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A B S T R A C T   

Pipeline transportation of multiphase products, such as gas and oil mixtures, exhibits complex and varying flow 
regimes: as a result, analytical approaches or conventional methods cannot accurately describe the composition 
or the propagation characteristics of the fluid mix inside the transportation system itself. We address such an 
issue by presenting a methodology, driven by the data and applied to a real case history, where basic pressure 
transients are used to tag and track, along a pipeline, different batches of a multiphase medium. Several sta-
tistical indicators, computed from the pressure data and on different window lengths, are employed to train a 
machine learning model, which learns to distinguish the characteristic behavior of two different oil-gas slugs: in 
practice, each different combination of fluid phases (in terms of gas/oil ratio in a given batch of product) and 
each different sequence of slugs (in terms of gas/oil ratio variability between successive batches) behaves like a 
coded tag linked to the flowing fluid. The key innovation consists in the possibility of tracking such multiphase 
slugs along the flowline and at each monitoring station: this allows one to determine in real-time the fluid 
composition entering/exiting the line, its position, and its movement along the pipe. As such, we obtain also a 
virtual metering system, able to provide estimates of the flow rate and phases ratio. Moreover, by having several 
recording stations accurately synchronized, one can also leverage real-time transmission and multichannel 
processing of the data, enabling the opportunity for online monitoring applications. The results on the test cases 
and the accuracy scores obtained for the metrics considered validate the tagging and tracking approach.   

1. Introduction 

Upstream hydrocarbons production and transportation must deal 
with multiphase flow, with a variable and often unpredictable ratio 
between gas and liquid phases. This ratio is fundamental in determining 
the flow regime along the pipe, as well as in tuning the appropriate fluid 
processing at the receiving terminal plant, in order to guarantee the 
efficiency and safety of the assets. 

The need to model and predict the variability of multiphase propa-
gation has been broadly addressed in the literature (Brennen, 2005; 
Henry et al., 1971; Hsu, 1972; Gudmundsson and Celius, 1999; Kumar 
et al., 2020). A fully theoretical approach, consisting in using mathe-
matical equations and analytical models, cannot be employed in a real 
scenario, due to the impossibility of knowing the initial status and the 
governing equations with the required accuracy (Falcone and Alimonti, 
2007; Agwu et al., 2022; Taylor, 1935). Other solutions make use of 
numerical simulations or experimental setups arranged in laboratories, 
which lack validation on real scenarios (Andrade et al., 2022; Chaves 

et al., 2022). The current frontier is instead represented by computa-
tional methods (Yan et al., 2018; Babakhani Dehkordi, Colombo, Gui-
lizzoni and Sotgia, 2017), which employ models driven by the data, 
either available in the literature (Kanin et al., 2018; Alhashem, 2019; 
Al-Naser et al., 2016; Alhashem, 2020; Kanin et al., 2019; Gene et al., 
2019), generated synthetically (Andrianov, 2018; Babanezhad et al., 
2020) or collected from real transportation assets (Aziz AL-Qutami et al., 
2018; Góes et al., 2021; Ye and Guo, 2013; Qiang et al., 2021). 

