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Abstract 

 

This thesis presents a framework for a hybrid model-free marker-less inertial-

visual camera pose tracking with an integrated sensor fusion mechanism. The 

proposed solution addresses the fundamental problem of pose recovery in 

computer vision and robotics and provides an improved solution for wide-area 

pose tracking that can be used on mobile platforms and in real-time 

applications.  

 

In order to arrive at a suitable pose tracking algorithm, an in-depth investigation 

was conducted into current methods and sensors used for pose tracking. 

Preliminary experiments were then carried out on hybrid GPS-Visual as well as 

wireless micro-location tracking in order to evaluate their suitability for camera 

tracking in wide-area or GPS-denied environments. As a result of this 

investigation a combination of an inertial measurement unit and a camera was 

chosen as the primary sensory inputs for a hybrid camera tracking system. 

 

After following a thorough modelling and mathematical formulation process, a 

novel and improved hybrid tracking framework was designed, developed and 

evaluated. The resulting system incorporates an inertial system, a vision-based 

system and a recursive particle filtering-based stochastic data fusion and state 

estimation algorithm. The core of the algorithm is a state-space model for 

motion kinematics which, combined with the principles of multi-view camera 

geometry and the properties of optical flow and focus of expansion, form the 

main components of the proposed framework.  

 

The proposed solution incorporates a monitoring system, which decides on the 

best method of tracking at any given time based on the reliability of the fresh 

vision data provided by the vision-based system, and automatically switches 

between visual and inertial tracking as and when necessary. The system also 

includes a novel and effective self-adjusting mechanism, which detects when 
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the newly captured sensory data can be reliably used to correct the past pose 

estimates. The corrected state is then propagated through to the current time in 

order to prevent sudden pose estimation errors manifesting as a permanent drift 

in the tracking output.  

 

Following the design stage, the complete system was fully developed and then 

evaluated using both synthetic and real data. The outcome shows an improved 

performance compared to existing techniques, such as PTAM and SLAM. The 

low computational cost of the algorithm enables its application on mobile 

devices, while the integrated self-monitoring, self-adjusting mechanisms allow 

for its potential use in wide-area tracking applications.    
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CHAPTER ONE 

 

1 Hybrid Marker-less Camera Pose Tracking with 

Integrated Sensor Fusion 

Pose tracking is an enabling technology with potential applications in numerous 

industries, including entertainment and immersive games, augmented reality, 

industrial maintenance and engineering, architecture, medicine, assisted living 

for the elderly, security, education, prototyping and autonomous navigation 

systems. The aim of pose tracking is to find the three dimensional (3D) position 

and orientation of a moving object, such as a camera, using information 

collected from one or multiple sensors.  

 

Over the past few decades there have been numerous proposals and solutions 

for pose recovery. In many cases, in computer vision systems, a camera has 

been the only sensor available for tracking and there have been several 

advances in pose tracking based on computer vision techniques, which recover 

the 2D/3D correspondences of 3D features in the environment in successive 

images. Notable examples of a computer vision approach to pose tracking 

include the work produced by (Irschara, 2012), (Klein, 2006) and (Chiuso, et al., 

2002).  

 

In a vision-based context, there are two main methods for tracking, namely 

marker-based and marker-less. The former is based on tracking fixed fiducial 

markers, which implicitly solves the tracking and localization problem since the 
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markers and their relative 3D positions are known. Zhang et al (Zhang, et al., 

2002) have carried out a comprehensive study on approaches to marker-based 

tracking methods using fiducial markers. Examples include ARToolKit (ART, 

1999) and ARTag (Fiala, 2010) both of which employ planar fiducial markers. 

These examples have been specifically designed for camera tracking as a 

solution to the problem of image registration for augmented reality. 

 

The marker-less approach, however, uses naturally distinctive features such as 

points, lines, edges, or textures, whose 3D positions are not known. These 

systems use naturally occurring features in the world for both motion estimation 

and localization. Comprehensive surveys on monocular camera pose tracking 

using only vision-based approaches have been carried out by (Desouza & Kak, 

2002), (Trucco & Plakas, 2006) and (Mautz & Tilch, 2011).   

 

Human beings and animals consciously and subconsciously fuse various 

sources of information in order to navigate and interact with their environment. 

This is continuously occurring by processing the output signals from built-in 

biological sensors. One of the most utilised examples of senor fusion in our 

daily activities is the combination of human vision system (the eye-brain 

combination) and vestibular sensors (located inside the ear). This is also 

referred to as kinaesthetic-vestibular sensor fusion. The vestibular system 

encodes self-motion information by detecting the motion of our head in space; 

i.e. the three dimensional world. This provides the body with subjective senses 

of motion and orientation, which play an important role in the stabilization of 

gaze, and the control of balance and posture (Cullen, 2012) and (Angelaki & 

Cullen, 2008) .  

 

Beyond some of the limitations of the human sensory experience, Hughes 

(1999) has also reviewed multi-sensory systems, which add extra sensing 

modality to some animals’ navigation abilities and aids in interaction with their 

surroundings. Examples include echo-location in bats (acoustic ranging 

sensors), navigation using magnetic fields in some birds (magnetic dead-
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reckoning) and the electric sensors used by some sharks and eels for prey 

detection.  

 

In like manner, one of the proposed solutions to pose recovery and wide-area 

localisation and tracking has been the application of multi-sensory approaches. 

Combining the data from various sensors and devices such as cameras, 

acoustic sensors, inertial measurement units (IMUs), GPS, and wireless 

sensors has been extensively researched and commercialised to some degree 

in the past few decades. Notable examples of multi-sensory approaches for 

recovery of pose can be found in (Bleser, 2009), (Schleicher, et al., 2009), 

(Droeschel, et al., 2011), (Macii, et al., 2011), and (Scaramuzza, et al., 2014).  

 

Inspired by the natural kinaesthetic-vestibular sensor fusion in humans, and 

animals in navigation and interaction with their surrounding environment, and 

considering the state-of-the-art of the computer vision algorithms as well as the 

recent enhancements in Micro-Electro-Mechanical Systems (MEMS)-based 

inertial sensors in measuring ego-motion, the work in this thesis has focused on 

an investigation into current computer-based tracking methods and on 

developing an improved inertial-visual sensor fusion technique for tracking the 

position and orientation (pose) of a moving camera.  

 

Following thorough investigation into existing tracking systems, a new and 

improved hybrid algorithm for single camera pose tracking has been designed, 

implemented and evaluated. The core of the algorithm is a state-space model 

for motion kinematics which, combined with the principles of multi-view camera 

geometry and the properties of optical flow and focus of expansion, form the 

main components of the framework. The proposed solution also incorporates a 

monitoring system, which determines the best method of tracking at any given 

time based on the reliability of fresh vision data provided by the vision-based 

system, and automatically switches between visual and inertial tracking as and 

when necessary. The system also includes an effective self-adjusting 

mechanism, which detects when the newly captured sensory data can be 



4 
 

reliably used to correct the past pose estimates. The corrected state is then 

propagated through to the current time in order to prevent sudden pose 

estimation errors manifesting as a permanent drift in the tracking output. The 

system design and methodology have been the basis for a number of 

publications e.g.  (Moemeni & Tatham, 2010)and (Moemeni, et al., 2014). 

 

The proposed system provides a more comprehensive solution with reduced 

computational cost as well as an improved real-time ubiquitous performance 

compared with existing hybrid and vision-only systems. This has been 

addressed and analysed in more detail throughout this thesis.  

1.1 Applications Requiring Pose Tracking 

Camera tracking as an enabling technology can be exploited for various 

applications, in particular, navigation and localisation systems as well as 

tracking within augmented and mixed reality environments. These applications 

are described in some detail in the following sections.  

1.1.1  Augmented Reality  

An Augmented Reality (AR) system “supplements the real world with virtual 

(computer-generated) objects that appear to coexist in the same space as the 

real world” (Azuma, 2001). 

 

The term augmented reality was initially introduced by Tom Caudell in 1990 in 

relation to Boeing’s Computer Services' Adaptive Neural Systems Research 

and Development project in Seattle (Caudell & Mizell, 1992). The purpose was 

to aid manufacture of complex wiring looms used in aircraft electronics by 

visually superimposing virtual graphics onto the real environment, as an 

alternative to the expensive diagrams and marking devices (Figure 1.1) 
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Although the term was initially born in the early 1990’s, researchers had for 

years been creating technologies that could relate to their environment and give 

access to information. 

 

 

Figure 1.1 :  Boeing’s AR System – Source: (Caudell & Mizell, 1992). 

               An application of Heads-up display technology (HUDset) used to dynamically mark the 

position of drill/rivet hole inside an aircraft fuselage - ©Boeing Inc., USA 

 

In 1968, Ivan Sutherland, invented the first head-mounted display (HMD) 

(Figure 1.2) in order to visually superimpose computer generated 3D models 

onto the user’s view of the real environment (Sutherland, 1968).  

 

 

Figure 1.2 : The first Head-Mounted Display (HMD) by Sutherland 
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Furthermore, Morton Helig’s Sensorama (U.S. Patent #3050870) (Figure 1.3) 

was built with the purpose of giving a more immersive 3D cinematic experience. 

Sensorama was one of the earliest multi-sensory (multimodal) technologies in 

the form of a 1980’s arcade game. The game gave the players the experience 

of riding a motorcycle on the streets of Brooklyn, where they could feel the wind 

on the face, the vibration of the seat and the smell of the city. (Earnshaw, et al., 

1993).  

 

Figure 1.3 : The Sensorama, - U.S. Patent #3050870 

 

In 1994, Azuma developed the first motion-stabilized AR display that worked 

outdoors and achieved tighter registration comparing to previous outdoor AR 

system (Azuma, 1997) (Azuma, et al., 1999). This hybrid tracking system for 

outdoor AR used an Omnistar 7000 differential GPS receiver, a Precision 

Navigation TCM2 compass and tilt sensor, and three Systron Donner 

GryroChop gyroscopes. It was operated in both head-worn ad handheld modes. 

Figure 1.4 illustrates the HMD and the sensors configurations.  

 

The goal of this sensor fusion was to estimate the angular position and rotation 

rate of the HMD from the inputs from the TCM2 and the gyroscopes. However, 

the position was then extrapolated one frame to the future to estimate the head 

orientation at the time the image is displayed on the see-through display. 

Although the registration was not reported with very high accuracy considering 
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the inherited drifting errors introduced by inertial sensors, this could be regarded 

as one of the pioneered hybrid systems in the application of outdoor augmented 

reality (Azuma, et al., 1999). 

 

 

 

 

Figure 1.4 : Motion-stabilized AR Display by Azuma (Azuma, et al., 1999)  

© Ronald Azuma, HRL Laboratories 

 

As augmented reality continues to evolve and take different forms, the demand 

for its use and the scope of its applications are growing accordingly. The state-

of-the-art of recent technologies, systems and applications of AR are surveyed 

in (Van Krevelen & Poelman, 2010) and (Carmigniani, et al., 2011).   

 

In recent years, on-demand access to information and greater integration of real 

and virtual worlds have revolutionised the conventional perception of human 

computer interaction. The notion of ‘ubiquitous computing’, also known as 

‘ambient intelligence’, aims to achieve an anytime anywhere model in modern 

computing systems.   
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Mobile augmented reality, as a paradigm of ubiquitous computing, is an 

alternative to head-mounted displays, and has become more widely employed 

in recent years.  The ubiquity of mobile platforms in the form of phones and 

tablet computers has given rise to a wide-range of new applications, for which it 

is essential to know the position and orientation of the mobile device so that 

overlaying information or images can be superimposed in the correct size, 

position and at an appropriate viewing angle.  

 

Mobile AR has shifted the focus towards smaller handheld devices with the 

potential for wider-area augmentation. Such systems present 3D/video 

information superimposed on the roaming user’s view. However, the wide-area 

and ubiquitous nature of Mobile AR, requires reliable pose tracking for the 

purpose of image registration. In addition, device size and price constraints, as 

well as real-time interactive requirements, drive the need for efficient tracking 

algorithms. Historically, the Touring Machine (Feiner, et al., 1997), which used 

backpacks with laptop computers and HMDs, as depicted in Figure 1.5 , was 

perhaps the earliest work in the development of Mobile AR.  The trend 

progressed further with the invention of Ultra-mobile personal computers 

(UMPCs) and mobile AR systems such as those described in (Wagner, et al., 

2005),  (Kruijff & Veas, 2007) and (Reitmayr & Drummond, 2006). Figure 1.6 

illustrates the vision-based tracking approach for mobile AR developed by 

(Reitmayr & Drummond, 2006).  

 

Figure 1.5 : Prototyping 3D Mobile Augmented Reality systems (Feiner, et al., 1997) 
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Figure 1.6 : Mobile Augmented Reality  

(Left) A user operating a handheld AR unit tracked in an urban environment.  

(Middle) Live shot showing the unit tracking a building 

(Right) Screenshot from a pose close to the left images with overlaid building outline.”   Sources: 

(Reitmayr & Drummond, 2006) and (Schall, 2011) 

 

Today, the advent of smart phones with integrated GPS, camera, inertial 

sensors and very high performance processing units, has made possible a new 

class of mobile AR applications. Notable examples are the Wikitude (Wikitude, 

2014), Argon (Argon, 2014) and Layer (Layar, 2014) mobile AR applications.  

 

For instance, Wikitude (Figure 1.7) was originally developed as a mobile AR 

travel guide based on user-generated Web2.0 Wikipedia or Panoramio content. 

The users could see the annotated landscape, mountain names or landmark 

descriptions in an AR camera view (Schall, 2011). In the recent developments 

at Wikitude lab, a solution called ‘AR Window’ was launched, which enabled 

any mobile webpage to include AR. This meant that the mobile web pages are 

now able to open up the camera view of its smartphone to view the live video 

streams with additional content on top of it. See Figure 1.7 as an example.  

 

Figure 1.7 : Wikitude Mobile AR  - Source (Schall, 2011). 
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1.2 Navigation and Localisation  

The applications of pose tracking in navigation and localisation range from 

search and rescue helicopters to civilian drones and robotics as well as tracking 

and localisation in constrained environments. Although GPS is regarded as the 

most ubiquitous means of wide-area location tracking in these scenarios, it still 

suffers from ranging errors due limited accuracy and to obstruction of line of 

sight. Despite recent advances in GPS technologies such as the invention of 

differential GPS systems with less accuracy deficiency, wide-area tracking and 

localisation still remain ongoing problems in GPS-denied environments such as 

urban canyons, some combat zones like city warfare, and indoor environments 

like hospitals and shopping malls. 

 

Technological advances in MEMS (Micro-Electro-Mechanical Systems)-based 

inertial sensors have enabled pose estimation in systems such as mobile robots 

or unmanned micro aerial vehicles (MAVs), often operating in urban canyon 

environments, where GPS signals are either unavailable or unreliable. Recently, 

there has been substantive research and progress in autonomous MAVs, such 

as the EU-funded (FP7:2007-2013) SFLY (Swarm of Micro Flying Robots) 

project (Zürich, 2014), which consists of a micro flying robot using only one 

single on-board camera and an inertial measurement unit (IMU). This vision-

controlled MAV has proved capable of autonomous navigation in the GPS-

denied environments.  

 

The objective of the SFLY project was to develop several small and safe 

helicopters, as in Figure 1.8 and Figure 1.9, which could fly autonomously in 

city-like environments and hence be used to assist humans in tasks such as 

rescue and monitoring (Scaramuzza, et al., 2014). Improved positioning of 

these vehicles in GPS-denied areas has been achieved through computer-

vision pose tracking approaches such as Visual SLAM, and variety of other 

sensor fusion systems. 
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Figure 1.8 : “The three SFLY hexacopters designed for inertial-visual navigation in GPS-denied 

environments.” Source : (Scaramuzza, et al., 2014) – Sfly Project  : www.sfly.org 

 

 

Figure 1.9 : Autonomous micro helicopter used in for search and  rescue in a disastrous area  

Source : Sfly Project  www.sfly.org 

 

A further recent application of pose tracking for navigation and localisation has 

been the proposed Amazon civilian drones, called Amazon© Prime Air  

(BBC_News, 2013), meant to be used for package delivery. Amazon’s chief 

executive Jeff Bezos stated that the drones, called Octocopters, could deliver 

packages weighing up to 2.3kg to customers within 30 minutes of them placing 

the order.  Although the drones have GPS tracking systems, when entering 

GPS denied areas they would require an alternative tracking system to find the 

correct address and then return to the point where the GPS signal can be 

recovered. This is another example which proves the need for developing other 

http://www.sfly.org/
http://www.sfly.org/
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multimodal tracking and localisation system which works in GPS denied 

environments. 

 

Figure 1.10 : Amazon Prime Air : Source : (Amazon_PrimeAir, 2014) www.amazon.com 

1.3 Problem Formulation, Objectives and Contributions 

The aim of this study is to develop an improved solution for marker-less pose 

tracking in order to estimate the 6 Degrees of Freedom (6DOF) pose of a 

moving camera, consisting of 3D position and 3D orientation, with reference to 

a fixed coordinate system.  

 

This led to the following specific objectives: 

 

 To review the literature on existing systems used for tracking camera 

position and orientation 

 To review the literature on hybrid pose tracking algorithms and 

techniques using computer vision 

 To evaluate existing techniques in relation to their advantages and 

limitations 

 To test the viability of using an inertial-visual hybrid approach for refining 

the accuracy of GPS location tracking and to determine the current 

reliability of using wireless beacons for location tracking. 

 To establish an understanding of the mathematical models and tools 

underpinning an improved  approach to inertial-visual hybrid tracking 

http://www.amazon.com/
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 To design the system architecture and algorithm for an improved 

approach to inertial-visual hybrid tracking 

 To validate the system efficiency using both synthetic and real data 

 To review the outcomes of the work and to suggest directions for future 

research 

 

In order to achieve these objectives, following a thorough investigation into 

existing single and multi-sensory pose tracking systems and algorithms 

(Chapter 2 and 3), a series of preliminary experiments were carried out and the 

shortcomings of existing tracking systems were identified. Following this study, 

a hybrid ‘GPS-Visual SLAM (Simultaneous Localisation And Mapping)’ tracking 

system was developed and its potential to refine GPS location accuracy was 

evaluated with a view to a potential comprehensive wide-area tracking solution 

in the future (Chapter 4, Section 4.1). In addition, the possibility of using 

wireless location tracking (such as  Apple©’s iBeacons) were investigated as an 

alternative and/or as a supplement to GPS for achieving more refined location 

tracking in GPS-denied environments (Chapter 4, Section 4.2).   

 

These investigations and experiments led to the design, development and 

evaluation of a novel hybrid tracking system (outlined in Chapters 6 and 7), 

featuring the following main contributions:  

 

 A proposal for a novel and improved hybrid Inertial-Visual pose 

tracking system: The system benefits from the agility of inertial tracking 

and robustness of vision-based tracking, while addressing the 

shortcomings of each individual system. The proposed stochastic data 

fusion method deals with the uncertainty, noise and error of sensory 

inputs and provides a robust solution, which can potentially be used by 

applications requiring wide-area pose tracking.  

 

 Model-free, marker-less pose tracking: The proposed system does 

not require a model of the environment, nor does it require markers to be 
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placed in the environment, thus making it suitable for use in unknown 

environments. In addition, the system does not need to retain a map of 

feature points, hence requiring reduced processing effort, enabling its 

use on mobile platforms with limited resources. 

 

 Incorporating a decision-making mechanism for selecting the 

suitable method of tracking: The system incorporates a means of 

measuring the level of suitability of image data for tracking. Such 

information is used to automatically determine the most suitable method 

of tracking at any particular time. This feature minimises the probability of 

sudden errors, which could have permanent adverse effect on tracking 

performance, making the proposed tracking method suitable for the 

potential use in a wide-area outdoor environment. 

 

 Development of a self-adjustment mechanism to improve the pose 

estimate: The system monitors the performance of tracking and detects 

when, based on new incoming sensory information, the past state 

estimate has been inaccurate. A mechanism has been designed to 

propagate the updated past state through to the current time, minimising 

the probability of pose error manifesting as a permanent drift in the pose 

tracking. This self-adjustment is beneficial in tracking applications 

requiring travelling over long distances. 

 

 Development of a test system for performance evaluation:  In order 

to evaluate the performance of the proposed solution, various indicative 

sample sensory data have been generated to simulate real world data, 

enabling a thorough evaluation of various aspects and parameters of the 

proposed camera tracking algorithm. In addition the system performance 

was evaluated using a dataset containing real data generated by the IMU 

and camera on board a micro aerial vehicle (MAV), together with a set of 

ground truth data produced by the ©Vicon motion capture system (Vicon, 
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1984). The system evaluation methodology, the datasets and results can 

be used for benchmarking and future work in this area. 

1.4 Thesis Outline  

The remainder of this thesis is organised as follows: 

 

Chapter 2 provides a review of pose tracking systems from single to multi-

sensory methods used in estimation of 6DOF position and orientation.  

 

Chapter 3 reviews pose tracking techniques using computer vision-based 

methods, primarily exploiting image processing algorithms for detecting the 

natural features in an image in order to tackle the problems of motion 

tracking and matching.  Recursive filtering techniques in inertial-visual 

sensor fusion are also reviewed in this chapter leading the proposal of a new 

system specification for the hybrid inertial-visual tracking system in Chapter 

6.   

 

Chapter 4 presents tracking techniques using radio frequency (RF)-based 

positioning systems. In order to evaluate the performance of such systems, 

a combined GPS and vision-based pose tracking system (GPS-Visual SLAM 

sensor fusion) and then a system based on wireless iBeacon technology 

were implemented. This chapter describes these two systems followed by 

performance analysis and conclusions based on carrying out a number of 

experiments.   

 

Chapter 5 provides geometric models and mathematical tools for camera 

modelling and representation of 3D moving object. It introduces the notation 

and provides the background for understanding the system modelling and 

algorithms designed and presented in Chapter 6 and 7. It first introduces the 

operating principles, mathematical models, geometry of two views (i.e. 
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epipolar geometry), measurements of cameras and inertial sensors and then 

proceeds with the fundamental estimation techniques considering computer 

vision and recursive filtering methodologies.  

 

Chapter 6 demonstrates the main inertial-visual hybrid camera tracking 

system architecture and algorithm proposed in this thesis. The hybrid 

tracking algorithm is fully explained and illustrated in this chapter.  

 

Chapter 7 sets out the framework for system validation and provides the 

tracking outcome and analysis using both synthetic and real data.  The 

simulated data has been synthesised (considering the precise kinematics 

motion equations and IMU datasheet characteristics) and evaluated. A 

proof-of-concept has been demonstrated in a simulated dataset setup 

through various procedural tests and evaluations. Moreover, the developed 

algorithm has been tested and evaluated with a set of real dataset (i.e. SFLY 

dataset).   

 

Finally Chapter 8 concludes the thesis and offers suggestions for future 

work.  

 

Appendix A includes the author’s related published work.  
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CHAPTER TWO 

 

2 A Review of Pose Tracking Systems  

This chapter provides an overview of the pose tracking systems currently used 

in the estimation of 6DOF position and orientation, from single to multi-sensory 

approaches.  Sensory approaches are reviewed and analysed, such as a single 

camera with passive or active visual markers; inertial measurement units 

(IMUs); Global Positioning System (GPS); systems utilising time-of-flight, 

including optical, radar and acoustic sensing; wireless systems; as well as 

hybrid techniques, which make use of the above in various combinations. 

2.1 Camera as the Main Motion Sensor 

Traditionally, in computer vision systems, a camera has been used as the only 

motion sensor for tracking. Over the past decades, there have been several 

advances in computer vision-based tracking techniques and algorithms that can 

recover 2D/3D correspondences between successive images. These can be 

divided into two main approaches; marker-based and marker-less. The former 

is characterised by tracking visually distinctive markers, which implicitly solves 

the tracking and localisation because the markers and their relative 3D positions 

are known. In the latter case, no such pre-prepared markers are employed and 

reliance is placed upon tracking naturally appearing features.   

 

Zhang et al (2002) have carried out a comprehensive survey on the approaches 

to marker-based tracking methods with notable examples including; ARToolKit 

(ArToolKit, 1999)  and ARTag (Fiala, 2010). In both of these cases, planar 
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fiducial markers are used for camera tracking to help solve the fundamental 

problem of image registration in Augmented Reality (AR). Marker-less 

approaches use naturally distinctive features such as points, lines, edges, or 

textures available in the scene, whose 3D positions are not known. These 

systems use these naturally occurring features for both motion estimation and 

localisation. Comprehensive surveys on monocular camera-pose tracking, using 

only vision-based approaches, have been carried out in (Desouza & Kak, 2002), 

(Trucco & Plakas, 2006) and (Mautz & Tilch, 2011).  In this thesis, vision-based 

algorithms used for pose estimation are reviewed in Chapter 3.  

2.1.1 Optical Sensing  

Optical sensing relies on detecting reflected or emitted light. Therefore such 

systems have two main components; light sources and optical sensors. Optical 

tracking systems have the advantage of having high accuracy and are suitable 

for use in large visually uniform spaces, where feature detection using computer 

vision algorithms may fail or produce high rates of latency. 

 

The optical systems, for which the light source is on the moving target and the 

sensors (markers) in the environment, are generally referred to as outside-

looking-in or simply Outside-In. On the other hand, if the optical marker is 

attached to the moving target, the tracking is referred to as inside-looking-out or 

Inside-Out (Welch & Foxlin, 2002).  

 

Marker-based systems are mainly used when it is convenient to attach markers 

to the tracking scene or where natural features are not easily available to be 

used by the vision-based systems alone. Despite recent advances in marker-

less tracking approaches, using naturally distinctive features such as points, 

lines, edges, or textures whose 3D positions are not known, there are still 

applications where adding fiducial markers can be an advantage. Examples 

include; featureless indoor scenes, indoor augmented reality in known 
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environments, cases where message tags are used to trigger a behaviour and 

also generic pose estimation in industrial settings with fixed features. 

2.1.1.1 Passive and Active Light Sensing using Markers 

The light markers can be either passive objects that reflect the ambient light or 

active objects that emit internally generated light. In the case of passive 

markers, they are normally in the form of spherical shapes covered with retro-

reflective material, which reflects infrared radiation from the incoming light.  The 

systems work based on the triangulation of light for calculation of the 6DOF of 

the moving object. Examples of passive sensors include distinguishable man-

made markers (e.g. retro-reflective markers used in ©Vicon motion capture 

systems) or else natural features in the environment. However, passive marker 

tracking systems often require carefully controlled lighting environments and are 

known to be prone to produce errors in the case of partial target occlusion. Also, 

when tracking multiple objects their general success rate is reduced (Steidle, et 

al., 2012).  

 

In contrast, active sensing systems are based mainly on active electronic 

components such as illuminating light emitting diodes (LEDs) or lasers. They 

use the same principle of triangulation but with each active marker uniquely 

identifiable. Tracking efficiency tends to reduce with the increase in the number 

of markers and for large numbers of markers there is a need for a model-based 

tracking system (Steidle, et al., 2012).  

 

A very early example of an optical tracking system was the Twinkle Box  

(Burton, 1973), (Burton & Sutherland, 1974). This system measured the position 

of user-worn flashing lights with optical sensors mounted in the environment 

behind rotating slotted disks. Also, the Selspot system (Woltring, 1974) used 

fixed photodiode sensors and target-mounted infrared LEDs that could be 

tracked within a one cubic meter volume. Later, systems such as; Flash-Point 

and Pixsys by Image Guided Technologies, Inc. (IGT) (acquired by ©Stryker in 

2000) (StryKer, 1894), the laserBIRD system by ©Ascension Technology 
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(Ascension, 1986), the ©CODA Motion Capture Systems (CodaMotion, 1970), 

UNC’s HiBall (Welch, et al., 2001), ©Vicon Motion Capture System (Vicon, 

1984) , and ©ART (ART, 1999) used mainly optical sensor systems (passive 

and/or active) at a relatively high sample rate and for tracking a larger number 

of objects.  

 

Welch, G. et al. (Welch, et al., 2001) surveyed the developments that majority 

had taken place at the University of North Carolina at Chapel Hill, where they 

pioneered active optical sensors/markers from the Self-Tracker (Bishop, 1984) 

to the HiBall Tracking System. The following figures illustrate some of these 

optical tracking systems. 

 

Figure 2.1 shows the Electro-optical head-tracking system demonstrated in the 

Tomorrow’s Realities gallery at ACM SIGGRAPH 1991. This system used four 

head-worn lateral-effect photodiodes looking upward at a regular array of 

infrared LEDs installed in precisely machined ceiling panels (Ward, et al., 1992) 

and (Welch, et al., 2001). 

 

Figure 2.2 on the left shows the HiBall Tracking System. The HiBall is a cluster 

of 6 lenses and 6 photodiodes arranged so that each photodiodes can view 

LEDs through several lenses out of 6. This system generated more than 2,000 

pose estimates per second, with less than 1ms of latency and up to 0.5 mm and 

0.03° absolute error and noise, everywhere in a 4.5x3x8.5m room (with more 

than two meters of height variation). The weight of the user-worn HiBall was 

approximately 300 grams. The image on the right shows the physical sensors 

arrangement of the HiBall Tracking System. 
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Figure 2.1 : Active Markers - Electro-optical head-tracking system (Self-Tracker)  

Source: (Welch, et al., 2001). 

      

Figure 2.2  : Active Markers – The HiBall Tracking System (Welch, et al., 2001) 

 

Figure 2.3 illustrates the ©Vicon motion capture system with sphere-shaped 

passive markers covered with retro-reflective material, which reflects the 

infrared radiation of the incoming light.  



22 
 

 

      

Figure 2.3 : Passive Markers ( ©Vicon motion capture system ) 

2.1.1.2 Fiducial Planar Markers 

Visual fiducial markers have been extensively used in marker-based tracking 

systems for higher reliability and accuracy. Fiducial planar marker systems 

consist of unique patterns together with the detection algorithms to locate the 

projection of patterns in the camera image. The reliability of such marker 

systems depends on the proper design and manufacturing of the markers as 

well as the performance of pattern detection algorithms and camera calibration 

for accurate pose recovery using homography. 

 

In practice, computer vision systems often use 2D patterns to carry information, 

very similar to barcodes seen on consumer products. In order for a vision 

system to recognise the details on a barcode, the distance between the marker 

and camera must be kept relatively short. Also, a distinction must be made 

between visual patterns such as barcodes, designed to convey information, and 

patterns designed for the purpose of tracking.. Examples of the former include 

the Maxicode markers used by US postal services to carry shipping information, 

DataMatrix and respectively the Quick Response (QR), which are both used in 

industrial settings for part labelling (Zhang, et al., 2001).  

 

For camera pose recovery purposes, using a 2D visual pattern, at least three 

points of correspondence must be identifiable between the 2D pattern and their 

camera image.  As a consequence this three point perspective pose estimation 
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problem and its solutions (Haralick, et al., 1994), the majority of the visual 

markers used in marker-based systems specifically for indoor augmented reality 

applications have been designed within a quadrilateral shape i.e. a square with 

at least 4 co-planar corresponding points. This allows feature correspondence 

and subsequent homography calculation even when there is only a single 

marker in the scene (minimum 3 points are available in a single marker). In 

some cases, circular visual markers have been used, providing only one point 

correspondence per marker, i.e. the centre of the circle, such that at least 3 

markers with known 3D positions must be used for pose estimation. 

 

Martix (Rekimoto, 1998), ARToolkit (Kato & Billinghurst, 1999) and (ArToolKit, 

1999) , ARToolKit Plus (Wagner & Schmalstieg, 2007), BinAryID and ARTag 

(Fiala, 2005), IGD, HOM, SCR and the Cannon markers from the ARVIKA 

project (ARVIKA, 2009)  use square planar markers producing quadrilateral 

perspective projection in the camera image. Some of these vision markers have 

been illustrated in Figure 2.2. 

 

Fiducial planar marker systems are largely based on two main stages; 

hypothesis generation from detecting unique features and the 

verification/identification stage. The former stage is to detect the planar patterns 

based on perspective projection and the homography between the marker 

pattern and the image plane. A geometric shape such as dot, bar, ellipse, 

triangle, square, etc. provides an anchor to form the marker detection 

hypothesis. Figure 2.2 illustrates some of these geometry shapes and patterns 

used for feature detection. At this stage, normally more than one feature is used 

to provide a list of regions with homography presented to the next stage for 

verification to check against other similar objects in the scene. Several systems 

use blob detection techniques to find the connected components of interest in a 

binary image formed by thresholding in order to find the unique features.   

 

The second stage of verification and identification is to determine whether the 

detected features correspond to the fiducial markers or similar objects in the 
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scene or not. Considering various such methods, ARTag claims to have an 

enhanced verification stage in comparison to other systems such as ARToolkit 

(Fiala, 2010). It generates a binary yes and no system for verifying whether the 

detected object is in fact a fiducial marker or not. Fiala (Fiala, 2010) established 

eleven evaluation criteria in order to address the performance, usability and 

robustness of fiducial markers. Subsequently he carried out a set of 

experiments to assess the effectiveness of the ARTag system considering the 

above criteria. The results of these tests have been depicted in Figure 2.3.  

One image was captured with an array of ARTag markers and one with an array 

of ARToolit Plus markers. Both images had the same size and arrangement of 

markers. the so-called ‘inter-marker confusion rate’ and the ‘false negative rate’ 

were precisely measured. Figure 2.3 (a) shows the ‘Inter-Marker Confusion 

Rate’ criteria in ARTag and ARToolKit Plus Systems. The diagram provided in 

Figure 2.3 (b) shows the ‘False Negative Rate’ criteria in ARTag and ARToolKit 

Plus Systems. The ‘inter-marker confusion rate’ is one of Fiala’s eleven 

evaluation criteria for performance assessment of fiducial markers, which 

indicates whether a wrong ID was reported or a marker was mistaken for 

another. ‘False negative rate’ is also referred to as the probability of the 

presence of a marker in the image, although not being reported by the detection 

algorithm.  

In this analysis, Fiala (Fiala, 2010) modelled the marker system as a 

communication system and the ‘Hamming distance approximation’ (Hamming, 

1950) was used for measuring the approximate distance between the markers 

in order to minimise ‘inter-marker confusion rate’. The results of this experiment 

and analysis showed an improved performance from ARTag markers by several 

orders of magnitude in comparison to ARToolKit (as seen in Figure 2.3). 
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Figure 2.2: Several fiducial planar marker systems – source: (Fiala, 2010) 

 

(a)                 (b) 

Figure 2.3:  Usability test results comparing ARTag with ARToolkit Plus - Source: (Fiala, 2010) 

2.2 Global Positioning System (GPS) for Location Tracking  

The Global Positioning System (GPS) relies on a number of satellites and 

ground stations spread around the world.  It is one of the most ubiquitous 

means of wide-area location tracking and works anywhere on the Earth’s 

surface provided there is an unobstructed line of sight to a sufficient number of 

GPS satellites. In practice at least four satellite signals are required to 

triangulate receiver location. Each satellite has atomic clocks with a current drift 



26 
 

rate of about 0.1 milliseconds per year, which creates a distance error on the 

order of 30m. However, ground stations control the satellites drift and 

recalibrate the atomic clocks every 30 seconds to reduce the measurement drift 

errors. The typical resolution of such GPS location tracking systems is of the 

order of few metres (Elliot, 1996).  

 

More precise GPS tracking is provided by differential GPS systems, which use 

emitting ground stations to refine the resolution to the order of one metre (Noe 

& Zabaneh, 1994). However, location accuracy achievable by consumer-grade 

GPS receivers is variable depending on environmental conditions but can 

typically be expected to be within 10 metres. Real-time positional accuracy can 

be improved by counteracting errors caused by satellite orbit irregularities and 

atmospheric conditions using differential GPS. This uses ground stations to 

calculate correctional data, which is uploaded to GPS satellites to be broadcast 

to the enabled receivers. This augmentation of the raw satellite data is available 

in regions of the Earth with an appropriate network of ground stations.  For 

example, the Wide Area Augmentation System (WAAS) covers North America 

and Hawaii, while European-based stations provide the European 

Geostationary Navigation Overlay Service (EGNOS).  These augmentation 

systems improve the reliability and accuracy of the GPS system to better than 7 

metres laterally with some locations experiencing better than 2 metres. 

 

 

Figure 2.4 : GNS 1000 WAAS Enabled GPS Receiver 
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2.3 Inertial Tracking Systems 

Inertial Navigation Systems (INS) became widespread for ships, submarines, 

and airplanes in the 1950s. Initially, INS contained heavily weighted, high 

accuracy, spinning-wheel gyroscopes such as the one illustrated in Figure 2.5.  

Despite their accuracy; they weigh far too much to be considered for head 

mounted displays or as a conventional input device. However, with the advent 

of MEMS (Micro-Electro-Mechanical Systems) inertial sensors in the 1990s, 

they became feasible to be considered as input devices and for attachment to 

moving bodies for tracking.  

In principle an inertial measurement unit operates by trying to conserve either a 

given axis of rotation, as in the case of a mechanical gyroscope, or a position, 

as in the case of an accelerometer. Inertial Measurement Units (IMUs) contain 

three orthogonal gyroscopes and three orthogonal accelerometers measuring 

angular velocity and linear acceleration. However, despite their accuracy in 

agile motions, inertial sensors suffer from accumulation errors over time due to 

the fact that each measurement is relative to the previous. 

Almost all INS systems fall into two categories; Stable Platform and Strapdown. 

Figure 2.6 illustrates the Stable Platform in which the inertial sensors are 

mounted on a platform isolated from any external rotational motor (Woodman, 

2007). The platform is mounted using gimbals (frames) which allow rotational 

freedom in all three axes (Figure 2.6). This aligns the body frame (platform) with 

the reference frame. The platform mounted gyroscopes detect any rotations and 

feed this back to the torque motors which then rotate the gimbals to cancel out 

any such rotations. This keeps the platform aligned with the global frame.  
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Figure 2.5 : A conventional mechanical gyroscope - source: (Titterton & Weston, 2004) 

 

The orientation of the device is determined by reading the angles between 

adjacent gimbals using angle pick-offs. The position can be calculated by 

double integrating the signals from the platform mounted accelerometers. 

The second type of INS, Strapdown INS, is lightweight and permits the system 

to eliminate the mechanical gimbals. The inertial sensors are simply strapped to 

the moving object and measure the orientation and translation by integrating the 

angular and linear velocity produced by the gyroscope and accelerometer. 

Therefore output quantities are measured in the body frame rather than the 

reference or global frame.  

Figure 2.8 illustrates the algorithm for a Strapdown inertial system. 
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Figure 2.6 : Stable Platform IMU - source: (Woodman, 2007) 

 

MEMS inertial measurement units are of the Strapdown type. There are various 

types of MEMS accelerometers, mainly based on the linear accelerometer 

model, where a proof mass is suspended between two springs. The 

displacement of the springs is proportional to the actual acceleration. 

The acceleration output needs to be integrated once to provide the linear 

velocity and then integrated again to provide the linear displacement. Due to 

noise and error in acceleration measurement, and also the residual effect of 

gravity cancellation, the integration of accelerometer data often leads to 

significant drift over time, adversely affecting the registration stability. In 

particular, the integration of accelerometer data is known to introduce 

instabilities when used for position estimation.  
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Figure 2.7 : Linear accelerometer. Source: (Woodman, 2007) 

Nonetheless, despite the computational complexity of the Strapdown INS and 

the potential accumulation drift, they are still the foremost type of INS, due to 

their reduced mechanical complexity. Recent improvements in the performance 

of small and lightweight MEMS have made Strapdown MEMS devices the 

dominant inertial sensors used in navigation and tracking systems.  It is beyond 

the scope of this thesis to present a comprehensive review of the architecture of 

MEMS devices. Full details about the MEMS-based IMU architecture can be 

found in (Woodman, 2007).  

Examples of MEMS inertial sensors include standard Inertial Measurement 

Units (IMUs) such as MPU-9x50TM from InvenSense with up to nine degrees of 

freedom (3 from accelerometer, 3 from gyroscope and 3 from compass). It 

combines the 9DOF in a chip together with an on-board Digital Motion 

Processor™ (DMP™) capable of processing the complex 9-axis MotionFusion 

algorithms with more accuracy (InvenSense, 2003). 

Given their agility and accuracy advantages in high speed motions, as well as 

their typical disadvantages such as inherent accumulation error, additive 

electronic, ambient noise, and gain noise, inertial sensors are particularly 
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valuable when combined with other sensing technologies in the form of so-

called hybrid tracking systems.  

 

Figure 2.8 : Basic Strapdown INS - Source:  (Corke, et al., 2007) 

2.4 Tracking using Time of Flight (TOF)  

Imaging technologies based on time-of-flight (TOF) measurements have also 

been considered as a solution to the problem of tracking and localisation. Such 

techniques can be based on acoustic (ultrasonic) signals, and optical signals in 

TOF cameras and the CCD sensors. The distance from sensors to the object 

(depth of the object) can be measured using TOF techniques, using light or 

ultrasound signals for this purpose.   TOF resolves the distance based on the 

known speed of light or sound, by measuring the time of flight of a signal 

between the sensor and the object in the scene and back.   

TOF techniques for positioning and localisation are more dominant in urban 

canyon environments where GPS signals are either unavailable or unreliable. 

Another of application is in biomedical and surgical environments where placing 
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invasive sensors or using other standard tracking techniques is not practical 

due to anatomy of human organs or because of the presence of fluid. In such 

applications most popular tracking methods employ radio frequency (RF) or 

ultrasound to determine the location of the target object in 2D or 3D by 

recording the round trip TOF of mentioned signals.  

2.4.1 Acoustic Tracking using TOF 

Acoustic systems use the transmission and sensing of sound waves. 

Historically, ultrasonic pulses are used in acoustic ranging systems, which 

operate by timing the signal flight duration. These ultrasonic-based tracking 

systems generally consist of three or more emitters on the target and three or 

more on the receiver. The emitter and receivers are transducers, which are 

attached to the object in a triangular arrangement. The emitted frequency is 

above 20KHZ, typically around 40KHZ, to prevent the users from hearing it. 

One of the main advantages of using ultrasonic TOF is its resistance to 

distortions. However, its accuracy depends on the consistency of the sound 

velocity as the speed of the sound varies with temperature, pressure, humidity, 

and turbulence. The other limitation in using ultrasound TOF is loss of energy of 

the signal with distance travelled, which limits the tracking range. Therefore this 

suggests it is not the best solution for wide-area tracking applications. In 

addition, ultrasonic waves have low update rate due to sequential triple 

emission of sound signals and the low speed of sound. Nevertheless, there are 

techniques that can be applied for increasing the update rate, such as coding 

the signals to be sent with variable frequencies (Rolland, et al., 2001). The 

systems described by (Holm, et al., 2005) and (Holm, 2005) are successful 

examples of ultrasound-only tracking systems for indoor positioning. The core of 

the system was a 40 KHz ultrasound communication system with an attainable 

tracking range of 10-20 metres. The main hardware was an Ethernet interface 

using digital signal processing to handle the acoustic environment and its noise, 

reverberations and Doppler shift.  
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Acoustic systems require maintaining the line of sight between the emitters and 

the receivers. Although this can be regarded as a disadvantage, their tolerance 

to occlusions is much higher than typical optical systems, as the sound wave 

can find its way through and around the obstacles more easily.  

Hybrid tracking systems often tackle the limitations of ultrasonic-only systems; 

mainly the issues with low range accuracy, low robustness to external 

disturbances and occlusion of the line of sight.  Among all such existing hybrid 

systems, combination of ultrasound with radio frequency (RF) has the largest 

number of applications. Examples of ultrasound-RF hybrid systems include; the 

Active Bat system (Ward, et al., 1997), the Cricket system (Priyantha, et al., 

2000), and the Dolphin system (Fukuju, et al., 2003) with a reported accuracy of 

about 15 centimetres.  

All of above mentioned systems combine ultrasound with RF (or RFID tags) and 

work based on the estimation of TOF considering the slow travel of ultrasound 

compared to RF. However, the main requirement of such systems is still 

unobstructed line-of-sight. The other hybrid system, which addressed the 

shortcomings of acoustic-only systems, is ultrasound-inertial tracking. An 

example is the hybrid inertial sensors and wireless ultrasound tracking system 

designed by InterSense Inc. which was developed by Azuma in his first 

Videometric-Inertial technology system (Azuma, 1995).  In such a hybrid 

system, the inertial sensors provide the basic accuracy and ultrasound (at a 

lower update rate), which when available, is used to reset the drift generated by 

the accelerometer.  

2.4.2 Optical Tracking Using TOF  

In recent years, optical signals have been used for localisation and 6DOF 

tracking based on TOF calculation using state-of-the-art of TOF cameras. The 

TOF 3D cameras come as a compact solid-state sensor, which provide range 

and amplitude images at a video frame rate. They emit near infrared (NIR) 

signals to the objects in the scene and the reflected light is measured via a CCD 
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or CMOS sensor. The distance is then calculated using phase-shift principle. 

More details can be found in (Ratshidaho, et al., 2012).  

Examples of commercial TOF cameras are the Swiss Ranger SR4000/SR4500 

and SR4050 SLIM (MESA, 2006) with their associated visualisation software 

(SR-3D-View), which provides the depth information in colour coded form from 

violet (close) to red (far) (see Figure 2.9 for sample data captured by 

SR4000/4500).  

TOF cameras have been used for solving the pose estimation problem due to 

their low power consumption and compactness compared to laser range 

finders, as well as being able to produce 3D range images at video frame rate 

(approximately 30 fps). However, depending on external noise factors such as 

sunlight, scene configurations, distances, surface orientations, and reflective 

distance measurements from various perspectives of the same scene, TOF 

cameras can cause significant error and large fluctuations in accuracy and 

precision. In addition, their narrow field of view makes the registration of the 

range images challenging. As a result, 3D laser scanning techniques are still 

mostly used for 3D mapping purposes (Ratshidaho, et al., 2012). 

In terms of image registration in TOF-based tracking, the standard Iterative 

Closest Point (ICP) algorithm (Besl & McKay, 1992) and (Chen & Medioni, 

1991) is normally used. The original ICP algorithm consists of two main steps. 

Having two sets of points, it is first necessary to identify pairs of candidate 

points for likely correspondence and, second, to compute a transformation that 

minimises, in a least-squares format, the distance between the two sets. This 

process is repeated until a convergence criterion is met. 

TOF is widely used for ego-motion estimation in special environments. As an 

example, the work by Ohno, et al (2006) presented a rescue robot for collecting 

information in a rubble-strewn environment for Japan’s MEX1 special project 

concerning an earthquake disaster management system. They proposed a 

solution involving 3D SLAM for rescue robot localisation and mapping in a 

special environment; i.e. earthquake rubble. In their work they used a TOF 
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Swiss Ranger 3D camera for robot trajectory estimation. They also applied a 

modified ICP algorithm to handle the TOF error rate in image registration. The 

edge detection was used for feature tracking in corresponding points extracted 

from the amplitude image (from TOF camera). Accuracy of 17% in rotation and 

15% in translation was achieved by their hybrid system (Ohno, et al., 2006). 

 

 

 

Figure 2.9 : Time of Fligh Cameras  

 

Up Left to Right: SR4000, SR4500 & Bottom Left to Right: Sample data respectively.  

Source: (MESA, 2006) 

Another example is the work of May, et al (2009) which used a SR3K Swiss 

Ranger camera for motion estimation and map building. They also modified the 

original ICP algorithm to handle degree of overlap caused by the small field of 

view of TOF and mismatched correspondence points. Also, their approach was 

compared to SIFT (Scale-invariant feature transform) and KLT (Kandale-Lucas-

Tomasi) for feature-based pose-tracking applied on the amplitude images 

captured from the TOF camera. Similarly, (Wang, et al., 2009) used a SR3K 

TOF camera and applied SURF (Speeded-Up Robust Features) feature 
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detection on amplitude images, which provided more accuracy compared to its 

application on a standard image.  

The 3D TOF range-camera models, description of the error and error handling 

techniques are outside the scope of this thesis, however more details can be 

found in (Ratshidaho, et al., 2012), (Hochdorfer & Schlegel, 2010) (Ratshidaho, 

et al., 2012) and (May, et al., 2009).  

2.5 WIFI Sensors for Tracking 

Wireless Fidelity (WIFI) based indoor positioning and localisation using wireless 

proximity detection have been studied for more than a decade and a variety of 

systems, methods and algorithms have been proposed such as the RADA (Bah 

& Padmanabhan, 2000) by Microsoft Research, as well as other systems 

including those introduced  by  (Kjrergaard & Munk, 2008), (Subramanian, et al., 

2008), (Ahamed, et al., 2008) and the Enhanced Localisation Solution (ELS) by 

(Papandrea & Giordano, 2012). Localisation in such systems is normally 

achieved through Received Signal Strength (RSS) measurements. The RSS 

decreases when the receiver moves away from the emitter, therefore the signal 

strength is used as an observable measure to estimate the distance from the 

emitter station.  The RSS values can be obtained with minimal effort or the need 

for additional hardware, as most radio chips are natively equipped with an RSS 

indicator which returns a digital value with the average signal power of the 

received packet.  

RSS-based proximity and localisation techniques and algorithms have been 

widely analysed and empirically tested in recent years. Some interesting results 

can be found in (Pivato, et al., 2010) and (Pavani, et al., 2006). However, the 

main drawback of RSS-based systems is their significant sensitivity to multipath 

and shadowing effects, which are particularly critical in indoor environments. 

This perturbs the ideal relationship between the RSS and the distance, thus 
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leading to biased and space-varying position estimates and unsatisfactory 

localisation accuracy (Pivato, et al., 2010).   

Most recently, in 2013, ©Apple introduced iBeacons which have been mainly 

developed for indoor proximity detection. IBeacons are small, low-cost wireless 

transmitters which broadcast signals using Bluetooth Low Energy (BLE) 

standard.   Mobile Apps (iOS 7.0 and Android) work as receivers and listen for 

signals from beacons in the physical world. Initially it has been widely promoted 

for use in the retail industry. An example is ©Exact Editions which launched 

their iBeacon service for publishers to make their magazine apps free of charge 

at certain locations in London such as in a café, a hotel or first class lounge 

(ExactEdition, 2013). Although iBeacon was mainly advocated for proximity 

detection in the retail industry, ©Apple has argued that the iBeacons have also 

been designed for micro-location tracking.  

Presented in this thesis is an experiment performed by the author using 

iBeacons to assess the accuracy of RSS-based tracking system for micro-

location tracking considering the signal strength. The experiment demonstrated 

the fairly low accuracy of these devices for micro-location estimation. In the 

experiment, an array of few iBeacons was placed in an indoor environment. The 

iBeacons were arranged at three corners of a 10x10 grid of tiled carpets where 

each tile was a square of 0.5 x 0.5 metres. The details of this experiment and 

results have been described in Chapter 4.  

2.6 Multisensory Tracking Approaches  

Multisensory tracking, or simply hybrid tracking, refers to the combination of 

different tracking technologies into a single system; such as Ultrasound-RF 

(Fukuju, et al., 2003),  Inertial-TOF (Droeschel, et al., 2011), GPS-Visual 

(Schleicher, et al., 2009) , RSS-TOF (Macii, et al., 2011)] and Inertial-Visual  

(Bleser, 2009) and (Scaramuzza, et al., 2014) tracking systems.  
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It is beyond the scope of this thesis to present a full review all permutations of 

hybrid systems. However, of particular relevance to this thesis, a review of 

significant inertial-visual hybrid tracking systems is given in section 2.6.1. The 

important enabling principle of recursive filtering is discussed in Chapter 3. 

Subsequently, an improved inertial-visual hybrid camera pose tracking system 

has been developed, a full account of which is provided in Chapters 6 and 7.  

Chapter 4 of this thesis also presents another hybrid system - GPS-Visual 

SLAM. An iOS mobile app was accordingly developed to trial this idea and 

collect the results for further analysis. 

