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Abstract

As technology continues to advance and become more integrated in the oil
and gas industry, a vast amount of data is now prevalent across various
scientific disciplines, providing new opportunities to gain insightful and
actionable information. The convergence of digital transformation with
the physics of fluid flow through porous media and pipelines has driven
the advancement and application of machine learning (ML) techniques to
extract further value from this data. As a result, digital transformation and
its associated machine learning applications have become a new area of
scientific investigation.

The transformation of brownfields into digital oilfields can aid in energy
production by accomplishing various objectives, including increased opera-
tional efficiency, production optimization, collaboration, data integration,
decision support, and workflow automation. This work aims to present
a framework of these applications, specifically through the implementa-
tion of virtual sensing, predictive analytics using predictive maintenance
on production hydraulic systems (with a focus on electrical submersible
pumps), and prescriptive analytics for production optimization in steam
and waterflooding projects.

In terms of virtual sensing, the accurate estimation of multi-phase flow
rates is crucial for monitoring and improving production processes. This
study presents a data-driven approach for calculating multi-phase flow rates
using sensor measurements located in electrical submersible pumped wells.
An exhaustive exploratory data analysis is conducted, including a univari-
ate study of the target outputs (liquid rate and water cut), a multivariate
study of the relationships between inputs and outputs, and data grouping
based on principal component projections and clustering algorithms. Feature
prioritization experiments are performed to identify the most influential
parameters in the prediction of flowing rates. Model comparison is done
using the mean absolute error, mean squared error, and coefficient of de-
termination. The results indicate that the CNN-LSTM network architecture
is particularly effective in time series analysis for ESP sensor data, as the
1D-CNN layers are capable of extracting features and generating informative
representations of time series data automatically.
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Subsequently, the study presented herein a methodology for implementing
predictive maintenance on artificial lift systems, specifically regarding the
maintenance of Electrical Submersible Pumps (ESPs). Conventional main-
tenance practices for ESPs require extensive resources and manpower, and
are often initiated through reactive monitoring of multivariate sensor data.
To address this issue, the study employs the use of principal component
analysis (PCA) and extreme gradient boosting trees (XGBoost) to analyze
real-time sensor data and predict potential failures in ESPs. PCA is utilized
as an unsupervised technique and its output is further processed by the
XGBoost model for prediction of system status. The resulting predictive
model has shown to provide signals of potential failures up to seven days in
advance, with an F1-score greater than 0.71 on the test set.

In addition to the data-driven modeling approach, The present study also
incorporates model-free reinforcement learning (RL) algorithms to aid in
decision-making in production optimization. The task of determining the
optimal injection strategy poses challenges due to the complexity of the
underlying dynamics, including nonlinear formulation, temporal variations,
and reservoir heterogeneity. To tackle these challenges, the problem was re-
formulated as a Markov decision process and RL algorithms were employed
to determine actions that maximize production yield.

The results of the study demonstrate that the RL agent was able to signif-
icantly enhance the net present value (NPV) by continuously interacting
with the environment and iteratively refining the dynamic process through
multiple episodes. This showcases the potential for RL algorithms to provide
effective and efficient solutions for complex optimization problems in the
production domain.

In conclusion, this study represents an original contribution to the field
of data-driven applications in subsurface energy systems. It proposes a
data-driven method for determining multi-phase flow rates in electrical sub-
mersible pumped (ESP) wells utilizing sensor measurements. The methodol-
ogy includes conducting exploratory data analysis, conducting experiments
to prioritize features, and evaluating models based on mean absolute error,
mean squared error, and coefficient of determination. The findings indicate
that a convolutional neural network-long short-term memory (CNN-LSTM)
network is an effective approach for time series analysis in ESPs. In addition,
the study implements principal component analysis (PCA) and extreme gra-
dient boosting trees (XGBoost) to perform predictive maintenance on ESPs
and anticipate potential failures up to a seven-day horizon. Furthermore,
the study applies model-free reinforcement learning (RL) algorithms to aid
decision-making in production optimization and enhance net present value
(NPV).
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Kurzfassung

Als die Technologie weiter fortschreitet und immer stärker in der Öl- und
Gasindustrie integriert wird, steht eine enorme Menge an Daten in ver-
schiedenen Wissenschaftsdisziplinen zur Verfügung, die neue Möglichkeiten
bieten, informationsreiche und handlungsorientierte Informationen zu gewin-
nen. Die Konvergenz der digitalen Transformation mit der Physik des
Flüssigkeitsflusses durch poröse Medien und Pipeline hat die Entwicklung
und Anwendung von maschinellem Lernen (ML) vorangetrieben, um weit-
eren Mehrwert aus diesen Daten zu gewinnen. Als Folge hat sich die digitale
Transformation und ihre zugehörigen maschinellen Lernanwendungen zu
einem neuen Forschungsgebiet entwickelt.

Die Transformation von Brownfields in digitale Ölfelder kann bei der En-
ergieproduktion helfen, indem verschiedene Ziele erreicht werden, ein-
schließlich erhöhter betrieblicher Effizienz, Produktionsoptimierung, Zusam-
menarbeit, Datenintegration, Entscheidungsunterstützung und Workflow-
Automatisierung. Diese Arbeit zielt darauf ab, ein Rahmenwerk für diese
Anwendungen zu präsentieren, insbesondere durch die Implementierung
virtueller Sensoren, Vorhersageanalytik mithilfe von Vorhersagewartung für
die Produktionshydraulik-Systeme (mit dem Schwerpunkt auf elektrischen
Unterwasserpumpen) und präskriptiven Analytik für die Produktionsopti-
mierung in Dampf- und Wasserflutprojekten.

In Bezug auf virtuelle Messungen ist eine genaue Schätzung von Mehrphasen-
strömen für die Überwachung und Verbesserung von Produktionsprozessen
entscheidend. Diese Studie präsentiert einen datengetriebenen Ansatz zur
Berechnung von Mehrphasenströmen mithilfe von Sensormessungen in
elektrischen untergetauchten Pumpbrunnen. Es wird eine ausführliche
exploratorische Datenanalyse durchgeführt, einschließlich einer Ein Vari-
ablen Studie der Zielausgänge (Flüssigkeitsrate und Wasseranteil), einer
Mehrvariablen-Studie der Beziehungen zwischen Eingaben und Ausgaben
sowie einer Datengruppierung basierend auf Hauptkomponentenprojek-
tionen und Clusteralgorithmen. Feature Priorisierungsexperimente wer-
den durchgeführt, um die einflussreichsten Parameter in der Vorhersage
von Fließraten zu identifizieren. Die Modellvergleich erfolgt anhand des
mittleren absoluten Fehlers, des mittleren quadratischen Fehlers und des
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Bestimmtheitskoeffizienten. Die Ergebnisse zeigen, dass die CNN-LSTM-
Netzwerkarchitektur besonders effektiv bei der Zeitreihenanalyse von ESP-
Sensordaten ist, da die 1D-CNN-Schichten automatisch Merkmale extrahieren
und informative Darstellungen von Zeitreihendaten erzeugen können.

Anschließend wird in dieser Studie eine Methodik zur Umsetzung von
Vorhersagewartungen für künstliche Hebesysteme, insbesondere bei der
Wartung von Elektrischen Untergetauchten Pumpen (ESP), vorgestellt. Con-
ventional maintenance practices for ESPs require extensive resources and
manpower, and are often initiated through reactive monitoring of multivari-
ate sensor data. Um dieses Problem zu lösen, wird die Verwendung von
Hauptkomponentenanalyse (PCA) und Extreme Gradient Boosting Trees
(XGBoost) zur Analyse von Echtzeitsensordaten und Vorhersage möglicher
Ausfälle in ESPs eingesetzt. PCA wird als unsupervised technique eingesetzt
und sein Ausgang wird weiter vom XGBoost-Modell für die Vorhersage des
Systemstatus verarbeitet. Das resultierende Vorhersagemodell hat gezeigt,
dass es Signale von möglichen Ausfällen bis zu sieben Tagen im Voraus
bereitstellen kann, mit einer F1-Bewertung größer als 0,71 im Testset.

Diese Studie integriert auch Model-Free Reinforcement Learning (RL) Al-
gorithmen zur Unterstützung bei Entscheidungen im Rahmen der Pro-
duktionsoptimierung. Die Aufgabe, die optimalen Injektionsstrategien zu
bestimmen, stellt Herausforderungen aufgrund der Komplexität der zugrun-
deliegenden Dynamik, einschließlich nichtlinearer Formulierung, zeitlicher
Variationen und Reservoirstrukturheterogenität. Um diese Herausforderun-
gen zu bewältigen, wurde das Problem als Markov-Entscheidungsprozess
reformuliert und RL-Algorithmen wurden eingesetzt, um Handlungen zu
bestimmen, die die Produktion optimieren. Die Ergebnisse zeigen, dass der
RL-Agent in der Lage war, den Netto-Barwert (NPV) durch kontinuierliche
Interaktion mit der Umgebung und iterative Verfeinerung des dynamis-
chen Prozesses über mehrere Episoden signifikant zu verbessern. Dies zeigt
das Potenzial von RL-Algorithmen, effektive und effiziente Lösungen für
komplexe Optimierungsprobleme im Produktionsbereich zu bieten.
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1 Introduction

The field of digital energy is rapidly expanding, resulting in a massive
increase in data storage. This exponential growth in data has made data
analytics an essential part of the subsurface energy industry, including both
the upstream and downstream sectors. The emergence and growth of big
data, artificial intelligence and machine learning have driven the adoption
and growth of data analytics across various sectors of the supply chain.

The subsurface energy industry is a complex and dynamic system that
requires constant monitoring and optimization. Data mining techniques
can help extract valuable insights from the vast and diverse data collected
from the field, such as predicting and preventing failures. By applying
machine learning and data analytics to these data, it is possible to improve
the performance and reliability of field operations, plan maintenance and
repairs. The digital energy field is a critical enabler for smart and integrated
management of subsurface energy resources.

Machine learning plays a significant role in the oil and gas industry, particu-
larly in three main areas: real-time data extraction, predictive analytics and
production optimization. The industry produces a colossal amount of data
that can be analyzed in real-time using machine learning to develop diag-
nostic applications. Predictive analytics can help forecast oil production and
determine the optimal way to design production systems. Some examples
of these applications include advisory systems for injection rates, pumping
strokes per minute, well spacing and testing different fracking techniques.

These three areas show how machine learning can help oil and gas com-
panies make data-driven decisions, both for the present and for the future.
As the industry embraces new technologies, enhancing workflow efficiency
will be essential and machine learning has many potential applications
that can contribute to this goal. These include real-time drilling, reservoir
engineering, oil and gas production and procurement, downtime prevention
and well testing, among others.

By utilizing machine learning, employees in the oil and gas industry can
become more proficient at their jobs and improve the quality of their work.
However, this transition will require careful consideration of the challenges
involved. For instance, one of the most significant challenges is the need to
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1 Introduction

hire data scientists who can extract knowledge from industrial data. Given
that the industry already faces a shortage of skilled workers and a lack
of qualified candidates in some regions, this may prove difficult for some
companies.

Another challenge is the massive amounts of data that oil and gas companies
handle every day, necessitating the use of powerful machines to analyze
these data in a reasonable amount of time. Additionally, training machine
learning algorithms to recognize valuable data patterns specific to the oil
and gas industry will require a significant investment of time and effort.
Nevertheless, the benefits of using accurate models to make data-backed de-
cisions are considerable and can potentially provide a significant competitive
advantage for oil and gas companies.

The realization that machine learning techniques can be successfully de-
ployed for oil and gas companies is still occurring in the industry. As more
energy companies investigate ML use cases, an increase in its adoption
will be seen. This will certainly change how oil and gas companies operate,
and it is just one example of how data science is changing how business is
done.

Oil and gas companies are already using machine learning to help with
prediction models, produce better results from their resources and optimize
their processes. Machine learning has the power to revolutionize the oil
and gas industry. This forward momentum is crucial for the sector solely
responsible for keeping the rest of society moving.

Over the next few years, the oil and gas industry is expected to increasingly
leverage machine learning technologies to optimize their operations. The
future of this industry lies in the convergence of multiple technological
domains, of which machine learning is just one component. Early adoption
of these technologies can help companies improve their resource allocation
and gain deeper insights into their operations.

The purpose of this research is to develop a comprehensive framework for
data analytics applications in the subsurface energy systems industry. The
framework encompasses all three stages of data analysis, namely descriptive,
predictive and prescriptive analytics.

The research presents three specific applications that have been developed
using this framework. First, a virtual flow meter has been implemented on an
electrical submersible pump, utilizing a descriptive analytics approach. This
application provides a detailed understanding of the pump’s performance
by analyzing the pump’s data and generating insights on its flow rates.
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Secondly, a predictive maintenance application has been developed for the
electrical submersible pump, utilizing a predictive analytics approach. This
application can predict the likelihood of pump failures, based on historical
data and machine learning algorithms and can recommend maintenance
actions to avoid future failures.

Lastly, a prescriptive analytics approach using reinforcement learning has
been used to develop an optimal policy for steam injection rate. This ap-
plication utilizes machine learning algorithms to learn from historical data
and recommend the optimal steam injection rate for efficient energy produc-
tion.

This thesis consists of eight chapters. Chapter 1 provides an overview of the
subject of the study. Chapter 2 reviews relevant literature on real-time, pre-
dictive and prescriptive analytics of petroleum production systems. Chapter
3 describes the problem statement, objectives and methodology. Chapter
4 discusses data-driven multiphase flow estimation through artificial lift
systems, focusing on electrical submersible pumps. Chapter 5 presents pre-
dictive maintenance of electrical submersible pumps through pre-workover
event prediction. Chapters 6 and 7 introduce actor-critic reinforcement learn-
ing for decision-making in energy systems optimization, including a proof
of value for steam injection and waterflooding optimization. Chapter 8

showcases model accuracy and validation. Finally, Chapter 9 concludes the
thesis and provides recommendations for future research.
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2 Background and Related Work

2.1 Introduction

Oil production engineering uses field data and models to optimize well
and surface production facilities. This chapter gives an overview of using
machine learning in production modeling. It covers predicting well flow
rates, detecting anomalies with predictive maintenance, and optimizing
energy production systems. These techniques improve decision-making and
lead to greater efficiency and success in production engineering.

Advances in digital transformation over the last couple of decades enabled
technology framework to continuously optimize oil and gas fields (Cramer
and Goh 2009). Continuous optimization requires the integration of field
hardware (e.g., downhole sensors, remotely activated completions, and
surface facilities). It also requires data analysis computer algorithms to be
applied to the data for decision-making, virtual sensing, pattern recognition,
predictive maintenance, and physical model integration.

Understanding production systems is essential in data analysis applications.
Production engineering is an ongoing process that seeks to enhance tech-
nical and financial performance in the oil and gas industry by maximizing
production system capacity while minimizing costs and effort. This pro-
cess involves data acquisition, analysis, decision-making, and execution.
The potential solutions To address common questions in production engi-
neering involve data modeling, mechanistic modeling, or hybrid systems
(physics-informed modeling). These questions include:

• Is the asset (reservoir, well, or facility) operating at its full potential
production rate?

• What does the surveillance data indicate regarding the asset’s opera-
tional health?

• What are the limiting factors and critical values impacting production?
• What is the most likely cause of production loss or deferral?
• What is the most effective action to arrest the decline and restore

production?
• Will the chosen action be successful, profitable, and sustainable if

implemented?
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Answering these questions in production engineering is crucial to under-
stand the operational status of the field and identify necessary measures to
optimize production performance. This study aims to address these ques-
tions using data modeling or hybrid systems (such as physics-informed
modeling), which provide insights for virtual sensing, predictive mainte-
nance, and decision-making support.

This chapter presents a comprehensive literature review of production data-
driven modeling methodologies. It categorizes production data into three
main categories based on their nature of occurrence. The focus then shifts to
the application of machine learning for virtual sensors, specifically virtual
flow metering for electrical submersible pumped wells. It also explores the
use of machine learning algorithms for predicting failures and monitoring
through historical production data. Finally, it covers data-driven decision-
making and flow control. A summary of all applications is presented in the
concluding remarks.

2.2 Mapping production and reservoir data

A large variety and volume of data are captured through routine surveillance
programs and assimilated. Accordingly, subject matter experts (SMEs) ana-
lyze all acquired data to assess the system status and establish the optimum
operating envelope of wells and facilities. Table 2.1 presents a categorization
of the production data. It could be categorized into static, Fluid Properties
and time-dependent data. The static data represents the wellbore and com-
pletion data, which includes tubing size, casing size, casing setting depth,
friction, perforation depth, etc. The second category, which is the reservoir
fluid data, includes the various properties of the produced fluids. Finally,
the time-dependent data is the data that changes over time.

The third category of data in production systems is time data, which com-
prises operating parameters that frequently change. Time data parameters
can be broadly classified into two categories : environmental parameters and
manipulating parameters. Environmental parameters are those parameters
that respond to the dynamic system, but they cannot be directly controlled.
Manipulating parameters, on the other hand, are those parameters that
can be directly adjusted based on the decisions of subject matter experts
(SMEs).

For instance, in an electrical submersible pumped well system, pump intake,
discharge, motor temperature, pump frequency, choke opening, etc. are
parameters. In such a system, pump intake pressure, temperature and
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Table 2.1: Production data categorization
Data Categories Production Engineering Component

Static Data
Wellbore Data Completion

Class A

Tubing Size,
Artificial Lift used with its relevant charac-
teristics
pump type and its characteristic curve
Perforation Depth

Reservoir Fluid Data
Fluid Properties

Class B

Interfacial Tension
Formation Volume Factor
Density
Viscosity

Time Data Operating Parameters

Class C

It depends on well completion (Gas Lift,
Electrical Submersible Pumps, Sucker Rod
Pumps, Natural Flow, Gas Nat. Flow,
Plunger Lift. . . ). These parameters could
be controlled parameters, manipulated pa-
rameters or disturbance parameters
Example Electrical submersible pump
(ESP):
Pump head
Motor temperature
Frequency
Voltage
. . .

motor temperature are considered environmental parameters, while pump
frequency and choke opening are manipulating parameters.

In reservoir engineering applications, artificial intelligence-based models
are deployed to solve a large spectrum of problems in both forward- and
inverse-looking manners (Ertekin and Q. Sun 2019). Table 2.2 lists the three
categories of data to be processed, which include reservoir characteristics,
project design parameters and field response data.

A forward-looking model utilizes the reservoir characteristics and project
design parameters as input to predict the field response. A well-developed
forward-looking model can be employed as an AI-based predictor to ob-
tain quick assessments of certain project development strategies. Instead of
rigorously solving the system of flow transportation equations, the forward-
looking AI models generate predictions by developing some nonlinear
relations between the input and output parameters. Therefore, the com-
putational cost is much less intensive compared to high-fidelity numerical
models (Cornelio et al. 2021; Hadi et al. 2019; Kubota and Reinert 2019;
Noshi et al. 2019; Z. Zhao and D. Wang 2021).

Meanwhile, the AI models can be structured with two inverse-looking
applications. Unlike the forward-looking models, the inverse AI models
always use field response data (for example, fluid production and pressure
measurement data) as input. The first objective of these models is called
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Table 2.2: Reservoir data categorization

Data Categories Reservoir Engineering Component

Reservoir Characteristics Data

Class A

Geophysical data Seismic survey data
Well log data

Petrophysical data

Permeability distributions
Porosity distributions
Formation Depth
Reservoir Pressure
Reservoir Temperature
Fluid contact

Fluid Properties Fluid Composition
PVT data

Rock/Fluid interaction data Relative Permeability data
Capillary Pressure data

Project Design Parameters

Class B

Injection/Production well specification
Well pattern design
Well spacing
Well architecture design
EOR (Enhanced Oil Recovery) design parameters

Field responses data

Class C

Fluid Production data
Pressure data
Project economics

Table 2.3: Structures of forward and inverse-looking AI models
Model Objective Inputs Output
Forward-looking models A and B C
Inverse History-matching models C over B A
Inverse Project Design models C and A B

”history-matching models,” which use project design parameters and field
historical data as input to characterize fluid and rock properties (Sengel and
Turkarslan 2020).

The second objective of the inverse-looking applications aims at finding the
engineering design strategy that fulfills the desired project outcome such as
the hydrocarbon recovery (J.L. Guevara et al. 2021; N.. Sibaweihi et al. 2019).
For projects with considerable capital and operational costs, such as the
drilling of maximum reservoir contact (MRC) wells and large-scale chemical
flooding, the implementation of an inverse design model would reasonably
guide and place the project strategy on the right trajectory and significantly
reduce project risks.
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2.3 Increase well performance through virtual
sensing

Proper estimation of multiphase flowrates in oil and gas production systems
is an essential tool for monitoring and optimizing production systems.
Hence, one of the routine tests of wells is production testing. It is usually
conducted as a scheduled test to monitor liquid rates, water cuts and gas oil
ratio (GOR). Production testing is easily conducted using the test separator
to compare the actual production rate with the theoretical one. It is the
most common form of production and reservoir surveillance. However, this
technique has its limitations. The main limitation of this test is its insufficient
resolution or repeatability to identify trends in liquid and water-cut rates
over short periods of time. Another potential problem could be the duration
issue. It is often the case in low-flow rates and deep wells that require several
time-consuming partial or complete liquid holdup periods.

Later, an alternative solution to production testing was developed. This
solution is called multi-phase physical flow rates (MPFMs). This technology
depends on the idea of indirectly estimating multi-phase flowrates without
separating the phases. This is done by tracking supplementary measure-
ments of fluid phase properties such as velocity and phase fractions inside
the device. These meters are usually installed at the wellhead so that the
multiphase flowrates of a particular well can be tracked in real-time. One
disadvantage of MPFMs is that they have higher capital costs (CAPEX) and
operating costs (OPEX), as they also require frequent production calibra-
tion.

Subsequently, the technology of Virtual flow meter (VFM) is developed as
an attractive technology in the oil and gas industry because of its low OPEX
and CAPEX required. Many technologies have been developed to estimate
rates and pressures from other indirect measurements (e.g., virtual metering
or soft sensors). It depends on either analytical or data-driven models
for real-time calculations of phase production. In analytical models, the
near-well area, wells, pipelines, and production chokes must be simulated
while data-driven VFM depends on the available measured data. Depending
on the measurement data available, the production system can either be
represented as a whole from the reservoir to the processing plant, or it can
be divided into sub-models. Figure 2.1 shows a schematic graph of well
sub-models and relevant data. Also, optimization algorithms may be used
to modify flowrates and other tuning parameters. This is mainly to stabilize
estimation models by reducing the discrepancy between model predictions
and actual measurements.
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Figure 2.1: Schematic graph of well sub-models

For mechanistic models, many conservation equations take a dynamic form.
However, due to the steady-state or quasi-steady-state nature of the opti-
mization problem formulation, an optimization solver can only discover a
solution for a single point in time or can use the solution from the previous
step as a first estimate for predicting the current time step. In addition to
dynamic optimization, Kalman filter approaches and other state estimation
methods may be employed to develop a dynamic VFM (Borden et al. 2016).
The disadvantages of the aforementioned VFM technique are the compu-
tationally costly nature of dynamic optimization for first-principles VFM
systems (G. Falcone et al. 2001). Additionally, a high level of knowledge is
required for setup and use, as well as the difficulty of tuning some of these
models in a reliable way for actual field data.

Another approach is to focus on data-driven VFM, enabled by machine
learning algorithms. It is based on gathering field data and mathematically
adapting it to the production system’s physical parameters, such as wellbore
and choke geometry, flowline wall thickness, etc., without providing an
explicit description of those parameters. The data-driven model can conduct
quick and precise real-time metering if the model has been properly trained
and the exposed conditions fall within the training range. This method can
build models more affordably than mechanistic models since it does not
require as much in-depth physics formulation of the systems.

