs is listed in Table 13 (Yost Engineering 2013). The highest 

available measurement range of this IMU, ±2,000 (°/sec) for the gyroscope and ±24 (g) for the 

accelerometer, is selected because sports motion in this study is high speed and short duration. 

Although the sensitivity has to be sacrificed to utilize the highest measurement range, it will not 

be a critical problem in short time motion measurements, whereas saturation would be a more 

serious problem in this study.  

 
Table 13 Manufacturer specification of the IMU 

Sensor type Range Sensitivity 
Accelerometer ±24(g) 0.012 (g/digit) 

Gyroscope ±2,000 (°/sec) 0.07 (°/sec/digit) 
Magnetometer 1.3 (Ga) 5 (mGa/digit) 

 

The calibration procedure involves determining the parameter values in a generic 

measurement model for a tri-axial sensor, shown in Eq. ( 73 ). The measurement model describes 

the relationship between physical quantity �⃑�𝑝 = (𝑝𝑝𝑥𝑥 𝑝𝑝𝑦𝑦 𝑝𝑝𝑧𝑧)𝑇𝑇  and its corresponding sensor 

digit reading 𝑟𝑟 = (𝑟𝑟𝑥𝑥 𝑟𝑟𝑦𝑦 𝑟𝑟𝑧𝑧)𝑇𝑇, and is feasible for any tri-axial sensor.  

 �
𝑝𝑝𝑥𝑥
𝑝𝑝𝑦𝑦
𝑝𝑝𝑧𝑧
� = �

𝑠𝑠𝑥𝑥 𝑐𝑐12 𝑐𝑐13
𝑐𝑐21 𝑠𝑠𝑦𝑦 𝑐𝑐23
𝑐𝑐31 𝑐𝑐32 𝑠𝑠𝑧𝑧

� ∙ ��
𝑟𝑟𝑥𝑥
𝑟𝑟𝑦𝑦
𝑟𝑟𝑧𝑧
� − �

𝑏𝑏𝑥𝑥
𝑏𝑏𝑦𝑦
𝑏𝑏𝑧𝑧
� − �

𝜀𝜀𝑥𝑥
𝜀𝜀𝑦𝑦
𝜀𝜀𝑧𝑧
�� ( 73 ) 

In matrix C (3×3), the diagonal elements (𝑠𝑠𝑥𝑥 𝑠𝑠𝑦𝑦 𝑠𝑠𝑧𝑧) are sensitivity, while the off-diagonal 

elements (𝑐𝑐12 𝑐𝑐13 𝑐𝑐21 𝑐𝑐23 𝑐𝑐31 𝑐𝑐32)  combine the minor effect of misalignment, non-

orthogonality, cross sensitivity and etc.. The vectors 𝐵𝐵�⃑ = (𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦 𝑏𝑏𝑧𝑧)𝑇𝑇  and 𝜀𝜀 =

(𝜀𝜀𝑥𝑥 𝜀𝜀𝑦𝑦 𝜀𝜀𝑧𝑧)𝑇𝑇   represent the bias and noise respectively. The motion under study is short 

duration, typically less than five seconds, and will not be affected significantly by those minor 
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factors. For the sake of simplifying the calibration procedure, only sensitivity (diagonal elements 

of matrix C) and bias (𝐵𝐵�⃑ ) of the measurement model will be determined by the following 

procedures. 

A.2 SENSOR CALIBRATION PROCEDURE AND RESULTS 

A.2.1 Calibration of gyroscope 

As mentioned in previous section, a turntable providing accurate rotation rate usually means an 

expensive investment. In this work, a low cost calibration rig is designed as shown in Figure 55. 

The motor will drive the IMU holder to rotate while the encoder will record the angle increment.  

 

 

Figure 55 IMU calibration rig  

The calibration procedures have been designed as follows: 

Step 1. Fix the IMU on the IMU holder with one sensitive axis aligned with the rotation axis. 

Keep the IMU in stationary status for around 10 seconds. This period is denoted as STAi, 

(i=x,y,z) in later analysis;  
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Step 2. Rotate the IMU at any speed for about 20 revolutions, and denote this period as ROTi, 

(i=x,y,z); 

Step 3. Align another sensitive axis to the rotation axis and repeat steps 1-2 until all of the 

three axes are calibrated. 

Figure 56 shows gyroscope output for x axis calibration. Since the gyroscope bias is drifting 

all the time, the output at stationary period STAx will be averaged to be the temporary bias to 

compensate data at the adjacent ROTx indicated by Eq. ( 74 ). Worth noting is that the gyroscope 

bias needs to be recalibrated every time, even after calibration. This process will be explained 

later.  

