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An Attitude Heading Reference System (AHRS) is used to compensate for rotational motion, facilitating vision-based navigation
above smooth terrain by generating virtual images to simulate pure translation movement. The AHRS combines inertial and earth
field magnetic sensors to provide absolute orientation measurements, and our recently developed calibration routine determines
the rotation between the frames of reference of the AHRS and the monocular camera. In this way, the rotation is compensated,
and the remaining translational motion is recovered by directly finding a rigid transformation to register corresponding scene
coordinates. With a horizontal ground plane, the pure translation model performs more accurately than image-only approaches,
and this is evidenced by recovering the trajectory of our airship UAV and comparing with GPS data. Visual odometry is also fused
with the GPS, and ground plane maps are generated from the estimated vehicle poses and used to evaluate the results. Finally,
loop closure is detected by looking for a previous image of the same area, and an open source SLAM package based in 3D graph
optimization is employed to correct the visual odometry drift. The accuracy of the height estimation is also evaluated against
ground truth in a controlled environment.
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1. Introduction

In this paper, computer vision techniques are combined
with orientation measurements from an inertial and mag-
netic sensor package, and this combination is exploited to
determine the relative pose of successive views taken by a
mobile observer, such as an Unmanned Aerial Vehicle (UAV),
moving above leveled terrain. The paper includes trajectory
recovery for the remotely piloted unmanned airship of
Figure 1, which carries a camera coupled with an Attitude
Heading Reference System (AHRS), and a Global Positioning
System (GPS) receiver. This visual odometry technique could
be applied for any moving camera which images leveled
terrain, including aerial vehicles, and it can be used alone if
GPS is temporarily unavailable or be fused with GPS position
fixes to obtain an improved trajectory and more coherent
maps of the ground surface. After finding other relative pose
constraints to close the loop, a graph-based 3D Simultaneous
Localization and Mapping (SLAM) technique is applied
to minimize the drift from visual odometry. Although

only relative height can be recovered from images and an
initial height measurement is necessary to recover metric
scale, the visual odometry and SLAM approaches recover
the height component of the trajectory without additional
measurements. The initial height measurement is obtained
by imaging an object of known dimensions in the ground.

The benefits obtained when the orientation measure-
ments allow the rotational motion to be compensated, and
images to be reprojected onto a stabilized reference frame
are explored in Section 3. Specifically, for a sequence of
images of a planar area, the transformation that relates
corresponding pixel coordinates in two images of a 3D plane
is a planar homography. If the rotation is compensated,
pixel correspondences can be projected in the ground plane,
yielding sets of corresponding scene points, which are
registered by finding a rigid transformation to register them
directly in scene coordinates. This is an instance of the well-
known Procrustes problem [1].

A modern AHRS outputs georeferenced orientation
measurements, using accelerometers which measure the
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Figure 1: Our unmanned airship with the AHRS, camera, and the GPS receiver mounted in its gondola.

direction of gravity and magnetometers which measure the
earth magnetic field. The AHRS firmware fuses and filters
information from its internal sensors, freeing the main CPU
for higher level tasks and generating outputs at a larger
frequency than the typical frame rate of digital cameras.

The experiments described in Section 4 utilize a small
micromachined AHRS that is fixed rigidly to a monocular
digital camera, providing a georeferenced estimate of the
camera orientation. To generate this estimate the rigid
transformation between the camera and AHRS frames must
be known. This transformation is estimated by our recently
developed calibration procedure [2, 3], eliminating the need
for precise mechanical assembly. This has already been
used to improve robustness on image segmentation and 3D
structure recovery from stereo [4, 5] or independent motion
segmentation [6]. The coordinate frames and calibration
processes used are described in Section 2, which also reviews
relative pose recovery using only images of a plane.

1.1. Related Work. In [7], a stereovision-only approach is
used to build a 3D map of the environment from stereo
images taken by a remotely controlled airship, keeping esti-
mates of the camera pose and the position of automatically
detected landmarks on the ground. The landmarks are found
by interest point algorithms applied on the aerial images. It
was not their purpose to integrate inertial measurements.

Again with a UAV carrying a stereo camera, the trajectory
can be recovered by registering successive sets of triangulated
3D points calculated for each stereo frame. Trajectories of
hundred of meters have been recovered [8], although the
UAV height is limited to a few meters due to stereo baseline
size.

Image mosaicing was performed for an unmanned
submarine navigating above flat horizontal sea bottom, using
only images from a monocular camera as input for the
calculation of relative poses [9]. The most recent vehicle
orientation estimate was used to reproject the images onto
a stabilized plane, avoiding using direct measures from
inertial sensors. The vehicle pose is estimated, and a mosaic
of the sea bottom is generated, which in turn is used

for navigation. Although it involved elaborate optimization
steps, the registration converges only if the vehicle has
restricted movement and shows minimal variation in roll and
pitch angles. These results indicate a limitation for vision-
only approaches.

A UAV trajectory can also be estimated by fusing GPS
and on-board inertial data and considering a dynamic vehicle
model. Given such accurate vehicle poses, images taken from
a high-flying airplane are reprojected onto the ground plane
thus achieving one-pixel accuracy with no need for image-
based registration techniques [10].

