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Abstract- This paper presents a novel velocity estimation method for all terrain ground vehicles.  

The technique is based on a camera that scans the ground and estimates the velocity by using an  

optical flow algorithm. The method is tested and validated for different types of terrains such as  

fine sand, coarse sand, gravel as well as a mixture of coarse sand and gravel. Measured velocities  

from precise encoders are compared with the velocities predicted by the optical flow algorithm,  

showing promising potential  for  implementation of  the suggested approach in ground vehicles.  

Investigations have been carried out to determine the optimal feature window size and the influence 

of camera height on optical flow velocity estimates. Detailed laboratory experiments were carried  

out to validate the velocity estimation technique and results indicate the usefulness of the proposed  

method for velocity estimation of ground vehicles.

Index terms: optical flow, velocity estimation, visual odometry, optimization.

I. INTRODUCTION

It is important to estimate the velocity of autonomous robots within certain tolerances in order 

to achieve higher level motion and navigation tasks accurately. This is a very complex task in 

the presence of unstructured environments and often unpredictable vehicle behaviour such as 

wheel  slip.  One of the important  parameters  for ground vehicle  slip estimation is  vehicle 

velocity [1]. In this paper, a novel technique to estimate ground vehicle velocity is presented.

Traditionally, wheel odometry, GPS, DGPS and inertial sensors have been used to obtain a 

vehicle’s speed and possibly its trajectory [2]. Despite the popularity and usefulness of above 

sensing  techniques,  they  suffer  from drift,  low resolution  or  limited  applicability.  Wheel 

odometry performance degrades in presence of vehicle slip and skid. GPS and DGPS suffer 

from low resolution and low update rates and are thus unsuitable for highly dynamic mobile 

robotic applications. Whereas, inertial sensors are prone too high noise levels, especially, at 

low speeds and the accuracy of these sensors is affected if velocity and position estimates are 

required due to the needed single and double integration with respect to time [3-5]. 
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Over the past decade, several researchers have made significant advances in utilising various 

vision and image processing techniques  for navigation,  obstacle  avoidance and control  of 

ground vehicles. Most researchers use image processing techniques for generating 3D space 

from 2D images, detecting obstacles or extracting motion from the acquired image sequences 

[6]–[11]. Many navigation algorithms that can compute a robot’s path and can generate maps 

of unstructured environments relatively robustly have been developed in the recent past. Most 

notable are the advances in navigation methods based on SLAM [6], [12-13]. However, this 

paper focuses on velocity estimation which is applicable to slip estimation.

A numbers of approaches based on visual odometer have emerged recently [14-19]. Visual 

odometry is  an  image  processing  technique  for  incremental,  online  estimation  of  vehicle 

position and velocity from spatiotemporal image sequences. In this paper, a visual odometry 

based velocity estimation technique similar to that in [20-21] is presented using monocular 

camera configuration.  Stereo visual odometry demonstrated by Jet  propulsion laboratory’s 

Mars  rovers  “Spirit”  and  “Opportunity”  is  one  of  the  best  examples.  It  has  clearly 

demonstrated the potential of visual odometry systems for unmanned ground vehicles [22]. 

In [20],  research  on  visual  odometry  for  an  outdoor  mobile  robot  is  proposed.  Visual 

odometry is able to estimate both translational and rotational velocities based on a pseudo–

optical flow technique. Based on simulation results, up to 300 degrees per second rotational 

and  350  millimetres  per  second  translation  velocities  can  be  estimated  using  standard 

cameras. 

In this paper, an accurate and reliable vehicle velocity estimation algorithm is presented for 

ground vehicles using the optical flow technique. This technique is based on a camera that 

scans the terrain and predicts the velocity of a vehicle accurately; the measured signals then 

can be used to estimate on-line vehicle  slip  parameters.  It  is  proposed that  the vehicle  is 

equipped with a camera facing the ground and acquiring images of the surface the vehicle is 

manoeuvring  over.  Vehicle  velocity  is  then calculated  based on a  camera  model  and the 

tracking  of  features  between frames  of  the  spatiotemporal  image sequence.  The proposed 

system is thoroughly tested for linear motion and validated under laboratory conditions for 

different terrain conditions such as fine sand, coarse sand, gravel and mixed coarse sand and 

gravel.