What emerges from the research survey just discussed is that a lot of 
attention currently stands towards virtual flow metering systems (Bik-
mukhametov and Jäschke, 2020) or flow rate estimation in multiphase 
pipeline systems, yet (according to the best of the Authors’ knowledge) 
the current literature is rather poor with regards to successfully tracking 
and monitoring the location of multiphase fluid batches/slugs: even 
though the latter is an equally important matter, it still remains a quite 
unexplored area of study. The work presented here fills such a research 
gap by proposing a data-driven methodology that allows to follow the 
position of diverse oil-gas mixtures moving along a pipeline at the 
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velocity of the fluid flow. Our proposed method starts from a practical 
example to highlight its effective applicability on real scenarios: as such, 
we consider pressure signals collected by Eni for two full months 
(February 2020 and March 2020) in discrete locations along a 7.8 km 
oil-gas multiphase transportation asset located in Italy. We have 
designed and tested several features, directly derived from the collected 
pressure data, which are able to describe the variability of the multi-
phase batches flowing along the conduit. Such features are tuned for 
tracking a given sequence of mixtures along consecutive acquisition 
stations: the latter task is performed by a supervised learning model, 
based on Extremely Randomized Trees (Geurts et al., 2006). As said, the 
main technical novelty of our approach consists in an automated tagging 
and tracking process of the different multiphase slugs that enter/exit the 
pipeline, along with the opportunity to track their position and move-
ment along the pipe. Besides that, our methodology is based on cheap 
and standard pressure measurements, which are typically already 
installed in many pipeline assets; it leverages on a simple machine 
learning algorithm; compared to most research works in the topic of 
oil/gas multiphase propagation, we have worked with an experimental 
dataset that is concurrently large enough (more than 15 billion exam-
ples) and collected from a real pipeline transportation system. Other key 
elements are an accurate synchronization of the measurements, the real 
time transmission and multichannel processing of the data. 

The remainder of the paper is structured as follows. Section II pro-
vides an overview of the case study. Section III describes the processing 
steps applied to the data, whereas Section IV and Section V respectively 
explain how to tag and track oil-gas mixtures. Lastly, Section VI draws 
the conclusions. 

2. Case study description 

The work presented here makes use of pressure data collected for two 
months (from February 1st, 2020 to April 1st, 2020) by a proprietary 
vibroacoustic continuous monitoring system (e-vpms® technology 
(United States of America Patent No. US10401254B2, 2019)), installed 
on an upstream oil & gas network located in South Italy, which conveys 
a mixture of gas and oil products. The flowline has a length of 

approximately 7.8 km with altimetric variance, is characterized by 12” 
ID pipes and continuously operates with a service pressure comprised 
between 30 and 44 bar. 

The gas-to-oil ratio (GOR) typically ranges between 50 and 250, with 
an average value of approximately 200, based on separator measure-
ments collected on-site. Fig. 1 displays the satellite track of the conduit 
(red curve) and the location of the three acquisition stations installed on 
the line itself (highlighted by yellow pins and respectively labelled as A, 
B and C). The production well (A) is upstream with respect to the Oil 
Centre (C). Each e-vpms® sensing unit is equipped with a dynamic hy-
drophone, which records pressure transients within the multiphase 
fluid. The sampling rate has been set to 1 kHz: recalling that the 
acquisition time spans over two full months (e.g., 60 days), the total 
number of recorded samples per sensor is more than 5 billion. Table 1 
reports the relative distance between each acquisition unit and the 
production terminal installed at station A. 

In a pipeline fluid transportation system, every interaction with the 
pipe or with the flow generates acoustic signals that propagate as guided 
waves within the fluid itself. Considering multiphase pipelines, a sensor 
in contact with the fluid (e.g., an hydrophone) can measure pressure 
transients (i.e., sounds) having different characteristics according to the 
variable gas/liquid ratio of the moving mixture: during a normal oper-
ation regime, the related pressure fluctuations are neither constant nor 
periodic, yet their statistical features can be analyzed and exploited, 
using data-driven techniques, to define one or more propagation 
regimes. 

Given such a context, two distinct acoustic propagation processes 
have been observed. The first one is related to pressure transients 
generated by the flow regulation equipment (e.g., pumps, valves, etc.): 
these transients propagate within the pipe at the sound velocity vs 
depending on the type of fluid transported. More specifically, if the pipe 
was entirely filled with gas, one would observe a propagation velocity of 
a few hundred m/s; if one instead conveys liquid oil, vs would be around 
1000 m/s. Considering oil-gas mixtures, the sound speed exhibits the 
behavior shown in Fig. 2 (Unalmis, 2015): it is clear that sound velocity 
measurements can be exploited to estimate the gas-oil ratio. In principle, 
vs is obtainable by a correlation analysis between the pressure transients 
recorded at different stations, as shown in (Bernasconi and Giunta, 

Fig. 1. Satellite map of the pipeline route (red line) and location of the sensing 
stations (yellow pins). (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.) 