Combined inertial and vision data were used to keep pose
estimates in an underwater environment, navigating a robot
submarine over a large area [11], with no access to a beacon-
based localization system. Relative pose measurements from
the images were used to avoid divergence of the tracked
vehicle pose, and an image mosaic was generated as a
byproduct.

In the context of an aerial vehicle, even without utilizing
the available GPS data, inertial measurements and observa-
tions of artificial landmarks on images can be fused together
to provide a full 6-DOF pose estimate, performing local-
ization and mapping, and incorporating recent advances on
filtering. Inertial sensors and barometric altitude sensors can
also compensate for inaccurate GPS altitude measurements
or satellite drop outs [12]. Similar results were also obtained
using ground vehicles [13].

The trajectory of an aerial robot can be recovered from
images of a planar, horizontal surface using interest point
matching, with the help of an altimeter to find the scale [14].
When the the planar homography model is used various
geometric constraints have been proposed to recover the
right motion among the four solutions of the homography
matrix decomposition [15]. This has been already performed
for an airship by using clustering and blob-based interest
point matching algorithms, building an image mosaic which
in turn is used for navigation. The relative pose estimation
involved homographies calculated from images of a planar
area taken by a UAV [15] and image sequences taken by
various UAVs [16].
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The visual odometry approach proposed in this paper
uses only orientation estimates from an AHRS and corre-
sponding pixels from monocular camera images (obtained
by the SURF [17] interest point matching algorithm), thus it
is not limited by stereo baseline constraints and it does not
depend on artificial landmarks. The orientation measure-
ments are obtained from the AHRS, without considering any
model of the vehicle dynamics, even if our small airship has
large roll and pitch variations [18]. It may be used in very low
heights when the GPS uncertainty in altitude is significant
(e.g., during landing or taking off) or in large-altitude flights
above a flat area. The camera movement is not restricted,
provided that its orientation is measured and the ground
plane is imaged. GPS is utilized only for comparison, and
not on the trajectory recovery process itself, except in the
experiment of Section 4.4 which combines GPS and visual
odometry.

The reprojection of images into a virtual plane is well
known [9, 10], but the homography model is still used
in most works. The pure translation model is certainly an
option and appears to be especially suitable to the estimation
of the vertical motion. Moreover, the extraction of the trans-
lation vector up to scale is trivial, with a unique solution.
In contrast, with the homography model, the recovered
matrix must be algebraically decomposed into rotational and
translational components, yielding four possible solutions,
of which only one is the real relative pose [19]. Additionally,
the optimization step included in homography estimation
may be eliminated, decreasing the computational cost in
realistic scenarios even if outlier removal becomes more
difficult. Some preliminary results using aerial images and a
pure translation model have already been obtained [20], but
more comprehensive results are still missing in the literature.

2. Definitions and Reference Frames

The following notation will be used throughout this paper:
upper case bold letters denote matrices (e.g., K), lower case
bold letters denote column vectors (e.g., t), italic letters
denote scalars (e.g., h), and letters in script font denote 3D
points (e.g., X).

2.1. Projective Camera Model. The standard pinhole camera
model is used. The camera center is the origin of an
Euclidean coordinate system called the camera frame and
denoted as {C}|i frame, where i is a time index to indicate
the camera movement. A point in space with homogeneous
coordinates CX in the camera frame is mapped to the
homogeneous image pixel x by the equation x = K[I | 0]X,
where I is the identity matrix, 0 the zero vector, and K is the
intrinsic parameter matrix, defined by

K =

⎡
⎢⎢⎢⎣

f 0 x0

0 f y0

0 0 1

⎤
⎥⎥⎥⎦, (1)

where f represents the camera focal length in terms of pixel
dimensions. The variables x0 and y0 are the principal point
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Figure 2: Moving observer and frames of reference.

coordinates in terms of pixel dimensions. The cameras are
calibrated, that is, the matrix K is determined, using the
Camera Calibration Toolkit [21], which also determines the
radial lens distortion coefficients. All images used in this
paper were previously corrected for lens distortion.

2.2. Definitions of Reference Frames. The following other
reference frames are defined, with i being a time index, as
shown in Figure 2.

(i) Inertial Sensor Frame {I}|i. Defined by the measure-
ment axes of the inertial sensors in the AHRS. The
AHRS orientation output is the rotation between the
{I}|i and the {W} frames.

(ii) World Frame {W}. A Latitude Longitude Altitude
(LLA) frame.

(iii) Virtual Downwards Camera {D}|i. This is a georef-
erenced camera frame, which shares its origin with
the {C}|i frame, but its optical axis points down,
in the direction of gravity, and its other axes (i.e.,
the image plane) are aligned with the north and east
directions. Figure 2(a) shows this frame on a different
position than the {C}|i frame only to provide a
clearer understanding of the drawing.

2.3. The Virtual Horizontal Plane Concept. The knowledge
of the camera orientation provided by the orientation
measurements allows the image to be reprojected on entities
defined on an absolute georeferenced frame, such as a
virtual horizontal plane (with normal parallel to gravity),
at a distance f below the camera center, as shown in
Figure 3(a). Projection rays from 3D points to the camera
center intersect this plane, reprojecting the 3D point into
the plane. This reprojection corresponds to the image of
the virtual camera {D}|i, and it compensates differences
due to heading and viewpoint changes. The camera height
variation is not compensated, resulting in scale differences
in the virtual images. Section 3.2 details how to perform this
reprojection.
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Figure 3: The virtual horizontal plane concept and an reprojected image example.