In the Section II, the camera velocity estimation algorithm is presented. Experimental results 

are presented in Section III and conclusions are given in Section IV.
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II. OPTICAL FLOW AND VELOCITY ESTIMATION ALGORITHMS

A great  deal  of  information  can be extracted  by recording time-varying  image sequences 

using a moving camera.  An image sequence (or video) is a series of 2-D images that are 

sequentially ordered with respect to time. Motion estimation is defined here as the estimation 

of the displacement and velocity of features in image frame with respect to the previous frame 

in  a  time  sequence  of  2D images.  The  proposed system layout  for  detecting  the  motion 

parameters for an all terrain unmanned ground vehicle is shown in the Figure 1. As shown, 

the camera is attached to the ground vehicle facing the ground. Ideally the plane of image is 

perpendicular  to the terrain.   Camera arrange parallel  to the direction of motion (forward 

looking camera) can have better field of view then camera looking to the ground or at an 

angle.  But  in  this  arrangement  post  processing of  an image can  be difficult  and it  could 

require precise camera calibration. This is due to fact that features at distance moves different 

speed then features near to camera. As this arrangement has wide field of view it also requires 

numbers of iterations to track and sort suitable features in a particular image based on their 

location  at  horizon,  near  or  far.   Camera  arranged  perpendicular  to  direction  of  motion 

(downward looking camera) eliminates the drawbacks of forward looking camera but it can 

have limiting field of view. This arrangement also can pose restriction to placement of camera 

on particular robot or vehicle. As it has limiting field of view it should be fix fairly high from 

the  ground in  order  to  achieve  sensing  at  higher  speeds.  The  downward  looking  camera 

configuration is adopted here due to its simplicity as shown in Figure 1.

Figure 1. Visual Odometry Sensor/Camera Configuration

There are two phases for estimating the vehicle velocity. In the first phase, the optical flow 

algorithm is used to estimate an optical flow from an image pair. The optical flow is then used 

to estimate the vehicle velocity. 

INTERNATIONAL JOURNAL ON SMART SENSING AND INTELLIGENT SYSTEMS, VOL. 1, NO. 1, MARCH 2008



a. Optical flow algorithm

The  optical  flow  algorithm  determines  the  movement  of  brightness  patterns  which  are 

assumed to move as the objects move in the sequence of images. The output of optical flow is 

obtained in the form of  xu and  yu component velocity as shown in Figure 2. Generally, we 

assume that the optical flow pattern will correspond to the motion field, although this is not 

always  true  in  practice.  Using  some  constrains  such  as  geometrical  (shape)  comparison, 

comparison  of  grey  levels  and  intensities,  a  feature  found  in  one  image  can  be  usually 

matched with a feature in the next image.  The main assumption for optical flow is that the 

appearance of a scene does not change significantly between frames, and that the scene moves 

smoothly  from  one  image  to  the  next.  The  flow  is  often  locally  uniform,  however 

discontinuities may occur at scene boundaries. Other assumption is that the scene is made up 

of extended reasonably smooth surfaces, which move rigidly or at least distort smoothly when 

moving.  The amount of motion between frames is small,  and compared to the size of the 

image  which  means  the  optic  flow vectors  are  small  for  pair  of  images.  Horn  [23]  did 

pioneering  work  on  the  development  of  optical  flow  techniques  based  on  computing 

spatiotemporal  differences  from  an  image  sequence.  Since  then,  many  methods  and 

algorithms  for determining  optical  flow were developed like  differential  methods,  region-

based matching methods, energy based methods and phase-based methods [24].

Figure 2. Optical flow features and flow field
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The Kanade-Lucas optical flow algorithm is used because it is robust, accurate, insensitive to 

noise and non-uniform light intensity sources, and suitable for real-time computation [24-25].