 

 

Figure 56 Gyroscope calibration output 

The bias for that axis is then determined by: 

 𝑏𝑏𝑔𝑔𝑥𝑥 = 𝑁𝑁𝑁𝑁𝑎𝑎𝑎𝑎�𝑜𝑜𝑢𝑢𝑑𝑑𝑝𝑝𝑢𝑢𝑑𝑑(𝑅𝑅𝑇𝑇𝑆𝑆𝑥𝑥)� ( 74 ) 

The time integration of the gyroscope output with bias compensation equals the angle increment 

recorded by the encoder. Thus the sensitivity of the axis is obtained by: 

 𝑅𝑅𝑔𝑔𝑥𝑥 =
𝑅𝑅𝑎𝑎𝑛𝑛𝑔𝑔

∑ �𝑔𝑔𝑘𝑘 − 𝑏𝑏𝑔𝑔𝑥𝑥� ∙ ∆𝑇𝑇𝑥𝑥𝑅𝑅𝑅𝑅𝑇𝑇𝑥𝑥
 ( 75 ) 
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 where ∆𝑇𝑇𝑥𝑥 is the sample interval, 𝑔𝑔𝑘𝑘 is gyroscope output at instance k in the 𝑅𝑅𝑅𝑅𝑇𝑇𝑥𝑥 time period, 

𝑅𝑅𝑎𝑎𝑛𝑛𝑔𝑔  is the angle increment (measured by the encoder) during the 𝑅𝑅𝑅𝑅𝑇𝑇𝑥𝑥  time period. The 

calibration procedure is repeated for the other two axes so that all of the gyroscope sensitivities 

are calibrated.  

Gyroscope bias drifts much faster than the other sensor parameters in the IMU, thus it needs 

to be calibrated every time before use and even during the testing. This is done by considering 

the gyroscope output when it is in stationary status.  For example, during testing the subject 

equipped with IMUs will be asked to stand still for 10 to 15 seconds which allows the gyroscope 

to record stationary output. Eq. ( 74 ) is then used to obtain the gyroscope bias for measurement.  

A.2.2 Calibration of accelerometer 

The reference physical quantity for accelerometer calibration is gravitational acceleration, whose 

direction is strictly upwards. (The gravitational reaction force is upwards when the IMU is 

stationary, leading to an upward sense in the MEMS accelerometer measurement). An aluminum 

block with squarely machined surfaces will aid in alignment of the IMU axes with the 

gravitational field as shown as in Figure 57. One of the IMU edges is aligned to be coincident 

with the block edge, which with the help of a bullseye level ensures the edge is aligned properly. 

Thereafter, rotating the aluminum block and IMU in sequence, the 6-orientation Min-Max 

calibration procedure is applied as follows: 

Step 1: Align the IMU with the preset orientation in a sequence as shown in Figure 58; 

Step 2: At each orientation, leave the IMU in stationary status for 10 seconds. Calculate the 

accelerometer parameters using Eqs. ( 74 ) and ( 75 ). 
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Figure 57 Accelerometer calibration: align one axis of IMU with gravitational reaction force 

 

Figure 58 Six orientation sequence for accelerometer calibration 

 
Eqs. ( 76 ) and ( 77 ) show example accelerometer parameter calculations for which the x 

axis is aligned with respect to +G and –G directions: 

 𝑏𝑏𝑎𝑎𝑥𝑥 =
𝑆𝑆𝑥𝑥
+𝑔𝑔 + 𝑆𝑆𝑥𝑥

−𝑔𝑔

2
 ( 76 ) 

 
𝑅𝑅𝑎𝑎𝑥𝑥 =

2
𝑆𝑆𝑥𝑥
+𝑔𝑔 − 𝑆𝑆𝑥𝑥

−𝑔𝑔 ( 77 ) 

where 𝑆𝑆𝑥𝑥
+𝑔𝑔 and 𝑆𝑆𝑥𝑥

−𝑔𝑔 are mean values of the accelerometer x axis output while the IMU is aligned 

as in Figure 58 (c) and (d), respectively, during the calibration time period. The procedure is 

repeated for the other two axes to get the sensitivity and bias of all accelerometers. 
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A.2.3 Calibration of magnetometer 

The indoor environmental magnetic field will be used for magnetometer calibration. However, 

the indoor magnetic field has complicated components including earth magnetism, metal 

material effects, and those generated by electronic devices. Thus, it is impossible to get a 

consistent magnetic field for calibration purpose. Since the current study uses the magnetometers 

to detect the heading angle of the IMUs deployed on human body segments, the absolute value 

of magnetic field strength is unnecessary. In this work, the calibration method assumes that 

within a small range of space which is away from (at least half a meter) any magnetic material 

and electronic devices the magnetic field is considered to be a stable, unity reference quantity 

with which to calibrate the magnetometer. Once calibrated, any two magnetometers are able to 

provide the relative heading angle as long as they are measuring the same magnetic field, no 

matter its true direction or value. To ensure the validity of this assumption, the two 

magnetometers should be always close during calibration and testing.  

The calibration procedure involves rotating an IMU within a small space at arbitrary attitude. 