Table 1 
Distance between each e-vpms® station and the pumping terminal 
positioned in station A.  

Station Distance with respect to station A (km) 

B 3.6 
C 7.8  

Fig. 2. Sound speed in a gas-oil mixture (Unalmis, 2015).  
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2020): a correlation peak happens at the relative propagation delay of 
the considered stations. Unfortunately, in high GOR regimes (like in our 
case, the average GOR is around 200) the propagation is very chaotic 
and turbulent due to the dominant presence of gas: as a consequence, 
pressure transients tend to decorrelate very rapidly (after a few hundred 
m) such that the aforementioned technique cannot be employed to es-
timate vs. We have in fact verified this aspect on our experimental 
datasets by correlating the signals collected at the two closest stations (e. 
g., A and B), obtaining unsatisfactory outcomes. 

The second propagation process is instead related to the fluid flowing 
within the line, which travels at the flow velocity vf of some m/s: for 
instance, a batch of oil-gas mixture travelling at such a speed would be 
observed at two distinct sensing stations (e.g., A and C) with a time 
difference of several minutes or hours. In this case, the ability of tracking 
a given batch along the line permits to measure the flow velocity. The 
following Sections present an automatic procedure, fed with pressure 
data recorded in stations A, B and C along the pipeline, able to tag and 
track the batches of produced fluid travelling along the line. 

3. Data processing 

As a first step, raw pressure measurements (displayed in Fig. 3) un-
dergo a number of preliminary operations to make them suitable for a 
machine learning workflow. For this specific application, we have per-
formed the following tasks:  

1) Removal of outliers and sensor errors (Giro et al., 2021a, 2021b; 
Giunta et al., 2020). More precisely, dynamic pressure measure-
ments having absolute value greater than 100 kPa have been ruled 
out from the dataset. In addition, all the time intervals in which a 
sensor was not operational have been manually detected and the 
corresponding data points have been set to a null value. All those 
instances (highlighted in Fig. 3 with black ellipses) are related to 
sporadic electromagnetic disturbances affecting the power unit of 
the equipment; 

2) Bandpass filtering pressure data between 0.2 and 1 Hz. This opera-
tion has a dual purpose: firstly, to remove the zero-frequency 
component, which would introduce an undesired bias in the 

Fig. 3. From top to bottom: raw dynamic pressure measurements, respectively collected at stations A, B and C. The black ellipses highlight outliers and sensor errors.  

Fig. 4. Raw power spectral density of the dynamic pressure signals, respectively collected at stations A, B and C (left column, from top to bottom), and corresponding 
PSD after bandpass filtering and equalization (right column). 
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measurements; lastly, to keep the useful part of the observed signal 
(which is typically below 1 Hz) and to reduce the noise bandwidth. 
The useful bandwidth of the signal has been empirically derived by 
performing numerous correlations of the original signals within 
different frequency sub bands, and we concluded that the frequency 
range (0.2 Hz, 1 Hz) is the optimal one from a signal-to-noise ratio 
(SNR) point of view. We also recall that the attenuation of sounds 
increases with frequency, and for this reason it makes more sense to 
keep the low frequency component of the data, rather than its high- 
frequency counterpart: in this specific case, the SNR above 1 Hz is 
degraded to a point that it’s not worth considering the corresponding 
frequency components; 

3) Equalization. This operation is the reversal of distortion which oc-
curs whenever a signal is transmitted through a channel: more spe-
cifically, equalizers are used to flatten the frequency response of such 
a signal within a desired frequency range; this means that the 
propagation channel (e.g., the pipe) progressively introduces 
distortion and degrades the quality of the target signal to be 
measured. In practice, if we were to use the raw pressure data, we 

would not be able to successfully track the multiphase slugs that 
propagate along the pipeline (the signal would get lost after a certain 
distance): for these reasons, equalization is a key step within the data 
processing phase. In this particular case, the pressure signals 
collected at the three different stations are each affected by local 
noise which alters their spectral content within the bandwidth of 
interest (0.2–1 Hz) in an undesired manner: this aspect can be 
observed by looking at the power spectral density (PSD) of the raw 
pressure data (Fig. 4, plots on the left column). Such an in-
homogeneity is also visible in the time series (Fig. 3), which are 
characterized by non-uniform scales among each other: this aspect 
can become problematic during the training and testing phases of a 
machine learning algorithm (Danushka, 2017). To overcome this 
issue, we have whitened each PSD between 0.2 and 1 Hz using an 
equalizer based on Welch’s method (Welch, 1967). The result of such 
an operation is displayed in Fig. 4 (plots on the right column). 