In this method, let iI  be the greyscale image at time it and 1iI +  be the greyscale image at time 

1ti + . During this time interval, let the image be translated by distance ( , )= ∆ ∆x y . If A  is a 

feature window in iI  and B  be the same feature window in 1iI +  as shown in Figures 2 and 4. 

Then the objective is to find d  by minimising a residual function ( )dε in (1) :

2
1( ) ( ( ) ( ))i iw

d I p I p d dxdyε += − +∫∫ ,     (1)

where, 

• 0 ( , )=P x y is the pixel coordinate of a generic image point as shown in Figure 4. The 

upper left corner pixel coordinate is (0,0)  and the lower right corner pixel coordinate 

is ( 1 1)x yn n− , − , where xn  and yn are the width and height of the image respectively. 

• iI  and  1iI +  are  the  greyscale  values  of  the  first  image  and  the  second  image 

respectively. 

• W is the feature window area, of size equal to   (2 1,2 1)x yw w+ + . 

• ( , )d x y= ∆ ∆  is the optical flow output or distance between features of two subsequent 

image frames.

In practice, the solution of minimising (1) can be achieved by using an iterative algorithm like 

the Newton-Raphson method. The algorithm is implemented as follows [26]:

STEP 1Select a feature window to track in image ( )iI p . 

STEP 2Let ( , )u ux uy=  be the centre of the feature window in image ( )iI p , Figure 2. 

STEP 3Window width and length,  xw  and yw , are user defined, with typical values of 2 to 7 

pixels. 

STEP 4Let ( , )d x y= ∆ ∆ , where ( , )x y∆ ∆  is an initial guess. 

STEP 5Calculate       ( ) ( )
y yx x

x x y y

u wu w
T

x u w u w
G g p g p

++

= − −

= ∑ ∑      (2)
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( )1( ) ( ) ( )
++

−
= − −

= − +∑ ∑
y yx x

x x y y

u wu w

i i
x u w u w

b I p I p d g p      (3)

Where,      
1

1

( ( ) ( ))
( )

( ( ) ( ))

i I

i i

I p I p d
xg p

I p I p d
y

+

+

∂ + + ∂ =
∂ + + ∂ 

     (4)

STEP 6Solve linear equationGd bδ = .

STEP 7Update d d dδ= + .

STEP 8Compute the following equation

( ) 2
1( ) ( ) ( )

y yx x

x x y y

u wu w

i i
x u w y u w

d I p p I pε
++

+
= − = −

= + −∑ ∑                (5)

STEP 9If ( )dε ε< , where ε  is a predefined threshold, go to 5. 

STEP 10The optical flow is d .

Figure 3. Processed Optical Flow Field Different Terrain Type

b. Camera model

A camera model giving the relationship between an object position and its pixel position is 

presented. In this study we have utilized a pinhole camera model to establish the calibration 

between points in 3D space to points in the image. In this model it is considered that rays of 

light enter the camera through a very tiny aperture. This imaging model captures accurately 

enough the geometry of the perspective projection [28]. Main assumptions  in this camera 

model are that the centre of projection of the image coincides with the world coordinate and 

the optical axis (z axis) of the camera is perpendicular to the terrain surface. Moreover it is 

assumed that the image is placed is in front of the centre of projection as shown in Figure 4. 
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The pinhole model includes intrinsic characteristics, such as the image centre and the focal 

length,  as well as the extrinsic characteristics providing the location of the centre and 3D 

orientation of the projective device. 

Figure 4. The Standard Coordinate System Camera

 There are two sets of parameters. The first set, called extrinsic parameters are not constant 

and depend on the camera orientation with respect to the environment. The second set, called 

intrinsic or internal parameters, are camera dependent. Intrinsic parameters are the important 

parameters and are used to relate pixel position of the corresponding object in real space. The 

intrinsic parameters are determined by using the method described in [27]. Figure 4 shows the 

standard coordinate system of a camera. The intrinsic parameters are listed below.

