94 research outputs found

    A Machine Learning Approach for Virtual Flow Metering and Forecasting

    Get PDF
    We are concerned with robust and accurate forecasting of multiphase flow rates in wells and pipelines during oil and gas production. In practice, the possibility to physically measure the rates is often limited; besides, it is desirable to estimate future values of multiphase rates based on the previous behavior of the system. In this work, we demonstrate that a Long Short-Term Memory (LSTM) recurrent artificial network is able not only to accurately estimate the multiphase rates at current time (i.e., act as a virtual flow meter), but also to forecast the rates for a sequence of future time instants. For a synthetic severe slugging case, LSTM forecasts compare favorably with the results of hydrodynamical modeling. LSTM results for a realistic noizy dataset of a variable rate well test show that the model can also successfully forecast multiphase rates for a system with changing flow patterns

    Deep learning models for improved accuracy of a multiphase flowmeter

    Get PDF
    Measurement of oil and gas two-phase flow with variable flow regimes relies to a large extent on flow patterns and their transitions. Using multiphase flowmeters in flows with high gas volume fractions is therefore usually associated with large uncertainties. This work presents a dynamic neural network method to measure the flow rate using a nonlinear autoregressive network with exogenous inputs (NARX). Total temperature and total pressure are used as network inputs and the obtained results are compared with a multilayer perceptron (MLP). Comparison between modeling results and the experimental data shows that the NARX network can predict oil and gas flow with variable flow regimes with less error compared to the MLP model, e.g. an absolute average percentage deviation (AAPD) of 0.68% instead of 1.02%. The present work can hence be seen as a proof-of-concept study that should motivate further applications of deep learning models to facilitate enhanced accuracy in flow metering

    Data-Driven Virtual Flow Rate Sensor Development for Leakage Monitoring at the Cradle Bearing in an Axial Piston Pump

    Get PDF
    The leakage of the tribological contact in axial piston pumps significantly impacts the pump efficiency. Leakage observations can be used to optimize the pump design and monitor the behavior of the tribological contact. However, due to assembly limitations, it is not always feasible to observe the leakage of each tribological contact individually with a flow rate sensor. This work developed a data-driven virtual flow rate sensor for monitoring the leakage of cradle bearings in axial piston pumps under different operating conditions and recess pressures. The performance of neural network, support vector regression, and Gaussian regression methods for developing the virtual flow rate sensor was systematically investigated. In addition, the effect of the number of datasets and label distribution on the performance of the virtual flow sensor were systematically studied. The findings are verified using a data-driven virtual flow rate sensor to observe the leakage. In addition, they show that the distribution of labels significantly impacts the model’s performance when using support vector regression and Gaussian regression. Neural network is relatively robust to the distribution of labeled data. Moreover, the datasets also influence model performance but are not as significant as the label distribution

    Bayesian Neural Networks for Virtual Flow Metering: An Empirical Study

    Full text link
    Recent works have presented promising results from the application of machine learning (ML) to the modeling of flow rates in oil and gas wells. Encouraging results and advantageous properties of ML models, such as computationally cheap evaluation and ease of calibration to new data, have sparked optimism for the development of data-driven virtual flow meters (VFMs). Data-driven VFMs are developed in the small data regime, where it is important to question the uncertainty and robustness of models. The modeling of uncertainty may help to build trust in models, which is a prerequisite for industrial applications. The contribution of this paper is the introduction of a probabilistic VFM based on Bayesian neural networks. Uncertainty in the model and measurements is described, and the paper shows how to perform approximate Bayesian inference using variational inference. The method is studied by modeling on a large and heterogeneous dataset, consisting of 60 wells across five different oil and gas assets. The predictive performance is analyzed on historical and future test data, where an average error of 4-6% and 8-13% is achieved for the 50% best performing models, respectively. Variational inference appears to provide more robust predictions than the reference approach on future data. Prediction performance and uncertainty calibration is explored in detail and discussed in light of four data challenges. The findings motivate the development of alternative strategies to improve the robustness of data-driven VFMs.Comment: 34 pages, 11 figure