In addition, it should also be noted that there are missing data points 
in the pressure time series represented in Fig. 3 (e.g., between March 

Fig. 5. From top to bottom: processed dynamic pressure measurements, respectively collected at stations A, B and C: the training and test regions are separated by a 
black vertical bar. 

Fig. 6. From top to bottom: propagation of the first type (outside the black vertical bars) and of the second type of oil-gas slug (enclosed by black vertical bars) along 
the three recording stations A, B and C. 

R.A. Giro et al.                                                                                                                                                                                                                                  



Journal of Petroleum Science and Engineering 218 (2022) 110982

5

14th and March 21st): the latter are related to the instances in which the 
acquisition units were temporarily not operational. Lastly, Fig. 5 dis-
plays the data collected by the dynamic hydrophones at their respective 
stations after the processing operations previously described. The his-
torical data devoted to train and test the machine learning model are 
highlighted in Fig. 5 using text boxes and a black vertical line. 

4. Tagging oil-gas mixtures 

By looking at the time series in Fig. 5, two distinct multiphase re-
gimes can be detected: the former and most frequent one (Fig. 6, outside 
two vertical bars) can be distinguished from the latter (Fig. 6, enclosed 
by black vertical bars) as the recorded pressure signals present a 
different acoustic energy content. We can qualitatively label such re-
gimes as “high energy” and “low energy”. It is also worth noting (by 
looking at the example in Fig. 6) that each transition from one state to 
another is observed at the three sensing stations with a relative delay τ of 
approximately 30 min between each other. Taking into account the 
relative distances reported in Table 1, it is reasonable to assume that 
these changes are due to variations in the composition of the flowing 
product: based on the on-site production logs, it is in fact expected to 

propagate on average with a velocity vf of approximately 2 m/s. 
The two different batches of oil-gas mixtures present therefore 

unique acoustic signatures, whose characteristics can be directly 
extracted from the recorded data: for instance, higher order statistical 
moments of pressure measurements (such as variance) are good candi-
dates to characterize the flow regime along the entire pipeline. We have 
therefore exploited this observational knowledge to manually tag each 
of the time series displayed in Fig. 5 with a binary label, which univo-
cally identifies one of the two oil-gas batches. An example of such an 
operation is depicted in Fig. 7, where every sample of the signals dis-
played in Fig. 6 has been assigned a tag: the datapoints corresponding to 
the high energy state (e.g., state 1) have been colored in black, while the 
remaining ones (state 2) have been represented in magenta. 

4.1. On the need for supervision 

Whenever this category of problems is tackled using a data-driven 
approach, a common argument might question the need for employing 
machine learning in the first place: since we have just said that the 
variance of the signal can be a valid indicator to distinguish between the 
two propagation regimes, one could simply evaluate the aforementioned 

Fig. 7. From top to bottom: labelled pressure data for the three stations A, B and C.  

Fig. 8. Change of state where the boundary between the two multiphase regimes is not straightforward.  
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quantity over two different windows, and the detection of a large vari-
ation in the data can be set as the discriminant between state 1 and state 
2. However, deterministic methods (such as this one) tend to be less 
reliable the more uncertain the decision threshold becomes (what is 
exactly a large enough variation in the data to be eligible for tagging?): 
this would either result in classification ambiguity or in the requirement 
for human supervision. Let us consider the example displayed in Fig. 8: 
in this case, it is not trivial to decide for state 1 or state 2 using a simple 
moving variance, because it is not clear where to put the threshold on 
the variance level. The machine learning method presented in Section V 
overcomes this limitation: it will be demonstrated that its capability to 
generalize well enough can make the data-driven model more likely to 
be deployed in other assets. A moving variance-based solution, instead, 
would certainly require specific calibration for each new scenario. 