1. Focal length: 1 2cf f f 
  

′=  

2. Principal point: 1 2cc c c 
  

′=  

3. Skew coefficient: cα  

4. Distortion: 1 2 3 4 5ck k k k k k 
  

′=  

Suppose ( )o c c cP X Y Z, ,  is the coordinate of oP  in the camera reference frame where 0P is the 

generic image point. The point is projected onto an image plane normal to the optical axis. 

The  normalised  (pinhole)  image  projection ( )n n ni x y,  is  defined  by  (6).  From  (6),  after 

including lens distortion ck  the new normalised point ( )d d di x y,  is defined as [27]:

( ) n c c
n n n

n c c

x X Z
i x y

y Y Z

   
   
   
   
   

/
, = =

/
     (6)

1 2 4 6
1 2 5

2

(1 )d
d n d

d

x
i k r k r k r i t

x

 
 
 
 
 

= = + + + +      (7) 
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2 2
3 4

2 2
3 4

2 ( 2 )
( 2 ) 2

n n n
d

n n n

k x y k r x
t

k r y k x y

 
 
 
 
  

+ +
=

+ +
     (8)

where  dt is  the  tangential  distortion  vector  and  2 2 2
n nr x y= + .  Finally,  the  projected  point 

( )p p pi x y,  of ( )o c c cP X Y Z, ,  on the image plane is represented by (9).

1 1 2 1

2 2 2

( )p d c d

p d

x f x x c
y f x c

α   
   
   
   
    

+ +
=

+
     (9)

b. Camera velocity estimation 

The  camera  system  setup  is  as  shown  in  Figure  5.  The  optical  axis  of  the  camera  is 

perpendicular to the ground plane. If the camera can be assumed to have negligible distortion 

and skew coefficients, then [ ]0 0 0 0 0ck ′= , and 0cα = . 

Z Optical Axis

X

Moving Direction

Ground

Camera

Figure 5: The Camera System Setup

Substituting (6), (7) and (8) into (9), gives:

1 1

2 2

c

p c

p c

c

Xf c
x Z
y Yf c

Z

 
 
                 
 
  

+
=

+
     (10)
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Differentiating (10) with respect to time; the velocity of the camera in X Y−  plane is given 

as:

1
2

2
2

( )

( )

c x c z
x c

y
c y c z

c

f Z V X V
v Z
v f Z V Y V

Z

 
 
 
 
  

 − 
 =
 − 
 

;  
1

2

c x c z

cx

y c y c z

c

Z v X V
f ZV

V Z v Y V
f Z

 
 
 
 
  

 + 
 =
 

+ 
 

      (11)

Rearranging (10) to get c

c

X
Z  and c

c

Y
Z  and substituting in (11), yields (12).

1
1 1

2
2 2

1 ( )

1 ( )

c x
p z

x

y c y
p z

Z v x c V
f fV

V Z v
y c V

f f

 
 
                 
 
  

+ −
=

+ −
      (12)

Where 

• x yV V,  and zV  are the camera velocities in x, y and z directions respectively. 

• cZ  is the distance between the feature point on the ground and the centre of projection of 

the camera. 

• xv  and  yv  are the image velocity,  xv xF= ∆  and  yv yF= ∆ , where F is camera’s frame 

rate and ( , )x y∆ ∆  is the optical flow. 

• ( )p px y,  is the centre point of the feature window in the first image. 

• Focal length: 1 2cf f f 
  

′= , ( Obtained through camera calibration) . 

• Principal point: 1 2cc c c 
  

′= . (Obtained through camera calibration). 