2.6.1 Inertial-Visual Sensor Fusion  

The integration of vision and inertial sensors started with the early work of 

Viéville & Faugeras (1990) and has grown in interest and application. The 

advantages of this system integration were well described by Corke, et al. 

(2007).  

 

Inertial sensors are unable to distinguish a change in inclination from 

acceleration of the body, due to Einstein’s equivalence principle. These sensors 

have large measurement uncertainty at slow motion and lower relative 

uncertainty at high velocities. However inertial sensors can measure very high 

velocities and accelerations. Cameras on the other hand can accurately track 

features at low velocities. With increasing velocity, tracking is less accurate due 

to motion blur and the effect of camera sampling rate. For high velocities and 

accelerations cameras with higher frame rate can be used up to a point, but the 

increase in bandwidth complicates real-time implementations. Image-based 

tracking systems also suffer from a missing dimension due to 2D/3D 

transformation. Therefore a near object with low relative speed appears the 

same as a far object with high relative speed (Broida, et al., 1990). 
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In recent years hybrid tracking systems consisting of low cost inertial 

measurement units (IMUs) and robust and high-dimensional computer vision-

aided algorithms have enhanced the performance and agility of tracking 

systems such as those described in (Lobo & Dias, 2003), (Bleser & Stricker, 

2008) and (Corke, et al., 2010 ). Such solutions have also tackled the hurdles of 

real-time sensing and localisation especially in GPS-denied environments 

(Mingyang & Mourikis, 2012), (Scaramuzza, et al., 2014). The generic 

architecture of the IMU-Vision sensor fusion is well modelled and justified by 

(Corke, et al., 2007), in which the authors also analysed the main advantages of 

each system in detail.  

Foremost examples of inertial-visual tracking systems include Marker-less Real-

time Tracking for Augmented Reality Image Synthesis (MATRIS) as well as 

Visual-Inertial SLAM. 

 

      

Figure 2.10:  Virtual Studio – BBC-developed Free-d System 

 

Left: “Circular barcoded markers mounted on the ceiling of a TV studio”  

Right:  “free-d tracking camera mounted on studio TV camera 

Source:  (Thomas, 2007) 

 

The EU-funded project MATRIS (Chandaria, et al., 2007) was a tracking system 

mainly used in real-time augmented reality for film and TV production 

applications. MATRIS was initially developed as replacement for use in existing 

television production studios, which were mainly using a marker-based solution 
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such as the BBC-developed free-d system for real-time augmented reality 

(Thomas, et al., 1997), (Thomas, 2007) (see Figure 2.10 ). 

 

The MATRIS was designed in the form of a model-based hybrid system which 

used structure-from-motion methodologies in order to create a 3D model of the 

scene offline before the real-time tracking and image registration process. This 

provided stability in tracking as well as an absolute reference frame for 

composition of virtual objects in a fixed location with known scaling and 

orientation for a repeatable performance. MATRIS benefited from the agility and 

accuracy of an IMU for compensation of latency and missing dimension of 

image-based system. The search and optimisation based technique Random 

Sample Consensus (RANSAC) was used for removing the outliners during the 

matching of dynamic tracked data with the stored data from offline model.  

 

Another example is Visual Inertial SLAM tracking for augmented reality 

developed by Gabriele Bleser (Bleser, 2009).  Bleser proposed and described 

the development of another model-based system which fused inertial and visual 

measurements using Extended Kalman Filtering (EKF). However, the system 

still relied on a ‘partially’ known environment, with the need for an offline CAD 

model of the scene similar to MATRIS systems. Bleser also experimented with 

the Marginalised Particle Filtering (MPS) method to compensate for the 

restrictions of EKF in linearization and limited area tracking (for more details on 

recursive filtering methods for sensor fusion refer to Chapter 3).  

Advances in MEMS-based inertial sensors have enabled pose-estimation in 

systems such as mobile robots or unmanned micro aerial vehicles (MAVs), 

often operating in urban canyon environments where GPS signals are either 

unavailable or unreliable. Recently, there has been substantive research and 

progress in autonomous MAVs such as the EU-funded SFLY (Swarm of Micro 

Flying Robots) project (Scaramuzza, et al., 2014).  
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2.7 Summary  

In the past decades, there have been several advances in single camera pose 

tracking techniques ranging from marker-based to marker-less approaches. The 

passive/active visual markers, inertial sensors, RF-based technologies such as 

application of GPS, radar, acoustic sensors and wireless sensors have been 

used either on their own or as part of a multisensory model. However, most 

systems reviewed and investigated in this chapter provide less accurate 

outcome in applications where wide-area tracking is required or there is a need 

for tracking in uncontrolled environment with no prior information i.e. model-free 

systems.  

 

Although GPS is regarded as the most ubiquitous means of wide-area location 

tracking, it still suffers from ranging errors due to obstruction of line of sight. 

However, in recent years the accuracy of GPS’s localisation has been improved 

by the design of more precise differential GPS systems, though wide-area 

tracking and localisation is still an ongoing problem in GPS-denied 

environments such urban canyons, battlefields, hospitals and shopping malls. 

Furthermore, multisensory approaches were reviewed in this chapter as a 

solution to enhance the performance of the single sensory approaches.  

 

Finally, inertial-visual tracking systems were investigated considering the 

inherited characteristics of state-of-art of MEMS-based inertial sensors as well 

as the advances in computer vision algorithms for pose recovery. The latter is 

will be reviewed in more detail in the next chapter of this thesis.  
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CHAPTER THREE 

 

3 A Review of Pose Tracking Techniques using 

Computer Vision Algorithms 

Computer vision-based pose tracking methods are primarily based on detecting 

the natural features in an image using image processing algorithms. These 

methods estimate the camera pose relative to real world objects and are 

analogous to closed loop systems, which correct errors dynamically. After 

initially calculating the camera pose from known visual features, the system 

dynamically obtains additional natural features and uses them to continuously 

update the pose calculation. The rationale underlying all feature-based methods 

is to find a correspondence between 2D image features and their 3D world-

frame coordinates. The camera pose can then be determined by projecting the 

3D coordinates of the features into the observed 2D image coordinates and 

minimizing the distance to their corresponding 2D features.  

In order to estimate the 6DOF of the camera, a set of at least three 2D/3D 

correspondences are required. Tracking a camera’s 6DoF using 2D/3D 

correspondences can be regarded as an ill-ranked problem. This is due to the 

fact that the image formation - 3D to 2D transformation - results in missing a 

dimension, represented by a scaling factor as explained in Chapter 5. This 

dimension cannot be recovered unless additional information is provided 

through a 3D model, the presence of an object with known dimensions in the 

scene or using other sensors e.g. an IMU. 2D natural feature tracking is an 

essential step as its robustness reflects in the accuracy of the 2D/3D matching 

in the camera pose estimation process. 2D visual object tracking is concerned 

with tracking image features such as points, segments, object contours. A 

variety of techniques and algorithms have been developed for visual feature 

tracking;  (Shi & Tomasi, 1994), (Blake & Isard, 1998), (Hanek & Beetz, 2004) 
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or regions of interest (Mayol & Murray, 2008) , (Hager & Belhumeur, 1998), 

which are represented in the 2D image plane.   

On the whole, any purely computer vision-based camera pose tracking 

technique can be considered in two main categories. The first type of approach 

is to apply image processing techniques providing that some knowledge about 

the environment is readily available (online or offline) in the form of 3D scene 

geometry (a priori model) for determining 2D/3D correspondences. This 

approach is often referred to as ‘model-based visual tracking’ and has already 

been used widely in human computer interaction and augmented reality 

applications. Examples include the work developed by (Lowe, 1992) ; 

(Drummond & Cipolla, 2002) ; (Lepetit, et al., 2003) ; (Vacchetti, et al., 2004) ; 

(Comport, et al., 2006) (Irschara, et al., 2009) ; (Dong, et al., 2009) ; (Li, et al., 

2010) and (Sattler, et al., 2011).  

The alternative approach addresses the problem through Simultaneous 

Localisation And Mapping (SLAM) ((Dissanayake, et al., 2001) ; (Davison, 

2003) ;(Montemerlo, et al., 2003) and (Durrant-Whyte & Bailey, 2006) ) in which 

the ‘robot’ or ‘camera’ is tracked and localised in an ‘unknown’ scene, while a 

map of the environment is simultaneously constructed.  

The early work of (Davison, 2003) was the foundation of Visual-SLAM, where 

the main motion sensor used for SLAM tracking was the camera. Some recent 

developments on variations of Visual-SLAM-based approaches include;  

(Simon, 2006), (Eade, et al., 2007), (Chekhlov, et al., 2007) and (Klein & 

Murray, 2007) and have demonstrated reasonable performance of Visual-SLAM 

in camera pose tracking for indoor augmented reality applications. 

In both above-mentioned categories, the majority of tracking algorithms are 

iterative and rely on minimising particular error criteria through successive 

iterations. Computer vision and robotics communities provide similar 

approaches in solving this problem.  

In this chapter, some of the above tracking techniques will be reviewed 

accompanied by algorithms with particular application in camera pose tracking. 
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Limitations of vision-only systems will also be considered, leading to an 

improved hybrid and sensor fusion system as the contribution of this study. 

3.1 Model-Based Tracking Techniques 

Model-based tracking is an established technique that has successfully been 

used in AR applications. In a model-based approach, an a priori model of the 

tracking environment is made available either offline or online. This provides for 

a closed-loop approach in estimation of 2D/3D correspondences as it 

compensates for the unknown scaling factor when a 3D model of the scene 

becomes available. 

The main limitation of model-based methods is that they require a sufficiently 

accurate model of the tracking scene. Also such models may not always be 

available or may become out of date if the structure of the environment is 

modified. This also raises the question of whether the model of the environment 

can be constructed online during the operation of the tracking system or not. 

Nevertheless, the Visual SLAM methods have made a significant step in 

overcoming the limitations of model-based tracking systems in recent years. 

Historically, the tracking system developed by (Gennery, 1992) was one of the 

earliest 3D model-based motion tracking systems, which tracked Sobel edges 

within a 5-pixel range of predicted edges. This included velocity extrapolation 

and filtering. Gennery, (1992) also examined the probabilistic evaluation of 

feature matches to a model.  

In addition, the RAPID 3D tracking system (Harris, 1992) utilised the basic 

approach taken by several model-based tracking systems. A set of 3D points 

was sampled along the model edges. Then in each frame, these points were 

projected into the image and a one dimensional search for edges normal to the 

projected model edge was performed. The changes in model pose were then 

calculated by minimising the distance between the projected points and the 
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detected image edges. The pose of the object was then tracked over time using 

a Kalman Filter with a constant velocity model. This was performed assuming 

the model only moved with a small variation in translation and rotation at each 

frame. The advantage of this method was its applicability to various types of 

edge feature, as well as having a relatively easy real-time implementation. 

However, it was found unreliable in situations involving rapid movement, where 

rotation and translation are more noticeable. Also, the original implementation 

was not robust to occlusion or false edge matches as it treated the tracked 

feature points as completely independent features, despite the fact that they 

often lie on the same edge in the model.  

Accordingly,  Armstrong, M. et al (1995) improved the original Harris’s RAPID 

tracking system  by using Randomised Sample Consensus (RANSAC) on each 

model primitive to detect outliners amongst the detected edge matches in an 

image. That improved the reliability of false edge detection by removing the 

calculated outliers. Also, instead of computing the pose updates for the full set 

of tracked control points, the pose update was calculated with each primitive 

deleted in turn and the measured projected error used to score each calculated 

pose. Poses with large projection error indicated that a false primitive must have 

been present and therefore it was removed and marked as an outlier. During 

pose estimation the stable model primitives were favoured by weighting 

primitives with a confidence value that reflected their stability over time 

(Armstrong & Zisserman, 1995).  

Following a similar approach in model-based tracking, more recent algorithms 

have used robust M-estimation and iteratively reweighted least squares (IRLS) 

to provide improved accuracy and robustness to outliers (Drummond & Cipolla, 

2002), (Comport, et al., 2005), (Comport, et al., 2006). For instance, 

Drummond, et. al (2002) proposed a framework for 3D model-based tracking 

using Lie Algebra to simplify the representation of the pose update. They used 

Lie group formalism in order to transform the motion problem into simple 

geometric terms. Therefore, the tracking became a simple optimisation problem 
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solved by means of iterative reweighted least squares (Drummond & Cipolla, 

2002).  

3.1.1 Structure from Motion (SFM) for Visual Tracking 

Structure from Motion (SFM) is a model-based approach, which deals with 

simultaneous estimation of the camera trajectory (3D pose) and the 3D scene 

structure from a continuous 2D image sequence. This subject has been 

extensively studied in the past decade (Hartley & Zisserman, 2004) and 

(Faugeras & Luong, 2001). In recent years, computer vision methods for 3D 

scene reconstruction have become robust enough to be used by non-vision 

experts. Fully automated reconstruction systems are now able to reconstruct a 

scene from unordered images such as online photo collections.  

SFM consists of two interrelated tasks, namely triangulation and localisation. On 

one hand, by having the exact 3D pose of the camera, the 3D structure of the 

scene can be obtained by triangulation of image correspondences. On the other 

hand, an existing 3D model of the scene allows for determination of the image 

pose directly by camera localisation using 2D/3D correspondences matching.  

Model-based tracking and 3D reconstruction of the tracked scene are not within 

the scope of this study. Irschara in his PhD thesis has detailed the fundamental 

concepts and geometrical modelling required for SFM and simultaneous 3D 

reconstruction  (Irschara, 2012). 

Nevertheless, the established problem for SFM is the accumulation error in the 

camera and structure registration. Therefore, due to the high processing 

requirements, the accumulation error generation and consequent low frame rate 

and latency, SFM is often fully or partially completed offline. In an offline 

system, the drift is typically corrected by performing batch optimisation involving 

the whole image sequence, i.e. global bundle adjustment as in (Chiuso, et al., 

2002.) and (Cornelis, 2004). More details on bundle adjustment and batch 

optimisation techniques can be found in (Triggs, et al., 2000).  
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In recent years there have been some developments in applying bundle 

adjustment in real-time systems by either performing optimisation and 

processing on only a subset of images (Cornelis, 2004) or by applying the 

optimisation as a parallel background process (Klein & Murray, 2007). However, 

despite the stability and scalability of these approaches, real-time large scale 

localisation and tracking is still a challenging problem in vision-based tracking 

systems.   

The recent advancement of SIFT (Scale Invariant Feature Transform) (Lowe, 

2004), and SURF (Speeded Up Robust Features) (Bay, et al., June 2008) have 

enhanced the performance of vision-based tracking systems. In summary, 

these techniques do not only rely on the detection of feature points, but also 

propose the use of a local invariant descriptor. These descriptors are used to 

identify unique feature points and match them under disturbing situations such 

as variations in scale, rotation, viewpoint, illumination or any other additional 

environmental unwanted noise.  

This invariance criterion became the strong advantage of these algorithms in 

tracking mobile systems where the environment conditions were neither stable 

nor repeatable. However, due to the high computational costs, real-time and 

wide-area tracking remained a challenge and a subject of ongoing research in 

this context.  As an example, we can refer to the SFM-based method developed 

by (Dong, et al., 2009) which performed continuous pose recovery using SIFT, 

while the key-frame recognition technique applied on video frames to recover 

the 2D-3D matches. This approach achieved a real-time system with the speed 

of 6 fps (for single thread), and 20 fps (for parallel thread). 

Another example is the real-time image-based 6-DOF localisation system 

introduced by (Lim, et al., 2012) which was a compromise between the 

scalability of SIFT and its latency for real-time applications. Lim, et. al (2012)  

developed  an algorithm for continuously localising a camera in a large scale 

environment, which had already been reconstructed using SFM. They used a 

fast tracking method and binary feature descriptors (BRIEF) (Calonder, et al., 

2012) to find the best frame-to-frame match. However, for 2D/3D 
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correspondence matching within the SFM, they applied DAISY descriptors 

(Tola, et al., 2010); an expensive computation technique. The key distinction of 

their approach, was avoiding the need for scale-invariant descriptors at runtime 

and not relying on SIFT for feature tracking. However, in order to make sure the 

2D-3D matching was reliable, they had to perform an offline computation to 

eliminate redundant descriptors for each 3D point in the SFM reconstruction. 

They exploited the spatio-temporal coherence to reduce the per-frame latency. 

Their single-threaded algorithm ran at an average frame-rate of 30 Hz on a 

laptop and at 12 Hz on a low-power, mobile computer suitable for on-board 

computation on a micro aerial vehicle. The performance of (Lim, et al., 2012)’s 

algorithm was reported as being five times faster than the frame rate achieved 

by (Dong, et al., 2009).  

3.2 Simultaneous Localisation and Mapping (SLAM) 

Another alternative approach for 3D pose recovery is the Simultaneous 

Localisation and Mapping (SLAM) technique, which was originally used in 

robotics for localising a mobile robot while incrementally building a map of an 

unknown environment. Comprehensive surveys by (Thrun, et al., 2005), 

(Durrant-Whyte & Bailey, 2006) and (Bailey & Durrant-Whyte, 2006) explore the 

SLAM problem and its solutions in more detail.  Among all computer-vision 

based techniques with a monocular camera sensor, visual SLAM is regarded as 

the most widespread method used for localisation and 6DOF tracking. An 

extensive review on recent developments of visual SLAM can be found in Gee’s 

PhD thesis (Gee, 2010).  

 

Standard SLAM, also referred to as Filter-based SLAM, mainly employs 

Bayesian recursive filters such as Kalman Filter (KF) and Extended Kalman 

Filter (EKF) to infer the current state (6 DOF pose) based on the past state 

observation of the system ( refer to 3.4.3.1 and  3.4.3.2 for more details). 

Examples include (Azarbayejani & Pentland, 1995); (Davison, et al., 2003) 
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;(Davison, 2003) ; (Eade & Drummond, 2007), (Civera, et al., 2010) and 

(Strasdat, et al., 2010). However, in all identified methods, the state estimation 

process generates uncertainty for both the features and camera pose, which 

adds to the complexity of the system and makes the process computationally 

more expensive.  Therefore, filter-based approaches in their original format, e.g. 

(Davison, et al., 2003), are not the suitable solutions for real-time and wider-

area pose tracking due to the linearity assumptions for the Kalman Filter-based 

approach and computational costs which limit them to small-area indoor 

tracking.   

 

Nevertheless, the Parallel Tracking and Mapping (PTAM) algorithm of Klein and 

Murray introduced an enhancement to the filter-based SLAM by splitting the 

simultaneous localisation and mapping tasks into two separate threads (Klein & 

Murray, 2007). The tracking thread detected the salient features in each camera 

image and compared the extracted feature points with the stored maps and 

thereby determined the camera pose.  In addition, the mapping thread refined 

the orientation and position of the camera so that the error between the 

observed features and the projection of the map points into the current frame 

was minimised.  

 

In the literature, PTAM is occasionally referred to as key-frame SLAM where the 

mapping thread uses a subset of all camera frames; i.e. key-frames to build a 

3D-point map of the surroundings (Strasdat, et al., 2012). This process is called 

bundle adjustment in computer vision terminology (Triggs, et al., 2000). 

Generally, the key-frame SLAM approach has proved to out-perform the 

standard EKF-filter based SLAM as demonstrated in (Strasdat, et al., 2012).  

 

However, even by taking into account the enhancement made by bundle 

adjustment and online batch optimization approaches (i.e. as in PTAM) this 

process is still considered to be computationally expensive and therefore more 

applicable in smaller workspaces as demonstrated by Klein and Murray in the 
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context of a small augmented reality workspace application (Klein & Murray, 

2007).   

 

Likewise, Visual Odometry (VO) is another similar method used in localisation 

and tracking. VO is defined as “the process of estimating the ego-motion of an 

agent (e.g. vehicle, human, and robot) using only the input of a single or 

multiple cameras attached to it” (Scaramuzza & Fraundorfer, 2011) and 

(Fraundorfer & Scaramuzza, 2012). 

 

There are functional resemblances in Visual SLAM and Visual Odometry. The 

goal of Visual SLAM is to obtain a global and consistent estimate of the robot or 

single camera trajectory, which requires keeping a track of the map of the 

environment on a continuous basis in order to provide the loop closure; e.g. 

rerunning to the original location through an estimated path. In contrast, visual 

odometry aims to recover the path incrementally ‘pose after pose’ and uses 

optimization techniques to estimate the past poses; e.g. using windowed bundle 

adjustment.  Therefore the goal of visual odometry is to estimate the local 

trajectory, and even if a map of the environment is used, it will only be used to 

assist with the accuracy of the local trajectory estimation. 

 

Considering the shortcomings of purely Visual SLAM-based tracking systems, 

the hybrid algorithm proposed in this thesis has been primarily inspired from 

visual odometry and benefits from the advantages of both filter-based and key-

frame based SLAM (see Chapters 6 and 7 for the system design and 

evaluation).  

3.3 Augmented Reality using Vision-Based Tracking 

Algorithms  

In recent years, model-based tracking - including image/video or 3D models - 

has become a widely used technique in mobile augmented reality and in solving 
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the problem of image registration.  Endres, et al. (Endres, et al., 2005) have 

published an extensive survey and reviewed 29 software infrastructure and 

frameworks used in ubiquitous computing vision as described by Mark Weiser 

(Weiser, 1999 ) with a focus on augmented reality, intelligent environments and 

distributed mobile systems.  

 

Most of the existing AR systems operate with a priori knowledge of the scene or 

in the presence of a map, or CAD model of the environment, or even a sparse 

map of fiducial markers known to be present in the tracking scene. However, a 

comprehensive map is not often available due to the fact that the objects of 

interest or fiducial markers may not constantly be visible to be measured.  In the 

context of AR, a class of techniques known as extensible tracking (Klein & 

Murray, 2007) was introduced for tackling the limitations in range and quality of 

registration. In extensible tracking, the system attempts to add previously 

unknown scene elements to its initial map, and these then provide registration 

even when the original map is out of the sensing range (Park, et al., 1998)  

,(Jiang & Neumann, 2001), and (Bleser, et al., 2006). 

 

An example of model-based AR systems is the (Bleser, et al., 2006)’s algorithm 

which presented a semi-automated model-based tracking approach that 

required a CAD model of one object of the tracking scene. This model was only 

used for initialisation of the first camera pose and obtaining 3D features that lie 

on the model. The rest of the features (not part of the given CAD model) were 

then tracked frame by frame automatically. The camera pose and 3D structure 

recovery were achieved using RANSAC and LM techniques. Bleser enhanced 

the well-known Kanade Lucas Tomasi (KLT) feature tracker and achieved 

illumination and scale invariant tracking. However, this system is still not 

suitable for wide-area tracking due to its limitation for 3D reconstruction of 

distant objects. This is because the scene features can only be used for pose 

estimation after they are triangulated, and for distant objects this is not a reliable 

technique.  
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The closest model-free mobile AR system, which is an alternative to standard 

SLAM, is the PTAM of (Klein & Murray, 2007). This was developed on a 3G 

iPhone with a denser map with lower-quality features being tracked in a small 

workspace. As discussed in previous sections, Klein and Murray initiated the 

concept of tracking without any a priori map or deep understanding of the user’s 

environment.  However, due to its use of bundle adjustment techniques, this 

system still provides less scalability when the size of the map is increased.  

Therefore despite the accuracy and high performance of PTAM, it is still not a 

suitable marker-less mobile AR for wide-area tracking.  

 

In recent years, considering the advances in the development of invariant 

descriptors in feature tracking and 2D/3D matching, a combination of these 

algorithms was used in order to enhance the performance of pose tracking 

specifically for mobile augmented reality. For instance, (Wagner, et al., 2010) 

combined two algorithms namely SIFT (only as the feature detector) and FERN 

(as a classifier for invariant descriptor) in a model-based tracking system to 

compensate for the drawbacks of each method for mobile tracking applications. 

Accordingly PhonySIFT, PonyFerns and PatchTracker were introduced and 

combined using Extended Kalman Filtering, which proved to be more effective 

as an extension to original SIFT and Ferns algorithms for pose estimation from 

planar targets in real-time on a mobile phone. Wagner, et al (2010) evaluated 

their tracking system considering the CPU performance of the mobile phones, 

on planer objects.  

 

In addition, (Maidi, et al., 2011) introduced another method for pose tracking for 

mobile augmented reality. They focused on enhancing the feature points 

tracking using SURF as a reliable tracking technique under general variant 

environmental noises such as illumination/contrast changes, object 

rotation/translation, image blurring and occlusions. The solution they proposed 

for pose tracking was a hybrid technique combining both analytical and iterative 

algorithms. They used Extended Kalman Filter as an iterative method for pose 

estimation, by considering an analytical pose estimator, based on planar 
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homography matrix decomposition (Maidi, et al., 2010), to initialise the pose and 

improve the EKF’s convergence.   

3.4 Recursive Filtering for Hybrid Camera Pose Tracking 

As discussed in Chapter 2, inertial sensors are used in sensing rapid motions 

due to their ability to capture high-frequency motion. Also the previous sections 

have summarised the advantages of vision-based tracking systems in terms of 

their accuracy and less propensity to drift. However, IMU and image sensors 

are both influenced by measurement noise and error, which adversely affect the 

accuracy of pose estimation. The noise and error cause an IMU-only tracking 

system to drift significantly over time, making it an unsuitable sensor to be used 

on its own for pose tracking. On the other hand camera-only tracking systems 

not only suffer from noise and measurement error, but also exhibit an inherent 

deficiency, which is the inability to estimate all 6 DOFs.  

 

Inertial-visual hybrid tracking operates by the application of recursive filtering in 

the context of a state-space model. There are various techniques for recursive 

filtering, such as Kalman Filter (KF), Extended Kalman Filter (EKF) and Particle 

Filter (PF). The selection of the appropriate recursive filtering method depends 

on the state-space model.  

These methods will be outlined in the following sub-sections. Also covered are 

some tracking systems based on recursive filtering. Once the current systems 

are reviewed, an introduction to the hybrid inertial-visual tracking system 

proposed as a contribution of this thesis is presented.  

3.4.1 State Space Model  

The state-space approach (Ristic, et al., 2004) is the most-commonly used 

method to model a dynamic system in digital control and monitoring systems. A 
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state-space model consists of two main components. The first one is commonly 

referred to as the system or process model, which describes the evolution of the 

system state with time, subject to the control input. The second one is the 

measurement or observation model, which relates the noisy measurements to 

the system state.  

In summary, the state space model describes a system with a set of inputs, 

outputs and state vectors represented by U(t), Y(t) and S(t) as shown in Figure 

3.1 where S′(t) is the first derivative of S(t). 

S(t)

S’(t)
U(t) Y(t)

 

Figure 3.1 : State Space Model 

 

The model describes the relationship between 𝑈(𝑡), 𝑌(𝑡), 𝑆(𝑡) and 𝑆′(𝑡) vectors, 

using process and measurement functions 𝑓(. ) and ℎ(. ) as it follows: 

(3.1) 𝑺′(𝒕) = 𝒇(𝑺(𝒕),𝑼(𝒕))      

(3.2) 𝒀(𝒕) = 𝒉(𝑺(𝒕))      

 

These equations provide the process and measurement models, respectively. 

The discrete representation of these equations is:  

(3.3) 𝑺𝒌 = 𝒇(𝑺𝒌−𝟏, 𝑼𝒌−𝟏)      

(3.4) 𝒀𝒌 = 𝒉(𝑺𝒌)      

 

The above models formulate the case for a perfect system, where there is no 

error in modelling or measurement of the output or the control inputs. In 

practical applications, however, such effects need to be considered. Therefore 

equations (3.3) and (3.4) are re-written in order to include noise as well as 

measurement and modelling error, which are referred to collectively as noise. 𝑣 

and 𝑤 are called process and measurement noise, respectively. 

(3.5) 𝐒𝐤 = 𝐟(𝐒𝐤−𝟏, 𝐔𝐤−𝟏, 𝐯𝐤−𝟏)      
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(3.6) 𝐘𝐤 = 𝐡(𝐒𝐤, 𝐰𝐤)      

 

Here the recursive filtering techniques come into play. These methods provide 

an estimate of the correct state of the system using the noisy and erroneous 

measurement and process model. They first predict the current system state 

using equation (3.5), considering past system states, 𝑆𝑘−1, control input, 𝑈𝑘−1, 

and noise 𝑣𝑘−1. Once new observation data become available, equation (3.6) is 

used to correct the state prediction and update filter parameters.  

3.4.2 Recursive Filtering 

Filtering addresses the problem of estimating an unknown state of a system 

from a sequence of noisy observations or measurements made on the system 

as well as a sequence of known control inputs or input signals that carry 

information about the changes applied to the system. Recursive filtering is often 

considered in the context of probability theory. In such systems, three 

probability density functions (pdf) are often used; the transitional prior, posterior 

and likelihood probability density functions (Ristic, et al., 2004).  

The transitional prior, p(Sk|Sk−1), is the probability of having the current system 

state, given the previous state. The likelihood function, p(𝑌𝑘|Sk), is the 

probability of having the current observation, given the current system state.  

The transitional prior and likelihood functions are in fact another way of 

expressing state evolution described by equation (3.5) and the measurement 

model described by equation (3.6).  

(3.7) 𝐩(𝐒𝐤|𝐒𝐤−𝟏) ≜ 𝐒𝐤 = 𝐟(𝐒𝐤−𝟏, 𝐔𝐤−𝟏, 𝐯𝐤−𝟏)      

(3.8) 𝒑(𝒀𝒌|𝑺𝒌) ≜ 𝒀𝒌 = 𝒉(𝑺𝒌, 𝒘𝒌)      

 

The posterior density function, 𝑝(𝑆𝑘|𝑌𝑘), is the probability of having the current 

state of the system, given the current observation data. The aim of the recursive 
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filtering is to estimate the posterior function, by having the transitional prior and 

the likelihood functions. 

In recursive filtering approaches, the observations and controls are processed 

sequentially rather than as a batch. It is also assumed that a Markov model is 

applied, therefore the current state is a complete summary of the past, implying 

that it is neither necessary to store the entire data set nor to reprocess the 

existing data when a new measurement or input data become available. This 

significantly reduces the computational cost of the filter.  

Recursive filtering is often applied in two stages; prediction and update. The 

prediction stage uses the past system state, p(Sk−1|𝑌k−1) and the transitional 

prior, p(Sk|Sk−1), via the Chapman-Kolmogorov equation (Ristic, et al., 2004). 

(3.9) 𝒑(𝑺𝒌|𝒀𝒌−𝟏) = ∫𝒑(𝑺𝒌|𝑺𝒌−𝟏) 𝒑(𝑺𝒌−𝟏|𝒀𝒌−𝟏)𝒅𝑺𝒌−𝟏    

  

Once the new observation data are gathered, using Bayes rule the state 

predication is updated as it follows: 

(3.10) 𝒑(𝑺𝒌|𝒀𝒌) =
𝒑(𝒀𝒌|𝑺𝒌)𝒑(𝑺𝒌|𝒀𝒌−𝟏) 

∫ 𝒑(𝒀𝒌|𝑺𝒌)𝒑(𝑺𝒌|𝒀𝒌−𝟏)𝒅𝑺𝒌
     

3.4.3 Recursive Filtering and Sensor Fusion 

Recursive filtering is widely used in sensor fusion, where one or more sensors 

contribute to the formation of the transitional prior, likelihood functions or both. 

The manner in which this takes effect has been the subject of several studies in 

hybrid tracking methods, some of which were described in Chapter 2. 

 

In order to understand how recursive filtering can be applied to sensor fusion, 

the main recursive filtering techniques; namely, Kalman Filter (KF), Extended 

Kalman Filter (EKF) and Particle Filter (PF) are briefly described in the following 

sections. A detailed description of these methods is outside the scope of this 

work, and the reader is invited to refer to (Ristic, et al., 2004) and 

(Arulampalam, et al., 2002) for a more comprehensive reviews.  
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3.4.3.1 Kalman Filtering 

Kalman filtering only applies when 𝑓(. ) and ℎ(. ) in the state-space equations 

(3.5) and (3.6) are linear, as presented in equations (3.11) and (3.12). Moreover 

the process and measurement noise (𝑤 and 𝑣) must have normal probability 

distributions, with zero mean values. 

(3.11) 𝑺𝒌+𝟏 = 𝑨𝑺𝒌 + 𝑩𝑼𝒌 +𝒘𝒌      

(3.12) 𝒀𝒌 = 𝑯𝑺𝒌 + 𝒗𝒌   

 

Kalman filtering is carried out in two stages; prediction and update. During 

prediction, past estimated state of the system (Ŝk−1) is used to predict the 

current state vector, 𝑆𝑘̅.  

(3.13) 𝑺̅𝒌 = 𝑨𝑺̂𝒌−𝟏 + 𝑩𝑼𝒌−𝟏  

 

In the update stage, the new observation data along with the prediction are 

used to provide an estimate for the current state of the system. 

(3.14) 𝑺̂𝒌 = 𝑺̅𝒌 +𝑲𝒌(𝒀𝒌 −𝑯𝑺̅𝒌)     

     

𝐾𝑘 is the KF gain matrix, which is estimated at every step before the update 

stage is executed. In order to define 𝐾𝑘, the covariance matrices for the error in 

state prediction (𝑒̅𝑘 = 𝑆𝑘̅ − 𝑆𝑘) and state estimation (𝑒̂𝑘 = 𝑆̂𝑘 − 𝑆𝑘) are required. 

 

℘̅𝑘 is the covariance matrix for the predication error, and is estimated using the 

covariance matrix for the past state estimation, ℘k−1, and process noise 

covariance matrix 𝑄 as follows.  

(3.15) ℘̅𝒌 = 𝑨℘𝐤−𝟏𝑨
𝑻 + 𝑸   

 

Matrix Kk is estimated using prediction error covariance matrix, ℘̅k, and 

measurement noise covariance matrix 𝑅.  

(3.16) 𝐊𝐤 = ℘̅𝐤𝐇
𝐓(𝐇℘̅𝐤𝐇

𝐓 + 𝑹) −𝟏     
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The state estimation error covariance matrix is then provided as follows:  

(3.17) ℘𝐤 = (𝑰 − 𝑲𝒌𝑯)℘̅𝒌   

 

The Kalman filter offers a simple, yet robust and effective approach to state 

estimation, although it can only apply to systems with linear process and 

measurement models. However if a non-linear system can be linearised around 

the current state, a modified form of KF, called Extended Kalman Filter (EKF), 

can apply, which is explained in the following section. 

3.4.3.2 Extended Kalman Filtering 

Extended Kalman Filter (EKF) is applicable when 𝑓(. ) or ℎ(. ) in the state-space 

equations (3.5) and (3.6) are non-linear but can be linearised around the current 

system state as follows: 

(3.18) 𝑺𝒌 ≈ 𝒇(𝑺̂𝒌−𝟏, 𝑼𝒌−𝟏, 𝟎) + 𝑨(𝑺𝒌−𝟏 − 𝑺̂𝒌−𝟏) +𝐖𝒘𝒌−𝟏    

(3.19) 𝒀𝒌 ≈ 𝒉(𝑺̂𝒌, 𝟎) + 𝑯(𝑺𝒌 − 𝒇(𝑺̂𝒌, 𝑼𝒌, 𝟎)) + 𝑽𝒗𝒌   

 

𝐴, 𝐶, 𝐻 and 𝐷 are the Jacobian matrices and are defined as follows:  

(3.20) 𝐀[𝐢,𝐣] =
𝛛𝐟[𝐢](𝐒̂𝐤−𝟏,𝐔𝐤−𝟏,𝟎)

𝛛𝐬[𝐣]
, 𝐖[𝐢,𝐣] =

𝛛𝐟[𝐢](𝐒̂𝐤−𝟏,𝐔𝐤−𝟏,𝟎)

𝛛𝛈[𝐣]
    

(3.21) 𝑯[𝒊,𝒋] =
𝝏𝒉[𝒊](𝑺𝒌,𝟎)

𝝏𝒔[𝒋]
, 𝑽[𝒊,𝒋] =

𝝏𝒉[𝒊](𝑺𝒌,𝟎)

𝝏𝝃[𝒋]
       

 

And the indices 𝑖 and 𝑗 vary from 1 to the total number of states in the state 

vector. Similar to KF, the EKF has a predict stage defined as it follows: 

(3.22) 𝑺̅𝒌 = 𝒇(𝑺̂𝒌−𝟏, 𝑼𝒌−𝟏, 𝟎)      

(3.23) ℘̅𝒌 = 𝑨℘𝐤−𝟏𝑨
𝑻 +𝑾𝒌𝑸𝒌−𝟏𝑾𝒌

𝑻   

 

The update stage follows the following formulas: 

(3.24) 𝐊𝐤 = ℘̅𝐤𝐇
𝐓(𝐇℘̅𝐤𝐇

𝐓 + 𝑽𝒌𝑹𝑽𝒌
𝑻) −𝟏       
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(3.25) 𝑺̂𝒌 = 𝑺̅𝒌 +𝑲𝒌 (𝒀𝒌 − 𝒉(𝑺̂𝒌, 𝟎))         

(3.26) ℘𝐤 = (𝑰 − 𝑲𝒌𝑯)℘̅𝒌   

 

As described earlier, EKF has applications in Visual SLAM and Hybrid Visual-

Inertial Camera Tracking. (Jeroen D. Ho, et al., 2007) presented a real-time 

tracking approach by fusing measurements from inertial and vision sensors 

applying EKF filtering. In his work he compared the advantages of EKF with KF 

approach.  

3.4.3.3 Particle Filtering 

When 𝑓(. ) and ℎ(. ) in the state-space equations (3.5) or (3.6) are non-linear, 

particle filtering is a suitable method for filtering. This method provides an 

estimate for the posterior pdf, 𝑝(𝑆𝑘|𝑌𝑘), using the weighted summation of a 

number of particles, each representing a probable state of the system. 

(3.27) 𝐩(𝐒𝐤|𝐘𝐤−𝟏) ≈ ∑𝐰𝐢,𝐤
𝐩
𝛅(𝐒𝐤 − 𝐒𝐢,𝐤

𝒑
)    

 

Particles, 𝑆𝑖,𝑘
𝑝

, are selected from a proposal distribution, referred to as the 

importance pdf, 𝑞(Sk|𝑆k−1, Yk). The particles are then evaluated to find the 

associated weight. The weighted particles are used to provide an estimate for 

the posterior pdf. This process can be summarised as it follows: 

A. Draw a new particle from the proposal distribution, 𝑞(𝑆𝑘|𝑆𝑖,𝑘−1
𝑝 , 𝑌𝑘).  

B. Assign a weight to each particle using the past weight, the likelihood pdf, the 

transitional prior and the importance pdf.  

𝓦̂𝐢,𝐤 ∝ 𝓦̂𝐢,𝐤−𝟏

𝐩(𝐘𝐤|𝐒𝐢,𝐤
𝐩
)𝐩(𝐒𝐢,𝐤

𝐩
|𝐒𝐢,𝐤−𝟏
𝐩

)

𝐪(𝐒
𝐢,𝐤
𝐩
|𝐒
𝐢,𝐤−𝟏
𝐩

,𝐘𝐤)
    

C.  Normalise the weights to have the total value of 1.   

𝓦𝐢,𝐤 ∝
𝓦̂𝐢,𝐤

∑𝓦̂𝐢,𝐤
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One of the problems associated with particle filtering is the degeneracy 

phenomenon, which means that after a certain number of recursive steps, all 

but one particle will have negligible normalised weight. A suitable measure for 

degeneracy is the effective sample size, which is defined as 𝑁𝑒𝑓𝑓 = 1/∑𝒲𝑖,𝑘
2 . If 

the number of effective particles is less than an application-specific threshold, a 

resampling process needs to be applied. Resampling eliminates samples with 

low weight and multiplies samples with high weight. For more details please 

refer to (Ristic, et al., 2004) and (Arulampalam, et al., 2002). The choice of 

importance function and the mechanisms for particle selection and resampling 

are application-specific. These methods have been covered in more detail in 

Chapter 6, as one of the contributions of this work.   

3.4.4 Applications of Recursive Filtering in Inertial-Visual 

Tracking 

As described in Chapter 2, there are several hybrid tracking systems based on 

recursive filtering methods such as extended Kalman filter and particle filtering. 

Such methods use both accelerometer and gyroscope (often incorporated into a 

single IMU) data, and by taking into account the kinematic motion model of the 

moving camera, together with the characteristics of the IMU, form the state 

space equations. Here the hybrid tracking system, proposed by Weiss (Weiss, 

2012) for his PhD work on “Vision Based Navigation for Micro Helicopters” is 

presented as a bench mark. This work, to the author’s knowledge is the latest, 

most advanced system proposed for hybrid-tracking, which outperforms its 

predecessors and has been successfully applied to the EU-funded SFly (Swarm 

of Micro Flying Robots) project (Scaramuzza, et al., 2014). This work is referred 

to as the Weiss Vision Based Navigation system, or simply Weiss VBN in this 

section. 

The Weiss VBN system (Weiss, 2012) consists of an IMU, a vision sensor and 

an EKF filter for hybrid pose estimation. The state vector in the Weiss system 

consists of position, velocity, orientation, accelerometer bias, gyroscope bias, 
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the visual scaling factor, distance between the IMU and camera frames and 

finally the rotation between these two frames. The state transition model is a 

non-linear one, which is linearised so that the current state can be predicted 

using the EKF update equations. The measurement model, on the other hand, 

is formed using the vision-based data and associated feature points. The 

algorithm requires the measurement covariance matrix to be found using the 

vision-based methods presented in (Beder & Steffen, 2006) and (Eudes & 

Lhuillier, 2009). The system uses key-frames for vision-based pose estimation, 

similar to the PTAM algorithm (Klein & Murray, 2007). However the number of 

frames is capped in order to reduce the computational cost of the algorithm. 

The core principle of the system is based on fusing IMU data and map-based 

vision data using an EKF algorithm as mentioned above. Figure 3.2 shows the 

block diagram of the system. 

 

In addition to the core algorithm, Weiss proposes additional sensors, such as 

magnetometer and GPS, to correct the drift in the system. It also provides a 

method for estimating the scaled velocity using optical flow, as an additional 

mechanism for pose correction.  

 

Figure 3.2  Weiss’s VBN System Block Diagram - Source:  (Beder & Steffen, 2006) 
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3.4.5 Hybrid Tracking Based on Particle Filtering and Focus of 

Expansion 

The Weiss VBN system (Weiss, 2012) is an effective hybrid tracking system; 

however it has a relatively high computational cost due to the use of a state 

vector with a high number of states (28 elements) and also a collection of key 

frames. The use of high-dimension matrices for the application of EKF filtering 

is also prone to numerical error and inefficiencies. This method employs visual 

pose estimation based on PTAM which, although has an improved performance 

compared with the standard Visual SLAM methods, still requires a considerable 

computational effort for handling several key-frames. The estimation of the 

measurement error covariance matrix also needs a vision-based method, which 

adds further to the computational complexity. The proposed solution presented 

in this thesis addresses the issues raised above and provides a robust and 

accurate yet effective solution for hybrid camera tracking.  

3.5 Summary and Conclusion  

This chapter provided a review of tracking methods, which use computer vision 

(image)-based tracking algorithms as the sole means of tracking or as part of a 

multisensory approach. There have been numerous proposals and solutions for 

pose recovery in the past few decades. Among these, Visual SLAM, Visual 

Odometry and PTAM based solutions provide reasonable accuracy especially 

for the mobile Augmented Reality applications. However these methods have 

limitations with regard to use in wide-area tracking measurements and 

uncontrolled real-time localisation due to their expensive computational costs 

and high complexity involved.  

 

In recent years, hybrid systems consisting of low cost inertial measurement 

units and robust and high-dimensional computer vision-aided algorithms have 
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enhanced the performance and agility of the tracking systems. Such solutions 

have also helped towards tackling the hurdles of real-time sensing and 

localisation especially in GPS-denied environments.  

 

As a result of this study, in Chapter 4, the author proposed and developed a 

multisensory system based on Visual SLAM-GPS sensor fusion to examine the 

potential for a hybrid system (Visual SLAM) to enhance the accuracy of GPS. 

 

During the course of this study it has become evident that vision-based tracking 

systems alone are not an adequate solution to wide-area pose tracking and 

localisation and there is a need for design and implementation of sensor-aided 

systems to compensate for the shortcomings of the existing algorithms. 

Consequently, recursive filtering approaches for sensor fusion were also 

reviewed as a tool for the development of an improved approach for pose 

recovery of a moving camera leading to the inertial-visual pose tracking system 

using optical flow-aided particle filtering presented in Chapters 6 and 7. 
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CHAPTER FOUR 

 

4 Tracking Using RF-Based Positioning Systems 

Radio Frequency (RF) signals can also be used as a means of pose estimation 

- primarily location rather than orientation. Such methods operate either on the 

basis of signal travel time or signal strength. The Global Positioning System 

(GPS) is one example of a system based on signal travel time. GPS satellites 

transmit signals at a known time and position. The time of the received signal in 

conjunction with the time of signal transmission, and also the position of the 

satellite at the time of transmission, are used to determine location information 

for the GPS receiver.  

On the other hand, ©Apple’s recently introduced iBeacons are intended for 

micro-location estimation where the Received Signal Strength (RSS) is used as 

measurement criteria for position determination. Although iBeacon is currently 

envisaged mainly for proximity detection in the retail industry, Apple© argues 

that iBeacons also have utility for micro-location tracking. In this scenario a 

mobile device with its Bluetooth receiver appropriately configured uses the 

strength of signal received from different iBeacons to triangulate receiver 

position by a process of trilateration. 

In order to evaluate the performance of such systems, a combined GPS and 

vision-based pose tracking system (Visual SLAM-GPS sensor fusion), and then 

a system based on iBeacon technology, were implemented. This chapter covers 

the outcome of these two systems followed by performance analysis and 

conclusions based on these experiments.   
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4.1 GPS-Visual SLAM Hybrid Tracking System 

One of the most ubiquitous means of wide-area location tracking is the Global 

Positioning System (GPS). However, high-accuracy, wide-area tracking cannot 

be achieved using GPS alone. Moreover in GPS-denied areas, where the direct 

lines of sight to the satellites are not maintained, GPS on its own is not a 

technique that can be always relied upon. On the other hand, Visual-SLAM 

solutions (as described in Chapter 3), which rely on the derivation of landmarks 

from detected feature points and their continued robust association, becomes 

increasingly difficult as the mapped area widens. Wide-area tracking also 

requires appropriate strategies for dealing with long-term management of 

features as the map size grows. 

Although some work has been done on integrating GPS with odometry and 

inertia data ( (Schall, et al., 2009) ; (Berrabah, et al., 2011) and (Schleicher, et 

al., 2009) ), very little attention has been paid to utilising image data from the 

monocular camera typically found in mobile consumer devices combined with 

the GPS location information usually available on these platforms.  

Presented here is a strategy for utilising visual-SLAM to substantially improve 

the output accuracy of GPS on mobile devices.  

Figure 4.1 is a system diagram to illustrate the GPS_Visual SLAM algorithm. 
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Use Visual SLAM to 
recover iPhone Camera 
Matrix based on target

Correct for iPhone 
orientation Matrix (P) :

C = P-1  X  M
 

Camera 
Martix M

Corrected 
Camera 
Martix C

Find inverse of Matrix C to 
obtain camera position 

relative to target 
(i.e. target as origin)

Extract Camera translation 
vector from Martix C-1

Martix C-1

Scale to meters 

Rotate vector around 
Z to align Y with East 

and X with North

Convert ENU to ECEF 
Coordinates 

Camera’s ENU 
coordinates 

Derive Latitude and 
Longitude values 

from ECEF 
coordinates 

Camera’s ECEF 
coordinates 

Camera’s Latitude 
and Longitude 

Known visual target GPS Location 
( Latitude and Longitude) 

Camera’s translation vector 
( arbitrary units) 

Camera’s translation vector 
( meters ) 

 

Figure 4.1 GPS_Visual SLAM System Overview 

4.1.1 Converting the Geodetic to ENU Coordinates 

GPS provides geodetic data in the form of latitude, longitude and altitude. 

However, for tracking purposes, it is more practical to use an orthogonal 

reference frame such as provided by East, North, Up (ENU) Cartesian 
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coordinates. This coordinate system forms a plane tangent to the Earth’s 

surface at any location desired to provide a local coordinate system in that 

region of the Earth’s surface. 

The Earth-Centred Earth-Fixed (ECEF) coordinate system is by convention 

labelled x, y, z and has its origin at the centre of the Earth with its x-axis passing 

through the equator at the prime meridian and its z-axis passing through the 

North Pole. The y-axis, determined by the right-hand rule, passes through the 

equator at 90 degrees longitude as illustrated in Figure 4.2. 

 

Figure 4.2 : East, North, Up (ENU) Cartesian coordinates 

 

Figure 4.3 : Geodetic-ECEF Coordinate 

 

In order to convert the Geodetic coordinate systems ( latitude (φ), longitude (λ), 

height (h)) to the local ENU ( East, North, and Up), two main stages need to be 

http://en.wikipedia.org/wiki/File:Geodetic_latitude_and_the_length_of_Normal.svg
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followed : firstly to convert Geodetic to ECEF coordinates, and second to 

convert ECEF coordinates to local ENU coordinates. 

Geodetic coordinates    ECEF coordinates        ENU coordinates 

Similarly, conversion from ENU to Geodetic coordinates requires:  

ENU coordinates         ECEF coordinates       Geodetic coordinates 

The above coordinate conversions were implemented and the code can be 

found in Appendix B.  

4.1.2  Converting Geodetic to ECEF Coordinates  

The following needs to be performed for the conversion of Geodetic to ECEF 

coordinates (see Figures 4.2 and 4.3). The World geodetic System 1984 

(WGS84) standard is applied with respect to these conversions. Equations (4.1) 

to (4.8) are derived for (Farrell, 1999). The length PQ is called the Normal and 

is the distance from the surface to the Z-axis along the ellipsoid normal and can 

be determined as in equation (4.2). The Geodetic to ECEF coordinate 

conversions are implemented based on the following formulations and can be 

found in Appendix B.  

(4.1)   𝐏𝐐 =  𝐍 (𝛟)   

(4.2)   𝐈𝐐 =  𝐞𝟐  × 𝐍 (𝛟).𝐑(𝐗, 𝐘, 𝐙)  

Geodetic coordinates (latitude 𝜙, longitude 𝜆, height ℎ) can be converted 

into ECEF coordinates using the following equations: 

(4.3)   𝐗 = (𝐍 (𝛟) + 𝐡) 𝐜𝐨𝐬𝛟 𝐜𝐨𝐬 𝛌 

(4.4 )  𝐘 = (𝐍 (𝛟) + 𝐡) 𝐜𝐨𝐬𝛟 𝐬𝐢𝐧 𝛌 

(4.5)  𝐙 = (𝐍 (𝛟)(𝟏 − 𝐞𝟐 ) + 𝐡) 𝐬𝐢𝐧𝛟 

where:  
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(4.6) 𝐍 (𝛟) =   
𝐚

√
     

𝟏− 𝐞𝟐   𝐬𝐢𝐧𝟐𝛟 

  : 𝒆 =
𝒇

𝒂 
    ∶  𝟎 < 𝒆 < 𝟏  

(a, b  and  e are the semi-major, semi-minor axis and the first numerical 

eccentricity of the ellipsoid respectively) 

Furthermore, the following equations hold: 

(4.7)   
𝐩

𝐜𝐨𝐬𝝓
 − 

𝐙

𝐬𝐢𝐧𝝓
− 𝐞𝟐 𝐍 (𝛟) = 𝟎 

(4.8)   𝐩 =  √ 𝐗𝟐 + 𝐘𝟐   

4.1.3 Converting the ECEF to Geodetic Coordinates  

The conversion of ECEF to Geodetic coordinates can be solved efficiently using 

the Newton–Raphson iteration method (see (Bowring, 1985) and (Misra & 

Enge, 2001) for the detail).  