Figure 3(b) shows the reprojection of one image as an
example. The original image is shown above and in the
reprojected image shown below the cross in the ground is
nearly aligned with the north and east axes.

2.4. Experimental Platforms and Calibration. The GPS used
for comparison is a Garmin GPS35 without differential
correction. The output includes the expected position error
in the horizontal and vertical axes (eph and epv) for
each position fix. The flight experiments used an MTi
AHRS from Xsens [22]. The manufacturer states that its
orientation output standard deviation is 1◦ if the sensor is
static. The error should be larger for the moving UAV. The
airship gondola has combustion engines and an aluminum
structure, thus there is no magnetic interference which could
hamper the AHRS compass.

The camera is a Point Grey Flea [23], shown in Figure 1
rigidly mounted together with the AHRS. The camera is
first calibrated to determine its intrinsic parameter matrix
and lens distortion parameters [21]. A subsequent off-line
calibration routine [2, 3] uses checkboard images to find
the rigid body rotation between the {C} and {I} frames,
denoted IRC . It is based on measurements of the gravity
direction from both sensors. The camera observes vertical
vanishing points from vertically placed chessboards, and the
AHRS measures the gravity vector from its accelerometers.
Timestamps supplied by the image acquisition library and by
the sensors firmware are utilized to match the measurements
of different sensors.

A Pentium IV 2.4 GHz computer was utilized in all
computations reported in this paper.

2.5. Planar Surfaces and Homographies. Consider a 3D plane
imaged by two identical cameras placed in different posi-
tions. Consider also a set of pixel correspondences belonging
to that plane in the form of pairs of pixel coordinates (x, x′),
where each pair corresponds to the projection of the same
3D point into each image. A homography represented by
a 3 × 3 matrix H relates these two sets of homogeneous

pixel coordinates such that x′ = K · H · K−1 · x, and the
homography is said to be induced by the 3D plane [24]. The
homography can be recovered from pixel correspondences,
and it is related to the 3D plane normal n, the distance from
the camera center to the plane d, and to the relative camera
poses represented by the two camera projection matrices
P = [I | 0] and P′ = [R | t], as shown in Figure 4(a), by

λH = λ
(

R− t
d

nT
)

, (2)

where the arbitrarily scaled matrix λH is recovered first, and
then the scale factor λ must be recovered. The scale λ is equal
to the second largest singular value of λH, up to sign [19].
The correct sign of λ is recovered by imposing a positive
depth constraint.

Then the normalized homography matrix H can be
decomposed into n, the rotation matrix R, and the trans-
lation vector t/d [19]. The relative pose recovered has an
inherent scale ambiguity, as the translation magnitude is not
recovered, only the ratio t/d. The recovered homography can
be used to register an image pair by applying the recovered
transformation H on the first image as in the example of
Figure 4(b).

2.5.1. Pure Rotation Case. The infinite homography H∞ is
the homography induced by the plane at infinity. It is
also the homography between two images taken from two
cameras at the same position (no translation, t = 0), but
rotated by a rotation represented by a matrix R. The infinite
homography can also be used to synthesize a virtual view
from a nonexistent virtual camera, at a desired orientation,
given the appropriate rotation matrix.

The infinite homography is calculated by a limiting
process where d approaches infinity, or the translation t tends
to zero. In both cases the ratio t/d tends to zero in (2):

H∞ � lim
t/d→ 0

KHK−1 = lim
t/d→ 0

K
(

R +
t
d

nT
)

K−1 = KRK−1.

(3)
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Figure 4: A 3D plane imaged by a moving camera induces a homography.

3. Trajectory Recovery under Pure Translation

In the context of a horizontal 3D plane imaged by a
moving camera with measured orientation, this section
explores the simpler motion model to achieve more accurate
measurements of the camera height and to reconstruct the
camera trajectory from an image sequence.

3.1. Facilitating Interest Point Matching with Reprojected
Images. The first step of the processes described on this
paper is to reproject each image onto the virtual horizontal
plane, as shown in Section 2.3. In this way, the camera
rotation is compensated and the relative pose between any
pair of camera poses is reduced to a pure translation.

Another objective is to relax the demands on interest
point detection, encoding and matching algorithms [25].
Actually, because the ratio of correct matches versus the
total number of interest points detected is better with images
taken from the same viewpoint, the interest point algorithm
parameters may be tuned to detect less features, while still
matching the same number of interest points correctly.
Therefore, the interest point matching process can be faster
(less interest points means less descriptor computation, and
a smaller number of descriptors to match means faster
matching), or more robust (more correct matches with
the same number of detected interest points means greater
probability of successful image registration), which is a
tradeoff. Otherwise, it would be necessary that the feature
encoding is invariant to heading and viewpoint differences
in the original images [26].