If the ground is assumed flat, i.e. cZ  is constant, eq. (12) becomes 

1

2

c x

x

y c y

Z v
V f
V Z v

f

 
 
 
 
  

 
 
 =
 
 
 

.     (13)
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II. VELOCITY ESTIMATION PROCEDURE

For 1D velocity estimation, every feature window in the same image would move with the 

same speed. If only one feature window is considered, the estimated velocity may fluctuate 

due  to  discretization  errors.  Therefore,  20  feature  windows  are  selected  and  the  average 

optical  flow  d  is  used to  estimate  the velocity  for  each  image pair.  Then,  the  estimated 

velocity  is  filtered  using  a  low  pass  IIR-filter,  to  further  eliminate  noise.  The  velocity 

estimation procedure is as follows: 

1. Calibrate  camera  to  get  the  intrinsic  camera  parameters  focal  length cf ,  distortion  ck , 

principle point Cc and skew coefficient cα . Also set initial variable defining the numbers 

of feature windows and initial camera height 

2. Acquire two consecutive images 1I  and 1iI + . 

3. The numbers of good features to track are identified by the method proposed in [35]. This 

method  tends  to  select  corner  features  in  the  image  which  reduces  the  computational 

burden to find the optical flow of every pixel in the whole image. 

4. Apply the optical flow algorithm to 1I  and 1iI +  to get d which is the average optical flow 

from ( 20)n =  feature windows. 

5. Calculate the velocity using eq. (13). The estimated velocity is obtained after applying a 

low pass IIR-filter..

6. Repeat above procedure for image sequence. This procedure is further summarized in the 

flow chart shown in Figure 6.

III. EXPERIMENTAL STUDY

Experiments are performed to check the robustness, precision and feasibility of the proposed 

approach using different soil types, namely coarse sand, fine sand, gravel as well as a mixture 

of sand and gravel. Two sets of experiments are performed using a test rig and a mobile robot 

respectively.  First,  the  camera  intrinsic  parameters  are  determined  and  then  velocity 

estimation is performed. Further, we conduct an experimental study in order to determine the 

most  appropriate  number  of optical  flow feature  windows and their  size  as  a  function  of 

camera height with a view on optimising velocity estimates.
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Figure 6. Optical flow based velocity estimation technique flow chart

a. Camera calibration

Before velocity estimation can commence, the intrinsic parameters of the employed camera 

need to be determined through a calibration procedure. Here, the intrinsic parameters of the 

camera are determined using the Matlab camera calibration toolbox [27] and chessboard-type 
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images like those shown in Figure 11. The intrinsic parameters obtained for this particular 

camera are as follows,

] ]1731.52 51729.896 14.150 14.098cf  = ±        (14)

] ]598.587 503.540 17.324 16.506cc  = ±       (15)

0.0 0.0cα = ±      (16)

] ]0.131 0.351 0.004 0.002 0.0 0.045 0.325 0.002 0.0ck  = − − ±      (17)

b. Determining feature window size

Figure 2 shows the basic concept of the optical flow algorithm where ‘A’ is a feature window 

in the first  image and ‘B’ is the corresponding feature window in the second image.  The 

“optical flow” or distance  ( , )x yd d between those two points is computed using the optical 

flow approach. In the example shown in Figure 7, there is only a change in  x direction; i.e. 

only dx is changing. Finding the optimal feature window size is critical to the efficiency of the 

optical  flow algorithm as this largely affects both computational time and accuracy of the 

results. Simulated image sequences of all soil types are used in the tests described here. In 

order to test the capabilities of the proposed algorithm in a controlled environment, small-

sized images are generated from one large image. This allows simulating the “movement” of 

the small-sized images  across the larger  image with varying  amounts  of  overlap between 

subsequent images using. The small-sized images are generated by cropping larger camera 

images  with  a  size  of  21280 1024× pixel  generating  small  images  with  a  size  of

2640 512× pixel . Artificial motion between two images is achieved by selecting a first image 

at the most left location of the larger image and a second image at a distance of x shifted to 

the right,  Figure 7.  During this  experimental  study,  distance  x was increased  for a  given 

feature window size until the optical flow algorithm failed to correctly estimate the distance 

by which image I2 was shifted. The optical flow output before failure occurred was recorded 

as the maximum optical  flow achievable  for a given feature window size for a particular 

image type. Four different image types, including fine sand, course sand, stone/gravel and a 

mixture of course sand and gravel were investigated.
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Figure 7. Simulated image sequence; Image I2 is shifted by x pixels.