(4.9)  𝒌 − 𝟏 − 
𝐞𝟐 𝐚𝐤

√
 

𝐩𝟐+(𝟏+𝐞𝟐)𝐳𝟐𝐤𝟐 

= 𝟎  

(4.10)   𝒌 =  
𝒑

𝒛
 𝒕𝒂𝒏𝝓 

The height is calculated as follows: 

(4.11)  𝐡 = 𝐞−𝟐   ( 𝐤−𝟏 − 𝐤𝟎
−𝟏  )√𝐩𝟐 + 𝐳𝟐 𝐤𝟐  

(4.12)  𝐤𝟎 = (𝟏 − 𝐞
𝟐 )−𝟏 

 

The iteration can be transformed into the following calculation: 

(4.13)  𝐤𝐢+𝟏 = 
𝐜𝐢  + ( 𝟏− 𝐞

𝟐 ) 𝐳𝟐 𝐤𝐢
𝟑

𝐜𝐢  − 𝐩𝟐
= 𝟏 + 

𝐩𝟐+(𝟏− 𝐞𝟐  )𝐳𝟐   𝐤𝐢
𝟑

𝐜𝐢  − 𝐩𝟐
 

(4.14)  𝐜𝐢  = 
( 𝐩𝟐+(𝟏− 𝐞𝟐)𝐳𝟐   𝐤𝐢

𝟑    )𝟑/𝟐

𝐚𝐞𝟐
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k0 is a good starter for the iteration when h ≊ 0 . Bowring (Bowring, 1985) 

showed that the single iteration produces a sufficiently accurate solution. He 

used extra trigonometric functions in his original formulation.  

4.1.3.1 Converting from ECEF to ENU Coordinates 

To transform from ECEF coordinates to the local coordinates, a local reference 

point is needed. If the reference point is located at {𝑋𝑟 , 𝑌𝑟 , 𝑌𝑟 }  and an object at 

{𝑋𝑝 , 𝑌𝑝 , 𝑌𝑝 } then the vector pointing from the reference to the object in the ENU 

frame is: 

 (4.15)  (

𝐱

𝐲

𝐳  

) =  (

−𝐬𝐢𝐧 𝛌𝐫 𝐜𝐨𝐬 𝛌𝐫 𝟎

−𝐬𝐢𝐧𝛟𝐫 𝐜𝐨𝐬 𝛌𝐫   − 𝐬𝐢𝐧𝛟𝐫 𝐬𝐢𝐧 𝛌𝐫   𝐜𝐨𝐬𝛟𝐫

𝐜𝐨𝐬𝛟𝐫 𝐜𝐨𝐬 𝛌𝐫   𝐜𝐨𝐬𝛟𝐫 𝐬𝐢𝐧 𝛌𝐫   𝐬𝐢𝐧𝛟𝐫 

)(

 𝐗𝐩 − 𝐗𝐫

𝐘𝐩 − 𝐘𝐫

   𝐙𝐩 − 𝐙𝐫  

)  

where 𝜙  is the geodetic latitude. More details on this conversion can be found 

in (Farrell, 1999) ( see Appendix B for the details on implementation). 

4.1.3.2 Converting from ENU to ECEF 

This is just the inversion of the ECEF to ENU transformation so: 

(4.16)   (

𝐗

𝐘

  𝐙  

) =  (

−𝐬𝐢𝐧 𝛌 −𝐬𝐢𝐧𝛟 𝐜𝐨𝐬 𝛌 𝐜𝐨𝐧𝛟 𝐜𝐨𝐬 𝛌 

𝐜𝐨𝐬 𝛌 − 𝐬𝐢𝐧𝛟 𝐬𝐢𝐧 𝛌 𝐜𝐨𝐧𝛟 𝐬𝐢𝐧 𝛌

𝟎 𝐜𝐨𝐬𝛟 𝐬𝐢𝐧𝛟 

)(

 𝐱

 𝐲

  𝐳  

) + (

𝐗𝐫

𝐘𝐫

  𝐙𝐫  

) 

4.1.4 Refinement of GPS with Visual-SLAM 

This section describes the implementation of a GPS-Visual SLAM tracking 

system and the experimental results achieved by this system. The system was 

implemented as an iOS mobile app using Objective C. The Visual SLAM for 

iPhone implementation was obtained from the PointCloud SDK (PointCloud, 

2014) and an Objective C wrapper was developed for this SDK library. 
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4.1.4.1 Principles of Operation:  

The following assumptions were made for the operation of the Visual SLAM-

GPS tracking system:  

 A reference image was captured at a known GPS location and with known 

orientation. The centre of this location forms the initial coordinate system 

origin and its axis directions; x tangent to the reference point parallel to the 

surface in the image; y normal to the reference image and z orthogonal to x 

and y as seen in Figure 4.4. 

 

 

 

 

 

 

 

 Visual-SLAM was used to recover the camera location and orientation in 

relation to this image in the form of a viewing transformation matrix. 

 The actual deduced camera location was calculated from the inverse of this 

matrix.  

 The camera location relative to the reference location was scaled to metres 

based on a calibration measurement. 

 The camera location was rotated so that x, y, z aligned with E, N, U 

coordinates. 

 The geodetic (GPS) location of the camera was then calculated by 

comparison to the reference GPS location. 

4.1.4.2 Method of Operation 

An initial image was tracked as the reference point.  This image was taken from 

a section of the exterior of Gateway House, De Montfort University (see Figure 

4.5) and the “Dry riser” as the reference point).  Uploading and conversion of 

z 

x 

y 

Figure 4.4 : Coordinates Assumption 
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this image via the pointcloud.io web server was used to obtain a corresponding 

point cloud feature model. An Objective C program was developed to use the 

iPhone camera in order to optically track from this feature model and use it to 

recover the camera matrix relative to the centre of the “Dry riser” image.  

 

 

 

 

 

 

 

 

 

 

 

 

The actual GPS location and the orientation of the wall were found using 

Google maps and a compass. Three camera locations were selected and metre 

distances measured relative to the ‘Dry riser’ as origin. One camera location 

was selected in order to calibrate the scale between the real world and that of 

the imaging system. The camera was placed at each of the three selected 

locations, orientated so as to be looking back at the Dry riser and the camera 

matrix was recorded in each case. Finally the camera was moved gradually 

between one location and another so that it ended at a known location but not 

orientated so that the ‘Dry riser’ was anywhere within view. Again, the camera 

matrix was recorded. 

In each of the above camera locations, a GPS reading was taken directly from 

the GPS receiver in the iPhone and the GPS location was also determined from 

Figure 4.5 : 'Dry riser' on Gateway House. De Montfort University 
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the iPhone camera matrices. The measured and calculated GPS were then 

compared. The next section illustrates the results. 

4.1.4.3 Experimental Results  

The actual GPS location of the ‘Dry riser’ wall location was obtained from 

Google maps, where the Latitude and Longitude were found to be at 52.629527 

and -1.138096, respectively. The Altitude was not measured in the testing but 

was kept constant throughout. The orientation of the wall was also measured 

using a compass and found to be facing 285 degrees to the NW. Figure 4.6 

shows a planar view of the wall with the ‘Dry riser’ location shown along with the 

three camera locations including, in each case, the direction of camera view. 

Note that locations C and D are the same although in the latter the camera is 

facing the wall orthogonally and can no longer ‘see’ the ‘Dry riser’. 

 

 

 

 

 

 

 

 

 

 

 

Camera locations C and D 

‘Dry riser’ 

4.5 m 

5.0 m 

Camera 

location B 

Camera 

location A 

9.0 m 

View 

direction A 

View 

direction B 

View 

direction D 

View 

direction C 

Figure 4.6 : Camera locations relative to wall and ‘Dry riser’ 
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Table 4.1 to 4.3 summarise the iPhone camera distances from the DryRiser 

target and the errors in distance estimation using GPS_Visual SLAM. The 

details of each set of experiment and the measurements are fully described and 

illustrated in following sections with the snapshots of measured values of 

latitude and longitude.  

 

Locations 

Actual Distance from the Wall 

x y Distance (m) 

C 5 4.5 6.727 

A 0 4.5 4.5 

B 0 9 9 

D 5 4.5 6.727 

Table 4.1 : Actual Distances from the Wall 

 

Locations 

GPS_Visual SLAM Distance 

x y Distance 

(m) 

Error (m) 

C 4.99 4.43 6.673 0.054 

A - 0.478 3.629 3.66     0.84 

B 0.037 8.141 8.141     0.859 

D 4.466 4.919 6.644 0.083 

Table 4.2 : GPS Visual_SLAM Distances 

 

 

Locations 

GPS_Visual SLAM Distance with amended scale 

factor ( scaling factor = 2.72) 

x y Distance 

(m) 

Error (m) 

C 5.026 4.463 6.722 0.005 

A - 0.481 3.656 3.687     0.813 

B 0.0372 8.201 8.201     0.799 

D 4.499 4.955 6.693 0.034 

Table 4.3 : GPS Visual_SLAM Distances with scale factor 
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4.1.4.4 Tracking Location C 

Camera location C was used to calibrate the scale factor, which relates the real-

world metre measurements to the arbitrary units used in the camera matrix. At 

location C the SLAM software gave the column-order matrix as in equation 

(4.17) - column-order camera matrix (R,T). 

(4.17)  

𝐌 =

(

 
 

𝐑𝟏𝟏   

𝐑𝟐𝟏   

𝐑𝟑𝟏

𝟎

  𝐑𝟏𝟐  

𝐑𝟐𝟐

  𝐑𝟑𝟐

𝟎

  𝐑𝟏𝟑   

  𝐑𝟐𝟑

  𝐑𝟑𝟑

𝟎

  𝐓𝟏 

   𝐓𝟐

   𝐓𝟑

𝟏 )

 
 
 ≜  

(

 
 

𝟎. 𝟎𝟗𝟒   

−𝟎. 𝟓𝟑𝟏   

−𝟎. 𝟖𝟒𝟐

𝟎

  𝟎. 𝟏𝟎𝟗 

𝟎. 𝟖𝟒𝟔

  −𝟎. 𝟓𝟐𝟐𝟐

𝟎

  𝟎. 𝟗𝟗𝟎  

  −𝟎. 𝟎𝟒𝟑

  𝟎. 𝟏𝟑𝟖

𝟎

  −𝟎. 𝟐𝟕𝟓  

−𝟎. 𝟒𝟎𝟖

  𝟐. 𝟒𝟐𝟑

𝟏 )

 
 

 

 

The iPhone coordinate system, itself, introduces a transformation. The iPhone 

R&T matrix (P) is : 

(4.18)  P =    

(

 
 

0  

−1   

0

0

  0

   0

  −1

   0

  −1  

   0

  0

  0

    0 

    0

    0

   1 )

 
 

 

This needs to be undone in order to get the real Camera Matrix so the raw 

matrix result needs to be multiplied by the Inverse of the iPhone matrix P (P-1): 

 (4.19)   P −1 = 

(

 
 
 

0  

 0   

1

0

  −1

   0

  0

   0

  0  

   −1

   0

  0

     0 

     0

     0

     1)

 
 

 

 

Therefore the real Camera Matrix is given by:    

(4.20)     C =  𝑃−1  × 𝑀    
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Given the matrix C, as described above the actual camera matrix considering 

the iPhone matrix, in this case, will be: 

(4.21)    𝐂 =  

(

 
 

𝟎. 𝟓𝟑𝟏   

𝟎. 𝟖𝟒𝟐  

𝟎. 𝟏𝟎𝟗

𝟎

  −𝟎. 𝟖𝟒𝟔 

𝟎. 𝟓𝟐𝟐

  𝟎. 𝟑𝟒𝟑

𝟎

  𝟎. 𝟎𝟒𝟑  

  −𝟎. 𝟏𝟑𝟖

  𝟎. 𝟗𝟗𝟎

𝟎

    𝟎. 𝟒𝟎𝟖  

    −𝟐. 𝟒𝟐𝟑

    −𝟎. 𝟐𝟕𝟓

  𝟏 )

 
 

  

The camera matrix represents the transformation from the ‘Dry riser’ target at 

the World Origin to the camera as the origin. To obtain the Camera position in 

the world relative to the world origin it is necessary to find the camera’s Inverse 

of matrix C
-1 

 as in equation (4.22).  

(4.22)    𝐂 −𝟏 = 

(

 
 

𝟎. 𝟓𝟑𝟐   

𝟎. 𝟎𝟒𝟑  

𝟎. 𝟎𝟎𝟒

𝟎

  𝟎. 𝟖𝟒𝟐 

𝟎. 𝟓𝟐𝟏

  −𝟎. 𝟏𝟑𝟕

𝟎

    𝟎. 𝟎𝟗𝟒  

  𝟎. 𝟏𝟎𝟗

  𝟎. 𝟗𝟖𝟗

𝟎

      𝟏. 𝟖𝟒𝟗  

     𝟏. 𝟔𝟑𝟗

     −𝟎. 𝟎𝟕𝟖

   𝟏 )

 
 

 

The last column of this matrix gives the translation vector e.g. x, y, z 

coordinates of the camera. Therefore the final location will be at 𝑥 = 1.849, 

𝑦 = 1.639 and 𝑧 = −0.078. However, the physically measured y-distance to the 

camera was at 𝑥 = 5.0𝑚 and 𝑦 = 4.5𝑚. x = 5.0. Therefore a scaling factor of 

approximately 2.7 was needed to convert x, y, z to metre, thus 𝑋′ = 4.99𝑚 and 

𝑌′ = 4.43𝑚. Figure 4.7 shows the x, y orientation of the ‘Dry riser’ wall relative 

to North and East. 

 

 

 

 

 

 

X’ 

Y’ 

East 

North 

Camera at Location C 

Wall 

105 deg 

Figure 4.7 : Camera Location C 
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The 𝑋’, 𝑌’ axes need to be rotated clockwise by 105 degrees to make y align 

with East and x align with North. Thus it is necessary to rotate the camera 

around the origin anti-clockwise by 105 degrees. In order to achieve this, the 

following rotation is required: 

(4.23)    𝐑 =

(

 
 

𝐜𝐨𝐬𝟏𝟎𝟓  

− 𝐬𝐢𝐧 𝟏𝟎𝟓   

𝟎

𝟎

  𝐬𝐢𝐧 𝟏𝟎𝟓  

𝐜𝐨𝐬 𝟏𝟎𝟓 

  𝟎

𝟎

    𝟎  

  𝟎

  𝟏

𝟎

      𝟎  

     𝟎

     𝟎

   𝟏 )

 
 
 =

(

 
 

−𝟎. 𝟐𝟔  

−𝟎. 𝟗𝟕   

𝟎

𝟎

  𝟎. 𝟗𝟕  

−𝟎. 𝟐𝟔 

  𝟎

𝟎

    𝟎  

  𝟎

  𝟏

𝟎

      𝟎  

     𝟎

     𝟎

   𝟏 )

 
 
   

 

Transforming the camera from 𝑋’, 𝑌’, 𝑍’ to N, E, U coordinates gives: 

(4.24)    𝑁 =  2.982     𝐸 =  −5.968    𝑈 =  −0.211 

Converting this to ECEF coordinates and then to geodetic coordinates, relative 

to the ‘Dry riser’ location gives:  

(4.25)     𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒 =  52.629554 ;   𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒 = −1.138184 

Comparing these results with the actual ‘Dry riser’ GPS location with GPS-only 

tracking system is depicted in the figures below.  Figures 4.8 to 4.11 show how 

the original GPS-only tracking results was improved combining that with the 

visual SLAM tracking data.   
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Figure 4.8 : Dry Riser Location: Lat: 52.629527, Long: -1.138096 

 

Figure 4.9 : Actual Location at C: Lat: 52.629556, Long: -1.138167 



79 
 

 

Figure 4.10 : iPhone GPS reading at C: Lat: 52.629583, Long: -1.138250 

 

   Figure 4.11 : GPS_SLAM measure at C: Lat: 52.629554, Long: -1.138184 

4.1.4.5 Tracking Location A 

The next test was performed for camera location A; 4.5 metres directly in front 

of the ‘Dry riser’. The raw camera matrix was recorded as: 

(4.26)    

(

 
 

−𝟎. 𝟎𝟓𝟏   

−𝟎. 𝟗𝟗𝟐  

𝟎. 𝟏𝟏𝟔

𝟎

  𝟎. 𝟐𝟑𝟒 

−𝟎. 𝟏𝟐𝟓

  −𝟎. 𝟗𝟔𝟒

𝟎

    𝟎. 𝟗𝟕𝟏  

  −𝟎. 𝟎𝟐𝟐

  𝟎. 𝟐𝟑𝟗

𝟎

      −𝟎. 𝟏𝟓𝟗  

     −𝟎. 𝟎𝟏𝟏

     𝟏. 𝟑𝟓𝟕

   𝟏 )
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After allowing for the iPhone transformation, the camera matrix, C, was found to 

be: 

(4.27)   𝐂 =   

(

 
 

𝟎. 𝟗𝟗𝟐   

−𝟎. 𝟏𝟏𝟔 

−𝟎. 𝟎𝟓𝟏

𝟎

       𝟎. 𝟏𝟐𝟓

      𝟎. 𝟗𝟔𝟒

     𝟎. 𝟐𝟑𝟒

𝟎

      𝟎. 𝟎𝟐𝟐  

    −𝟎. 𝟐𝟑𝟗

    𝟎. 𝟗𝟕𝟏

𝟎

      𝟎. 𝟎𝟏𝟏  

     −𝟏. 𝟑𝟓𝟕

     −𝟎. 𝟏𝟓𝟗

   𝟏 )

 
 

 

The inverse of C is: 

(4.28)   𝐂 −𝟏 =  

(

 
 

𝟎. 𝟗𝟗𝟐   

𝟎. 𝟏𝟐𝟓 

𝟎. 𝟎𝟐𝟐

𝟎

     −𝟎. 𝟏𝟏𝟔

𝟎. 𝟗𝟔𝟒

−𝟎. 𝟐𝟑𝟖

𝟎

    −𝟎. 𝟎𝟓𝟏  

  𝟎. 𝟐𝟑𝟓

  𝟎. 𝟗𝟕𝟏

𝟎

      −𝟎. 𝟏𝟏𝟕  

    𝟏. 𝟑𝟒𝟒

     −𝟎. 𝟏𝟕𝟎

   𝟏 )

 
 

 

This gave x, y, z camera location as; 

(4.29)   𝑥 =  −0.11 ;   𝑦 = 1.344  ;  𝑧 =  −0.170 

Applying 2.7 scaling factor (as calculated through the calibration process in 

location C) resulted in: 

(4.30)   𝑋’ = −0.478𝑚.  ;  𝑌’ = 3.629 𝑚.  ;   𝑍’ =  −0.459𝑚 

After rotation to E, N, U:  

(4.31)    𝐸 =  −0.478𝑚   ;  𝑁 =  3.629𝑚   ;  𝑈 =  −0.459𝑚 

Which gave geodetic coordinates as below:  

(4.32)     𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒: 52.629560 ;  𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒: − 1.138103 

 

Figures 4.12 to 4.14 show how the original GPS-only tracking results were 

improved combining that with the visual SLAM tracking data at Location A.   
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Figure 4.12 : Actual Location at A: Lat: 52.629560, Long: -1.138111 

 

     Figure 4.13 : iPhone GPS reading at A: Lat: 52.629806, Long: -1.137861 

 

             Figure 4.14 : GPS_SLAM measure at A: Lat: 52.629560, Long: -1.138103 
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4.1.4.6 Tracking Location B  

For camera location B; located 9 metres directly in front of the Dry riser, the raw 

camera matrix was recorded as: 

(4.33)    𝐌 =  

(

 
 

−𝟎. 𝟎𝟐𝟖   

−𝟎. 𝟗𝟗𝟖 

𝟎. 𝟎𝟔𝟓

𝟎

  𝟎. 𝟗𝟑𝟗 

−𝟎. 𝟎𝟕𝟎

  −𝟎. 𝟗𝟑𝟕

𝟎

    𝟎. 𝟗𝟕𝟏  

  −𝟎. 𝟎𝟎𝟒

  𝟎. 𝟑𝟒𝟑

𝟎

      −𝟎. 𝟒𝟒𝟑  

     −𝟎. 𝟏𝟕𝟓

     𝟑. 𝟎𝟕𝟎

   𝟏 )

 
 

 

After allowing for the iPhone transformation, the camera matrix, C, is: 

(4.34)    C =   

(

 
 

0.998   

−0.065   

−0.028

0

     0.070

     0.937

     0.343

0

        0.004  

    −0.343

       0.939

0

        0.175  

      −3.070

       −0.443

    1 )

 
 

 

The inverse of C is: 

(4.35)    𝐂−𝟏 =  

(

 
 

𝟎. 𝟗𝟗𝟕  

𝟎. 𝟎𝟕𝟏   

𝟎. 𝟎𝟎𝟒

𝟎

     −𝟎. 𝟎𝟔𝟒

     𝟎. 𝟗𝟑𝟕

     −𝟎. 𝟑𝟒𝟒

𝟎

        −𝟎. 𝟎𝟐𝟖  

    −𝟎. 𝟑𝟒𝟐

       𝟎. 𝟗𝟑𝟗

𝟎

        −𝟎. 𝟑𝟖𝟒  

      𝟑. 𝟎𝟏𝟓

       −𝟎. 𝟔𝟒𝟏

    𝟏 )

 
 

 

This gave x, y, z camera location; 

(4. 36)     𝑥 =  −0.384 ;   𝑦 = 3.015 ;   𝑧 =  −0.641  

 

Applying 2.7 scaling factor (from calibration in location C) as before; 

(4.37)     𝑋’ = −1.037𝑚.  ;  𝑌’ = 8.141 𝑚.  ;   𝑍’ =  −1.731𝑚. 

 

And after rotation to E, N, U; 

(4.38)     𝐸 =  −1.105𝑚 ;  𝑁 =  8.131𝑚 ;   𝑈 =  −1.731𝑚 
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Resulting in geodetic coordinates; 

(4.39)     𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒: 52.629600 ;  𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒: − 1.138112 

Figures 4.15 to 4.17 show how the original GPS-only tracking results were 

improved combining that with the visual SLAM tracking data at Location B.   

 

Figure 4.15 : Actual Location at B: Lat: 52.629583, Long: -1.138167 

 

Figure 4.16 : iPhone GPS reading at B: Lat: 52.629668, Long: -1.138139 

 

Figure 4.17 : GPS_SLAM measure at B: Lat: 52.629600, Long: -1.138112 
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4.1.4.7 Tracking Location D 

For camera location D; located 5 metres to the right of the ‘Dry riser’ and 4.5 

metres in front of the wall, with the tracking relying on SLAM as the original 

visual target was not in view at the end of the camera movement. The raw 

matrix was recorded as: 

 (4.40)   𝑴 = 

(

 
 

−𝟎. 𝟎𝟎𝟒   

−𝟎. 𝟗𝟑𝟎 

𝟎. 𝟑𝟔𝟗

𝟎

  𝟎. 𝟐𝟖𝟖 

−𝟎. 𝟑𝟓𝟒

  −𝟎. 𝟖𝟗𝟎

𝟎

    𝟎. 𝟗𝟓𝟖  

  𝟎. 𝟏𝟎𝟑

  𝟎. 𝟐𝟔𝟗

𝟎

      −𝟎. 𝟑𝟖𝟑  

     𝟐. 𝟏𝟗𝟖

     𝟏. 𝟎𝟒𝟗

   𝟏 )

 
 

 

After allowing for the iPhone transformation, the camera matrix, C and C
-1

, 

became; 

(4.41)    𝐂 =   

(

 
 

𝟎. 𝟗𝟑𝟎   

−𝟎. 𝟑𝟔𝟗   

−𝟎. 𝟎𝟎𝟒

𝟎

     𝟎. 𝟑𝟓𝟒

     𝟎. 𝟖𝟗𝟎

     𝟎. 𝟐𝟖𝟖

𝟎

        −𝟎. 𝟏𝟎𝟑 

    −𝟎. 𝟐𝟔𝟗

       𝟎. 𝟗𝟓𝟖

𝟎

        −𝟐. 𝟏𝟗𝟖  

      −𝟏. 𝟎𝟒𝟗

       −𝟎. 𝟑𝟖𝟑

    𝟏 )

 
 

 

 

 (4.42)    𝐂−𝟏 =  

(

 
 

𝟎. 𝟗𝟐𝟗  

𝟎. 𝟑𝟓𝟒   

−𝟎. 𝟏𝟎𝟑

𝟎

     −𝟎. 𝟑𝟔𝟖

     𝟎. 𝟖𝟗𝟎

     −𝟎. 𝟐𝟔𝟗

𝟎

        −𝟎. 𝟎𝟎𝟒  

    𝟎. 𝟐𝟖𝟖

       𝟎. 𝟗𝟓𝟕

𝟎

        𝟏. 𝟔𝟓𝟒  

      𝟏. 𝟖𝟐𝟐

       −𝟎. 𝟏𝟒𝟏

    𝟏 )

 
 

 

Giving x, y, z camera location; 

(4.43)    𝑥 =  1.654   ;  𝑦 = 1.822 ;   𝑧 =  −0.141 

Applying the same 2.7 scaling factor as before; 

(4.44)    𝑋’ = 4.466𝑚.  ;  𝑌’ = 4.919𝑚.   ;  𝑍’ =  −0.381𝑚. 

And after rotation to E, N, U; 

(4.45)    𝐸 =  −5.587𝑚  ;  𝑁 =  3.596𝑚  ;  𝑈 =  −0.381𝑚 

Giving geodetic coordinates; 
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(4.46)    𝐿𝑎𝑡𝑖𝑡𝑢𝑑𝑒: 52.629556  ;  𝐿𝑜𝑛𝑔𝑖𝑡𝑢𝑑𝑒: − 1.138177 

Figures 4.18 to 4.20 show how the original GPS-only tracking results were 

improved combining that with the visual SLAM tracking data at Location D.   

 

Figure 4.18 : Actual Location at D: Lat: 52.629556, Long: -1.138167 

 

Figure 4.19 : iPhone GPS reading at D: Lat: 52.629583, Long: -1.138250 

 

Figure 4.20 : PS_SLAM measure at D: Lat: 52.629556, Long: -1.138177 
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4.2 iBeacons for Micro-Location  

This section summarises an experiment in micro-location estimation carried out 

using iBeacons in order to estimate receiver location using RSSI. As explained 

earlier, iBeacons were recently introduced by Apple© for micro-location tracking 

and estimation using RSSI.   

Presented here are a set of experiments performed using iBeacons to assess 

the accuracy of an RSS-based system for micro-location tracking considering 

based on signal strength. In this experiment, an array of 3 iBeacons was 

arranged in an indoor environment as depicted in Figure 4.21. The iBeacons 

were placed in an environment of 10 x 10 tiled carpets where each tile is a 

square of 0.5 x 0.5 meters. Note that the object circled in the centre was the 

iPhone receiver. The third iBeacon was just out of frame to the right of the 

photograph. 

 

Figure 4.21 : Experiment with iBeacons for Micro-Location 

The tile dimensions in metres were used to determine a scale factor to convert 

tile-length based units, used for simplicity during experimentation, to the metric 

system. With a mobile phone placed in the centre each tile, as the receiver, the 
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RSS value was measured for each tile position and distance calculated using 

the following signal propagation relationship: 

(4.47)  𝐑𝐒𝐒𝐈 = − 𝟏𝟎𝐧 𝐥𝐨𝐠𝟏𝟎 𝐝 + 𝐀   

n is the signal propagation constant (set n=2 for free space reference), d is 

distance from the iBeacon and A (TxPower) represents the characteristic 

transmitted signal power from an individual iBeacon, defined as the dBm 

measured at a distance of 1m from the transmitter. Therefore d at each location 

could be determined using: 

(4.48) 𝒅 = 𝟏𝟎
(−𝑹𝑺𝑺𝑰−𝑨)

𝟏𝟎𝒏   

 

Table 4.4 shows the measured RSSI values received by the mobile phone 

when it was located at the centre of each tile. Table 4.4 is the result of applying 

equation (4.48) to determine the estimated distance of the receiver from each 

iBeacon. Each cell contains three numbers referring to the distance between 

the phone and each iBeacon; the top value in each triplet being distance from 

Beacon 1; middle value, the distance from Beacon 2; and the third value, the 

distance from Beacon 3. The metric distance from the centre of each tile to the 

centre of the next tile was 0.5 metres.  
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 1 2 3 4 5 6 7 8 9 10 

 Beacon -67 -73 -74 -75 -74 -73 -74 -72 Beacon 

1 1 -75 -74 -73 -72 -68 -67 -69 -66 2 

  -77 -78 -83 -85 -79 -80 -78 -82  

 -68 -73 -76 -77 -81 -72 -77 -77 -75 -75 

2 -77 -80 -77 -76 -73 -74 -68 -72 -73 -63 

 -76 -76 -76 -78 -78 -80 -78 -77 -76 -76 

 -67 -76 -81 -79 -77 -77 -79 -82 -78 -82 

3 -81 -80 -77 -75 -76 -76 -73 -76 -75 -66 

 -75 -75 -76 -77 -78 -75 -80 -81 -81 -73 

 -73 -73 -82 -78 -74 -79 -75 -75 -73 -82 

4 -74 -76 -80 -79 -75 -77 -76 -76 -78 -66 

 -74 -78 -74 -76 -79 -78 -78 -76 -73 -77 

 -73 -73 -78 -77 -76 -78 -79 -80 -77 -78 

5 -82 -77 -78 -77 -80 -78 -77 -70 -74 -72 

 -75 -79 -73 -81 -79 -83 -80 -82 -71 -74 

 -74 -71 -74 -75 -77 -79 -85 -78 -79 -77 

6 -80 -76 -78 -80 -85 -73 -74 -79 -73 -73 

 -72 -74 -75 -72 -74 -74 -76 -77 -76 -82 

 -72 -72 -79 -77 -79 -83 -82 -84 -80 -81 

7 -79 -78 -81 -81 -78 -78 -77 -77 -72 -71 

 -73 -73 -74 -72 -74 -70 -74 -77 -74 -73 

 -74 -73 -80 -81 -75 -79 -87 -81 -82 -81 

8 -76 -76 -77 -80 -76 -78 -75 -78 -74 -78 

 -74 -75 -77 -73 -76 -73 -69 -73 -77 -63 

 -78 -77 -79 -76 -77 -81 -85 -88 -85 -82 

9 -83 -75 -77 -83 -82 -77 -76 -77 -76 -74 

 -73 -76 -70 -73 -71 -70 -72 -69 -78 -74 

 -77 -76 -78 -77 -79 -78 -81 -78 -83 Beacon 

10 -80 -82 -87 -80 -80 -76 -77 -70 -78 3 

 -74 -77 -75 -76 -72 -74 -71 -67 -63  

 

Table 4.4 : Raw RSSI data for each tile (Each cell represents three readings 

considering the RSS from iBeacon 1, 2, and respectively 3) 
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  1 2 3 4 5 6 7 8 9 10 

  Beacon 0.67 1.33 1.5 1.68 1.5 1.33 1.5 1.19 Beacon 

1 1 2.66 2.37 2.11 1.88 1.19 1.06 1.33 0.94 2 

    3.98 4.47 7.94 10 5.01 5.62 4.47 7.08   

  0.75 1.33 1.88 2.11 3.35 1.19 2.11 2.11 1.68 1.68 

2 3.35 4.73 3.35 2.99 2.11 2.37 1.19 1.88 2.11 0.67 

  3.55 3.55 3.55 4.47 4.47 5.62 4.47 3.98 3.55 3.55 

  0.67 1.88 3.35 2.66 2.11 2.11 2.66 3.76 2.37 3.76 

3 5.31 4.73 3.35 2.66 2.99 2.99 2.11 2.99 2.66 0.94 

  3.16 3.16 3.55 3.98 4.47 3.16 5.62 6.31 6.31 2.51 

  1.33 1.33 3.76 2.37 1.5 2.66 1.68 1.68 1.33 3.76 

4 2.37 2.99 4.73 4.22 2.66 3.35 2.99 2.99 3.76 0.94 

  2.82 4.47 2.82 3.55 5.01 4.47 4.47 3.55 2.51 3.98 

  1.33 1.33 2.37 2.11 1.88 2.37 2.66 2.99 2.11 2.37 

5 5.96 3.35 3.76 3.35 4.73 3.76 3.35 1.5 2.37 1.88 

  3.16 5.01 2.51 6.31 5.01 7.94 5.62 7.08 2 2.82 

  1.5 1.06 1.5 1.68 2.11 2.66 5.31 2.37 2.66 2.11 

6 4.73 2.99 3.76 4.73 8.41 2.11 2.37 4.22 2.11 2.11 

  2.24 2.82 3.16 2.24 2.82 2.82 3.55 3.98 3.55 7.08 

  1.19 1.19 2.66 2.11 2.66 4.22 3.76 4.73 2.99 3.35 

7 4.22 3.76 5.31 5.31 3.76 3.76 3.35 3.35 1.88 1.68 

  2.51 2.51 2.82 2.24 2.82 1.78 2.82 3.98 2.82 2.51 

  1.5 1.33 2.99 3.35 1.68 2.66 6.68 3.35 3.76 3.35 

8 2.99 2.99 3.35 4.73 2.99 3.76 2.66 3.76 2.37 3.76 

  2.82 3.16 3.98 2.51 3.55 2.51 1.58 2.51 3.98 0.79 

  2.37 2.11 2.66 1.88 2.11 3.35 5.31 7.5 5.31 3.76 

9 6.68 2.66 3.35 6.68 5.96 3.35 2.99 3.35 2.99 2.37 

  2.51 3.55 1.78 2.51 2 1.78 2.24 1.58 4.47 2.82 

  2.11 1.88 2.37 2.11 2.66 2.37 3.35 2.37 4.22 Beacon 

10 4.73 5.96 10.59 4.73 4.73 2.99 3.35 1.5 3.76 3 

  2.82 3.98 3.16 3.55 2.24 2.82 2 1.26 0.79   

 

Table 4.5 : RSSI converted to distance (d) as in Equation (4.48) 

 

Table 4.7 also shows the calculated distances separated out for each iBeacon 

with cells shaded relative to distance such that fully saturated colour represents 

small distance and low saturation indicating greater distances with white at 

distances >= 4.5 metres. For each iBeacon, the first table shows the actual 

distances and the second, the calculated distances.  
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Table 4.6 : Distance from each iBeacon (metres) (The colour shades illustrate how far the 

receiver was from the beacon – Red : iBeacon1, Green: iBeacon 2, and Blue : iBeacon 3)  
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The scale of the colour scheme used in this table represents the relative distance from the 

iBeacon. The darker the colour of each cell, the smaller the distance of that cell to the the 

iBeacon should be. However, due to RSS errors, this is not always as expected ( as seen in the 

second set of tables (right) which reported the actual measurements).  

4.2.1 Error Measurements using Trilateration Calculations  

In order to combine each distance triplet to determine the receiver location, 

trilateration is required (Cook, et al., 2006). In a two-dimensional arrangement, 

as effectively used in this experiment, trilateration calculates the location of the 

receiver based on the geometry of signal-strength circles centred on each 

iBeacon transmitter. In an ideal system, the distance of the receiver from each 

iBeacon represented by the circles in Figure 4.22, will intersect at the location of 

the receiver. 

 

 

 

 

 

 

 

 

 

 

However, in practice, the circles are unlikely to intersect at an exact point, 

therefore trilateration is used to calculate the centre of intersection based on the 

Beacon 1 Beacon 2 

Beacon 3 

Location of the receiver 

Figure 4.22 : Trilateration with iBeacons – ideal location of receiver 
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relative circle radii as shown in Figure 4.23. It is also possible that the circles 

may not intersect at all. 

 

 

 

 

 

 

 

 

In these situations, the receiver location can be estimated by finding a point that 

minimizes the distance to all of the circles, using Least Squares Estimation 

(Stüber & Caffrey, 1999).  In a simple case, such as this where the iBeacons are 

are on the z=0 plane with one iBeacon at the coordinate system origin and 

another on the x-axis, it is possible to use a geometric solution based on 

vectors between the iBeacons. 

Given the iBeacon locations B1 ,  B2  and  B3  measured as vectors from the 

coordinate system origin and assuming a 2D system; i.e. z = 0, the unit vector, 

êx, from B1 to B2 is given by : 

(4.49)     𝑒̂𝑥 =   
(  𝐵2 − 𝐵1  )

‖  𝐵2 − 𝐵1  ‖
  

 

 (4.50)    i =  êx (B3 − B1  ) 
 
 

where 𝑖 is the signed magnitude of the x component of vector from B1 to B3. 

p 

Figure 4.23 : Trilateration with iBeacons – practical location of the receive 

 

 

 

r1 
r2 

r3 

B1( 0, 0) B2( 0, d) 

 

Beacon 1 

Beacon 2 

  Beacon 3 
Location of the receiver  

p(x,y) (Trilateration intersection) 

( x positive : right | y positive: down) 

B3 ( i , j) 

 

d 
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The unit vector in the y direction is also given by : 

(4.51)  êy  =  
  (B3 − B1  − i êx )

‖  B3− B1  − i êx  ‖
  

The third basis unit vector 𝑒̂𝑧  can be determined by the cross product of 𝑒̂𝑥 and 

𝑒̂𝑦.  

(4.52)  êz = êx  ×  êy  

 

The distance between the iBeacons, B1 and B2 (d) can be determined from  

(4.53) d =  ‖ B2 − B1  ‖ 

 

Furthermore j is the signed magnitude of the y component vector from B1   to B3    

and can be determined by: 

(4.54)  j =  êy . (  B3 − B1  ) 

 

The receiver location estimate is then given by (4.55) as:  

(4.55) P = B1  + x. êx + y. êy  ± z. êz 

 

The intersections of the surfaces of three spheres is found by formulating the 

equations for the three sphere surfaces and then solving the three equations for 

the three unknowns, x, y, and z. To simplify the calculations, the equations are 

formulated so that the centres of the spheres are on the z = 0 plane. Also, the 

formulation is such that one centre is at the origin, and one other is on the x-

axis.    

Considering the above assumptions, the trilateration intersection of three 

iBeacons (p) as illustrated in Figure 4.23 (when z = 0 ) can be calculated as in 

in equations (4.56) to (4.60) .  

(4.56) 𝑥 =  
𝑟1 
2− 𝑟2 

2 + 𝑑 2

2𝑑
 

 (4.57)  𝑦 =  
𝑟1 
2− 𝑟3 

2 + 𝑖 2+𝑗 2  

2𝑗
− 

𝑖

𝑗
 𝑥 
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Where :   

 (4.58)  𝑟1 
2  =  𝑥2 + 𝑦2    

 (4.59)  𝑟2 
2  =  (𝑥 − 𝑑)2 + 𝑦2   

 (4.60)  𝑟3 
2  =  (𝑥 − 𝑖)2 + (𝑦 − 𝑗)2     

  d = B1 B2  : The distance between iBeacon 1 and 2 

  p (x,y) : coordinates of the trilateration intersection 

 B3 ( i, j) : is the coordinate of B3 

  𝑟1 , 𝑟2,𝑟3  the sphere radii of the iBeacons 

The above was implemented in an Excel spreadsheet with a worksheet cell 

representing each of the tile locations. Refer to Appendix C for the results of the 

trilateration calculations. As the actual coordinates of each tile centre are known 

this was used to calculate the experimentally measured location for each tile 

centre. In these calculations, a scaling factor of 0.5 in each direction was used 

to convert from tile grid number (tile dimensions of 0.5 x 0.5 metres) to metres. 

Finally, the mean errors were calculated considering the distance between the 

measured and actual locations in metres (see Table 4 for the final results of 

these experiments).  

Table 4: Trilateration Error 

  

Minimum Error Maximum Error Mean Error 

0.21 (m) 13.97 (m) 2.2 (m) 
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4.3 Discussion and Conclusion  

The experiments carried out with GPS_Visual SLAM system with sets of 

experimental measurements (presented in 4.1.4) demonstrate the potential for 

utilising visual images from the real-world in obtaining more accurate GPS 

location on a mobile device. The fusion of the GPS and Visual SLAM was found 

to enhance the performance of the GPS-only system. Visual-SLAM also allows 

for some continuity of tracking after the initial visual target has been lost from 

view. However, it was found that using the PointCloud.io library, continuous 

tracking under these conditions was difficult to maintain and lost easily.  

Nevertheless, given a number of reference images in a given location, an initial 

approximate GPS location reading would bound the image subset that needs to 

be searched using visual-SLAM to refine the GPS location. 

In the second experiment with iBeacons, the results indicated a lower accuracy 

for micro-location estimation than would be hoped for, although somewhat 

better in accuracy than raw GPS.  This questions Apple’s claim in using 

iBeacons alone for micro-location applications. However, iBeacons have the 

advantage over GPS of working in both indoor and outdoor environments. 

In summary, both experiments with GPS_Visual SLAM and iBeacons using 

RSSI measurement provided results showing that these too have their own 

limitations. GPS_Visual SLAM improved the typical low range accuracy of GPS, 

but was difficult to maintain when relying on its own extensible map of the 

environment especially in circumstances where landmarks lack many unique 

visual features. On the other hand, iBeacons also offer better accuracy than 

GPS alone and have the added advantage of working in indoor environments. 

However, RSS proved to be an unreliable measure of actual distance for micro-

location purposes. In the above experiment, only three iBeacons were 

employed. A higher density of iBeacons could possibly be used to increase 

accuracy.  Also, iBeacons could be employed in a hybrid system, fusing with 

data from accelerometers and gyroscopes. 
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CHAPTER FIVE 

 

5 Geometric Models and Mathematical Tools for 

Camera Modelling and Representation of 3D Moving 

Objects 

This chapter introduces the mathematical models and tools for image formation, 

three-dimensional representation of moving objects and related geometric 

constraints. This chapter also provides a background for better understanding of 

the operating principles, mathematical and geometric models, measurement of 

the camera’s intrinsic and extrinsic parameters, three-dimensional 

representation of moving objects and how to model camera pose with reference 

to real-world objects. In addition, geometric constraints arising from matching 

feature points are outlined. These constraints are used in 3D pose estimation. 

The mathematical notations and models in this chapter are mainly adopted from 

(Ma, et al., 2004).  

5.1 Image Formation 

Image formation refers to the process of constructing an image corresponding 

to a physical object (Ma, et al., 2004). Computer vision algorithms first require 

development of a suitable model for image formation. Such models combine 

physical and mathematical constraints in order to produce a manageable 

interpretation for solving computer vision problems.  

For centuries, the study of image formation has attracted the interest of the 

artistic reproduction and composition society more than that of mathematics and 

engineering. Understanding the geometry of the image, which includes various 
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models for projecting three dimensional world objects onto a two dimensional 

plane such as a canvas (3D/2D mapping), is implicit in many branches of the 

visual arts. The root of formalising the geometry of image formation into 

mathematical models can be tracked back to the work of Euclid in the 4th 

century B.C.  Examples of applying perspective projection can also be seen in 

the frescoes and mosaics of Pompeii from the 1st century B.C (see Figure 5.1).  

 

 

            Figure 5.1 : Frescoes from the first century B.C. in Pompeii. More (left) or less (right) 

correct perspective projection is visible in the paintings  

Source: (Ma, et al., 2004) 

The early Renaissance painters developed systematic methods for determining 

perspective projection of three dimensional landscapes. The treatise of ‘Della 

Pictura’ published by Leon Battisa Alberti, is an example of a very early 

exploitation of perspective projection. He was an artist who was also proficient 

in engineering and architecture.  He emphasised the importance of the eye’s 

view of the world capturing correctly the geometry of the projection process, 

which is the basis of image geometry. However, consideration of geometry is 

not the only important part of the image formation process. In order to obtain an 

image, one needs to decide not only where to draw a point but also what 
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brightness value to assign to it. The interaction of light was at the core of the 

studies by Leonardo Da Vinci, and his ideas are vibrantly expressed in his 

surviving notes. Caravaggio and Raphael also exhibited sophisticated skills in 

rendering light and colour. There is also some evidence to suggest that some 

Renaissance artists used camera-like devices (camera obscura) (Hockney, 

2001). 

5.2 Geometric Models for Image Formation 

A computer-based grayscale image can be envisaged as a two-dimensional 

brightness array. Similarly a colour image can be specified by three such arrays 

each representing one of the red, green and blue primary colours. In other 

words an image is represented by a map 𝐼 on a 2D region Ω, assigning a 

positive real value to each point in this region. For the case of a camera, Ω is a 

planar, rectangular region formed on photographic medium or a CCD (Charge-

Coupled Device) sensor. Equation (5.1) formulates the mapping process: 

(5.1)  𝑰: 𝜴 ⊂ ℝ𝟐 → ℝ+ ,              (𝒙, 𝒚) ⟼ 𝑰(𝒙, 𝒚)    

In order to quantify the image formation, the value of 𝐼(𝑥, 𝑦), which is often 

referred to as the image intensity or brightness, must be specified at each point 

of (𝑥, 𝑦). This parameter can be specified in units of power per area (𝑊/𝑚2).  

The image pixel intensity at point (𝑥, 𝑦)  is obtained by integrating energy both 

with respect to time and space. The length of time depends on the shutter 

interval of a camera or the integration time in a CCD array. The integration 

space is formed by the part(s) of the object(s) contributing to the formation of 

the image pixel at point (𝑥, 𝑦) and depends on various factors such as the 

shape of the object, the optic characteristics of the imaging device and so on.   
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5.3  Camera Imaging Models 

A digital camera consists of two main parts; an optical system (lens system) and 

an image sensor, either using CCD or CMOS (Complementary Metal Oxide 

Semiconductor) technology. An image sensor converts the light to a digital 

image/map, consisting of a 2D array of pixels, each occupying a certain size on 

the surface area of the imaging sensor. This process is referred to as 

digitisation. Image pixels in a single image are normally equal in shape and 

size.  

 

A camera is specified by a set of intrinsic and extrinsic parameters. The 

relationship between the metric camera coordinate system and the 2D array of 

pixels is defined by the camera intrinsic parameters, which represent the linear 

image distortion, the sensor geometry and its sampling characteristics. 

Nonlinear distortion also affects image formation, however this factor is not 

considered in this thesis. Readers are invited to refer to section 3.3.3 of (Ma, et 

al., 2004) for further details. Distortion coefficients and intrinsic camera 

parameters are camera-specific and remain constant for a given camera-lens 

system. The process of estimating these parameters is sometimes referred to 

as camera calibration.   

 

On the other hand, extrinsic camera parameters describe the position and 

orientation of the camera in a fixed reference frame. Ultimately, the purpose of 

camera tracking is to estimate these parameters.  

5.3.1 Imaging through Lenses  

Any optical sensor (e.g. a camera) is composed of a set of lenses used for 

controlling the direction and propagation of light, by means of diffraction, 

refraction and reflection. For simplicity, the effects of diffraction and reflection in 

a lens system are neglected here and only the refraction is considered, 
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although the full description of a purely refractive lens is also beyond the aims 

and scope of this thesis. However, for more details please refer to (Born & Wolf, 

1999).   

Throughout this thesis, the thin lens model, which is a mathematical model 

defined by an optical axis and a focal plane, is considered. The optical axis is 

perpendicular to the focal plane and at its intersection with the plane forms a 

circular aperture centred at the optical centre. The thin lens model has two 

parameters, the focal length 𝑓 and lens diameter, the latter of which can be 

ignored considering the thin lens assumption.  

 

The thin lens function is categorised by two main properties. First is that all rays 

entering the lens parallel to the optical axis intersect on the optical axis at 

distance 𝑓 from the optical centre; i.e. they intersect on the focal centre of the 

lens. The second property is that the rays entering the optical centre are 

undeflected.  

 

Let 𝑋 be a 3D point in space mapped to point 𝑋′ on the image plane using the 

above two lens properties. Figure 5.2 illustrates the mapping process. In this 

image 𝑋 is at a distance 𝑍 along the optical axis not too far from the optical 

centre. Point 𝑋′ is the image of point 𝑋, formed at distance 𝑍′ from the optical 

centre. Referring to Figure 5.2, the fundamental equation of a thin lens can be 

expressed as follows:   

(5.2) 
𝟏

𝒁
= 

𝟏

𝒁′
+ 

𝟏

𝒇
 

X

X’

Z’ Z

O

 

Figure 5.2 Thin Lens Model 
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5.3.2 Perspective Pinhole Cameras 

The Pinhole Perspective - also called central perspective projection model – 

was first proposed as a convenient mathematical concept by Brunelleschi at the 

beginning of the 15th century. The perspective projection can be created by 

taking a box, pricking a small hole in one side of it with a pin, and then replacing 

the opposite side with a translucent plate acting as the image plane. By holding 

that box in a dimly lit room, with the pinhole facing a light source (i.e. a candle), 

one can see an inverted image of the candle appearing on the translucent plate 

( 

Figure 5.3). This image is produced by light rays emitted from the scene in front 

of the box. If the pinhole were to be reduced down to an infinitesimally small 

point, then each scene point would have only one corresponding point on the 

image plane and exactly one light ray would pass through the scene point, the 

pinhole and the corresponding point on the image plane.  This model, despite 

its simplicity, provides an acceptable approximation for many imaging 

applications.  

 

 

Figure 5.3 : Perspective Pinhole - source: (Forsyth & Ponce, 2003, p. 4) 

 

Considering the thin lens model described earlier, we can also refer to a pinhole 

camera as a modified thin lens model. When the aperture of a thin lens is 

theoretically reduced to zero, all the rays are forced to go through the optical 

centre O, and therefore remain undeflected. The Pinhole camera is 
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mathematically modelled and the derived equations used as the basis for most 

computer vision computations. A point in 3D space is projected to the image 

plane by drawing a ray from the 3D point in the world towards the optical centre. 

The intersection of this ray and the image plane represents the image of the 3D 

point (see Figure 5.4). The shortest distance between the optical centre and the 

image plane is the focal length of the camera denoted as 𝑓.   

 

To obtain a mathematical model, the 3D camera coordinate system C is defined 

here. In this coordinate system the origin is the camera’s optical centre and the 

Z axis is along the vector perpendicular to the image plane facing towards the 

optical centre from the image plane. Figure 5.4 depicts the camera coordinate 

system.  

 

 

Figure 5.4 : Pinhole Model 

 

Let X denote a 3D point in the scene and X′ the associated image point on the 

image plane.  

(5.3) 𝑿 = (
𝒙
𝒚
𝒛
) ,     𝑿′ = (

𝒙′
𝒚′

𝒛′

) 

 

Coordinates of both points are referenced to the camera coordinate system. 𝑋′ 

lies on the image plane, therefore: 
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(5.4) 𝒛′ = − ƒ 

 

Points 𝑋,O and X′ are collinear, therefore: 

(5.5)  O𝑋 = λ′O𝑋′    ⟹   (
𝑥
𝑦
𝑧
) =  λ′ (

𝑥′
𝑦′

𝑧′

)  

 

Substituting (5.4) into (5.5) results in the following equations for projective 

camera imaging: 

(5.6) (
𝑥′

𝑦′
)  =  −

𝑓

𝑧
(
𝑥
𝑦) ,               𝜆′ = − 

  𝑧

𝑓
 

 

The negative sign in the above equation indicates that an object’s image 

appears upside down on the image plane. To eliminate this effect and simplify 

the model, the image plane is flipped from behind the optical centre at ( 𝑧 =

 −𝑓) to the front at (𝑧 =  + 𝑓 ). The result is transferring the image point (𝑥′, 𝑦′)𝑇 

to (−𝑥′, −𝑦′)𝑇. This is referred to as Frontal Camera Pinhole Model as illustrated 

in Figure 5.5. Equation (5.7) shows the relationship between points 𝑋 and X′ in 

the frontal camera model. 