For the low-altitude aerial dataset used in Section 4.2,
the time spent matching interest point descriptors using the
reprojected images was 41% of the time required to perform
the matching with the original, nonreprojected images. The
number of correctly matched interest points was 10% smaller
with the reprojected images. The time spent to generate the

reprojected images must be discounted, but it was on average
four times smaller than the speedup obtained in descriptor
matching. Besides that, reprojecting the images may be a
necessary task itself, for example, to generate the images
drawn in Figure 9. In our previous work similar gains were
reported with a small-scale dataset [25].

This reprojection—sometimes called prewarping—is
already widely used to preprocess images taken from moving
vehicles like submarines [9], and similar improvements
in homography-based registration were reported in which
viewpoint invariance is simulated by registering the images
with an initial estimate of the homography [27]. An
exhaustive evaluation of these improvements and tradeoffs
is still missing in the literature but the existing evaluations
of interest point algorithms [28, 29] demonstrate that their
performance tends to degrade with changes in viewpoint.

All experiments in this paper used reprojected images,
although only the reprojected coordinates of the matched
interest points are used, thus the actual generation of repro-
jected images is not strictly necessary. Typically hundreds of
corresponding points are found between a pair of consecu-
tive images. The average number of valid correspondences
(excluding outliers) in the airship flight experiment was 388.
The original images and the homography model were used
for comparison in Section 4.2.

3.2. The Infinite Homography. The infinite homography
synthesizes a virtual view of a nonexistent virtual camera
{D}|i from the real image taken by the camera {C}|i. To
accomplish this, the rotation that places the {C}|i frame into
the {D}|i frame must be known. The translation between
both frames is zero by definition.

For each image Ii, a simultaneous AHRS orientation
output W RI|i estimates the rotation between the {I}|i and
{W}|i frames. Given the rotation matrix IRC from the
camera-inertial calibration, the camera orientation in the
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Figure 5: Finding the translation between successive camera poses by 3D scene registration.

world frame is calculated as the rotation W RC|i =W RI|i ·
IRC .

The rotation D RW rotates from the {W} to the {D}|i
frame:

D RW =

⎡
⎢⎢⎢⎣

0 −1 0

−1 0 0

0 0 −1

⎤
⎥⎥⎥⎦. (4)

Then the rotation between the {D}|i frame and the {C}|i
frame is calculated as D RC|i =D RW ·W RC|i.

Therefore the transformation used to reproject images
into the virtual horizontal plane is

D HC|i � K · D RC|i ·K−1. (5)

3.3. Registering Sets of Scene Points (Procrustes). Suppose a
sequence of aerial images of a horizontal ground patch, and
that these images are reprojected on the virtual horizontal
plane as shown in Section 3.2. The virtual cameras have
horizontal image planes parallel to the ground plane. Given
two successive views and pixel correspondences between
them, the relative pose between the two camera positions
must be recovered in the form of a 3D vector t.

Each corresponding pixel is projected into the ground
plane, generating a 3D point, as shown in Figure 5(a). Two
sets of 3D points are generated for the two successive views,

and these sets are directly registered in scene coordinates.
Indeed, as all points belong to the same ground plane, the
registration is solved in 2D coordinates. Figure 5(b) shows a
diagram of this process.

Each corresponding pixel pair (x, x
′
) is projected by (6)

yielding a pair of points (X, X′):

(X, X′) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(xx − nx) · hi
f

−
(
xy − ny

)
· hi

f

hi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
x′x − nx

) · hi
f

−
(
x′y − ny

)
· hi

f

hi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(6)

where x = [xx, xy , 1]T , x′ = [x′x, x′y , 1]T , in inhomogeneous
form, hi is the height over the ground plane of the first
camera, and the minus sign in the second coordinate is only
an adjustment between image and world axes, depending
on the camera frame convention. If the position of the first
camera is taken as the origin of the x and y coordinates
(only relative pose must be determined here), the coordinates
of X are the correct coordinates of the projection of x in
the ground plane, in actual metric units. But X′ is not the
correct projection because the second camera position was
not considered—there is a difference of translation and scale
between the two sets of corresponding X′ and X points in
the ground plane.
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Figure 7: 3D (a) and 2D (b) plots comparing visual odometry with GPS position fixes. The circles indicate some of the GPS eph values (i.e.,
one standard deviation).

Given all (X, X′) pairs of corresponding points in the
ground plane, the Procrustes routine shown in Appendix B
finds the 2D translation and scale factor which register the
two point sets, yielding the x and y components of t and
the scale factor swhich represents the relative height between
the first and second cameras. If the assumptions of having
both image and ground planes parallel and horizontal are
true, with outliers removed, and with equal confidence to all
corresponding pixel coordinates, then it can be proved that
the Procrustes solution is the best solution in a least squares
sense. The z component of t is recovered by the equation
s = hi+1/hi = (hi + tz)/hi.

4. Results

4.1. Tripod Experiment: Relative Height Recovery. In this
experiment, the rigidly coupled AHRS-camera system of
Figure 1 was mounted on a tripod and 50 images of the
ground floor were taken from different viewpoints at three
different heights. The tripod was moved manually but kept
still while each image was being taken. Image examples are
shown on Figure 6. The objective is to calculate the height
of the camera for each view as a ratio of the height of the
first view, and to compare the results obtained against hand-
measured ground truth.
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Figure 8: The airship height from GPS and visual odometry (a) and the attitude angles measured by the AHRS (b).