In summary, virtual sensors are a convenient alternative to physical sensors,
using available data during known conditions to predict other measure-
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ments in instrumented wells (Vinogradov and Vorobev 2020). For example,
establishing a machine learning model to relate (Well head pressure (WHP)),
(Well head temperature (WHT)), and (Flow line pressure (FLP)) for a partic-
ular choke diameter can serve as a replacement for physical sensors when
required. However, since most oil and gas wells undergo non-stationary pro-
cesses where boundary conditions change with the field’s life, the validity
of the virtual sensor model may be limited to a specific period.

Data-driven virtual flow metering (VFM) is particularly useful when suf-
ficient measured data, including frequent well tests (approximately 8-12

per year), permanent wellhead and flowline sensors (pressure, temperature)
are available. The upcoming subsections will introduce various attempts
at VFM for different production systems, encompassing an overview of
the system, mechanistic virtual flow metering attempts and virtual sensing
applications.

2.3.1 Surrogate sensing for ESP Wells

Electric submersible pumps are currently widely employed on many arti-
ficially lifted wells with high water cut, and offshore oil wells due to its
simple structure and high efficiency (Takacs 2018). Among all the artificial
lift systems, ESP is preferred because it can produce high volumes at higher
temperatures and reach deeper depths. The development of sensors and
data acquisition systems make it possible for ESP systems to continuously
record the intake pressure and temperature, pump head, discharge pres-
sure and temperature, motor temperature, motor current, leakage current,
vibration, and so on. Those data would be recorded at regular intervals
and transmitted to surface Remote Terminal Units (RTUs) (Carpenter 2019).
Figure 2.2 shows a schematic graph of sub-modules and sensors deployed
on the electrical submersible pumped well system.

Thanks to that advancement in communication, well technology, and field
equipment, a lot of attempts are made for the estimation of flow rates in
real-time. In the following, a summary of the applications of soft sensing
both mechanistic and surrogate modeling are given.
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Figure 2.2: A schematic of ESP well

Table 2.4: Literature Study for the soft sensing on ESP wells
Author Model summary
(L.. Camilleri, El Gindy,
Rusakov, and Adoghe
2015; L.. Camilleri, El-
Gindy, et al. 2016; L.
Camilleri et al. 2016;
L.. Camilleri, El Gindy,
Rusakov, Ginawi, et al.
2017; Lawrence Camilleri
and W. Zhou 2011)

In these papers, ESP models with different modi-
fications are discussed, as well as field case stud-
ies where ESP first principles models serve as
virtual flow meters. A hybrid method has been
used to measure the flow rate without needing
a test separator or multi-phase flowmeter. The
drop of the pressure in the tubing provides mea-
surements of the average density of the fluid,
which is then converted to a water cut. A com-
parison was conducted between the calculated
and the measured flow rates for a shale oil well
equipped with an ESP to validate the calculation.

(Haouche, Adrien Tessier,
et al. 2012a; Haouche,
Adrien. Tessier, et al.
2012b)

The VFM model is a combination of three
main units: the reservoir unit, the electrical sub-
mersible pump unit and the production tubing
unit. A density correction factor is used to take
into account the effects of gas on the operational
performance of the submersible pump.
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Table 2.4: Literature Study for the soft sensing on ESP wells
Author Model summary
(Binder et al. 2015) The authors of the study utilized a moving

horizon estimator for flow rate estimation in a
well equipped with an ESP, incorporating input
from sensors such as bottomhole, downhole, and
pump pressure sensors, as well as pump param-
eters. The method demonstrated high accuracy
and was recommended for industrial applica-
tions.

(David Zhu et al. 2016) In this research, singular spectrum analysis (SSA)
was used on a raw production dataset without
any pre-processing or transformation of the orig-
inal series. They investigated the decomposition
of the original series into a summation of the
principal independent and interpretable com-
ponents, such as slowly varying trends, cycling
components, and random noise.

(Krikunov et al. 2019) A hybrid physical-machine learning prediction
model was developed. It utilized a range of mo-
tor frequencies. A numeric optimization model
was created to suggest multi-well operating
modes.

(K. Zhu et al. 2020; Dandan
Zhu et al. 2021)

In these studies, a mechanistic model was de-
veloped to predict pump boosting pressure. The
objectives were to forecast oil-water emulsion
rheology and how it will affect ESP pressure
boosts and describe the pump leak impact under
the conditions of a gas-liquid flow.

(Sabaa et al. 2022) This study aims to develop artificial neural net-
work models to predict flow rates of ESP artifi-
cially lifted wells. Each data set included mea-
surements for wellhead parameters, fluid prop-
erties, ESP downhole sensor measurements and
variable speed drive (VSD) sensor parameters.
The models consisted of four separate neural net-
works to predict oil, water, gas and liquid flow
rates.
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2.3.2 Surrogate sensing for SRP Wells

Beam pumping, or the sucker-rod lift method, is the oldest and most widely
used type of artificial lift for most wells. A sucker-rod pumping system is
made up of several components, some of which operate on the surface and
others underground, down in the well. The surface-pumping unit, which
drives the underground pump, consists of a prime mover (usually an electric
motor) and a beam fixed to a pivotal post. The post is called a Sampson
post, and the beam is normally called a walking beam.

Several sensors can provide measurements of sucker rod pump operations.
One of the main measurements is the load on the pump, which forms what
are called dynamometer cards. Dynamometers are diagnostic cards that
measure the load on the top rod (polished rod) and plot this load in relation
to the polished rod position as the pumping unit moves through each stroke
cycle. The load-position plot of the polished rod is known as the surface
card. Then, a wave equation solution is used to derive the downhole card
from the surface card. The downhole card is a plot of load vs. position on
the pump’s plunger. Also, on the surface, continuous measurements for
wellhead pressures, temperatures, and power measurements of the motor
are reported. In addition, normal frequent test data for any production
system is provided, such as fluid level depth using an acoustic transducer
and production of multi-phases using a separator test or production test.
Fig. 2.3 shows the sub-modules of the sucker rod pumped well with relevant
tests, a dynamometer, and fluid level tests.

The applications of virtual sensing on sucker rod pumps are limited, possibly
due to their limited ability to produce high fluid rates. However, some
attempts have been made in this regard with various objectives. The first
objective is to predict multi-phase flow rates or the dynamic fluid level in
the annulus using dynamometer cards, wellhead pressure, and temperature
as inputs. The second objective is to infer the dynamometer cards using
electrical power data.

Virtual flow meter on rod pumping systems

The problem of predicting oil, gas, and water flow dynamically using the
aforementioned pump sensor data is to establish a function that describes
the multi-phase flow rates. Data-driven algorithms are used to find a rela-
tionship between the pump operational parameters and the produced oil,
gas, and water. (Yi et al. 2019) used deep autoencoder-derived features from
dynamometer cards to improve real-time production prediction models. The
production prediction model, which combines more informative abstract
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Figure 2.3: A schematic graph of SRP well

features with pump and production data, generates good agreement with
the historical data.

Regarding soft sensing replacing the traditional detection method to model
the dynamic liquid level of the sucker-rod pumping system, (Yang et al.
2014) proposes a method to calculate the dynamic fluid level. It uses the
submerged pressure as a common solution node to analyze both the plunger
load variation, which is contributed by the pump dynamometer card, and
the pressure distribution in the annulus. (X. Li et al. 2013) presented a
simulated annealing-based Gaussian process regression model.

Virtual sensing of the dynamometer card

Over the years, many researchers have studied the relation between electrical
parameters and surface cards (S. Zhang and Tang 2008). Some theoretical
formulas can also be built to calculate the card from the electrical parameters.
However, some parameters in the formulas cannot be quantified or mea-
sured, and some assumptions about the values made the card calculation
inaccurate and unstable. Thus, a machine learning model for dynamometer
card calculation in the rod pumping lift process is used to formulate the
complicated process. In these examples, deep neural networks are used to
find a good weight combination, allowing the model to come up with rules

14



2 Background and Related Work

from the input data (electrical parameters) to the target data (dynamometer
cards).

This study includes extracting power features and constructing an eigen-
vector in chronological sequence for one period. Afterwards, dynamometer
card data and shape curve images are extracted according to coordinates
and load data. Then, power features and dynamometer diagram features are
normalized by row and mapped between 0 and 1. Finally, the sequence-to-
sequence algorithm is used to infer dynacards from the power curve features
(Y. Peng et al. 2019; Dandan Zhu et al. 2021).

2.3.3 Surrogate sensing for gas lifted wells

Gas lift (GL) is a method of artificial lift that uses an external source of
high-pressure gas to supplement formation gas to lift the well fluids. The
principle of gas lift is that gas injected into the tubing reduces the density of
the fluids in the tubing, and the bubbles have a “scrubbing” action on the
liquids. Both factors act to lower the flowing bottomhole pressure (BHP) at
the bottom of the tubing.

One use case for the VFM modeling is to compute uncorrelated estimates
of gas-lift rate by using the gas lift flow control valve performance model.
Figure 2.4 shows the control volumes of a gas-lifted well. In this system, the
inputs are manifold pressure, valve and casing pressure, while the output is
gas lift rates.

(Al Selaiti et al. 2020) developed a data-driven approach to find the op-
timal operating envelope for gas-lift wells. The process involves building
multilayer perceptron neural network models for generating instantaneous
predictions of multiphase flow rates and other quantities of interest, such
as GOR and WCT, using real-time sensor data at the surface, historical
performance and sporadic test data. The models were developed to gener-
ate short-term (30-day) forecasts of cumulative oil, water, gas and liquid
production, multiphase flow rates, WCT, GOR, and reservoir pressure. Us-
ing time-series forecasting models, a sensitivity analysis was performed to
generate short-term well response for a selected number of combinations of
choke settings and gas injection rates.

(Khan and Louis 2021) used AI techniques to develop a robust correlation to
forecast production rates in gas-lift-assisted wells. The AI techniques used
in this research included artificial neuro-fuzzy inference systems, ANN,
functional networks and support vector machines. They collected test data
from several gas lift wells and used ANN to develop an equation to forecast
oil flow rate. Initially, they applied wide data analytics and then input data
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Figure 2.4: A schematic graph of GL well

to the models that were compared to each other and to other empirical
models. They could predict oil rates with accuracy exceeding 98%.

2.3.4 Surrogate sensing for gas wells and plunger lifted wells

Conventional plunger lifting is a transient process that consists of cyclic
openings and closings of a gas well. Because of this complex behavior, using
traditional physics-based models to simulate the coupled behavior of reser-
voir and wellbore performance is computationally rigorous and challenging.
Therefore, machine learning methodology would help in formulating the
plunger-lifted well system, including plunger arrival time, tubing pressure,
casing pressure and instantaneous gas flow rate.

The plunger is a hollow cylinder that travels up and down inside the tubing
of the well. The plunger’s upward movement creates a partial vacuum that
draws gas from the reservoir into the tubing, while its downward movement
pushes the accumulated fluid to the surface. The plunger is operated by a
motor valve located at the bottom of the well. The valve alternates between
open and closed states, controlled by a series of triggers. The opening and
closing of the valve result in the cyclic action of the plunger, enabling the
efficient removal of liquids from the wellbore. The plunger’s arrival time is
carefully calculated to ensure that it reaches the bottom of the well at the
end of the liquid unloading cycle. The working mechanism of a conventional
plunger lift is a complex process that requires a thorough understanding of
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the triggers and their interplay with the reservoir and wellbore performance.
Figure 2.5 shows the control volumes of a plunger lifted well.

As aforementioned, virtual flow metering includes physics-based and data-
driven methods. When it comes to the plunger lift application, since the
process is extremely transient, the application of physics-based methods
are extremily complex (Akhiiartdinov et al. 2020). Regarding data-driven
models, (Andrianov 2018) demonstrated the application of artificial neural
networks (ANN) to simulate the transient behavior of severe slugging and
liquid-loaded gas wells using Long short-term memory algorithm (LSTM).
on the other hand, (Akhiiartdinov et al. 2020) have attempted to model a
VFM on plunger lifted wells. In this study, the objective was to optimize the
”on” and ”off” periods of the control valve, which serve as parameters for
building the response surface.

2.3.5 Miscellaneous applications for identifying flow regime

As aforementioned, there are common characteristics of VFMs. One of the
main characteristics is the estimation of the fraction of each phase or, in
other words, identifying the flow regime. Therefore, various applications
arise in this area. Their objective is to construct a classification model to
predict various flow regimes based on flow measurements. Their work fo-
cuses on the identification of multiple-phase flow regimes by implementing
deep learning algorithms in addition to commonly used machine learning
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Figure 2.6: Multiple-phase flow regimes

algorithms (Roxas et al. 2022; Arteaga-Arteaga et al. 2021; Alhashem 2020;
Manikonda et al. 2021; Mask et al. 2019; F. Popa et al. 2015; Ruiz-Diaz et al.
2022; Rammay and Alnuaim 2015). Figure 2.6 shows the relation between
the pressure drop and flow rate with different flow regimes.

2.4 Monitoring and Failure Prediction

Engineers encounter numerous challenges when attempting to identify can-
didates and rank opportunities for production enhancement in complex
systems. These challenges typically stem from the difficulties in comprehend-
ing the system’s intricacies, accurately diagnosing issues and predicting
potential incidents. As a result, machine learning techniques have been
employed to diagnose wells and forecast potential failures. By leveraging
data-driven predictions, inappropriate repairs can be minimized, downtime
can be reduced and overall operational efficiency can be enhanced (Abdalla
et al. 2020).

Predictive maintenance, a form of preventative maintenance, is an applica-
tion of machine learning in the petroleum industry that uses sensor data
from condition-monitoring devices and predictive analytics to predict equip-
ment failure. Predictive maintenance has gained popularity as an effective
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means of cost-cutting and productivity enhancement in the oil and gas
sector. Various analytical techniques and machine learning algorithms have
been utilized for this purpose.

In summary, predictive maintenance systems strive to detect early warning
signs of equipment failure. In the oil and gas industry, these applications
can be classified into artificial lift systems, critical parameter prediction, well
integrity applications and other areas (Abdalla et al. 2020).

2.4.1 Artificial lift systems

Detecting Electric Submersible Pump Failures

The key to performing fault detection on the ESP can be better defined as
the problem of building an accurate data-driven model that describes the
ESP system dynamics. In this area of research, a lot of studies are performed
to show that the use of artificial intelligence and machine learning with
the concepts of petroleum engineering can predict the imminent or future
failure of the electrical submersible pump, extend the life time of the pump
and enhance the production.(ESPs). Table 2.5 shows various contributions in
the area of predictive maintenance and diagnosis of electrically submersible
pumped wells.

Table 2.5: Summary of the most relevant studies related with this work.
Author, Year Relevant work
(Xi 2008) A wavelet analysis is used to realize the extrac-

tion of excessive shaft thrust and wear fault char-
acteristics.

(X. G. Li 2010) Neuro-fuzzy networks are used and a dataset is
gathered for the ESP in the case of eccentric wear
of the impeller, sand plugging of the impeller
and eccentric wear of the bearing.

(P. Zhao 2011) they analyzed the vibration signal of ESP, the fea-
ture extraction and the establishment of typical
fault vibration mechanical models.

(S. Liu et al. 2011) Data analysis and application of vibration signals
based on wavelet analysis and wavelet transform
in the ESP are presented.
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Table 2.5: Summary of the most relevant studies related with this work.
Author, Year Relevant work
(Awaid et al. 2014) The pattern recognition analysis is used to pre-

dict failure for a quick reaction and optimal
solution for the input, Flowrate, WHP, Amps,
Pdischarge, Pintake, Pump dP and Motor tempera-
ture. By comparing real-time patterns of surface
and downhole data with simple physical correla-
tions, This study was able to reliably anticipate
well and reservoir ESP performance.

(D. Guo et al. 2015;
van Jansen Rensburg
et al. 2019)

They explored surveillance-by-exception on ESP
by only training the model with good-quality
normal data and predicting anomalies from the
data.

(Andrade Marin et al.
2019)

Analysed random forest to obtain a high value
of accuracy and recall of ESP failure prediction
in 165 cases.

(Bermudez et al.
2021)

used real-time applications of machine learning
method to predict imminent and future failures,
extend pump run-life and maximize the produc-
tion of electrical submersible pumps (ESP’s). Fail-
ure Prediction Index (FPI), Remaining Run Life
(RRL) and the VFM are some of the Machine
Learning models that have been implemented in
this research.

(Barrios and Pydah
2021)

Through analysis and data comparison with the
field operations, this study attempts to predict
pump and motor performance under the two crit-
ical conditions of high viscosity and two-phase
flow within the ESP. By doing this, the perfor-
mance of the system may be anticipated by care-
fully examining its physical layout, fluid flow
paths, ESP power delivery system, pump per-
formance and motor performance and caisson
separation characteristics.
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Table 2.5: Summary of the most relevant studies related with this work.
Author, Year Relevant work
(Adesanwo et al.
2016; Gupta et al.
2016; Abdelaziz et al.
2017; Bhardwaj et al.
2019; Sherif et al.
2019; L. Peng et al.
2021)

These studies applied the principal component
analysis (PCA) for anomaly detection and fail-
ure prediction to identify correlations in the dy-
namic ESP parameters: intake pressure, intake
temperature, discharge pressure, vibrations, mo-
tor temperature, motor current, systems current
and frequency recorded by the Variable Speed
Drive (VSD) at regular intervals.

Identification of sucker rod pump problems

Detecting workflow well failures in sucker rod pumped (SRP) wells leads to
tremendous savings in engineers’ time as well as minimizing production
losses. The richest diagnosis tool for the sucker rod pumping system is the
downhole dynamometer card (Abdalla et al. 2020). Therefore, most of the
applications for sucker rod pump use downhole cards.

Dynamometer cards are used in both supervised and unsupervised learning
scenarios. Supervised learning approaches require a pre-classified dataset.
However, the unsupervised algorithms just need an input dataset without
classification.

In a study conducted by (X.-y. Peng et al. 2009) self-organizing map (SOM)
networks were utilized for unsupervised learning to classify five pumping
conditions. The study achieved excellent results by using only the load
values. Self-organizing maps is an algorithm that creates a network of points.
This network adjusts to the input space features and approximates its density
function in an ordered way. Essentially, the algorithm maps input values
with similar results close to each other, forming clusters of related data
points

For supervised learning, several models have been developed to automati-
cally identify the problems of the sucker rod pumps using dynamometer
cards (S. Liu et al. 2011; Gao et al. 2015; Abdalla et al. 2020; C. Wang et al.
2020a; C. Wang et al. 2020b; Xiaoxiao and Hanxiang 2020)

The differences between the previous applications were not only the various
algorithms used as classifiers, but also the various feature engineering algo-
rithms used. In other words, how the previous researches tried to represent
the dynamometer cards. From all of the previous engineering algorithms,
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Fourier transform for dynamometer cards was one of the promising tech-
niques (Abdalla et al. 2020).

2.4.2 Increase well awareness by predicting system critical
parameters

Critical velocity prediction for sand production

The oil and gas sector has recently paid close attention to sand transport
in multiphase flow. Problematic factors related to sand production include
productivity reduction, pipe corrosion, pressure loss and partial pipe block-
age. Solid transport models are used to predict the fluid velocity required
to transport solid particles in hydraulic and pneumatic systems. It is im-
portant that the processes in these applications are designed and operated
at a sufficient fluid velocity to avoid solid deposition. Mechanistic models
are used to provide a reasonable estimate for the minimum fluid velocity
needed to transport the particles. However, those models are limited by the
applicability of the empirically based closure relations that are part of such
models.

In (Vieira and Shirazi 2022; Ehsan Khamehchi et al. 2014) studies, three
machine learning algorithms (support vector machine, random forest, and
extreme gradient boosting) were used. These techniques were used to es-
tablish the minimum flow rates required to transport grains efficiently in
stratified and intermittent gas-liquid flow regimes. The inputs were sand
concentration, pipe inclination, pipe dimension, fluid density, fluid viscosity,
grain density, and grain dimension , while the objective is to predict the
value of critical velocities in the pipe. The random forest model emerged as
the most promising approach for accurately forecasting sand deposition. In
fact, machine learning methods outperformed traditional correlations and
mechanistic models in their ability to make accurate predictions.

In a recent study (Song et al. 2022), machine learning (ML) techniques
were applied to predict the sand output of sands containing natural gas
hydrates. The study utilized a sand manufacturing experiment to generate
data sets for training four ML algorithms, namely K-Nearest Neighbor,
Support Vector Regression, Boosting Tree and Multi-Layer Perceptron. The
experiment considered eight factors, including well type, permeability, shale
content, sand diameter, effective porosity, hydrate saturation, sand-retaining
accuracy, uniformity coefficient and sand production as the output value, to
train the ML models. The models’ performances were evaluated using the
mean absolute error and coefficient of determination metrics. The K-Nearest
Neighbour model provided the least accurate predictions, while the Boosting
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Tree model had the highest precision. However, a combined prediction model
utilizing a support vector regressor and multi-layer Perceptron could be
used to forecast sand production. This study demonstrates the potential of
ML techniques for predicting sand output in natural gas hydrate sands.

Critical rate prediction for liquid loading method of gas pipeline

During the transportation of natural gas through a pipeline, the presence
of water vapor in a saturated state is common and varies with temperature
and pressure (Lea et al. 2003). As the temperature drops, the water vapor
in the gas stream may condense into liquid water, which can collect in
certain areas of the pipeline network in mountainous regions (Hong et al.
2022). This can result in an increase in friction, reduced gas flow, decreased
gas transmission efficiency and negative impacts on the economics of the
gathering pipeline network (Molnar 2022). Liquid loading is therefore a
common issue in the transportation of gas through pipelines that can de-
crease transmission efficiency and cause flow problems. To prevent liquid
loading, the gas velocity in the pipeline should be maintained above the
liquid loading velocity. Accurately predicting and managing liquid loading
are critical challenges in the field of multiphase flow research. New models
and measurement techniques are continually being developed to address
this issue.

In the natural gas industry, predicting the onset of liquid loading in gas
wells is an important area of research and development. Scientists have
developed onset prediction models that rely on various mechanisms such
as droplet falling back, liquid film adverse flow or energy to determine the
critical gas velocity or flow rate at which the flow regime transitions. Despite
progress in this field, there is still a lack of a universally validated model
that can predict the onset of liquid loading in versatile gas wells such as
horizontal, vertical and inclined wells. This highlights the need for further
research and development in this area.

There is, however, not much research on the use of ML in liquid loading
prediction. (Osman 2002; E. Khamehchi et al. 2014; Ghadami Jadval Ghadam
2015; Hong et al. 2022; Abhulimen et al. 2023) employed ML to develop
models to predict the onset of liquid loading and reported higher accuracy
than existing models. (Osman 2002) developed a model to predict the critical
gas flow rate for continuous removal of liquids from gas wells. The model
was based on artificial neural networks and developed using published data
of (Turner et al. 1969). Also, (E. Khamehchi et al. 2014) presented an artificial
neural network model for predicting the minimum flow rate for continuous
removal of liquids from the wellbore. The model was tested against actual

23



2 Background and Related Work

field data that was not used in the training phase. The results show that the
developed model provides better predictions and higher accuracy than the
published models. Also, (Ghadami Jadval Ghadam 2015) used comparative
neural-fuzzy intelligent systems in order to detect the formation or lack of
formation of accumulation of liquids.

Recent developments in machine learning (ML) have led to the creation of
new applications for predicting natural gas pipeline liquid loading. (Hong
et al. 2022) proposed an ML technique to predict pipeline liquid loading
based on numerical simulation, with a strong generalization capacity. The
authors set various working conditions according to the characteristics of the
actual gas pipeline.These conditions are gas velocities, pipe diameters, water
contents and outlet pressures. Multiple undulating pipeline topographies
with various elevation differences were then established and data needed
for machine learning was generated and collected using the OLGA simu-
lator. Another study by (Abhulimen et al. 2023) enumerated the usage of
software-based code environments and neural network architectures. These
architectures incorporate the usage of a Bayesian neural network, an artificial
neural network with a genetic algorithm or particle swarm optimization
algorithms for the prediction of liquid loading in gas wells. The effectiveness
of these models was evaluated using 106 datasets, as previously adopted by
(Turner et al. 1969).