Another problem that cannot be solved by basic techniques regards 
the presence of acoustic events that do not propagate with the same 
velocity of the flow: these processes still generate significant amplitude 
variations in the measured signals, yet they do not have any relation 
with multiphase batches travelling through the pipe. In Section II, we 
have also stated that such pressure transients decorrelate very rapidly 
after a few hundred m and are not visible at successive stations: as a 
result, a basic technique that blindly looks at the moving variance would 
trigger a false event at a given station, and would remain silent for all the 
others. For all the reasons just described, it is therefore of paramount 
importance to correctly tag the data and feed them to an expert system: 
the aim is to automatically detect and track only coherent events, ruling 
out all the false alarms. Deterministic techniques, instead, cannot simply 
provide the required level of abstraction typical of machine learning 
algorithms. 

Fig. 9 shows an example instance of the problem just discussed: an 

acoustic event (enclosed by black vertical bars) occurs at station A on 
March 2nd, 2020 before 8:30 in the morning, yet it is not visible at any of 
the successive stations; this event was caused by the flow regulation 
equipment (located at station A) and was not related to changes in the 
gas/oil fraction. It is clear that blindly looking at the amplitude of the 
signal would erroneously highlight a variation in the multiphase 
composition: a machine learning model can instead learn to detect the 
propagation phenomena of interest (e.g., the ones related to multiphase 
propagation), while concurrently discarding false events (such as the 
one depicted in Fig. 9) if trained appropriately. 

5. Tracking oil-gas mixtures 

By having labelled data at disposal, one can employ such tags to train 
a supervised learning classifier, having two practical applications in 
mind: firstly, the real time tracking of the position of different oil-gas 
batches moving along the conduit; lastly, the automatic identification 
of the type of mixture currently entering/exiting the line. To perform 
these operations, we have employed a multi-output Extremely Ran-
domized Trees Classifier (ERTC) (Geurts et al., 2006): the latter is a 
data-driven algorithm which provides (at each sampling instant) three 
discrete outputs by analyzing several characteristics of the input signal. 
For this specific application, the classifier has been designed to provide 
binary labels, which respectively identify (for each of the three stations) 
one of the two flow regimes previously discussed. We have chosen to 
employ the ERTC because it can concurrently satisfy the following re-
quirements: it must be reliable, accurate and robust; it must have the 
simplest implementation possible; it must be based on basic and easy to 
understand principles. Moreover, a properly trained ERTC can choose 
autonomously which features are more appropriate for a particular 

Fig. 9. Example of acoustic event (originated at station A and enclosed by black vertical bars) that is not visible at stations B and C.  

Table 2 
Summary of the raw features, evaluated from the processed pressure transients dataset.  

Moving statistics Computed at Causal time window (minutes) 

5 15 30 45 60 75 90 105 120 180 240 300 

Variance Station A x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 

Minimum x13 x14 x15 x16 x17 x18 x19 x20 x21 x22 x23 x24 

Maximum x25 x26 x27 x28 x29 x30 x31 x32 x33 x34 x35 x36 

Variance Station B x37 x38 x39 x40 x41 x42 x43 x44 x45 x46 x47 x48 

Minimum x49 x50 x51 x52 x53 x54 x55 x56 x57 x58 x59 x60 

Maximum x61 x62 x63 x64 x65 x66 x67 x68 x69 x70 x71 x72 

Variance Station C x73 x74 x75 x76 x77 x78 x79 x80 x81 x82 x83 x84 

Minimum x85 x86 x87 x88 x89 x90 x91 x92 x93 x94 x95 x96 

Maximum x97 x98 x99 x100 x101 x102 x103 x104 x105 x106 x107 x108  
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slug/state combination: this feature importance evaluation process is a 
peculiar property of the algorithm itself, and makes it very reliable from 
a performance point of view. 