    Modelling oil and gas flow rate through chokes: A critical review of extant models

    Get PDF
    Oil and gas metering is primarily used as the basis for evaluating the economic viability of oil wells. Owing to the economic implications of oil and gas metering, the subject of oil and gas flow rate measurement has witnessed a sustained interest by the oil and gas community and the academia. To the best of the authors’ knowledge, despite the growing number of published articles on this subject, there is yet no comprehensive critical review on it. The objective of this paper is to provide a broad overview of models and modelling techniques applied to the estimation of oil and gas flow rate through chokes while also critically evaluating them. For the sake of simplicity and ease of reference, the outcomes of the review are presented in tables in an integrated and concise manner. The articles for this review were extracted from many subject areas. For the theoretical pieces related to oil and gas flow rate in general, the authors relied heavily upon several key drilling fluid texts. For operational and field studies, the authors relied on conference proceedings from the society of petroleum engineers. These sources were supplemented with articles in peer reviewed journals in order to contextualize the subject in terms of current practices. This review is interspersed with critiques of the models while the areas requiring improvement were also outlined. Findings from the bibliometric analysis indicate that there is no universal model for all flow situations despite the huge efforts in this direction. Furthermore, a broad survey of literature on recent flow models reveals that researchers are gravitating towards the field of artificial intelligence due to the tremendous promises it offers. This review constitutes the first critical compilation on a broad range of models applied to predicting oil and gas flow rates through chokes

    Modelo predictivo para el cálculo de la fracción volumétrica de un flujo bifásico agua-aceite en la horizontal utilizando una red neuronal artificial

    Get PDF
    This paper presents the application of an artificial neural network (ANN) to develop a model able to predict the holdup of a two-phase flow composed of water and mineral oil in a horizontal pipe. The surface velocities of each fluid and the pressure differential in the pipe are used as input parameters of the multi-layer artificial neural network with back-propagation, while the volumetric fraction of the fluids is used as an output parameter in the training. The 56 experimental data were obtained in the laboratory LabPetro-CEPETRO-UNICAMP. The results of the predictive model with the best performance show a mean absolute error (AAPE) of 3.01 % and a coefficient of determination R^2 of 0.9964, using 15 neurons in the hidden layer of the network and the TanSig transfer function.Este artículo presenta la aplicación de una red neuronal artificial (RNA) para el desarrollo de un modelo capaz de predecir la fracción volumétrica de un flujo bifásico compuesto por agua y aceite mineral en una tubería horizontal. Se utilizan las velocidades superficiales de cada fluido y el diferencial de presión en la tubería como parámetros de entrada de la red neuronal artificial multicapa con retropropagación, mientras que la fracción volumétrica de los fluidos se utiliza como parámetro de salida en el entrenamiento de la misma. Los 56 datos experimentales con los que se trabajó se obtuvieron en el laboratorio LabPetro - CEPETRO-UNICAMP. Los resultados que arrojó el modelo predictivo con mejor rendimiento presentan un error absoluto medio porcentual (AAPE) de 3,01 % y un coeficiente de determinación  de 0,9964 utilizando 15 neuronas en la capa oculta de la red y la función de transferencia TanSig

    Exploring the adoption of a conceptual data analytics framework for subsurface energy production systems: a study of predictive maintenance, multi-phase flow estimation, and production optimization