Critical rate hydraulically fractured wells

Hydraulic fracturing is the primary technique employed for the extraction of
unconventional fossil fuels such as oil and natural gas from shale and other
tight rock formations. A frac hit occurs when hydraulic communication
takes place between two horizontally adjacent wells during the fracturing
process, with the pumping of hydraulic fluid into a sub-well affecting an
existing offset well, also known as the parental well, on the same or adjacent
pad. These inter-well interactions can have a significant impact on overall
well performance, including productivity and wellbore integrity (Y. Guo
et al. 2022).

To improve the identification and understanding of frac hits, machine learn-
ing (ML) models have been widely applied. One such approach involves the
use of long short-term Memory (LSTM) and multilayer perceptron (MLP)
neural networks to creatively identify frac hits by analyzing time-series pres-
sure and production data. This technique can be applied to both intra-pad
and inter-pad interactions and has demonstrated promising results in terms
of both predictive capabilities and workflow efficiency (Wu et al. 2022).
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In addition to identifying frac hits, machine learning has been applied
in various other applications related to hydraulic fracturing (Alimkhanov
and Samoylova 2014; Anderson et al. 2016; Mohaghegh 2020). For instance,
(Alimkhanov and Samoylova 2014) used eleven models to identify criteria
for hydraulic fracturing candidates in reservoirs with complex geology.
(Anderson et al. 2016) classified hydraulic fractures using a combination of
physics-based models and machine learning techniques. Meanwhile, (Nande
2018) employed artificial neural networks (ANN) to develop an innovative
methodology for predicting fracturing closure pressure and (Makhotin et al.
2019) introduced an ML model for estimating production gain following
hydraulic fracturing operations in a Siberian oilfield.

2.4.3 Well integrity

Well integrity is a crucial aspect of the oil and gas industry, with significant
implications for environmental and economic sustainability. It involves the
implementation of a series of technical, operational and organizational mea-
sures throughout the entire life cycle of a well to ensure the safe containment
and prevention of fluid leakage to subterranean formations or the surface.
The integrity of a well is maintained by monitoring and assessing the perfor-
mance of the well barriers, including the cement sheath, casing and blowout
preventer (BOP). The effectiveness of these barriers is critical to prevent
the release of formation and well fluids, which can pose significant risks to
human health, the environment and the surrounding communities.

Well integrity management systems (WIMS) have been developed to en-
sure the effective management of well integrity. These systems involve the
continuous monitoring and assessment of well integrity throughout the
entire life cycle of a well, including design, drilling, completion, production
and abandonment. The aim is to identify potential integrity threats and
take proactive measures to mitigate them before they escalate into incidents
or accidents. WIMS use a range of techniques, including risk assessments,
inspection and maintenance programs, and advanced technologies such
as artificial intelligence (AI) and machine learning (ML), to enhance the
accuracy and effectiveness of well integrity management.

Remarkably, ML was used to manage and improve the integrity of wells.
(AlAjmi et al. 2015) employed ANN to predict the downhole integrity of
casing strings in wells. While (Dethlefs and Chastain 2012) established the
wellbore damage analysis model using the fault tree analysis approach
for numerous wellbore integrity criteria. These risk indicators are used
to develop risk control strategies, which serve as a guide for estimating
wellbore integrity and ensuring the safety of oil and gas output.
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(Noshi et al. 2019) used nine ML models and determined which approach
performed best in order to identify the characteristics influencing casing
failure. Real-time data was employed by (Bilogan et al. 2019) to improve the
processes of well integrity monitoring. The authors of the study discussed
the outcomes of using a pilot approach for a sizable onshore asset. They
created an ML model to identify the well events and detect abnormalities
after taking into account the benefit of real-time data display.

(Elichev et al. 2019) proposed a method that enables detailed identification
of various past or present occurrences and retrospective data analysis. The
method was developed for naturally flowing wells but can be easily modified
to work with artificial lift wells. (Yakoot et al. 2021) used ML to anticipate
the risks associated with well integrity failures by analyzing well integrity
data from gas-lift wells. The created model is a novel way to transform well
integrity failures into measurable value, allowing precise tracking of any
well’s overall condition and possible risks.

2.4.4 Miscellaneous

Detection of Faults in Pipeline Systems

Pipelines are the most economical and efficient means of oil and natural gas
transportation over long distances in different environments; however, they
are subjected to corrosion and degradation. Pipeline accidents result in vast
economic losses as well as catastrophic environmental effects such as oil
spills. Natural hazards, mechanical failures, operational problems, corrosion
and third-party activities are the most probable causes of oil pipeline failure.
Therefore, machine learning algorithms are used to locate and detect leaks
in liquefied gas pipelines based on the pressure and flow rates at the inlet
and outlet of the pipeline.

An example of such studies is (X.-y. Peng et al. 2009; Morteza Zadkarami et al.
2020). The workflow includes employing the OLGA software and extracting
the input pressure and output flow rate signals for various leakage scenarios
with regard to different leakage locations and severity. It is followed by the
statistical feature extraction of pressure and flow signals at different leakage
scenarios. After extracting the statistical features the related input matrix
includes 14,800 samples along with 16 dimensions. The output classes are
dealt with as a multi-classification problem.
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Chan Plot Signature Identification

In this study (Garcia et al. 2019), they used data from the water-oil ra-
tio (WOR) and its rate of change to classify the status of WOR into four
categories. These categories are: constant WOR, normal displacement, mul-
tilayer channeling.

The first category is constant WOR, where water merely follows the oil trend
without any change. The second category is normal displacement, where
the WOR and water cut (WC) gradually increase over time. This is common
in mature wells where the WC can grow to as high as 80% or more. The
third category is multilayer channeling, where there is a sudden and clear
shift in the slope from a constant WOR or normal displacement situation.
This increase can be attributed to a breakthrough from the most conducive
layer in the well, resulting in an increased flow of water into the well.

(Garcia et al. 2019) studied how different ML model decision boundaries
behave in this dataset. Specifically, naive Bayes, nearest neighbor and radial
basis Support vector machine (SVM) displayed nonlinear decision bound-
aries, whereas linear SVM and multinomial logistic regression displayed
linearly separable decision boundaries. The decision tree and random for-
est displayed a different type of decision boundary than the other models.
They concluded that the nearest neighbor model achieved the highest f1-
score value of 0.93, whereas nave Bayes, linear SVM, and radial basis SVM
achieved the lowest f1-score of 0.90. Decision tree, random forest, and logistic
regression achieved an f1-score of 0.90 to 0.91.

2.5 Recommending optimum actions for flow
control

Machine learning is a rapidly developing field that is transforming our
ability to describe complex systems from observational data rather than
first-principles modeling. Until recently, these methods had largely been
developed for static data, although there is a growing emphasis on using
machine learning to characterize dynamical systems.

The usage of machine learning for dynamic optimization, either to learn
control laws (i.e., to determine an effective map from sensor outputs to
actuation inputs) or support decision making, is very recent (Brunton and
Kutz 2019). Specific machine learning methods for control include adaptive
neural networks, genetic programming and reinforcement learning. Many of
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these machine learning algorithms are based on biological principles, such
as neural networks, reinforcement learning and evolutionary algorithms.

All of these model-free methods have some sort of macroscopic objective
function, typically based on sensor measurements (past and present). Such
applications are still very few and limited in the engineering process. In the
field of subsurface energy decision management and flow control objectives,
they can be categorized into two main groups: Control autonomous drilling
and production optimization through closed-loop reservoir management.

In the context of autonomous drilling control (H. Liu et al. 2018; ArnØ et al.
2020; Yu et al. 2021), the objective is tracking some set points; therefore, it is
often either a penalty function for downhole pressure in the case of managed
pressure drilling or for landing position, final inclination, and maximum
curvature in the case of controlled directional drilling positioning.

In the context of production optimization, the general configuration of
closed-loop reservoir simulation consists of two main parts as follows: (1)
model-based data assimilation, which acts as reservoir parameters and states
an estimator, and (2) a model-based optimizer. As mentioned above, the
task of the optimizer is to maximize the oil recovery factor or other desired
economic criterion such as the Net present value (NPV). The required
inputs for the optimizer part may be the injection data, production data, the
hydrocarbon price, the predicted interest rate and the operating costs.

Based on the mentioned information, the optimizer calculates the optimal
values of manipulated variables, which are normally selected as water injec-
tion and bottom hole pressure (BHP) trajectories. As updated measurements
become available, the optimization process can be repeated. Using data
assimilation techniques provide the facilities to estimate the required pa-
rameters and states for the reservoir modeling phase. Such algorithms can
be classified into two main categories: global search methods and policy or
trajectory search methods.

Evolutionary techniques such as genetic algorithms (GA) and particle swarm
optimization (PSO) are popular examples of derivative-free optimization
methods. They are used for global search methods, which explore the
optimization space more comprehensively than local methods. Another
main advantage of derivative-free optimization methods is their ability to be
implemented in parallel processing configurations, which reduces elapsed
computational time and increases the efficiency of the algorithms (Shami
et al. 2022).

On the other hand, policy search is a technique used in dynamic optimiza-
tion problems to find an optimal policy that maps states to actions in order
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to maximize a certain objective. It is a crucial aspect of addressing the non-
linear nature of the recovery process, which is often considered to be one of
the most challenging aspects. Various ensemble-based optimization methods
(Dehdari et al. 2011) and optimization techniques based on quadratic interpo-
lation models (Y. Zhao et al. 2011) have been developed to solve production
optimization problems. Additionally, efficient gradient-based approaches
that utilize the adjoint technique to compute the necessary objective function
derivatives have been developed. However, the need for access to the source
codes of reservoir simulators and the computational expense of derivative
approximations remain significant challenges in practise (Horowitz et al.
2013; Wen et al. 2014; J. Jansen 2011).

Reduced order models have emerged as an attractive alternative for han-
dling the complexity of reservoir simulation models. These models provide
an efficient means of generating approximate solutions with reduced com-
putational resources while preserving the main features of the original
model (He and Durlofsky 2011). Another approach for optimizing produc-
tion of oil and gas reservoirs involves equalizing water breakthroughs of
producing wells based on time in streamline simulators (Datta-Gupta et al.
2010). This technique aims to identify and control the water injection rate
into the reservoir to prevent early water breakthroughs and ensure optimal
recovery.

Moreover, utilizing a reservoir simulator as a black box for solving the
optimization problem based on data-driven techniques is gaining popular-
ity in the field of reservoir management. This approach involves training
a machine learning algorithm on simulation data to predict the reservoir
response to various production strategies. Generalized pattern search (GPS)
(Audet and Dennis Jr 2004) and mesh adaptive direct search (MADS) (Au-
det and Dennis Jr 2006) are two local search derivative-free optimization
techniques that are widely used for optimizing reservoir production under
uncertainty.

Reinforcement learning (RL) is a relatively new approach in derivative-free
optimization methods that have been used in various studies for production
optimization. For instance, previous studies (Ma et al. 2019; Hourfar et al.
2019; Miftakhov et al. 2020) have applied RL for waterflooding optimization
projects, while (A. Sun 2020) used RL for CO2 storage optimization, and
(Guevara et al. 2021) applied the state action reward state action (SARSA)
algorithm for steam-assisted gravity drainage.

Several other studies have also applied RL in reservoir and production
optimization. For example, (De Paola et al. 2020) applied RL for optimal
well placement using the proximal policy optimization (PPO) algorithm.
In this study, the PPO algorithm learned the optimal well locations in a
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reservoir simulation environment by maximizing the production of hydro-
carbons. In contrast, (Dawar 2021) used a different RL algorithm, called
deep deterministic policy gradient (DDPG), to learn optimal well placement
for maximizing the cumulative oil production over a specific period of time.
The authors in this study used a reservoir simulator to model the reservoir,
and the DDPG algorithm learned the optimal well placement for achieving
the maximum cumulative oil production.

RL has emerged as a powerful technique for addressing optimization prob-
lems in the field of reservoir and production engineering due to its ability
to learn optimal solutions from experience. The application of RL in produc-
tion optimization has the potential to enhance production efficiency, reduce
operational costs, and minimize environmental impacts.

2.6 Concluding remarks

In this literature study, the contributions of machine learning and deep
learning in production systems have been reviewed. The previous work is
categorized into three categories: virtual or surrogate sensing, monitoring
and failure reduction and data-driven recommendations for optimal actions
for production optimization.

Based on the literature review, it appears that data-driven models offer
considerable potential for virtual flow metering of artificially lifted wells,
particularly those equipped with electric submersible pumps (ESPs). How-
ever, the creation of robust and accurate models capable of generalizing
to diverse operating conditions is still in its infancy. Some of the primary
obstacles include obtaining high-quality training data, selecting appropriate
algorithms and ensuring model interpretability. Furthermore, it is necessary
to assess the models’ predictability using an independent testing dataset to
guarantee their effectiveness in practical applications.

To address these challenges, a methodology that includes exploratory data
analysis, symbolic regression, XGBoosting and deep learning algorithms
is proposed. This methodology aims to develop stable and accurate data-
driven models for virtual flow metering of ESP wells, while also ensuring
model interpretability and generalization to new operating conditions. Fur-
thermore, the predictability of models is evaluated by using an independent
testing dataset to ensure robust performance in real-world applications.

Furthermore, while there has been significant progress in applying machine
learning techniques to solve production engineering problems, there are
still some gaps and challenges that need to be addressed. For instance, the
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majority of the previous applications in the monitoring and failure reduction
category have focused on real time diagnosis with limited contributions
to the area of predictive maintenance. To address this gap, there is a need
to develop more predictive maintenance solutions that leverage machine
learning algorithms and production data to detect early signs of equipment
failure and schedule maintenance before equipment failure occurs.

Another gap identified is the need for data-driven recommendations for opti-
mal actions for production optimization. Closed-loop reservoir management
is an area where machine learning and deep learning can make a significant
impact. Closed-loop reservoir management involves using real-time data
and advanced analytics to optimize reservoir performance. While some
progress has been made in this area, the full potential of machine learning
and deep learning has yet to be realized. This gap provides an opportunity
for researchers to develop new solutions that leverage machine learning
and deep learning algorithms to optimize production, leading to improved
reservoir performance and increased production.

To address these gaps, two contributions are proposed. The first contribution
applies reinforcement learning (RL) to optimize the steam injection rate for
a single agent system. By utilizing previous experiences or interactions with
the environment, our approach aims to find an optimal policy of injection
rate to maximize the net present value without human intervention.

The second contribution involves implementing multi-agent cooperative-
competitive reinforcement learning in a waterflooding model. This approach
allows for collaboration between multiple agents to achieve a common
goal while simultaneously competing against each other. By leveraging the
benefits of multi-agent learning, the waterflooding process can be optimized
and cumulative production performance can be improved.

In conclusion, machine learning and deep learning have made significant
contributions to performance prediction and optimization in production
systems. However, there are still gaps that need to be addressed, such as the
limited contribution of previous applications to the area of predictive main-
tenance and the need for data-driven recommendations for optimal actions
for production optimization. Developing closed-loop reservoir management
solutions that leverage machine learning algorithms and production data
can also help operators make better decisions in real time. Our proposed
contribution using RL for production optimization is one step towards
addressing these gaps and improving production efficiency.
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3.1 Introduction

The data analytics strategy encompasses three primary objectives: descrip-
tive, predictive, and prescriptive analytics. Descriptive analytics are intended
to provide insight into what has happened. Second, predictive analytics
help to model and forecast what might happen. Third, prescriptive analytics
are used to determine the best solution or outcome among various choices,
given the known parameters.

First, descriptive modelling is a mathematical process that describes real-
world events and the relationships between factors responsible for them.
Afterward, Alarms and models are deployed that enable subject matter
experts (SMEs) to unleash various behaviours downhole. Inferring real-time
measurements using ground-truth values from previous sensor measure-
ments or production tests also lie in this area of research. For instance, the
technology of VFM is considered one of the main applications in this area.

Following that, predictive modelling is presented. This technique uses histor-
ical data to forecast future events, with a focus on events that will occur in
the future. Predictive maintenance is one of the most significant applications
of this approach. It heavily relies on machine learning and deep learning
algorithms to detect early warning signs in sensor data. This enables the
identification of potential issues before they become critical, helping to
minimize downtime and optimize asset performance.

Finally, prescriptive modelling is referred as the ”final frontier of analytic
capabilities.”Applying mathematical and computational sciences to make
recommendations for decisions is known as prescriptive analytics. For exam-
ple, the technological. For instance, the technology can predict the optimum
operating parameters, such as pump frequency and injection rate, in order
to maximize the NPV.
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3.2 Machine Leaning techniques/paradigms

Machine learning involves the use of automated model building to analyze
data.Machine learning is the process of teaching computers to do tasks like
classification, clustering, and anomaly detection for data analysis.There are
three main categories of machine learning algorithms: supervised learning,
unsupervised learning, and reinforcement learning.

In supervised learning, the machine learning algorithm maps the input
features to a known desired output. This category can be further divided
into regression and classification problems, which are based on the type of
output variable. Regression is used when the output variable is continuous,
while classification is used when the output variable contains multiple
classes or labels.

In contrast, unsupervised learning does not have an explicit output variable,
and relationships are generated based on the provided data. Unsupervised
learning algorithms can reveal hidden structures and relationships between
input features.Clustering, dimensionality reduction techniques, and associa-
tive rule learning are examples of unsupervised learning. .

Reinforcement learning is The third paradigm of machine learning algo-
rithms. It is designed to associate a reward or penalty with a sequence of
decisions made by the algorithm. This reward or penalty helps the algo-
rithm learn the set of decisions it should make to achieve a defined objective.
These algorithms are modelled using the Markov decision process (MDP).
Reinforcement learning is often considered ”semi-supervised” learning,
but in an uncertain and potentially complex environment, the algorithm
employs a trial-and-error approach to find solutions by being penalized
or rewarded for the actions it performs. An example of a reinforcement
learning application is robotics for industrial automation. For instance, (Z.
Zhou et al. 2021) presented a novel application of off-policy, model-free
deep reinforcement learning for high-precision robotic assembly tasks in
unstructured environments. The proposed approach utilized reinforcement
learning to enable position-controlled robots to perform assembly tasks
compliantly through training without the need for manual tuning.

In conclusion, machine learning has revolutionized the approach to scientific
and industrial problems. The three primary paradigms of machine learning
are supervised learning, unsupervised learning, and reinforcement learning.
Supervised learning predicts outcomes based on labelled data, while unsu-
pervised learning discovers hidden patterns and relationships in unlabelled
data. Reinforcement learning enables an agent to learn an optimal policy that
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maximizes a reward signal over time, allowing for decision-making and op-
timization. Figure 3.1 summarizes the three paradigms of machine learning
and potential problem domains in a concise yet informative manner.

Machine Leaning 
Techniques

Supervised 
Learning

Unsupervised 
Learning

Reinforcement 
Learning

It is used for 
learning from 

labeled data to 
make predictions or 
classify new data. It 

can be used to 
address a variety of 
problems, such as 

anomaly detection, 
regression, and 
classification.

It solves decision-
making and 
optimization 
problems by 

enabling an agent 
to learn an optimal 

policy that 
maximizes a reward 

signal over time. 

It is used for 
learning patterns 

and relationships in 
unlabeled data, 
without prior 
knowledge or 

supervision. It can 
be used for 

anomaly detection 
and clustering 

problems.

Figure 3.1: Overview of machine learning techniques and their problem domains

3.3 The analysis process pipeline

All of the applications mentioned above follow the process of data analysis.
Basically, all of them involve understanding the data and then applying
statistics to get insights for an engineering objective. Each study is divided
into four modules. Each module has a big impact on the overall performance
of the problem. These four modules are:

• Data gathering and exploratory data analysis
• Feature extraction and transformation
• Modeling
• Testing and Evaluation
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3.3.1 Data gathering and exploratory data analysis

Once the objective is established, a strategy needs to be created for gathering
and aggregating the appropriate data. These data may be quantitative
(numeric) data, such as pump frequency for electrical submersible pumps
(ESP) or stroke per minute for sucker rod pumps (Sucker rod pump (SRP)),
or qualitative (descriptive) data, such as workover failure reasons, etc. In
general, the training dataset must include a number of cases from the
aforementioned data. Each case contains values for a range of input and
output variables.

The next step is data cleaning, which is a crucial step that enhances the
quality of data. Many tasks are included in data cleaning, such as removing
major errors and duplicates, detecting outliers, and extracting irrelevant
observations that have no bearing on the intended analysis.

Likewise, it is important to carry out an exploratory data analysis. This helps
identify initial trends and characteristics and can even refine the hypothesis.
It will give an idea of which inputs are likely to be influential. Exploratory
data analysis helps to reveal hidden patterns, correlations, and anomalies
using various tools such as visualizations (scatter and box plots, histograms,
etc.), dimensionality reduction techniques, and sometimes unsupervised
algorithms for data grouping.

3.3.2 Feature Extraction and transformation

Feature extraction plays a crucial role in the success of pattern recognition
applications. A feature refers to a distinctive attribute or property of an
object that distinguishes it from others. Machine learning applications often
struggle with large volumes of input data in the form of waveforms or im-
ages represented as pixels. In such cases, the input data can be transformed
into a reduced set of features, also known as a feature vector, through a pro-
cess called feature extraction. The selected features should contain relevant
information from the input data, enabling the desired task to be performed
using this reduced representation instead of the complete initial data.

In essence, feature extraction involves taking an initial set of measured data
and creating informative and non-redundant derived values (features). This
process simplifies subsequent learning and generalization steps.
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3.3.3 Modeling

Modeling is the process of developing mathematical or statistical represen-
tations of real-world systems or phenomena. These models can be used to
simulate or predict behavior, identify relationships between variables, or
gain insights into complex systems.

There are different types of modeling approaches depending on the objec-
tives of the analysis. Descriptive modeling is used to describe patterns and
relationships within the data. It is typically used to understand the current
state of a system or process.

Descriptive modeling involves summarizing and visualizing the data to gain
insights into its characteristics and structure. Predictive modeling is used to
make predictions about future outcomes based on past data. Prescriptive
modeling is used to recommend a course of action to achieve a particular
outcome. It is often used in decision-making applications where there are
multiple options and the goal is to choose the best one based on the available
data.

Modeling involves selecting the appropriate algorithm or technique based
on the objectives of the analysis and the nature of the data being ana-
lyzed. These algorithms exhibit a trade-off between learning performance
and explainability, with more complex algorithms, such as deep neural
networks, being highly accurate but more difficult to interpret. Figure 3.2
maps different learning algorithms of AI systems according to their learning
performance (i.e., accuracy) vs. explainability.
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Figure 3.2: Comparison of Machine Learning Algorithms (Learning Performance vs. Ex-
plainability)

To conclude, modeling is a critical aspect of data analysis that plays a
vital role in achieving business objectives. The three main categories of
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business objectives in modeling are descriptive, predictive, and prescriptive.
Whether the goal is to understand the current state of a system, make
predictions about its future behavior, or optimize its performance, modeling
can provide valuable insights and guidance. Ultimately, effective modeling
requires careful consideration of data preparation, algorithm selection, and
model evaluation to ensure both accuracy and explainability. Figure 3.3
shows the whole data analytics modeling objectives. A brief overview of
each modeling business objective is provided.

Predicting future trends of the 
data such as predictive 

maintenance

Real time applications such as 
virtual sensing and diagnostic 

models

Leads decision making and system
control by proposing optimum 

actions

Raw Data

Descriptive  
Modelling

Predictive  
Modelling

Prescriptive   
Modelling

What should be done ?

What will happen ?

What happens ?

Figure 3.3: Data analytics modeling domain Objectives

Descriptive modeling for Real time estimation and diagnostic modeling

Descriptive analysis is an important aspect of data analysis that involves
summarizing past raw data into models. These models are valuable because
they can learn from past behaviors and provide insights into how they may
impact future outcomes. The past raw data can be from any point in time
that an event has occurred, whether it was one minute ago or one year ago.
For instance, in the oil and gas industry, the sensor data deployed in wells
can be used to create a model to infer well production. By analyzing and
summarizing this data, a better understanding of the underlying patterns
and trends that drive fluid flow through the well can be gained.