Figure 6 shows the relative height for all 50 images. Two
arrows connect two highlighted points to their respective
images. The tripod was set to three different heights,
therefore the three horizontal lines are the ground truth.
The circles are the relative heights found by the Procrustes
routine. The crosses are the relative heights taken as the
determinant of a homography, estimated with RANSAC,
optimized to minimize the projection error on pixel corre-
spondences, and scaled as in (2).

The results are summarized in Table 1, where the relative
height unit is the height reference (1045 mm), and they show
that the closed form Procrustes routine yields better accuracy
than the homography model. There was no improvement in
execution time, because although there is no an optimization
step, outlier removal was much slower.

4.2. Trajectory Recovery for a UAV. The next experiments
utilize images taken by our remotely controlled airship of
Figure 1, carrying the AHRS-camera system and the GPS
receiver, flying above a planar area next to Coimbra City
Airfield. A satellite image of the flight area is given in
Figure 10. The original datasets and videos recording the
flights and complementing the results of this section and
Section 4.4 are available on our website [30].

The letters written on the ground next to the runway
were visible on the first image. The letters were measured on
the image, and then the first airship height was calculated
from the camera intrinsic parameters and the actual, hand-
measured, size of the letters. The first height was found to be
h1 = 25 m.

The recovered trajectory is shown in Figure 7. Both 2D
and 3D plots of the same data are provided. The GPS
trajectory is indicated by small circles, with larger circles
indicating the GPS eph, which was around 8 m in the
horizontal axes. The GPS indicates a trajectory length of
543 m, and average speed of 9 m/s. A Kalman Filter with
a discrete Wiener process acceleration model [31] filtered

the translation vectors for all methods and predicted the
translation for the few image pairs for which the translation
estimation was not successful and a measurement was miss-
ing. Appendix A shows details of the prediction equations for
this Kalman Filter.

The squares in Figure 7 show the trajectory reconstructed
by using the 3D translation vectors estimated by the
Procrustes approach as the input of the Kalman Filter. The
stars indicate the trajectory recovered by the homography
model using only the original camera images, and not using
AHRS data, reprojected images, or the Procrustes routine.
As only the ratio t/d is recovered by the homographies, the
scale is recovered by multiplying the recovered vector by
the currently estimated airship height. The airship position
including its height is estimated by the Kalman Filter using
these scaled 3D translation vectors as inputs. The airship
height for each of the recovered trajectories and the attitude
angles measured by the AHRS are shown separately in
Figure 8. Tables 2 and 3 show the errors in the visual
odometry, taking the GPS as a reference, and the execution
times.

Another image sequence with a recovered trajectory
is shown in Figure 9. The images are reprojected on the
ground plane forming a map by using (6) to find the metric
coordinates of the projection of its four corners in the ground
plane and drawing the image on the canvas accordingly. The
better alignment of the larger road and of the smaller lines
in the grass field indicates that the map of Figure 9(a), which
utilizes the airship poses recovered by the visual odometry, is
better registered than the map of Figure 9(b), which utilizes
the GPS position fixes. Both figures utilize the same image
orientation data.

4.3. Analyzing the Effect of Orientation Error. If a pair of
identical cameras placed at different positions has the same
orientation, a relative height value μ may be calculated for
each corresponding pixel pair (x1, x2) as a ratio of image
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Table 1: Results for relative height with a horizontal ground plane.

Rel. height error Average time (s)

RMS Std RANSAC Optimiz. Total

Homography 0.033 0.030 0.40 0.29 0.69

Procrustes 0.019 0.017 0.74 — 0.74

Table 2: Comparison of visual odometry with the GPS reference. All values are given in meters.

Unit: meters 3D Position error 2D Position error Error in the length of t

Avg. Max. Final Avg. Max. Final RMS Avg. Max.

Homography 57.5 98.2 52.3 43.1 67.6 52.0 0.88 −0.63 1.24

Visual odometry:
Procrustes

16.5 43.6 43.6 15.3 43.3 43.3 0.73 −0.46 0.59

distances with the epipole e (also called Focus of Expansion),
in the form μ = ‖x1−e‖/‖x2−e‖ [32]. The relative height of
an image pair is the ratio of the height of the second camera
over the height of the first one. The reprojected images
simulate virtual cameras with parallel and horizontal image
planes, which image a horizontal plane. Thus all relative
height values should be equal for all points belonging to the
ground plane.

Figure 11 shows, for one example image of the Coimbra
City Airfield, the relative height values for each matched pixel
(correspondences classified as outliers are not shown). On
the right, the same data is shown as a 3D plot with a larger
scale for ease of visualization. The color scale and the z axis
both indicate the same μ values. This example has noticeable
orientation error, although the translation vector still could
be estimated.

In Figure 11(a) all corresponding pixels are in a relatively
narrow band close to the center of the image. There were
other correctly matched pixels in other sections of the
image but, as the motion model does not consider the
noncompensated rotation, they were classified as outliers due
to errors in the orientation estimation. This effect is more
significant in areas far from the nadir point. Errors in the
calibration of the rotation between the camera and inertial
sensor frames should increase this effect. If the orientation
error is too large, too many pixel correspondences are
discarded and it is not possible to estimate the translation
reliably.