Besides a m × 3 matrix of ground truth labels y (i.e., the m manually 
tagged examples times 3 measurement stations), the classifier requires 
as additional input a m × N matrix of features X, where the N entries of 
each row are obtained by evaluating several statistical indicators from 
the dynamic pressure signals: more specifically, we have computed the 
variance, minimum and maximum over 12 causal rolling windows, 
ranging from 5 min up to 5 h; therefore, each training example xk is 
described by a 1 × N row vector, where N = 108. Table 2 summarizes the 
108 raw features that have been evaluated from the processed pressure 
data. The procedure is described as follows: at each time step k, one has 
to evaluate xi, where i ∈ [1,…,108]. For example, x1 corresponds to the 
variance of the pressure transients recorded at station A over the pre-
vious 5 min (e.g., an interval between k – 5 min and k), x2 is the same 
statistics but computed over the past 15 min, and so on. 

The aforementioned feature engineering process follows this logic: if 
we had to manually look at the pressure measurements and decide be-
tween the two classes “state 1” and “state 2”, we would look at the 
current shape of the signal (e.g., visually assessing its variance, mini-
mum and maximum values) and compare it with its past history: the 
definition of “past history” varies widely, since a certain type of slug (or, 
equivalently, GOR) can last from several minutes up to a few hours 
(based on our experimental data). We have therefore carefully designed 
the ERTC with this logic in mind: we wanted the algorithm to react like 
we typically do and to automatically perform a task that would other-
wise be done by hand, which ultimately takes a lot of time and experi-
ence to be executed correctly. 

Working in high-dimensional spaces (e.g., having a lot of features) 
can potentially be undesirable for many reasons: in particular, training a 
machine learning algorithm using too many features is usually compu-
tationally cumbersome and does not guarantee a better performance of 
the algorithm itself. Given the high cardinality of our feature space (N >

100), we have therefore performed dimensionality reduction using 
principal component analysis (PCA) (Jolliffe, 2005) to find a smaller 
feature set X′ having size m × N′ (where N′

< N), while still preserving 
most of the variance from the original data. In practice, the raw feature 
matrix X undergoes an orthogonal linear transformation which maps the 
data into a new coordinate system having N′ components: we have 
therefore applied PCA on X with the goal of preserving at least 90% of 
the original variance of the data. By accepting a tradeoff with a small 
loss of information (e.g., 10% variance reduction), a substantial 
dimensionality reduction can be obtained: in fact, the minimum value of 
N′ that satisfies this condition is N′

= 7, thus achieving a compression 
factor greater than 15. We also remind that PCA does not eliminate any 
of the initial features per se, it simply combines them to create a new set 
of features, smaller than the former one. Fig. 10 represents the outcome 
of PCA on our experimental data: as with many real world problems, the 
boundaries between the two target classes (e.g., state 1 and state 2) are 
not always clear: this is one of the reasons why basic, deterministic so-
lutions are not good enough to correctly tag and track multiphase 
mixtures. Still, some dense and distinct regions in the PCA domain can 
be detected (e.g., the density plots below the magenta histograms enti-
tled “PC1” and “PC2”): this confirms that our subset of 7 transformed 
features are useful indicators for distinguishing the two multiphase re-
gimes of interest. 

The multi-output ERTC has been trained for a full calendar month 
(February 2020) using examples collected from all three stations. 
Training a data-driven model using this type of approach becomes ad-
vantageous, since we can embed the notions of spatial and temporal 
memory into the ERTC, which are respectively provided by the multi- 
output design and by computing the feature matrix using only mov-
ing, causal statistics. Testing has instead been performed on the 
remaining time frame (March 2020): given the abundance of available 
examples (>5 billion), an equal subdivision between the two sets proves 
to be sufficient, as it guarantees enough samples for training the algo-
rithm, allows for a thorough testing phase and makes it easier to detect 

Fig. 10. Principal component analysis, performed on the experimental data.  
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any potential issues with bias or overfitting the data to the training set. 
Moreover, performance can be either assessed on the overall test set or it 
can be further refined by treating the three measurement stations as 
independent of each other: the latter approach permits to detect in 
which locations the classifier provides the highest or the lowest accu-
racy. Lastly, by having multi-point outputs at disposal, one can also infer 
the mean composition of the multiphase batch along the entire pipeline 
and/or individual segments: the overall GOR at a specific time instant is 
obtained by averaging the output tags, weighted by the length of each 
line section. 