Diagnostic modeling is a valuable tool for understanding the root causes
of problems or anomalies in complex systems. In the oil and gas industry,
diagnostic modeling can be used to analyze data from various sources, such
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as well logs, drilling parameters, and production rates, to identify the reasons
behind unexpected events, such as a decrease in production or an increase in
water cut. By understanding the underlying causes of these issues, engineers
can develop effective solutions to improve well performance and optimize
production.

One example of diagnostic modeling in the oil and gas industry is the use
of dynamometer cards to analyze the performance of sucker rod pumps.
Sucker rod pumps are commonly used in artificial lift systems to extract
oil and gas from wells, but their performance can be affected by various
factors, such as wear and tear, fluid properties, and well conditions. By
analyzing the dynamometer cards, which record the load and position of
the sucker rod during operation, engineers can identify the specific issues
affecting the pump, such as a broken rod, a worn or damaged plunger, or
inefficient inflow. This information can then be used to adjust the pump
settings, replace faulty components, or modify the lift system to improve
performance. Further information about these applications is discussed in
section 2.4.

Predictive modeling for predictive maintenance

Predictive analysis is used to identify future trends and accurately forecast
occurrences based on historical data. It has the ability to “predict” what
might happen. It has grown increasingly important in recent years due to the
evolution of machine learning and deep learning. It is of high importance
to the oil and gas industry because it helps increase production efficiencies
through the proactive identification of failure events and the avoidance of
deferment losses.

Predictive maintenance is a type of predictive analytics that uses condition-
monitoring sensor data to predict when equipment will fail. By predicting
equipment failures, companies can schedule repairs during routine down-
time, avoiding unplanned downtime and production losses. However, in
many literature applications, the term ”predictive maintenance” is used
interchangeably to refer to diagnostic modeling or operating data grouping.
A key application in oil and geothermal energy systems is developing an
early failure prediction model for artificial lift systems.

Prescriptive modeling for optimising manipulating parameters

Prescriptive analytics is a relatively new field that goes beyond descriptive
and predictive analytics by recommending one or more possible courses of
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action. It is used to ”prescribe” a number of different possible actions and
guide them towards an optimum solution. It serves as an advisory system
for the future and is the final step in the analytics process. It is also the
most complex, as it incorporates aspects of all the other aforementioned
analyses.

Prescriptive analytics is quite different in terms of its application level. It
uses a combination of techniques and tools such as simulation studies,
computational modeling procedures, and machine learning (ML).

A prominent example of prescriptive analytics is the algorithms that guide
Google’s self-driving cars. Every second, these algorithms make countless
decisions based on past and present data, ensuring a smooth and safe ride.
Prescriptive analytics also helps in decision-making for long-term changes
in manipulating parameters.

If implemented correctly, predictive analytics can have a large impact on
decision-making and the company’s bottom line. Technically, such analytics
would contribute to the area of production optimization by making deci-
sions on manipulating parameters such as choke opening, pump frequency,
injection rate, and pump stroke per minute, among others.

In a nutshell, these analytics are all about providing advice. Prescriptive
analytics attempts to quantify the effect of future decisions to advise on
possible outcomes before the decisions are actually made.

3.3.4 Testing and evaluation metrics

Model evaluation is very important in data science as it helps understand the
performance of models and how well they generalize to an unknown dataset.
In this section, some evaluation metrics are discussed, whose objective is
to quantify the prediction accuracy of a model, based on which the best-
performing algorithm is selected. The metrics are also dependent on the
type of problem, whether it is a regression or classification problem.

For quantitative outcomes in a regression model, some of the commonly
used metrics include the coefficient of determination (R2), mean absolute
error (MAE), and mean squared error (MSE). MAE is the average difference
between the original values and the predicted values, which gives a measure
of how far the predictions were from the actual output. MSE is quite similar
to MAE, the only difference is that MSE takes the average of the square of
the difference between the original values and the predicted values.

For classification outcomes, the model accuracy is defined as the ratio of
the number of correct predictions to the total number of predictions. For
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a classification problem with N different classes, a confusion matrix, or an
error matrix is also used, which is an N*N matrix containing N correct
classifications on the major diagonal and the rest of the possible errors on
off-diagonal entries. This matrix provides a visual approach to evaluate the
performance of a machine learning model for classification problems. An
illustration of a confusion matrix for binary classification (two classes) is
shown in Figure 3.4.

True diagnosis
Positive Negative Total

Screening test Positive a b a + b
Negative c d c + d

Total a + c b + d N

Figure 3.4: Confusion Matrix

For data-driven optimization outcomes and reinforcement learning, the
”learning curve” refers to the plot that shows how the agent’s behaviour
changes over time as it receives feedback or reward signals from the environ-
ment. Specifically, the learning curve shows how the magnitude or frequency
of the agent’s conditioned response changes as the number of reinforcement
episodes increases. To test the effectiveness of the reinforcement learning
model, researchers can compare the trajectories generated by a base policy
(the agent’s initial policy) and an optimum policy predicted by the agent
for validation. By comparing these trajectories, one can assess whether the
agent has learned an optimal policy that maximizes its reward or if it needs
further training.

3.4 Thesis Objectives

In technological terms, this study aims to contribute to the area of data
analytics in subsurface energy systems through the development of intelli-
gent computing applications. These developed applications target the three
objectives of data analytics namely descriptive, predictive, and prescriptive
objectives. They are implemented using machine learning and deep learning
algorithms.

In scientific terms, the primary objective of this study is to develop four
applications that leverage intelligent computing techniques to advance
data analytics in subsurface energy systems. The first model predicts oil
production and water cut in wells with electrical submersible pumps. In
other words, it estimates multiphase flow rates in real time. The second
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model analyzes the performance and patterns of pump sensor measurements
during pre-event days to identify relationships and patterns. The third model
predicts the optimal injection rate policies for steam injection projects. Table
3.1 provides a summary of the studies and their objectives.

Table 3.1: Summary of Research Projects and Objectives
Study Modeling Objec-

tive Domain
Study Objective

Virtual flow me-
ter for electrical
submersible pump
(ESP) wells

Descriptive
modeling

Develop a real-time estimation
method for oil rate and water cut
using deployed pump sensors mea-
surements

Predictive mainte-
nance of ESPs

Predictive mod-
eling

Develop a classification model for
abnormal signals based on ESP sen-
sor data with a lead time of 7 to 10

days before failure
Steam injection
rate optimization

Prescriptive
modeling as
a single-agent
application

Develop an actor-critic reinforce-
ment learning algorithm to opti-
mize the injection rate policy over
time and maximize the net present
value (NPV) in steam injection
projects

Waterflooding rate
optimization

Prescriptive
modeling as
a multi-agent
application

Develop a data driven framework
to optimize the injection rate policy
over time in waterflooding projects,
with the objective of maximizing
the NPV while accounting for the
interaction between multiple wells

3.5 Summary

Data analytics involves the use of statistical and computational methods to
analyze and interpret data, with the aim of extracting useful insights and
knowledge. In particular, data analytics can be used to achieve three domain
objectives: descriptive, predictive, and prescriptive modeling. Descriptive
modeling involves the use of data to describe what happens in real time.
Predictive modeling, on the other hand, aims to forecast what may happen
in the future based on historical data patterns. Lastly, prescriptive modeling
involves the use of data to make recommendations on what actions to take
in order to achieve a specific objective.
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The achievement of these modeling objectives often requires the use of vari-
ous machine learning algorithms, which enable the discovery of patterns,
trends, and relationships in the data. The use of machine learning algo-
rithms typically involves following a methodology pipeline, which includes
several stages such as data gathering and analysis, feature extraction and
transformation, modeling, and evaluation.
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4.1 Introduction

Accurately estimating multiphase flow rates is crucial for monitoring pro-
duction processes and predicting field performance throughout the lifecycle
of wells. Production testing is a routine test that is commonly conducted
to monitor liquid rates and is considered the most popular method of
monitoring production and reservoirs. However, it has limitations such as
inadequate resolution to identify trends in liquid rates over short periods
of time and insufficient testing time to obtain representative samples of
reservoir fluids.

Multiphase flow meters (MPFMs) have been developed as a solution to the
limitations of traditional production testing methods. They calculate flow
rates without separating the phases and are cost-effective and easy to install
at the wellhead. However, MPFMs can be expensive and require intervention
in case of failure. Hence, they increase operational costs. They also have an
operating range beyond which flow rate predictions may decline significantly
and can deteriorate from sand erosion or partial obstruction, affecting
measurement accuracy (G. Falcone et al. 2001; Gryzlov et al. 2020).

Virtual flow metering (VFM) technology has emerged as a promising solu-
tion in the oil and gas industry, considering the challenges and expenses
associated with the traditional production testing and MPFMs. This tech-
nology employs analytical or data-driven models for real-time calculations
of phase production. Its objective is to utilize readily available field data to
estimate flow rates through modeling (Bikmukhametov and JÃ¤schke 2020;
Rao and David 2015; Haouche, Adrien Tessier, et al. 2012a; Vinogradov and
Vorobev 2020).

One of the main advantages of VFM is that they do not require the instal-
lation of additional hardware, which reduces both capital and operational
costs during field development. Furthermore, VFM systems have the ability
to estimate flow rates in real-time, which is an improvement over well testing
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approaches that assume constant well flow rates between tests (Rao and
David 2015). Additionally, VFM can be used as a standalone solution or in
combination with an MPFM as a backup system, which utilizes information
from an MPFM to further enhance flow rate estimates.

The classification of VFM is based on modeling paradigms, which are
divided into mechanistic and data-driven modeling. Mechanistic modeling
relies on physics-based models, whereas data-driven modeling utilizes
statistical models. Both paradigms have their own strengths and limitations,
and their concepts are briefly described. Additionally, a methodology in the
area of VFM for electrical submersible pumped wells is presented, which
has shown promising results in improving flow rate estimates.

4.2 Mechanistic and data-driven modeling

The mechanistic modeling approach of VFM systems relies on simulating
the near-well region, the wells, pipelines, and production chokes (Ishak et al.
2020). These models are utilized in conjunction with measurements such
as pressure and temperature to generate accurate flow rate estimates. An
optimization algorithm is then applied to adjust the flow rates and other
tuning parameters, aiming to minimize the discrepancies between the model
predictions and actual measurements (Ishak et al. 2020). The production
system can either be modeled as a whole from the reservoir to the processing
facility, or separated into sub-models based on the available measurement
data. Currently, most commercial Virtual Flow Metering systems employ
first principles models.

The mechanistic VFM methods typically employ conservation equations.
However, the problem formulation can take different forms, such as steady-
state or quasi-steady-state. To state that more simply, the optimization solver
finds a solution for a single point or uses the solution from the previous
step as an initial guess for the current time-step prediction. In some cases,
the conservation equations can take a steady-state form or disregard time
altogether, such as in a choke model (Gryzlov et al. 2020). The dynamic
formulation approach for VFM is infrequently utilized in the literature on
mechanistic VFM, likely due to its high computational cost (Gioia Falcone
2009).

On the other hand, the data-driven VFM approach is based on collecting
field data and fitting a mathematical model to it without an exact description
of the physical parameters of the production system, such as wellbore and
choke geometry and flowline wall thickness. This approach has become very
popular in the past several years, not only for oil and gas applications but for
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many other applications as well. If the model is well-trained and the exposed
conditions are within the range used for the training, the data-driven model
can perform fast and accurate real-time metering. In this approach, deep
domain knowledge of production engineering is not as important as in the
first principles models, and the model can be constructed at a lower cost.

For the large majority of data-driven algorithms used for VFM, the model
formulation considers pressure and temperature measurements at one point
in time to predict the flowrates at the same time step. In the next sections,
Real data from a field are analyzed and handled through multiple machine
learning algorithms in order to predict flow rate and water cut. Typically,
the measurement data consist of pump intake pressure and discharge pres-
sure (Pintake and Pdischarge), wellhead pressure and temperature (WHP and
WHT), choke opening (Cop), pump vibration in X and Y directions (Vx and
Vy), variable speed drive current (IVSD). The machine learning algorithms
applied are symbolic regression, support vector regressor and deep learning
algorithm (long short-term memory algorithm with convolutional neural
network). They are arranged according to their complexity and ability to be
explained.

4.3 Exploratory data analysis (EDA)

Exploratory data analysis involves utilizing various tools such as visual-
izations (scatter and box plots, histograms, etc.), dimensionality reduction
techniques, and sometimes unsupervised learning algorithms to uncover
hidden patterns, correlations, and anomalies. According to (James et al.
2013), the process begins with a univariate study that examines the de-
pendent variables, which are flow rate and water cut. Next, a multivariate
study is conducted to explore the relationship between the dependent and
independent variables. Additionally, clustering and dimensionality reduc-
tion are employed to analyze categorical variables. Finally, basic cleaning is
performed to address missing data and outliers.

The reported signals for ESP-pumped wells are categorized into four differ-
ent groups. The first group is the wellhead data that include choke opening
(%), wellhead pressure in (psig), flow line pressure in (psig), casing pressure
in (psig), and wellhead temperature (◦F). The second group is the electrical
data that include frequency in Hz, input voltage of the three phases, and
variable speed drive (VSD) output current of the three phases in (Amps).
The third group is the operational downhole data that include pump intake
pressure in (psia), pump discharge pressure in (psia), intake temperature Ti
(◦C), motor temperature Tm (◦C), vibration in 2D (Vx, Vy), and differential
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pressure in (psia). The fourth is the MPFM data, which are water cut in
percent and produced fluid rate in (BPD).

The initial step in EDA usually involves a univariate analysis, which entails
examining the individual variables in the dataset. In this case, the focus
is on the dependent variables, which are fluid rate and water cut. The
visual analysis employs density plots, which provide a smooth estimate of
the probability density function for a continuous variable. Density plots
were created to gain a better understanding of the distribution of the target
variables, as depicted in figures 4.1 and 4.2.

Figure 4.1: Density Plot for fluid rate

The rates appear to be skewed left, with some outliers above 15,000 BBLs.
The same trend is observed for water cuts exceeding 60 percent. Calculation
of skewness and kurtosis reveals a skewness of 2.09 and kurtosis of 3.98

for flow rates, and a skewness of 1.22 and a kurtosis of 0.90 for water cuts.
Additionally, the dataset contains many zero-production points, indicating
the presence of data related to non-producing periods.

Regarding the skewness of the flow rate and water cut, there are two
solutions: either to remove the outliers using a specific technique or to
use log transformation for those target variables, resulting in a normal
distribution of the flow rate and water cut. This will help in enhancing
modeling results. Regarding the zero-reported production points, dropping
them is necessary as they are just noise data from sensors during the shut-in
time. This will be done in the later step through pre-processing.
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Figure 4.2: Density plot for water cut

The second step in EDA involves conducting a multivariate study to explore
the relationship between the dependent and independent variables. Figures
4.3 and 4.4 show the histogram for each signal as a univariate figure and
the correlation matrix for them as a multivariate analysis. In Figure 4.3, a
pair plot visualizes the distributions of multiple signals, including flow rate,
current from the variable speed drive, vibrations in the x and y directions,
and choke opening. This type of graphical representation facilitates the
simultaneous comparison of these variables. Upon detailed examination, it
becomes evident that the distribution of the flow rate closely mirrors those
of the current from the variable speed drive, vibrations in both x and y
directions, and the choke opening. This similarity suggests shared patterns
in the data distribution among these signals.

Pair plots are invaluable tools in data analysis, allowing for the observation
of individual variable distributions and potential relationships between
pairs of variables. Specifically, in this pair plot (Figure 4.3), the focus is on
comparing the flow rate with other signals. The comparable distributions
imply possible underlying connections or dependencies. For instance, fluctu-
ations in flow rate might influence variations in the current from the variable
speed drive, vibrations in the x and y directions, and the choke opening.
Conversely, these signals might also impact the flow rate.

Additionally, figure 4.4 shows that flow rate has a high correlation with
the current from the variable speed drive and choke opening, while basic
sediments and water (BS&W) signal is more related to wellhead pressure
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Figure 4.3: Pair plot histogram for signals

and has a slight inverse proportionality with current and flow rate.

The third step involves examining the relationship between flow rate and
basic sediments and water with the categorical feature, which is the well
name. The spread and skewness of the target variables data per well are
demonstrated through Figures 4.5 and 4.6.

To ensure data accuracy, missing data points were removed from four
signals, namely the liquid rate signal, variable speed drive output current,
pump intake pressure, frequency, and discharge pressure. Zero production-
reported sensor measurements do not make sense for these signals, and
therefore, they were excluded from the analysis. The missing data for all
signals are presented in table 4.1. To eliminate signals with a significant
amount of missing data, a threshold is applied. Accordingly, the three-phase
input voltage signals (AB, CA, and BC) are discarded since they display
a low correlation coefficient with flow rate and basic sediment and water
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Figure 4.4: Correlation matrix for signals
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Figure 4.5: Boxplot of flow rate for each well

Figure 4.6: box plot of basic sediments and water for each well
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a) Before Log transformation b) After Log transformation

Figure 4.7: Probability plot and the distribution for flow rate

signals, as depicted in figure 4.4, and possess the highest number of missing
values as demonstrated in table 4.1. The motor current signal is also excluded
from the analysis since it is highly correlated with the recorded current of
the variable speed drive and is one of the signals with the highest proportion
of missing data.

As mentioned previously in the univariate study, the probability density
distribution of the target flow rate is skewed from the normal distribution,
as demonstrated in figure 4.7. To address this issue, a log transformation
is applied to the flow rate sensor measurements. Log transformation is a
commonly used method for addressing skewed data and is aimed at making
the data more normal and improving the validity of the associated statistical
modeling. Figure 4.7 illustrates the probability plot and distribution for flow
rate before and after log transformation.

One important aspect of data exploration is the application of unsupervised
learning techniques to uncover any underlying structure or grouping in
the input data. In this regard, two widely used methods, namely principal
component analysis (PCA) and K-means clustering, are investigated.

K-means is an unsupervised machine-learning algorithm that groups data
points into distinct clusters based on their similarity. This is achieved by
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Reported Signal Total Percent
Input Voltage AB 2098 0,067

Input Voltage CA 2098 0,067

Input Voltage BC 2098 0,067

DH Amps A 1469 0,047

DH Amps C 1468 0,047

DH Amps B 1468 0,047

Tm (◦C) 1446 0,046

Ct (mA) 1444 0,046

Vx (G) 1443 0,046

Ti (◦C) 1440 0,046

Vy (G) 1440 0,046

BS&W (%) 590 0,019

Wellhead Data FLP (psig) 341 0,011

Wellhead Data WHT (°F) 280 0

Wellhead Data Cas. P. 12 0

Pd (psia) 0 0

Wellhead Data Choke opening 0 0

VSD Output Amps Amps A 0 0

Pi (psia) 0 0

VSD Output Amps C 0 0

VSD Output Amps B 0 0

Wellhead Data WHP (psig) 0 0

Frequency (Hz) 0 0

Rate (BPD) 0 0

∆P (psia) 0 0

Table 4.1: Missing Data Per Signal
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partitioning the data into k groups, where k is the pre-specified number of
clusters. The initial centroids are randomly selected, and each data point
is assigned to the nearest centroid based on Euclidean distance. The cen-
troids are then recalculated as the mean of all the data points assigned
to that cluster, and this process is iterated until convergence is achieved.
K-means is commonly used for data pre-processing, image segmentation,
and exploratory data analysis.

PCA, on the other hand, is a dimensionality reduction technique used to
transform high-dimensional data into a lower-dimensional representation
while retaining most of the variance in the original data. It does this by
finding the principal components, which are linear combinations of the
original variables that explain the maximum variance in the data. The first
principal component explains the most variance, followed by the second,
and so on. The principal components are uncorrelated with each other. PCA
is commonly used for data visualization, feature extraction, noise reduction,
and identifying patterns and relationships between variables. In summary,
both K-means and PCA are useful tools for exploring and analyzing data in
a more efficient and meaningful way.

Figures 4.8 and 4.9 show the projection of the input signals on the first
two principal components. There is a slight clustering per well and a slight
grading of the input signals with pump frequency, which means a slight en-
hancement in modeling can be made either by using well name or frequency
as a categorical parameter.

The K-means algorithm has been also applied to the input signals to study
the effect of grouping the data before modeling. Figure 4.10 depicts the
results of the silhouette analysis of the k-means clustering algorithm. This
analysis is used to measure the separation distance between resulting clus-
ters and provides a visual assessment of parameters such as the number
of clusters, with scores ranging from -1 to 1. A score of +1 indicates that a
sample is far from neighboring clusters, while a score of 0 indicates that it is
very close to the decision boundary between two clusters. Negative scores
suggest that samples may have been assigned to the wrong cluster. The sil-
houette plot in figure 4.10 shows that the best average silhouette score, 0.28,
was obtained for five clusters. Therefore, clustering is not recommended,
and if attempted, it should be limited to five clusters only.

4.4 Feature permutation

Feature permutation importance measures the predictive value of a feature
by evaluating the average prediction error for all models in which a specific
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Figure 4.8: PCA of the input signals per well

Figure 4.9: PCA of the input signals With Frequency
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a) Silhouette Analysis for 2 clusters

b) Silhouette Analysis for 3 clusters

c) Silhouette Analysis for 4 clusters
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d) Silhouette Analysis for 5 clusters

e) Silhouette Analysis for 6 clusters

Figure 4.10: Silhouette Analysis from 2 to 6 clusters
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input is incorporated. This approach allows for the ranking of features based
on their relative importance to the model’s predictions.

To assess the predictive value of each feature and its impact on the model’s
predictions, a custom type of feature permutation importance model was
utilized. This model-agnostic method is useful in providing insights into the
behavior of a machine-learning model. The steps to compute the custom
feature permutation importance are as follows:

1. Split the dataset into training and testing sets.
2. Obtain all permutations of the input features.
3. Shuffle the feature column in the dataset randomly.
4. Train each model on the same training set.
5. Calculate the prediction error on the test dataset.
6. Record the input features and the training and testing results.
7. Repeat steps 3 to 6 multiple times and save the results in an experiment

data frame.
8. For each input feature, calculate the average error reported for all

the models it has contributed to, to mitigate the effects of random
shuffling.

9. For each input feature, the average error reported for all models it
has contributed to. This averaging is to mitigate the effects of random
shuffling.

10. Rank the features based on the average impact each feature has on the
model’s score, with the features that have contributed to the smallest
error models being assigned higher importance.

Tables 4.2 and 4.3 show the signals recommended as input features for
flow rate and water cut, respectively, based on the feature rotation random
search. The presented information pertains to a comparative analysis of
signals, their respective names, and the average Mean absolute error (MAE)
values corresponding to the models that utilize this signal. In scientific terms,
the analysis provides insight into the performance of different models in
predicting outcomes based on various input signals.

4.5 Algorithms

Typically, machine learning models perform differently depending on the
data they are given. Therefore, there is no universally accepted standard
algorithm that can be applied to all datasets. The best model can only be
chosen after analyzing the data and comparing different machine learning
algorithms. In this section, the algorithms used in this research are explained.
These algorithms include symbolic regression, support vector regressor
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Table 4.2: Feature Rotation for flowrate

Signal Average MAE
VSD Output Amps (A) 0,039

OPERATIONAL DOWNHOLE DATA Pd (psia) 0,040

OPERATIONAL DOWNHOLE DATA Pi (psia) 0,041

Frequency (Hz) 0,041

Wellhead Data Choke 0,041

Wellhead Data WHP (psig) 0,041

Wellhead Data FLP (psig) 0,041

OPERATIONAL DOWNHOLE DATA Tm (◦C) 0,041

Wellhead Data Cas. P. 0,041

OPERATIONAL DOWNHOLE DATA ∆P (psia) 0,041

Wellhead Data WHT (◦F) 0,041

OPERATIONAL DOWNHOLE DATA Ti (◦C) 0,041

OPERATIONAL DOWNHOLE DATA Vy (G) 0,042

Table 4.3: Feature Rotation for BS&W

Signal Average MAE
VSD Output Amps A 2,16

OPERATIONAL DOWNHOLE DATA ∆P (psia) 2,20

Wellhead Data WHP (psig) 2,21

OPERATIONAL DOWNHOLE DATA Pd (psia) 2,21

Wellhead Data Choke 2,22

OPERATIONAL DOWNHOLE DATA Pi (psia) 2,24

OPERATIONAL DOWNHOLE DATA Tm (◦C) 2,31

OPERATIONAL DOWNHOLE DATA Vy (G) 2,31

OPERATIONAL DOWNHOLE DATA Ti (◦C) 2,35

Wellhead Data Cas. P. 2,38

Wellhead Data FLP (psig) 3,40

Freq. Hz 3,41

Wellhead Data WHT (◦F) 4,41
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(SVR), and 1D-CNN with LSTM, which are deep learning algorithms used
to predict flow rates and BS&W.