Even among the inlets the measured height change varies
between 2.3% and 1.6% of the first image height. The
building in the bottom of the image is out of the horizontal
plane and thus there are a few points that do not follow the
general tendency.

These empirical observations can be verified by analyzing
how an error in the camera orientation estimate affects a
pixel coordinate projected in the ground plane. Suppose two
camera projection matrices, P1 = K[Rθ | 0] and P2 =
K[Rθ | t], where Rθ is a rotation matrix which represents
a rotation of θ degrees over the x axis. Here Rθ will represent
an error on the camera orientation estimate—if the rotation
Rθ is ignored when the pixel coordinates are projected into
the ground plane, then which effect does it have in the

coordinates of the resulting points in the ground plane? This
effect should be analogous to the errors shown in Figure 11,
as ground plane coordinates are a projection of virtual image
coordinates, and the following form was found to result in
simpler equations, easier to analyze.

Take a pixel coordinate x = [x, y, 1]T , and the 3D points
which are projected into it in both cameras, as expressed by
x = P1X1 and x = P2X2. Invert the projection equations
expressing X1 and X2 as a function of x. Subtracting both
equations should result in a difference due to the translation
(the z component is ignored as the points should be in the
same plane):

X2 −X1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

vertical motion︷ ︸︸ ︷
(x − x0) · tz

f
−

horiz. motion︷︸︸︷
tx

(
y − y0

) · tz − f · ty
− sin(θ) · (y − y0

)
+ f · cos(θ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (7)

The rotation over the x axis affects only the y component.
The x component, as expected, has terms depending on the
horizontal and vertical motions, which are indicated, and
does not depend on the rotation—θ does not appear in the
first line. If θ = 0 the y component is reduced to a form
similar to the first component, but if θ /= 0 the change in the
denominator will cause an error which increases with the
distance from the pixel to the principal point and with sin θ,
besides a smaller perturbation due to the cos θ term.

This explains the behavior observed in Figure 11. The
farther a corresponding pixel is from the principal point,
the larger the error in relative height is. Moreover, this
error should be more pronounced in a specific direction,
depending on the direction of the error in the orientation
estimate, and this causes the narrow band of inliers visible in
Figure 11—the band represents the direction less affected by
the orientation error.

The resilience to errors in the rotation estimate can be
verified in simulation. Take the same projection matrices P1

and P2, and generate 150 random points belonging to the
field of view of camera P1 and to the ground plane which is
100 m below the camera. The points which also belong to the
field of view of camera P2 are the simulated correspondences.
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Table 3: Average execution times of visual odometry techniques, in seconds.

Unit: seconds RANSAC Optimization Total

Avg. Std. Avg. Std.

Homography 0.05 0.02 0.43 0.19 0.48

Visual odometry:
Procrustes

0.18 0.08 — — 0.18
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Figure 9: Maps formed by reprojecting the images on the ground plane, with trajectories superimposed. The circles indicate some of the
GPS eph values (i.e., one standard deviation).

Figure 10: A satellite image of the flight area, the Coimbra City
Airfield.

These points are projected to image coordinates in both
cameras, a Gaussian error with standard deviation of 1
pixel is added to each pixel coordinates, and then the pure
translation registration process is performed resulting in a
translation vector to be compared with the true one.

Figure 12 shows the simulation results for various vertical
and horizontal displacement values for the translation vector,
and for different values of the orientation error θ. Each point
on each plot is the average error of 8 configurations where
the direction of the translation varied at 45◦ steps covering
the 360◦ range. The error in the recovered translation vector
is less than 2% of its magnitude even if the orientation error
is as large as 20◦, except for the smallest displacement, where
the relative error is large because the translation is too small
and the noise in pixel coordinates is dominant.

This analysis does not apply to loop-closing constraints
as the orientation error may be very different in this
case—here it is assumed that the orientation error Rθ

does not significantly change between two successive image
acquisitions.

4.4. Combining GPS and Visual Odometry. The translation
recovered by the visual odometry was fused with GPS
position fixes by the Kalman Filter described in Appendix A.
The GPS measures the airship position with standard
deviation given by the eph and epv values supplied for
each position fix, and translation vectors from the visual
odometry are interpreted as a velocity measurement between
two successive poses, with a constant covariance smaller
in the vertical axis than in the horizontal ones. The GPS
absolute position fixes keep the estimated airship position
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Figure 11: The μ values for individual pixel correspondences.
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Figure 12: Relative error of the recovered translation vector in
simulation.

from diverging, while the visual odometry measurements
improve the trajectory locally. The fused trajectory is shown
in Figure 13(a) next to the original GPS trajectory. The latter
is shown alone in Figure 13(b). The maps in Figures 13(a)
and 13(b) were generated from the same images and camera
orientation values, the only difference being in the camera
poses. The fused trajectory is still heavily dependent on the
GPS, and its corresponding map is far from perfect, but some
details such as the letters and the airfield runway are better
registered with the fused trajectory (a) than with GPS alone
(b). This dataset contains 1000 images (only 68 are drawn).
This trajectory is too large to be recovered by visual odometry
alone, therefore the map corresponding to this is not
shown.