 

 

Figure 5.5 : Frontal Pinhole Model 

(5.7) (
𝑥′
𝑦′
)  =  + 

𝑓

𝑧
(
𝑥
𝑦) 
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In homogenous coordinates the system the above can be described in matrix 

format as follows: 

(5.8) (
𝑥′

𝑦′

1

)  =  λ (
𝑓 0 0
0 𝑓 0
0 0 1

)(
1 0
0 1

0 0
0 0

0 0 1 0
)(

𝑥
𝑦
𝑧
1

) ,     𝜆 =
1

𝑧
 

 

Letting 𝑝 denote the homogeneous pixel coordinates of the image point 𝑋′, the 

above equation can be re-written as follows:   

(5.9)  𝑝 = λ𝐾𝑓  𝛱0 𝑋 

(5.10) 𝑝 =  (
𝑥′
𝑦′
1

) ,   𝑋 = (

𝑥
𝑦
𝑧
1

),   𝐾𝑓 = (
𝑓 0 0
0 𝑓 0
0 0 1

) , 𝛱0 = (
1 0
0 1

0 0
0 0

0 0 1 0
)  

5.3.3 Camera Parameters 

5.3.3.1 Intrinsic Camera Parameters 

The coordinates of a digital image are typically specified in pixels indexed from 

the top left corner (Figure 5.6). The parameters necessary to link the pixel 

coordinates of an image point to the corresponding coordinates in the camera 

reference frame are referred to as intrinsic camera parameters (see (5.10)).  

 

Figure 5.6 Pixel Coordinates 
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The intrinsic camera parameters are derived from perspective projection, the 

transformation between the image plane coordinates and pixel coordinates, and 

finally the geometric distortion introduced by the optics. The image pixels are 

characterised by their horizontal and vertical dimensions, 𝑑𝑥 and 𝑑𝑦. A point 𝑝 

on the image plane with homogenous coordinates (𝑥′, 𝑦′, 1)𝑇 in the metric 

system has the following coordinates in pixel units 

(5.11) (
𝑥𝑠
𝑦𝑠
1
) = (

𝑠𝑥 0 0
0 𝑠𝑦 0

0 0 1

) (
𝑥′
𝑦′
1

) 

 

In the above equation 𝑠𝑥 and 𝑠𝑦 are the pixel densities along x and y axes.  

(5.12) (
𝑠𝑥
𝑠𝑦
) =  (

1/𝑑𝑥
1/𝑑𝑦

) 

 

If the image plane is skewed as shown in Figure 5.6, the skew angle α also 

affects the intrinsic camera parameters and (5.12) ca be reformulated as : 

(5.13) (
𝑥𝑠
𝑦𝑠
1
) = (

𝑠𝑥 𝑠𝛼 0
0 𝑠𝑦 0

0 0 1

)  (
𝑥′
𝑦′
1

),         𝑠𝛼 ∝ tan𝛼    

 

Assuming that the centre of image is at (𝑜𝑥 , 𝑜𝑦)
𝑇
 in pixel units, the coordinates 

of point 𝑝 in the image coordinate frame are : 

(5.14) (

𝑥𝑝
𝑦𝑝
1
) = 𝐾𝑠 (

𝑥′
𝑦′
1

),       𝐾𝑠 = (

𝑠𝑥 𝑠𝛼 𝑜𝑥
0 𝑠𝑦 𝑜𝑦
0 0 1

)     

 

Combining (5.8) and (5.14) yields: 

(5.15)  (

xp
yp
1
) = 𝜆 (

sx sα ox
0 sy oy
0 0 1

)(
𝑓 0 0
0 𝑓 0
0 0 1

)(
1 0
0 1

0 0
0 0

0 0 1 0
)(

𝑥
𝑦
𝑧
1

) 

 

The camera intrinsic matrix, 𝐾, is defined as it follows: 

(5.16) 𝐾 = (

sx sα ox
0 sy oy
0 0 1

)(
𝑓 0 0
0 𝑓 0
0 0 1

) = (
𝑓sx 𝑓sα ox
0 𝑓sy oy
0 0 1

) 
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Matrix 𝐾 converts the metric coordinates of a 3D point in space with reference 

to camera frame to pixel coordinates in the image coordinate system: 

(5.17)  (

xp
yp
1
) = 𝜆𝐾 (

1 0
0 1

0 0
0 0

0 0 1 0
)(

𝑥
𝑦
𝑧
1

) = 𝜆𝐾 (
𝑥
𝑦
𝑧
) 

5.3.3.2 Extrinsic Camera Parameters – Camera Pose  

The camera coordinate system as described in section 6.1.1 views 3D points in 

space differently to the fixed world coordinate system. The relationship between 

these two systems is defined by the camera extrinsic parameters. These 

parameters, in addition to the camera intrinsic parameters, are necessary in 

order to establish an accurate correspondence between the coordinates of a 3D 

point in space and the projected 2D point on the image plane. Figure 5.7 shows 

a camera undergoing a translation and rotation, represented by vector T and 

matrix R  respectively. 

T

W

C

Xw
X

c
X

R

 

Figure 5.7 : Camera transformation 

 

Let 𝑋𝑤 and 𝑋𝑐 represent the coordinates of a 3D point in space with reference 

to the world and camera frames, respectively. 𝑋𝑤and 𝑋𝑐 hold the following 

relationship: 

(5.18)  𝑋𝑤 = 𝑅𝑋𝑐 + 𝑇 
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where 𝑇 is the coordinate of the camera origin with respect to the world frame 

and 𝑅 is the rotation matrix formed by rotation around 𝑥, 𝑦 and 𝑧 axes  

(5.19)  T = (

𝑇𝑥
𝑇𝑦
𝑇𝑧

) 

(5.20) 𝑹𝒙 = (

𝟏 𝟎 𝟎
𝟎 𝒄𝒐𝒔 (𝜽𝒙) −𝒔𝒊𝒏 (𝜽𝒙)
𝟎 𝒔𝒊𝒏 (𝜽𝒙) 𝒄𝒐𝒔 (𝜽𝒙)

)      

(5.21) 𝑹𝒚 = (

𝒄𝒐𝒔 (𝜽𝒚) 𝟎 𝒔𝒊𝒏 (𝜽𝒚)

𝟎 𝟏 𝟎
−𝒔𝒊𝒏 (𝜽𝒚) 𝟎 𝒄𝒐𝒔 (𝜽𝒚)

)     

(5.22) 𝑹𝒛 = (
𝒄𝒐𝒔 (𝜽𝒛) −𝒔𝒊𝒏 (𝜽𝒛) 𝟎
𝒔𝒊𝒏 (𝜽𝒛) 𝒄𝒐𝒔 (𝜽𝒛) 𝟎
𝟎 𝟎 𝟏

)   

(5.23) 𝑹 = 𝑹𝒙 𝑹𝒚 𝑹𝒛       

Matrix 𝑅 can also be considered as a set of three vectors as follows: 

 (5.24) 𝑹 = (𝒓𝒙⃗⃗⃗⃗ 𝒓𝒚⃗⃗⃗⃗ 𝒓𝒛⃗⃗  ⃗) = (

𝒓𝟏𝟏 𝒓𝟏𝟐 𝒓𝟏𝟑
𝒓𝟐𝟏 𝒓𝟐𝟐 𝒓𝟐𝟑
𝒓𝟑𝟏 𝒓𝟑𝟐 𝒓𝟑𝟑

)     

  

where 𝑟𝑥⃗⃗⃗   , 𝑟𝑦⃗⃗  ⃗ and 𝑟𝑧⃗⃗   are the unit vectors of the camera coordinate system (𝑖𝑐, 𝑗𝑐 

and 𝑘𝑐) as seen by the world coordinate system.  

(5.25) (𝒓𝒙⃗⃗⃗⃗ 𝒓𝒚⃗⃗⃗⃗ 𝒓𝒛⃗⃗  ⃗) = (𝒊𝒄
𝒘 𝒋𝒄

𝒘 𝒌𝒄
𝒘)       

 

In order to transform the coordinates of a 3D point in space from the world 

frame to the camera frame, equation (5.18) can be reformulated as:  

(5.26)  𝑋𝑐 = 𝑅−1(𝑋𝑤 − 𝑇) 

 

The camera extrinsic matrix is therefore defined such as follows:  

(5.27)  𝑀 = (𝑅
−1 −𝑅−1𝑇
0 1

) 
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Since 𝑅 is a rotation matrix and therefore orthogonal, the inverse matrix is the 

same as its transpose, leading to the following: 

(5.28)  𝑀 = (𝑅
𝑇 −𝑅𝑇𝑇
0 1

) 

5.3.3.3 Combining Extrinsic and Intrinsic Camera Parameters 

Suppose a 3D point 𝑋 in space is seen from the world and camera frames as 

𝑋𝑤 and 𝑋𝑐 with the following homogeneous coordinates: 

(5.29)  𝑋𝑤 = (

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

),            𝑋𝑐 = (

𝑥𝑐

𝑦𝑐

𝑧𝑐

1

) 

 

By combining the intrinsic and extrinsic camera matrices the coordinates of the 

2D image point associated with 3D point 𝑋 can be derived as it follows:  

(5.30)  (

xp
yp
1
) = 𝜆𝐾 (

1 0
0 1

0 0
0 0

0 0 1 0
)𝑀(

𝑥𝑤

𝑦𝑤

𝑧𝑤

1

) 

5.4 Geometry of Two Views 

Vision data gathered from multiple cameras looking at the same scene in space 

can reveal valuable geometric information about the position and pose of the 

cameras with respect to the scene.  

 

Epipolar geometry is the geometry of stereo vision, when two cameras look at 

slightly offset views of the same scene. Epipolar geometry imposes a number of 

geometrical constraints between the 3D points in space and their 2D projection 

on the camera image plane. Such constraints are essential for depth analysis 

and image-based camera tracking.  
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From a geometrical point of view the mathematical model for a moving camera 

at two locations is essentially the same as two individual cameras at these two 

locations. Therefore, similar to stereo-imaging, epipolar geometry also applies 

to a moving monocular camera. The use of epipolar geometry in the camera 

tracking solution proposed in this work will be fully described in Chapter 6. This 

section however outlines the principles behind epipolar geometry.  

5.4.1 Epipolar Geometric Constraints  

Assume point 𝑋 is a fixed 3D point seen as 2D image points 𝑋c1 and 𝑋c2 by the 

cameras 𝐶1 and 𝐶2 (see Figure 5.8 for details). 𝐶1 and 𝐶2 also represent the 

optical centres of the cameras. The three points 𝑋, 𝐶1 and 𝐶2 form a plane 

referred to as the epipolar plane. The intersection of the epipolar plane with 

image planes 𝐼1 and 𝐼2 form the epipolar lines 𝑙1 and 𝑙2. Figure 5.9 shows that 

the image of 𝑋c1 is a line on the 𝐶2 image plane. This line is the epipolar line 𝑙2. 

This is because points 𝑋, 𝑋′ and 𝑋′′ and generally all points on the line specified 

by points 𝑋 and 𝐶1 produce the same 2D image at point 𝑋𝑐1. Therefore a single 

point on image 1 corresponds to a line on image 2. This analogy applies to the 

epipolar line 𝑙1 on image 1, which corresponds to single point 𝑋c2 on image 2.  

C1 C2

X

c1x
Epipolar 

Plane

l1 l2

I1 I2

c2x

 

Figure 5.8 Epipolar Geometry 
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C1 C2

X

c1x

l1 l2

I1 I2

c2x

X'

X''

 

Figure 5.9 Epipolar line 

 

C1

C2

X

T

X
c1

-TX
c1

 

Figure 5.10 Epipolar Plane 

 

Figure 5.10 shows the epipolar plane with 𝑋c1 representing the 3D coordinates 

of point 𝑋 in camera 1 coordinate system and T the translation vector between 

the two camera positions. The epipolar plane can be described by its normal 

vector, which is parallel to the cross product of vectors T and 𝑋c1 . 

(5.31)  𝑛⃗ ∝ 𝑇 ⊗ 𝑋𝑐1 

 

Vector 𝑋𝑐1 − 𝑇 is on the epipolar plane and is perpendicular to its normal vector, 

therefore their dot product is zero: 

(5.32)  (𝑋𝑐1 − 𝑇)⊙ (𝑇⊗ 𝑋𝑐1) = 0 
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5.4.2 Essential and Fundamental Matrices  

The epipolar constraints described above lead to the definition of the Essential 

Matrix, which encapsulates the camera extrinsic parameters. This matrix is 

closely related to another important matrix, referred to as the Fundamental 

Matrix, which relates corresponding feature points in two images. This section 

describes these matrices and their role in camera tracking.  

 

Considering vector algebra, the cross product and dot product of two vectors 𝐴 

and 𝐵 can be expressed as follows: 

(5.33)  𝐴 ⊗ 𝐵 = 𝐴̂𝐵 

(5.34)  𝐴 ⊙ 𝐵 = 𝐴𝑇𝐵 

 

Â is the skew-symmetric matrix and AT is the transpose of vector A. The skew-

symmetric matrix of vector A is defined as in (5.35) and has the property set out 

in (5.36):   

(5.35)  A = (

𝑎1
𝑎2
𝑎3
) ⇒ 𝐴̂ = (

0 −𝑎3 𝑎2
𝑎3 0 𝑎1
𝑎2 𝑎1 0

) 

(5.36)  𝐴̂𝑇 = −𝐴̂ 

 

Using (5.33) and (5.34), equation (5.32) can be re-written as follows: 

(5.37)  (𝑋𝑐1 − 𝑇)⊙ (𝑇⊗ 𝑋𝑐1) = (𝑋𝑐1 − 𝑇)𝑇𝑇̂𝑋𝑐1 = 0 

 

Using equation (5.27), (T − Xc1) can be expressed as in (5.38). Substituting this 

in (5.37) results in (5.39):    

(5.38) 𝑋𝑐1 − 𝑇 = 𝑅𝑋𝑐2 

(5.39)  𝑋𝑐2𝑇𝑅𝑇𝑇̂𝑋𝑐1 = 0 

 

RTT̂ is defined as the Essential Matrix. This matrix plays an important role in 

two-view camera geometry. 

(5.40) 𝐸 ≜  𝑅𝑇𝑇̂    ⟹    𝑋𝑐2𝑇𝐸𝑋𝑐1 = 0 
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The camera matrices may be retrieved from the essential matrix up to a scale 

and four-fold ambiguity. That is there are four possible solutions, except for 

overall scale, which cannot be determined. It can be shown that a 3 × 3 matrix 

can only be an essential matrix if and only if two of its singular values are equal 

and the third one is zero (Hartley & Zisserman, 2004). 

 

By knowing the essential matrix and applying Singular Value Decomposition 

(SVD) the rotation matrix can be determined. Suppose the essential matrix is 

decomposed using the singular value decomposition method: 

(5.41) 𝐸 = 𝑈(
1 0 0
0 1 0
0 0 0

)𝑉𝑇  

 

It can be shown that there are four possible factorisations for 𝑇̂ and R as 

follows: 

(5.42) 𝑆 = +𝑈𝑍𝑈𝑇 𝑜𝑟 𝑆 = −𝑈𝑍𝑈𝑇   , where  𝑆 =  𝑇̂  

(5.43) 𝑅 = 𝑈𝑊𝑉𝑇𝑜𝑟 𝑅 = 𝑈𝑊𝑇𝑉𝑇  

 

Matrices 𝑍 and 𝑊 are defined below: 

(5.44) 𝑊 = (
0 −1 0
1 0 0
0 0 1

) ,          𝑍 = (
0 1 0
−1 0 0
0 0 0

)  

 

W is an orthogonal and Z a skew-symmetric matrix. Equation (5.43) shows that 

if the essential matrix is known, by applying singular value decomposition, the 

only two possible solutions for the rotation matrix can be found.  

 

Equation (5.40) deals with 3D coordinates in calibrated camera view. However 

the un-calibrated 2D data is often the only available information. As mentioned 

in section 5.3.3.1 the coordinates of a 3D point in space with respect to the 

camera frame is related by the camera intrinsic matrix (𝐾), to the corresponding 

2D feature point in pixel coordinates. Assuming 𝑝c1 and 𝑝c2 are the 2D feature 

points in pixel coordinates, 𝐾 is applied as follows: 
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(5.45) 𝑋𝑐1 = 𝐾−1𝑝𝑐1,   𝑋𝑐2 = 𝐾−1𝑝𝑐2 

 

Here the Fundamental Matrix is defined as in (5.46) and equation (5.40) is re-

formulated in (5.47): 

(5.46) 𝐹 ≜ 𝐾−1
𝑇
𝐸𝐾−1  

(5.47) 𝑝𝑐2𝑇𝐹𝑝𝑐1 = 𝑝𝑐2𝑇𝐾−1
𝑇
𝐸𝐾−1𝑝𝑐1 = 0 

 

There a number of methods used for computing the value of fundamental 

matrix. A set of at least 8 feature points are required to calculate 𝐹. The 8-point 

algorithm is commonly used for estimating 𝐹 (Ma, et al., 2004). Once 𝐹 is known 

and by knowing matrix K, essential matrix can be calculated using (5.48). 

 (5.48) 𝐸 ≜  𝐾𝑇𝐹𝐾  

 

The essential matrix can then be used to calculate the camera extrinsic 

parameters up to a scaling factor (see equations (5.42) and (5.43)).  

5.5  Summary 

This chapter introduces the mathematical models for image formation, three-

dimensional representation of moving objects, camera parameters and related 

geometric constraints. These models are used as the basis for the image-based 

part of the proposed hybrid pose tracking system presented in chapter 6. 
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CHAPTER SIX 

 

6 Inertial Visual Hybrid Tracking System Framework 

Camera tracking is the process of determining the position and orientation of a 

camera with respect to a fixed frame of reference, referred to as the world 

frame. The combination of 3D position and 3D orientation of the camera is 

referred to as the 6 Degree of Freedom (DOF) camera pose. The applications 

and current methods for camera tracking have been outlined in previous 

chapters. In this chapter the proposed method for hybrid inertial-visual tracking 

is described in detail.  

 

The proposed hybrid-tracking system relies on two types of sensor; namely, an 

Inertial Measurement Unit (IMU) and an image sensor. The IMU captures 

acceleration and angular velocity data, while the image sensor supplies pixel 

information for sets of tracked feature points in the 3D space. The IMU and 

image sensors provide motion and vision data with respect to their local 

reference frames, referred to as the IMU and vision reference frames, 

respectively. Such data need to be transformed to the world frame using rigid-

body transformation as explained in section 6.1.1.3. 

 

Both IMU and image sensors are influenced by measurement noise and error, 

which affect the accuracy of pose estimation. The noise and error cause an 

IMU-only tracking system to drift significantly over time, making it unsuitable for 

sole use in pose tracking. On the other hand, camera-only tracking systems not 

only suffer from noise and measurement error, but also manifest an inherent 

deficiency, which is the inability to estimate all 6 DOFs. Vision-based tracking 

systems can provide up to 5 DOFs, meaning that the estimate of the camera 
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position can only be provided up to a scaling factor. This is due to the fact the 

image formation in effect is a 3D to 2D transformation, resulting in missing a 

dimension. This dimension cannot be recovered unless additional information is 

provided through a 3D model or the presence of an object with known 

dimensions in the scene. By combining the information gathered through the 

two types of sensor, the shortcomings of either system can be addressed and a 

more accurate and robust estimate of the camera pose provided.  

 

The problem of camera-pose tracking is analogous to finding hidden states of a 

system, defined by the state-space model in the context of recursive Bayesian 

filtering (see section 3.4.1). In a recursive filter the current state of the system is 

predicted using the past states and the input signals. The observation data are 

then used to correct the prediction and provide an estimate of the current 

system state. In the proposed solution the state space inputs are provided by 

the IMU and the observation data by the vision-based system.  

 

The observation model is defined based on the properties of Focus of 

Expansion (FoE) (see section 6.3.3). It has a non-linear relationship to the 

current system state, which cannot be effectively linearised around the current 

state. Therefore Kalman Filter (EF) or Extended Kalman Filter (EKF) are not 

suitable methods for state estimation (see Chapter 3 for a description of these 

methods). This leads to the use of particle filtering in the proposed system, 

which is a known solution for recursive filtering for non-linear state-space 

models.  

 

Particle filtering consists of particle selection based on a proposal distribution, 

followed by particle evaluation using a likelihood function and finally state 

estimation based on weighted particles. This process has been described in 

Chapter 3 and forms the basis of the hybrid pose-tracking system proposed 

here. 
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The process of determining optical flow’s Focus of Expansion (FoE) provides a 

measure of the effectiveness of the vision-based system in the overall pose 

tracking performance. This was used to determine whether or not the vision-

based system, at any particular time, provides sufficient information to influence 

the pose estimate provided by the IMU tracker. These measures have been 

utilised in developing a mechanism to automatically select the best tracking 

method from IMU-only, hybrid or hybrid with past state correction at any time 

(see section 6.4.9). A state correction mechanism has been developed to 

correct the past state of the system, where new reliable information becomes 

available (see section 6.4.8). 

 

As described in Chapter 5, the camera orientation can be estimated by the 

vision-based system using the properties of the essential matrix (see section 

6.3.4). Therefore in order to reduce the complexity and computational cost of 

particle filtering-based state estimation, the camera orientation is removed from 

the state-space vector and instead is estimated solely by the vision-based 

system. Consequently the state-space vector is defined by the camera pose 

and linear velocity.  

 

Section 6.1 of this chapter first provides an overview of the proposed system.  

Section 6.2 outlines the main tasks of the IMU-based system in state 

estimation. Section 6.3 describes the actions the vision-based system must 

undertake. This mainly includes image capture, feature detection, feature 

tracking, estimation of rotation matrix and providing FoE data. Finally data 

fusion and state estimation have been detailed in section 6.4.  

  



117 
 

6.1 System Overview 

The proposed solution has been developed by making use of particle filtering, 

where particles are the best candidates for the system state at any particular 

time. The overall system consists of an inertial-based, a vision-based, and a 

Stochastic Data Fusion (SDF) component. Figure 3.2 illustrates a block diagram 

of the system architecture.  

 

Image capture and feature tracking

Vision Based System

Focus of Expansion 
calculation

Rotation matrix 
estimationProgressive state 

estimation

IMU Based System

Particle generation

Progressive rotation 
matrix estimation

Past state 
correction

Particle Evaluation

Stochastic Data Fusion

Resampling Weight AssignmentState Estimation

Acceleration and 
angular velocity 

capture

 

Figure 6.1  System Block Diagram 

This block diagram shows that the SDF has overlapping functional blocks with 

the IMU and vision based systems. This is due to the fact that the processes of 

particle selection and evaluation are significantly dependant on the IMU and 

vision data, respectively.  

 

A typical IMU may operate at a 100Hz sampling rate or more, whereas the 

vision-based system generally samples at 50Hz or less. The essence of the 

system proposed here is to use IMU data for camera pose estimation while 

there is no image data and combine IMU and vision data, whenever a new 

image is captured.  
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6.1.1 Definitions and Assumptions 

In order to effectively formulate all physical and geometric models used for 

creating the framework presented here, certain definitions and notations have 

been adopted throughout this chapter as follows. 

6.1.1.1 Principal Coordinate Systems 

The camera tracking process starts from a known camera pose with respect to 

the world frame, meaning that there is a known transformation matrix between 

the camera frame at the initial camera pose and the world frame. Consequently 

if the camera pose at a future time is determined with respect to the initial 

camera reference frame, such pose can easily be transformed to the pose with 

respect to the world frame via a known fixed transformation matrix. The world 

frame is assumed to have its 𝑍 axis in opposite direction to the gravity vector. 

Figure 6.2 shows the camera reference frames 𝐶𝑡 at time 𝑡 and 𝐶0 at time 𝑡 = 0. 

In this work all motion and geometry data are with respect to one of the three 

principal coordinate systems; namely, world, camera and IMU reference frames. 
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Figure 6.2   World Frame vs Camera Frame 
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6.1.1.2 Reference Frames 

A point 𝑄 in 3D space is seen by each reference frame as a different coordinate 

vector, 𝑄𝑟, where 𝑟 may be a letter superscript from the set of letters below.  

(6.1) 𝒓 = { 𝒄, 𝒊, 𝒌, 𝒑,𝒘}        

 

Letters 𝑐, 𝑖, 𝑘, 𝑝, 𝑤 refer to reference frames associated with the current camera 

pose, IMU, key frame, previous camera pose, and world, respectively. Figure 

6.3 shows point 𝑄 as seen in the world and camera frames. 

 

W

C

Qw

Qc

Q

 

Figure 6.3   Point 𝑸 Seen from the World and Camera Frames 

 

The transformation matrix converting a coordinate vector from reference frame 

𝑟1 to reference frame  𝑟2 is similarly defined by 𝐺𝑟2𝑟1. 𝑟1 and 𝑟2 can be one of the 

letters defined in (6.1). The rigid body transformation is explained in detail in 

section 6.1.1.3. 

6.1.1.3 Rigid Body Transformation  

The camera and the associated IMU motion are considered in the context of 

rigid-body motion. The motion trajectory of a rigid body with respect to a fixed 

reference frame can be fully described by the motion trajectory of a single point 

on the rigid body. The motion trajectory of other points on the rigid body can be 

determined by knowing the relative location of each point to a reference point 
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on the body. Here, without loss of generality, it is assumed that the camera 

frame coincides with the moving body frame.  

 

In order to estimate the camera pose, the camera needs to view a number of 

fixed points in the 3D space. While the camera is moving the 2D projection of 

these points on the image plane will also be moving, helping the tracking 

system to recover the pose of the camera itself.  

 

Let us define 𝑄𝑤 = (𝑥𝑤, 𝑦𝑤, 𝑧𝑤)𝑇 and 𝑄𝑐 = (𝑥𝑐 , 𝑦𝑐, 𝑧𝑐)𝑇 as the 3D coordinate 

vectors of a point 𝑄 in 3D space with respect to world and camera frames. 

These coordinate vectors hold the following relationship, where 𝑅𝑤𝑐 and 𝑇𝑤𝑐 

are the rotation matrix and translation vector between the two reference frames.  

(6.2) 𝑸𝒘 = 𝑹𝒘𝒄𝑸𝒄 + 𝑻𝒘𝒄      

      

𝑇𝑤𝑐  is the coordinate vector of the origin of the body frame in the world frame. 

𝑅𝑤𝑐 is a 3x3 matrix whose columns are the unit vectors of the camera frame in 

the world frame. 

(6.3) 𝑻𝒘𝒄 = 𝑿𝒄
𝒘          

(6.4) 𝑹𝒘𝒄 = (𝒊𝒄
𝒘 𝒋𝒄

𝒘 𝒌𝒄
𝒘)          

 

𝐶 is the origin of camera and ic
w, jc

w and kc
w are the unit vectors of the camera 

frame with respect to the world frame. In order to concatenate the rotation 

matrix and translation vector into a single matrix, the coordinate vectors are 

defined in homogeneous coordinate system as follows: 

(6.5) 𝑸𝒘 = (

𝒙𝒘

𝒚𝒘

𝒛𝒘

𝟏

) 

(6.6) 𝑸𝒄 = (

𝒙𝒄

𝒚𝒄

𝒛𝒄

𝟏

)          

(6.7) 𝑸𝒘 = 𝑮𝒘𝒄𝑸𝒄           
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(6.8) 𝑮𝒘𝒄 = (
𝑹𝒘𝒄 𝑻𝒘𝒄

𝟎̅𝟏𝒙𝟑 𝟏
)          

Where 𝐺𝑤𝑐 is a 4x4 transformation matrix, converting a homogeneous point in 

the camera frame to the world frame. Rw𝑐 is an orthogonal matrix, meaning that:  

(6.9) 𝑹𝒘𝒄𝑹𝒘𝒄𝑻 =  𝑰       

(6.10) 𝑹𝒘𝒄−𝟏 = 𝑹𝒘𝒄𝑻       

 

The conversion from the world frame to the body frame is the inverse of the 

above transformation matrix: 

(6.11) 𝑸𝒄 = 𝑮𝒄𝒘𝑸𝒘          

(6.12) 𝑮𝒄𝒘 = 𝑮𝒘𝒄−𝟏 = (𝑹
𝒘𝒄𝑻 −𝑹𝒘𝒄𝑻𝑻𝒘𝒄

𝟎̅𝟏𝒙𝟑 𝟏
)     

  

The camera tracking system presented here provides an estimate for Twc  and 

Rwc when a new image becomes available. Matrices Gwc and Gcw are derived 

from equations (6.8) and (6.12) and are used for converting local motion 

information to the world frame and vice versa. The transformation matrix 

between any two camera views 𝑟2 and 𝑟1 can be calculated as follows:  

(6.13) 𝑮𝒘𝒓𝟏 = 𝑮𝒘𝒓𝟐𝑮𝒓𝟐𝒓𝟏      ⟹   

(6.14) 𝑮𝒓𝟐𝒓𝟏 = 𝑮𝒘𝒓𝟐−𝟏𝑮𝒘𝒓𝟏 = 𝑮𝒓𝟐𝒘𝑮𝒘𝒓𝟏      
         

In general the reference frames of the IMU and camera might not be the same. 

However as they are both parts of the camera rigid body, their relationship can 

be described by a constant transformation matrix, 𝐺𝑐𝑖.  

(6.15) 𝑸𝒄 = 𝑮𝒄𝒊𝑸𝒊          

 

𝑄𝑐 and 𝑄𝑖 are the homogeneous coordinates of point 𝑄 in the camera and IMU 

frames, respectively. 𝐺𝑐𝑖 is assumed known with pre-determined values. 

Therefore in order to convert the motion information in the IMU frame to the 

world frame, 𝐺𝑤𝑖 matrix as defined below is used. 
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(6.16) 𝑸𝒘 = 𝑮𝒘𝒊𝑸𝒊          

(6.17) 𝑮𝒘𝒊 = 𝑮𝒘𝒄𝑮𝒄𝒊    

 

6.1.1.4 Vector Transformation    

Suppose vector 𝐻 is defined by two points, 𝑄1 and 𝑄2 in 3D space.  

(6.18) 𝑯 = 𝑸𝟐 − 𝑸𝟏      

   

This vector is seen as 𝐻𝑤 and 𝐻𝑐 in the world and camera reference frames,  

(6.19) 𝑯𝒘 = 𝑸𝟐
𝒘 −𝑸𝟏

𝒘,  𝑯𝒄 = 𝑸𝟐
𝒄 − 𝑸𝟏

𝒄  

 

Applying the camera-to-world frame transformation yields: 

(6.20) 𝑯𝒘 = 𝑸𝟐
𝒘 −𝑸𝟏

𝒘 = 𝑹𝒘𝒄𝑸𝟐
𝒄 + 𝑻𝒘𝒄 − (𝑹𝒘𝒄𝑸𝟏

𝒄 + 𝑻𝒘𝒄)   ⟹ 

(6.21) 𝑯𝒘 = 𝑹𝒘𝒄(𝑸𝟐
𝒄 − 𝑸𝟏

𝒄) = 𝑹𝒘𝒄𝑯𝒄 

 

Consequently the translation vector has no effect on vector transformation from 

one reference frame to another. 

6.2 Inertial-Based System   

The inertial-based system is mainly used for generating particles. However the 

tracker also needs to provide an estimate of the system states between two 

consecutive images, where IMU data is the only available source of motion 

data. This is done using a state-space model. In this section the kinematic 

motion equations for the camera are described and an estimate of the camera 

pose based on the IMU data is provided.  
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6.2.1 Motion Equations 

The IMU incorporates an accelerometer and a gyroscope. Both devices output 

data with respect to the IMU local reference frame which, as explained in 

section 6.1.1.3, can be transformed to the camera reference frame using Gci 

transformation matrix. Referring to the concept of motion kinematics, an 

external force F on an object with mass m, creates an acceleration a = F/m. 

The acceleration is the second derivative of object displacement, 𝑥. The first 

derivative of the object displacement is called velocity, referred to as 𝑣.  

(6.22) 𝒂(𝒕) = 𝒙̈(𝒕)  

(6.23) 𝒗(𝒕) = 𝒙̇(𝒕)  

 

This leads to the following equations for deriving velocity and displacement 

using integration of the acceleration over the time interval [t1 t]: 

(6.24) 𝒗(𝒕) = ∫ 𝒂(𝒕)𝒅𝒕
𝒕

𝒕𝟏
+ 𝒗(𝒕𝟏)  

(6.25) 𝒙(𝒕) = ∫ 𝒗(𝒕)𝒅𝒕
𝒕

𝒕𝟏
+ 𝒙(𝒕𝟏)  

 

For a linear motion with constant acceleration, the displacement and velocity 

take a simple form as follows  

(6.26) 𝒗(𝒕) = 𝒗(𝒕𝟏) +  𝒂. (𝒕 − 𝒕𝟏) 

(6.27) 𝒙(𝒕) = 𝒙(𝒕𝟏) + 𝒗(𝒕). (𝒕 − 𝒕𝟏) +
𝟏

𝟐
𝒂. (𝒕 − 𝒕𝟏)

𝟐  

 

In real-life applications, it is unlikely to have a constant acceleration. Therefore 

in order to simplify the equations (6.24) and (6.25), the motion can be 

approximated by a constant acceleration between two sufficiently close times, 

t1 and t2, with time difference δt. Therefore during this period the linear 

equations (6.26) and (6.27) apply. This process is referred to as piecewise 

linearisation. 
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(6.28) 𝒗(𝒕 + 𝜹𝒕) = 𝒗(𝒕) + 𝒂(𝒕). 𝜹𝒕  

(6.29) 𝒙(𝒕 + 𝜹𝒕) = 𝒙(𝒕) + 𝒗(𝒕). 𝜹𝒕 + 
𝟏

𝟐
𝒂(𝒕). 𝜹𝒕𝟐 

 

In a system with an integrated IMU, the value of 𝑎 is sampled at regular 

sampling times. In such a system 𝛿𝑡 is the sampling interval between two 

consecutive IMU sampling times and the constant value of 𝑎 can simply be 

approximated by the acceleration at time 𝑡. The accuracy of this approximation 

however depends on the sampling interval being sufficiently small so that 

variations of acceleration during the interval have a negligible effect on the 

overall accuracy of the system. Equations (6.28) and (6.29) are the basis for 

state space representation of kinematic motion (see section 3.4.1 for details).  

 

Similar analogy applies to the angular displacement, where the angular velocity 

is the first derivative of angular displacement.  

(6.30) 𝝎(𝒕) = 𝜽̇(𝒕)  

 

The gyroscope integrated into the IMU supplies the angular velocity data at 

regular time intervals𝛿𝑡. If piecewise linearisation is applied, equation (6.30) for 

short time intervals can be written as follows. 

(6.31) 𝜽(𝒕 + 𝜹𝒕) = 𝜽(𝒕) + 𝝎(𝒕). 𝜹𝒕  

 

Equations (6.28), (6.29) and (6.31) apply to all three directions of motion along 

and around 𝑥, 𝑦 and 𝑧 axes as follows:  

(6.32) 𝑿𝒕+𝜹𝒕
𝒘 = 𝑿𝒕

𝒘 + 𝑽𝒕
𝒘𝜹𝒕 +

𝟏

𝟐
𝑨𝒕
𝒘𝜹𝒕𝟐      

(6.33) 𝑽𝒕+𝜹𝒕
𝒘 = 𝑽𝒕

𝒘 + 𝑨𝒕
𝒘𝜹𝒕   

(6.34) 𝜣𝒕+𝜹𝒕
𝒘 = 𝜣𝒕

𝒘 + 𝜴𝒕
𝒘𝜹𝒕        

 

In this motion model 𝑋, 𝑉, 𝐴, Θ and Ω are the 3D linear displacement, velocity, 

acceleration, angular displacement and angular velocity vectors, respectively. 

This is the set of kinematic motion equations with respect to the world frame, 
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which is used for estimating the new states of the system, (𝑋𝑡+𝜹𝒕
𝑤 , 𝑉𝑡+𝜹𝒕

𝑤 , 𝛩𝑡+𝜹𝒕
𝑤 ), 

by knowing the past states (𝑋𝑡
𝑤, 𝑉𝑡

𝑤, 𝛩𝑡
𝑤) as well as the control inputs (𝐴𝑡

𝑤, 𝛺𝑡
𝑤) . 

𝑋𝑡
𝑤, 𝑉𝑡

𝑤 and Θ𝑡
𝑤 are the 3D position, linear velocity and orientation of the camera 

with respect to the world frame. 𝐴𝑡
𝑤 , 𝛺𝑡

𝑤 are the current acceleration and angular 

velocity vectors. 

6.2.1.1 Effect of Rotation Matrix 

The IMU data need to be transformed to the world frame before they can be 

used in the above kinematic motion model.  Since the acceleration is a vector, 

the translation vector has no effect on its transformation (see section 6.1.1.4 for 

more details). Therefore only the orientation of the IMU affects the conversion 

from the IMU frame to the world frame. This rotation is represented by matrix 

𝑅𝑤𝑖, which is linked to the camera reference frame as per (6.17).  

(6.35) 𝑨𝒕
𝒘 = 𝑹𝒘𝒊𝑨𝒕

𝒊        

(6.36) 𝑹𝒘𝒊 = 𝑹𝒘𝒄𝑹𝒄𝒊        

 

Substituting (6.17) into (6.32) and (6.33) results in: 

(6.37) 𝑿𝒕+𝜹𝒕
𝒘 = 𝑿𝒕

𝒘 + 𝑽𝒕
𝒘𝜹𝒕 +

𝟏

𝟐
𝑹𝒘𝒊𝑨𝒕

𝒊𝜹𝒕𝟐     

(6.38) 𝑽𝒕+𝜹𝒕
𝒘 = 𝑽𝒕

𝒘 + 𝑹𝒘𝒊𝑨𝒕
𝒊𝜹𝒕       

 

Converting the orientation is somewhat less straightforward. Here, instead of 

using the orientation vector, the rotation matrix and its incremental change must 

be used. If the current orientation of the IMU is represented by matrix, 𝑅𝑡
𝑤𝑖, the 

new orientation by matrix 𝑅𝑡+𝜹𝒕
𝑤𝑖 , and the differential rotation between the two by 

𝑅𝒕,𝜹𝒕, these three matrices hold the following relationship: 

(6.39) 𝑹𝒕+𝜹𝒕
𝒘𝒊 = 𝑹𝒕,𝜹𝒕𝑹𝒕

𝒘𝒊        

 

Due to the small change of orientation between two successive IMU samples, 

matrix 𝑅𝛿𝑡 can be approximated using the incremental orientation vector, 
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consisting of three differential elements, 𝛿𝜙, 𝛿𝜃,  and 𝛿𝜓,  between the two 

states. 

(6.40) (
𝜹𝝓
𝜹𝜽
𝜹𝝍
) = 𝜟𝜣𝒕

𝒘 = 𝜴𝒕
𝒘𝜹𝒕       

(6.41)  

𝑹𝒕,𝜹𝒕

= (

𝟏 𝟎 𝟎
𝟎 𝒄𝒐𝒔 (𝜹𝝓) −𝒔𝒊𝒏 (𝜹𝝓)
𝟎 𝒔𝒊𝒏 (𝜹𝝓) 𝒄𝒐𝒔 (𝜹𝝓)

)(
𝒄𝒐𝒔 (𝜹𝜽) 𝟎 𝒔𝒊𝒏 (𝜹𝜽)
𝟎 𝟏 𝟎

−𝒔𝒊𝒏 (𝜹𝜽) 𝟎 𝒄𝒐𝒔 (𝜹𝜽)
)(
𝒄𝒐𝒔 (𝜹𝝍) −𝒔𝒊𝒏 (𝜹𝝍) 𝟎
𝒔𝒊𝒏 (𝜹𝝍) 𝒄𝒐𝒔 (𝜹𝝍) 𝟎

𝟎 𝟎 𝟏

) 

 

The camera orientation can be found directly from the rotation matrix by 

knowing the sequence of rotation. Therefore the focus in this work is on finding 

the rotation matrix only. The rotation matrix between two consecutive images is 

estimated using tracked feature points (see section 6.3.4). In between two 

images, the rotation matrix is estimated recursively using equations (6.39) to 

(6.41).      

6.2.1.2 The Effect of Gravity 

The accelerometer measures proper acceleration, i.e. acceleration without 

gravity. For example if the camera system is at rest on a desktop with gravity 

facing downwards, the desk exerts an upward force equal to gravity to keep the 

camera system still on the desk; therefore the accelerometer measures the 

upward force only. On the other hand if the camera system is experiencing a 

free fall, the accelerometer shows zero, as the whole body of the accelerometer 

(case and proof mass) move together; hence no displacement between the two 

will be observed by the sensor. Gravity has no effect on the orientation. 

Equations (6.42) to (6.44) provide the complete Kinematics motion model for 

the camera pose after inclusion of gravity effect.   

(6.42) 𝑿𝒕+𝜹𝒕
𝒘 = 𝑿𝒕

𝒘 + 𝑽𝒕
𝒘𝜹𝐭 +

𝟏

𝟐
(𝑹𝒕

𝒘𝒊𝑨𝒕
𝒊 + 𝑮)𝜹𝐭𝟐     

(6.43) 𝑽𝒕+𝜹𝒕
𝒘 = 𝑽𝒕

𝒘 + (𝑹𝒕
𝒘𝒊𝑨𝒕

𝒊 + 𝑮)𝜹𝐭   

(6.44) 𝑹𝒕+𝜹𝒕
𝒘𝒊 = 𝑹𝒕,𝜹𝒕𝑹𝒕

𝒘𝒊        
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Vector 𝐺 is a constant vector, and without loss of generality it is assumed that 

the two components of 𝐺 are zero and the last component in the Z direction is 

𝑔, typically 9.81 𝑚𝑠−2. These motion equations are used for estimating camera 

pose using an IMU as detailed in the next section and then for generating 

particles as detailed in section 6.4.3. 

6.2.2 IMU-Based Pose Estimation   

Between the time of the current image (𝑡𝑛) and the previous one (𝑡𝑛−1), no 

vision data is available; however the IMU still continues to gather motion data. 

Therefore between 𝑡𝑛−1 and 𝑡𝑛 the pose is estimated using the IMU data and 

the Kinematics motion equations (6.42) to (6.44). Suppose 𝑁𝑖 is the number of 

IMU data sets in the time interval [𝑡𝑛−1, 𝑡𝑛], with 𝛿𝑡 time between two IMU 

samples.  Using 𝑋𝑡𝑛−1
𝑤 , 𝑉𝑡𝑛−1

𝑤  and 𝑅𝑡𝑛−1
𝑤𝑖  as the initial position vector, and velocity 

vector, and the rotation matrix at time 𝑡𝑛−1 the pose at 𝑡𝑛−1 + 𝛿𝑡, 𝑡𝑛−1 + 2𝛿𝑡 and 

𝑡𝑛−1 + 3𝛿𝑡 are calculated and then by the application of mathematical induction 

the pose at time 𝑡𝑛 = 𝑡𝑛−1 + 𝑁𝑖𝛿𝑡 is formulated. Equations (6.45) to (6.47) give 

the system states at time  𝑡𝑛−1 + 𝛿𝑡 and 𝑡𝑛−1 + 2𝛿𝑡, respectively.  

(6.45) (

𝑿𝒕𝒏−𝟏+𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝜹𝒕
𝒘

𝑹𝒕𝒏−𝟏+𝜹𝒕
𝒘𝒊

) =  

(

 

𝑿𝒕𝒏−𝟏
𝒘 + 𝑽𝒕𝒏−𝟏

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
(𝑹𝒕𝒏−𝟏

𝒘𝒊  𝑨𝒕𝒏−𝟏
𝒊 + 𝑮)

𝑽𝒕𝒏−𝟏
𝒘 + 𝜹𝒕(𝑹𝒕𝒏−𝟏

𝒘𝒊  𝑨𝒕𝒏−𝟏
𝒊 + 𝑮)

𝜹𝑹𝒕𝒏−𝟏𝑹𝒕𝒏−𝟏
𝒘𝒊

)

     

(6.46) (

𝑿𝒕𝒏−𝟏+𝟐𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝟐𝜹𝒕
𝒘

𝑹𝒕𝒏−𝟏+𝟐𝜹𝒕
𝒘𝒊

) = 

(

 

𝑿𝒕𝒏−𝟏+𝜹𝒕
𝒘 + 𝑽𝒕𝒏−𝟏+𝜹𝒕

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
(𝑹𝒕𝒏−𝟏+𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝜹𝒕
𝒊 + 𝑮)

𝑽𝒕𝒏−𝟏+𝜹𝒕
𝒘 + 𝜹𝒕(𝑹𝒕𝒏−𝟏+𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝜹𝒕
𝒊 + 𝑮)

𝜹𝑹𝒕𝒏−𝟏+𝜹𝒕𝑹𝒕𝒏−𝟏+𝜹𝒕
𝒘𝒊

)

     

 

𝛿𝑅𝑡 is the differential rotation matrix from time 𝑡 and 𝑡 + 𝛿𝑡. Substituting (6.45) 

into (6.46) results in the simpler expression below:  
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(6.47) (

𝑿𝒕𝒏−𝟏+𝟐𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝟐𝜹𝒕
𝒘

𝑹𝒕𝒏−𝟏+𝟐𝜹𝒕
𝒘𝒊

) =

 

(

 
 
 
 
 
 
𝑿𝒕𝒏−𝟏
𝒘 + 𝟐𝑽𝒕𝒏−𝟏

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
∑(𝟓 − 𝟐𝒎)(𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒊 + 𝑮)

𝟐

𝒎=𝟏

𝑽𝒕𝒏−𝟏
𝒘 + 𝜹𝒕 ∑(𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒊 + 𝑮)

𝟐

𝒎=𝟏

(∏ 𝜹𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕
𝟐

𝒎=𝟏
)𝑹𝒕𝒏−𝟏

𝒘𝒊

)

 
 
 
 
 
 

 

 

This process is repeated for time tn−1 + 3δt, with the outcome summarised in 

equation (6.48). 

(6.48) (

𝑿𝒕𝒏−𝟏+𝟑𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝟑𝜹𝒕
𝒘

𝑹𝒕𝒏−𝟏+𝟑𝜹𝒕
𝒘𝒊

) = 

(

 
 
 
 
 
 
𝑿𝒕𝒏−𝟏
𝒘 + 𝟑𝑽𝒕𝒏−𝟏

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
∑(𝟕 − 𝟐𝒎)(𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒊 + 𝑮)

𝟑

𝒎=𝟏

𝑽𝒕𝒏−𝟏
𝒘 + 𝜹𝒕 ∑(𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒊 + 𝑮)

𝟑

𝒎=𝟏

(∏ 𝜹𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕
𝟑

𝒎=𝟏
)𝑹𝒕𝒏−𝟏

𝒘𝒊

)

 
 
 
 
 
 

 

 

This process is repeated until all 𝑁𝑖 IMU data sets are considered. By applying 

mathematical induction the result at time following 𝒕𝒏 = 𝒕𝒏−𝟏 + 𝑁𝑖𝜹𝒕 is: 
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(6.49) (

𝑿𝒕𝒏−𝟏+𝑵𝒊𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝑵𝒊𝜹𝒕
𝒘

𝑹𝒕𝒏−𝟏+𝑵𝒊𝜹𝒕
𝒘𝒊

) =

(

 
 
𝑿𝒕𝒏−𝟏
𝒘 +𝑵𝒊𝑽𝒕𝒏−𝟏

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
∑ (𝟐𝑵𝒊 + 𝟏 − 𝟐𝒎)(𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒊 + 𝑮)

𝑵𝒊
𝒎=𝟏

𝑽𝒕𝒏−𝟏
𝒘 + 𝜹𝒕∑ (𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒊 + 𝑮)

𝑵𝒊
𝒎=𝟏

(∏ 𝜹𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕
𝑵𝒊
𝒎=𝟏 )𝑹𝒕𝒏−𝟏

𝒘𝒊

)

 
 

 

 

In this equation Atn−1+mδt
i  and Rtn−1+mδt,δt are the control inputs.  Atn−1+mδt

i  is the 

3D acceleration measured by the IMU. Rtn−1+mδt,δt is the differential rotation 

matrix, which is directly calculated using (6.41) and the 3D angular velocity 

measured by the gyroscope at time tn−1 +mδt. The initial states of the system,  

Xtn−1
w , Vtn−1

w  and Rtn−1
wi , are the estimated system states provided by hybrid 

tracking at time tn−1.  

 

This formulation has been presented in a way to suit the particle generation 

process, which will be explained later on in section 6.4.3. However for 

applications where the camera pose between two consecutive images is 

required, the following equations can be used for state progression, where 𝑚 is 

a number from 1 to 𝑁𝑖. 

 

(6.50)(

𝑿𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒘

𝑹𝒕𝒏−𝟏+𝒎𝜹𝒕
𝒘𝒊

) =  

(

 
 
𝑿𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕
𝒘 + 𝑽𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
(𝑹𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕
𝒊 + 𝑮)

𝑽𝒕𝒏−𝟏+𝜹𝒕
𝒘 + 𝜹𝒕(𝑹𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕

𝒘𝒊  𝑨𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕
𝒊 + 𝑮)

𝜹𝑹𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕𝑹𝒕𝒏−𝟏+(𝒎−𝟏)𝜹𝒕
𝒘𝒊

)
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6.3 The Vision-Based System   

The vision based system is responsible for capturing images of the scene and 

processing image data to assist the pose tracking process. The core of the 

vision-based system is feature detection, tracking and analysis. A feature point 

is the 2D image of a visually distinctive 3D point in space, which is formed on 

the image plane based on the pin-hole camera principle (for more information 

refer to Chapter 5). The feature points are used to derive the rotation matrix 

when a new image is captured. The feature points and tracking information are 

also used to form the observation model in the context of state space and 

recursive filtering. 

 

Image Capture

Feature Tracking

Rotation EstimationVelocity FoE

Position FoE

Enough 
common 
features?

N

Y

Keep Key Image

Replace Key ImagePast Image

Key Image

Start

 

Figure 6.4   The Vision-Based System 

 

Figure 6.4 provides a block diagram of the vision-based system. The following 

section describes in detail the process of image capture, feature detection and 

tracking. It also provides an overview of the method used for calculating the 

rotation matrix. In addition, the concept of Focus of Expansion (FoE), which has 
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extensively been used in the proposed hybrid tracking system, is described in 

detail. In the last section the criteria for replacing the key image and also a 

mechanism for replacing the key image when needed is outlined.  

6.3.1 Image Capture   

The system requires a monocular camera to capture images of the scene at 

regular intervals. The tracking algorithm needs three images to operate; namely 

current, past and key images. Upon system start up an image is captured and 

considered to be the first key image. The feature points are then detected and 

used as the basis for the tracking algorithm. Thereafter a new image is obtained 

at every image sampling time and the associated feature points are detected 

and tracked.  

 

The key image plays an important role in the proposed tracking system. It acts 

as a reference for tracking and remains unchanged while there are adequate 

shared feature points between the current and key images. Here is an outline 

summary of the image capture process; 

 

 At time 𝑡1 the first image (𝐼𝑡1) is captured and used as the key image 

(𝐼𝑡𝑘). As this is the first key image, 𝑡1 and 𝑡𝑘 are the same. However 

during tracking the key image may need changing (see section 6.3.5). 

Therefore the key image is referred to as 𝐼𝑡𝑘, which takes into account 

the occasional change of key image.  

 A set of feature points, 𝐹𝑘 ,  is found in the key image and used as the 

basis for optical-flow tracking. A minimum of 12 feature points is 

recommended in order to provide enough feature points for the 

application of the 8-point algorithm, without having to frequently change 

the key image. 

 At time 𝑡2 another image is captured (𝐼2) and image features are tracked 

and gathered in a new set of feature points, called 𝐹2.  
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 Thereafter every new image (𝐼𝑛) goes through the feature tracking 

process and the detected feature points are saved in 𝐹𝑘. The number of 

tracked feature points in the new image is used to decide, whether or not 

the key image must be replaced by a new image, which shares more 

feature points with the current image. Section 6.3.5 provides the details 

of when and how the key image must be replaced.    