4.5.1 Symbolic regression

Symbolic regression can be considered a special type of regression analysis.
This algorithm searches for mathematical expressions that best fit a given
dataset, which consists of sensor data as input and produced rates as output.
It is a form of genetic programming. The algorithm is given a grammar
that defines basic functional building blocks, such as addition, subtraction,
multiplication, logarithms, trigonometric functions, etc. The algorithm then
tries different combinations in an evolutionary process that retains the better
terms and recombines them to create even more fitting terms. In the end, a
good formula is produced that captures the dynamics of the system without
overfitting the noise.

Unlike traditional regression methods, symbolic regression can determine
both parameters and structures of regression models simultaneously (Awange
et al. 2018). In traditional numerical regression, the functional form is pre-
defined to be linear, polynomial, or nonlinear, and the task is to determine
the coefficients in the functional form. In symbolic regression, the task is
to automatically find a suitable functional form in complex data, either
linear or nonlinear and simultaneously determine the coefficients of the
functions.

Symbolic regression is a technique based on Darwin’s theory of evolution,
where the competitive mechanism ensures that individuals with superior
performance have a greater chance of survival while poor-performing indi-
viduals are gradually removed. The process involves three genetic operators:
selection, crossover, and mutation, as illustrated in Figure 4.11. When a supe-
rior gene appears in some individuals, it is selected, duplicated, and spread
across the population. The gene’s contribution to the fitness of the model
determines whether it remains in an individual during the evolutionary
process. This mechanism ensures that only important genes are selected to
form the models gradually, similar to the survival mechanism in Darwin’s
theory of evolution. The emergence of a superior gene helps identify the sig-
nificant factors contributing to the functions found by symbolic regression.
In other words, each factor’s occurrence reflects its ability to describe the
data, with higher frequency indicating greater importance.

Symbolic regression encodes candidate solutions as trees, with terminal
nodes representing constants and variables, and intermediate nodes encod-
ing mathematical functions such as addition, subtraction, multiplication,
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Figure 4.11: (a) Crossover, (b) mutation genetic operations in the symbolic regression (re-
vised from Cui et al. 2020)

and division. All nodes are collectively referred to as ”building blocks”. The
fitness function is typically proportional to the absolute or squared error
between experimental data and the candidate solution’s predicted values,
with parsimony corrections favoring more concise equations.

One of the major advantages of symbolic regression is that it can automat-
ically discover models, but this comes at the cost of a vast search space
and significant computing resources. However, SR does offer the benefit
of delivering human-readable models, unlike models produced by neural
networks and support vector machines. Equations can always be analyzed,
even if they are highly complex, by a human expert. The results of the
automatically generated models can be used to infer properties of the target
phenomenon and serve as a foundation for building improved models.

4.5.2 Deep Learning (LSTM and CNN)

For massive data and high computational performance, deep learning mod-
els have shown recently great advantages in automatically extracting and
learning multivariate data features. In particular, the Recurrent neural net-
work (RNN) and its various improved algorithms have been applied to
feature extraction of time series data. In this study, a general framework
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for multivariate prediction problems is proposed, including Convolutional
neural network (CNN) and Long short term memory algorithm (LSTM).

There are two primary components in this model. As seen in Fig.4.12, CNN
is used to extract the lateral characteristics of multidimensional data, while
LSTM is used to recover the temporal features. To clarify, CNN is used for
extracting horizontal relationships of multidimensional variables, and LSTM
is used to learn timing relationships and make predictions based on the
features obtained by CNN. Such a network architecture brings together the
advantage of time series processing by using LSTM and signal processing
for the data that come from pump sensors by using a 1D convolutional
network.

Figure 4.12: Model framework

Convolutional Neural Networks (CNN)

In general, conventional neural networks are designed to process 2D data
such as images and videos. Convolutional Neural Networks (CNNs) are
specifically designed to operate on images, and each neuron in a CNN
contains 2-D planes for weights (known as the kernel) and input/output
(known as the feature map). CNN architecture typically includes three main
types of layers: convolutional layers, pooling layers, and fully connected
layers.

A convolutional layer is the fundamental building block of a CNN, consisting
of a set of filters (or kernels) whose parameters are learned during training.
The filter size is usually smaller than the actual image, and each filter
convolves with the image to create an activation map. During convolution,
the filter slides across the height and width of the image, and the dot product
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between every element of the filter and the input is calculated at each spatial
position.

The second type of layer is a pooling layer, which serves as a downsampling
or dimensionality reduction layer. It is used to reduce the computational
complexity of the network by decreasing the number of eigenvectors of
the convolutional layer output, while also extracting the key features and
performing feature compression (Theodoridis 2020).

Finally, the fully connected layer performs the task of classification based on
the features extracted by the previous layers and their respective filters. In
the fully connected layer, each node in the output layer is directly connected
to a node in the previous layer, enabling the network to model the input
signals based on the extracted features (S. Kiranyaz, Avci, et al. 2021a; A.
Popa et al. 2022; Howard et al. 2017; Kim 2014; Defferrard et al. 2016).

Convolutional neural networks (CNN) have a unique architecture that allows
them to combine feature extraction and modeling into a single learning
process. This makes them very useful for processing sensor signals. One of
the advantages of CNN is their ability to handle small transformations in
input data, such as translation, scaling, skewing, and distortion. As a result,
many recent applications of time series data analysis and signal processing
have utilized one-dimensional (1D) convolutional neural networks.

1D CNNs can be considered a modified version of 2D CNNs. They are
more advantageous over 2D CNNs in dealing with signals and sensor data
due to a main reason which is the lower computational complexity of 1D
CNN. A prevailing trend observed in recent studies is that the majority of
1D CNN applications have employed concise architectures, typically with
one or two hidden CNN layers (S. Kiranyaz, Ince, Hamila, et al. 2015; S.
Kiranyaz, Ince, and Gabbouj 2016; S. Kiranyaz, Ince, and Gabbouj 2017; Avci
et al. 2018; Avcı, Abdeljaber, S. Kiranyaz, et al. 2017; Abdeljaber, Avcı, S.
Kiranyaz, et al. 2017; Avcı, Abdeljaber, M. S. Kiranyaz, et al. 2018; Abdeljaber,
Avcı, M. S. Kiranyaz, et al. 2018; Ince et al. 2016; S. Kiranyaz, Gastli, et al.
2019; Abdeljaber, Sassi, et al. 2019; Eren et al. 2019; Eren 2017). Conversely,
nearly all 2D CNN applications have utilized more complex and extensive
architectures. In summary, shallow networks are simpler to train and use,
while compact 1D CNNs are ideal for low-cost and real-time applications
due to their low computational demands. The one-dimensional CNN model
is illustrated in Figure 4.13.

In each CNN layer, 1D forward propagation (1D-FP) is expressed as fol-
lows:

Xl
k = bl

k +
Nl−1

∑
i=1

conv1D(W l−1
ik .Sl−1

i ) (4.1)
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Figure 4.13: One-dimensional convolution

where:

Xl
k is the output of the Kth neuron at layer l.

bl
k is defined as the bias of the Kth neuron at layer l.

Sl−1
ik is the input to the Kth neuron at layer l from the ith neuron at

layer l-1.
W l−1

ik represents the weight connecting the output of the ith neuron in
layer l-1 to the Kth neuron in layer l.
conv1D(...) is used to perform 1D convolution without zero-padding.

The output, yl
k. can be expressed by passing the input Xl

k through the
activation function, f (.) as given in 4.2

yl
k = f (Xl

k) (4.2)

The backpropagation algorithm is a widely used method in neural network
training, which starts by propagating errors from the output layer (l = L)
and moves backward through the network to adjust the weights and biases
of the neurons. In the output layer, the mean squared error (MSE) is a
common measure of the error and can be calculated using equation 4.3:

Ep =
1
2
(yL − tp)2 (4.3)

Here, yL represents the output of the output neuron, and tp is the target
output for the input vector p. In regression problems, the goal of the back-
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propagation algorithm is to minimize the Mean squared error (MSE) by
adjusting the weights and biases of the neurons through gradient descent.

Long short memory algorithm (LSTM)

LSTM is a subfield in deep learning that aims to overcome the problem of
sequential data, as well as the issues of gradient disappearance and explosion
that arise in the RNN network. To achieve this, the LSTM architecture uses
cells as the information storage module, which helps to maintain the long-
term memory of the sequence data.

At the core of the LSTM architecture is the memory cell, which has internal
states used by the architecture to ensure consistent error flow. To update the
cell state, the LSTM uses three gating units that have distinct functions and
calculation methods. These gating units include an input gate, an output
gate, and a forget gate, as shown in Figure 4.14. Together, they enable the
LSTM to maintain long-term memory and overcome the limitations of the
RNN network.

xt−1

σ σ tanh σ

×

× ×

+
tanh

ht−1

LSTM

xt

forget input tanh output

×

× ×

+
tanh

ht

xt+1

forget input tanh output

×

× ×

+
tanh

ht+1

LSTM

Figure 4.14: Structure of LSTM cells

The input gate in LSTM has two components. Firstly, it selects the new data
to be stored in the memory cell. Then, a tanh layer creates a vector of new
candidate values that will be added to the state.

The forget gate in LSTM uses the sigmoid function to generate a value
between 0 and 1, which indicates how much knowledge of the prior hidden
state and the present input should be retained.

The output gate in LSTM applies the sigmoid function to the prior hidden
state and current input, multiplies it by the tanh function applied to the new
memory cell, and provides values between -1 and 1 for the memory cell’s
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output. Equations (4.4), (4.5) and (4.6) present the equations for the input,
forget, and output gates in LSTM, respectively.

it = σ (wi[ht−1, xt] + bi) (4.4)

ft = σ(w f [ht−1, xt] + b f ) (4.5)

ot = σ(wo[ht−1, xt] + bo) (4.6)

Where:
it = represents the input gate.
ft = represents the forget gate.
ot = represents the output gate.
σ = represents sigmoid function.
Wx= weight for the respective gate (x) neurons.
Ht−1 = output of the previous lstm block (at timestamp t-1)
Xt =input at current timestamp.

The equations for the cell state, candidate cell state and the final output:

C̃t = tanh(wc[ht− 1, xt] + bc) (4.7)

Ct = Ft × Ct−1 + It × C̃t (4.8)

Ht = ot × tanh(Ct) (4.9)

Where:
Ct = cell state (memory) at timestamp (t).
C̃t = represents a candidate for cell state at timestamp (t).

The gate units of the LSTM are crucial becuse of their ability to overcome
the vanishing gradient problem that is often found in traditional RNNs. It
enables the storage of long-term dependencies of sequential data.

To conclude, LSTM is a combination of an input gate, a forget gate and an
output gate. Its unique memory cell stores and retrieves information from
sequential data. LSTM is well-suited for tasks that require the preservation
of long-term information.
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4.6 Experiments

In this section, the hyperparameters for evaluation, including learning rate,
batch size, and number of hidden layers, are specified along with their
corresponding ranges. These hyperparameters are used to train and evaluate
the machine learning models on the electrical submersible pump dataset,
and the resulting performance metrics are analyzed. The ranges for the
hyperparameters have been chosen based on previous research in the field
of virtual sensing.

The goal of this regression is to find the best mathematical expressions
that accurately approximate the production rate and BS&W of an electri-
cal submersible pump. For the present regression, a function symbol set
is considered. It includes addition, subtraction, multiplication, division,
power, minimum, constant, integer constant, and input variable operations
(+,−, ∗, /, pow, min, c, respectively).

The training and testing data sets are normalized, and the mean absolute
error (MAE) is used as the fitness function to evaluate the performance of
each candidate solution. Hyperparameters that need to be tuned for this task
include the maximum tree depth, population size, mutation rate, crossover
rate, and number of generations. A preliminary tuning using a random
search was conducted, and the selected hyperparameters are shown in table
4.4.

To evaluate the performance of the symbolic regression models, the best
solutions obtained from the genetic programming search are applied to
a separate testing data set. The performance metrics used to evaluate the
models include the MAE, root mean square error (RMSE), and coefficient of
determination (R2).

Table 4.4: Symbolic Regression Hyperparameter
Hyperparameter Value
Binary Operators (+,−, ∗, /, pow)
Unary Operators (exp, sin, cos, sqrt)
Loss MAE
Population Size 5000

Number of Generations 50

Mutation Rate 0.1
Crossover Rate 0.9
Maximum Tree Depth 6

For deep learning applications, there are a lot of hyperparameters. Some
of the variables that determine the network structure (e.g., the number of
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hidden units, the size, and type of the network layers). On the other hand,
some variables determine how the network is trained (e.g., learning rate,
batch size).

In this study, recommendations on the structure made by (S. Kiranyaz, Avci,
et al. 2021b) have been followed. The configuration of the 1D CNN-LSTM
used in all experiments has two hidden convolutional layers, followed by an
average pooling layer that down-samples the input representation by taking
the average value over a window of five. The 1D CNNs have 32 and 16

neurons on the first and second hidden convolutional layers, while the two
LSTM layers that followed that average pooling had 32 neurons followed by
a dropout of 0.25. Then, two dense layers are added, with 10 neurons on the
hidden dense layer. Finally, the output layer size is 2, which is the BS&W
and liquid rate.

For all experiments, the maximum number of backpropagation iterations
is set to 150, and another stopping criterion is the minimum train Huber
error level that is set to 1% to prevent over-fitting. Therefore, the training
will terminate if either of the criteria is met. Initially, the learning factor, e,
is set at 10−3 and global learning rate adaptation is performed during each
BP iteration, as follows: if the train MSE decreases in the current iteration,
e is slightly increased by 5%; otherwise, it is reduced by 30%, for the next
epoch. In addition, all models are trained using the Adam algorithm, which
optimizes a predetermined loss function to obtain a final model.

Regarding the loss function used in this study, both the mean squared error
and the Huber function were considered. However, the reported model was
trained using only the Huber function as it was found to result in more
stable models than the mean squared error. This result was expected as the
Huber function is commonly used in robust regressions due to its lower
sensitivity to outliers in the data compared to the squared error loss. The
Huber function used in this study is shown in Equation 4.10.

Lδ(a, y) =

{
1
2(y− a)2, |y− a| ≤ δ,
δ |y− a| − 1

2 δ2 Otherwise
(4.10)

4.7 Summary

Accurate estimation of multiphase flow rates is essential for monitoring and
improving production processes in the oil and gas industry. Traditionally,
well flow rates are estimated by directing the stream into a test separator,
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which splits it into oil, gas, and water. However, this method has limita-
tions in identifying production trends. An alternative solution is the use
of multiphase flow meters (MPFMs), which estimate production rates by
measuring a single physical property of the stream and relating it to differ-
ent fluid rates. While MPFMs provide more accurate measurements, they
are expensive to install and maintain, making them a less viable option for
some operations.

Virtual flow meters (VFM) are a promising alternative to MPFMs and produc-
tion testing. This technology relies on machine learning and physics-based
transient modeling to estimate flow rates without the need for physical
separators or flow meters. VFMs use either analytical or data-driven models
to make real-time calculations of production phases. This approach has
gained attention in the oil and gas industry as it offers a cost-effective and
accurate way to estimate multiphase flow rates.

This chapter introduces a new data-driven model to calculate multiphase
flow rates using sensor measurements from electrical submersible pumps.
Detailed exploratory data analysis is conducted, and features are prioritized
through experiments to identify the most dominant parameters that affect
rate prediction. Finally, models are compared using mean absolute error,
mean squared error, and R squared

In summary, this study uses real-time data from electrical submersible
pumps and employs two different machine-learning approaches, symbolic
regression and deep learning. Specifically, symbolic regression and a con-
volutional neural network (CNN) pipeline with a long short-term memory
(LSTM) algorithm are implemented to predict the liquid rate and water
cut based on sensor data. These methods provide a cost-effective and ac-
curate way to estimate flow rates and identify trends, which can improve
production processes and reduce maintenance costs.
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5 Predictive maintenance for
electrical submersible pumps

5.1 Introduction

As with any pumping artificial lift method, Electrical Submersible Pumps
(ESPs) are prone to failures. Maintaining ESPs requires significant resources
and manpower, and typically involves reactive monitoring of multivariate
sensor data to detect any potential issues. In order to facilitate predictive
maintenance and avoid operation downtime, machine learning techniques
can be utilized to understand the equipment status.

ESPs are installed in many producing wells that are subject to harsh environ-
ments and need to pump complex fluid mixtures, which undergo changes in
composition, pressure, and temperature over time. Timely interventions are
required to ensure reliable fluid delivery in the face of these challenges. To
this end, the field of ”digital oil field” has emerged, focusing on deploying
machine learning and data-driven models for predictive pump maintenance
of ESPs.

This chapter presents a contribution to the area of increasing efficiency in
the maintenance of ESPs. Specifically, it aims to reduce the time required for
dismantling the system, inspecting it, and performing failure analysis. To
achieve this objective, the proposed approach involves applying Principal
Component Analysis (PCA) as a dimensionality reduction technique, fol-
lowed by pipelining its output with a model trained using the XGBoosting
algorithm for future prediction of pre-failure events in the system.

In addition to the aforementioned approach, this chapter explores the appli-
cation of deep learning algorithms such as 1D convolutional neural networks
and LSTM, as well as LSTM with attention, in addressing this problem. The
results obtained from these approaches are compared to those obtained
from the proposed approach, in order to assess their respective efficacy.

The proposed model is capable of identifying deeper functional relationships
and longer-term trends inferred from historical data. The novel workflow,
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along with the predictive model, can provide alarms up to seven days before
an actual failure event occurs.

5.2 Data gathering and Pre-Processing

Time series data is collected from sensors on ESP wells. The reported mea-
surements are Pump frequency (FRQ), Pump discharge pressure (PDP),
Pump intake pressure (PIP), WHP, WHT, Motor temperature (MT), Casing
head pressure (CHP), and Variable speed drive output current (Current),
which have different frequencies. Additionally, well status sheets for the
same wells at the same time periods are gathered on a daily basis. These
data come from a field with a polymer flooding project. Based on the status
sheets, pumps exhibit two main categories of problems: Motor downhole
failures (MDHF) and Electrical downhole failures (EDHF), both of which
are related to electrical pump failures.

Electric failures of the downhole facilities, including the electric cable, motor
electrical components such as the stator, and downhole sensor, are referred
to as MDHF and EDHF. Failures associated with electric cables are mainly
caused by cable insulation due to corrosion, material failure, or cable failure
due to overload. Meanwhile, electrical failures associated with the motor are
usually the result of stator failure. The stator has been reported to fail due
to overheating. As the motor is the hottest point in the well, this appears to
worsen polymer deposition on the motor body, reducing heat dissipation
and leading to increasing motor winding temperature. This in turn makes
the deposition worse and eventually leads to a ramp down of ESP frequency
when the maximum motor temperatures are reached. Likewise, the high
temperatures around the motor aid in the precipitation of solid polymer in
fluids flowing past the motor and are the source of polymer plugging in the
pump inlet.

The workflow for predictive modeling starts with the data-cleaning process.
It is important to eliminate nonphysical values (e.g., negative or enormous
pressure values), remove further outliers, and align units. Additionally, it
is a critical step for handling noisy data while maintaining the realistic
anomalies that may identify downhole problems of the pumps.

After visual inspection of the data, a pipeline of a pre-processing strategy
is created. Firstly, it starts by resampling the data using a moving median
in one-hour steps. Fig 5.1 shows the boxplot of the data after resampling
and before outlier removal. It is obvious that some measurements include
unreasonable values. For example, well head temperature reaches 18500

◦F, which is an obvious error measurement. Therefore, the second step is
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Figure 5.1: Box-plot before outlier removal

removing outliers, which includes first removing measurements where oil
production is zero and then removing outliers by limits.

Outlier removal by limits depends mainly on quartiles; therefore, boxplots
were used to summarize sample data using the 25th, 50th, and 75th quartiles.
The mid-spread or middle 50th, also known as the H-spread or interquartile
range (IQR), is a measure of statistical dispersion, equal to the difference
between the 75th and 25th percentiles. It is similar to the Z-score in terms of
finding the distribution of data and keeping a threshold to identify outliers.
To define the outlier base value, the upper and lower bounds were defined
above and below the dataset’s normal range. The upper and lower bounds
are calculated using equations 5.1 and 5.2.

upper = Q3 + 1.5 ∗ IQR (5.1)

lower = Q1–1.5 ∗ IQR (5.2)

Afterwards, a standard scaler is employed (subtracting mean from each point
and dividing by the variance) transforming the mean value to zero and
scaling the data to unit variance. Finally, the moving difference is applied on
all sensors measurements. Fig. 5.2 shows the box plot after outliers removal.
Fig. 5.3 shows the box plot after normalization.

Table 5.1 describes the main signals after outliers and zero production
points are removed without standardization. Table 5.2 shows the number of
available data points after mapping the sensor data. These data points are
classified, based on workover sheets, into “Normal data”, “Pre-workover”,
and “Workover”. Pre-workover data are data points that are reported seven
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Figure 5.2: Box-plot after outlier removal

Figure 5.3: Box-plot after outlier normalization
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Table 5.1: Data Exploration

FRQ[Hz] PDP[Psi] PIP[Psi] WHP[Psi] WHT[◦F] MT[◦F] CHP[Psi] Current[A]
mean 52.68 1522.97 855.89 642.21 62.38 137.12 922.13 349.65
std 4.29 187.46 211.08 608.61 11.49 32.40 1883.03 86.91
min 35.00 1086.52 610.46 194.06 60.55 120.63 0.00 101.60
25% 49.70 1506.13 660.90 213.39 63.23 122.20 91.54 317.01
50% 52.77 1543.80 721.80 243.58 66.00 154.19 261.38 354.01
75% 56.58 1595.05 778.90 547.34 67.66 160.60 405.29 394.74
max 64.96 1893.24 1578.29 845.86 122.84 169.30 986.74 598.21

Table 5.2: Data Points Classification

Condition Reported Data Points
Normal 339,089

Pre-Workover 1728

Workover 288

days before the workover day. Workover events are the data points made
available on workover day.

5.3 Principle Component Analysis

PCA is defined as an unsupervised dimensionality reduction technique. It
reduces large dimensionality data sets into lower dimensions called prin-
ciple components. This happens while preserving as much information as
possible. It makes use of the interdependence of original data to build a PCA
model. This results in reducing the dimension of production parameters
by making the most of the linear combinations and by generating a new
Principal Component space (PCs)

5.3.1 PCA Calculations

The process of obtaining a PCA model from a raw dataset is divided into
four steps as follows: Firstly, the covariance matrix ∑ of the whole dataset
is computed. It is important to see whether there is a relationship between
contributing features. Equation 5.3 is used to find the covariance between
each pair of dataset columns.
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Figure 5.4: Geometric meaning of PCA

∑ =
1

n− 1

n

∑
i=1

(Xij − x̃j)(Xik − x̃k) (5.3)

The second step is to calculate eigenvectors and corresponding eigenvalues.
Let A be the covariance matrix that has been computed in the first step,
ν a vector and λ a scalar that satisfies Aν = λν, then λ is the eigenvalue
corresponding to eigenvector ν of A. This step is considered the calculation
of the principal components of the data.