Based on recommendations described in [26], square feature windows are chosen such that 

each window’s width (and height) is an odd number of pixels long and at least 3 pixels long; 

each feature window thus has a clearly identifiable center pixel [26]. Simulation experiments 

were performed by increasing the feature windows width from 3 pixels in 1 pixel steps until 

the optical flow algorithm fails, Figure 8 (left). Based on practical experience with optical 

flow techniques,  the number of feature windows was set  to twenty.  The feature windows 

chosen in the first image are then tracked in the second image by the optical flow algorithm. 

The resulting optical flow outputs and the computational time required to process different 

window sizes were investigated,  Figure 8 (left)  and (right).  Figure 8 (left)  shows that the 

optical flow not only depends on the feature window size but also on the terrain type. The 

experiments show that the maximum optical flow computed for gravel/stone images is greater 

than that for the other image types, while the optical flow computed for fine sand images is 

comparatively low. This means that the algorithm is capable of estimating larger image shifts 

when applied to images with a coarser texture.  

The feature window size also affects the computational time of the optical flow algorithm. 

The optical flow algorithm fails when the feature window width is equal to or greater than 27 

pixels, Figure 8 (right). Since the proposed approach is to estimate vehicle velocities over a 

wide range, it is desirable to optimize it for large image shifts or, in other words, large optical 

flows. In addition, a short execution time of the optical flow algorithm is preferred, to realize 
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real-time  applications.  In  order  to  obtain  the  optimal  window size  which  maximises  the 

optical  flow and,  at  the  same  time,  favours  the  least  computational  time  of  the  velocity 

estimation scheme, the following cost function has been defined, 

∑
=

=
n

i i

i

wct
wmo

wCost
1 )(

)(
)( ,   (18)

where,

• w is the feature window width

• n is the number of image types, here: n = 4.

• 1 2 3 4, , ,mo mo mo mo  are the maximum optical flows for fine sand, coarse sand, gravel 

and mixed coarse sand - gravel respectively

• 1 2 3 4, , ,ct ct ct ct  are the computational times of fine sand, coarse sand, gravel and mixed 

coarse sand and gravel respectively.

The appropriate  feature window sizes are  chosen such that  ( )Cost w  is  maximized.  For a 

maximum velocity of 50 mm/s at a camera height cZ  = 250 mm, employing a camera with a 

frame rate of 30 fps and focal length  1f  = 1731.5 and by substituting  xV  = ( )imo w F  into 

equation (13), the following inequality is obtained,

1( ) 11.54> >x
i

c

V fmo w
FZ .     (19 )

From inequality (19), we find that a maximum optical flow ( 11.54>imo  pixels) should be 

chosen for all soil types to optimize velocity estimation for the given constraints. Figure 8(a) 

shows that the window width w  should not exceed 23 pixels, since the optical flow algorithm 

fails for higher feature window sizes. The cost function for window width w  in the range of 

13 to 23 pixels is shown in figure 9. The optimal window width w is 15 pixels as it maximises 

the used cost function. This window width is chosen for all further experiments.
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Figure 8. (Left) Optical Flow and (right) Computational Time.

Figure 9. Cost Function
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c. Test rig

The velocity measurement test rig is shown in Figure 10 and a schematic of the test rig is 

shown in Figure 11. The test rig consists of a DC motor driven carriage to which a camera is 

attached. During experimentation, the motor drives a chain attached to the carriage and causes 

the camera to  move at  different  speeds.  The measured velocity  is  calculated  from a high 

resolution  encoder  attached  to  the  motor.  The  camera  is  a  Silicon  Video  1281  CMOS 

Cameras. The camera can be set to different frame rates at specific frame sizes; at higher 

frame rates the frame size that can be captured is reduced and vice versa. The maximum 

frame rate is 6,460 fps at an image size of50 50X  pixels  . 