    Get PDF
    Als die Technologie weiter fortschreitet und immer stärker in der Öl- und Gasindustrie integriert wird, steht eine enorme Menge an Daten in verschiedenen Wissenschaftsdisziplinen zur Verfügung, die neue Möglichkeiten bieten, informationsreiche und handlungsorientierte Informationen zu gewinnen. Die Konvergenz der digitalen Transformation mit der Physik des Flüssigkeitsflusses durch poröse Medien und Pipeline hat die Entwicklung und Anwendung von maschinellem Lernen (ML) vorangetrieben, um weiteren Mehrwert aus diesen Daten zu gewinnen. Als Folge hat sich die digitale Transformation und ihre zugehörigen maschinellen Lernanwendungen zu einem neuen Forschungsgebiet entwickelt. Die Transformation von Brownfields in digitale Ölfelder kann bei der Energieproduktion helfen, indem verschiedene Ziele erreicht werden, einschließlich erhöhter betrieblicher Effizienz, Produktionsoptimierung, Zusammenarbeit, Datenintegration, Entscheidungsunterstützung und Workflow-Automatisierung. Diese Arbeit zielt darauf ab, ein Rahmenwerk für diese Anwendungen zu präsentieren, insbesondere durch die Implementierung virtueller Sensoren, Vorhersageanalytik mithilfe von Vorhersagewartung für die Produktionshydraulik-Systeme (mit dem Schwerpunkt auf elektrischen Unterwasserpumpen) und präskriptiven Analytik für die Produktionsoptimierung in Dampf- und Wasserflutprojekten. In Bezug auf virtuelle Messungen ist eine genaue Schätzung von Mehrphasenströmen für die Überwachung und Verbesserung von Produktionsprozessen entscheidend. Diese Studie präsentiert einen datengetriebenen Ansatz zur Berechnung von Mehrphasenströmen mithilfe von Sensormessungen in elektrischen untergetauchten Pumpbrunnen. Es wird eine ausführliche exploratorische Datenanalyse durchgeführt, einschließlich einer Ein Variablen Studie der Zielausgänge (Flüssigkeitsrate und Wasseranteil), einer Mehrvariablen-Studie der Beziehungen zwischen Eingaben und Ausgaben sowie einer Datengruppierung basierend auf Hauptkomponentenprojektionen und Clusteralgorithmen. Feature Priorisierungsexperimente werden durchgeführt, um die einflussreichsten Parameter in der Vorhersage von Fließraten zu identifizieren. Die Modellvergleich erfolgt anhand des mittleren absoluten Fehlers, des mittleren quadratischen Fehlers und des Bestimmtheitskoeffizienten. Die Ergebnisse zeigen, dass die CNN-LSTM-Netzwerkarchitektur besonders effektiv bei der Zeitreihenanalyse von ESP-Sensordaten ist, da die 1D-CNN-Schichten automatisch Merkmale extrahieren und informative Darstellungen von Zeitreihendaten erzeugen können. Anschließend wird in dieser Studie eine Methodik zur Umsetzung von Vorhersagewartungen für künstliche Hebesysteme, insbesondere bei der Wartung von Elektrischen Untergetauchten Pumpen (ESP), vorgestellt. Conventional maintenance practices for ESPs require extensive resources and manpower, and are often initiated through reactive monitoring of multivariate sensor data. Um dieses Problem zu lösen, wird die Verwendung von Hauptkomponentenanalyse (PCA) und Extreme Gradient Boosting Trees (XGBoost) zur Analyse von Echtzeitsensordaten und Vorhersage möglicher Ausfälle in ESPs eingesetzt. PCA wird als unsupervised technique eingesetzt und sein Ausgang wird weiter vom XGBoost-Modell für die Vorhersage des Systemstatus verarbeitet. Das resultierende Vorhersagemodell hat gezeigt, dass es Signale von möglichen Ausfällen bis zu sieben Tagen im Voraus bereitstellen kann, mit einer F1-Bewertung größer als 0,71 im Testset. Diese Studie integriert auch Model-Free Reinforcement Learning (RL) Algorithmen zur Unterstützung bei Entscheidungen im Rahmen der Produktionsoptimierung. Die Aufgabe, die optimalen Injektionsstrategien zu bestimmen, stellt Herausforderungen aufgrund der Komplexität der zugrundeliegenden Dynamik, einschließlich nichtlinearer Formulierung, zeitlicher Variationen und Reservoirstrukturheterogenität. Um diese Herausforderungen zu bewältigen, wurde das Problem als Markov-Entscheidungsprozess reformuliert und RL-Algorithmen wurden eingesetzt, um Handlungen zu bestimmen, die die Produktion optimieren. Die Ergebnisse zeigen, dass der RL-Agent in der Lage war, den Netto-Barwert (NPV) durch kontinuierliche Interaktion mit der Umgebung und iterative Verfeinerung des dynamischen Prozesses über mehrere Episoden signifikant zu verbessern. Dies zeigt das Potenzial von RL-Algorithmen, effektive und effiziente Lösungen für komplexe Optimierungsprobleme im Produktionsbereich zu bieten.As technology continues to advance and become more integrated in the oil and gas industry, a vast amount of data is now prevalent across various scientific disciplines, providing new opportunities to gain insightful and actionable information. The convergence of digital transformation with the physics of fluid flow through porous media and