The third step is determining the number of principal components. The
eigenvectors only define the directions of the new axis while the eigenvalues
represent the variance of the data along the new feature axes. Therefore,
the eigenvectors are sorted based on the eigenvalues. Hence, a threshold
is chosen on the eigenvalues and cut off is made on the eigenvectors to
select the most informative lower dimensional subspace. In other words,
Lower variance dimensions are omitted. This is because they possess the
least information about the data’s distribution.

The Fourth step consists of transforming the samples into the new subspace.
In this last step, the lower dimensional subspace W is selected. In the current
step, the dataset samples are transformed into this new subspace via the
equation Y = W ′.X where W ′ is the transpose of the matrix W. In the
following, two principal components are computed and the data points
are reoriented onto the new subspace. Fig. 5.4 shows the simple geometric
meaning of PCA.
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5.3.2 Application of PCA on Electrical Submersible Pumps

In ESP systems, sensor data are generally highly correlated, e.g., wellhead
pressure is directly proportional to discharge and intake pressures. However,
when a downhole problem occurs or is about to occur, anomalous data can
be identified because it breaks certain rules in the input signals and their
relative changes, i.e., if there is a tubing leak, the annulus discharge pressure
decreases while intake pressure and annulus pressure increases, etc.

Principal Component Analysis then suits the engineers’ purpose to create
an anomaly detection system. This is mainly because it makes use of the
interdependence of original data to build a model. The primary goal of this
step is to create clusters out of the data. As discussed earlier, the selection of
the principal components is made based on the maximum variance criterion.
The highest variance is captured in the first principal component while the
next highest variance is captured in the second principal component, where
information from the first principal component has already been removed.
In a similar manner, consecutive principal components (3rd, 4th, . . . . . . , Kth)
can be constructed to evaluate the original system.

The PCA model finds the kth principal component to construct the PCs,
where most of the information belonging to the initial system is contained.
The kth principal component is represented in equation 5.4 below where
PC1 is given as an example.

PCk = a1k ∗ Pintake pressure + a2k ∗ Pdiscarge pressure + a3kPMotor temperature + . . .

+apkPintake pressure moving di f f erence + ..
(5.4)

Figure 5.5 shows the projection of ESP well sensor data on the principal
components. The developed model is used also to evaluate near failure
conditions. The problematic days and seven days before workover, sensor
data clearly show specific failure patterns in line with the reported MDHF
and EDHF.

The goal of the PCA is to come up with optimal weights from each sensor
measurement. That means capturing as much information as possible from
the input signals, based on the correlations among those variables. the
loadings are the correlations between the variables and the component. The
weights in the weighted average were computed from these loadings. To
compute the Loading matrix, namely the correlations between the original
variable and the principal components, the cross-covariance matrix is needed
to be computed from equation 5.5.
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Figure 5.5: ”Principle component analysis of ESP wells”

Cov (X, Y) = V
√

E (5.5)

Where:

X refers to the original variables or features of the data.
Y represents the principal components obtained by linearly transform-
ing the original variables.
V denotes the principal axes or eigenvectors of the covariance matrix
of X, which are used to compute the principal components.
E are the eigenvalues of the covariance matrix of X, which represent
the amount of variance explained by each principal component.

Table 5.3 represents the loading factors for each input parameter on the
relevant principal components up to the 8th component. However, for the
purpose of this analysis, the loading factors of parameters on the first and
second principal components are of primary interest, as these components
explain approximately 0.6 of the variance in the data, as depicted in Figure
5.6. Large loadings, whether positive or negative, indicate a strong relation-
ship between a particular variable and a particular principal component. The
sign of a loading indicates whether a variable and a principal component are
positively or negatively correlated. Therefore, the parameters most strongly
correlated with the first principal component are pump frequency, casing
head pressure, current, motor temperature, and well head temperature.
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Table 5.3: Loading for input parameters
PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

FRQ -0.90 -0.05 0.06 0.05 -0.05 -0.26 0.05 0.01

PDP -0.54 -0.14 -0.70 0.32 -0.07 -0.08 0.04 0.05

PIP 0.03 -0.17 -0.47 0.14 -0.05 0.81 -0.18 -0.04

WHP 0.10 -0.02 -0.79 0.37 -0.01 -0.15 0.23 -0.28

WHT -0.63 0.00 0.35 -0.30 0.18 0.22 0.12 -0.32

MT -0.79 -0.12 -0.07 0.04 -0.12 0.25 -0.16 0.22

CHP -0.85 -0.15 -0.07 0.15 -0.03 -0.27 0.07 0.12

CURRENT -0.84 -0.10 0.21 -0.17 0.07 0.21 -0.06 -0.19

diff FRQ -0.14 0.78 0.03 0.27 0.09 0.02 -0.22 -0.17

diff PDP -0.05 0.09 -0.45 -0.54 0.21 -0.19 -0.40 0.28

diff PIP 0.06 -0.35 -0.34 -0.67 -0.21 0.06 0.18 0.11

diff WHP -0.03 0.11 -0.42 -0.50 0.36 -0.15 -0.05 -0.42

diff WHT -0.10 0.43 -0.08 -0.11 0.37 0.23 0.69 0.26

diff MT -0.15 0.84 -0.10 -0.10 -0.34 0.03 -0.03 -0.03

diff CHP 0.03 -0.29 0.03 0.30 0.85 0.01 -0.14 0.11

diff CURRENT -0.13 0.80 -0.14 -0.04 0.16 0.05 -0.09 0.20

5.4 XGBoosting Application

XGBoosting is a tree-based ensemble model. Ensemble learning is a sys-
tematic solution that combines the predictive abilities of multiple models,
eventually resulting in a single model. This single model provides the ag-
gregated output of several models that, on their turn, only perform slightly
better than random guessing. Therefore, Extreme Gradient Boosting (XG-
Boost) is an ensemble set of predictors, with a unified objective of predicting
the same target variable. A final prediction is performed through the combi-
nation of these set of predictors.

5.4.1 XGBoosting Calculations

Building an XGBoost model has the following sequence. It starts with a
single root (contains all the training samples). Then, an iteration is performed
over all features and values per feature and subsequently, each possible split
loss reduction is evaluated. Equations 5.6 and 5.7 represent the objective
function (loss function and regularization, respectively) at each iteration that
is needed to be minimized.
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L(t) =
n

∑
i=1

l (yi, pi + Ovalue) +
1
2

λO2
value (5.6)

l (yi, pi) = − [yi log (pi) + (1− yi) log (1− pi)] (5.7)

Where:
yi is the true value required to be predicted of the i-th instance
pi is the prediction of the i-th instance
(yi, pi) The loss function for typical classification problem
Ovalue The output of the new tree
1
2 λO2

value Regularization Term

Tianqui stated “XGBoost objective function cannot be optimized using tra-
ditional optimization methods in Euclidean space”44. Therefore, in order
to be able to transform this objective function to the Euclidean domain, the
second-order Taylor approximation is used enabling traditional optimiza-
tion techniques to be employed. Equation 5.8 and 5.9 represent the Taylor
approximation of the loss function.

L(t) ∼=
[

n

∑
i=1

l (yi, Pi) + gi Ovalue +
1
2

hi O2
Value

]
+

1
2

λO2
Value (5.8)

Where :
Gi = is the gradient and calculated by gi =

∂
∂pi

1(yi, pi).

hi = is the hessian, calculated by Hi =
∂2

p2
i
1(yi, pi).

Finally, removing the constant parts, the simplified objective to minimize at
step t, results in:

L(t) =
n

∑
i=1

giOvalue +
1
2

hiO2
value +

1
2

λO2
Value (5.9)

Equations 5.10 and 5.11 show how to minimize that function

d
dOvalue

n

∑
i=1

giOvalue +
1
2

hiO2
value +

1
2

λO2
value = 0 (5.10)

Ovalue = −
∑n

i=1 gi

∑n
i hi + λ

(5.11)
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By combining equation 10 with the first and the second derivative of the
classification loss function gi and hi, the similarity equation is derived. The
similarity score is calculated as follows in equation 5.12:

Similarity =
∑ Residuali

∑ Previous Probabilityi ∗ (1− Previous Probabilityi) + λ
(5.12)

The similarity score is calculated for a “leaf” of the “tree”. Various thresholds
are used to split the tree into more leaves. The similarity score is calculated
for each new leaf followed by calculating the so-called gain as presented in
equation 5.13 below:

Gain = Le f tsimilarity + Rightsimilarity − Rootsimilarity (5.13)

Then thresholds continue to be set until higher gain thresholds are reached
and the tree keeps growing. There is a minimum number of residuals in each
leaf where the tree stops growing. This number is determined by calculating
a parameter called cover. It is defined as the denominator of the similarity
score minus lambda. During boosting, the operation is performed such
that trees are sequentially constructed. Each tree reduces the error of its
predecessor and learns from it while simultaneously updating the residual
errors. As a result, each tree growing in the sequence will learn from a
version of the residuals that’s already been updated.

Further, in boosting, the base learners are weak due to their high bias and
their predictive power has only a slight improvement over random guessing.
Nevertheless, some vital information for prediction is supplied by each
of these weak learners. By means of boosting, a strong learning effect is
produced through combining these weak learners into a single strong learner
that reduces both the bias and the variance.

5.4.2 XGBoosting experiments

In our proposed model, Principal Component Analysis (PCA) for sensor
measurements and moving difference is pipelined with XGBoost and K-
Folds Cross-validation to identify near failure regions. The dataset is divided
into two groups: A training dataset containing 70% of the data and a black
box testing set with the remaining 30% of the data.

The importance of principal components is evident because it shows to
which extent this component is able to explain the variance in the dataset.
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Figure 5.6: Explained Variance of the proposed model

Therefore, Figure 5.6 shows the cumulative explained variance with each
principal component. It is shown that 8 principle components will include
more than 90% of the explained variance in the dataset of ESP sensors and
their derived features.

In the cross-validation algorithm, the data set is divided into 3 components
as follows: a training set constituting 70% of the data, a validation set
constituting 15% of the data and a testing set constituting the remaining
15% of the data. Each model is then trained on the training subset only, in
order to infer some hypothesis. Finally, the hypothesis with the smallest
error on the cross-validation set is selected.

A better estimation of each hypothesis is achieved through testing a set
of examples (validation set) that the models were not trained on. A true
generalization error is also obtained. As a consequence, a single model
possessing the smallest estimated generalization error can be then proposed.
Upon validation set error minimization, this can be further expanded such
that the proposed model is retrained on the entire training set, including
the validation set. It is worth noting that some risk exists in selecting
validation points, which may contain a disproportionate amount of difficult
and obscure examples. Therefore, the k-fold cross validation maybe applied
to avoid such occurrences.

A K-fold cross validation algorithm aims at selecting validation sets. initially,
the dataset is randomly divided into (k) disjoint subsets. In each subset, the
number of readings is equal to the total number of data points (m) over (k).
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These subsets are indicated by m1 to mk. Then, subset is evaluated for each
model as follows:

All these subsets are used to train The XGBoost model, with the exception
of the subset mj. The intention behind excluding this subset is to infer a
hypothesis which is eventually tested on (mj). As such, the error of testing the
hypothesis on the subset (mj) is calculated and the estimated generalization
error of the model is calculated by averaging over (mj). Afterwards, the
selection of the model with the lowest estimated generalization error is
performed, and lastly the selected model is retained on the entire training
set (m). The hypothesis resulting from such operation would be the final
answer. When Performing cross validation, It is typically a standard that the
chosen number of folds is equal to 10 (k=10).

Hyperparameter tuning is considered one of the important steps while
creating any data driven model to get the best results from the deployed
algorithm. Regarding the XGBoost Algorithm, hyper-parameters are divided
into three categories. These categories are known as general parameters,
booster parameters, and learning task parameters.

General hyper-parameters define the type of algorithm to be either linear or
tree based, the verbosity to print results and the number of threads to run on.
Booster parameters include the main tuned parameters for the algorithms
such as learning rate, the minimum sum of weights of all observations re-
quired in an internal node in the tree, and the learning parameters to specify
the minimum loss reduction required to make a split. These parameters are
used to define the optimization objective and the metric to be calculated
at each step. Table 5.4 shows ranges that are used for hyper-parameters
tuning.

5.5 Deep Learning for Predictive maintenance

In the context of electrical submersible pumps, deep learning algorithms
such as 1D Convolutional Neural Networks (1D CNNs) and Long Short-
Term Memory (LSTM) networks with attention mechanisms can be used for
predictive maintenance.

As aforementioned in the previous chapter, 1D CNNs are well suited for
processing time series data, such as the telemetry data generated by electrical
submersible pumps. They can learn to identify patterns in the data that are
indicative of impending failures, and can be trained on historical data to
make predictions about future failures.
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Table 5.4: Hyper-parameters tuning
Parameter Reference to Sampling type range
max depth control of over-fitting,

higher depth facilitates
such that the model learns
relations that are specific
to a particular sample.

Suggest integer value 2,10

min child weight a minimum sum of weights
is defined for all observa-
tions required in a child.

Log uniform 1e-10, 1e10

colsample bytree The subsample ratio of
columns when construct-
ing each tree.

Uniform 0, 1

learning rate Overfitting prevention
through step size shrink-
age in updates

Uniform 0, 0.1

Gamma Specification of the min-
imum loss reduction re-
quired to make a split.

Suggest integer value 0, 5

LSTM networks with attention mechanisms are a type of recurrent neural
network that can learn dependencies between time steps in a time series.
The attention mechanism allows the network to focus on specific parts of
the time series that are most relevant for making predictions.

By using the strengths of these two deep learning algorithms, it is possible
to build a predictive maintenance model that can accurately predict the
likelihood of failure of electrical submersible pumps. Models are trained
using Focal Loss function.

Focal loss has emerged as a powerful tool in deep learning for classification
tasks, especially in cases where the dataset is highly imbalanced. The loss
function is designed to downweight the contribution of well-classified data
points, while emphasizing the importance of hard, mis-classified points.
This is achieved by introducing a tunable parameter known as the focusing
parameter, which controls the degree of downweighting for easy examples.

As described in Lin et al. 2017, the focal loss function is defined as 5.14:

FL(pt) = −αt(1− pt)
γ log(pt) (5.14)

In this equation, pt represents the predicted probability for a given sample,
αt is a scaling factor that can be used to balance the importance of different
classes, and γ is the focusing parameter that controls the degree of down-
weighting of well-classified examples. By incorporating the focal loss into
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the training process, the model is able to focus more on difficult-to-classify
points and reduce the impact of easy-to-classify examples. This can lead to
improved overall performance and better generalization to new data.

In the context of predictive maintenance, where the dataset is often imbal-
anced due to the rarity of failures, focal loss can be used to improve the
performance of deep learning models by emphasizing the importance of
hard, misclassified data-points. This can lead to more accurate and reli-
able predictions, ultimately improving the efficiency and effectiveness of
maintenance operations.

In summary, focal loss is a powerful tool in deep learning for classification
tasks, particularly in cases where the dataset is highly imbalanced. By
emphasizing the importance of hard, misclassified examples, focal loss can
improve the performance of deep learning models and lead to more accurate
and reliable predictions. In the context of predictive maintenance, where the
dataset is often imbalanced, focal loss can be a valuable tool for improving
the efficiency and effectiveness of maintenance operations.

5.5.1 1D CNN

The details of 1D CNN layers and main components are presentd in chapter
4 under section 4.5.2. Hence, the architecture used for this application is
presented. It consists of two layers, specifically designed for convolutional
operations and max pooling. This design was adopted from a previous
study (Yuan et al. 2020). The inclusion of batch normalization is also a key
factor in improving the training process of the model. Batch normalization
helps to stabilize the distribution of inputs to each layer, reducing the risk of
overfitting and accelerating convergence during training. This improves the
overall performance of the 1D CNN model and helps to ensure its stability
and reliability.

5.5.2 LSTM with attention

Long Short-Term Memory (LSTM) with attention is a type of recurrent neural
network (RNN) architecture that is designed to handle sequential data.
LSTMs have been widely used for tasks such as natural language processing,
speech recognition, time series analysis and predictive maintenance. LSTM
layers and main components are presented in chapter 4 under section 4.5.2
therefore the difference between traditional LSTM and LSTM with attention
is elaborated.
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In traditional LSTMs, the output at each time step is a function of the input
at that time step and the hidden state from the previous time step. However,
this approach can sometimes lead to information loss or degradation over
time, particularly when dealing with long sequences of data.

To address this issue, LSTMs with attention have been introduced. In these
architectures, the attention mechanism allows the model to focus on specific
parts of the input sequence, rather than processing the entire sequence
equally. This helps the model to better capture the most relevant information
from the sequence and improves its ability to make accurate predictions.

The attention mechanism in LSTM with attention enables the network to
selectively focus on relevant segments of the input sequence during predic-
tion. This is achieved by assigning different weights to different time steps
of the input sequence, thereby allowing the network to attend to the most
salient parts of the sequence. In the context of hydraulic systems predictive
maintenance, this mechanism can be leveraged to identify critical trends or
anomalies in the production data that are relevant to the prediction.

As illustrated in fig. 5.7, the LSTM model with attention involves T time
steps (i.e., T days) in total. At each time step, the model takes as input the
weighted average of news vectors for that day. The initial weights are set
at the beginning and subsequently updated using gradient descent. The
attention model is used to assign higher weights to pump data that are
more closely related to the pump system’s maintenance needs, thereby
enabling the model to better predict maintenance requirements (Tseng and
Tran 2023).

LSTM with attention is implemented by adding an attention layer after the
LSTM layer. The attention layer takes the hidden states of the LSTM layer
as input and computes attention scores for each time step. The attention
scores are then used to weight the hidden states and obtain a context vector
that summarizes the important information from the input sequence. The
context vector is then used as input to the prediction layer to make the final
prediction.

One of the key advantages of LSTMs with attention over traditional LSTMs
is their ability to handle complex and variable-length sequences more ef-
fectively. This is because the attention mechanism allows the model to
dynamically weigh the importance of different parts of the input sequence,
based on the task at hand. As a result, LSTMs with attention are particularly
useful for tasks such as sentiment analysis, machine translation, and text
classification, where the input data is often highly variable in length and
content.
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Figure 5.7: Attention weights assigned by the LSTM with attention architecture during
prediction

Another advantage of LSTMs with attention is that they are typically less
prone to overfitting, compared to traditional LSTMs. This is because the
attention mechanism helps the model to avoid memorizing irrelevant infor-
mation from the training data, and instead focuses on the most important
aspects of the input sequence. Additionally, the attention mechanism also
helps to reduce the number of parameters in the model, which can lead to
faster training and better generalization.

5.6 Validation and Testing

It is worth noting that the success of predictive maintenance models for
electrical submersible pumps will depend on the quality and quantity of data
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available, as well as the specific details of the pumps and the environment
in which they operate. Additionally, the choice of deep learning algorithm
may need to be adjusted based on the specific characteristics of the data and
the problem. In the following, the model validation and model testing for
evaluating the resultant models are presented.

Model validation and model testing are crucial steps in the development of a
predictive maintenance model for electrical submersible pumps using deep
learning. Model validation involves evaluating the model’s performance
on a set of data that has not been used for training, to ensure that the
model is generalizing well to unseen data. Model testing involves evaluating
the model’s performance on a completely independent dataset, separate
from the training and validation data, to provide a final estimate of its
performance and give confidence in its ability to make accurate predictions.
Both model validation and model testing are performed by evaluating the
model’s predictions of pump failures on real-world data and comparing
them to the actual failure times, using metrics such as accuracy, precision,
recall, and F1 score.

5.6.1 Model Validation

Overfitting is a phenomenon that occurs when a machine learning model
fits the training data too closely, resulting in a decrease in input dataset
error and an increase in testing dataset error. This occurs when the learning
algorithm tracks noise in the input dataset rather than the underlying
concept. Overfitting can be prevented through the use of regularization and
validation techniques.

Regularization can be considered as applying brakes on fitting the noise.
Both hard and soft constraints can be used. Validation determines the
maximum number of iterations to adjust the classifier and serves as a
stopping point for the back-propagation algorithm.

In the cross-validation algorithm, the dataset is first randomly split randomly
into training set (70% of the data), validation set (15% of the data), and
testing set (15% of the data). Each model is then trained on the training set
only to obtain a hypothesis. The hypothesis with the smallest error on the
cross-validation set is then selected.

Optionally, after selecting the model based on minimizing error in the
validation set, the proposed model can be retrained on the entire training
set, including the validation set.
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There is also a risk in the selection of validation points, as the validation set
may contain a disproportionate number of difficult or obscure examples. To
combat this, k-fold cross-validation can be performed.

A k-fold cross-validation algorithm is used to select validation sets. First,
the dataset is split into (k) disjoint subsets. The number of examples in each
subset is equal to the total number of data examples (m) over (k). These
subsets are referred to as m1 to mk. Then for each model, it is evaluated as
follows:

The model is trained for all subsets except for one of the subsets (mj) to get
some hypothesis. The hypothesis is tested on (mj). Then the error of testing
over (mj) is calculated. The estimated generalization error of the model is
then calculated as the average over (mj).

The model is picked with the lowest estimated generalization error. Finally,
the model is retrained on the entire training set (m). The resulting hypothesis
is then output as a final answer. A typical choice for the number of folds to
use would be k = 10. Fig. 5.8 shows 10-fold cross-validation.
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2nd iteration

3rd iteration
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Figure 5.8: 10-fold cross validation

5.6.2 Model Testing

After choosing the best model, the classifier output quality is evaluated.
The accuracy is simply the proportion of correctly classified instances. It is
usually the first metric when evaluating a classifier. However, what if the
test data is unbalanced? In other words, most of the instances belong to one
of the classes. The accuracy does not really capture the effectiveness of a
classifier in that case.
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In the technical level classification scenario, it is assumed that the testing set
includes 99% of the sensor data as normal pumping condition. It is possible
to achieve 99% accuracy by predicting the class “Normal Condition” for all
instances. The classifier in this case appears to be doing a good job overall.
However, it fails to detect any ESP problems.

For that reason, it is helpful to compute additional metrics that capture
more specific aspects of the evaluation. To recap on the confusion matrix
that is explained in chapter 3 in section 3.3.4. The class labels in the training
set can take only two possible values. These two values are either positive
or negative. The positive and negative instances that a classifier predicts
correctly are called true positives (TP) and true negatives (TN), respectively.
Similarly, the incorrectly classified instances are called false positives (FP)
and false negatives (FN).

Understanding the performance of the classifier requires answering some
important questions. A very natural question is: ‘Out of the sensor data
classified as specific condition, how many were classified correctly?’ This
question can be answered by looking at the Precision of the model. The Pre-
cision is the proportion of the positives that are classified correctly (Abdalla
et al. 2020). Equation 5.15 is the mathematical form of the Precision:

Precision =
True Positive

True Positive + False positive
(5.15)

Another common question is “Out of all cards having specific condition
(TP+FN), how many did the classifier classify correctly (TP)?” This is actually
the Recall, or the true positive rate. Equation 5.16 is the mathematical form
of the Recall:

Recall =
True Positive

True Positive + False Negative
(5.16)

To conclude, the Precision-Recall metric is an important tool to evaluate the
classifier output quality. Precision is a measure of how good predictions
are with regard to false positives. Recall is also known as sensitivity or true
positive rate. It measures how good the predictions are with regard to false
negatives.
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5.7 Summary

In this study, sensor measurements with moving differences were utilized to
predict pumping conditions. A dimensionality reduction technique, namely
PCA, was applied to reduce the dimensionality of the data, and the resulting
lower-dimensional data points were then fed into a supervised learning
algorithm, specifically XGBoosting, for further processing. The training
dataset comprised input-output pairs, where the inputs were PCA projected
features and the outputs were representative of the pumping conditions,
specifically, seven days before the reported failures in the case of ESP failure
prediction. Each input-output pair was considered as a ”data point” for
training, validation, and testing the proposed model.