e. Velocity estimation experiments

Experiments are carried out by moving the camera with various constant velocities ranging 

between 0 and 50 mm/sec over 4 different types of ground (coarse sand, fine sand, gravel, and 

a mixture of coarse sand and gravel).  During all experiments, the camera is set to capture 

images  at  30  fps  at  an  image  size  of  1280 1024×  pixels .  Camera  image  distortion  is 

Figure 10. The Velocity Measurement 

Test Rig

Figure 11: Schematic Of Velocity Measurement 
Test Rig

Figure 12: Chessboard Images For The Cameras 
Calibration
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compensated for employing the Matlab camera calibration toolbox and, further, images are 

cropped to a size of 640 512×  pixels2 allowing the optical flow algorithm to be executed in a 

reasonable time. The optical flow algorithm based on eq. (13) is applied. Results employing 

the  optical  flow algorithm on fine  sand are  shown in  Figure 13.  The  camera  velocity  is 

estimated using eq. (13); noise is filtered by a 3rd-order IIR digital filter. The results shown in 

tables 1–4 are average estimated velocities at steady state.  Velocity v is the measured velocity 

using the test rig encoder, and v̂  is the velocity estimated using the optical flow algorithm. 

Figure 13 compares the predicted and measured velocities. The results (tables 1-4 and Figures 

13-16) show that there is good agreement between the predicted and measured velocities, with 

a  mean percentage  error  of 1.489%. The results  shown in Figures 13-16 suggest  that  the 

maximum estimation  errors are in the region of 2% at steady state  over a wide range of 

different scenarios, excluding the occasional outliers which could be eliminated employing a 

dynamic model of the vehicle suppressing implausible acceleration transients.

Table 1: Average Estimated Velocities Over 

Coarse Sand

v  (mm/s) v̂  (mm/s)
ˆe v v=| − |  

(mm/s)
%Error

2.806 2.612 0.194 6.903

7.047 6.969 0.078 1.110

11.111 10.994 0.117 1.052

15.565 15.553 0.012 0.078

19.672 19.399 0.273 1.389

24.194 24.282 0.088 0.366

28.726 28.797 0.071 0.247

33.074 33.104 0.029 0.090

37.499 37.563 0.063 0.169

41.926 41.911 0.015 0.035

46.259 46.048 0.211 0.456

50.447 50.274 0.173 0.344

Table  2:  Average  Estimated  Velocities  Over 

Fine Sand

v  (mm/s) v̂  (mm/s)
ˆe v v=| − |

(mm/s)
%Error

2.577 2.479 0.098 3.821

6.748 6.769 0.022 0.322

10.809 10.879 0.069 0.647

15.226 15.362 0.136 0.895

19.676 19.915 0.239 1.214

23.796 24.077 0.281 1.179

28.268 28.503 0.234 0.831

32.518 32.599 0.082 0.251

36.984 37.016 0.031 0.084

41.269 40.972 0.297 0.719

45.720 45.269 0.450 0.986

49.984 47.967 2.017 4.036
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Figure 13. The Estimated Velocities Over Coarse Sand    Figure 14. The Estimated Velocities Over fine Sand 

Figure 15. The Estimated Velocities Over Gravel           Figure 16. The Estimated Velocities Over Mixture of

     gravel and sand
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Table 3: Average Estimated Velocities Over 

Gravel

v  (mm/s)
v̂  (mm/

s)

ˆe v v=| − |  

(mm/s)
%Error

2.612 2.325 0.286 10.939

6.802 6.539 0.263 3.870

11.075 10.883 0.192 1.733

15.319 15.097 0.223 1.454

19.672 19.399 0.273 1.389

24.127 23.854 0.273 1.136

28.583 28.163 0.420 1.471

32.791 32.380 0.411 1.253

37.158 36.640 0.518 1.395

41.483 40.811 0.672 1.620

45.992 45.188 0.804 1.748

50.211 49.176 1.0335 2.062

Table 4: Average Estimated Velocities Over 

Coarse Sand And Gravel

f. Velocity estimation at different heights cZ

The height of the camera with respect to the ground over which the vehicle is moving is key 

factor in order to estimate the vehicle’s velocity, eq. (12).  Here, this variation in height is 

analysed and also its effect on accuracy of velocity estimation is investigated.  During these 

experiments,  height  cZ  between  the  camera  and  the  ground  varies  between  220–280 

millimetres.  At the mean height value of  250=nZ  millimetres, the image is in focus. The 

camera moves at 40 mm/s in x direction and height cZ  is varied by inserting or removing 6 

millimetre thick plates below the soil container box. 