6.3.2 Feature Tracking 

The proposed system uses a SIFT feature detector to detect feature points in 

the key image. In order to minimise drift in the tracking system, it is best to keep 

the key image unchanged as long as practically possible. To meet this 

objective, feature points towards the centre of the image are considered for 

tracking as they are more likely to remain in the subsequent images. Therefore 

a Region of Interest (ROI) is defined for the key image, which concentrates on 

the central area of the image.  

 

If the images are obtained by a wide-angle camera, they need to be rectified 

before being used for feature detection. However this process leaves parts of 

the image close to the borders blurred, making them less suitable for this 

algorithm. Therefore the use of central ROI is also beneficial in this case as it 

discards the blurred regions of the image. 

 

The features detected in the key image must be tracked so that corresponding 

feature points in subsequent images can be found. Optical flow tracking is a 

technique widely used for this purpose. There are various methods for tracking 

optical flow, however the Kanade-Lucas-Tomasi (KLT) is one of the most widely 

used and is employed in this work for tracking features points. This method 

works based on searching for feature points in the vicinity of each feature point 

in the first image and finding the corresponding feature points in the second 

image. A complete account of this method is outside the scope of this work, 
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however the readers are invited to refer to (Lucas & Kanade, 1981) for more 

information.  

6.3.3 Focus of Expansion 

Focus of Expansion (FoE) is a concept used in conjunction with optical flow 

tracking. In this section three definitions in relation to optical flow tracking are 

explained. Firstly the ‘flow line’ is defined as the line connecting 2D images of a 

point in 3D space, as seen from two camera viewpoints. Figure 6.5 shows the 

flow lines in red for a static scene viewed by a moving camera. The flow lines 

have been identified in the Region of Interest (RoI) specified by a red rectangle. 

 

 

Figure 6.5   Flow Lines 

 

Secondly the ‘flow velocity vector’ is defined as the 2D velocity vector of a 

feature point on the image plane. The 2D image of a static point in space, 

moving with the movement of the camera, constitutes a velocity vector. For two 

adjacent images, the image velocity vector can be approximated by the feature 

point displacement vector divided by the time elapsed between the two images.  
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The third and most important concept is the Focus of Expansion (FoE). Focus 

of expansion is closely linked to optical flow and refers to a point on the image 

plane where all flow lines meet. In order to understand the concept of focus of 

expansion, it is important to recall one of the principles of perspective geometry, 

which states that images of parallel lines meet at a single point in the image 

plane. This point is referred to as the vanishing point. Figure 6.6 illustrates the 

vanishing point for a perspective view of parallel lines. 

 

 

 

Figure 6.6   Vanishing Point 

 

The same analogy applies to a moving camera. If a camera undergoes a 

translational movement, 𝑇, from the camera point of view it appears that the 

static 3D points all move parallel to each other in the opposite direction by 

translation vector −𝑇. The relative movement of each feature point with respect 

to the camera frame forms a flow line. Referring to the concept of vanishing 

point explained above, since the movements of all feature points in 3D space 

with respect to the camera frame are parallel, their images on the image plane 

must meet at a single point (except for some cases as explained in section 

6.3.3.3.1). The images of parallel lines are the flow lines, and using the same 

analogy as used for vanishing point, must meet at a single point, which is 

referred to as the Focus of Expansion (FoE) or Focus of Contraction (FoC). FoE 
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refers to the case where flow lines move away from a central point as seen in 

Figure 6.7. FoC relates to scenarios where the flow lines move towards a 

central point as illustrated in Figure 6.8. Figure 6.7 and Figure 6.8 illustrate the 

images of a rectangle specified by 4 corner points A, B, C and D. These corner 

points move to A′, B′, C′ and D′ as the camera moves away or towards the 

scene. AA′, BB′, CC′ and DD′ are the flow lines, which depending on the direction 

of the camera movement, meet at FoE or FoC. 

 

 

A’ B’

C’D’

A B

CD

FoE

 

Figure 6.7   Focus of Expansion – Camera moves towards the object 

A B

CD

A’ B’

C’D’
FoC

 

Figure 6.8   Focus of Contraction – Camera moves away from the object 
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6.3.3.1 Finding the Focus of Expansion Point 

In this work both FoC and FoE cases are treated in the same way and there is 

no need to differentiate between them. Therefore for ease of reference both are 

referred to as the Focus of Expansion (FoE). Although in theory the FoE must 

be a single point, in practice, due to the image noise and feature detection error, 

the flow lines may not all meet at exactly the same point. Therefore a point on 

the image plane, which has the minimum overall distance to all flow lines, is 

considered to be the FoE point. A flow line is characterised by two associated 

feature points 𝐴𝑚 = (𝑥𝑚,𝐴, 𝑦𝑚,𝐴) and Am
′ = (𝑥𝑚,𝐴′ , 𝑦𝑚,𝐴′) on the image plane as 

per equation (6.51) or a simpler form in equation (6.52). Index 𝑚 ∈ (1…𝑁𝑓) 

refers to the feature point number.    

 

(6.51) 
𝒚−𝒚𝒎,𝑨

𝒙−𝒙𝒎,𝑨
=
𝒚
𝒎,𝑨′

−𝒚𝒎,𝑨

𝒙𝒎,𝑨′−𝒙𝒎,𝑨
 

(6.52) 𝒂𝒎𝒙 + 𝒃𝒎𝒚 + 𝒄𝒎 = 𝟎,  

(6.53)  𝒂𝒎 =
𝒚
𝒎,𝑨′

−𝒚𝒎,𝑨

𝒙𝒎,𝑨′−𝒙𝒎,𝑨
, 𝒃𝒎 = −𝟏, 𝒄𝒎 = −𝒙𝒎,𝑨

𝒚
𝒎,𝑨′

−𝒚𝒎,𝑨

𝒙𝒎,𝑨′−𝒙𝒎,𝑨
+ 𝒚𝒎,𝑨 

 

Suppose the coordinates of the FoE point on the 2D image is (𝑥𝐹𝑂𝐸 , 𝑦𝐹𝑂𝐸)
𝑇. The 

point is on the image plane, therefore its distance along the camera z axis is the 

focal length, 𝑓. The 3D coordinates of the FoE point with respect to the camera 

frame is given by: 

(6.54) 𝑭𝒐𝑬𝒄 = (

𝒙𝑭𝑶𝑬
𝒚𝑭𝑶𝑬
𝒇
) 

 

The distance between the FoE and a flow line, as shown in Figure 6.9, can be 

calculated using the equation (6.55):  

(6.55) 𝒅𝒎 = 
𝒂𝒎𝒙𝑭𝒐𝑬+𝒃𝒎𝒚𝑭𝒐𝑬+𝒄𝒎

√𝒂𝒎
𝟐 +𝒃𝒎

𝟐
 ,                   𝒎 ∈ (𝟏…𝑵𝒇)  
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Figure 6.9   FoE to Flow Line Distance 

 

The overall distance from the FoE to all flow lines is therefore calculated as:  

(6.56) 𝒅𝟐 = ∑
(𝒂𝒎𝒙+𝒃𝒎𝒚+𝒄𝒎)

𝟐

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

,            𝒎 ∈ (𝟏…𝑵𝒇)  

 

The FoE is the point, where 𝑑2 has the minimum value. To identify this point the 

partial derivatives with respect to 𝑥 and 𝑦 are calculated. The coordinates of the 

FoE are where these partial derivatives become zero.  

(6.57) 
𝝏𝒅𝟐

𝝏𝒙
= (∑

𝟐𝒂𝒎
𝟐

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

)𝒙 + (∑
𝟐𝒂𝒎𝒃𝒎

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

)𝒚 + ∑
𝟐𝒂𝒎𝒄𝒎

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

= 𝟎      

(6.58) 
𝝏𝒅𝟐

𝝏𝒚
= (∑

𝟐𝒂𝒎𝒃𝒎

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

)𝒙 + (∑
𝟐𝒃𝒎
𝟐

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

)𝒚 + ∑
𝟐𝒃𝒎𝒄𝒎

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

= 𝟎      

 

Equations (6.57) and (6.58) can be written in matrix form as per (6.59), resulting 

in the FoE value as in (6.60): 

(6.59) (
∑

𝟐𝒂𝒎
𝟐

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒂𝒎𝒃𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒂𝒎𝒃𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒃𝒎
𝟐

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

)(
𝒙
𝒚) + (

∑
𝟐𝒂𝒎𝒄𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒃𝒎𝒄𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

) = (
𝟎
𝟎
)      

 (6.60) (
𝒙𝑭𝒐𝑬
𝒚𝑭𝒐𝑬

) = −(
∑

𝟐𝒂𝒎
𝟐

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒂𝒎𝒃𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒂𝒎𝒃𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒃𝒎
𝟐

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

)

−𝟏

(
∑

𝟐𝒂𝒎𝒄𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

∑
𝟐𝒃𝒎𝒄𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇
𝒎=𝟏

) 

 

In this work, two types of FoE have been considered, namely 𝐹𝑜𝐸𝑡𝑛
𝑐  and 𝐹𝑜𝐸𝑡𝑛

𝑘 . 

𝐹𝑜𝐸𝑡𝑛
𝑐  is the FoE calculated at time 𝑡𝑛 on the image taken at time 𝑡𝑛−1, using 
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two consecutive images, one taken at time 𝑡𝑛−1 and one at the present time, 𝑡𝑛. 

𝐹𝑜𝐸𝑡𝑛
𝑘  is the FoE calculated at time 𝑡𝑛 on the key image, using two images, one 

taken at time of key image and one at present time, 𝑡𝑛. 

6.3.3.2 Properties of Focus of Expansion  

Suppose a camera goes through a translational movement specified by 

𝑇 = (𝑇𝑥, 𝑇𝑦, 𝑇𝑧)
𝑇, while 3 points 𝐴, 𝐵 and 𝐶 in the 3D space are in its field of view. 

From the camera point of view, the camera is static and the points have moved 

parallel to each other in the opposite direction by – 𝑇 to points 𝐴′, 𝐵′ and 𝐶′. It 

can be shown that the line connecting the centre of the camera to the FoE (𝑂𝐹⃗⃗⃗⃗  ⃗) 

is parallel to the translation vector between the two images (Burger & Bhanu, 

1990). Figure 6.10 illustrates this concept. 

(6.61) 𝑶𝑭⃗⃗⃗⃗⃗⃗ ∥ 𝑻 

A’

A

B’

B

C’

C

O

F

-T -T

-T

T
Image Plane

 

Figure 6.10   Focus of Expansion 

 

When two consecutive images are considered, the time interval between the 

two images is small, therefore the linear speed 𝑣 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧)
𝑇 can be 
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estimated using the translation vector, where ∆t is the time interval between the 

two consecutive images: 

(6.62) 𝒗 =
𝑻

∆𝒕
    

 

This suggests that the camera speed vector is also parallel to the 𝑂𝐹⃗⃗⃗⃗  ⃗ vector 

associated with two consecutive images. 

(6.63) 𝑶𝑭⃗⃗⃗⃗⃗⃗ ∥ 𝑻 ∥ 𝒗 

 

OF⃗⃗⃗⃗  ⃗ is the 3D coordinate of FoE with respect to the camera frame. As the 

distance between the image plane and the camera origin equals the focal length 

𝑓,  OF⃗⃗⃗⃗  ⃗ has the following 3D coordinates: 

(6.64) 𝐎𝐅⃗⃗⃗⃗  ⃗ = (

𝒙𝑭𝑶𝑬
𝒚𝑭𝑶𝑬
𝒇
)      

 

𝑂𝐹⃗⃗⃗⃗  ⃗ and 𝑇 are parallel, therefore their coordinates are related to each other as 

per (6.65). Consequently the translation vector can be used to derive the 

coordinates of 𝐹𝑂𝐸𝑇 as per equation (6.66). Similarly the velocity vector can be 

used to derive the coordinates of FoE between two consecutive images as per 

equation (6.67): 

(6.65) 
𝒙𝑭𝑶𝑬

𝑻𝒙
=
𝒚𝑭𝑶𝑬

𝑻𝒚
=

𝒇

𝑻𝒛
   

(6.66) 𝒙𝑭𝑶𝑬𝑻 = 𝒇
𝑻𝒙

𝑻𝒛
 ,   𝒚𝑭𝑶𝑬𝑻 = 𝒇

𝑻𝒚

𝑻𝒛
     

(6.67) 𝒙𝑭𝑶𝑬𝒗 = 𝒇
𝒗𝒙

𝒗𝒛
 ,   𝒚𝑭𝑶𝑬𝒗 = 𝒇

𝒗𝒚

𝒗𝒛
     

 

Properties of FoE are used to evaluate the position and velocity vectors of the 

generated particles in the proposed algorithm (see section 6.4.4 for details). 
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6.3.3.3 Quality of Focus of Expansion  

Although, in theory, the FoE must be a single point, in practice due to noise and 

error, the flow lines may not all meet at the same point.  Also in some cases, 

where the velocity or translation vector is parallel to the image plane, the 

images of the flow lines are parallel and therefore do not meet at a single point.  

 

The estimated 𝐹𝑜𝐸𝑡𝑛
𝑐  compared to 𝐹𝑜𝐸𝑡𝑛

𝑘  is more likely to suffer from noise and 

error. This is due to the fact that flow lines are shorter and noise and error 

effects are more noticeable. In order to evaluate the accuracy and validity of 

FoE, two measures are considered. The first measure is the angle of movement 

with respect to the image plane. The second measure is the average distance 

from the FoE to flow lines. These measures are explained in the following two 

subsections. 

6.3.3.3.1 Angle of Movement  

When the camera translation vector or the camera linear velocity vector is 

parallel to the image plane, or there is a small angle between them, the flow 

lines are effectively parallel to each other and do not meet at a single point. 

Figure 6.11 illustrates this issue.  
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Figure 6.11   Parallel Flow Lines 



141 
 

The angle between the image plane and the translation vector at time tn is 

calculated using equation (6.68). Figure 6.12 shows this angle.  

 

𝑖𝑓 ∡𝑇,𝑁 = 90𝑜  𝑡ℎ𝑒𝑛  𝑇 ⨀  𝑁 = 0    

Therefore: 

(6.68) 𝜽𝑻 =
𝝅

𝟐
− 𝒄𝒐𝒔−𝟏

𝑻𝒘 ⨀  𝑵𝒘

‖𝑻𝒘‖
  

 

O

T

N

N

Im
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e 
P
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Figure 6.12   Angle of camera movement 

 

𝑁𝑤 is the unit normal vector of the image plane with respect to the world frame. 

𝑇𝑤 is the translation vector between the two images with respect to the world 

frame. 

 

Similarly to the translation vector, if the camera velocity vector is parallel to the 

image plane, a single FoE point cannot be formed. The angle between the 

velocity vector and the image plane is derived from the following equation: 

(6.69) 𝜽𝒗 =
𝝅

𝟐
− 𝒄𝒐𝒔−𝟏

𝒗𝒘𝑵𝒘

‖𝒗𝒘‖
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𝑣𝒘 is the translation vector between the two images with respect to the world 

frame. θT and θv angles are used to determine whether or not a single FoE 

point exists. Small θT and θv angles indicate that an associated FoE point does 

not exist. 

6.3.3.3.2 Average Distance Between FoE Point and The Flow Lines 

The average distance of the calculated FoE to all optical flow lines is a good 

measure for the quality of FoE. Providing that the FoE point exists, a high 

average FoE distance indicates that the error in the location of feature points 

have led to a poor flow line estimation and therefore flow lines have not met at a 

single point. For a FoE point, the average distance based on equation (6.56) is 

as follows:   

(6.70) 𝒅𝑭𝑶𝑬 =
𝟏

𝒎
 √∑

(𝒂𝒎𝒙𝑭𝑶𝑬+𝒃𝒎𝒚𝑭𝑶𝑬+𝒄𝒎)𝟐

𝒂𝒎
𝟐 +𝒃𝒎

𝟐

𝑵𝒇
𝒎=𝟏

  

(𝑥𝐹𝑂𝐸 , 𝑦𝐹𝑂𝐸)
𝑇 is the coordinate vector of the FoE point, Nf is the number of 

feature points and (𝑎𝑚, 𝑏𝑚, 𝑐𝑚) are the parameters of the flow line associated 

with feature number 𝑚 as per equation (6.52). 

6.3.4 Estimating Camera Orientation 

As outlined in section 6.1, the camera orientation can be derived from the 

rotation matrix, and vice versa. Therefore, in this work, the focus is on finding 

the rotation matrix instead of orientation. The vision-based system is used for 

this purpose. To do so, the feature points from the key image are tracked and 

identified in the current image. The fundamental matrix F between the two 

images is then formed using the 8- point algorithm (see Chapter 5). By knowing 

the camera intrinsic matrix, K, the essential matrix (E) can be derived from the 

fundamental matrix as follows: 

(6.71) 𝑭 = 𝑲−𝑻𝑬𝑲−𝟏    
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The essential matrix, 𝐸, defines the relationship between corresponding feature 

points in two calibrated camera views. Referring to Chapter 5, the essential 

matrix can be decomposed using Singular Value Decomposition (SVD) so that: 

(6.72) 𝑬 = 𝑼 (
𝟏 𝟎 𝟎
𝟎 𝟏 𝟎
𝟎 𝟎 𝟎

)𝑽𝑻    

 

𝑈 and 𝑉 are 3D vectors resulting from the application of SVD to the 

fundamental matrix. Once 𝑈 and 𝑉 are known, matrix 𝑊 is defined as per (6.74) 

and then the rotation matrix between the current and key image frames at time 

𝑡𝑛 is computed as follows:  

(6.73) 𝑹𝒕𝒏
𝒌𝒄 = 𝐔𝐖𝐕𝐓    

(6.74) 𝑾 = (
𝟎 −𝟏 𝟎
𝟏 𝟎 𝟎
𝟎 𝟎 𝟏

)    

 

In order to arrive at the rotation matrix with respect to the world reference frame, 

the rotation matrix of the key image (Rtn
wk) must be multiplied by the above 

rotation matrix (Rtn
kc) resulting in rotation matrix 𝑅𝑡𝑛

𝑤𝑐 for transformation from the 

camera frame to the world frame.   

(6.75) 𝐑𝐭𝐧
𝐰𝐜 = 𝐑𝐰𝐤𝐑𝐭𝐧

𝐤𝐜    

 

This method provides two possible solutions 𝑅̅𝑡𝑛
𝑤𝑐 and 𝑅̿𝑡𝑛

𝑤𝑐, reflecting the fact the 

application of SVD provides two possible solutions; 𝑅̅𝑡𝑛
𝑘𝑐 and 𝑅̿𝑡𝑛

𝑘𝑐. In order to 

select the correct rotation matrix, the resultant rotation matrix is compared with 

the estimate provided by the IMU system (see equation  

 

(6.49) and the matrix closest to the IMU estimate, (𝑅𝒕𝒏−𝟏+𝑁𝑖𝜹𝒕
𝑤𝑖 )𝑹𝒊𝒄, is considered 

to be the correct rotation matrix. In order to carry out this comparison, the mean 

square error between individual components of 𝑅𝒕𝒏−𝟏+𝑁𝑖𝜹𝒕
𝑤𝑖  and 𝑅̅𝑡𝑛

𝑤𝑐 on one hand 

and 𝑅𝒕𝒏−𝟏+𝑁𝑖𝜹𝒕
𝑤𝑖  and 𝑅̿𝑡𝑛

𝑤𝑐 on the other is determined. The matrix with the least 
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error is considered to be the correct rotation matrix. Here matrices 𝐴 and 𝐵 are 

defined as follows: 

(6.76) 𝐀 = (𝐑𝐭𝐧−𝟏+𝐍𝐢𝛅𝐭
𝐰𝐢 )𝑹𝒊𝒄 − 𝐑̅𝐭𝐧

𝐰𝐜    

(6.77) 𝐁 = (𝐑𝐭𝐧−𝟏+𝐍𝐢𝛅𝐭
𝐰𝐢 )𝑹𝒊𝒄 − 𝐑̿𝐭𝐧

𝐰𝐜    

 

The mean square error is given by dA and dB for matrices A and B, where alj 

and blj are their individual components.  

(6.78) 𝒅𝑨 =
√∑ ∑ 𝒂𝒍𝒋

𝟐𝟑
𝒋=𝟏

𝟑
𝒍=𝟏

𝟗
    

(6.79) 𝒅𝑩 =
√∑ ∑ 𝒃𝒍𝒋

𝟐𝟑
𝒋=𝟏

𝟑
𝒍=𝟏

𝟗
    

 

If dA < dB, R̅tn
wc is the correct rotation matrix, otherwise R̿tn

wc is considered to be 

correct.  

6.3.5 Replacing Key Image 

If the number of tracked feature points in the current image falls below a 

threshold, 𝑁𝑚𝑖𝑛
𝑡ℎ , the key image must be replaced by a more recent one which, 

by virtue of closer temporal proximity, should have considerably more feature 

points in common with the current image frame. The new key image must be 

selected in such a way to ensure the Focus of Expansion associated with the 

key and current images is of a good quality (see section 6.3.3.3). Once a new 

key image is selected, the optical-flow tracking program is reset to start the 

tracking process from the feature points in the new key image.  



145 
 

6.4 Stochastic Data Fusion (SDF) 

So far in this chapter the IMU-based kinematic motion equations and the 

associated pose estimation mechanism have been described in detail in section 

6.2. Furthermore, the feature detection and tracking routines along with 

methods for estimating orientation as well as Focus of Expansion (FoE) were 

outlined in section 6.3. In this section the data gathered from the IMU and vision 

based systems are fused to provide an accurate and robust pose tracking. 

 

Hybrid Tracking?

Past State 
Correction?

Hybrid Tracking

Past State 
Correction

N

Y

Y
State-Space Model

Camera Pose

N

Camera Pose

IMU Data

Start

IMU-Based TrackingVision Data

Vision-Based 
System

 

Figure 6.13   Pose Tracking with Tracking Source Selection 

 

The core of the proposed hybrid tracking method is a data fusion system based 

on particle filtering. The data fusion system relies on the properties of FoE, and 

vision data to operate. The quality of FoE is used as a measure to determine 

whether or not the vision data provide sufficient information for hybrid tracking. 

The system incorporates a mechanism for selecting the tracking method, 

whether pure IMU-based or hybrid tracking, with or without past state 

correction. Figure 6.13 provides a block diagram of the overall tracking solution. 

The diagram shows that the camera pose can either be the output of the IMU-



146 
 

based or hybrid tracking and the decision on the method of tracking is made 

based on the vision data. 

 

The hybrid tracking method proposed here works on the basis of recursive 

filtering techniques. A recursive particle filter is defined in the context of a state-

space model. The following section provides a brief overview of the state-space 

model and its use in state estimation using kinematic motion equations, then 

particle filtering, as a recursive filtering technique, is outlined. The remainder of 

the section describes the details of the proposed particle filter-based tracking 

method. Subsequently all relevant issues in order to achieve effective hybrid 

tracking are outlined and suitable solutions are provided  

6.4.1 State Space Model and Recursive Filtering 

A state-space model describes a system with a set of input, output and state 

vectors represented by 𝑈(𝑡), 𝑌(𝑡) and 𝑆(𝑡) as shown in Figure 6.14. 𝑆′(𝑡) is the 

first derivative of 𝑆(𝑡). 

S(t)
S’(t)

U(t) Y(t)

 

Figure 6.14   State-Space Model 

The model relates 𝑈(𝑡), 𝑌(𝑡), 𝑆(𝑡) and 𝑆′(𝑡) vectors in two sets of equations as 

follows (Ristic, et al., 2004): 

 

(6.80) 𝑺′(𝒕) = 𝒇(𝑺(𝒕),𝑼(𝒕))      

(6.81) 𝒀(𝒕) = 𝒉(𝑺(𝒕),𝑼(𝒕))      

 

These equations provide state update and observation models, respectively. 

The discrete representation of these equations is:  

 

(6.82) 𝑺(𝒕 + 𝜹𝒕) = 𝒇(𝑺(𝒕),𝑼(𝒕))      
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(6.83) 𝒀(𝒕) = 𝒉(𝑺(𝒕),𝑼(𝒕))      

 

The above models formulate the case for a perfect system, where there is no 

error in modelling or measurement of the output or the control inputs. In 

practical applications, however, such effects need to be considered. Therefore 

equations (3.3) and (3.4) are re-written in order to include noise as well as 

measurement and modelling error (η and ξ). Here noise and error are 

collectively referred to as noise.  

(6.84) 𝑺(𝒕 + 𝜹𝒕) = 𝒇(𝑺(𝒕),𝑼(𝒕), 𝜼)      

(6.85) 𝒀(𝒕) = 𝒉(𝑺(𝒕),𝑼(𝒕), 𝝃)      

 

In general 𝑓(. ) and 𝑔(. ) are nonlinear functions. However when they are linear 

the model can be described as follows:   

(6.86) 𝑺(𝒕 + 𝜹𝒕) = 𝑨(𝒕)𝑺(𝒕) + 𝑩(𝒕)𝑼(𝒕) + 𝜼(𝒕)      

(6.87) 𝐘(𝐭) = 𝐂(𝐭)𝐒(𝐭) + 𝐃(𝐭)𝐔(𝐭) + 𝛏(𝐭)   

 

Here the recursive filtering techniques come into play. As described in Chapter 

3 these methods try to estimate the correct state of the system using the noisy 

and erroneous measurement and process model. These methods predict the 

current system state using equation (3.1), considering past system states, 𝑆(𝑡), 

control input, 𝑈(𝑡), and noise model 𝜂. Once new observation data become 

available, equation (3.2) is used to correct the state prediction and update filter 

parameters.  

 

There are three well-known recursive filtering methods; namely, Kalman Filter 

(KF), Extended Kalman Filter (EKF) and Particle Filter (PF). These have been 

described in some detail in Chapter 3. Kalman Filter only applies to linear 

systems (equations (3.11) and (3.12)) with normal probability distribution for 

measurement and observation noise (η and ξ). Extended Kalman Filter (EKF) is 

applicable when 𝑓(. ) and 𝑔(. ) are non-linear but can be linearised around the 
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current system state. Particle filtering is used when 𝑓(. ) or 𝑔(. ) or both and 

non-linear and cannot be linearised effectively.  

 

Here, for ease of reference, the kinematic motion equations provided in section 

6.2.1 are presented again. 

 

(6.88) (

𝑿𝒕𝒏−𝟏+𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝜹𝒕
𝒘

𝑹𝒕𝒏−𝟏+𝜹𝒕
𝒘𝒊

) = 

(

 

𝑿𝒕𝒏−𝟏
𝒘 + 𝑽𝒕𝒏−𝟏

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
(𝑹𝒕𝒏−𝟏

𝒘𝒊  𝑨𝒕𝒏−𝟏
𝒊 + 𝑮)

𝑽𝒕𝒏−𝟏
𝒘 + 𝜹𝒕(𝑹𝒕𝒏−𝟏

𝒘𝒊  𝑨𝒕𝒏−𝟏
𝒊 + 𝑮)

𝑹𝒕𝒏−𝟏,𝜹𝒕𝑹𝒕𝒏−𝟏
𝒘𝒊

)

     

 

In order to define the motion equations in the context of state-space, rotation 

matrices 𝑅𝑡
𝑤𝑖 and 𝑅𝑡+𝛿𝑡

𝑤𝑖  need to be converted to Euler angles. Alternatively this 

equation can be expressed using quaternions, which uniquely describe any 

rotation around a 3D point in space with an axis of rotation going through the 

point (𝜈 ) and an angle of rotation (𝜃). The quaternion of such a rotation is 

defined as follows (see Figure 6.15 for details): 

(6.89) 𝑸 = (𝒄𝒐𝒔 (
𝜽

𝟐
) , 𝒔𝒊𝒏 (

𝜽

𝟐
) 𝝂⃗⃗ )   

  

v

z

x

y

 

Figure 6.15   Quaternion Representation 

 

The quaternion, as a means of describing rotation, is closely linked to the 

angular velocity. Angular velocity vector 𝛺⃗ 𝑡
𝑖 can be expressed as a quaternion 

by forming a 4D vector as follows: 

(6.90) 𝜴𝒒,𝒕
𝒊 = (𝟎, 𝜴⃗⃗ 𝒕

𝒊)  
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It can be shown that the first derivative of a quaternion can be expressed using 

the quaternion multiplication of angular velocity quaternion 𝛺⃗ 𝑡
𝑖 and current 

quaternion.   

(6.91) 𝑸̇𝒕
𝒘 =

𝟏

𝟐
𝑸𝒕
𝒘⊗𝜴𝒒,𝒕

𝒊   

 

Note that angular velocity is with respect to the camera frame, which is the 

output of the gyroscope. Operator ⊗ represents quaternion multiplication. Using 

this notation and defining the state vector 𝑆𝑡
𝑤 = (𝑋𝑡

𝑤, 𝑉𝑡
𝑤, 𝑄𝑡

𝑤)𝑇 the state-space 

representation of the camera motion will be: 

(6.92) (

𝑿𝒕𝒏−𝟏+𝜹𝒕
𝒘

𝑽𝒕𝒏−𝟏+𝜹𝒕
𝒘

𝑸𝒕𝒏−𝟏+𝜹𝒕
𝒘

) = 

(

 
 
𝑿𝒕𝒏−𝟏
𝒘 + 𝑽𝒕𝒏−𝟏

𝒘 𝜹𝒕 +
𝜹𝒕𝟐

𝟐
(𝑹𝒕𝒏−𝟏

𝒘𝒊  𝑨𝒕𝒏−𝟏
𝒊 + 𝑮)

𝑽𝒕𝒏−𝟏
𝒘 + 𝜹𝒕(𝑹𝒕𝒏−𝟏

𝒘𝒊  𝑨𝒕𝒏−𝟏
𝒊 + 𝑮)

𝟏

𝟐
𝜹𝒕𝑸𝒕𝒏−𝟏

𝒘 ⊗𝜴𝒒,𝒕𝒏−𝟏
𝒊

)

 
 

    

 

This is clearly a non-linear model, which should either be solved using EKF or 

PF. The EKF-based tracking methods, such as EKF-SLAM require several key 

frames and have to continuously build a map of the area, with a considerable 

computational cost (see Chapter 3).  

 

The solution proposed here however requires 3 images only and has a simple 

but non-linear observation function (see section 6.4.4). As described earlier, in 

this method the camera orientation is estimated using the vision-based system 

only (see section 6.3.4), therefore orientation state is removed from the state-

space model above, leaving a simpler state-space model, with only 6 elements 

defined as: 

(6.93) 𝑺𝒕
𝒘 = (

𝑿𝒕𝒏
𝒘

𝑽𝒕𝒏
𝒘 )    

Considering (6.92) and the above definition for state vector, 𝑆𝑡
𝑤 , the state-space 

model is defined as follows: 
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(6.94) (
𝐗𝐭𝐧−𝟏+𝛅𝐭
𝐰

𝐕𝐭𝐧−𝟏+𝛅𝐭
𝐰 ) = 

(
𝐈𝟑×𝟑 𝛅𝐭. 𝐈𝟑×𝟑
𝟎𝟑×𝟑 𝐈𝟑×𝟑

) (
𝐗𝐭𝐧−𝟏
𝐰

𝐕𝐭𝐧−𝟏
𝐰 ) + (

𝛅𝐭𝟐

𝟐
. 𝐈𝟑×𝟑

𝛅𝐭. 𝐈𝟑×𝟑

)(𝐑𝐭𝐧−𝟏
𝐰𝐢  𝐀𝐭𝐧−𝟏

𝐢 + 𝐆) ⇒ 

    

(6.95)  𝐒𝐭𝐧−𝟏+𝛅𝐭
𝐰 = 𝐀𝐒𝐭𝐧−𝟏

𝐰 + 𝐁(𝐑𝐭𝐧−𝟏
𝐰𝐢  𝐀𝐭𝐧−𝟏

𝐢 + 𝐆)    

 

Matrices 𝐴 and 𝐵 are defined as: 

(6.96)  𝐀 = (
𝐈𝟑×𝟑 𝛅𝐭. 𝐈𝟑×𝟑
𝟎𝟑×𝟑 𝐈𝟑×𝟑

) , 𝐁 = (
𝛅𝐭𝟐

𝟐
. 𝐈𝟑×𝟑

𝛅𝐭. 𝐈𝟑×𝟑
)    

 

Taking into account the new definition, and using equation (6.49) the system 

state at time 𝒕𝒏 is estimated to be: 

 

(6.97)  𝐒𝐭𝐧
𝐰 = 𝐀𝐒𝐭𝐧−𝟏

𝐰 + 𝐁∆𝐒𝐭𝐧−𝟏
𝐰   

   

(6.98)  ∆𝐒𝐭𝐧−𝟏
𝐰 = (

∑ (𝟐𝐍𝐢 + 𝟏 − 𝟐𝐦)(𝐑𝐭𝐧−𝟏+𝐦𝛅𝐭
𝐰𝐢  𝐀𝐭𝐧−𝟏+𝐦𝛅𝐭

𝐢 + 𝐆)
𝐍𝐢
𝐦=𝟏

∑ (𝐑𝐭𝐧−𝟏+𝐦𝛅𝐭
𝐰𝐢  𝐀𝐭𝐧−𝟏+𝐦𝛅𝐭

𝐢 + 𝐆)
𝐍𝐢
𝐦=𝟏

)    

  

Equation (6.98) is used as the basis for particle generation, as outlined in 

section 6.4.3.  

6.4.2 Framework for PF-Based Hybrid Tracking 

Due to the non-linear nature of the suggested observation model (see section 

6.4.4), the only applicable method for filtering and data fusion is particle filtering. 

However by reducing the number of states to 6 (see (6.94)) and proposing 

simple yet effective particle selection and evaluation methods, a robust, reliable 

and accurate hybrid tracking solution with a manageable computation cost has 
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been developed. This section outlines the framework for the PF-based hybrid 

tracking. 

 

An overview of the PF-based hybrid tracking is presented first, followed by a 

detailed description of the particle generation and evaluation methods. In the 

subsequent subsections, the procedure for assigning weight to particles, the re-

sampling algorithm, and finally the method for estimating the current state of the 

system based on particles are provided. After the application of particle filtering, 

the process designed for past state correction is described in detail and also a 

method for replacing the key image is presented.  

 

The principle of operation for any particle filter method is based on selecting 

particles from a proposal distribution, assigning a weight to each particle using a 

likelihood function, applying re-sampling if necessary, and finally providing the 

system state using the particles and their associated weights. The particle 

filtering method employed in this work is based on the Sequential Importance 

Sampling (SIS) algorithm described in Chapter 3. In this section the SIS 

algorithm is briefly outlined and then a block diagram of the proposed PF-based 

tracking method is provided. 

6.4.2.1 Summary of the SIS-based Particle Filtering Method 

The SIS method consists of a sampling and evaluation stage, as well as a re-

sampling stage, as follows. 

6.4.2.1.1 SIS - Sampling and Evaluation 

When a new image is captured, the following algorithm is executed for each 

particle:  

D. Draw a new particle from a posterior probability distribution function (PDF) 

(section 6.4.3):          

𝑃𝑝,𝑡𝑛~   𝑝(𝑆𝑡𝑛|𝑃𝑝,𝑡𝑛−1)        
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 𝑃𝑝,𝑡𝑛−1 is the past particle, 𝑃𝑝,𝑡𝑛 is the current particle and 𝑝(𝑆𝑡𝑛|𝑃𝑝,𝑡𝑛−1) is the 

PDF for the current system state, 𝑆𝑡𝑛. 

E. Calculate weights using likelihood function (sections 6.4.4 and 6.4.5 ): 

 Ŵp,tn = p(Ztn|Pp,tn)Ŵp,tn−1        

 p(Ztn|Pp,tn) is the probability of having the current observation data, Ztn , 

providing that the system state is specified by particle Pp,tn 

F. Normalise weights (section 6.4.5)          

Wp,tn = Ŵp,tn/∑ Ŵp,tn 

G. Calculate number of effective particles (section 6.4.6)      

Neff = 1/∑Wp,tn
2  

H. If the number of effective particles, Neff, is less than a threshold, run the 

resampling algorithm before proceeding to the next stage (section 6.4.6) 

I. Estimate the current state of the system (section 6.4.7) 

6.4.2.1.2 Resampling 

A. Sort the particles based on their weights in descending order. 

B. Keep the first Neff particles and replace the remaining with the first Neff 

particles. 

C. Normalise weights 

D. Calculate number of effective particles         

Neff = 1/∑Wp,tn
2  

E. If the number of effective particles, Neff, is less than a threshold, repeat the 

resampling process. 

6.4.2.2 Block Diagram of the PF-based Hybrid Tracking 

Figure 6.16 shows a block diagram of the PF-Based Tracker. The particle 

generation block receives tracking information from the IMU and by knowing the 

IMU characteristics and past state of the system provides a number of particles 

for evaluation. The particle evaluation block evaluates the particles using the 

current camera orientation and image feature points in the current, past and key 
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images. The outcome is provided as the particle score, which is then used by 

the weight-assignment block for assigning an importance weight to each particle 

and normalising them at the end. The normalised weights are used to calculate 

the number of effective particles and, if necessary, take the particles through 

the resampling block. The final particles are passed on to the state estimation 

block. The next block corrects the past state of the system if the conditions are 

met. Finally the key image is replaced if required. Each of these blocks is 

described in detail in the following subsections.  
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Figure 6.16   Block Diagram of the PF-Based Tracker 

 

6.4.3 Particle Generation 

At time 𝑡𝑛, when a new image is captured, 𝑁𝑝 particles are drawn from the 

associated proposal distributions, which are formed based on the past particles, 
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control inputs and noise model. The basis of particle generation is the camera 

position (𝑋) and velocity (𝑉) estimated by the IMU at time 𝑡𝑛 = 𝑡𝑛−1 + 𝑁𝑖𝛿𝑡 using 

equation (6.97). As explained above, the PF state space vector is defined to 

only contain the camera position and velocity, therefore particle 𝑃𝑝,𝑡𝑛
𝑤 , has an 

associated position vector 𝑃𝑋,𝑝,𝑡𝑛
𝑤  and velocity vector 𝑃𝑉,𝑝,𝑡𝑛

𝑤 as follows.  

(6.99) 𝑷𝒑,𝒕𝒏
𝒘 = (

𝑷𝑿,𝒑,𝒕𝒏
𝒘

𝑷𝑽,𝒑,𝒕𝒏
𝒘 )   

 

Here, 𝑝 ∈ (1…𝑁𝑝) is the particle number, 𝑡𝑛 represents the current time and 𝑤 

the world reference frame. The particles are drawn from proposal distributions 

formed based on the past particles as follows. p(Stn
w |Pp,tn−1

w ) is the posterior 

probability distribution for the 𝑝th particle,  𝑝 ∈ (1…𝑁𝑝).   

(6.100) 𝐏𝐩,𝐭𝐧
𝐰 ~𝒑(𝑺𝒕𝒏

𝒘 |𝑷𝒑,𝒕𝒏−𝟏
𝒘 )  

 

The proposal distribution is formed using equation (6.97). According to this 

equation, if the past state of the system is the 𝑝th particle at time tn−1, the 

estimated current state will be S̃tn
w  as follows:  

(6.101)  𝐒̃𝐭𝐧
𝐰 = 𝑨𝑷𝒑,𝒕𝒏−𝟏

𝒘 + 𝑩∆𝑺𝒕𝒏−𝟏
𝒘  

 

The same analogy can be used for generating new particles. 

(6.102)  𝐏𝐩 ,𝐭𝐧
𝐰 = 𝐀𝐏𝐩,𝐭𝐧−𝟏

𝐰 + 𝐁∆𝐏𝐩,𝐭𝐧−𝟏
𝐰  

 

Therefore in order to generate new particles, ∆𝑃𝑝,𝑡𝑛−1
𝑤  for each particle is drawn 

from a proposal distribution, centring at ∆𝑆𝑡𝑛−1
𝑤  with a variance based on the IMU 

characteristics. 

(6.103)  ∆𝐏𝐩 , 𝐭𝐧
𝐰 ~𝐍(∆𝐒𝐭𝐧−𝟏

𝐰 , 𝛔𝐭𝐧)  , 𝐩 ∈ (𝟏…𝐍𝐩)  

 

The variance 𝜎𝑡𝑛 , must be chosen in a way that allows for possible error and 

noise generated by the IMU accelerometer. A typical accelerometer converts 
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the acceleration to a voltage and then using an A/D converter to a digital value. 

The resolution of the A/D conversion affects the measurement accuracy. For 

example a 16-bit A/D measuring in the range ±2𝑔 (𝑔 is approx. 9.82𝑚/𝑠2), can 

only measure with a measurement accuracy of 61𝜇𝑔. The analogue section of 

the device also typically has measurement noise, offset error, gain error and a 

non-linearity factor. The power spectral density of measurement noise is often 

defined by 𝜇𝑔/√𝐻𝑧. The total noise power depends on the measurement 

bandwidth. A typical accelerometer has an on-board low pass filter, which limits 

the signal frequency to 100Hz or less. The offset error is the sensor output 

when the acceleration is zero. This value is defined in 𝑚𝑔 units (InvenSense 

IMU Datasheet (InvenSense, 2003)).  

 

The digital output of the sensor must be divided by a conversion factor in order 

to determine the actual acceleration. The conversion factor is affected by gain 

and non-linearity error factors. The gain error is the percentage error in the 

slope of the conversion line for converting digital sensor output to acceleration. 

The non-linearity error is also defined as a percentage and gives a measure of 

how linear the conversion curve is. By combining all these effects, the noise and 

error model for an accelerometer is defined as follows:  

(6.104) 𝐞𝐀
𝐢 = 𝐞𝐧𝐨𝐢𝐬𝐞

𝐢 + 𝐞𝐨𝐟𝐟𝐬𝐞𝐭
𝐢 + 𝐞𝐠𝐚𝐢𝐧

𝐢 𝐀𝐭𝐧
𝐢   

 

𝑒𝐴
𝑖  is the total error due to the accelerometer noise and measurement error. 𝐴𝑡𝑛

𝑖  

is the measured acceleration and 𝑒noise
𝑖 , 𝑒offset

𝑖  and 𝑒gain
𝑖  are equivalent noise, 

offset and gain error margins. 𝑒𝐴
𝑖 , 𝑒noise

𝑖 , 𝑒offset
𝑖 , 𝑒𝐴

𝑖  and 𝐴𝑡𝑛
𝑖 are 3D vectors. 𝑒gain

𝑖  is 

a 3 × 3 diagonal matrix with the elements of the main diagonal being the gain 

error in 𝑥, 𝑦 and 𝑧 directions. 

 

𝑒𝐴𝑗
𝑖  as the possible total deviation of measured acceleration from the actual 

value is used in conjunction with equation (6.98) to estimate the possible error 

caused in calculating ∆𝑆𝑡𝑛−1
𝑤 .  
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(6.105)  𝛔𝐭𝐧 = 𝐞∆𝐒𝐭𝐧−𝟏
𝐰 = (

∑ (𝟐𝐍𝐢 + 𝟏 − 𝟐𝐦) (𝐑𝐭𝐧−𝟏+𝐦𝛅𝐭
𝐰𝐢 𝐞𝐀𝐭𝐧−𝟏+𝐦𝛅𝐭

𝐢  )
𝐍𝐢
𝐦=𝟏

∑ (𝐑𝐭𝐧−𝟏+𝐦𝛅𝐭
𝐰𝐢 𝐞𝐀𝐭𝐧−𝟏+𝐦𝛅𝐭

𝐢 )
𝐍𝐢
𝐦=𝟏

)    

 

𝜎𝑡𝑛 is the variance in the proposal distribution (6.103). Once the proposal 

distribution is known, Inverse-Transform Sampling (ITS) (Princeton, 2014) is 

used to draw particles from the proposal distribution. To do so for each particle, 

first a random number is chosen from a uniform distribution: 

(6.106) 𝐫𝐩,𝐤 ∈ [𝟎   𝟏],   𝐩 ∈ (𝟏…𝐍𝐩),   𝐤 ∈ (𝟏…𝟔) 

 

Then, using the ITS algorithm, a real number for each element of the particle 

vector is found so that the Cumulative Distribution Function (CDF) of the 

proposal distribution function is 𝑟𝑝𝑘. 𝑝 is the particle index, 𝑁𝑝 is the number of 

particles and 𝑘 is the state index.  

(6.107) 𝐫𝐩,𝐤 = 𝐂𝐃𝐅
−𝟏(𝐍(∆𝐒𝐤,𝐭𝐧

𝐰 , 𝛔𝐤,𝐭𝐧)),     𝐩 ∈ (𝟏…𝐍𝐩),   𝐤 ∈ (𝟏…𝟔)  

6.4.4 Particle Evaluation   

The particles generated by the system need to be evaluated and weighted 

based on the likelihood of their correctness.  The particles are generated using 

the particle generation method outlined in section 6.4.3 and are evaluated by 

the vision-based system as presented in this section. Each particle (𝑃𝑝,𝑡𝑛
𝑊 ) is a 

vector consisting of three position vectors and three linear velocity elements, 

𝑃𝑋,𝑝,𝑡𝑛
𝑤 , 𝑃𝑉,𝑝,𝑡𝑛

𝑤 , as below:  

(6.108)  𝐏𝐩,𝐭𝐧
𝐖 = (

𝐏𝐗,𝐩,𝐭𝐧
𝐰

𝐏𝐕,𝐩,𝐭𝐧
𝐰 ) ,      𝐩 ∈ (𝟏…𝐍𝐩)     

 

The speed and position vectors of a particle are evaluated using the focus of 

expansion between two images which, in the case of speed, is the current and 

past images and, in the case of position, the current and key images.  
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6.4.4.1 Evaluation of the Position Vector of a Particle using FoE 

Each particle 𝑃𝑝,𝑡𝑛
𝑊  has a position vector 𝑃𝑋,𝑝,𝑡𝑛

𝑊 , which represents the likely 

position of the camera origin with respect to the world frame. The position 

vector of each particle is evaluated using the focus of expansion between the 

current and key images.  

 

Referring to section 6.3.3.2, the translation vector between two images is 

parallel to the line connecting the optical centre of the camera to the FoE point, 

providing that there is no rotation element between the two images. Therefore, 

in order to evaluate the position vector of a particle, the translation vector 

between the key image and each particle, 𝑇𝑝,𝑡𝑛
𝑤 , must be formed using equation 

(6.109), where 𝑋𝑡𝑘
𝑤  is a known vector. Figure 6.17 illustrates the relationship 

between particles and the key image. 

 

(6.109) 𝐓𝐩,𝐭𝐧
𝐰 = 𝐏𝐗,𝐩,𝐭𝐧

𝐰 − 𝐗𝐭𝐤
𝐰   

 

𝑇𝑝,𝑡𝑛
𝑤  is with respect to the world frame and needs to be transformed to the key 

image reference frame using Rwk, so that it can be used for FoE analysis. 

 

(6.110) 𝐓𝐩,𝐭𝐧
𝐤 = 𝐑𝐤𝐰𝐓𝐩,𝐭𝐧

𝐰 = 𝐑𝐰𝐤
−𝟏
𝐓𝐩,𝐭𝐧
𝐰   
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Figure 6.17   Translation between the key image and each particle 

 

In order to use the focus of expansion to evaluate the particles’ position vector, 

the current image together with its feature points must be rotated so that it has 

the same orientation as the key image. This requires the rotation matrix 𝑅𝑡𝑛
𝑘𝑐 

between the current and key images, which can be provided using equation 

(6.73) in section 6.3.4. This rotated image is referred to as the intermediate 

image. 

 

Suppose there is a set of 2D feature points in the key image for which a set of 

corresponding feature points in the current image exists, with 𝑁𝑘,𝑓 being the 

number of shared feature points. These two sets of feature points are referred 

to as 𝐹𝑘 and 𝐹𝑐, respectively. The set of feature points in the intermediate image 

is referred to as 𝐹𝑖. Figure 6.18 shows the key, current and intermediate 

images, together with the corresponding feature points 𝐹𝑘 , 𝐹𝑐 and 𝐹𝑖. 
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Figure 6.18   Key, current and the intermediate images 

 

Suppose 𝑄𝑚 is a 3D point in the world frame, seen as 𝑄𝑚
𝑘 , 𝑄𝑚

𝑐  and 𝑄𝑚
𝑖  in the 

key, current and intermediate camera views respectively. These three points 

have corresponding feature points 𝑞𝑚
𝑘 , 𝑞𝑚

𝑐  and 𝑞𝑚
𝑖  in their respective images 

which, considering the pinhole camera model, have the following relationship to 

their 3D counterparts.  

(6.111) 𝐪𝐦
𝐥 =

𝐟

𝐙𝐦
𝐥 𝐐𝐦

𝐥  ,                  𝐦 ∈ (𝟏…𝐍𝐤,𝐟), 𝐥 ∈ (𝐢, 𝐤, 𝐜) 

 

𝑍𝑚
𝑙  is the distance of the 3D point along the camera axis in the respective 

reference frame and 𝑓 is the focal length of the camera. Using the rotation 

matrix between the current and key camera frames (𝑅𝑡𝑛
𝑘𝑐), the coordinates of the 

𝑄𝑚
𝑐  in the intermediate frame will be: 

(6.112)   𝐐𝐦
𝐢 = 𝐑𝐭𝐧

𝐤𝐜𝐐𝐦
𝐜 ,                  𝐦 ∈ (𝟏…𝐍𝐤,𝐟)   

 

Note that the key and intermediate images have the same orientation, therefore 

𝑅𝑡𝑛
𝒌𝑐 = 𝑅𝑡𝑛

𝒊𝑐 . Substituting (6.111) into (6.112) results in the following:  
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(6.113) 
𝐙𝐦
𝐢

𝐟
 𝐪𝐦
𝐢 =

𝐙𝐦
𝐜

𝐟
𝐑𝐭𝐧
𝐤𝐜 𝐪𝐦

𝐜  ,          𝐦 ∈ (𝟏…𝐍𝐤,𝐟)   

(6.114) 𝐪
𝐦
𝐢 =

𝐙𝐦
𝐜

𝐙𝐦
𝐢
𝐑𝐭𝐧
𝐤𝐜 𝐪

𝐦
𝐜  ,                 𝐦 ∈ (𝟏…𝐍𝐤,𝐟)   

 

𝑍𝑚
𝑐 /𝑍𝑚

𝑖  is a scaling factor, which affects all three elements of 𝑞𝑚
𝑖  in a 

homogeneous coordinate system in the same way. Therefore it can be omitted 

from the equation, resulting in the following equation for finding corresponding 

feature points in the intermediate image. 

(6.115) 𝐪
𝐦
𝐢 = 𝐑𝐭𝐧

𝐤𝐜 𝐪
𝐦
𝐜  ,                        𝐦 ∈ (𝟏…𝐍𝐤,𝐟)   

 

This equation is used to transform all feature points in 𝐹𝑐 to the corresponding 

feature points in 𝐹𝑖.  𝐹𝑘 and 𝐹𝑖 are then used to find the 𝐹𝑜𝐸𝑡𝑛
𝑘  point between key 

and intermediate images. This is done by the application of the method outlined 

in section 6.3.3.1.  

 

According to FoE properties (section 6.3.3.2), the line connecting 𝐹𝑜𝐸𝑡𝑛
𝑘  to the 

centre of camera at key image frame, is parallel to the translation vector. The 

same concept is used for evaluating the particles, meaning that if a particle 

position is correct, its 𝑂𝐹⃗⃗⃗⃗  ⃗ vector must be parallel to the translation vector 

associated with the particle. Therefore here, using (6.66) and (6.109), a virtual 

FoE is defined for the position vector of each particle: 

 (6.116) 𝑭𝒐𝑬̂𝒑,𝒕𝒏
𝒌 = 𝒇(

𝑻𝒙,𝒑,𝒕𝒏
𝒄

𝑻𝒛,𝒑,𝒕𝒏
𝒄

𝑻𝒚,𝒑,𝒕𝒏
𝒄

𝑻𝒛,𝒑,𝒕𝒏
𝒄

),     𝑻𝒑,𝒕𝒏
𝒄 = (

𝑻𝒙,𝒑,𝒕𝒏
𝒄

𝑻𝒚,𝒑,𝒕𝒏
𝒄

𝑻𝒛,𝒑,𝒕𝒏
𝒄

) ,       𝒑 ∈ (𝟏…𝑵𝒑)   

 

A particle, whose associated FoÊp,tn
k is close to the actual image-based FoE, 

FoEtn
k , is a good representation for the actual current position of the camera. 