Example raw magnetometer data is shown in Fig. 10.  The magnetometer will record the same 

magnetism vector at many different orientations. These measurements construct an ellipsoid 

rather than a sphere in magnetometer coordinates, as shown in Figure 60, due to undetermined 

value of measurement model parameters. An optimization method is applied thereafter which 

will correct the 3-dimensional plot of measurements into a unit radius sphere. 
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Figure 59 Raw data of magnetometer calibration 

 

Figure 60 Three dimensional view of magnetometer measurement 

The optimized parameters and objective function is set by Eqs. ( 78 ) and ( 79 ): 

 𝜃𝜃� = arg min
𝜃𝜃

{𝐿𝐿(𝜃𝜃)} ( 78 ) 

 𝐿𝐿(𝜃𝜃) = ���𝑃𝑃�⃑𝑖𝑖�
2
− �𝐶𝐶 ∙ �𝑅𝑅�⃑ 𝑖𝑖 − 𝐵𝐵�⃑ ��

2
�
2

𝑛𝑛

𝑖𝑖=1

 ( 79 ) 

where variable parameters set 𝜃𝜃 = (𝑠𝑠𝑥𝑥 𝑠𝑠𝑦𝑦 𝑠𝑠𝑧𝑧 𝑏𝑏𝑥𝑥 𝑏𝑏𝑦𝑦 𝑏𝑏𝑧𝑧) represents diagonal elements in 

matrix C and bias vector 𝐵𝐵�⃑  of magnetometer’s measurement model. Other off-diagonal elements 

and the noise vector are assumed to be zero. 𝑃𝑃�⃑𝑖𝑖 is the magnetic vector measured by the sensors at 
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each moment. Since the environmental magnetic strength is assumed to be unity within the space 

for calibration, Eq. ( 80 ) is set up to supplement the objective function of Eq. ( 79 ): 

 �𝑃𝑃�⃑𝑖𝑖� = 1 (∀ 𝑖𝑖) ( 80 ) 

An issue in calibrating magnetometers is that improper selection of the initial value for 

parameter set 𝜃𝜃 may cause divergence for the final estimation due to the reason that the sensors 

parameters have large variation. The initial guesses of the bias and sensitivity for axis i (i = x, y, 

z) are estimated in Eqs. ( 81 ) and ( 82 ), respectively: 

 𝑏𝑏𝑢𝑢𝑖𝑖,0 =
𝑁𝑁𝑖𝑖,𝑢𝑢𝑎𝑎𝑥𝑥 + 𝑁𝑁𝑖𝑖,𝑢𝑢𝑖𝑖𝑛𝑛

2
 ( 81 ) 

 
𝑅𝑅𝑢𝑢𝑖𝑖,0 =

1
𝑁𝑁𝑖𝑖,𝑢𝑢𝑎𝑎𝑥𝑥 − 𝑏𝑏𝑢𝑢𝑖𝑖,0

 ( 82 ) 

where 𝑁𝑁𝑖𝑖,𝑢𝑢𝑎𝑎𝑥𝑥 and 𝑁𝑁𝑖𝑖,𝑢𝑢𝑖𝑖𝑛𝑛 are maximum and minimum value of each axis i in Figure 59.  

The procedure of calibrating magnetometers is summarized as follows: 

Step 1: Hold the IMU in a space which is away (at least half meter) from magnetic material, 

metals and electronic devices; 

Step 2: Rotate the IMU slowly at as many orientations as possible,  meanwhile make sure the 

IMU is staying in the  small range of space; 

Step 3: Data preprocess: initial value calculation for parameters (Eq. ( 80 ) and ( 81 )) and 

objective function setup (Eqs. ( 78 ) and ( 79 )); 

Step 4: Parameter initial values and objective function will be input into the Matlab 

optimization toolbox, and fminsearch routine will be used to minimize the objective function to 

achieve the optimized estimation for the parameter set.  
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Summary 

This chapter addressed the issue of calibrating sensors in the IMUs applied in this work. Based 

on the generic sensor measurement model, dominant parameters are taken into account for the 

sake of simplifying the calibration procedure. The calibration procedure is designed to determine 

the sensitivity and bias of accelerometers and magnetometers as well as the gyroscope 

sensitivity. Since the bias of gyroscope has much more serious drift compared to the other 

sensors, it should be calibrated in every test. The calibration results of the two IMUs used in this 

work are listed in Table 14: 

 
Table 14 Calibration results 

  Spec 
IMU 1 IMU 2 

X Y Z X Y Z 
Gyroscope sensitivity 

(°/sec/digit) 0.07 0.0725 0.07 0.0687 0.0683 0.0694 0.0698 

Accelerometer sensitivity 
(g/digit) 0.012 7.52e-04 7.31e-04 7.34e-04 7.30e-04 7.36e-04 7.37e-04 

Accelerometer bias  
(digit) N/A -83.42 14.231 -180.655 -203.567 122.915 -255.412 

Magnetometer bias  
(digit) N/A -18.499 94.599 -15.113 -15.946 72.666 -20.865 

Magnetometer sensitivity 
(1/digit)  N/A 0.0022 0.0023 0.0023 0.0022 0.0023 0.0024 
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