Resulting velocity estimates can then be compared to the velocity readings of the test  rig 

encoder. The velocity error is the difference between the mean value of the estimated velocity 

and  the  velocity  measured  using  the  test  rig  encoder.  Errors  at  different  heights  when 

v  (mm/s)
v̂  (mm/

s)

ˆe v v=| − |  

(mm/s)
%Error

2.744 2.315 0.159 6.458

6.498 6.299 0.199 3.056

10.839 10.685 0.155 1.426

15.278 15.139 0.139 0.909

19.594 19.496 0.098 0.498

23.997 24.003 0.006 0.023

28.117 28.146 0.029 0.103

32.652 32.796 0.144 0.442

36.983 36.945 0.039 0.0105

41.426 41.275 0.153 0.369

45.904 45.858 0.045 0.099

50.079 49.504 0.575 1.149
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travelling  over  different  types  of  soils  are  shown as  percentage  values  in  Figures  17-20. 

Uncompensated height values cZ  are calculated by keeping Zc = Zn = const. in eq. (12), while 

compensated values cZ  are calculated by inserting the actual camera height value in eq. (12). 

The measured velocities for different soil types are in good agreement with estimated ones for 

height  values  close  to  Zn.  For  large  deviations  of  the  camera  height  from  Zn the  error 

increases.  If  knowledge  of  the  camera  height  is  available  the  error  can  be  reduced 

considerably (see blue lines in Figures 17 – 20). However, the error depends not only on the 

cZ  value but also on to what extend the image is out of focus; any image blur reduced the 

ability of the optical flow algorithm to provide accurate estimates.  

Figure 17. Estimated Error Using Gravel Varying Zc     Figure 18. Estimated Error Using Fine Sand Varying Zc

Figure 19. Estimated Velocities Over Mixed                    Figure 20. Estimated Error Using Coarse Sand 

Coarse Sand And Gravel Varying Zc      Varying Zc
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These results show that if the vehicle is moving in rough terrain it is important to compensate 

for any change in height of camera in order to achieve accurate vehicle velocity. There are 

readily available sensors in the market which could be integrated with the camera to monitor 

slight changes in the camera/ground height. Laser height sensors, ultrasonic distance sensors 

and infrared sensors are examples that could be used in conjunction with the camera for real-

time  height  measurements.  Further,  stereo  cameras  could  be  employed  to  extract  3D 

information from the scene; however, it is noted that this will increase the complexity and 

cost of the system.  

IV. CONCLUSION AND FUTURE WORK

An optical flow algorithm for velocity estimation is proposed and its feasibility is evaluated 

by using a specially designed test rig. It is shown that the vehicle speed can be predicted to a 

relatively high accuracy ( 2.017±  mm/sec). Different ground samples were used to validate 

the algorithm, and in most cases, the system accurately measures the carriage velocity, with a 

mean maximum percentage error of 1.489% at steady state.

The  velocity  estimation  experiments  are  performed  above  a  flat  test  bed  and  a  constant 

camera  height.  In  addition,  a  study  is  presented  investigating  the  estimation  algorithm’s 

performance when changing the height of the camera during vehicle motion and its effect on 

velocity  estimation  capabilities.  Measured  velocities  from  precise  optical  encoders  are 

compared  with the velocities  predicted  by the  optical  flow algorithm showing very good 

agreement.  The  optimal  feature  window  size  for  real-time  optical  flow  based  velocity 

estimation  was also established.  Overall,  the  approach  has  potential  for  accurate  velocity 

estimation. Experiments are underway for different real-world conditions and further research 

will aim at developing a robust stand alone velocity measurement system.
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