This concept is used to define a score, Γ𝑝
𝑋, for the position vector of each 

particle, based on the distance between FoÊp,tn
k and FoEtn

k  as below. 
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(6.117) 𝚪𝐩
𝐗 = ‖𝐅𝐨𝐄̂𝐩,𝐭𝐧

𝐤 − 𝐅𝐨𝐄𝐭𝐧
𝐤 ‖,         𝐩 ∈ (𝟏…𝐍𝐩) 

 

6.4.4.2 Evaluation of the Velocity Vector of a Particle Using FoE 

Each particle 𝑃𝑝,𝑡𝑛
𝑊  also has a velocity vector 𝑃𝑉,𝑝,𝑡𝑛

𝑊 , which represents the likely 

velocity of the camera origin with respect to the world frame. The velocity vector 

of each particle is evaluated using the focus of expansion between the current 

and past images, captured at time 𝑡𝑛 and 𝑡𝑛−1, respectively. Referring to section 

6.3.3.2 the velocity vector between two adjacent images is parallel to the line 

connecting the optical centre of the camera to the FoE point, providing that 

there is no rotation element between the two images. Therefore, in order to 

evaluate the velocity vector of a particle, the velocity vector must be 

transformed to the past image reference frame, using 𝑅𝑤𝑐𝑡𝑛−1  as follows:   

(6.118) 𝐏𝐕,𝐩,𝐭𝐧
𝐜 𝐭𝐧−𝟏 = 𝐑𝐜 𝐭𝐧−𝟏𝐰𝐏𝐕,𝐩,𝐭𝐧

𝐰 = 𝐑𝐰𝐜𝐭𝐧−𝟏
−𝟏
𝐏𝐕,𝐩,𝐭𝐧
𝐰 , 𝐩 ∈ (𝟏…𝐍𝐩)  

 

In order to use the focus of expansion to evaluate the velocity vector of a 

particle, the current image together with its feature points must be rotated so 

that it has the same orientation as the past image. This requires the rotation 

matrix 𝑅𝑐𝑡𝑛−1𝑐𝑡𝑛  between the current and past images, which can be calculated 

using the current and past rotation matrices, 𝑅𝑤𝑐𝑡𝑛  and 𝑅𝑤𝑐𝑡𝑛−1 , which 

themselves are estimated using equation (6.73) in section 6.3.4.  

(6.119) 𝐑𝐜 𝐭𝐧−𝟏𝐜 𝐭𝐧 = 𝐑𝐰𝐜 𝐭𝐧−𝟏
−𝟏
𝐑𝐰𝐜 𝐭𝐧   

 

Suppose there is a set of 2D feature points in the past image for which a set of 

corresponding feature points in the current image exists, with 𝑁𝑐,𝑓 being the 

number of shared feature points. These two sets of feature points are referred 

to as 𝐹𝑐𝑡𝑛−1  and 𝐹𝑐𝑡𝑛 , respectively. The set of feature points in the intermediate 

image is referred to as 𝐹𝑖.  
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Suppose 𝑄𝑚 is a 3D point in the world frame, seen as 𝑄𝑚
𝑐𝑡𝑛−1 , 𝑄𝑚

𝑐𝑡𝑛  and 𝑄𝑚
𝑖  in the 

key, current and intermediate camera views, respectively. These three points 

have corresponding feature points 𝑞𝑚
𝑐𝑡𝑛−1 , 𝑞𝑚

𝑐𝑡𝑛   and 𝑞𝑚
𝑖  in their respective 

images, which considering the pinhole camera model have the following 

relationship to the 3D counterparts.  

(6.120) 𝒒𝒎
𝒍 =

𝒇

𝒁𝒎
𝒍 𝑸𝒎

𝒍  ,            𝒎 ∈ (𝟏…𝑵𝒄,𝒇), 𝒍 ∈ (𝒄𝒕𝒏−𝟏 , 𝒄𝒕𝒏 , 𝒊) 

 

𝒁𝒎
𝒍  is the distance of the 3D point along the camera axis in the respective 

reference frame and 𝑓 is the focal length of the camera. Referring to (6.115) the 

feature points in the current image can be transformed to intermediate image 

using the following equation: 

(6.121) 𝒒
𝒎
𝒊 = 𝑹𝒄𝒕𝒏−𝟏𝒄𝒕𝒏  𝒒

𝒎
𝒄  ,            𝒎 ∈ (𝟏…𝑵𝒄,𝒇)   

 

This equation is used to transform all feature points in 𝐹𝑐𝑡𝑛  to the corresponding 

feature points in 𝐹𝑖. 𝐹𝑐𝑡𝑛−1  and 𝐹𝑖 are then used to find the 𝐹𝑜𝐸𝑡𝑛
𝑐  point between 

the past and intermediate images. This is done by the application of the method 

outlined in section 6.3.3.1.  

 

According to FoE properties (Section 6.3.3.2), the line connecting 𝐹𝑜𝐸𝑡𝑛
𝑐  to the 

camera origin at time 𝑡𝑛−1, is parallel to the velocity vector. The same concept is 

used for evaluating the particles, meaning that if a particle velocity vector is 

correct, its 𝑂𝐹⃗⃗⃗⃗  ⃗ vector must be parallel to the velocity vector associated with the 

particle. Therefore, using (6.67) and (6.118), a virtual FoE is defined for the 

velocity vector of each particle: 

(6.122) 𝐅𝐨𝐄̂𝐩,𝐭𝐧
𝐜 = 𝐟( 

𝐏𝐕,𝐱,𝐩,𝐭𝐧
𝐜

𝐏𝐕,𝐳,𝐩,𝐭𝐧
𝐜

𝐏𝐕,𝐲,𝐩,𝐭𝐧
𝐜

𝐏𝐕,𝐳,𝐩,𝐭𝐧
𝐜

),      𝐏𝐕,𝐩,𝐭𝐧
𝐜 = (

𝐏𝐕,𝐱,𝐩,𝐭𝐧
𝐜

𝐏𝐕,𝐲,𝐩,𝐭𝐧
𝐜

𝐏𝐕,𝐳,𝐩,𝐭𝐧
𝐜

) ,    𝐩 ∈ (𝟏…𝐍𝐩) 

   

A particle, which its associated  FoÊp,tn
c , is close to the actual image-based FoE, 

FoEtn
c , is a good representation for the actual current velocity of the camera. 
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This concept is used to define a score, 𝚪𝒑
𝑽, for the velocity vector of each 

particle, based on the distance between FoÊp,tn
c and FoEtn

c  as below. 

(6.123) 𝜞𝒑
𝑽 = ‖𝑭𝒐𝑬̂𝒑,𝒕𝒏

𝒄 − 𝑭𝒐𝑬𝒕𝒏
𝒄 ‖,         𝒑 ∈ (𝟏…𝑵𝒑) 

6.4.5 Weight Assignment 

The score values 𝛤𝑝
𝑉 and 𝛤𝑝

𝑋, calculated during particle evaluation (see sections 

6.4.4.1 and 6.4.4.2), are used for assigning weights to a particle. Particles in 

this work have two components, namely; 3D position and speed vectors. The 

score for the position or velocity vectors of a particle represents the degree of 

correctness for that particular particle component. When a score is low the 

associated position or velocity vector is more likely to be a correct vector. On 

the other hand a high score represents particles, which are less likely to be near 

the current state of the system. This leads to the definition of the particle weight 

as the inverse of score value. The position and velocity vectors of a particle are 

assigned a separate weight as defined below: 

(6.124) 𝑾𝑿,𝒑,𝒕𝒏 =  
𝟏
𝜞𝒑𝑿
⁄       ,    𝒑 ∈ (𝟏…𝑵𝒑)     

(6.125) 𝑾𝑽,𝒑,𝒕𝒏 =  
𝟏
𝜞𝒑𝑽
⁄       ,    𝒑 ∈ (𝟏…𝑵𝒑)    

 

Once the particle weights are calculated, they are normalised, so that they can 

be used for weighted averaging.  

(6.126) 𝑾̃𝒑,𝒕𝒏
𝑿 = 

𝑾𝒑,𝒕𝒏
𝑿

∑ (𝑾𝒑,𝒕𝒏
𝑿 )

𝟐𝑵𝒑
𝒑=𝟏

      ,    𝒑 ∈ (𝟏…𝑵𝒑)         

(6.127) 𝑾̃𝒑,𝒕𝒏
𝑽 = 

𝑾𝒑,𝒕𝒏
𝑽

∑ (𝑾𝒑,𝒕𝒏
𝑽 )

𝟐𝑵𝒑
𝒑=𝟏

      ,    𝒑 ∈ (𝟏…𝑵𝒑)         

6.4.6 Re-sampling 

Some particles have a low weight and do not contribute much to the final state 

estimation. Such particles must be replaced by particles with higher value 



165 
 

weights. To do so, the number of effective particles is calculated using the 

method outlined in section 6.4.2.1. 

(6.128)  𝑵𝒆𝒇𝒇
𝑿 =

𝟏

∑ (𝑾̃𝒑,𝒕𝒏
𝑿 )

𝟐𝑵𝒑
𝒑=𝟏

  

(6.129)  𝑵𝒆𝒇𝒇
𝑽 =

𝟏

∑ (𝑾̃𝒑,𝒕𝒏
𝑽 )

𝟐𝑵𝒑
𝒑=𝟏

  

𝑁𝑒𝑓𝑓
𝑋  and 𝑁𝑒𝑓𝑓

𝑉  are the number of effective particles for the position and velocity 

vectors of particles. A threshold level (e.g 70%) is defined to determine the 

adequacy of the number of effective particles. If the number of effective 

particles is less than the threshold level, the resampling algorithm is executed.  

6.4.7 State Estimation 

The state of the system is calculated using a weighted summation of system 

particles as follows:  

(6.130)  (
𝑿𝒕𝒏
𝒘

𝑽𝒕𝒏
𝒘 ) = (

∑ 𝑾̃𝒑,𝒕𝒏
𝑿 𝑷𝑿,𝒑,𝒕𝒏

𝒘𝑵𝒑
𝒑=𝟏

∑ 𝑾̃𝒑,𝒕𝒏
𝑽 𝑷𝑽,𝒑,𝒕𝒏

𝒘𝑵𝒑
𝒑=𝟏

)  

6.4.8 Past State Correction 

Every new image, together with the IMU data between the current and past 

images, can provide valuable information about the past state of the system. 

This information can be used to update the past system state, which in turn can 

influence the current system state through the state-space model. The 

properties of epipolar geometry for continuous motion are used to serve this 

purpose. This section provides an overview of the relevant background 

information and presents a solution for correcting the past state of the system 

based on the properties of epipolar geometry for continuous motion. 
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6.4.8.1 Continuous Motion and Epipolar Geometry 

Static points in 3D space, from the point of view of a moving camera, appear to 

have a 3D motion.  Suppose Qw is a fixed point with homogenous coordinates 

with respect to the world frame. As explained earlier, the same point has a 

different coordinate vector with respect to the camera frame, Qc, which relates 

to the world frame representation by a transformation matrix Gcw: 

(6.131) 𝑸𝒄 = 𝑮𝒄𝒘𝑸𝒘         

(6.132) 𝑮𝒄𝒘 = (
𝑹𝒄𝒘 𝑻𝒄𝒘

𝟎 𝟏
) ∈ ℝ𝟒×𝟒      

(6.133) 𝑮𝒄𝒘−𝟏 = (𝑹
𝒄𝒘𝑻 −𝑹𝒄𝒘𝑻𝑻𝒄𝒘

𝟎 𝟏
)      

 

Computing the time derivative of equation (6.131) (note that 𝑄𝑤 is a constant 

value vector) and substituting into equation (6.131) results in the following: 

(6.134) 𝑸̇𝒄 = 𝑮̇𝒄𝒘𝑸𝒘         

(6.135) 𝐐̇𝐜 = 𝐆̇𝐜𝐰𝐆𝐜𝐰−𝟏 𝐐𝐜      

In order to simplify the equation, the superscripts are omitted. The 

transformation matrix is then replaced by the equivalent as follows: 

(6.136) 𝐐̇𝐜 = 𝐆̇ 𝐆−𝟏𝐐𝐜        

(6.137) 𝐆̇ 𝐆−𝟏 = (𝐑̇𝐑
𝐓 𝐓̇ −  𝐑̇𝐑𝐓𝐓
𝟎 𝟎

)       

 

It can be shown that 𝑅̇𝑅𝑇 is the angular velocity skew-symmetric matrix and 

𝑇̇ −   𝑅̇𝑅𝑇𝑇  is the linear velocity vector (Ma, et al., 2004).  

(6.138) 𝛚̂(𝐭) = 𝐑̇𝐑𝐓 = (

𝟎 −𝛚𝐳 𝛚𝐲
𝛚𝐳 𝟎 −𝛚𝐱
−𝛚𝐲 𝛚𝐱 𝟎

)     

(6.139) 𝐯(𝐭) = 𝐓̇ −  𝛚̂(𝐭)𝐓 = (

𝐯𝐱
𝐯𝐲
𝐯𝐳
)   

  

Therefore (6.136) is re-written as follows:   
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(6.140) 𝐐̇  = (
𝛚̂(𝐭) 𝐯(𝐭)
𝟎 𝟎

)𝐐    

     

Here Q is redefined to be a vector with 3 elements, consequently the above 

equation becomes:  

(6.141) 𝐐̇(𝐭)  = 𝛚̂(𝐭)𝐐(𝐭) + 𝐯(𝐭)   

 

6.4.8.2 A Method for Past State Correction 

The epipolar geometry for continuous motion and its associated equation 

(6.141) form the basis of the past state correction method proposed here. 

Suppose Q = (X, Y, Z)T is a static point in 3D space. Equation (6.141) is 

expanded as follows: 

(6.142) 𝑸̇ = (
𝑿̇
𝒀̇
𝒁̇

)  = (

𝟎 −𝝎𝒛    𝝎𝒚
  𝝎𝒛 𝟎 −𝝎𝒙
−𝝎𝒚    𝝎𝒙 𝟎

)(
𝑿
𝒀
𝒁
) + (

𝒗𝒙
𝒗𝒚
𝒗𝒛
)  

  

(6.143) (
𝑿̇
𝒀̇
𝒁̇

)  = (

𝒗𝒙 − 𝝎𝒛𝒀 + 𝝎𝒚𝒁 

𝒗𝒚 + 𝝎𝒛𝑿 − 𝝎𝒙𝒁

𝒗𝒛 − 𝝎𝒚𝑿 + 𝝎𝒙𝒀
)      

Note that the reference to t is dropped for simplicity. Assuming that (𝑞𝑥, 𝑞𝑦)
𝑇
 

and (𝑥, 𝑦)𝑇  are the corresponding un-calibrated and calibrated pixel coordinates 

of a 3D point 𝑄: 

(6.144) (
𝒙
𝒚) =

𝟏

𝒁
(
𝑿
𝒀
) = 𝒇𝑲−𝟏 (

𝒒𝒙
𝒒𝒚
) 

 

Without loss of generality the image plane is considered to be at 𝑓 = 1.  Now, 

using the image velocity vector (𝑢, 𝑣)𝑇 the above equation is formulated as 

follows: 

(6.145) (
𝒖
𝒗
) = (

𝒙̇
𝒚̇
) 
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Considering (6.144) the above equation can be expressed as follows: 

(6.146) (
𝒖
𝒗
) =

𝟏

𝒁
(𝑿̇
𝒀̇
) −

𝒁̇

𝒁𝟐
(
𝑿
𝒀
) 

 

Substituting equations (6.143) into (6.146) results in the equation (6.147). This 

equation is decomposed into translational and rotational components as per 

(6.148). The rotational component solely depends on the angular velocity and 

pixel information. The translational element only depends on the depth and 

linear velocity.  

(6.147) (
𝒖
𝒗
) =

𝟏

𝒁
(
𝒗𝒙 − 𝝎𝒛𝒀 + 𝝎𝒚𝒁

𝒗𝒚 + 𝝎𝒛𝑿 − 𝝎𝒙𝒁
) −

𝒗𝒛− 𝝎𝒚𝑿+ 𝝎𝒙𝒀

𝒁𝟐
(
𝑿
𝒀
) 

(6.148) (
𝒖
𝒗
) = (

𝒖𝑻
𝒗𝑻
) + (

𝒖𝑹
𝒗𝑹
) 

(6.149) (
𝒖𝑻
𝒗𝑻
) = (

𝒗𝒙−𝒗𝒛𝒙

𝒁
𝒗𝒚−𝒗𝒛𝒚

𝒁

) 

(6.150) (
𝒖𝑹
𝒗𝑹
) = (

𝝎𝒚 −𝝎𝒛𝒚 − 𝝎𝒙𝒙𝒚 + 𝝎𝒚𝒙
𝟐

−𝝎𝒙 +𝝎𝒛𝒙 + 𝝎𝒚𝒙𝒚 − 𝝎𝒙𝒚
𝟐) 

 

By knowing the angular velocity and the 2D coordinates of the 3D point, 𝑢𝑅 and 

𝑣𝑅 can easily be calculated. Vector (𝑢, 𝑣)𝑇, the image velocity vector, is also 

known from optical flow between the two consecutive images (see section 

6.3.3). Consequently the translational component for each feature point can be 

formulated as follows:  

(6.151) (
𝒖𝒎,𝑻
𝒗𝒎,𝑻

) = (
𝒖𝒎
𝒗𝒎
) − (

𝒖𝒎,𝑹
𝒗𝒎,𝑹

) , 𝒎 ∈ (𝟏…𝑵𝒇)  

 

On the other hand, considering equation (6.149), vector (𝑢𝑚,𝑇 , 𝑣𝑚,𝑇)
𝑇 for each 

feature point 𝑚 ∈ (1…𝑁𝑓) can be expressed as follows: 

(6.152) (
𝒖𝒎,𝑻
𝒗𝒎,𝑻

) =

(

  
 

 𝒗𝒙
𝒗𝒛
  −   𝒙𝒎

𝒁𝒎
  . 𝒗𝒛

𝒗𝒚

𝒗𝒛
   −  𝒚𝒎

𝒁𝒎
  . 𝒗𝒛)

 ,𝒎 ∈ (𝟏…𝑵𝒇)   
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Taking into account the properties of FoE, and equation (6.67), it is apparent 

that (
𝑣𝑥

𝑣𝑧
,
𝑣𝑦

𝑣𝑧
)
𝑇

is in fact the coordinate vector of 𝐹𝑜𝐸𝑡𝑛−1
𝑐 = (𝑥𝐹𝑜𝐸𝑡𝑛−1

𝑐 , 𝑦𝐹𝑜𝐸𝑡𝑛−1
𝑐 ). 

Therefore (6.152) can be formulated as follows:  

 

(6.153) (
𝒖𝒎,𝑻
𝒗𝒎,𝑻

) = (

𝒙𝑭𝒐𝑬𝒕𝒏−𝟏
𝒄 −𝒙𝒎

𝒁𝒎
𝒗𝒛

𝒚𝑭𝒐𝑬𝒕𝒏−𝟏
𝒄 −𝒚𝒎

𝒁𝒎
𝒗𝒛

) ,      𝒎 ∈ (𝟏…𝑵𝒇)   

 

𝑢𝑚,𝑇 and 𝑣𝑚,𝑇 are derived from (6.152). 𝑥𝑚 and 𝑦𝑚 are the coordinates of the 

feature points tracked by optical flow at time 𝑡𝑛, and therefore known. 

Consequently all parameters of equation (6.153) are known, except for 𝑍, which 

leads to the following equation for deriving 𝑍.  

(6.154) (
𝒁𝒎,𝟏
𝒁𝒎,𝟐

) = −(

𝒙𝑭𝒐𝑬𝒕𝒏−𝟏
𝒄 −𝒙𝒎

𝒖𝒎,𝑻
𝒗𝒛

𝒚𝑭𝒐𝑬𝒕𝒏−𝟏
𝒄 −𝒚𝒎

𝒗𝒎,𝑻
𝒗𝒛

) ,      𝒎 ∈ (𝟏…𝑵𝒇)  

 

In theory 𝑍𝑚,1 and 𝑍𝑚,2 should be the same; however in practice due to feature 

detection error these values may differ, therefore 𝑍 is considered to be the 

average of the two values: 

(6.155)  𝒁𝒎,𝒕𝒏−𝟏 = 
𝒁𝒎,𝟏+𝒁𝒎,𝟐

𝟐
 

 

The 𝑍 value can only be calculated for the previous sampling time, 𝑡𝑛−1,  but not 

the current one, 𝑡𝑛. This is not useful for estimating the current state of the 

system, however it gives the system a chance to correct for the accumulated 

error over time.  
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Using the calibrated pixel coordinates of a feature point (𝑥𝑚,𝑡𝑛−1 , 𝑦𝑚,𝑡𝑛−1)
𝑇at time 

𝑡𝑛−1 and the depth 𝑍𝑚,𝑡𝑛−1 as per (6.155), the 3D coordinate vector of point 𝑄𝑚 

can be estimated as follows:  

(6.156) 𝑸̂𝒎
𝒄𝒕𝒏−𝟏 = 𝒁𝒎,𝒕𝒏−𝟏 (

𝒙𝒎,𝒕𝒏−𝟏
𝒚𝒎,𝒕𝒏−𝟏
𝟏

) 

 

The same technique for calculating depth is also applied to the key image: 

(6.157) 𝑸̂𝒎
𝒌 = 𝒁𝒎,𝒕𝒌 (

𝒙𝒎,𝒕𝒌
𝒚𝒎,𝒕𝒌
𝟏
) 

 

Referring again to the concept of rigid body transformation (see section 6.1), the 

transformation equation between the key image and the image at time 𝑡𝑛−1 is: 

(6.158) 𝑸̂𝒎
𝒌 = 𝑻̂𝒎,𝒕𝒏−𝟏

𝒌𝑪𝒕𝒏−𝟏 +𝑹𝒕𝒏−𝟏
𝒌𝑪𝒕𝒏−𝟏𝑸̂𝒎

𝒄𝒕𝒏−𝟏 ,      𝒎 ∈ (𝟏…𝑵𝒇)  

 

Rtn
kCtn−1  is known using the method outlined in section 6.3.4. Therefore by 

combining equations (6.156) to (6.158), the translation vector at the time of past 

image (tn−1) for each feature point can be estimated as follows: 

(6.159) 𝐓̂𝐦,𝐭𝐧−𝟏
𝐤𝐂𝐭𝐧−𝟏 = 𝐐̂𝐦

𝐤 − 𝐑𝐭𝐧−𝟏
𝐤𝐂𝐭𝐧−𝟏𝐐̂𝐦

𝐜𝐭𝐧−𝟏 ,      𝐦 ∈ (𝟏…𝐍𝐟)  

 

In theory 𝑇̂𝑚,𝑡𝑛−1
𝑘𝐶𝑡𝑛−1   should be the same for all feature points, however, due to 

noise and error in the system in practice these vectors may differ. Therefore the 

translation vectors 𝑇̂𝑚,𝑡𝑛−1
𝑘𝐶𝑡𝑛−1  are treated like the position vector of particles and 

evaluated for correctness using the properties of FoE (see section 6.4.4.1). As 

𝑇̂𝑚,𝑡𝑛−1
𝑘𝐶𝑡𝑛−1  is a possible solution for the translation vector between the key and past 

images, its associated FoE must be close to 𝐹𝑜𝐸𝑡𝑛−1
𝑘 . According to (6.66) the 

associated FoE for 𝑇̂𝑚,𝑡𝑛−1
𝑘𝐶𝑡𝑛−1   is defined as:  
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(6.160)    𝑭𝒐𝑬̂𝒎,𝒕𝒏−𝟏
𝒌 = 

(

  
 
  

𝑻̂𝒙,𝒎,𝒕𝒏−𝟏

𝒌𝑪𝒕𝒏−𝟏

𝑻̂𝒛,𝒎,𝒕𝒏−𝟏

𝒌𝑪𝒕𝒏−𝟏

𝑻̂𝒚,𝒎,𝒕𝒏−𝟏

𝒌𝑪𝒕𝒏−𝟏

𝑻̂𝒛,𝒎,𝒕𝒏−𝟏

𝒌𝑪𝒕𝒏−𝟏

 

)

  
 
  

where 

   𝑻̂𝒎,𝒕𝒏−𝟏
𝒌𝑪𝒕𝒏−𝟏 =  

(

 
 
  

𝑻̂𝒙,𝒎,𝒕𝒏−𝟏
𝒌𝑪𝒕𝒏−𝟏

𝑻̂𝒚,𝒎,𝒕𝒏−𝟏
𝒌𝑪𝒕𝒏−𝟏

𝑻̂𝒛,𝒎,𝒕𝒏−𝟏
𝒌𝑪𝒕𝒏−𝟏

  

)

 
 
,      𝒎 ∈ (𝟏…𝑵𝒇) 

 

𝐹𝑜𝐸𝑡𝑛−1
𝑘  has been calculated at time 𝑡𝑛−1 and is known. The distance between 

𝐹𝑜𝐸̂𝑚,𝑡𝑛−1
𝑘  and 𝐹𝑜𝐸𝑡𝑛−1

𝑘  serves as a score for 𝑇̂𝑚,𝑡𝑛
𝑘𝐶𝑡𝑛−1 .  

(6.161) 𝚪𝒎
𝑻 = ‖𝑭𝒐𝑬̂𝒎,𝒕𝒏−𝟏

𝒌 − 𝑭𝒐𝑬𝒕𝒏−𝟏
𝒌 ‖,      𝒎 ∈ (𝟏…𝑵𝒇)     

A weight is then assigned to each feature point and the result is normalised. 

(6.162) 𝑾𝒎,𝒕𝒏−𝟏
𝑻 =  𝟏

𝚪𝒎𝑻
⁄                        ,    𝒎 ∈ (𝟏…𝑵𝒇)         

(6.163) 𝑾̃𝒎,𝒕𝒏−𝟏
𝑻 =  

𝑾𝒎,𝒕𝒏−𝟏
𝑻

∑ (𝑾𝒎,𝒕𝒏−𝟏
𝑻 )

𝟐𝑵𝒇
𝒎=𝟏

      ,    𝒎 ∈ (𝟏…𝑵𝒇)         

Finally the correct translation vector between the reference frame and previous 

image frame is estimated using the weighted summation: 

(6.164)  𝑻𝒎,𝒕𝒏−𝟏
𝒌𝑪𝒕𝒏−𝟏 = ∑ 𝑾̃𝒎,𝒕𝒏

𝑻 𝑻̂𝒎,𝒕𝒏−𝟏
𝒌𝑪𝒕𝒏−𝟏𝑵𝒇

𝒎=𝟏
 

 

𝑻𝒎,𝒕𝒏
𝒌𝑪𝒕𝒏−𝟏  is a vector with respect to the key image reference frame. Therefore the 

estimated position of the camera at time 𝑡𝑛−1 with respect to the world frame is: 

(6.165)  𝑿̂𝒕𝒏−𝟏
𝒘 = 𝑻𝒕𝒌

𝒘𝒌 + 𝑹𝒕𝒏
𝒘𝒌𝑻𝒎,𝒕𝒏

𝒌𝑪𝒕𝒏−𝟏        
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6.4.9 A Mechanism for Selecting the Method of Tracking 

In this chapter a solution for hybrid tracking using fused IMU and vision data 

has been presented. However, when the vision system cannot provide sufficient 

accurate tracking information, the hybrid system will no longer be suitable and 

IMU-based tracking must be used on its own until the current circumstances are 

changed by the arrival of new images. Furthermore, the past state correction 

method described in section 6.4.8 does not always provide a reliable outcome, 

therefore certain criteria need to be met before the past state is corrected. 

These issues have led to the design of a mechanism and definition of a number 

of criteria to determine the best method for tracking at any particular time. 

6.4.9.1 Criteria for Determining the Method of Tracking  

The criteria for determining the method of tracking are mainly related to the 

quality of the FoE. This section provides a list of criteria, which must be met 

before hybrid tracking or past state correction is applied, otherwise the system 

continues with IMU-only tracking until a new image becomes available and 

criteria for hybrid tracking are satisfied.  

6.4.9.1.1 Angle of Motion 

In order to effectively evaluate position and velocity vectors of particles, 𝐹𝑜𝐸𝑡𝑛
𝑘  

and 𝐹𝑜𝐸𝑡𝑛
𝑐  must exist (see section 6.4.4). Referring to section 6.3.3.3.1, when 

the translation vector, 𝑇𝑡𝑛
𝑤,𝑘𝑐

, between the key and current images is parallel to 

the key image plane, 𝐹𝑜𝐸𝑡𝑛
𝑘  does not exist. To check for this condition, the angle 

between the key image plane and 𝑇𝑡𝑛
𝑤,𝑘𝑐

 is estimated using equation (6.68) as 

follows. 

 (6.166) 𝜽𝑻,𝒕𝒏 =
𝝅

𝟐
− 𝒄𝒐𝒔−𝟏

𝑻̂𝒕𝒏
𝒘,𝒌𝒄𝑵𝒕𝒌

𝒘

‖𝑻̂𝒕𝒏
𝒘,𝒌𝒄‖

  ,     𝑻̂𝒕𝒏
𝒘,𝒌𝒄 = 𝑿𝒕𝒏−𝟏+𝑵𝒊𝜹𝒕

𝒘 − 𝑿𝒕𝒌
𝒘  
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𝑇𝑡𝑛
𝑤,𝑘𝑐

 is the translation vector between the current and key images with respect 

to the world frame. Note that this angle is calculated before the application of 

hybrid tracking and therefore the only available source of tracking information 

for the camera at the time is 𝑋𝑡𝑛−1+𝑁𝑖𝛿𝑡
𝑤  estimated by the IMU using equation 

(6.49) 𝑋𝑡𝑘
𝑤  is the camera pose at the time of the key image acquisition and 𝑁𝑡𝑘

𝑤 is 

the key image unit normal vector with respect to the world frame. 

 

Similarly when the velocity vector, 𝑣𝑡𝑛
𝑤 , is parallel to the past image plane, 𝐹𝑜𝐸𝑡𝑛

𝑐  

does not exist. To check for this condition, the angle between the past image 

plane and 𝑣𝑡𝑛
𝑤  is estimated using equation (6.69) as follows.  

 (6.167) 𝜽𝒗,𝒕𝒏 =
𝝅

𝟐
− 𝒄𝒐𝒔−𝟏

𝒗̂𝒕𝒏
𝒘 𝑵𝒕𝒏−𝟏

𝒘

‖𝒗̂𝒕𝒏
𝒘 ‖

  ,     𝒗̂𝒕𝒏
𝒘 = 𝑽𝒕𝒏−𝟏+𝑵𝒊𝜹𝒕

𝒘  

Vtn−1+Niδt
w  is the camera speed estimated by the IMU using equation (6.49) 

Ntn−1
w is the past image unit normal vector with respect to the world frame. θT,tn 

and θv,tn angles greater than a threshold level, θth, indicate that the associated 

FoE, FoEtn
k or FoEtn

c  exists, therefore hybrid tracking can be used. 

6.4.9.1.2 Distance between FoE and Flow Lines 

Another measure used for evaluating the effectiveness of hybrid tracking is the 

average distance between the estimated FoE point and the flow lines (see 

section 6.3.3.3.2). Equation (6.70) is used to provide the average distances, 

𝑑𝐹𝑜𝐸𝑡𝑛
𝑘  for 𝐹𝑜𝐸𝑡𝑛

𝑘 = (𝑥𝐹𝑜𝐸𝑡𝑛
𝑘 , 𝑦𝐹𝑜𝐸𝑡𝑛

𝑘 )𝑇 and 𝑑𝐹𝑜𝐸𝑡𝑛
𝑐  for 𝐹𝑜𝐸𝑡𝑛

𝑐 = (𝑥𝐹𝑜𝐸𝑡𝑛
𝑐 , 𝑦𝐹𝑜𝐸𝑡𝑛

𝑐 )𝑇. 

(6.168) 𝒅𝑭𝒐𝑬𝒕𝒏
𝒌 =

𝟏

𝒎
 
√
∑

(𝒂𝒌,𝒎𝒙𝑭𝒐𝑬𝒕𝒏
𝒌 +𝒃𝒌,𝒎𝒚𝑭𝒐𝑬𝒕𝒏

𝒌 +𝒄𝒌,𝒎)

𝟐

𝒂𝒌,𝒎
𝟐 +𝒃𝒌,𝒎

𝟐

𝑵𝒌,𝒇
𝒎=𝟏

  

(6.169) 𝒅𝑭𝒐𝑬𝒕𝒏
𝒄 =

𝟏

𝒎
 √∑

(𝒂𝒄,𝒎𝒙𝑭𝒐𝑬𝒕𝒏
𝒄 +𝒃𝒄,𝒎𝒚𝑭𝒐𝑬𝒕𝒏

𝒄 +𝒄𝒄,𝒎)
𝟐

𝒂𝒄,𝒎
𝟐 +𝒃𝒄,𝒎

𝟐

𝑵𝒄,𝒇
𝒎=𝟏
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(ak,m, bk,m, ck,m) and (ac,m, bc,m, cc,m) are the flow line parameters for each 

feature point used for estimating FoEtn
k  and FoEtn

c . Nk,f and Nc,f are the number 

of common feature points between the current image and key or past images, 

respectively.  

 

In order to have a reliable hybrid tracking system both dFoEtn
k and dFoEtn

c must be 

smaller than a threshold value, 𝑑𝑡ℎ1. Otherwise the hybrid tracking is not 

effective and must be bypassed. This threshold is defined in terms of 

percentage of the focal length and is determined based on the performance 

requirements of the tracking system.  

6.4.9.1.3 Criteria for Past State Correction 

Provided that the FoE exists and has good quality, as explained in previous two 

sections, the hybrid tracking can be applied. However past state correction 

requires more stringent criteria to be met.  

 

a) The threshold for acceptability of quality of 𝐹𝑜𝐸𝑡𝑛−1
𝑐  based on 𝑑𝐹𝑜𝐸𝑡𝑛−1

𝑐 is 

defined at a much lower level, 𝑑𝑡ℎ2.  

b) 𝐹𝑜𝐸𝑡𝑛−1
𝑐 is compared with the IMU-based FoE, which is determined as 

follows:  

 

(6.170) 

𝐅𝐨𝐄𝑰𝑴𝑼,𝐭𝐧−𝟏
𝐜 =

(

 
 

𝒗̂𝒙,𝒕𝒏−𝟏

𝒄𝒕𝒏−𝟏

𝒗̂𝒛,𝒕𝒏−𝟏

𝒄𝒕𝒏−𝟏

𝒗̂𝒚,𝒕𝒏−𝟏

𝒄𝒕𝒏−𝟏

𝒗̂𝒛,𝒕𝒏−𝟏

𝒄𝒕𝒏−𝟏
)

 
 
, 𝒗̂𝒕𝒏

𝒄𝒕𝒏−𝟏 =

(

 
 
𝒗̂𝒙,𝒕𝒏−𝟏
𝒄𝒕𝒏−𝟏

𝒗̂𝒚,𝒕𝒏−𝟏
𝒄𝒕𝒏−𝟏

𝒗̂𝒛,𝒕𝒏−𝟏
𝒄𝒕𝒏−𝟏

)

 
 
= 𝑹𝒘𝒄𝒕𝒏−𝟏

−𝟏
𝑽𝒕𝒏−𝟐+𝑵𝒊𝜹𝒕
𝒘

 

 

If the distance between 𝐹𝑜𝐸𝑡𝑛−1
𝑐  and FoE𝑰𝑴𝑼,tn−1

c  is less than a threshold level, 

𝑑𝑡ℎ3, 𝐹𝑜𝐸𝑡𝑛−1
𝑐 is considered to have sufficient quality for the application of past 

state correction algorithm. 
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c) The difference between Zm,1 and Zm,2 must be small. This is checked by 

calculating the following parameter and comparing with a threshold 

 

 (6.171) 𝛂𝐭𝐧−𝟏 =
𝟏

𝐍𝐟
∑

𝐙𝐦,𝟏−𝐙𝐦,𝟐

 𝐙𝐦,𝟏+ 𝐙𝐦,𝟐

𝐍𝐟
𝐦=𝟏  

6.5 Summary  

This chapter presents the system architecture for a hybrid inertial-visual camera 

pose tracking system. A stochastic data fusion method has been employed for 

fusing IMU and vision data. This is based on particle filtering, where particles 

are selected via state-space model, kinematic motion equations and IMU 

characteristics. The particle evaluation is carried out using the properties of 

focus of expansion. In addition, a past state correction mechanism has been 

incorporated, which operates when new reliable image information become 

available. These concepts have been formulated in this chapter in a way to suit 

their intended application and designed algorithms.   

 

The focus of this chapter is on pose estimation when a new image is captured. 

The pose information between two images is provided by the IMU data and 

state-space model as outlined in section 6.2.1. The algorithm for estimating the 

pose when a new image is captured is summarised as follows: 

 

a) The past state correction criteria are evaluated and if applicable the state of 

the system at the time of the past image is updated (see section 6.4.8). 

Then the past particles are set to the updated past state.  

b) If the image-based FoE has a good quality, particle filtering is employed to 

estimate the current state of the system, otherwise the IMU-based 

estimation is used and the following steps are skipped.  

c) New particles are generated (see section 6.4.16.4.3) 
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d) The particles are evaluated (see section 6.4.4) 

e) A weight is assigned to each particle (see section 6.4.5) 

f) Re-sampling is applied if necessary (see section 6.4.6) 

g) The current state of the system is estimated using the weighted summation 

of all particles (see section 6.4.6) 

h) If the number of feature points in the current image is no longer adequate for 

a robust tracking, the key image is replaced by a more recent image (see 

section 6.3.5)  
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CHAPTER SEVEN 

 

7 Results and Analysis  

The hybrid tracking system proposed in previous chapters operates based on 

receiving sensory information from IMU and vision sensors and then fusing 

tracking data using focus of expansion and particle-filtering. In order to evaluate 

the performance of the camera tracking system, a set of IMU and vision sensory 

data needed to be presented to the system and the results compared with a set 

of ground truth pose and orientation data. This chapter sets out the framework 

for system validation and provides the tracking outcome and analysis using both 

synthetic and real data. System implementation, data generation and 

performance analysis were carried out using MATLAB. 

7.1 Generation of Synthetic Data 

In order to evaluate the performance of the system outlined in chapter 6, a set 

of simulation data was devised to be considered as the ground truth. This 

included a 3D trajectory for the camera position, a set of data for camera 

orientation and a set of feature points to be used by the image-based system. 

7.1.1 Feature Points 

The focus of the algorithm proposed in this thesis is on tracking and data fusion. 

Although feature tracking is an integral part of the system, the methods 

employed for this purpose are well established and widely used. Therefore in 
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this simulation a set of feature points with pre-defined 3D locations has been 

assumed. The camera parameters considered in this simulation were based on 

a typical 5MP camera such as the OV5650 camera used in the iPad4. The 

camera has been assumed to operate in a typical 720p mode at a maximum 

rate of 60fps. The 3D feature points were defined as in (7.1) using parameters 

a, b, c specified in (7.2). Figure 7.1 shows the 3D points. The feature points were 

placed in three layers at the height of 3, 4 and 5 meters. Each layer consists of 

169 feature points, each 0.5mx0.5m apart, in an array of 13x13 feature points. 

The feature points have been arranged in such a way that their density 

increases from layer 1 to layer 3.  

(7.1) 𝑭 = (
𝒂/(𝒄 − 𝟐)

𝒃/(𝒄 − 𝟐)
𝒄

)    

(7.2) 𝒂 ∈ (−𝟐𝒎:𝟎. 𝟓𝒎: 𝟒𝒎),   𝒃 ∈ (−𝟐𝒎:𝟎. 𝟓𝒎: 𝟒𝒎),   𝒄 ∈ (𝟑𝒎: 𝟏𝒎: 𝟓𝒎)    

  

Figure 7.1 : 3D feature points in space 

7.1.2 3D Position 

Based on the concept of Fourier transform, a continuous signal can be written 

as a series of sinusoid signals. Therefore the camera position was assumed to 
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be a sinusoid waveform in every direction with different amplitude, frequency 

and phase values for the three degrees of freedom as expressed by (7.3). 

(7.3) 𝑿𝒕
𝒘 = (

𝝆𝒙(𝟏 − 𝒄𝒐𝒔(𝟐𝝅𝒇𝒙𝒕 + 𝝋𝒙))

𝝆𝒚(𝟏 − 𝒄𝒐𝒔(𝟐𝝅𝒇𝒚𝒕 + 𝝋𝒚))

𝝆𝒛(𝟏 − 𝒄𝒐𝒔(𝟐𝝅𝒇𝒛𝒕 + 𝝋𝒛))

)  

(7.4) (

𝝆𝒙
𝝆𝒚
𝝆𝒛
) = (

𝟐
𝟎. 𝟓
𝟏
), (

𝒇𝒙
𝒇𝒚
𝒇𝒛

) = (
𝟎. 𝟓
𝟏

𝟎. 𝟐𝟓
), (

𝝋𝒙
𝝋𝒚
𝝋𝒛
) = (

𝟎
𝝅

𝟑
−𝝅

𝟓

)  

where 𝜌𝑥 , 𝜌𝑦, 𝜌𝑧 represent the amplitude, 𝑓𝑥, 𝑓𝑥 , 𝑓𝑥 the frequency and 𝜑𝑥, 𝜑𝑦, 𝜑𝑧 

the phase values of the camera position in three directions with respect to the 

world frame. In this example the parameters specified in equation (7.4) have 

been used. Figure 7.2 shows the camera trajectory together with the 3D points 

in space. 

 

Figure 7.2 : 3D camera trajectory. Blue and Red dots represent 3D feature points and camera 

ground truth trajectory 
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7.1.3 3D Orientation 

The camera orientation was simulated using quaternions. A quaternion defines 

the direction and angle of rotation. In this simulation the direction of rotation was 

defined using the cross product of two vectors. The first one was a unit vector in 

opposite direction to the gravity vector. The second one was the vector 

connecting the camera centre to a fixed point in space, which for the sake of 

simulation was taken to be at (0  0  2)𝑇: 

(7.5) 𝐕𝐪 =
𝐕𝟏×𝐕𝟐

‖𝐕𝟏×𝐕𝟐‖
,         𝐕𝟏 = (

𝟎
𝟎
𝟏
),    𝐕𝟐 = (

𝟎
𝟎
𝟐
) − 𝐗𝐜

𝐰   

 

The angle of rotation was set to take a sinusoid form as in equation (7.6). 

Therefore the quaternion was defined as per equation (7.7).  

 

Figure 7.3 : Camera axis of rotation.  ‘red circles’ and ‘blue lines’ represent the ‘camera motion 

trajectory’ and ‘axis of rotation’, respectively 
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Figure 7.3 shows the quaternion direction vector in blue lines for each point of 

the camera trajectory, based on the parameters as specified in equation (7.8). 

Figure 7.4 shows the camera orientation in three directions. 

(7.6) θq = Aθsin(2πfθt) 

(7.7) 𝑸 = [𝒄𝒐𝒔 (
𝜽𝒒

𝟐
) , 𝒔𝒊𝒏 (

𝜽𝒒

𝟐
)𝑽𝒒] 

(7.8) 𝑨𝜽 = 𝝅/𝟏𝟔,    𝒇𝜽 = 𝟎. 𝟓𝑯𝒛 

 

Figure 7.4 : 3D camera orientation, Roll, Pitch and Yaw, which have been illustrated by Blue, 

Green and Red  

 

The rotation matrix 𝐑𝐭
𝐰𝐜 can be easily derived from the quaternion (Mathworks, 

2014). Assuming a quaternion is described as per equation (7.9), the rotation 

matrix can be determined using equation (7.10). 

(7.9) 𝑸𝒕 = 𝒒𝟎 + 𝒊𝒒𝟏 + 𝒋𝒒𝟐 + 𝒌𝒒𝟑      
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(7.10) 𝑹𝒕
𝒘𝒄 = (

𝒒𝟎
𝟐 + 𝒒𝟏

𝟐 − 𝒒𝟐
𝟐 − 𝒒𝟑

𝟐 𝟐(𝒒𝟏𝒒𝟐 + 𝒒𝟎𝒒𝟑) 𝟐(𝒒𝟏𝒒𝟑 − 𝒒𝟎𝒒𝟐)

𝟐(𝒒𝟏𝒒𝟐 − 𝒒𝟎𝒒𝟑) 𝒒𝟎
𝟐 − 𝒒𝟏

𝟐 + 𝒒𝟐
𝟐 − 𝒒𝟑

𝟐 𝟐(𝒒𝟐𝒒𝟑 + 𝒒𝟎𝒒𝟏)

𝟐(𝒒𝟏𝒒𝟑 + 𝒒𝟎𝒒𝟐) 𝟐(𝒒𝟐𝒒𝟑 − 𝒒𝟎𝒒𝟏) 𝒒𝟎
𝟐 − 𝒒𝟏

𝟐 − 𝒒𝟐
𝟐 + 𝒒𝟑

𝟐

)  

7.1.4 2D Feature Points 

Once the camera position and orientation data were produced, the 2D feature 

points, as seen by the camera at time 𝑡𝑛, were calculated. To do so, the 

coordinates of each 3D point in space was transformed using the translation 

vector (𝑇𝑡𝑛
𝑤𝑐) and rotation matrix (𝑅𝑡𝑛

𝑤𝑐) to find the coordinates in the camera 

frame. 𝑇𝑡𝑛
𝑤𝑐 is in fact 𝑋𝑡𝑛

𝑤 ; the coordinates of the camera origin in world frame 

(per equation (7.3)). A pinhole camera perspective projection was then used to 

convert 3D points to 2D feature points. Finally a random noise was added to the 

coordinates of the 2D feature points to represent feature-tracking error.  

(7.11) 𝑭𝒎
𝒄 = (

𝑿𝑭,𝒎
𝒀𝑭,𝒎
𝒁𝑭,𝒎

) = 𝑹𝒕𝒏
𝒘𝒄−𝟏( 𝑭𝒎

𝒘 − 𝑻𝒕𝒏
𝒘𝒄),   𝑻𝒕𝒏

𝒘𝒄 = 𝑿𝒕𝒏
𝒘 ,     𝒎 = 𝟏:𝑵𝒇   

(7.12) 𝒑𝒕𝒏,𝒎 = 𝒇(

𝑿𝑭,𝒎

𝒁𝑭,𝒎
𝒀𝑭,𝒎

𝒁𝑭,𝒎

) + (
𝒆𝒏,𝒙
𝒆𝒏,𝒚

)   

Fm
w and Fm

c  are the 3D coordinates of a feature point in world and current 

frames, respectively. Figure 7.5 shows the 2D feature points in the first image in 

the un-calibrated camera view. In order to simplify the simulation, hereafter, 2D 

feature points are considered to be in calibrated camera view. However for 

simulation using an un-calibrated camera view, the intrinsic matrix (𝐾) can be 

used to provide simulated feature points. The tracking algorithm should in turn 

use (𝐾−1) to convert back to calibrated view.  
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7.1.5 Accelerometer Data 

By knowing Xt
w in closed form, as explained earlier, the true velocity and 

acceleration can be calculated as described in equations (7.13) and  (7.14): 

(7.13) 𝑽𝒕
𝒘 = 𝑿̇𝒕

𝒘 = (

𝟐𝝅𝝆𝒙𝒇𝒙𝒔𝒊𝒏(𝟐𝝅𝒇𝒙𝒕 + 𝝋𝒙)

𝟐𝝅𝝆𝒚𝒇𝒚𝒔𝒊𝒏(𝟐𝝅𝒇𝒚𝒕 + 𝝋𝒚)

𝟐𝝅𝝆𝒛𝒇𝒛𝒔𝒊𝒏(𝟐𝝅𝒇𝒛𝒕 + 𝝋𝒛)

)      

 

Figure 7.5 : 2D feature points on the first image 

 

 (7.14) 𝑨𝒕
𝒘 = 𝑽̇𝒕

𝒘 = (

𝟒𝝅𝟐𝝆𝒙𝒇𝒙
𝟐𝒄𝒐𝒔(𝟐𝝅𝒇𝒙𝒕 + 𝝋𝒙)

𝟒𝝅𝟐𝝆𝒚𝒇𝒚
𝟐𝒄𝒐𝒔(𝟐𝝅𝒇𝒚𝒕 + 𝝋𝒚)

𝟒𝝅𝟐𝝆𝒛𝒇𝒛
𝟐𝒄𝒐𝒔(𝟐𝝅𝒇𝒛𝒕 + 𝝋𝒛)

)      

𝐴𝑡
𝑤 represents the acceleration vector in the world frame, whereas the IMU 

measures the acceleration in its own frame of reference. Besides, 𝐴𝑡
𝑤 above 

does not include the effect of gravity. To take these two factors into account, 

gravity vector 𝐺 = (0 0 𝑔) was added to 𝐴𝑡
𝑤 and the result was transformed to 
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the IMU frame using the rotation matrix in order to simulate the ground truth 

acceleration as measured by the accelerometer: 

(7.15) 𝑨𝒕
𝒄 = 𝑹𝒕

𝒄𝒘(𝑨𝒕
𝒘 + 𝑮)        

An accelerometer has certain characteristics that affect the measurement of the 

acceleration. The main parameters defining an accelerometer’s performance 

are ADC resolution, sensitivity, noise level, gain error, offset, drift, cross-axis 

sensitivity and temperature. The accelerometer measurement range can be 

initially set to give the most accurate value within the specified range. A typical 

accelerometer such as InvenSense MPU6500 can be set up to measure 

accelerations within ±2𝑔, ±4𝑔, ±8𝑔 and ±16𝑔. The main parameters of this 

accelerometer for the ±2𝑔 range have been detailed in Table 7-1 (InvenSense, 

2014). 

 

Parameter Value Description/Comments 

Sensitivity 16384 LSB/g 16-bit ADC, approx. 61𝜇𝑔/𝐿𝑆𝐵 

Non-linearity ±0.5% In all three axes 

Zero G offset tolerance ±60𝑚𝑔 In all three axes 

Zero G offset 

temperature drift 

±1𝑚𝑔/°𝐶 In all three axes 

Noise 300𝜇𝑔/√𝐻𝑧 For a bandwidth of 100Hz, the total 

noise level is around 3𝑚𝑔 

Table 7-1 :  Accelerometer Parameters 

 

In order to take these parameters into account, noise, offset, gain and 

quantisation error have been introduced into the ground truth acceleration 

described in equation  (7.14). Therefore the measured acceleration takes the 

following form: 

(7.16) 𝑨̃𝒕𝒏,𝒅
𝒄 = 𝒓𝒐𝒖𝒏𝒅(𝜼[(𝟏 + 𝒆𝒈,𝒅)𝑨𝒕𝒏,𝒅

𝒄 + 𝒆𝒏,𝒅 + 𝒆𝒐𝒔])/𝜼,    𝒅 = 𝒙, 𝒚, 𝒛 

𝐴𝑡𝑛,𝑑
𝑐  and 𝐴̃𝑡𝑛,𝑑

𝑐  represent the ground truth acceleration and measured value in 

every direction. 𝑒𝑔,𝑑 and 𝑒𝑜𝑠 are the gain and offset error values. 𝑒𝑛,𝑑 is a 
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random value representing noise. Noise was sampled from a normal distribution 

function with mean value of zero. The standard deviation depends on the 

accelerometer characteristics. 𝜂 is the coefficient converting the digital ADC 

output to acceleration. 𝑅𝑜𝑢𝑛𝑑(𝑥) is a function returning the integer value closest 

to 𝑥. 𝜂 and 𝑅𝑜𝑢𝑛𝑑(𝑥) are used to take into account the quantisation error. 