To assess the performance of the proposed mixture tracking model, 
we have considered the typical metrics employed in statistical analysis 
of binary classification, namely: precision P, recall R and F1 score. Those 
quantities are a function of the number of true positives Tp, false posi-
tives Fp and false negatives Fn, and are respectively defined as follows: 

P =
Tp

Tp + Fp
, (1)  

R =
Tp

Tp + Fn
, (2)  

F1 = 2
PR

P + R
. (3) 

Table 3 reports the values of P, R and F1, respectively attained for 
each binary class and for the three test sets considered (data collected 
from stations A, B and C). The results are quite satisfactory, as the overall 
accuracy level (Table 3, lowermost row) is greater than 97% for every 
test set considered. Such a high degree of robustness can also be 
observed by comparing the time series of the predicted tags with the 
ground truth, reference values. An example is displayed in Fig. 11: the 
outputs of the ERTC (Fig. 11, bottom row) closely match the original 
labels (Fig. 11, top row). 

6. Conclusion 

This paper presented a novel machine learning strategy which has 
been applied to historical pressure data for tracking sequences of oil-gas 
multiphase mixtures, conveyed along a pipeline in an upstream sce-
nario. The proposed work demonstrates that the position of such mix-
tures can be successfully monitored, since each slug presents a 
characteristic propagation signature which is strongly dependent on the 
composition of the mixture itself: this allows to precisely describe the 
high variability in the operational statuses of the pipeline. Having a 
mixture of fluids in a pipeline brings many challenges due to the indi-
vidual characteristics of each phase: for example, reactions between 
different components can cause corrosion of the pipeline, which leads to 
leaks and ruptures; moreover, these could potentially go unnoticed if 
occurring in a subsea pipeline, where it is not possible to install physical 
meters. Another critical issue consists in appropriately preparing the 
receiving terminal to optimally process the incoming multiphase 
mixture, which is a key step in ensuring the safety of operations: given 
such a context, knowing its real-time composition is an important 
requirement; our tracking system can provide such an information, and 
additionally allows for virtual flow rate metering along the entire 
conduit. In fact, the model has been designed and validated on experi-
mental data, collected for two months from a real pipeline asset. Results 
obtained so far confirm the capability of tracking different oil-gas mix-
tures at an intermediate point and at the two ends of a conduit, 
achieving an overall accuracy level greater than 97% for all the test sets 
considered. Future work will be focused on testing the data-driven 
model presented here in other oil & gas pipeline networks. 
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Table 3 
Performance of the ERTC on the three test sets.  

Metrics Station A, 0 km Station B, 3.6 km Station C, 7.8 km 

State 1 State 2 State 1 State 2 State 1 State 2 

P 97.69% 98.66% 99.18% 98.74% 99.39% 98.70% 
R 99.69% 90.54% 99.82% 94.56% 99.76% 96.76% 
F1 (per class) 98.68% 94.43% 99.49% 96.60% 99.57% 97.72% 
F1 (overall) 97.87% 99.12% 99.28%  

Fig. 11. Top row, from left to right: ground truth labels on dynamic pressure signals at stations A, B and C, respectively. Bottom row, from left to right: predicted tags 
at stations A, B and C, respectively. 
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APPENDIX: EXTREMELY RANDOMIZED TREES CLASSIFIER 

An Extremely Randomized Trees Classifier (ERTC) is an ensemble machine learning algorithm for classification, based on decision trees (DTs). To 
better understand how an ERTC operates, it is fundamental to outline how a standard DT works. 