In addition, deep learning techniques such as 1D CNN, LSTM, and LSTM
with attention were explored in the application of predicting pumping
conditions. The 1D CNN model was employed to extract relevant features
from the sensor measurements by applying a one-dimensional kernel over
the time-series data. The LSTM model was used to capture the sequential
and long-term dependencies in the sensor measurements. Furthermore, the
LSTM with attention model enhanced the LSTM model by allowing it to
selectively attend to important parts of the sensor measurements during
prediction.
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6.1 Introduction

Closed-loop reservoir management involves the use of dynamic optimization
routines to maximize the net present value (NPV) of production or hydro-
carbon recovery over the reservoir lifecycle. This is achieved by optimizing
well placement, drilling schedules, and injection strategies among other
parameters. Optimization routines use data from production and injection
wells, geological data, and reservoir simulation models to determine the
optimal control actions. These routines are critical in ensuring that the well
operations are cost-effective and environmentally friendly while maximizing
hydrocarbon recovery.

In recent years, advancements in upstream field technology have popu-
larized closed-loop reservoir management approaches, where the goal is
production optimization (Hou et al. 2015). The objective of closed-loop
reservoir management is to use mature reservoir models and optimal well
control parameters to maximize the net present value (NPV) of production
or hydrocarbon recovery during the reservoir lifecycle (Foss et al. 2015).

Optimization algorithms for closed-loop reservoir management can be clas-
sified into steady-state and dynamic methods. Steady-state methods solve
for a single point and include evolutionary algorithms such as genetic al-
gorithms and particle swarm optimization algorithms. Dynamic methods,
on the other hand, provide an optimal control strategy over time, including
model predictive control algorithms, and reinforcement learning. Optimiza-
tion algorithms also can be classified into model-free data-driven algorithms,
such as reinforcement learning, and model-dependent algorithms such as
gradient descent and adjoint methods. The choice of optimization algorithm
depends on the complexity of the problem and the availability of data and a
reliable reservoir model.

For instance, (Ameli and Mohammadi 2018) particle swarm optimization,
genetic algorithm, and imperialist competitive algorithm are applied to

90



6 Prescriptive Analysis for steam injection optimization

optimize steam to oil ratio. Their results showed that the genetic algorithm
worked 6% better compared to other optimization techniques and was also
faster than the continuous optimization algorithm. However, the biggest
drawback of this approach is that it only provides a single value for steam
injection or steam ratio, which is not sufficient for such a complex problem.

On the other hand, the second group of optimization solutions deals with
steam injection as an optimal control problem, which includes a model
predictive control algorithm and an adjoint-based method. Model Predictive
Control (MPC) is the most widely used advanced control method in refining,
chemical, and petrochemical processes (Saputelli et al. 2005; Patel et al. 2014;
Purkayastha et al. 2015; Eaton et al. 2017; Vembadi et al. 2018). In the steam
injection problem, a proxy model is introduced to formulate the problem,
which is a relation between injection rates and oil and water production rates.
Finally, the formulated problem is optimized over the prediction horizon to
find the steam injection rates that maximize the net present value. Although
the MPC approach is preferable, the drawback of combining it with a proxy
model to formulate the system makes it unstable and only suitable for the
small horizon of production (Najmudeen Sibaweihi et al. 2021).

Gradient-based optimization methods, such as the adjoint method, lie also
in the second group. It is performed by some sort of gradient-based opti-
mization method where the derivatives are obtained through the use of an
adjoint equation or co-state equation (Haili Dong, Bingsheng Wang, Chang-
Tien Lu n.d.). It depends on the barrier function to formulate the augmented
objective function. Hence, the augmented objective function includes the
calculation of the net present value and the constraints that formulate the
reservoir dynamics. The disadvantage of this approach is that the equations
representing the gradient of the augmented objective function with respect
to the steam injection rate must be hard-coded which is not easy in the case
of thermal oil recovery and compositional modeling (Guevara et al. 2021).

While steady-state optimization methods have been widely used in the past,
they are not always suitable for complex reservoir simulations. In contrast,
model-dependent optimization methods, such as gradient descent and ad-
joint methods, require complex interaction with the reservoir model which
limits their practical applications. A potential solution to these challenges
is data-driven optimization, which relies on machine learning algorithms
to learn patterns from the reservoir model data and make predictions for
optimal control strategies. Reinforcement learning is one such algorithm
that has shown promising results in optimizing the control of injection and
production rates in reservoir management. It allows for the optimization of
non-linear and non-convex objective functions while handling uncertainties
and noise in the data.
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This study explores the potential of reinforcement learning for optimizing
production in the oil and gas industry. It investigates the use of reinforce-
ment learning in two different scenarios: a single-agent approach to optimize
steam injection by finding the optimal injection rate for a single well, and a
multi-agent approach using the Egg Model for waterflooding optimization,
which involves multiple wells interacting with each other in a complex
network. The study aims to showcase the efficacy of reinforcement learning
in resolving the challenges of closed-loop reservoir management. This chap-
ter focuses on steam injection optimization, while the upcoming chapter
explores waterflooding optimization using a multi-agent approach.

Steam Flooding is a thermal oil recovery method. In this method, steam
forms a condensing zone inside the reservoir. The heat of condensation is
utilized to heat up the heavy crude oil, facilitating its displacement due to a
reduction in viscosity (Ali and Meldau 1979). The injected steam forms a
steam chamber around the injection well (J. Zhang and Chen 2018). Figure
6.1 shows the steam chamber around the injection well. This steam chamber
is expanded towards the production well. Consequently, the condensed
water displaces the reservoir fluid into the production well (Shafiei and
Dusseault 2013; J. Zhang and Chen 2018).

Steam

Hot 
Water

Hot Oil

Shale

Shale

Steam Injection Oil Producer

Figure 6.1: Steam Injection process

Reinforcement learning has been proposed as a means to optimize steam-
assisted gravity drainage systems. Guevara et al. (Guevara et al. 2021)
utilized the state-action-reward-state-action (SARSA) algorithm for this
purpose. However, another algorithm, the actor-critic reinforcement learning
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algorithm, has also been recommended. This approach combines the benefits
of value-based and policy-based methods.

In the actor-critic algorithm, a policy neural network generates actions,
which are evaluated based on the corresponding change in state potential.
These values are provided by another neural network, the critic network,
which approximates the expected cumulative reward from a given state
(Thuerey et al. 2022). One advantage of this algorithm is its ability to
update the policy and explore until it learns the optimal policy. The actor-
critic algorithm is also useful in competitive non-Markovian environments
where a stochastic action may be preferred over a deterministic one and in
scenarios involving continuous action spaces, such as continuous robotic
control (Thuerey et al. 2022). Therefore, the actor-critic algorithm shows
potential as a reinforcement learning method for optimizing steam-assisted
gravity drainage systems, offering benefits over SARSA.

To conclude, model-free reinforcement learning (RL) is applied in this study
for steam injection rate optimization. It was selected because it overcomes
the shortcomings of the aforementioned methods in two ways. Firstly, it
does not require a full description of the process required to be optimized.
Secondly, this approach takes advantage of previous experiences or inter-
actions with the environment to find an optimal policy of injection rate to
maximize the net present value without human interference. Also, among re-
inforcement learning algorithms, we explore the usage of actor-critic (A2C).
The advantages of such an algorithm are the following:

1. Sample efficiency: Actor-Critic is more sample efficient than some other
reinforcement learning algorithms, such as Q-learning and SARSA.
This is because it uses both the value function and the policy to learn,
which can help to reduce the number of interactions needed with the
environment.

2. Convergence to an optimal policy: Actor-Critic has a strong theoretical
basis for convergence to an optimal policy, and it guarantees improve-
ment at each iteration. This means that the performance of the policy
will improve over time.

3. Handling of non-stationary environments: Actor-Critic can handle non-
stationary environments where the distribution of the data changes
over time. This is because the policy is updated using its own expe-
rience, and the critic’s value function is updated using the temporal
difference error.

4. Ability to balance exploration and exploitation: Actor-Critic can bal-
ance exploration and exploitation using the policy and value function.
The policy is used to explore the environment and discover new solu-
tions, while the value function is used to exploit the current knowledge
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of the environment and make decisions based on the expected return
of each action.

6.2 Elements of RL

Reinforcement learning is a preferred method for many applications due
to its ability to optimize policies and support automated transformation
beyond conventional approaches. In reinforcement learning problems, an
agent learns to map situations to actions in a closed-loop architecture where
its actions influence later inputs and converge towards maximizing the
reward signal. Through trial and error, the agent discovers which actions
yield the best reward. The agent-environment interaction in reinforcement
learning is illustrated in Figure 6.2.

Petroleum Production Systems Department
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Agent
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State 
𝑆𝑡

Reward 
𝑅𝑡

𝑆𝑡+1
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Figure 6.2: The agent-environment interaction in RL

In challenging environments, an agent’s actions may not only impact imme-
diate rewards but also affect the next situation and, therefore, all subsequent
rewards. There are three key features of reinforcement learning that make it
a preferred option for many applications: (1) its closed-loop structure, (2) its
lack of direct instructions on actions and the consequences of those actions,
and (3) its ability to fluctuate actions over extended time periods (Sutton
and Barto 2005). In the following, the relevant elements are explained in
further detail.

6.2.1 Environment

In reinforcement learning, the term ”environment” refers to a mathematical
model that simulates the behavior of the real-world environment. It allows
the agent to interact with the environment by receiving observations, taking
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actions, and receiving rewards. The environment can be modeled in various
forms, such as a grid world or a simulated physics engine.

The environment takes the current state of the agent as an input, and based
on the action taken by the agent, it returns the next state and the associated
reward. The environment is responsible for updating the agent’s state and
providing feedback on the agent’s actions.

The environment plays a crucial role in reinforcement learning because the
agent’s performance depends on the quality of the environment model. If
the environment model is accurate, the agent can learn an optimal policy
that maximizes its cumulative reward. On the other hand, if the environment
model is inaccurate or incomplete, the agent may learn a suboptimal policy
or fail to learn altogether. Therefore, it is important to choose an appropriate
environment model that accurately represents the real-world environment.

6.2.2 Reward function

The reward function plays a crucial role as it acts as the means to guide the
agent towards achieving the optimal policy. It is a mathematical function
that maps the current state of the environment and the action taken by
the agent to a scalar value, which represents the immediate feedback or
reinforcement provided to the agent. The reward signal is considered to be
the target or the objective function that the agent aims to maximize.

A reward signal is a single number that is transmitted from the environment
to the agent at every time step, based on the agent’s current action and the
current state of the environment. The agent can influence the reward signal
through its actions, and hence, maximizing the total reward that the agent
receives over the long run is considered to be its primary objective. The
reward signal provides feedback to the agent about the goodness or badness
of its actions, and it is denoted by Rt at time step (t). The design of the
reward function is a critical aspect of reinforcement learning, as it directly
affects the agent’s behavior and its ability to learn the optimal policy.

6.2.3 Policy function

A policy is a crucial element in reinforcement learning that specifies the
learning agent’s behavior at a particular time. It serves as a mapping function
that connects the input vector from the environment at a given time step (t)
to the actions that the agent should take. Specifically, a policy defines how
the agent should behave by mapping states to actions. The policy function is
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represented as πt, where πt (a|s) denotes the probability of the agent taking
a specific action (a) when it is in a certain state (s). The policy function plays
a central role in determining the actions that the agent takes in response to
the current state of the environment, and it is the key element for achieving
the optimal policy that maximizes the total reward over time.

6.2.4 Value function

A value function is used to evaluate the success on the long run. It is
defined as the expected return starting from a certain state, and following a
particular policy. In other words, the value function at a state s considers
the immediate reward available in s and the expected long-term rewards
from the subsequent states. Mathematically, the value function is defined as
Vπ(s) = Eπ [Gt | St = s] = Eπ

[
∑∞

k=0 γkRt+k+1 | St = s
]

where Vπ(s) is the
value function for a given state s under a specific policy π, and Gt is the
total discounted reward from time t onwards.

While the reward function determines the immediate return at a specific
state, the value function takes into account the potential future rewards
that may be obtained by following a particular policy. By estimating the
value function for each state, an agent can determine which states are more
desirable and use this information to make better decisions about which
actions to take.

6.3 Learning dynamics (Agent-Environment
interactions)

Over a sequence of discrete time steps t = 0, 1, 2, 3, . . . , T, an agent interacts
with an environment E (see fig 6.2). In every iteration, the agent receives
a current state from the environment (st) and selects an action from some
set of possible actions (A) according to its policy pi. In return, the agent
receives the next state st+1 and receives a scalar reward rt. The process
continues until either the agent reaches a terminal state or the maximum
number of time steps satisfied after that point the process restarts (Bilgin
2020).

The total accumulated return from time step t can be calculated from Rt =
∑∞

k=0 γk rt+k were γ ∈ [0, 1] is the discount factor. The state-value function
at state (s) under policy pi is defined as the expected return from that given
state Vπ(s) = E [Rt|st = s]. Another important function while learning is

96



6 Prescriptive Analysis for steam injection optimization

the action-value function. It is the expected yield for a specific action (a) at a
state (s) and following specific policy Qpi(s, a) = E [Rt|st].

Solving a reinforcement learning task means reaching the optimal policy.
It is the one that is going to give us the maximum value in any state we
are in π∗ = argmaxπEπ ∑∞

k=0 γk rt+k. we can use dynamic programming
algorithms to compute optimal policies, which lead to the highest possible
sum of future rewards at each state. Dynamic programming algorithms
work on the assumption that we have a perfect model of the environment’s
Morkov decision process (MDP). So, we’re able to use a one-step look-ahead
approach and compute rewards for all possible actions. To find an optimal
policy for a given MDP, there are two techniques. They are either value
iteration technique algorithms or policy iteration technique algorithms.

In the value-iteration model-free reinforcement learning technique, there
is no explicit policy stored but the problem of the value function only is
solved. The policy is here implicit and can be derived directly from the value
function by picking the action with the best value. For instance, DQN is
the most popular Q-learning algorithm. In this algorithm, the action value
function is represented using a function approximator, such as a neural
network Q(s, a; θ). The objective is to directly approximate the optimal
action-value function: Q ∗ (s, a) ≈ Q(s, a; θ). The iterative learning is
done through continuous updates of the parameters θ of the action value
function minimizing a sequence of loss functions.

On the contrary, we explicitly build a parameterized representation of the
policy PI(at|st; θ) in the policy-based technique. Then, gradient ascent on
E[Rt] is performed to update the parameters θ. An example of such a
method is the REINFORCE family of algorithms.

In these algorithms the policy parameters θ are updated in the direction
∇θ log π(at|st; θ) ∗ Rt. In order to solve the problem of the high variance of
such estimates while keeping it unbiased, A learned estimate of the value
function is commonly used as the baseline bt(st) ≈ Vπ(st). This baseline
is subtracted from the return. Hence, The resulting gradient is calculated
from ∇θ log π(at|st; θ) (Rt − bt(st)) (Sutton and Barto 2005).

Actor-critic reinforcement learning combines both techniques, the value-
based and the policy based, together. It consists of two neural networks
and the advantage function. The latter calculates the agent’s TD Error or
Prediction Error. The actor-network can be considered as a policy gradient
algorithm that chooses an action at each time step. On the other hand, the
critic network evaluates the Q-value or provides a feedback on how to adjust.
While the critic network learns which states are better or worse, the actor
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uses the critic results to teach the agent to seek out good states and avoid
bad states.

6.4 Steam injection model

A reservoir simulation model is used to represent the environment, in this
case, a one-third of an inverted nine-spot pattern is used to displace oil by
steam (Aziz et al. 1987). The total area of the pattern is 2.5 acres with a
grid system of 23 x 12 x 12. The case is shown in Fig. 6.3. Grid points are
uniformly distributed in the horizontal plane as shown. The well radii for
all three wells are 0.3 ft.

330 ft Injector Near Producer

Far Producer

2
9

.1
7

 f
t

Figure 6.3: Element of symmetry used in the simulation of steam injection in an inverted
nine-spot

The vertical permeabilities are 50% of the horizontal values. The porosity
of all layers is 0.3 (fraction). The thermal conductivity of the reservoir
overburden and underburden is 24 BTU/(ft-D-OF), and the heat capacity of
the reservoir overburden and underburden is 35 Btu/(ft3 of rock-OF). The
effective rock compressibility is 5 × 10

-4 psi-1.

Properties of pure water are assumed. Oil density at standard conditions
is 60.68 Ibm/ft3. compressibility is 5x10−6 psi−1. The coefficient of thermal
expansion is 3.8x10−4 OR-1, and the molecular weight is 600. Temperature
and viscosity data are shown in Table 6.1. Further information about the
produced fluid properties and initial oil composition can be found in table
6.2 and 6.2.

98



6 Prescriptive Analysis for steam injection optimization

Table 6.1: Temperature and viscosity data

Temperature (◦F) Viscosity (cp)
75 5,780

100 1,380

150 187

200 47

250 17.4
300 8.5
350 5.2
500 2.5

Table 6.2: properties of oil components

Components
1 2 3

Molecular weight 250 450 600

Specific heat, Btu/Ibm-oR 0.53 0.55 0.6
Density at standard conditions Ibm/ft3 52.3 57.64 61.2
Critic pressure, psia 225 140 –
Critical temperature, oF 800 950 –

Table 6.3: Initial oil Composition

Components Mole Fraction
C1 0.5030

C2 0.1614

C3 0.3356
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Rock-fluids interaction: For water/oil system, the residual oil saturation
(Sorn) is 0.15. For gas/oil system, the residual oil saturation (Sorg) is 0.10.
The critical gas saturation (Sgc) is 0.06.

Regarding permeabilities, the oil relative permeability at interstitial water
saturation, kroiw is 0.4. For water/oil system, water relative permeability
at residual oil saturation (krwro) is 0.1. For gas/oil system, gas relative
permeability at residual oil saturation (krgro) is 0.2. Equations (6.1) – (6.4)
define the relative permeability for the water/oil system and for the gas/oil
system as

krw = krwro

(
Sw − Swir

1− Sorw − Swir

)2.5

(6.1)

krow = kroiw

(
1− Sorw − Sw

1− Sorw − Siw

)2

(6.2)

krg = krgro

(
Sg − Sgc

1− Siw − Sgc

)1.5

(6.3)

krw = krwro

(
1− Siw − Sorg − Sg

1− Siw − Sorg

)2

(6.4)

Initial Conditions: The initial oil and water saturation is 55% and 45%
respectively. The reservoir temperature is 125°F. The pressure at the center
of the top layer is 75 psia.

Operating Conditions: The steam is injected into the bottom layer only
while production occurs from all four layers. Steam injection capacity is
subject to the following constraints: (I) maximum BHP of 1,600 psia at the
center of the bottom layer and (2) maximum injection rate of 300 STBID
on a full-well basis. The capacity of the production wells is subject to the
following constraints: (I) minimum BHP of 17 psia at the center of top layer,
(2) maximum production rate of 1,000 STBID of liquids. The operation shall
take 820 days of injection and production.

The next step would be to reformulate the reservoir simulation problem
to match with the MDP. After preparing the model, the actor-critic agent
starts to interact with the environment for a production period of 820 days.
Multiple well interacting with the reservoir simulation environment as a
multi-agent actor-critic reinforcement learning can be considered as a next
level of study.
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6.5 Steam injection problem formulation based on
RL

To formulate the steam injection model discussed in section 6.4 using re-
inforcement learning elements outlined in section 6.2, we can consider the
problem as an episodic Markov decision process (MDP), where the goal
is to maximize the cumulative discounted reward over a finite horizon.
The subsequent discussion will elaborate on the actions, state and reward
function definition based on the steam injection model.

6.5.1 State

As aforementioned, a true MDP state should provide something that is
Markovian and captures the environment at its fundamental level. So, the
state of the reservoir simulation should carry enough information to capture
the history of the process or the previously applied injection rates. Equation
6.5 shows how the state is set at every timestep.

St = [Cumulative oil production , Cumulative steam injection,
Cumulative water production]

(6.5)

6.5.2 Actions

In this study, a discrete action space is used. It consists of three (3) possible
actions. Those actions are: increase, decrease and no change in steam injec-
tion rate with reference to the previous time step injection rate by a constant
value (20 BPD). Such designation of action space prevents the steam injection
from dramatically changing. The action space for the agent is designated
according to Equation 6.6.

at =


Qinj(t− 1) + 20

Qinj(t− 1)− 20

Qinj(t− 1)

i f action == 0

i f action == 1

i f action == 2

(6.6)
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6.5.3 Reward function

The reward function is very important as it is responsible for orienting the
agent during the learning process. In this study, The equation used for the
NPV calculation is as follows in equation 6.7. The objective is to maximize
the sum of all NPV calculated at each time step.

Rt = NPVt =
N

∑
n=1

Poqo − Csteam qs − Cwater qw

1 + i
t−tre f

365

(6.7)

Where:

Poil, Csteam and Cwater are the oil price, the cost of steam generation and
the cost of produced water handling in [USD/STB].
qo, qs and qw are the oil production rate, steam injection rate and
water production rate in [STB/day].
t, and tre f are the current time and the reference time to which NPV is
discounted.
i is the annual discount factor, The economical parameters are shown
in table 6.4.

Table 6.4: Economical factor

Parameter Value
Poil 100

Csteam 12

Cwater 3

i[ f raction] 0.2

6.5.4 Environment components summary

The environment in RL refers to the context or situation in which the agent
interacts with to take actions and receive rewards. In the case of steam
injection, the environment includes the reservoir, the steam injection system.
The environment is modeled as a Markov decision process (MDP) where
the state of the environment at each time step depends only on the state
and action taken at the previous time step. Table 6.5 presents the projection
of these RL elements on the steam injection model.
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Table 6.5: Elements of the reinforcement learning in the context of steam injection
Element Steam Injection context
Environment Compositional models of reservoir simulation
Task To find optimal injection steam injection rate autonomously

along 820 days of production
State Operating conditions St = [Cumulative oil production,

Cumulative steam injection, Cumulative water production]
Reward Net present value
Agent To send actions to the injector well
Policy To find optimal policy of steam injection rate to maximize

the net present value
Action Manipulating parameter of the operating conditions which

is the injection rate

6.5.5 Implementation the Actor-to-Critic Method

The model consists of three wells (one injector and two producers), and a
production horizon of 820 days (one episode) is considered. The state of the
environment is defined as cumulative, including oil and water production
and steam injection. For each time step, the three possible actions defined
previously are considered, and the reward is represented by the NPV.

The training process is carried out through the agent’s successive interactions
with the environment. The agent acts according to a specific policy each
time and then receives a reward. As a result, the policy is improved by the
successive actions taken and the observation of new environmental states at
each interaction. The agent then learns to gain rewards to act correctly in
situations not present in the training set.

In the actor-critic method, the actor proposes a set of possible actions given
a determined state, i.e., the actor assumes the function of the policy (where
to go?). and the critic, on the other side, evaluates the actions taken by the
actor. This evaluation is defined as the ”estimated value function”.

Using data from a reservoir, the environment is built as a simulation model.
Fig. 6.4 shows the agent (A2C)-environment (reservoir simulator) inter-
action in our implementation for the determination of optimal operating
conditions.

In this study, the agent can be inferred to represent an injector well. It
provides the environment with actions that result in the optimal operating
conditions for the simulated system. This agent is trained based on the net
present value that is calculated using the feedback from the simulator. The
agent used is an actor-critic.
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Petroleum Production Systems Department

Environment

Critic Net)work

Actor Network

Figure 6.4: Implementation of the actor-critic architecture and its interaction with the
environment

The actor network represents a parameterized policy (πθ). Hence, it is
responsible for mapping states (st) to actions (at). The output of the actor’s
network is a 3-dimensional vector representing the probability of the three
actions. Those are increase, decrease and not changing in steam injection
rate with reference to the previous injection rate. Then, using the probability
distribution presented in Equation 6.8, the action is determined. On the other
hand, the critic network evaluates the impact of actions by estimating the
Q-value of a state-action pair. Hence, it takes both the state and the action
as inputs. This ensures that the actor-to-critic agent consistently makes the
best decision.