 

In applications where a high degree of accuracy is required, calibration at the 

factory level is not adequate. In order to minimise the offset and gain error the 

accelerometer must be further calibrated before being used in the system. The 

calibration method has been described in detail in STMicroelectronics AN3182 

application note (ST, 2010) 

 

Suppose (𝐴̃𝑡,𝑥
𝑐 , 𝐴̃𝑡,𝑦

𝑐 , 𝐴̃𝑡,𝑧
𝑐 )𝑇 represents the 3D acceleration vector measured by 

the accelerometer. Due to the offset, gain and axis misalignment errors the 

sensor output must be corrected using the following equation.  

(7.17) 𝑨̃𝒕
𝒄 = 𝑴

(

 
 

𝟏

𝑺𝒙
𝟎 𝟎

𝟎
𝟏

𝑺𝒚
𝟎

𝟎 𝟎
𝟏

𝑺𝒛)

 
 
(

𝑨̃𝒕,𝒙
𝒄 − 𝒆𝒐𝒔,𝒙

𝑨̃𝒕,𝒚
𝒄 − 𝒆𝒐𝒔,𝒚

𝑨̃𝒕,𝒛
𝒄 − 𝒆𝒐𝒔,𝒛

) 

M is the 3x3 misalignment matrix between the accelerometer sensing axes and 

the device body axes. 𝑆𝑥, 𝑆𝑦 and 𝑆𝑧 are the sensitivity factors. 𝑒𝑜𝑠,𝑥, 𝑒𝑜𝑠,𝑦 and 

𝑒𝑜𝑠,𝑧 are the offset error values in different directions. The simplified form of the 

above equation is:  

(7.18) 𝑨̃𝒕
𝒄 = (

𝜶𝟏𝟏 𝜶𝟏𝟐 𝜶𝟏𝟑
𝜶𝟐𝟏 𝜶𝟐𝟐 𝜶𝟐𝟑
𝜶𝟑𝟏 𝜶𝟑𝟐 𝜶𝟑𝟑

)(

𝑨̃𝒕,𝒙
𝒄

𝑨̃𝒕,𝒚
𝒄

𝑨̃𝒕,𝒛
𝒄

) + (

𝜷𝟏
𝜷𝟐
𝜷𝟑

) 

The goal of accelerometer calibration is to determine 𝛼 and 𝛽 parameters using 

6 known stationary orientations with known acceleration. In the example used in 

this chapter it was assumed that the accelerometer was calibrated before being 

used. The following values have been used for the parameters in equation 

(7.16). 
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(7.19) (

𝐞𝐠,𝒅
𝐞𝐨𝐬,𝒅
𝐞𝐧,𝒅
𝜼

) =

(

 
 

𝟎. 𝟓%
𝟔𝒎𝒈

𝑵(𝟎, 𝟏𝟎𝟎𝒎𝒈)
𝟐𝟏𝟓

𝟐𝒈 )

 
 

   𝒅 = 𝒙, 𝒚, 𝒛 

Figure 7.6 and Figure 7.7 show the accelerometer output and error in all three 

directions, respectively. 

 

Figure 7.6 : Accelerometer output along x, y and z axes, shown by ‘Blue’, ‘Green’ and ‘Red’  
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Figure 7.7 : Accelerometer error along x, y and z axes, illustrated by ‘Blue’, ‘Green’ and ‘Red’  

7.1.6 Gyroscope Data 

The gyroscope data was generated by calculating the quaternion difference 

between two consecutive IMU samples at 𝑡𝑛 and 𝑡𝑛−1 with time difference 𝛿𝑡.  

(7.20) 𝜹𝑸 = 𝑸𝒕𝒏−𝟏
∗ 𝑸𝒕𝒏/‖𝑸𝒕𝒏−𝟏‖    

In this equation 𝑄𝑡𝑛−1
∗  and ‖𝑄𝑡𝑛−1‖ are the conjugate and norm of 𝑄𝑡𝑛−1. δQ was 

then used to calculate the incremental rotation vector 𝜃 over δt. Angular velocity 

is expressed as in equation (7.21). Figure 7.8 shows the IMU angular velocity in 

three directions for the conditions stated in equations (7.5) to (7.8).  

(7.21) (

𝝎𝟏
𝝎𝟐
𝝎𝟑
) =

𝟏

𝜹𝒕
(

𝜽𝟏
𝜽𝟐
𝜽𝟑

)  

   

0 500 1000 1500 2000
-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

Sample number  (5ms each sample)

m
/s

2



188 
 

 

Figure 7.8 : Angular velocity shown by ‘Blue’, ‘Green’ and ‘Red’ around x, y and z axes 

7.2 Tracking Results and Analysis 

In this section the tracking output for the simulated system described in section 

7.1 is presented and analysed. The system incorporated the parameters set out 

in equations (7.2) to (7.8). The image system sampling rate was set to 50Hz. 

Figure 7.9 shows the tracking trajectory, ground truth and 3D points. The 

tracked trajectory closely followed the ground truth, however in some regions, 

where the population of feature points was less dense, the tracked trajectory 

deviated from the ground truth.  
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Figure 7.9 : Tracking trajectory. ‘3D points in space’, ‘Ground truth’ and the ‘Tracked trajectory’ 

have been illustrated by ‘Black’, ‘Blue’ and ‘Red’ dots, respectively. 

 

Figure 7.10 shows 3D camera position as the ground truth, hybrid system 

output and IMU-only tracking output. It can be seen that although the camera 

goes round the trajectory several times, the system returns back to low-error 

state and that there is no permanent tracking drift.  
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Figure 7.10 : Camera position along x,y and z axes shown in the first three images (top, middle, 

bottom) for the entire simulation, as well as the camera position shown in the bottom three 

images (left, middle, right) between samples 300 and 400. The ‘Blue’, ‘Red’ and ‘Green’ lines 

represent ‘Ground truth’, ‘Hybrid tracker’ and ‘IMU trajectories’. 
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7.2.1 Effect of FoE Quality on Tracking 

Focus of expansion plays an important role in the proposed solution in particular 

the particle evaluation. During tracking there will be circumstances where a 

valid FoE does not exist, requiring the hybrid tracking to be bypassed and IMU-

only take over. The hybrid system is capable of determining such cases. The 

red circles on the blue error line in Figure 7.11 indicate circumstances where 

the image-based system, due to the lack of a reliable FoE point, was not 

capable of providing additional information and therefore IMU-only tracking has 

taken over.   

 

Figure 7.11 shows the tracking error over 500 images. The camera has 

travelled approximately 48m and the average tracking error in x, y and z 

directions are as per Error! Reference source not found.. 

 

Mean error (cm) over total travelled distance of 48m 

3D pose X axis Y axis Z axis Error ratio 

3.6177 1.605 0.7321 3.1584 0.07% 

Table 7-2 : Tracking error 

 

Figure 7.12 shows that the distance between FoE and the flow lines 

dramatically increased when the angle between camera speed vector and 

image plane approached zero. Looking again at Figure 7.11 these points 

correspond to where the IMU-based tracking took over and the hybrid system 

was bypassed. 
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Figure 7.11 : Tracking error for IMU only system vs hybrid system. The top image shows the 

entire period of simulation, the middle one between samples 300 and 400, and the bottom one 

between 365 and 400, in order to provide more details. The ‘Blue’ and ‘Black’ dots illustrate the 

‘Hybrid’ and ‘IMU-only’ tracking error. The ‘Red’ circles show where the hybrid tracking has 

been bypassed and IMU tracking taken over.   
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Figure 7.12 : FoE average distance to flow lines vs the angle between the speed vector and 

image plane  

7.2.2 Effect of Image Sampling Time 

In the first example, the image was sampled at 50fps.  Here the image sampling 

rate was reduced to 25fps. Figure 7.13 shows the tracking error in this case. 

 

The camera has travelled approximately 48m and the average tracking error in 

x, y and z directions was as per Table 7-63. The results indicate that the 

average tracking error compared to the 50fps case has increased considerably 

(see Figure 7.11 for comparison). This was due to the fact that the error 

associated with the IMU-based tracking between two images increased with the 

increased camera sampling interval, resulting in a bigger region for particle 

selection and consequently less accurate particles. 

 

Mean error (cm) over total travelled distance of 48m 

3D pose X axis Y axis Z axis Error ratio 

9.3781 4.8227 2.5221 7.6374 0.19% 

Table 7-3 : Tracking error – Reduced sampling time 
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Figure 7.13 : Tracking error for ‘IMU-only’ system vs ‘hybrid’ system at 25fps. The top image 

shows the entire period of simulation, the middle one between samples 150 and 250, and the 

bottom one between 160 and 180, in order to provide more details. The ‘blue’ and ‘black’ dots 

illustrate the ‘hybrid’ and ‘IMU-only’ tracking error. The red circles show where the hybrid 

tracking has been bypassed and IMU tracking taken over. 
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7.2.3 Effect of Increased Acceleration 

In order to simulate a different amount of acceleration, the frequency 

parameters in equation (7.3) were doubled (see (7.22)). The result was four 

times peak acceleration. Figure 7.14 shows the acceleration in 3 directions.  

(7.22) (

𝒇𝒙
𝒇𝒚
𝒇𝒛

) = (
𝟏
𝟐
𝟎. 𝟓

)   

Figure 7.15 shows the angular velocity in this case. Figure 7.16 shows the 

tracking error over 500 image samples (10sec). The average tracking error over 

nearly 97m travelled in 10sec was as per Table 7-4. 

 

Mean error (cm) over total travelled distance of 97m 

3D pose X axis Y axis Z axis Error ratio 

6.6375 2.9661 0.7831 5.8860 0.068% 

Table 7-4 : Tracking error – Increased acceleration 

The error in this case was higher than the error in the initial example of this 

chapter. The reason was the increased acceleration and consequently a higher 

proportional level of error in the acceleration data. This created a bigger search 

area for the particles, which adversely affected the accuracy of the selected 

particles. In addition, the FoE distance in Figure 7.17 shows that there were 

more instances of circumstances when a valid FoE did not exist, leading to the 

hybrid tracking being bypassed and taken over by the IMU-based tracking. This 

was another reason for experiencing higher value errors. Nevertheless, even 

though the error level was higher, the hybrid tracking result showed a stable 

performance, with no permanent drift taking place. 
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Figure 7.14 : Accelerometer output along x, y and z axes, shown by blue, green and red lines 

 

Figure 7.15 : Angular velocity. Blue, green and red lines represent angular velocity around x, y 

and z axes. 
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Figure 7.16 : Tracking error for ‘IMU-only’ system vs ‘hybrid’ system for the case of increased 

acceleration. The top image shows the entire period of simulation, the middle one between 

samples 300 and 400, and the bottom one between samples 340 and 380 for the purpose of 

clarification. The ‘blue’ and ‘black’ dots illustrate the ‘hybrid’ and ‘IMU-only’ tracking error. The 

red circles show where the hybrid tracking has been bypassed and IMU tracking taken over. 
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Figure 7.17 : FoE average distance to flow lines vs the angle between the speed and image 

plane  

7.2.4 Effect of Increased Angular Velocity 

In order to simulate angular velocity with a higher peak value and frequency 

content, new axis of rotation and angle were defined for the quaternions as 

follows: 

(7.23) 𝐕𝐪 =
𝐕𝟏×𝐕𝟐

‖𝐕𝟏×𝐕𝟐‖
,         𝐕𝟏 = (

𝟎
𝟎
𝟏
),    𝐕𝟐 = (

𝟎
𝟏
𝟐
) − 𝐗𝐜

𝐰,   𝑨𝜽 = 𝝅/𝟖,    𝒇𝜽 = 𝟐𝑯𝒛  

 

Figure 7.18 shows the axes of rotation. Figure 7.19 shows the angular velocity 

for this case, which had a higher peak and changed at a significantly higher 

pace compared to the initial example given in this chapter.  Figure 7.20 shows 

the tracking error over the travelled distance. The average error was as per 

Table 7-5. 
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Mean error (cm) over total travelled distance of 48m 

3D pose X axis Y axis Z axis 

5.0106 2.3052 0.5525 4.4145 

Table 7-5 : Tracking error – Increased angular velocity 

 

Figure 7.18 : Camera axis of rotation. Red circles and blue lines represent the camera motion 

trajectory and axis of rotation, respectively 
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Figure 7.19 : Angular velocity shown by Blue, Green and Red around x, y and z axes 

 

In this case the tracking error was higher than the initial example, due to the fact 

that invalid FoE points occurred more often. Also, as a result of the fast 

changing angular velocity, the rotation matrix changed rapidly as well, resulting 

in a higher acceleration measured by the IMU and consequently a higher 

accelerometer error. This led to less accurate particle generation, which in turn 

increased the error value. 
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Figure 7.20 : Tracking error for IMU only system vs hybrid system for the case of increased 

acceleration. The top image shows the entire period of simulation and the middle one between 

samples 300 and 400 and the bottom image between samples 340 and 380, for the purpose of 

clarification. The blue and black dots illustrate the hybrid and IMU-only tracking error. The red 

asterisks show where the hybrid tracking has been bypassed and IMU tracking taken over. 
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7.3 Tracking Using Real Data 

Camera tracking has been the subject of numerous studies in the last few 

years. One of the most well-known works carried out in this regard is the sFly 

project funded by European Union through the Seventh Framework 

Programme, FP7:2007-2013 (Zürich, 2014).  The objective of the sFly project 

was to develop several small and safe helicopters, which could fly 

autonomously in city-like environments and be used to assist humans in tasks 

such as rescue and monitoring. The research team generated a number of 

datasets for evaluating their work. The main dataset produced during 

benchmarking (Lee, et al., 2010) is used in this section for evaluating the 

proposed hybrid tracking method.  

 

Each helicopter, which is referred to as a Micro Aerial Vehicle (MAV), had been 

equipped with an IMU and two cameras. The MAV was a “Pelican” quad-rotor 

from ©Ascending Technologies. This has a built-in MEMS IMU equipped with 3 

axis gyroscopes, 3 axis accelerometers and a magnetometer, which 

respectively give necessary measurements for the attitude rates, accelerations 

and the absolute heading. A filter within the IMU fuses the attitude rates, 

accelerations and heading at a rate of 1KHz to give absolute attitude 

measurements. The IMU provides acceleration, angular velocity and attitude 

data at 200Hz. 

 

In addition to the IMU, the MAV also incorporates two cameras, one forward-

looking and the other one downward-looking. The dataset selected for this 

evaluation only provides images seen by the downward looking camera. This 

camera has a fisheye lens with 150° field of view, running at a maximum frame 

rate of 30fps. Figure 7.21 shows the MAV with the integrated IMU and camera.  

 



203 
 

 

Figure 7.21 : Quad-rotor MAV with integrated IMU and camera 

 

7.3.1 System Setup 

In order to provide ground truth data, a Vicon tracking system with 8 cameras 

was setup by the sFly project team to track the MAV with three reflective 

markers in a 10m×10m×10m indoor environment. The three markers were the 

silver balls visible in the above picture. Pose estimation by the Vicon system 

was performed using a separate computer at a precise frequency of 200Hz. The 

Vicon system provides data concerning pose of the body frame with reference 

to the world frame. Figure 7.22 shows the world reference frame, also called the 

‘inertial frame’.  

 

The IMU, camera and MAV body all have different reference frames (see Figure 

7.21 for detail). In order to run the hybrid tracking algorithm, the IMU and Vicon 

data needed to be transformed to the camera reference frame. The IMU, 

camera and body frames are fixed to the MAV, therefore have fixed 

transformation matrices. The matrices transforming camera and IMU frames to 
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body frame are referred to as  𝐺𝑏𝑐 and 𝐺𝑏𝑖, respectively. The dataset specifies 

these two matrices as follows: 

(7.24) 𝑮𝒃𝒄 = (

−𝟎. 𝟎𝟐𝟗𝟑 −𝟎. 𝟗𝟗𝟖𝟗
−𝟎. 𝟗𝟗𝟗𝟔 𝟎. 𝟎𝟐𝟗𝟒

−𝟎. 𝟎𝟑𝟓𝟔 𝟎. 𝟎𝟑𝟔𝟒
−𝟎. 𝟎𝟎𝟐𝟐 −𝟎. 𝟎𝟏𝟐𝟐

𝟎. 𝟎𝟎𝟑𝟑 𝟎. 𝟎𝟑𝟓𝟔
𝟎 𝟎

−𝟎. 𝟗𝟗𝟗𝟒 −𝟎. 𝟐𝟑𝟓𝟒
𝟎 𝟏. 𝟎𝟎𝟎𝟎

)  

(7.25) 𝑮𝒃𝒊 = (

𝟏 𝟎
𝟎 𝟏

𝟎 𝟎
𝟎 𝟎

𝟎 𝟎
𝟎 𝟎

𝟏 −𝟎. 𝟎𝟒
𝟎 𝟏

)  

 

These two principal transformation matrices can be used to derive the matrices 

for transforming body and IMU frames to camera frame,  𝐺𝑐𝑏 and  𝐺𝑐𝑖, 

respectively: 

(7.26) 𝑮𝒄𝒃 = 𝑮𝒄𝒃
−𝟏

   

(7.27) 𝑮𝒄𝒊 = 𝑮𝒄𝒃𝑮𝒃𝒊  

 

 

Figure 7.22 The world reference frame (inertial frame) 
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The MAV camera needs to detect and track feature points in the environment in 

order to contribute to the hybrid tracking. To do so, ARToolkit markers have 

been placed flat on the floor as shown in Figure 7.23. The hovering MAV 

captures images of these markers; some of them shown in Figure 7.24. 

 

 

Figure 7.23 ARToolkit markers on the floor 

 

Figure 7.24 Some of the images captured by MAV 
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Image101 Image126 Image151 Image176

Image201 Image226 Image251 Image276

Image301 Image326 Image351 Image376
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Tracking was carried out for over 400 images with the maximum image capture 

rate set to 30Hz, giving a period of approximately 33ms between two 

consecutive images. This was the maximum capture rate and in practice 

images were captured at an integer multiple of the basic sampling time of 33ms. 

In the chosen dataset nearly half of the images have been sampled at 33ms 

intervals, another half at 66ms and the remaining few at 99ms. The acceleration 

and angular velocity with respect to the IMU frame have been depicted in Figure 

7.25 and 7.26.  

 

Figure 7.25 : Accelerometer data. The top, middle and bottom images illustrate acceleration 

along x, y and z axes, respectively 

7.3.2 Tracking Results 

The camera pose and orientation results using the proposed hybrid tracking 

system have been provided in Figure 7.27 and Figure 7.28. Figure 7.29 shows 

the tracked camera trajectory compared with the trajectory obtained from the 
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Vicon system. Table 7-6 shows the tracking RMS error over the travelled 

distance. 

 

Mean error (cm) over total travelled distance of 11.2m 

3D pose X axis Y axis Z axis 

5.9842 4.9028 8.9836 1.6405 

Table 7-6 : Tracking Error for SFLY data 

Figure 7.26 : Angular velocity. The top, middle and bottom images illustrate angular velocity 

round x, y and z axes, respectively 

As can be seen in Figure 7.28, the hybrid tracking system closely tracked the 
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Figure 7.27 : Camera orientation. The top, middle and bottom images illustrate camera 

orientation, Roll, and Pitch and Yaw with respect to world frame 

 

Figure 7.28 : Camera Pose. ‘Blue’, ‘Green’ and ‘Red’ graphs show camera pose along x,y, and z 

axes. The Black lines show the corresponding ‘Vicon ground truth’ data 
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Figure 7.29 : Camera trajectory. The ‘blue line’ and ‘red asterisks’ are the ‘Vicon ground truth’ 

and ‘hybrid tracking’ trajectories. 

7.3.3 Analysis 

As discussed in Chapter 6, the proposed hybrid tracking method incorporates a 

decision making process which selects the most suitable tracking method at any 

particular time from IMU only, particle filtering-based with or without past state 

correction. The angle between the camera speed vector and the image plane 

(θvn) is the major factor in making this decision. Figure 7.30 shows a graph 

illustrating this angle, with black dots indicating instances where the hybrid 

tracking has been bypassed and IMU-only tracking has taken over. These are 

areas where the average distance between the FoE point and flow lines was 

significant either due to the small angle between the speed vector and image 

plane or due to the bad quality of one of the two consecutive images.  
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Figure 7.30 : The angle between camera speed vector and image plane. The red circles show 

where there has been an invalid FoE 

 

Figure 7.31 : The angle between camera speed and image plane (image samples 365 to 385). 

The red circles show there has been an invalid FoE 
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Figure 7.31 shows more clearly θvn angle from image 365 to 385. The circle 

symbols show the instances of IMU-only tracking. For example, image 370 had 

a small θvn, therefore a reliable FoE point could not be found and therefore IMU 

only tracking was applied.  

 

Figure 7.32 : Low quality FoE, image number 377 with blurred edges 

 

 

Figure 7.33 : Good quality FoE, image number 379 with relatively sharp edges 

 

Low quality FoE, image no379 - with blurred edges

Good quality FoE, image no379 - with relatively sharp edges
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Figure 7.31 also shows that there were some instances, e.g. image 377, where 

despite having a large θvn, IMU only tracking was required. This was due to 

there being blurred edges in the image, which led to a less accurately tracked 

feature. Figures 7.32 and 7.33 show images with blurred and sharp edges, 

producing low and respectively good quality FoE points. Figure 7.33 shows that 

even though the image edges were not perfectly sharp, the algorithm still 

considered the quality of the produced FoE adequate and exhibited a good 

tracking performance (see Figure 7.28 between images 350 and 400). 

 

In addition to the switching between IMU only and hybrid tracking, the system 

also occasionally applies past state correction. This has been shown in Figure 

7.34. Black circles indicate where past state correction has applied. This figure 

shows that between images 160 to 170, past state correction has applied a 

number of times and on every occasion the error has reduced.   

 

Figure 7.34 : Tracking error between samples 150 to 180. The red circles indicate where past 

state correction has applied. 
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7.4 Comparison with Alternative Solutions  

Earlier in chapter 3, the Weiss VBN system (Weiss, 2012) was described as an 

advanced multi-sensor tracking technology. The system was developed as a 

part of the European sFly project and used for MAV trial flights. The Weiss VBN 

is based on fusing data from IMU and image-based tracking systems.  Here the 

Weiss tracking system is compared with our system in the principles of 

operation and the output results. 

 

The Weiss method treats the camera and IMU sensors independently and fuses 

the pose data from both sensors in an EKF framework. However like other 

vision-only systems, the estimated pose includes an un-known scaling factor. 

The independent image-based tracking is based on PTAM, which is 

computationally expensive, although faster than SLAM.  

 

The EKF-based system relies on fusing two independent decisions. However 

our system has an integrated supervisory system, where the best candidates 

(particles) are identified and independently evaluated. A combination of the best 

candidates is chosen as the final outcome. This method is more likely to 

produce good results due to the fact that a wide area is searched for the correct 

result and more than two solutions are used for making the final decision.   

 

The Weiss system implements a deterministic decision making process, 

whereas our system takes a stochastic approach. The downside of this method 

is the probability of particles being generated outside the region of optimum 

result. However this effect has been minimised by limiting the region of particle 

selection using IMU data and providing an effective supervision mechanism 

using the image-based system. 

 

The Weiss system includes a method to detect where the image-based system 

is not reliable. Our system also incorporates a similar concept, however multiple 

criteria have been introduced to provide a more comprehensive approach.   
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In the Weiss system, in order to mitigate the effect of the occasional drift, the 

use of additional sensors like compass, magnetometer and GPS have been 

suggested. Our system however provides a novel method of past state 

correction using continuous epipolar geometry and optical flow, where no 

additional sensor is required.  

 

The Weiss system considers both camera pose and inter-sensor states in the 

state vector. This is useful in some applications, however in most applications, 

in particular augmented reality, the camera and IMU are contained within one 

module (a mobile device for example). Therefore the inter-sensor parameters 

are known. Nevertheless such parameters can be calculated using accurate 

offline methods. As the Weiss system requires no off-line calibration, it has 

some benefits in applications where an MAV travels over a long time. Our 

system relies on off-line calibration, however due to the presence of accurate 

and effective off-line calibration methods the lack of on-line calibration is not a 

limiting factor.  Such methods can also apply during the operation of the MAV 

but as a background process, without affecting the real-time operation of the 

system. The sFly dataset used in this chapter provides an accurate measure of 

inter-sensor parameters (refer to 7.24 to 7.27). The camera intrinsic parameters 

have been assumed known in both Weiss and our method.  

 

The results presented in this chapter show a stable and accurate tracking 

performance, with an RMS error of less than 0.06% over 100m simulated 

travelled distance, which is an improved performance compared to the 0.1% 

error reported on PTAM or Visual SLAM. With regards to real data, Weiss 

applied the tracking method on an ellipsoid trajectory. The RMS error ratio over 

a travelled distance of 9.4m was approximately 0.6%. Our tracking method was 

also applied to the sFly trajectory, resulting in a tracking error ratio of 

approximately 0.54% over 11.2m travelled distance.   
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7.5 Summary 

This chapter provided a framework for evaluating the performance of the 

proposed hybrid tracking solution. In order to examine various aspects of the 

system, a set of synthetic ground truth data was created, from which the IMU 

and vision data were generated whilst taking account of their noise and error 

models. The synthetic data was used to examine the effect of various system 

parameters such as sampling rate, FoE quality, increased acceleration and 

angular velocity. The proposed solution was then applied to a set of real data 

provided by the sFly project. This dataset provided ground truth gathered by a 

Vicon system whilst IMU and image information was provided by the IMU and 

camera on-board the MAV. 

 

The results show a stable and accurate tracking performance, with the total 

mean error of approximately 3.6cm over 49m or 6.63cm over 97m distance, 

equivalent to around 0.07% of the travelled distance. Both cases exhibited a 

performance comparable with the reported error for PTAM (Klein & Murray, 

2007) but suitable for wide area applications with an improved computational 

cost. Using simulated data, various aspects of the system, such as the effect of 

quality of FoE, image sampling rate, as well as increased acceleration and 

angular velocity were examined. It was shown that the system can detect 

instances where a reliable FoE does not exist and switch autonomously to IMU-

only tracking. The result of experimentation using sFly real-world data also 

showed similar performance with error in the region of a few centimetres, 

comparable with the outcome of Weiss’s VBN system (Weiss, 2012), but with 

an improved computational cost. 
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CHAPTER EIGHT 

 

8 Conclusions, Discussion and Future Work 

8.1 Conclusions 

Pose tracking has a range of applications from augmented reality to navigation 

and control. Its widespread applications have been a driving factor and 

motivation for this PhD work.  The thesis has presented a framework for hybrid 

marker-less inertial-visual camera pose tracking with integrated sensor fusion, 

addressing a fundamental problem in computer vision and robotics. The main 

contribution of the work has been to provide a scalable solution for real-time 

wide-area tracking. 

 

In order to arrive at an improved pose tracking method, an in-depth 

investigation was conducted into current methods and the variety of sensors 

used for pose tracking. Alternative algorithms and methods were considered 

and analysed. Multisensory approaches were reviewed and a mobile GPS-

Visual SLAM tracking system was developed and evaluated for its potential 

suitability in wide-area tracking. A set of experiments carried out with this hybrid 

GPS-Visual tracking system has demonstrated the potential for utilising visual 

images from the real-world for obtaining more accurate GPS location on a 

mobile device. The fusion of GPS data with the Visual SLAM algorithm was 

found to enhance the performance over a GPS-only system. The multisensory 

approach improved the typical low range accuracy of GPS, although was found 

to suffer from cumulative error problems, especially in environments with less 
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distinctive visual features since, under these conditions, when the original 

reference scene moved too far out of view, Visual SLAM was not able to 

accumulate and maintain a sufficiently accurate map of the environment. A 

further experiment was conducted using wireless location tracking beacons 

based on ©Apple’s iBeacons as an alternative or supplement to GPS for 

achieving micro-location tracking in both indoor and outdoor environments. This 

experiment indicated a lower accuracy for micro-location estimation than would 

be hoped for, although somewhat better in accuracy than raw GPS and, of 

course, operable in GPS-denied environments.   

 

While wireless systems such as GPS enable location tracking at a macro level, 

location accuracy can be improved and orientation tracking can be achieved 

using a hybrid visual-inertial approach.  Multisensory systems comprising of 

both inertial devices (i.e. gyroscope and accelerometer) and camera(s) as 

motion sensors has proved suitable for use in pose recovery, despite the pros 

and cons of each of the individual components. An IMU can capture motion at a 

much faster rate than a typical camera. This makes an IMU a suitable sensor 

for detecting rapid motion. However, the pose estimate derived from an IMU 

exhibits significant drift over time, making it unsuitable as the sole sensor for 

tracking. On the other hand, vison-based tracking using camera as the motion 

sensor often provides robust and accurate pose information, although only up to 

determination of a scaling factor which arises due to the fact that image based 

systems lose a dimension during the 3D to 2D transformation. 

 

In this thesis, particle filtering was adopted as the method of data fusion and a 

state-space model was selected as the backbone of an improved tracking 

system proposal. In order to develop this new framework for tracking, the 

mathematical and physical principles used for particle selection and evaluation, 

state estimation and formation of decision-making criteria were formulated and 

presented in a fashion suited to the intended purpose.  
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The thesis has provided the details of such models and formulations, including; 

the particle evaluation and formation mechanisms, image formation and 

manipulation, 3D transformation and epipolar geometry. It has also covered the 

defined state-space model and the mathematical principles behind the system, 

in particular the concepts of optical flow focus of expansion and associated 

properties necessary for particle evaluation. A hybrid tracking system has then 

been designed and implemented consisting of an inertial system, a vision-based 

system and stochastic data fusion as its three main components. The design of 

the proposed system has been presented in detail. 

 

Finally, the work carried out to evaluate the performance of the system has 

been presented. This evaluation was conducted using both synthetic and real 

data. First a set of synthetic data was generated, reflecting real IMU and image 

sensor characteristics. The results show a stable and accurate tracking 

performance, with an RMS error of less than 0.06% over 100m travelled 

distance, which is an improved performance compared to the 0.1% error 

reported on PTAM or Visual SLAM. Using simulated data, various aspects of 

the system such as the effects of quality of the FoE, the image sampling rate, 

and increased acceleration and angular velocity were also examined. It was 

shown that the system performs as intended under a range of circumstances. 

The algorithm was also tested on real data using the dataset provided by the 

SFLY project, with the results showing a good performance compared with the 

error reported by the SFLY system developers (Scaramuzza, et al., 2014). 

8.2 Discussion  

The data fusion method utilised in this thesis was a stochastic data fusion 

technique based on recursive particle filtering. The proposed system had a non-

linear measurement model, which could not be linearised, making EKF-based 

sensor fusion not applicable. The proposed system incorporated an effective 

particle selection method and an enhanced particle evaluation mechanism. The 
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particles were selected from a proposal distribution function based on the 

transitional prior. The observation model was defined based on the properties of 

optical flow Focus of Expansion (FoE). This model offered a simple and 

effective method for extracting pose information from image sequences and 

optical flow, without having to retain a map of feature points in the environment. 

The particle evaluation method required three images, namely; key, past and 

current images. The combination of the key and current images was used for 

evaluating the position element of the particles. The key image mostly remained 

unchanged, resulting in a stable outcome, with low spatial noise and drift. The 

velocity element of the particles was evaluated using the current and past 

images which, due to the high number of tracked feature points between two 

consecutive images, provided a reliable evaluation.  

   

Measures were considered and applied in order to significantly reduce the 

computational cost of the sensor fusion and pose tracking. Firstly, the 

orientation of the camera was determined using an image-based 8-point 

algorithm independent from the state space equations. Secondly, the 

accelerometer characteristics such as offset and gain error were considered in 

the particle proposal distribution and, consequently, were removed from the 

state vector. The combined effect was a dramatically reduced state vector 

dimensionality from 28 to 6 (compared to the most recent hybrid system 

proposed by (Weiss, 2012)). In addition, the formation of FoE, in theory, only 

requires two feature points, although in practice, due to the image noise and 

feature detection error, outliers may develop and more than two points will be 

needed. Due to the use of 8-point algorithm, a minimum of 12 feature points 

were considered. This number of feature points, compared to the tracking 

methods such as SLAM and PTAM which rely on a high number of feature 

points, resulted in a lower computational cost at the same time retaining the 

effectiveness of the proposed algorithm. 

 

In addition to the core hybrid tracking, a novel past-state correction mechanism 

based on continuous epipolar geometry and focus of expansion was also 
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proposed, becoming operative when new reliable image data became available. 

This additional mechanism was beneficial in correcting system drift. The 

system, thus, incorporated a set of criteria which enabled the application of 

past-state correction when it was suitable to do so.  

 

The process of FoE determination also provided metrics for the quality and 

reliability of the FoE estimation, which were used to determine whether or not 

the vision-based system, at any particular instant, could provide sufficient 

information to influence the pose estimate. These measures were successfully 

utilised in order to develop a mechanism to automatically select the best 

tracking method from IMU-only, hybrid or hybrid with past-state correction at 

any given time.  

 

The proposed system was implemented and first evaluated using synthetic data 

and then using the real dataset provided by the SFLY project. The simulation 

data provided valuable insight into the operation of the algorithm and could be 

used as a benchmarking tool in any future development of this or other 

algorithms. The application of the tracking system to the sensory and ground 

truth data provided by the SFLY project demonstrated the effectiveness and 

accuracy of the proposed system. 

8.3 Future Work 

Seamless wide-area pose tracking: This work has addressed the use of IMU 

and vision sensors for hybrid pose tracking. Although the combination of these 

sensors shows encouraging results, none of the sensors alone provides an 

absolute estimate of pose with reference to the world frame. As discussed 

earlier, tracking methods such as GPS or sensors such as wireless beacons 

and magnetometers can provide some form of absolute pose with reference to 

the world frame. However, none of these sensors can provide accurate pose 

estimate on their own. Nevertheless, due to their nature, they can correct drift 
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error over long distances or when a vision-based tracker is incapable of 

contributing to the hybrid system. As future work, it is recommended that a 

fusion system be designed to include GPS and magnetometer data in addition 

to that from an IMU and camera, providing a more ubiquitous solution for 

tracking over extra-long distances in unknown outdoor and indoor 

environments. In such a system, a decision making engine would need to be 

designed to automatically switch from one or multiple sources of tracking to 

other sources, enabling a seamless tracking solution. 

 

Applications of pose tracking with significant impact: The applications of 

pose tracking are numerous, however the proposed hybrid tracking system, due 

to its effectiveness and low implementation cost, could be employed in 

applications that have significant social impact. Such applications include 

healthcare, keyhole surgery and location-tracking by emergency services in 

indoor places. However, the proposed algorithm, although scalable, still needs 

to be optimised for specific applications. As future work it is suggested that such 

applications be reviewed, their performance criteria identified, and relevant 

aspects of the hybrid tracking system’s algorithm and decision-making criteria 

optimised to suit each specific application.  

 

Active control for improved tracking performance: The performance of the 

proposed system relies on the quality and existence of an optical flow focus of 

expansion. For navigation and positioning applications, where the camera 

operates solely for the purpose of tracking, the camera could be motorised in 

order to enable the system to change the angle between the camera speed 

vector and image plane, hence ensuring the existence of a focus of expansion. 

This would require a closed-loop control system operating on the basis of a 

state-space model. The development of a combined tracking and control 

system could be a potential area for study with applications in robotics and un-

manned vehicle design. 
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Implementing an adaptive system: The presented framework offers a generic 

scalable solution for use across a wide range of applications. However, 

performance requirements will vary depending on application.  For a fully 

versatile tracking solution it is suggested that some of the system parameters 

be determined adaptively. For instance, in order to form a reliable point of focus 

of expansion, the distance between the corresponding feature points in the two 

images of interest must be significantly more than the feature detection error. 

For velocity-based focus of expansion, this is sometimes hard to achieve since 

the two consecutive images are often in close proximity. This could be solved 

by having an adaptive image sampling rate so that, when the travel speed is 

low, images are captured at a lower rate than when the speed is high. As future 

work it is suggested that all such aspects of the tracking system be identified 

and replaced by a suitable adaptive alternative. 

8.4 Final Remarks 

The aim of this PhD work was to propose a multisensory solution for pose 

tracking, which can potentially be used in wide-area and on mobile platforms. It 

is the author’s belief that considering the proposed framework, its 

implementation and evaluation, this aim has been achieved within the defined 

scope of the PhD program. However, as outlined above, some further work is 

still recommended in order create a completely robust and adaptive system, 

which can be used in unknown circumstances and commercial applications. 

Nevertheless, the author presents this work as a way forward and as a platform 

on which to base future research towards a fully comprehensive pose tracking 

technology. 
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Abstract—This paper proposes an algorithm for visual-inertial 

camera pose tracking, using adaptive recursive particle filtering. 

The method benefits from the agility of inertial-based and 

robustness of vision-based tracking. A proposal distribution has 

been developed for the selection of the particles, which takes into 

account the characteristics of the Inertial Measurement Unit 

(IMU) and the motion kinematics of the moving camera. A set of 

state-space equations are formulated, particles are selected and 

then evaluated using the corresponding features tracked by 

optical flow. The system state is estimated using the weighted 

particles through an iterative sequential importance resampling 

algorithm. For the particle assessment, epipolar geometry, and 

the characteristics of focus of expansion (FoE) are considered. In 

the proposed system the computational cost is reduced by 

excluding the rotation matrix from the process of recursive state 

estimations. This system implements an intelligent decision 

making process, which decides on the best source of tracking 

whether IMU only, hybrid only or hybrid with past state 

correction. The results show a stable tracking performance with 

an average location error of a few centimeters in 3D space.   

Keywords— motion tracking, camera pose tracking, 6DOF, 

Inertial, IMU, particle filtering, optical flow, focus of expansion, 

SLAM, PTAM,  

 

 INTRODUCTION  

A. Motivation 

 Camera pose tracking is an assisting technology in 
enabling the accurate and continuous recovery of the six degree 
of freedom (6DOF) position and orientation of a moving 
camera, with the most prominent challenges in real-time 
systems. The potential applications of accurate 6DoF pose 
tracking are numerous, including entertainment and immersive 
games, augmented reality, industrial maintenance and 
engineering, architecture, medicine, assisted living for the 
elderly, security, education, prototyping and autonomous 
navigation systems.  

  

Proposals and solutions for pose recovery have been so 
many in the past few decades. Among all, visual SLAM and 
PTAM based solutions provided reasonable accuracy 
especially for the Augmented Reality (AR) applications; 
however they were mostly reported to be limited in wide area 
tracking measurements and uncontrolled real-time localization 
due to the expensive computational cost involved [1], [2].  

Moreover, in recent years the hybrid systems consisting of  
low cost inertial measurement units (IMUs) and the robust and 
high-dimensional computer vision-aided algorithms have 
enhanced the performance and agility of the tracking systems 
[3], [4], [5]. Such solutions have also tackled the hurdles of 
real-time sensing and localization especially in GPS-denied 
environments [6], [7].  

Inertial-Visual Pose Tracking using 

Optical Flow-aided Particle Filtering 
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Advances in MEMS-based inertial sensors have enabled  
pose estimation in systems such as mobile robots or unmanned 
micro aerial vehicles (MAVs), often operating in so called 
‘urban canyon’ environments where GPS signals are either 
unavailable or unreliable. Recently, there has been substantive 
research and progress in autonomous MAVs such as the EU-
funded SFLY (Swarm of Micro Flying Robots) project, which 
consists of a micro flying robot using only one single on-board 
camera and an inertial measurement unit (IMU). This vision-
controlled MAV is capable of autonomous navigation in the 
GPS-denied environments [7]. 

In this paper, we propose a novel algorithm for single 
camera-pose tracking, addressing the integration of an IMU 
sensor to compensate for the deficiencies of the vision-based 
tracking system, while the inherent drift and accumulation 
errors are in turn rectified by the vision-aided. A set of state 
space equations are formulated considering the kinematics 
motion equations. With the aid of recursive particle filtering 
[8], [9] the state parameters (camera pose) are estimated and 
evaluated taking into account the geometry of two views 
(epipolar geometry modelled for a single moving camera at 
two locations). In assessing the estimated states, the 3D 
geometric constraint derived from the vision-aided system e.g. 
the optical flow lines and their focus of expansion (FoE) are 
carefully considered and incorporated in the tracking system. 
The overview of the algorithm and system architecture is 
illustrated in  

Figure 1 and detailed in sections 0 , 0 and 0. The 
experimental setup and results are described in section 0. 
Section 0 concludes by evaluating the final results based on a 
series of tests carried out as described in section 0.  

B. Related Work  

Traditionally, in computer vision systems, camera has been 
used as the only motion sensor for tracking. In the past 
decades, there have been several advances in computer vision-
based tracking techniques in order to recover the 2D/3D 
correspondences between successive images where two main 
approaches namely marker-based and marker-less were 
considered. The former is tracking fixed fiducial markers, 
which implicitly solves the tracking and localization because 
the markers and their relative 3D positions are known. Zhang 
et al [10] have carried out a comprehensive study on the 
approaches to marker-based tracking methods using fiducial 
markers. Examples include ARToolKit [11] and ARTag [12] 
planar fiducial markers, which are mainly used for camera 
tracking and solving the problem of image registration for AR. 

The marker-less approaches however use naturally 
distinctive features such as points, lines, edges, or textures 
whose 3D positions are not known. These systems use the 
naturally driven features for both motion estimation and 
localization. Comprehensive surveys on monocular camera 
pose tracking using only vision-based approaches have been 
carried out in [13], [14] and [15].   

Among all techniques, the developments of Visual SLAM 
(Simultaneous Localization and Mapping) or visual odometry 
and the PTAM (Parallel Tracking and Mapping) of Klein and 
Murray [2] can be referred to as the most relevant methods for 

localization with a single camera in 6DOF. In general the 
standard Davison‘s SLAM method [1] is based on tracking and 
localization of the ‘robot’ or ‘camera’ in an unknown 
environment while a map of the environment is constructed 
alongside tracking.  

The standard SLAM is sometimes referred to filter-based 
SLAM where Bayesian filters such as Kalman or Extended 
Kalman Filter (EKF) are used to infer the current state (pose) 
based on the current observation and past state of the system. 
The state estimation process generates uncertainty for both the 
features and the camera pose, which adds to the complexity of 
the system, making the process computationally expensive.  
For that reason such filter-based methods in the original 
format, are not applicable in real-time or wider area tracking 
applications.  However, PTAM, as an enhancement to the 
filter-based SLAM, splits the simultaneous localization and 
mapping tasks into two separate threads. The PTAM 
sometimes referred to as key-frame SLAM where the mapping 
thread uses a subset of all camera frames i.e. key-frames to 
build a 3D-point map of the surroundings. [16] demonstrates 
how key-frame SLAM outperforms the EKF-filter based 
SLAM. However, taking into account the bundle adjustment 
and online batch optimization approach, this process is still 
considered to be computationally expensive and therefore more 
applicable in smaller workspaces [2].  

The system proposed in this paper benefits from the 
advantages of both filter-based and key-frame based SLAM 
which will be described in the next section.  

OUR APPROACH  

The aim of the proposed system here is to estimate the 

6DOF pose of the camera, consisting of 3D position and 3D 

orientation, with reference to a fixed coordinate system referred 

to as the world frame. The system uses inertial and visual 

sensors, where the inertial sensor, IMU, is a combined 

accelerometer and gyroscope and the vision sensor is a 

monocular camera. The system collects sensory data and by 

fusing them provides the camera pose estimate. However, both 

visual and inertial sensors are influenced by measurement noise 

and error which affect the measurement accuracy. 

Image capture and feature tracking

Vision Based System

Focus of Expansion 
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Figure 1 : Sensor Fusion System Architecture 
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The noise and error cause the IMU-only tracking system to 
drift significantly over time, making it an unsuitable sensor to 
be solely used for camera tracking. On the other hand camera-
only tracking systems not only suffer from noise and 
measurement error, but also exhibit an inherent deficiency, 
which is the inability to estimate all 6 degrees of freedom. The 
camera-only systems provide 5 degrees of freedom, meaning 
that the estimate of the camera position can be provided up to a 
scaling factor.  

By combining the information gathered through the two 
sensors the shortcomings of either system can be addressed and 
a more accurate estimate of the camera pose estimated.  

Traditionally, Extended Kalman Filter (EKF) based 
methods have been used in inertial visual hybrid tracking 
systems [4]. However such methods require a high number of 
states to be estimated at every step, with significant 
computational cost. These methods also suffer from inaccuracy 
due to linearization, in particular during fast camera 
movements. The alternative approach PTAM also has the 
problem of image accumulation.  

In our approach we avoid the image accumulation by using 
only three images; namely, reference, past and current. The 
reference image remains constant until its feature points can no 
longer be tracked. The three-image approach improves the 
stability of the tracking process.   

The proposed method benefits from the concept of focus of 
expansion (FoE), which due to the way it has been calculated 
directly provides the measurement error. It also provides a 
means of determining whether the current image information is 
accurate enough to be used for performing data fusion at a 
particular time (see section E). The observation function 
however is a non-linear complex function, which cannot be 
effectively linearized through EKF. Therefore the EKF cannot 
be applied and instead an adapted particle-filtering based 
method is utilized for the sensor fusion. 

A state correction mechanism has been implemented to 
correct the past state of the system, where new information 
becomes available. In order to reduce the complexity of the 
algorithm and number of states, the orientation of the camera is 
estimated by the vision based system only, where a new image 
is available, and by IMU only between two consecutive 
images, where no new image is available. Therefore orientation 
estimation is removed from the state estimation, thus reducing 
the number of states to be estimated. The system incorporates 
an intelligent adaptive mechanism to make a decision whether 
the tracking must be performed using IMU only, inertial-visual 
fused data or fused data with past state correction (see section 
0). 

C. Problem Formulation and Definitions 

In this system the position and orientation are estimated 
separately. The position of the camera (Xt

w) is estimated using 
the state space equations (see section 0) and the orientation 
(θt

w) via the image based system (see section 0). The 
superscript in the notation represents the frame of reference, 
i.e. world frame in this instance. The subscript represents the 

time. These definitions apply throughout this paper.  The 
camera pose at time tn, which is the time of the current image 
is therefore represented by (Xtn

w , θtn
w ). Once the camera pose is 

known the 3D coordinates of a fixed point in space seen at Pt
c 

in the camera frame can be translated to the 3D coordinates of 
the same point, but with reference to world frame (Pw) (see 
Figure 2). 

 

(1)  𝑷𝒘 = 𝑿𝒕
𝒘 + 𝑹𝒕

𝒘𝒄(𝜽𝒕
𝒘)𝑷

𝒕

𝒄
  

 

𝑅𝑡
𝑤𝑐  is the rotation matrix which is formed by 3 individual 

rotations around x, y and z axis each represented by an element 
of 3D θt

w vector. 

ORIENTATION ESTIMATION  

In order to determine the camera orientation the rotation 
matrix between the camera frame and world frame is 
determined (𝑅𝑡

𝑤𝑐). The rotation matrix can be driven directly 
from the camera orientation vector and vice versa. This 
correspondence is not unique and depends on the order of 
individual rotations. In this work it is assumed that the order of 
individual rotations is known therefore the orientation can 
be uniquely derived from the rotation matrix.  

The rotation matrix is calculated using the Essential Matrix 
and Singular Value Decomposition (SVD) [23]. In the context 
of multi-view epipolar geometry as illustrated in Figure 3, the 
Essential Matrix (E) defines the relationship between 
corresponding feature points (xc1 and xc2) in two calibrated 
camera views (see equation (2)). The Essential Matrix is 
related to the Fundamental Matrix (F) by the camera Intrinsic 
Matrix (K) as per equation (3). The Fundamental Matrix 
defines the relationship between corresponding feature points 
in two un-calibrated camera views and is computed using the 
8-point algorithm [17]. 

Considering the Singular Value Decomposition, the 
Essential Matrix can be expressed as in (4) [18]. The rotation 
matrix is then calculated using equation (5). This method 
provides two possible solutions for the rotation matrix. The 

solution matrix closest to the rotation matrix R̃t (see equation 
(6)), is considered to be the correct rotation matrix. In this 
equation, Ω is the IMU angular velocity vector, δt is the time 
difference between two consecutive images, Rt−1 is the 
rotation matrix at time t − 1 and DCM(. ) is the direction 
cosine matrix of Euler angles. 
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Figure 2 : The Transformations 
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Figure 3 : Epipolar Geometry 

 

(2)  𝒙𝒄𝟏𝑻
𝑬 𝒙𝒄𝟐 = 𝟎  

(3)  𝑬 = 𝑲𝑻𝑭𝑲 

(4)  𝑬 = 𝑼 𝒅𝒊𝒂𝒈(𝟏, 𝟏, 𝟎)𝑽𝑻 

(5)  𝑹 = 𝑼𝑾𝑽𝑻       𝒘𝒉𝒆𝒓𝒆    𝑾 = ((𝟎, 𝟏, 𝟎)𝑻, (−𝟏, 𝟎, 𝟎)𝑻, (𝟎, 𝟎, 𝟏)𝑻)𝑻
 

(6)  𝑹̃𝒕 = 𝑫𝑪𝑴(𝜹𝒕𝛀) 𝑹𝒕−𝟏       

 

POSITION ESTIMATION 

The position estimator operates based on kinematics motion 
equations which are used to formulate the state-space model. 
The state-space equations are accordingly solved applying 
recursive filtering techniques. Particle filter consists of a 
particle selection stage, followed by particle evaluation, weight 
assignment and state estimation. The particle filtering method 
employed here is based on Sampling Importance Resampling 
(SIR) outlined in [9] and [19]. In order to apply this method, a 
proposal distribution is formed and then particles are randomly 
selected from this distribution. Subsection D details how 
particles are generated. 

The particles are then evaluated using a likelihood function 
(see Subsection E for details). An appropriate weight is then 
assigned to each particle, resampling is applied if necessary 
and finally current state of the system is estimated (see 
subsection F). The system state is estimated using weighted 
summation of the particles.  

D. Particle Selection 

The tracking system provides an estimate for the state 
vector of the system. The state vector here consists of two 
elements, namely 3D position and 3D linear velocity in the 
world frame (see (7)). The particle selection process operates 
based on the state-space model, in which the current state of 
the system is modelled using the past state and control input as 
well as noise and modelling error as outlined in equations (8) 
and (9). As described earlier the state space equations are 
formed using the principles of motion kinematics. At

c is the 3D 
vector of the camera linear acceleration in the camera frame, δt 
is the time difference between two consecutive images, G is the 
3D gravity vector in the world frame, and Rt is the rotation 
matrix from the camera frame to world frame at time t.  

(7)  𝐒𝐭
𝐰 = (𝐗𝐭

𝐰 𝐕𝐭
𝐰)𝐓  ,      𝐕𝐭

𝐰 = (𝐯𝐱,𝐭
𝐰 𝐯𝐲,𝐭

𝐰 𝐯𝐳,𝐭
𝐰 )   

 𝐗𝐭
𝐰 = (𝐱𝐭

𝐰 𝐲𝐭
𝐰 𝐳𝐭

𝐰) 

 

(8)   𝐗𝐭 = 𝐗𝐭−𝟏 + 𝛅𝐭𝐕𝐭−𝟏 + 𝟎. 𝟓𝛅𝐭𝟐𝐀𝐭
𝐰 ,     𝐀𝐭

𝐰 = 𝐑𝐭𝐀𝐭
𝐜 + 𝐆    

(9)   𝐕𝐭 = 𝐕𝐭−𝟏 + 𝛅𝐭𝐀𝐭
𝐰      

 
Due to noise and error in angular velocity and acceleration, 

At
w contains noise and measurement error in a non-linear 

fashion. The IMU is sampled at a high sampling rate (100Hz or 
above), whereas sampling rate of the image-based system is 
much lower (typically 50Hz or less). Between the image 
samples, the IMU is the only source of motion information. 
The above state-space model is used for estimating the position 
between two image samples. However the focus of this paper is 
to estimate the position of the camera at the time of a newly 
captured image. When a new image is captured the position 
estimated using the IMU data is as per equation (10). Ni is the 
number of IMU data sets between two consecutive images and 
l is the dataset number from 1 to Ni. Al

c is the acceleration 
vector and Rl is the rotation matrix at the time of lth packet of 
IMU data. The particle filtering method employed here is based 
on SIR filter [9]. In order to select particles, the estimated 
advance in the system state is calculated using equations (11) 
and (12). The particles are selected from a normal proposal 
distribution as per (13) and (14). Np random values are drawn 

from the proposal distribution and used to form the particles. 