Decision Trees 

Decision Trees (Quinlan, 1986) are a non-parametric and supervised learning method that can be either employed for classification and/or 
regression: in practice, a DT is a very basic and flexible model that (if properly designed) maintains a low degree of complexity. When building a DT, 
the goal is to devise a model which predicts the value of a target variable by learning simple decision rules (such as a sequence of IF/ELSE statements), 
which are inferred from an input set of features. 

Fig. 1 displays the general architecture of a DT. The latter is composed of two core elements: nodes and branches. The root node is the starting point 
of every DT; decision nodes represent all the intermediate levels, while the leaf nodes correspond to the terminations of the DT. A branch is instead a 
subsection of the entire tree. When training a DT, all the input features are evaluated at each node (leaves excluded) to redirect every training example 
into one of the many terminations. The tree is gradually built by recursively evaluating different features at the various nodes and by finding the one 
that provides the best split of the data at each node. The criteria for deciding the optimal way of splitting the input examples can vary: for classification 
purposes, the most common ones are the Gini Impurity or the Shannon entropy. To provide ease of understanding, suffice it to say that these opti-
mization metrics can be interpreted as a cost function that has to be minimized, and choosing the best features at each node will result in a reduction of 
such a cost. 

Fig. 2 shows an example application of a DT on the renowned Iris dataset (Fisher, 1936) to solve a simple classification problem. The dataset 
consists of 50 samples from three different species of Iris flowers (e.g., Iris setosa, Iris virginica, and Iris versicolor), and each example is characterized 
by 5 attributes (e.g., 4 features and 1 target class label): sepal length, sepal width, petal length, petal width and species. The root node is initially fed 
with the entire sample size (samples = 150), and in this case the feature that provides the best split for that node is the petal width: 50 flowers having 
petal width less or equal than 0.8 cm are declared to belong to a specific class (e.g., Iris setosa); otherwise, one descends to an intermediate decision 
node and searches once again for a feature that provides the best split for the remaining 100 examples. In this particular example, the petal width is 
still the most informative attribute among all: this time, the new decision threshold is set at 1.75 cm. Lastly, the remaining 100 data points are split into 
two leaf nodes (54 on the leftmost one and 46 on the rightmost). It is worth noting that the number of branches in a tree does not necessarily equal the 
number of input features, and that certain attributes can be the most informative at multiple nodes, whereas others can remain unused for the entire 
decision process. Still, one should remember that all the features are being evaluated at each node, however only the one returning the lowest Gini 
Impurity index is chosen as the decisive one. This brings an important consequence to be highlighted: a DT develops the capability of automatically 
and autonomously choosing which features are the most appropriate for taking each decision, and which are not.

Fig. 1. General architecture of a DT (source).   
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Fig. 2. Application of a DT on the Iris dataset (source).  

Extremely Randomized Trees 

Standard decision trees suffer from several drawbacks that make them often unviable:  

• At times, one ends up with overcomplicated trees (e.g., having too many branches and leaf nodes) which do not generalize the data well: this 
phenomenon is also known as overfitting;  

• The risk of overfitting is increased further if a DT is fed with hundreds of features;  
• DTs can easily become unstable because very small variations in the input data might result in the generation of a completely different tree;  
• DTs are uncapable of solving tasks that surpass certain complexity levels, such as modeling a sequence of XOR operations or learning the behavior 

of a multiplexer. 

Extremely Randomized Trees (ERTs) overcome all these issues by creating a large forest of many different DTs, each built randomly from the 
training data. Predictions are obtained by averaging each DT outcome (in case of regression) or by using a majority voting system (in case of clas-
sification): for an ERTC, the predictions of many decision trees are therefore considered together, and the predicted class collecting the highest number 
of votes is declared as the winner for a given input instance. For example, let us assume that an ERTC has been built using a forest of 200 DTs to classify 
each flower of the Iris dataset. For a given input data point, the entire forest might output the following:  

• 146 trees predict Iris setosa;  
• 15 trees predict Iris virginica;  
• 39 trees predict Iris versicolor. 

In this specific case, the input example is classified as Iris setosa, since the majority of the DTs within the random forest voted for that target class. 
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