4.5. Closing the Loop with Graph-Based Optimization. When
the same area is imaged a second time by the on-board
camera, the relative pose between these two views is retrieved
and used to “close the loop.” Then a graph is built where
the nodes represent the camera 3D poses and the edges the
relative pose constraints, both the sequential and the loop-
closing ones. As the graph is initialized with the trajectory
recovered by visual odometry, at first there is no error in the
sequential constraints—but the loop-closing constraints will
not be satisfied due to the drift in the visual odometry. By
optimizing in the position of the nodes to minimize the error
on each relative pose constraints, the drift can be minimized.
Figure 14 shows the same trajectory of Figure 7 where the
loop-closing constraints are indicated by the green arrows.
Each arrow represents a relative pose constraint between the
node at its tail and the node connected to its tip by a colored
line. Therefore the colored lines represent the error relative
to this constraint, which should be minimized.

To detect the loop-closing constraints, the principal point
of each image along the trajectory is projected in the ground
plane by (6) and stored. Then, for each image, the projection
of its principal point in the ground plane is compared with
the database, looking for a previous image which imaged the
same area. The image corresponding to the closest principal
point in the database is chosen as a matching candidate,
not considering the last 5 seconds of the flight, and not
considering principal points which are too far—often there
is no candidate at all. Then interest point matching between
this image pair is attempted. If it is successful the relative pose
is recovered and a new edge is added to the graph.

To optimize the constraint graph, the open-source pack-
age TORO [33] was utilized with the following settings and
modifications. (1) As the relative pose is a translation vector,
and its magnitude depends on the estimated camera height,
the covariances of all constraints were set to be proportional
to the camera height. The standard deviation of the vertical
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Figure 13: Data from GPS and visual odometry fused by a Kalman filter. The images are projected on the ground plane, forming a map.
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Figure 14: The airship trajectory with the loop-closing constraints
indicated by the arrows. The lines represent the error which is
minimized.

component was set to twice the relative value found in
the tripod experiment (Table 1) to account for the dynamic
AHRS scenario. (2) By the same reason, after each iteration
each translation vector is recalculated taking into account
its new height. To perform this adjustment the vector t/h
for each constraint is stored in the beginning, thus it is just
multiplied by the new height. (3) The covariances of the
loop-closing constraints were multiplied by four, decreasing
their weight, to smoother the trajectory as there may be many
camera poses not connected with loop-closing constraints.

Figure 15 shows the airship trajectory recovered by
the visual odometry before and after the correction by
graph optimization. The GPS trajectory is also provided for
comparison. A few wrong loop-closing constraints distorted

the north-east side of both loops, but the next constraints
corrected the trajectory again, approximating it to the true
trajectory. The visual odometry drift after the loops was
largely decreased. Table 4 compares both trajectories with
GPS. It took 0.17 seconds to execute 100 iterations of the
graph optimization for the whole graph.

5. Conclusion

In this paper, a pure translation model is used to recover
the UAV trajectory using AHRS orientation estimates and
aerial images of the horizontal ground plane. This model is
also compared with the more common homography model
against ground truth, by determining the relative heights in
the tripod experiment. The GPS position fixes and the vehicle
poses recovered by visual odometry were used to project
the images on the ground plane, and the resulting map is
more coherently registered in the short term if the airship
poses are obtained from visual odometry. GPS and visual
odometry data were also fused by a Kalman Filter, and the
map generated with the fused trajectory is more accurate
than the map generated with the GPS alone, even if the
trajectory is too large to be recovered by visual odometry
alone. Finally, a graph optimization SLAM package was used
to minimize the drift in visual odometry.

In our previous work, using an older and less accurate
AHRS, a projective model and an optimization step were
used to improve the recovered trajectory [34]. Analyzing
these old results, it was determined that the projective model
achieved better results due to an indirect error checking
issue. At some images, with too large orientation error,
the optimization diverged and therefore the Kalman Filter
ignored the measurement and executed only its prediction
step. When direct registration was used, no numeric diver-
gence is possible and a wrong measurement was accepted,
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Figure 15: The airship trajectory recovered by visual odometry before and after applying the graph optimization package.

Table 4: Comparison of visual odometry before and after loop-closing, with the GPS as reference. All values are given in meters.

Unit: meters 3D position error 2D position error Error in the length of t

Avg. Max. Final Avg. Max. Final RMS Avg. Max.

Visual odometry:
Procrustes only

16.5 43.6 43.6 15.3 43.3 43.3 0.73 −0.46 0.59

Visual odometry:
after loop-closing

13.5 25.2 5.8 11.7 23.5 5.2 1.08 −0.57 1.1

increasing the drift too much. Now, given the current results,
with a more accurate AHRS and a larger image framerate,
the orientation estimates appear to be accurate enough
to reliably apply the noniterative Procrustes registration
(which theoretically should yield the optimum solution
if all assumptions were true) allowing for much faster
computation.

The pure translation model has performed better in
the recovery of the vertical motion component than the
image only approach. The vertical component is more critical
because errors in the height estimation propagate not only
in the vertical axis, but also as an error in the scale of the
horizontal components. The effect of error accumulation
in vertical motion is visible in Figure 7. The trajectories
recovered by the two forms of visual odometry reproduce
approximately the curves of the loop, but have errors in scale
or shape due to errors in height estimation.