pipelines has driven the advancement and application of machine learning (ML) techniques to extract further value from this data. As a result, digital transformation and its associated machine-learning applications have become a new area of scientific investigation. The transformation of brownfields into digital oilfields can aid in energy production by accomplishing various objectives, including increased operational efficiency, production optimization, collaboration, data integration, decision support, and workflow automation. This work aims to present a framework of these applications, specifically through the implementation of virtual sensing, predictive analytics using predictive maintenance on production hydraulic systems (with a focus on electrical submersible pumps), and prescriptive analytics for production optimization in steam and waterflooding projects. In terms of virtual sensing, the accurate estimation of multi-phase flow rates is crucial for monitoring and improving production processes. This study presents a data-driven approach for calculating multi-phase flow rates using sensor measurements located in electrical submersible pumped wells. An exhaustive exploratory data analysis is conducted, including a univariate study of the target outputs (liquid rate and water cut), a multivariate study of the relationships between inputs and outputs, and data grouping based on principal component projections and clustering algorithms. Feature prioritization experiments are performed to identify the most influential parameters in the prediction of flow rates. Model comparison is done using the mean absolute error, mean squared error and coefficient of determination. The results indicate that the CNN-LSTM network architecture is particularly effective in time series analysis for ESP sensor data, as the 1D-CNN layers are capable of extracting features and generating informative representations of time series data automatically. Subsequently, the study presented herein a methodology for implementing predictive maintenance on artificial lift systems, specifically regarding the maintenance of Electrical Submersible Pumps (ESPs). Conventional maintenance practices for ESPs require extensive resources and manpower and are often initiated through reactive monitoring of multivariate sensor data. To address this issue, the study employs the use of principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to analyze real-time sensor data and predict potential failures in ESPs. PCA is utilized as an unsupervised technique and its output is further processed by the XGBoost model for prediction of system status. The resulting predictive model has been shown to provide signals of potential failures up to seven days in advance, with an F1 score greater than 0.71 on the test set. In addition to the data-driven modeling approach, The present study also in- corporates model-free reinforcement learning (RL) algorithms to aid in decision-making in production optimization. The task of determining the optimal injection strategy poses challenges due to the complexity of the underlying dynamics, including nonlinear formulation, temporal variations, and reservoir heterogeneity. To tackle these challenges, the problem was reformulated as a Markov decision process and RL algorithms were employed to determine actions that maximize production yield. The results of the study demonstrate that the RL agent was able to significantly enhance the net present value (NPV) by continuously interacting with the environment and iteratively refining the dynamic process through multiple episodes. This showcases the potential for RL algorithms to provide effective and efficient solutions for complex optimization problems in the production domain. In conclusion, this study represents an original contribution to the field of data-driven applications in subsurface energy systems. It proposes a data-driven method for determining multi-phase flow rates in electrical submersible pumped (ESP) wells utilizing sensor measurements. The methodology includes conducting exploratory data analysis, conducting experiments to prioritize features, and evaluating models based on mean absolute error, mean squared error, and coefficient of determination. The findings indicate that a convolutional neural network-long short-term memory (CNN-LSTM) network is an effective approach for time series analysis in ESPs. In addition, the study implements principal component analysis (PCA) and extreme gradient boosting trees (XGBoost) to perform predictive maintenance on ESPs and anticipate potential failures up to a seven-day horizon. Furthermore, the study applies model-free reinforcement learning (RL) algorithms to aid decision-making in production optimization and enhance net present value (NPV)
    corecore