 

(10)   𝑿̃𝒕 = 𝑿𝒕−𝟏 + ∆𝑿𝒕,     𝑽̃𝒕 = 𝑽𝒕−𝟏 + ∆𝑽𝒕              

(11)   ∆𝑿𝒕 = 𝜹𝒕𝑽𝒕−𝟏 + 𝟎. 𝟓𝜹𝒕𝟐 ∑ (𝟐(𝑵𝒊 − 𝒍) + 𝟏)(𝑹𝒍𝑨𝒍
𝒄 + 𝑮)

𝑵𝒊
𝒍=𝟏      𝒍 =

𝟏 … 𝑵𝒊      

(12)   ∆𝑽𝒕 =  𝜹𝒕 ∑ (𝑹𝒍𝑨𝒍
𝒄 + 𝑮)

𝑵𝒊
𝒍=𝟏                                                            𝒍 = 𝟏 … 𝑵𝒊  

(13)   𝑷𝒑,𝒕
𝑿 =  𝑷𝒑,𝒕−𝟏

𝑿 + ∆𝑷𝒑,𝒕
𝑿  ,   ∆𝑷𝒑,𝒕

𝑿 ~𝑵(𝝁𝑿, 𝝈𝑿),                              𝒑 =

𝟏 … 𝑵𝒑      

(14)   𝑷𝒑,𝒕
𝑽 =  𝑷𝒑,𝒕−𝟏

𝑽 + ∆𝑷𝒑,𝒕
𝑽  ,   ∆𝑷𝒑,𝒕

𝑽 ~𝑵(𝝁
𝑽

 , 𝝈𝑽),                           𝒑 =

𝟏 … 𝑵𝒑        

(15)   (𝝁
𝑿

, 𝝁
𝑽
) = (∆𝑿𝒕, ∆𝑽𝒕)      

(16)   (𝝈𝑿, 𝝈𝑽) = (∆𝑿𝒕,𝒎𝒂𝒙 − ∆𝑿𝒕,𝒎𝒊𝒏,     ∆𝑽𝒕,𝒎𝒂𝒙 − ∆𝑽𝒕,𝒎𝒊𝒏)      

 
The accelerometer has measurement noise and error 

characterize by eni
c , eosi

c  and egi
c  which are the noise, offset and 

the gain error values. These parameters are normally specified 
in the IMU datasheet. The probable error value for Al

c is 
therefore estimated as follows, where x, y and z are three axes 
of the IMU. 

 

(17)  eAi

c = eni
c + eosi

c + egi
c Al

c,      i = x, y, z 

 

Variance σ is calculated by inserting the probable 
maximum and minimum values of Al

c due to noise and error 
into equations (11) and (12). The sensor characteristics of 
InvenSense MPU-6000 are used for an estimate of these 
values. The differences between the maximum and minimum 
values are used as the variance (see (16)).  
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Figure 4 : Optical Flow Lines and the Focus of Expansion, adapted from [20] 

E. Particle Evaluation  

Camera converts a 3D point in space to a 2D feature point 

on the image plane, following the pinhole camera model as 

described by equation (18). In this equation, xc is the 2D 

feature point in the calibrated camera view, f is the camera 

focal length and Z is the distance of the 3D point along the Z 

axis of the camera. In this work optical flow is used for feature 

detection and tracking.  
Particle evaluation is carried out using the properties of 

Focus of Expansion (FoE). The FoE point is where all flow 
lines meet on the image plane. A flow line is the line 
connecting corresponding feature points on two images. It can 
be shown that if two images are related to each other only by a 
translation vector, the translation vector is parallel to the line 
connecting the camera center to the FoE point [20]. Also for 
two adjacent images, with a sufficiently small time difference 
between them (δt), the linear velocity vector is parallel to the 
above FoE vector. In our system this is the main criteria for 
evaluating the particles. See Figure 4, which illustrates the 
concept of the FoE in relation to optical flow lines. Equations 

(19) and (20) describe these relationships, where (Tx, Ty,   Tz)
T
 

and (vx, vy,   vz)
T
are the translation and linear velocity vectors 

with reference to the camera frame at the time when the first of 
the two images was captured.  

(18)  𝒙𝒄 =
𝒇

𝒛
𝑿𝒄      

(19)  (𝒙𝑭𝑶𝑬, 𝒚
𝑭𝑶𝑬

,   𝒇)
𝑻

∥ (𝑻𝒙 , 𝑻𝒚 ,   𝑻𝒛)
𝑻

 ⟹  𝒙𝑭𝑶𝑬 = 𝑻𝒙/𝑻𝒛 , 𝒚
𝑭𝑶𝑬

= 𝑻𝒚/𝑻𝒛  

(20)  (𝑻𝒙, 𝑻𝒚,   𝑻𝒛)
𝑻

∥  𝜹𝒕 (𝒗𝒙, 𝒗𝒚,   𝒗𝒛)
𝑻

 ⟹  𝒙𝑭𝑶𝑬 = 𝒗𝒙/𝒗𝒛 , 𝒚𝑭𝑶𝑬 = 𝒗𝒚/𝒗𝒛 

 
In order to evaluate the speed and position particles three 

images are required. These images are the current image (taken 
at time t), the past image (taken at time t − 1) and the reference 
(or key-frame) image (taken at time tr). When the tracking 
starts, the first image is considered as the reference image. The 
reference image remains unchanged until the number of 
common feature points with the current image falls below a 
threshold, in which case the reference image is replaced by the 
current image. The threshold is defined through heuristic tests.  

In the proposed system two types of FoE points are 
required. The first one is the FoE between the current and past 
images, with reference to the camera frame at time t − 1. This 
is referred to as FoEcp. The second one is the FoE between the 

current and reference images, with reference to the camera 
frame at the time that the reference image was taken (tr). This 
FoE is referred to as FoEcr. 

In order to calculate FoEcp or FoEcr, first the current image 

is rotated to have the same orientation as the past or reference 
camera frames. Then the FoE point is calculated by minimizing 
the mean square error. The FoE is a point on the image plane 
where its distance to all optical flow lines is minimized.  

Suppose the flow line for each feature point m is 

characterised as in equation (21). If (xFOE, yFOE)T is considered 
as the coordinates of the FoE on the image plane, equation (22) 
gives the average distance of the FoE point to the flow lines. 
The FoE point is defined as a point where the average distance 
is minimized; therefore the coordinates of the FoE are where 
the partial derivatives become zero as per equations (23). By 
taking particle derivatives a set of two linear equations 
characterized by equations (24), (25) and (26). Parameters A 
and B can then be used to derive coordinates of FoE as per 
equation (27). This method is used for deriving both FoEcp or 

FoEcr using the current and past images and then current and 
reference images, respectively. Once the FoEcpand FoEcr 

points are calculated, the velocity and translation vectors 
associated with each particle are compared with the 
corresponding FoE point to produce a score for that particular 
particle. To do so for each speed or position particle, the 
corresponding FoE is formed using equations (28) and (29). 
The distance between the FoE based on particle and the FoE 
based on image is used as the particle score (see equations (30) 
and (31). 

 

(21)  𝒂𝒎𝒙 + 𝒃𝒎𝒚 + 𝒄𝒎 = 𝟎      

(22)  𝒅𝟐 =
𝟏

𝒎
 ∑ (𝒂𝒎𝒙 + 𝒃𝒎𝒚 + 𝒄𝒎)𝟐/(𝒂𝒎

𝟐 + 𝒃𝒎
𝟐 )

𝑵𝒇

𝒎=𝟏
    

(23)  𝝏𝒅/𝝏𝒙|𝒙=𝒙𝑭𝑶𝑬
= 𝟎,   𝝏𝒅/𝝏𝒚|𝒚=𝒚𝑭𝑶𝑬

= 𝟎  

(24)  𝑨 (
𝒙𝑭𝑶𝑬

𝒚𝑭𝑶𝑬
) + 𝑩 = (

𝟎
𝟎

)  

 

(25)  𝑨 = (
∑

𝟐𝒂𝒎
𝟐

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇

𝒎=𝟏
∑

𝟐𝒂𝒎𝒃𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇

𝒎=𝟏

∑
𝟐𝒂𝒎𝒃𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇

𝒎=𝟏
∑

𝟐𝒃𝒎
𝟐

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇

𝒎=𝟏

) 

(26)  𝑩 = (
∑

𝟐𝒂𝒎𝒄𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇

𝒎=𝟏

∑
𝟐𝒃𝒎𝒄𝒎

𝒃𝒎
𝟐 +𝒄𝒎

𝟐

𝑵𝒇

𝒎=𝟏

) 

 

(27)  (
𝒙𝑭𝑶𝑬

𝒚𝑭𝑶𝑬
) = −𝑨−𝟏𝑩 

(28)  𝑭𝒐𝑬𝒙,𝒑 = (
𝑻𝒙,𝒑/𝑻𝒛,𝒑

𝑻𝒚,𝒑/𝑻𝒛,𝒑
) 

(29)  𝑭𝒐𝑬𝒗,𝒑 = (
𝒗𝒙,𝒑/𝒗𝒛,𝒑

𝒗𝒚,𝒑/𝒗𝒛,𝒑
) 

(30)  (𝑺𝒑
𝒙)

𝟐
= ‖𝑭𝒐𝑬𝒙,𝒑 − 𝑭𝑶𝑬𝒄𝒓‖  𝒑 = 𝟏 … 𝑵𝒑  

(31)  (𝑺𝒑
𝒗)

𝟐
= ‖𝑭𝒐𝑬𝒗,𝒑 − 𝑭𝑶𝑬𝒄𝒑‖  𝒑 = 𝟏 … 𝑵𝒑  

 

F. Weight Assignment and State Estimation  

A low score represents a good particle match for the FoE 
point. Therefore any particle with low score should receive a 
high importance weight. The particle weight is defined as the 
inverse of the particle score as shown in equations (32). The 
weights for the velocity and position particles are then 
separately normalized to have a total sum of one. Once the 
weight for each particle is calculated, the number of effective 
particles is estimated using equation (34). If this number is less 



246 

 

than a pre-defined threshold, the particles are resampled 
following the SIR method described in [19]. This process may 
be repeated until the number of effective particles exceeds a 
pre-set limit or the resampling has run for more than a set 
number of iterations. Finally the current state of the system is 
estimated using a weighted summation of all particles as shown 
in equations (35).  

 

(32) 𝐰𝐩
𝐯 = 𝟏/𝐒𝐩

𝐯                         𝐰𝐩
𝐗 = 𝟏/𝐒𝐩

𝐗                             𝒑 = 𝟏 … 𝑵𝒑 

(33) 𝐰̂𝐩
𝐯 = 𝐰𝐩

𝐯/ ∑ 𝐰𝐩
𝐯𝑵𝒑

𝒑=𝟏
         𝐰̂𝐩

𝐗 = 𝐰𝐩
𝑿/ ∑ 𝐰𝐩

𝐗𝑵𝒑

𝒑=𝟏
                𝒑 = 𝟏 … 𝑵𝒑 

(34) 𝑵𝒆𝒇𝒇
𝒗 = 𝟏/ ∑ 𝐰̂𝐩

𝐯𝑵𝒑

𝒑=𝟏
        𝑵𝒆𝒇𝒇

𝑿 = 𝟏/ ∑ 𝐰̂𝐩
𝐗𝑵𝒑

𝒑=𝟏
              𝒑 = 𝟏 … 𝑵𝒑 

(35) 𝑿̂𝒕 = ∑ 𝐰̂𝐩
𝐱𝑵𝒑

𝒑=𝟏
𝑷𝒑,𝒕

𝑿             𝑽̂𝒕 = ∑ 𝐰̂𝐩
𝐯𝑵𝒑

𝒑=𝟏
𝑷𝒑,𝒕

𝑽                 𝒑 = 𝟏 … 𝑵𝒑 

 

G. Past State Correction  

At time t a new image becomes available and therefore the 

image velocity vector (u, v)T for each pixel can be calculated. 
The image velocity vector can be written as a summation of 

translational (uT, vT)T and rotational (uR, vR)T components as 
stated in equation (36) [21]. x and y are the pixel coordinates of 
a feature point in a calibrated camera view. By using optical 
flow tracking the displacement of a feature point between two 

images (δx, δy)T can be calculated. Equation (37) shows how 

the image velocity vector (u, v)T and its rotational component 

(uR, vR)T can be determined. This is done by knowing a 
feature point coordinates (x, y) and the IMU angular velocity 
vector Ω = (ωx, ωy, ωz). The translational element (uT, vT) is 

then derived from equation (36). On the other hand (uT, vT) is 
related to the linear velocity, pixel coordinates and the feature 
point depth as per (39). This will result in an estimate for the 
depth value (zp) of a feature point at time t − 1. In the same 

way depth value (zr) of the feature point at the time of the 
reference image is calculated. Using equation (18) the 3D 
coordinates of the corresponding 3D point in space with 
respect to the past and reference images are found. Equation 
(41) is then used to calculate the corrected translation vector at 
time t − 1. This value is used to correct the past state of the 
system, which in turn updates the state estimation at time t. 

 

(36)  (𝒖, 𝒗)𝑻 = (𝒖𝑻, 𝒗𝑻)𝑻 + (𝒖𝑹, 𝒗𝑹)𝑻 

(37)  (𝒖, 𝒗) = (
𝜹𝒙

𝜹𝒕
,

𝜹𝒚

𝜹𝒕
) ,  

(38)  (𝒖𝑹, 𝒗𝑹) = (𝝎𝒚 − 𝝎𝒛𝒚 − 𝝎𝒙𝒙𝒚 + 𝝎𝒚𝒙𝟐, −𝝎𝒙 + 𝝎𝒛𝒙 + 𝝎𝒚𝒙𝒚 − 𝝎𝒙𝒚𝟐 )                  

(39)  (𝑢𝑇, 𝑣𝑇) = (
𝑣𝑥−𝑣𝑧𝑥

𝑍
,

𝑣𝑦−𝑣𝑧𝑦

𝑍
 ) 

(40)  𝑍 = 0.5(
𝑣𝑥−𝑣𝑧𝑥

𝑢𝑇
+  

𝑣𝑦−𝑣𝑧𝑦

𝑣𝑇
) 

(41)  𝑋𝑤 = 𝑅𝑋𝑐 + 𝑇      

INTELLIGENT TRACKING METHOD SELECTOR 

The proposed hybrid tracking requires the vision system to 
provide reliable information. Therefore it is important to make 
sure the FoE exists and is of a good quality. In our system we 
considered this by introducing intelligent criteria to identify the 
existence of the FoE. In the cases where the FoE is not possible 
to determine due to physical constraints as described in section 
I.H and I.I, the system bypasses the vision system and 

continues with the IMU until the arrival of suitable features to 
formulate the FoE.  

H. Qulaity of FoE  

The FoE point is where all optical flow lines meet on the 
image plane. In order to accurately locate the FoE the flow 
lines must be accurately parameterized. A flow line is specified 
by two corresponding feature points. Any error in the location 
of the feature points leads to error in the estimation of the flow 
line parameters. A good FoE point is the one with a very short 
average distance to the flow lines. On the other hand a FoE 
point which has a significant average distance to the flow lines 
cannot be trusted. This analysis leads to the definition of the 
quality of FoE based on the average distance between the FoE 
point and the flow lines.  

 

(42)  𝒅 = √
𝟏

𝒎
 ∑ (𝒂𝒎𝒙 + 𝒃𝒎𝒚 + 𝒄𝒎)𝟐/(𝒂𝒎

𝟐 + 𝒃𝒎
𝟐 )

𝑵𝒇

𝒎=𝟏
    

 

I. Existance of FoE  

When the camera motion between two consecutive images 
is parallel to the image plane, the flow lines are parallel and do 
not meet at a point on the image plane. In such circumstances a 
FoE point does not exist. This is determined by measuring the 
angle between the image plane’s normal vector (iz

w) and the 
camera velocity vector (V) as per equation (43). iz

w is obtained 
by rotating the unit vector in camera frame (iz

c) by Rwc. When 

this angle is near 
π

2
 the camera is moving approximately 

parallel to the image plane. 

(43)  𝜽 = 𝑽𝑻 𝒊𝒛
𝒘/‖𝑽‖  ,       𝒊𝒛

𝒘 = 𝑹𝒘𝒄𝒊𝒛
𝒄 = 𝑹𝒘𝒄 (

𝟎
𝟎
𝟏

) 

J. Decision on the source of tracking  

The system incorporates a decision making core, which 
decides on the source of tracking. When a FoE point does not 
exist (subsection I) or it has poor quality (subsection H), the 
hybrid tracking is bypassed and IMU only tracking is used. 
When the FoE has a very good quality meaning that the 
average distance as per equation (42) is very small, past state 
correction is applied prior to hybrid tracking using particle 
filtering method. In any other conditions the normal hybrid 
tracking method applies. This system implements an intelligent 
decision making process, which decides on the best source of 
tracking whether IMU only, hybrid only or hybrid with past 
state correction.  

 

EXPERIMENTAL SET-UP AND RESULTS 

In order to evaluate the performance of the proposed 
tracking method, a number of synthetic sequences for the 
camera motion have been simulated. Initially the camera 
motion was expressed in three directions using sinusoid 
waveforms as per equation (44), with various frequency, 
amplitude and phase values as detailed in Table 1. For the 
orientation a quaternion with a changing direction and angle 
has been considered (see Figure 7). The surrounding 3D space 
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is also filled with 507 feature points in three layers (see Figure 
5).  

To derive acceleration and angular velocity, the second and 
first derivatives of the ground truth position and orientation are 
calculated. For the measurement noise and error factors, the 
values listed in the InvenSense MPU-6000 datasheet are used. 
In the image-based system a random feature tracking error of 
up to 0.5pixel is added to represent the error margin of the 
feature detection and tracking algorithms.  

 Figures 5 to 7 illustrate the camera trajectory, 3D camera 
position and camera orientation over 500 image frames. The 
dotted lines represent the estimated values, while the solid lines 
indicate the ground truth. In Figure 5 the green, blue and red 
dots represent the feature points in 3D space, ground truth and 
estimated trajectory, respectively. Table 2 presents the mean 
error at two different sampling rates (50Hz and 25Hz) over the 
travelled distance of nearly 50m.  

The algorithm was then applied on a more complex motion 
as described by equation (45) with parameters detailed in Table 
3. Figure 8 to Figure 10 show the camera trajectory, angular 
velocity and acceleration.  

 

(44)  𝒑𝒂𝒕𝒉𝒊 = 𝒂(𝟏 − 𝐜𝐨𝐬(𝟐𝝅𝒇𝒕 + 𝝋))          

(45)  𝒑𝒂𝒕𝒉𝒊 = 𝒂 + 𝒃(𝒕 − 𝒕𝟎)𝒏 

(𝟏 + 𝒔𝒊𝒏(𝟐𝝅𝒔𝒊𝒏(𝟐𝝅𝒇𝟏𝒕)𝒕)𝒔𝒊𝒏(𝟐𝝅𝒇𝟐𝒕)𝒄𝒐𝒔(𝟐𝝅𝒇𝟑𝒕)𝒆−𝒄𝒕 

TABLE 1 PARAMETRS FOR THE FIRST TRAJECTORY 

i (axis) 𝒂 𝒇   𝝋 

x 2m 0.5Hz 0 

y 0.5m 1Hz π/3 

z 1m 0.25Hz −π/5 

TABLE 2 TRACKING ERROR 

Trajectory Mean error Distance Frequency Error 

1 2.66cm 48.54m 50Hz 0.054% 

1 3.55cm 48.54m 50Hz 0.073% 

1 5.44cm 48.54m 25Hz 0.11% 

1 5.35cm 48.54m 25Hz 0.11% 

2 11.68cm 137.27m 50Hz 0.085% 

2 14.68cm 137.27m 50Hz 0.103% 

TABLE 3 PARAMETRS FOR THE SECOND TRAJECTORY 

i (axis) 𝒂 𝒃 𝒄 𝒏 𝒕𝟎 𝒇𝟏 𝒇𝟐 𝒇𝟑 

x 1 1 -0.4 2 0 0.1 0.3 0.7 

y 1 1 -0.5 2 0.5 0.05 0.4 0 

z 0 1 -0.6 2 0 0.2 0.2 0.25 

 
The results illustrate that despite tracking over a long 

distance of 48 meters in the first simulation and 137 meters in 
the second, the average tracking error remains in the region of 
few centimeters with the percentage error below 0.1% (see 
Table 2). Referring to the simulation results from [2] the EKF-
SLAM and PTAM have achieved 0.75% and 0.03% error over 
18.2 meters, respectively. These results have been gathered 
from a small and controlled workspace, on a simple trajectory, 
at a considerably slower motion with a dense feature point 
population (nearly 10 times the number of feature points used 
in this simulation). Nevertheless our proposed system 

outweighs the EKF-SLAM performance and is comparable 
with the PTAM based method, but with less computational cost 
and the ability to track in a wide area. 

The system was tried several times at 50Hz video frame 
rate, with similar outcome (see Table 2). The system was also 
tried at 25Hz, where an increase in the error level was 
observed. This is due to the fact that the evaluation of the 
velocity particles depends on having a small time difference 
between two consecutive images. By reducing the sampling 
rate, sampling period is increased leading to less accurate 
results.  

It must be noted that the system is based on a stochastic 
method; therefore minor performance changes from one run to 
another and occasional outliers are to be expected. It is also 
obvious that the performance degrades and error increases as 
the trajectory enters areas with less feature point density. 

 

 

 
Figure 5    Camera Trajectory 1 

 

Figure 6   Camera 3D Position 

 

 
Figure 7   Camera Orientation 

    CONCLUSION AND FUTURE WORK 

This paper proposes an algorithm for visual-inertial camera 
pose tracking, using adaptive recursive particle filtering. The 
paper presents an alternative approach to the EKF-SLAM and 
PTAM for wider area tracking. The technique benefits from a 
novel particle evaluation method based on the concept of focus 
of expansion and epipolar geometry constraints. This had 
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enabled an online automatic tracking method selection so that 
the robustness and accuracy of the tracking can be improved.  

In order to enhance the tracking response time, the camera 
rotation matrix and consequently the camera orientation is 
separated from the successive state estimation process. 

The performance of any particle filtering approach is very 
much dependent on the selection of the particles. The particle 
selection process in this work is mainly influenced by the IMU. 
As future work, it is suggested that the behavior of the system 
is constantly monitored in order to provide a more 
comprehensive insight into the particle selection. This can be 
achieved by the application of learning algorithms.  

As another future work it is also suggested that an adaptive 
video sampling rate is considered to provide the best rate 
depending on the temporal speed.  

The performance of the proposed system relies on the 
quality and existence of the focus of expansion. The formation 
of the focus of expansion can be influenced by the orientation 
of the camera. It is suggested that the camera is motorized and 
an intelligent agent is designed to take the sensory information 
and together with the decision making core (as described in 
section 0) effectively control the camera orientation. 

 

 
Figure 8    Camera Trajectory 2 

 

 
Figure 9   Angular Velocity 

 
Figure 10   Acceleration 
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ABSTRACT 

A novel camera pose tracking system using a stochastic inertial-

visual sensor fusion has been proposed. A method based on the 

Particle Filtering concept has been adapted for inertial and vision 

data fusion, which benefits from the agility of inertial-based 

tracking and robustness of vision-based camera tracking. 

KEYWORDS - CAMERA POSE TRACKING, PARTICLE FILTER, INERTIAL-

VISUAL SENSOR FUSION, AUGMENTED REALITY  

1 INTRODUCTION 

User tracking is an assisting technology for augmented reality 

(AR) and is also crucial for immersive virtual reality (VR). Its 

potential applications are numerous and include TV and film 

production, industrial maintenance, medicine, education, 

prototyping, entertainment and immersive games. 

 

There are several aspects to consider when creating an 

augmented reality application. One of the most challenging is 

to precisely calculate the user’s viewpoint in real-time so that 

the virtual elements are exactly registered with the real-world 

objects. The registration process usually requires an accurate 

six degrees of freedom (6DoF) tracking of the position and 

orientation of a head-mounted camera (HMC) generally 

referred to as camera pose tracking.  

 

One of the major applications of camera position and 

orientation tracking in space is augmented reality games 

played outside over a wide area.  Although video games have 

traditionally pulled players out of the real world and into a 

virtual one, augmented-reality games have the potential to 

engage people in the real world. For example, Novarama 

Technology [1] has developed a game called ‘Invizimals’ that 

makes it appear as if the world is populated by formerly 

invisible creatures that can interact with one another. 

 

 

 

 

 

 

 

 

 

Several tracking and sensing methods have been researched or 

are commercially available. Miller [2] carried out a research 

survey to identify techniques and sensors that may be useful 

navigation and positioning methods for indoor applications. In 

this survey RFID, GPS and inertial and non-inertial sensors 

were studied to identify the optimal technique for position 

tracking. However, no existing methods fully satisfy the 

requirements for full 6DoF tracking over a wide area. 

 

Placing fiducial markers in the real environment is currently 

the most common technique for recovering camera pose. 

However, the placement of artificial markers is not always 

convenient or possible especially for mobile AR applications. 

Therefore the desirability of developing a markerless wide-

area camera tracking system is evident. In principle, besides 

using fiducial markers, camera pose tracking can be 

determined from naturally occurring features, such as points, 

lines, edges, or textures, and these strategies are referred to as 

vision-based tracking techniques. Zhang et al. [3] have made a 

fairly comprehensive study of the leading approaches to 

marker-based tracking, with the ARToolKit library [4] being a 

well-known and popular example.  

 

Vision-based tracking techniques utilise image processing 

methods to calculate the camera pose relative to real world 

objects and so are analogous to closed-loop systems, which 

correct errors dynamically. 

 

Purely vision-based tracking systems are known to have low 

jitter and no drift [5], however a drastic motion often leads to 

tracking failure due to latency caused by the high processing 

requirements and consequent low frame rate.  

 

Inertial sensors consist of gyroscope and accelerometer 

devices for angular velocity and linear acceleration 

measurements. Despite their accuracy in fast motion tracking, 
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they suffer from accumulation errors over time, which can 

adversely affect registration stability.  

 

Considering the limitations of existing tracking systems, in 

this paper we are proposing a hybrid inertial-visual pose 

estimation system which fuses both inertial sensor and vision 

systems data to provide the optimum accuracy for camera pose 

tracking and image registration. The aim of this work is to 

develop a novel framework for wide-area pose estimation of a 

head-mounted camera using a customised Particle Filter for 

sensor fusion. 

 

In order to solve the problem of camera pose estimation and 

tracking, recursive filtering techniques such as Kalman Filter 

(KM), Extended Kalman Filter (EKF) and Particle Filter (PF) 

have been a continuing topic in the robotics and computer 

vision community [6],[7].  

 

This paper addresses the question of how to use measurements 

from low-cost inertial sensors (gyroscopes and 

accelerometers) to compensate for the missing control 

information derived from a markerless vision-based system. 

For estimation and sensor fusion an adaptive recursive 

filtering technique is simulated.  

2 PRINCIPLE OF OPERATION 

The aim of the proposed system is to accurately determine the 

pose of the camera at any time. The camera pose is defined as 

follows:  

 

T

zyxzyxX ),,,,,(    (1) 

 

zyx ,, : 3D position with reference to initial camera position. 

zyx  ,, : 3D orientation with reference to the initial 

camera orientation. 

 

The proposed camera tracking system comprises of three main 

components, namely; IMU (Inertial Measurement Unit), 

vision-based tracker and particle filter. The data gathered from 

the IMU is fused with the data from the vision-based tracker 

using a novel fusion method based on particle filtering. This 

paper presents the details of the fusion algorithm and a 

simulated trajectory to demonstrate the performance of the 

system.  

2.1 Vision-based Pose Estimation 

Vision-based tracking techniques utilise image processing 

methods to calculate the camera pose relative to real world 

objects and thus are analogous to closed loop systems which 

correct errors dynamically. 

 

After initially calculating camera pose from known visual 

features, the system dynamically obtains additional natural 

features and uses them to continuously update the pose 

calculation. The rationale underlying all feature-based 

methods is to find a correspondence between 2D image 

features and their 3D world frame coordinates. The camera 

pose can then be found by projecting the 3D coordinates of the 

feature into the observed 2D image coordinates and 

minimizing the distance to their corresponding 2D features.  

 

There are prominent techniques proposed in the literature for 

solving the vision-based feature registration process. One 

approach uses the block matching method, see for instance 

Klein and Murray [8]. Another uses advanced techniques 

developed from the well-known Kanade-Lucas tracker (KLT) 

[9],[10]. 

 

In this work, the proposed vision-based tracking system will 

be based on optical flow measurements [11], in which after 

calibrating the camera using a flat chessboard pattern, the 

camera pose is calculated at every sampling interval. In each 

step the image features in the previous and current captured 

frames are identified using Shi and Tomasi’s method [12]. The 

corresponding feature points in the two consecutive frames are 

then found using the Pyramid Lucas-Kanade method [9][10]. 

Finally, the rotation and transition matrices are determined 

using the corresponding feature points in the two consecutive 

frames, and accordingly, the 6DoF is estimated. 

2.2 Inertial Measurement Unit  

The processing latency of vision-based tracking systems can 

cause loss of real-time tracking capability. In addition, the 

tracked features can easily be lost due to occlusion or 

changing lighting conditions. In contrast, inertial sensor-based 

tracking techniques are proved to be more suitable for rapid 

and drastic movements/changes and offer attractive 

complementary features [4].   

 

IMU sensors consist of gyroscope and accelerometer devices 

for angular velocity and linear acceleration measurements. 

Despite their accuracy in fast motion tracking, they suffer 

from accumulation errors over time that will adversely affect 

registration stability. In particular, the integration of 

accelerometer data is known to introduce instabilities when 

used for position estimation. This is due to the fact that 

accelerometers measure not only free acceleration but also 

acceleration due to gravity and centripetal forces, which have 

to be allowed for in estimating orientation. Whereas inertial-

based methods are more suited for fast movements, they 

introduce considerable noise into the tracking system. On the 

other hand, vision-based tracking systems are robust and 

accurate with respect to slow movements and can, thus, be 

used to reset the accumulated tracking errors produced in 

inertial sensors.  

 

The IMU provides the linear acceleration and angular velocity 

in a vector defined as follows:  

 

),,,,,( zyxzyx aaaI    (2) 
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zyx aaa ,, : Linear acceleration  

zyx  ,, : Angular velocity 

 

In an ideal situation the IMU pose can be calculated by twice 

integrating the Accelerometer data and once integrating the 

Gyroscope data. However in reality there are some issues with 

this approach which will introduce some error in the 

calculations: 

 

 The data generated by IMU is noisy due to the electronic 

and ambient noise. 

 The ADC resolution will also introduce some error to the 

output. 

 The integration must be done in discrete time steps and 

therefore the acceleration and angular speed between the 

time steps are unknown, which will itself introduce 

additional error. 

 Rotations are non-commutative, making order of rotation 

significant. When taking gyroscope readings at discrete 

time intervals order cannot be determined, thus 

introducing further potential error. 

  Due to integration any noise introduced in each step will 

be accumulated, which will cause drift over time. 

 

Although an IMU responds well to rapid changes in velocity, 

the above mentioned issues make the sole use of an IMU 

somewhat impractical. The IMU speed vector is defined as 

follows: 

 

),,,,,( zyxzyx

IMU vvvS       (3) 

zyx vvv ,, : Linear speed 

zyx  ,, : Angular velocity 

 

The linear speed is calculated by integrating the linear 

acceleration and angular velocity is directly measured by the 

IMU. 

 

In many augmented reality applications, a real-time video of 

the scene is available. Therefore, by combining the image data 

and IMU data, a more robust and accurate system can be 

made. 

2.3 Inertial and Visual Sensor Fusion using Particle 

Filtering  

In addition to application in wide-area gaming, integration of 

visual and inertial sensors opens new application directions in 

robotics, computer vision and numerous other fields [13],[14].  

 

The Sequential Importance Sampling (SIS) algorithm is a 

Monte Carlo (MC) method that forms the basis for most 

sequential MC filters developed over the past decades. This 

sequential MC (SMC) approach is often referred to as 

bootstrap filtering, the condensation algorithm, particle 

filtering, interacting particle approximations, and survival of 

the fittest [15],[16].  

 

Particle filtering can be used for estimating the internal states 

of a system when a series of observation data is available. The 

key idea is to represent the required posterior density function 

by a set of random samples with associated weights and to 

compute estimates based on these. It is a technique for 

implementing a recursive Bayesian filter by MC simulations. 

As the number of samples becomes very large, this MC 

characterization becomes an equivalent representation to the 

usual functional description of the posterior probability 

distribution function (PDF), and the SIS filter approaches the 

optimal Bayesian estimate. 

 

In this work, the SIR method (Sampling Importance 

Resampling) is used for fusing IMU and vision-based data. To 

do so, particles are drawn from an importance function and 

then a weight is assigned to each of them using a likelihood 

function. The weights are then normalised and, if the number 

of effective particles is less than a threshold, the re-sampling 

algorithm is utilised to remove particles with small weights.  

The SIR algorithm is summarised as follows [15][16].  

2.3.1 Sampling 

I. FOR n = 1:N  

 Draw particles from a probability distribution 

function using Inverse Transform Sampling: 
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 Calculate weights using likelihood function: 
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III. FOR i = 1:N  
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then do Re-Sampling  

2.3.2 Re-Sampling 

I. Initialise the CSW (Cumulative Sum of   Weights): 
i

kwc 1
 

II. FOR i = 2: N   

Construct CSW: i

kii wcc  1
 

III. Start at the bottom of the CSW: i = 1 

IV. Draw a starting point: ]
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V. FOR j = 1:N 
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 Assign weight: 
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The variables used in the algorithm are defined as follows: 

 

 N:  The number of particles 

 i:    Particle index 

 k:   Time index  
i

kX : i
th

  particle at time 
kt  

kX : System state at time 
kt  

2.4 Data Fusion  

The proposed camera pose tracking system combines IMU 

data with additional information from a vision-based system. 

Taking into account the inherent latency of the vision-based 

system (due to use of standard video frame rates and the 

volume of computation required in tracking optical flow), the 

IMU and vision-based systems are sampled at two different 

sampling rates. The IMU must be sampled at a faster rate in 

order to minimise integration error.  An integer ratio between 

the two sampling rates is selected to maintain synchronisation. 

 

Our proposed fusion method benefits from the principles of 

particle filtering described earlier in section 2.3. To do so, a 

probability distribution function in the form of a Gaussian 

distribution is defined, from which particles are drawn. The 

PDF is defined as follows: 

),,( l

k

l

k

l

k xNf 
                                          (4)

1 k

l

k X , tS IMU

Max

l

k   
 

  

where l,
 

l

k ,
l

k
,

t ,
IMU

MaxS are: 

 

l: The l
th

 element of the pose vector 
l

k : Mean value 

l

k : Variance 

t : Sampling time interval 
IMU

MaxS : A vector consisting of the maximum of each individual 

element in the IMU speed vector. 

 

At each time step 
kt  the importance function is determined 

and N particles are drawn from this function. At this stage 

particles are divided into two parts. The first three elements 

form a vector representing the 3D camera position and the 

remaining three elements form the 3D camera orientation 

vector. Both position and orientation vectors are then 

compared against the respective vectors of the pose vector 

determined from the vision-based tracking system and, 

following that, two weights are assigned to each particle as 

follows:  
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ORNi

k

POSi

k ww ,, ,


: Weights for position and orientation vectors 

of each particle, respectively. 

C

lkX , : l
th

 element of the vision-based pose 

 

If the effective number of particles is less than a threshold 

level, the re-sampling algorithm is used to draw a new set of 

particles.  

3 SIMULATION 

The primary use of the proposed system is in head-mounted 

camera pose tracking. As per gait analysis literature, the 

walking process of a person is very close to a periodic 

movement, which can be estimated by a series of sine and 

cosine functions [17]. Therefore to evaluate the performance 

of the tracking system, the IMU outputs (acceleration, angular 

velocity) have been simulated using sine functions. This will 

be particularly beneficial as the frequency response of the 

proposed system can also be assessed. Gaussian noise is then 

added to the sine functions to represent noise as per the IMU 

datasheet [18]. The IMU outputs 10-bit acceleration and 

angular velocity data in three directions. These are simulated 

by combination of sine functions and noise as  

follows:
                

 
a

l

a

l

a

ll tfAa   )2sin( , 3,2,1l
         (7)  

  llll tfA  )2sin( , 6,5,4l          (8) 

 
where 

la
, l

,


l

a

l ff ,
,

 l

a

l , are :
  

 

la : Linear acceleration 

l : Angular velocity 


l

a

l ff , : Simulation frequency 

 l

a

l , : Noise 

 

Each particle consists of 6 elements. The first three elements 

form the position vector and the remaining three the 

orientation vector. The position vector in the reference IMU 

pose is calculated by twice integrating noise-free acceleration 

data and the orientation vector by once integrating the noise-

free angular velocity.  
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Similarly to reference IMU pose, the position vector in the real 

IMU pose is calculated by twice integrating noisy acceleration 

data and the orientation vector by once integrating the noisy 

angular velocity. Sampling rate of 100Hz was chosen for IMU 

data sampling. 

 

The vision-based system has also been simulated by adding 

noise to the reference IMU pose. Sampling rate of 10Hz was 

chosen for the vision-based system. This will be 10 times 

slower than the IMU sampling time. This is due to the fact the 

vision-based analysis requires more processing power and 

tends to run at lower sampling rates.  

 

In this work, elements of position and orientation vectors have 

been considered independent of each other. Therefore to show 

the performance of the algorithm, the position and orientation 

in the X direction are discussed in this section. 

 

Figures 1 and 2 show position/orientation trajectories in X 

direction. Figure 3 shows the error for position in X direction. 

The reference in calculating the error is the reference IMU 

pose. 

 
Fig.1a : Camera X-position trajectory 

 

 

IMU-only system 

Vision-based system 

Visual-Inertial system 

Reference X-Position 

 

 

  
Fig.1b : 3-sec. snapshot of Fig.1a 

 

Fig.2a

 Camera X-orientation trajectory 

Fig.2b

 : 3-sec. snapshot of Fig.2a 
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Fig.3 

X-Position Absolute Error 

 

Fig.3 shows that, initially, simple integration of IMU 

acceleration gives less error and more accurate results. 

However as the time goes by, due to the accumulation error, 

the integration error increases and gradually exceeds the pose 

error resulting from either the vision-based system or the 

inertial-visual fusion system. The mean values for different 

types of error are as follows:  

 

X-Position  Mean Value of the Error 

IMU 0. 1907 

Inertial-Visual  

(Particle Filter) 

0. 0369 

Vision Based 0. 0732 

Table 1: Position Error 

 

X-Orientation  Mean Value of the Error 

IMU 1.2755 

Inertial-Visual  

(Particle Filter) 

3.1533 

Vision Based 4.7909 

Table 2: Orientation Error 

 

The mean values for position error show that, in general, the 

Particle Filtering method produces better results than vision-

based. The Particle Filtering method also has the advantage of 

being adaptable to sudden movements of the camera, as IMU 

data is sampled at 100Hz, whereas the vision-based system 

works at much lower sampling rate of 10Hz. With respect to 

orientation tracking, although Particle Filtering still performs 

better than the pure vision-based system, IMU on its own 

generates the best results. 

4 CONCLUSION 

This paper presents a Particle Filtering-based data fusion 

method to combine pose data from an IMU and a vision-based 

pose tracking system. The simulation shows that after initial 

start-up time, the inertial-visual tracking system produces 

better results for position tracking compared with either the 

IMU or vision-based tracking systems alone. However for 

orientation tracking, although the Particle Filtering-based 

method performs better than the vision-based system, it is less 

accurate than the IMU system. 

 

As future work, methods such as Direction Cosine Matrix 

(DCM) [19] will be employed to refine the output of the IMU 

for camera orientation tracking, particularly in relation to 

dealing with centripetal forces and correction of errors due to 

finite sampling. Also the frequency response of the system 

will be evaluated in order to better understand the limitations 

of this method. 
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Appendix B : Geodetic – ECEF – ENU Coordinate 

Conversions 

 
 

//  GeodeticCalculator.m 
 
#import "GeodeticCalculator.h" 
 
#define DEGREES_TO_RADIANS (M_PI/180.0) 
 
#define WGS84_A (6378137.0)             // WGS 84 semi-major axis constant in 
meters 
#define WGS84_F (1/298.257223563)    // recipricol flattening 
 
#define WGS84_E (8.1819190842622e-2)    // WGS 84 eccentricity 
 
//Convert ECEF to Latitude and Longitude 
#define a   6378137               /*Semimajor axis*/ 
#define f   0.003352810664747     /*Flattening*/ 
#define e2  0.006694379990141     /*Square of first eccentricity*/ 
#define ep2 0.006739496742276     /*Square of second eccentricity*/ 
#define b   6356752.314245179     /*Semiminor axis*/ 
#define radsToDegs  57.295779513082323 
 
 
@implementation GeodeticCalculator 
 
 
 
// Converts latitude, longitude to ECEF coordinate system 
 
void geodeticToEcef(double lat, double lon, double alt, double *x, double *y, double 
*z) 
{ 
    double clat = cos(lat * DEGREES_TO_RADIANS); 
    double slat = sin(lat * DEGREES_TO_RADIANS); 
    double clon = cos(lon * DEGREES_TO_RADIANS); 
    double slon = sin(lon * DEGREES_TO_RADIANS); 
     
    double N = WGS84_A / sqrt(1.0 - WGS84_E * WGS84_E * slat * slat); 
     
    *x = (N + alt) * clat * clon; 
    *y = (N + alt) * clat * slon; 
    *z = (N * (1.0 - WGS84_E * WGS84_E) + alt) * slat; 
} 
 
 
 
 
// Coverts ECEF to ENU coordinates centered at given lat, lon 
void ecefToEnu(double lat, double lon, double x, double y, double z, double xr, 
double yr, double zr, double *e, double *n, double *u) 
{ 
    double clat = cos(lat * DEGREES_TO_RADIANS); 
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    double slat = sin(lat * DEGREES_TO_RADIANS); 
    double clon = cos(lon * DEGREES_TO_RADIANS); 
    double slon = sin(lon * DEGREES_TO_RADIANS); 
    double dx = x - xr; 
    double dy = y - yr; 
    double dz = z - zr; 
     
    *e = -slon*dx  + clon*dy; 
    *n = -slat*clon*dx - slat*slon*dy + clat*dz; 
    *u = clat*clon*dx + clat*slon*dy + slat*dz; 
} 
 
 
//Convert ECEF to Lat, Long and Alt 
 
void ecefToGeodetic ( double x, double y, double z, double *lat, double *lon, double 
*alt) 
{ 
  
  
    double lambda; 
    double rho; 
    double beta; 
    double sbeta; 
    double cbeta; 
    double phi; 
    double sphi; 
    double betaNew; 
    int count; 
    double N; 
    double h; 
    double cphi; 
     
  
         
        /* Longitude*/ 
        lambda = atan2(y, x); 
         
        /* Distance from Z-axis*/ 
        rho = sqrt(x*x+y*y); 
         
        /* Bowring's formula for initial parametric (beta) and geodetic (phi) latitudes*/ 
        beta = atan2(z, (1 - f) * rho); 
        sbeta = sin(beta); 
        cbeta = cos(beta); 
         
        phi = atan2(z+b*ep2*sbeta*sbeta*sbeta, rho-a*e2*cbeta*cbeta*cbeta); 
        sphi = sin(phi); 
        cphi = cos(phi); 
         
        /* Fixed-point iteration with Bowring's formula*/ 
        /* (typically converges within two or three iterations)*/ 
        betaNew = atan2((1 - f)*sin(phi), cos(phi)); 
        count = 0; 
        while ((beta!=betaNew) && count < 5){ 
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            beta = betaNew; 
            sbeta = sin(beta); cbeta = cos(beta); 
            phi = atan2(z+b*ep2*sbeta*sbeta*sbeta, rho-a*e2*cbeta*cbeta*cbeta); 
            sphi = sin(phi); cphi = cos(phi); 
            betaNew = atan2((1 - f)*sphi, cphi); 
            count++; 
        } 
         
        /* Calculate ellipsoidal height from the final value for latitude*/ 
        N = a / sqrt(1 - e2 * sphi* sphi); 
        h = rho * cphi + (z + e2 * N* sphi) * sphi - N; 
         
       *lat = radsToDegs*phi; 
       *lon = radsToDegs*lambda; 
       *alt =h; 
     
} 
 
//Convert ENU to ECEF coordinates 
 
void enuToEcef( double refLat, double refLon, double refAlt, double e, double n, 
double u, double *x, double *y, double *z) 
{ 
    //find reference location in ECEF coordinates 
     
    double xr, yr, zr; 
     
    geodeticToEcef(refLat, refLon, refAlt, &xr, &yr, &zr); 
     
    *x = (-e * sin(refLon * DEGREES_TO_RADIANS)) - (n * sin(refLat * 
DEGREES_TO_RADIANS) * cos(refLon * DEGREES_TO_RADIANS)) + (u * 
cos(refLat * DEGREES_TO_RADIANS)* cos(refLon * DEGREES_TO_RADIANS)) + 
xr; 
    *y = (e * cos(refLon * DEGREES_TO_RADIANS)) - (n * sin(refLat * 
DEGREES_TO_RADIANS) * sin(refLon * DEGREES_TO_RADIANS)) + (u * 
cos(refLat * DEGREES_TO_RADIANS) * sin(refLon * DEGREES_TO_RADIANS)) 
+yr; 
    *z = (n * cos(refLat * DEGREES_TO_RADIANS)) + (u * sin(refLat * 
DEGREES_TO_RADIANS)) + zr; 
     
} 
 
@end 
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Appendix C : Trilateration Calculation Results  

Actual receiver tile 

location coordinates 

Calculated receiver 

tile location using 

trilateration 

Distance of 

calculated location 

from actual location 

in tile units 

Distance of 

calculated location 

from actual location 

in metres 

x y x y   

0 0 Location of iBeacon   

1 0 3 2.6 3.28 1.64 

2 0 3.6 1.4 2.13 1.07 

3 0 4 -8.5 8.56 4.28 

4 0 4.3 -16.9 16.9 8.45 

5 0 4.7 -0.8 0.85 0.43 

6 0 4.6 -2.2 2.61 1.31 

7 0 4.6 0.5 2.45 1.23 

8 0 4.6 -6.4 7.25 3.63 

9 0 Location of iBeacon   

0 1 2.1 4.2 3.83 1.92 

1 1 -0.1 6.7 5.81 2.91 

2 1 2.8 4.2 3.30 1.65 

3 1 3.5 2 1.12 0.56 

4 1 6 1.1 2.00 1.00 

5 1 3.6 -1.3 2.69 1.35 

6 1 5.2 0.3 1.06 0.53 

7 1 4.7 1.8 2.44 1.22 

8 1 4.1 2.7 4.25 2.13 

9 1 5 1.8 4.08 2.04 

0 2 -1.7 8.6 6.82 3.41 

1 2 0.3 7.3 5.35 2.68 

2 2 4.5 4.2 3.33 1.67 

3 2 4.5 2.6 1.62 0.81 

4 2 3.5 2 0.50 0.25 

5 2 3.5 4.3 2.75 1.38 

6 2 5.1 -1.5 3.61 1.81 

7 2 5.7 -2.4 4.59 2.30 

8 2 4.2 -2.8 6.12 3.06 

9 2 7.4 3.3 2.06 1.03 

0 3 3.6 4 3.74 1.87 

1 3 2.9 2.1 2.10 1.05 

2 3 2.7 7.7 4.75 2.38 

3 3 1.8 5.6 2.86 1.43 

4 3 3.4 0.5 2.57 1.29 

5 3 3.6 2.5 1.49 0.75 

6 3 3.1 2.1 3.04 1.52 

7 3 3.1 3.7 3.96 1.98 

8 3 1.8 6.2 6.98 3.49 

9 3 7.4 1.2 2.41 1.21 

0 4 -3 10.2 6.89 3.45 

1 4 2.4 1.4 2.95 1.48 

2 4 2.6 6.2 2.28 1.14 

3 4 3 -1.9 5.90 2.95 

4 4 0.3 3.9 3.70 1.85 

5 4 2.6 -6.4 10.67 5.34 

6 4 3.6 0 4.66 2.33 

7 4 6 -6.2 10.25 5.13 

8 4 4.2 4.9 3.91 1.96 

9 4 5 3.5 4.03 2.02 
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0 5 0 8.4 3.40 1.70 

1 5 2.8 4.7 1.82 0.91 

2 5 1.9 5.4 0.41 0.21 

3 5 0.2 8.3 4.33 2.17 

4 5 -10.2 18.4 19.52 9.76 

5 5 5.1 3.7 1.30 0.65 

6 5 9.5 3 4.03 2.02 

7 5 1.8 4.9 5.20 2.60 

8 5 5.1 2.7 3.70 1.85 

9 5 4.5 -5.6 11.52 5.76 

0 6 0.9 7 1.35 0.68 

1 6 1.7 6.2 0.73 0.37 

2 6 -0.2 9 3.72 1.86 

3 6 -0.8 9.7 5.30 2.65 

4 6 2.9 5.9 1.10 0.55 

5 6 5.3 7 1.04 0.52 

6 6 5.1 5.3 1.14 0.57 

7 6 7 3.5 2.50 1.25 

8 6 5.7 3.5 3.40 1.70 

9 6 6.4 3.7 3.47 1.74 

0 7 3 4.7 3.78 1.89 

1 7 2.9 4.3 3.30 1.65 

2 7 4 3.5 4.03 2.02 

3 7 2 8.1 1.49 0.75 

4 7 3.1 3.7 3.42 1.71 

5 7 2.9 6.3 2.21 1.11 

6 7 12.8 5.6 6.94 3.47 

7 7 3.9 6.2 3.20 1.60 

8 7 6.4 2.2 5.06 2.53 

9 7 3.9 7.5 5.12 2.56 

0 8 -4.2 13 6.53 3.27 

1 8 3.9 3.3 5.52 2.76 

2 8 3.6 6.3 2.33 1.17 

3 8 -4.6 13 9.10 4.55 

4 8 -2.4 11.5 7.29 3.65 

5 8 4.5 6.3 1.77 0.89 

6 8 8.8 5.4 3.82 1.91 

7 8 14.5 6.4 7.67 3.84 

8 8 8.8 2 6.05 3.03 

9 8 6.4 4 4.77 2.39 

0 9 0.5 7.7 1.39 0.70 

1 9 -2.6 8.9 3.6 1.8 

2 9 -19.2 27.2 27.94 13.97 

3 9 0.5 6.7 3.40 1.70 

4 9 1.1 8.4 2.96 1.48 

5 9 3.8 4.7 4.46 2.23 

6 9 4.5 6.1 3.26 1.63 

7 9 5.2 4.7 4.66 2.33 

8 9 5.3 7.5 3.09 1.55 

9 9 Location of iBeacon   



 
 
 
 

262 
 

  



 
 
 
 

263 
 

 


	PhDThesis_ArmaghanMoemeni
	Appendix A
	Appendix B
	Appendix C 