As the GPS uncertainty is larger in the altitude axis
than in the horizontal axes, height estimation is again more
critical, particularly for low-altitude flights where the GPS
uncertainty is more significant due to the small distances
involved. Moreover, while in high-altitude flights the ground
plane can often be safely assumed as horizontal, during land-

ing and taking off the restriction to horizontal ground planes
is more likely to be actually satisfied. Additionally, reasonable
pose estimates were obtained using only the orientation
estimates directly output by the relatively inexpensive and
inaccurate AHRS utilized, and under relatively large roll and
pitch variations.

Scale ambiguity is inherent to relative pose retrieval
from images of planes, when using homographies [16] or
even under pure translation motion. This fact increases the
unavoidable drift of the visual odometry. Moreover, the
3D graph optimization has to take into account that the
magnitude of the translation between two camera poses
depends on the camera height, and update the constraints
accordingly when a camera pose is updated, otherwise
it cannot correct the trajectory length. Trajectories of
hundred of meters with significant vertical motion were
recovered, but the actual limit of the technique depends
on the reliability of the AHRS orientation estimates and of
the detection of loop-closing constraints under real flight
conditions. The experimental and simulated results indicate
that a modern AHRS can estimate the orientation with
enough accuracy to obtain relatively accurate translation
estimates.
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Future work can explore more elaborate error mod-
els, for example, estimating an uncertainty for each pixel
coordinate by propagating the uncertainty in the camera
6D pose. Procrustes problem variants with diverse uncer-
tainty models have been solved, although for some cases
there are only noniterative solutions [1]. Moreover, other
Procrustes variants or the homology projective model used
previously [34] could extend the approach to nonhorizontal
ground planes. Other methods could be employed to
detect loop-closing constraints more reliably. For example,
databases of interest point descriptors can be used to
retrieve previous images of the same area even if the
estimated trajectory has drifted too far away from the true
position.

The Procrustes registration and Kalman Filter are imple-
mented as fast algebraic routines; the graph optimization
could be executed in parallel to update the camera poses
after a loop is detected, or may be intercalated by executing
a few iterations after each image frame is processed. These
operations could be implemented to be executed in real time.
Therefore the only remaining time consuming operation is
interest point detection and matching, including the detec-
tion of loop-closure and outlier detection. It has been shown
that the reprojected images can be used to facilitate and
accelerate the matching process, although other approaches
to image matching, including featureless approaches, could
be explored in future work.

Appendices

A. The Discrete Wiener Process Acceleration
Model for the Kalman Filter

The Kalman Filters used to filter the airship trajectory and
to fuse the visual odometry with GPS position fixes utilize
the discrete Wiener process acceleration model [31]. The
process noise, which is assumed to be a zero-mean white
noise sequence, represents the acceleration increment during
the sample period k. The filter state X consists in the airship
position, velocity, and acceleration:

(filter state) X =

⎡
⎢⎢⎢⎣

x

ẋ

ẍ

⎤
⎥⎥⎥⎦, (A.1)

where x is the 3D airship position. The state equation is

(
state equation

)
X(k + 1) = FX(k) + Γv(k), (A.2)

where, with I and 0 representing the identity and zero matrix
of appropriate size, and T representing the length of the
sample period (T = 0.2 seconds in the experiments reported
in this paper):

F =

⎡
⎢⎢⎢⎢⎢⎣

I TI
T2

2
I

0 I TI

0 0 I

⎤
⎥⎥⎥⎥⎥⎦

,

Γ =

⎡
⎢⎢⎢⎢⎢⎣

T2

2
I

TI

I

⎤
⎥⎥⎥⎥⎥⎦
.

(A.3)

Therefore the prediction step is performed by the
following equations:
(
prediction of state

)

X(k + 1 | k) = FX(k | k),
(
prediction of covariance

)

P(k + 1 | k) = FP(k | k)F′ + Q,

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T4

4
I
T3

2
I
T2

2
I

T3

2
I T2I TI

T2

2
I TI I

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

· σ2
v .

(A.4)

The value of σv should be of the order of magnitude of
the maximum acceleration increment over the sample period
(σv = 0.35 m/s2 in this paper). The update equations are the
standard Kalman Filter equations.

B. The Procrustes Procedure

The similarity Procrustes problem, named after a greek
mythological character, consists in finding a transformation
to register two sets of points in an Euclidean space, with
known point correspondences. More formally, the problem
which is considered in this paper is that given two sets of
n points in Rd, in the form of n × d matrices X and Y,
where the ith line in both matrices corresponds to the same
point Pi, the transformation parameters s, t, and R such that
Y = sXR+1tT must be determined. The notation 1 represents
a vector of ones.

The derivation and proof of the solution can be found in
many places including [1, 35]. The latter reference offers an
extensive treatment of many variations of the problem. The
steps to calculate the transformation are the following.

(1) Compute C = XTJY, where J is the matrix I−n−111T .

(2) Compute the SVD of C, and obtain the following
matrices in the form C = PΦQT .

(3) The optimal reflection/rotation matrix is R = QPT .

(4) The optimal scaling factor is s = tr(XTJYR)/
tr(YTJY).

(5) The optimal translation vector when expressed in the
frame of X is t = n−1(X− sYR)T1.
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