πθ(s, a) = arg max(softmaxp[a | s, θ]) (6.8)

The actor agent is trained through the policy gradient method and optimized
policy parameters are obtained through iterations. Equations 6.9 and 6.10

show the policy gradient cost function and parameters update.

∇θ J (θ) = ∇θ logπθ
(a|s)Vπθ(St) (6.9)

θt+1 = θt + α ∇θ J (θ) (6.10)
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Combining equations (6.9 and 6.10) with the value function equation (6.11)
results in Equation 6.12

Vπ(S) = ∑
a∈A

π (a, s) (Ra
s + γ ∑

s′ϵ S
Ta

ss′V
π(s′)) (6.11)

θt+1 = θt + α

[
∇θ logπθ

(a|s) ∑
a∈A

π (a, s)

(
Ra

s + γ ∑
s′ϵ S

Ta
ss′V

π
(
s′
)) ]

(6.12)

During iterations, the trajectory update was observed to have a high variance
due to the stochasticity of the environment and the stochasticity of the policy.
The solution to mitigate this problem is the usage of an advantage function
equation 6.13. The advantage function captures the degree of importance
an action has compared to others for a given state, while the value function
judges the strength of the decision.

Aπθ (S, a) = Qπθ (S, a)−Vπθ (S) = r (at, St) + γ Vπθ (St+1)−Vπθ (S)
(6.13)

Using Equation 6.12 and 6.13 equations of actor and critic weights update
are derived 6.14 and 6.15

θt+1 = θt + α[∇θ logπθ
(a|s) Aπθ(S, a)] (6.14)

Wt+1 = Wt + βA[∇wVπθ (St)] (6.15)

Algorithm 1 presents the pseudo-code for the actor-critic algorithm for the
steam injection process.

6.6 summary

Steam injection is a common method to enhance the recovery from mature
oil fields. Commonly, a constant steam rate is applied over a long time with-
out considering varying physical phenomena and reservoir characteristics,
consequently resulting in sub-optimal performance of these thermal heavy
oil recovery processes. However, finding the optimal steam injection strategy
is a challenge due to the complex dynamics, i.e., nonlinear formulation,
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Algorithm 1 Actor Critic algorithm for the steam injection process

Require: MDP formulation of the reservoir model
Require: Actor network: policy improvement, actions
Require: Critic network: policy evaluation, value function
Ensure: Networks parameters are set: learning rate, number of neurons and

discount factor
1: for episode in Episodes do
2: Reset the environment, returns St (first state of the episode
3: for step in Steps do
4: Execute an actionSt, at, Rt, at+1, π(at | St)
5: Agent get the environment state St, at, Rt, St+1
6: Compute advantage Aπθ (S, a)
7: Update policy parameter θt+1 in actor network
8: Update value function parameter Wt+1 in critic network
9: Update action and state

10: end for
11: end for

variations over time, and reservoir heterogeneity. Such a problem can be
reformulated using the Markov decision process for the application of re-
inforcement learning (RL). Subsequently, a decision-maker called an agent
generates actions to maximize the production process’s yield. The agent
does this by interacting continuously with the environment until it reaches
the optimum route for injection rates.

In this work, an actor-critic Reinforcement learning (RL) architecture is used
to train an agent to find the optimal strategy (i.e., policy) through interact-
ing continuously with the environment. In this study, the environment is
represented by a reservoir simulation model. At each time step, the agent
executes an action by either increasing, decreasing, or keeping the steam
injection rate constant, and a subsequent reward is received by the agent.
A reward can be defined as a distinct number from the environment. Then,
the agent observes the new state of the environment. Such a state could be
cumulative steam injection, pressure distribution, or any other input that
could be representative of the environment, which is the reservoir simulation
model in our case. During this interaction, a policy function and a value
function are trained by actor-critic reinforcement learning. A policy gives a
probability distribution of the actions that the agent can take. For a specific
policy, a value function determines the expected yield for an agent starting
in a given state. This dynamic process is executed for several episodes until
convergence is achieved.
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7.1 Introduction

Waterflooding is a common method to increase oil recovery from hydro-
carbon reservoirs. Injecting water pushes oil towards producing wells, and
optimizing injection and production rates maximizes economic benefit. How-
ever, uncontrolled rates can decrease oil recovery (Xu et al. 2020) and lead
to early water breakthrough. Optimizing injection and production rates is a
highly effective method to improve the waterflooding process and increase
the oil recovery factor in the reservoir.

In this study, a multi-agent reinforcement learning algorithm is used to
optimize the waterflooding process. It’s the first attempt to use a multi-
agent actor-critic approach to solve production optimization problems. The
study introduces the deep deterministic policy gradient method that learns
complex multi-agent coordination policies, considering other agents’ action
policies. Memory buffer and target networks are used during training to
stabilize the learning process. A memory buffer, also known as a replay
buffer or experience buffer, is used to store an agent’s past experiences
with the environment. These experiences are later sampled and used to
train the agent’s model. This helps the agent to learn more efficiently by
breaking harmful correlations between experiences. A target network is a
copy of the agent’s main Q-network that estimates Q-values. Its parameters
are periodically synchronized with the main network to improve training
stability.

To summarize, The aim of this chapter is to explore the effectiveness of rein-
forcement learning in optimizing waterflooding in the oil and gas industry.
A multi-agent approach is investigated on the Egg Model, a complex reser-
voir optimization benchmark where multiple wells interact with each other.
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The research aims to contribute to the understanding of closed-loop reser-
voir management challenges and demonstrate the potential of reinforcement
learning in addressing these challenges.

7.2 Multi agent deep deterministic policy gradient

This section outlines an algorithm designed for multi-agent environments.
The algorithm has two main assumptions. Firstly, policies are only able to
access local information, specifically, the parameters of a well’s grids that
are obtained via reservoir simulation. These parameters include volumetric
parameters like pressure and water saturation. Secondly, the communication
method between agents is not specified. By satisfying these two assumptions,
a versatile multi-agent learning algorithm is created that can be used for
both cooperative agents (e.g., injectors) and competitive agents (e.g., injectors
and producers) that interact with the environment physically.

In single-agent problems, the Deep deterministic policy gradient (DDPG)
has been shown to be an effective method for continuous control tasks, where
the agent learns a deterministic policy and can explore the action space with
noise added to the action output (Lowe et al. 2017). In the DDPG algorithm,
the agent learns a policy to do a task in the environment. This policy is a
neural network (NN) trained through a back-propagation algorithm. Policy
learning is guided by Q-value, which also is a learned (NN) by Q-value.
In such problems, learning is not affected by the environment dynamics
as it is stationary from the agent’s perspective. Hence, the agent can learn
the environment model through its own single interactions. However, in
a multi-agent setting, the environment becomes non-stationary from the
perspective of any individual agent. This non-stationarity happens because
the agent’s reward cannot be explained by changes in its own policy.

In multi-agent problems, the goal of learning multi-agents is achieved
through adopting the DDPG algorithm and a framework for centralized
training with decentralized execution (Lowe et al. 2017). In this framework,
all agents are able to observe the states and actions of all other agents
during training. However, during execution, each agent only has access to
its own state observations and must predict its own actions based on this
information. This helps in easing the training as the environment becomes
stationary for each agent. In other words, all agents’ states and actions are
concatenated in the training process which serves as an input to the critic
neural network (Q-value). This critic (Q-value) is used as a baseline to train
the actor, which gets only particular agent state observations as an input
and its output is the action for that agent.
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In summary, policies are allowed to use extra information to ease the train-
ing process. However, this information is not used during the testing process.
It is not possible to do this with Q-learning, as the Q-function generally
cannot contain different information at training and test times. Therefore,
Multi-Agent Deep Deterministic Policy Gradient (MADDPG) is applied. It
is considered an extension of the DDPG algorithm. It uses an actor-critic
architecture to learn policies for multiple agents in a cooperative or com-
petitive environment. In MADDPG, each agent has its own actor-network
that selects actions based on its local observations, while a centralized critic
network estimates the value function based on the observations and actions
of all agents. In the upcoming section, the DDPG algorithm is clearly ex-
plained and how it is combined with the centralized critic and decentralized
actor. The concepts of replay buffer, target networks, and exploration are
presented under DDPG.

7.2.1 Deep deterministic policy gradient (DDPG)

DDPG is an actor-critic algorithm that can be used to solve continuous
control problems in a reinforcement learning setting. It is an extension of the
Deep Q-Network (DQN) algorithm that is used for discrete action spaces.

The algorithm is based on the idea of using a deterministic policy, which is
a function that maps states to actions directly, instead of a stochastic policy,
which outputs a probability distribution over actions. This is achieved by
using an actor-network to represent the policy, which takes in the state as
input and outputs the action.

The critic network is used to evaluate the policy by estimating the state-
action value function, which is the expected sum of rewards starting from
the current state and taking the action specified by the policy. This is used
to train the actor network by backpropagating the gradient of the estimated
value with respect to the actor network parameters.

DDPG employs four neural networks, namely a Q-network, a deterministic
policy network, a target Q-network, and a target policy network. The pa-
rameters of the deterministic policy neural network and its corresponding
target neural network are represented by the symbols ϕ and ϕtarg, while the
Q-network and the target Q-network learning parameters are denoted by θ
and θtarg, respectively.

The algorithm’s pseudo-code is presented in algorithm 2. The algorithm
starts by initializing the actor network, critic network, target actor-network,
and target critic network with random weights, as well as initializing the
replay buffer. For each episode, the environment is initialized and the initial
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state is observed. Then, for each time step within the episode, an action is
selected using the actor-network and exploration noise, and executed in the
environment. The next state and reward are observed and the transition is
stored in the replay buffer. A random batch of transitions is then sampled
from the replay buffer and used to update the critic network by minimizing
the mean squared error between its predicted value and the target value
computed using the target critic network and the Bellman equation. The
actor-network is updated using the sampled policy gradient. The target
networks’ parameters are updated slowly towards their respective main
networks’ parameters. This process is repeated until the end of the episode.
In the following, the four primary components that form this algorithm
are explained. These components are exploration, replay buffer, actor-critic
networks update and target networks update.

Exploration

In reinforcement learning with discrete action spaces, exploration is typi-
cally achieved through the probabilistic selection of a random action using
methods such as epsilon-greedy or Boltzmann exploration. However, in
Deep Deterministic Policy Gradient (DDPG) training, which is conducted in
an off-policy manner, this approach may not allow agents to discover a wide
enough variety of actions to generate useful learning signals. To address
this, (Lillicrap et al. 2015) introduced an Ornstein-Uhlenbeck (OU) process
to add noise to the action output, which encourages exploration. The OU
process is a stochastic process that generates temporally correlated noise.

However, recent studies suggest that uncorrelated, zero-mean Gaussian
noise works as well (Airaldi et al. 2022). It is also preferred since it is simpler
than OU. Therefore, the fixed scale zero-mean Gaussian noise is kept during
training to ensure better exploration, but noise is not applied during testing
to evaluate the policy’s ability to exploit what it has learned.

Replay buffers

DDPG uses a replay buffer to sample experience to update neural network
parameters. It is a set D of previous experiences. During each episode roll-
out, all the experience tuples (state, action, reward, next state and done) are
saved in a finite-sized cache. Then, random mini-batches of experience are
sampled from the replay buffer when the value and policy networks are
updated. In order for the algorithm to have stable behavior, the replay buffer
should be large enough to contain a wide range of experiences.

110



7 Cooperative competitive multi-agent reinforcement learning for waterflooding
optimization

Algorithm 2 Deep Deterministic Policy Gradient

Input: initial policy parameters θ, Q-function parameters ϕ, empty replay
buffer D
Set target parameters equal to main parameters: θtarg ← θ, ϕtarg ← ϕ

1: repeat
2: Observe state s and select action a = clip(µθ(s)+ ϵ, alow, ahigh), where

ϵ ∼ N (0, σ)
3: Execute a in the environment
4: Observe next state s′, reward r, and done signal d indicating whether

s′ is terminal
5: Store (s, a, r, s′, d) in replay buffer D
6: if s′ is terminal then
7: Reset environment state
8: end if
9: for time step t in 1, 2, ..., T do

10: Randomly sample a batch of transitions, k = (s, a, r, s′, d) from D
11: Compute targets:

yt = rt + γ(1− dt)Qϕtarg(st+1, µθtarg(st+1))

12: Update Q-function by one step of gradient descent using the
mean squared error loss:

∇ϕJ (ϕ) ≈ ∇ϕ
1
k ∑
(s,a,r,s′,d)∈B

(
Qϕ(s, a)− y

)2

ϕ← ϕ− αϕ∇ϕL(ϕ)
13: Update policy by one step of gradient ascent using the policy

gradient:

∇θJ (θ) ≈ 1
K ∑

s∈B
∇aQϕ(s, a)|a = µθ(s)∇θµθ(s)

θ ← θ + αθ∇θJ (θ)

14: Update target networks with a soft update:

ϕtarg ← ρϕtarg + (1− ρ)ϕ

θtarg ← ρθtarg + (1− ρ)θ

15: end for
16: until convergence
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Actor and critic networks update

The critic network estimates the expected cumulative reward for an action in
a given state. It is updated by minimizing the mean squared error between
the predicted value and the target value. The target value is calculated using
the Bellman equation and the target critic network as depicted in equation
7.1.

y(r, s′, d) = r + γ(1− d)Qϕtarg(s
′, µθtarg(s

′)) (7.1)

Where:
r is the reward obtained by taking action a in state s, s′ is the next state, d is
the done flag indicating whether the episode is over, γ is the discount factor,
Qϕtarg(s

′, µθtarg(s
′)) is the target Q-value predicted by the target critic network,

and µθtarg(s
′) is the target action selected by the target actor network in the

next state s′. Then, the gradient of the loss with respect to the critic network
parameters is used to update the parameters in a direction that reduces the
loss. Equation 7.2 shows the critic loss function.

∇ϕJcritic ≈ ∇ϕ
1
K ∑

(s,a,r,s′,d)∈B

(
Qϕ(s, a)− y(r, s′, d)

)2 (7.2)

Where:
K represents a mini-batch of experience. The gradient of the loss with respect
to the critic network parameters is then computed and used to update the
parameters in a direction that reduces the loss. This is done using gradient
descent with the learning rate αcritic. The critic update is shown in equation
7.3

ϕ← ϕ− αcritic∇ϕ Jcritic (7.3)

In DDPG, the actor network is updated using the policy gradient. It is
computed by taking the gradient of the expected cumulative reward with
respect to the actor network parameters. The policy gradient is defined as
7.4:

∇θJactor ≈
1
K

K

∑
i=1
∇aQϕ(si, a)|a = µθ(si)∇θµθ(si) (7.4)

Where:
Jactor is the expected cumulative reward, θ are the actor network parameters,
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K is the batch size, si is the state at time i, a is the action, Qϕ(si, a) is the critic
network’s estimate of the action-value function, µθ(si) is the actor network’s
output action at state si, and ∇θ and ∇a denote the gradients with respect
to the actor network parameters and actions, respectively. The actor network
parameters are then updated in a direction that maximizes the expected
cumulative reward as defined in 7.5.

θ′ ← θ + αactor∇θ J (7.5)

Here, θ′ are the updated actor network parameters and αactor is the learning
rate for the actor network.

The target networks

Target networks are used to stabilize the learning process. There are two
target networks: a target actor network and a target critic network. These
networks are copies of the main actor and critic networks, respectively, with
their parameters updated slowly via “soft updates” towards their respective
main networks’ parameters.

The target networks are used to compute the target values for training the
main networks. For example, the target critic network is used to compute the
target value for training the main critic network using the Bellman equation.
In other words, the solution (the target networks method) is to use a set
of parameters for actor and critic networks that comes close to the main
networks but with a time delay. The usage of these target networks helps to
reduce the correlation between the target values and the current estimates
which can improve the stability of training.

The parameters of the target networks are denoted ϕtarg and θtarg. The target
network is updated once per the main network update by Polyak averaging
7.6 and 7.7:

ϕtarg ← ρϕtarg + (1− ρ)ϕ (7.6)

θtarg ← ρθtarg + (1− ρ)θ (7.7)

where ρ is a hyperparameter between 0 and 1 (usually close to 1). This
hyperparameter is called polyak.
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7.2.2 Multi-agent decentralized actor, centralized critic
approach

As aforementioned, a centralized critic is used to estimate a Q-function and
a decentralized actor to approximate each agent’s policy function. Figure 7.1
explains the process that was presented in (Lowe et al. 2017).

S S aa

𝜋1 𝜋𝑁

𝑄1 𝑄𝑁

…..

…..

Training

Execution

Figure 7.1: Overview of multi-agent decentralized actor, centralized critic approach

In this approach, each agent has its own policy function, represented by
a set of parameters θi. The objective is to find the set of parameters that
maximizes the expected return for each agent, denoted as J(θi).

To achieve this objective, the algorithm uses a centralized critic, which
estimates the Q-function for the joint action of all agents. This Q-function is
represented as Qπ

i (x, a1, ..., aN), where x is the state of the environment and
a1, ..., aN are the joint actions of all agents.

The policy of each agent is updated based on the gradient of its expected
return, as expressed in the equation 7.8:

∇θiJ (θi) = E[∇θi log πi(ai|si)Qπ
i (x, a1, ..., aN)]. (7.8)

Equation 7.8 computes the gradient of the expected return with respect to
the policy parameters θi. It consists of two parts: the first part∇θi log πi(ai|si)
is the gradient of the log probability of the agent’s action, and the second
part Qπ

i (x, a1, ..., aN) is the estimated Q-value of the joint action.
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By updating the policy of each agent based on this gradient, the algorithm
learns to maximize the expected return for each agent while taking into
account the actions of all agents in the environment.

The critic network is shared among all agents and trained to minimize
the mean squared error between the estimated state-action value and the
true state-action value. This is done by computing the gradient of the critic
network’s parameters ϕi as:

∇J (ϕ) = E(st, a1:t, rt, st+1) ∼ D
[
(Qµ(st, a1:t, a−i; ϕ)− yt)

2
]

, (7.9)

where Qµ is the Q-function and yt = rt + γQµ(st+1, a1:t+1, a−i, µi+1(st+1); ϕ)
is the target value for the critic network, with γ being the discount factor.
a−i represents the actions taken by all other agents in the system, excluding
the actions taken by agent i

After training, each agent executes its own learned policy independently
based on its local observations and the joint Q-function learend. There
is no longer any training involved, and the critic network is not used.
Each agent’s policy only depends on its own observations, and it does not
require any information from the other agents’ policies or actions. This is
why the approach is referred to as ”decentralized” - each agent’s policy is
independent and does not require coordination with the other agents during
testing.

During testing, the agents interact with the environment and receive obser-
vations and rewards. Each agent then selects an action based on its own
policy and the current observation, without any communication or coordina-
tion with the other agents. The agents’ actions are sent to the environment,
which produces a new observation and reward for each agent. The process
continues until the episode ends, and the agents’ individual returns are
computed based on the total reward they received during the episode.

7.3 Waterflooding mechanistic model

The algorithm developed is utilized for optimizing the water-flooding pro-
cess in the well-known Egg Model, which was originally created by Maarten
Zandvliet and van Essen. Figure 7.2 displays the typical Egg model grids,
which consist of 8 injection wells depicted in blue and 4 production wells
depicted in red. The model consists of 25,200 grids with 18,553 active cells
spread across 7 vertical layers. The inactive cells are located on the outer
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Figure 7.2: Standard Egg model reservoir (revised from J. D. Jansen et al. 2014) (P: produc-
tion well, I: injection well)

Figure 7.3: Random permeability realizations for the Egg model

edges of the model, resulting in an egg-shaped model comprising only
active cells.

The high-permeability channels in a low-permeable background represent
typical meandering river patterns as encountered in fluvial environments.
Each field is unique, and, as a result, the permeability in each of the cell
locations can be described with a probability distribution. However, there
exists no underlying mathematical model to create additional permeability
fields. The fields display a clear channel orientation with a typical channel
distance and sinuosity. The seven layers have a strong vertical correlation,
such that the permeability fields are almost two-dimensional. A random
sample of six realizations is displayed in Fig. 7.3

The rest of the geological characteristics and fluid properties of the standard
egg model are presented in table 7.1. Further geological characteristics of
the standard Egg-Model as well as other parameters such as injection and
production well locations and initial adjustments are available in (Essen et al.
2006; J. D. Jansen et al. 2014).
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Table 7.1: Geological and fluid properties of standard Egg-Model
Symbol Variable Value SI Units
h Grid-Block height 4 m
∆x, ∆y Grid-Block height /width 8 m
Co Oil Compressiblity 3 × 10

−6 psi−1

Cr Rock Compressiblity 2.5 × 10
−6 psi−1

Cw Water Compressiblity 5 × 10
−6 psi−1

µo Oil Dynamic Viscosity 3 cp
µw Water Dynamic Viscosity 0.5 cp
no Corey Exponent, Oil 4.0 -
nw Corey Exponent, Water 3.0 -
Pc Capillary Pressure 0.0 Pa
Sw,o Initial Water Saturation 0.1 -
T Simulation Time 3600 day

The waterflooding control problem involves optimizing the injection rate
and timing to maximize oil recovery while minimizing water production.
The optimization algorithm adjusts the water injection rate over time to
minimize the objective function. The objective function for the optimiza-
tion problem can be expressed mathematically as 7.10. The model’s inputs
include geological information, fluid properties, and well data, and the
outputs provide a prediction of the reservoir’s pressure, temperature, and
fluid saturation over time.

min
q,t

J(q, t) =
∫ T

0

(
1
2

q2(t) +
1
2

w(t)2
)

dt (7.10)

where q(t) is the water injection rate and w(t) is the water production
rate. The objective function seeks to minimize the sum of the square of
the injection and production rates over time. To make the optimization
problem well-posed, constraints must be added to ensure that the solution
is physically feasible. For example, the water injection rate must be positive
and the pressure in the reservoir must not exceed a maximum value to avoid
fracture damage. The constraints can be expressed mathematically as 7.11:

q(t) ≥ 0
BHFP(t) ≤ BHFPmax

(7.11)

where BHFP(t) is the bottom hole flowing pressure of the injector well at
time t and BHFPmax is the maximum allowed bottom hole flowing pres-
sure.
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The optimization algorithm iteratively adjusts the water injection rate until
a solution that satisfies both the objective function and the constraints is
found. The solution provides the optimal water injection rate and timing to
maximize oil recovery while minimizing water production.

7.4 Waterflooding problem formulation based on
RL

As mentioned previously, the primary goal of the waterflooding process
is to maximize oil extraction while minimizing costs, ultimately resulting
in maximum profits at the end of the depletion stage. To achieve this,
reinforcement learning is utilized to optimize decision-making in injection
and production wells. It is crucial to define the reinforcement learning
problem and reward signal in a manner that aligns with the objective.
The purpose of this section is to define each element of the reinforcement-
learning architecture to ensure consistency with the overall goal.

7.4.1 The states set

In deep reinforcement learning, the state is the only aspect that an agent
can observe while interacting with its environment. This information helps
the agent to learn and make decisions that maximize its reward. Therefore,
it is important to choose the relevant observation variables for the agent to
learn from. The reinforcement learning function approximator, which is an
artificial neural network, can be used to understand the interaction between
the environment, state, and action. The network can take raw data and find
patterns in hidden layers, leading to better estimates.

As mentioned previously, when applying deep reinforcement learning to
reservoir simulation, several candidates can be considered as states:

• Wells operational information such as fluid production/injection rates,
water cut, bhp, etc.

• Cumulative information as total oil/water/gas production, field water-
cut, average pressure, etc.

• Temporal volumetric information such as the distribution of fluid
pressure, saturation, relative permeability, etc.

Training with volumetric data enables agents to learn about relative well
locations from changes in the variable distribution. Consequently, volumetric
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data were used in this case. In a waterflooding environment, the pressure
and water saturation are selected to represent an agent’s state.

Specifically, a well window is chosen for each well, and for each window, two
dynamic volumetric parameters are used (pressure and water saturation)
to represent the agent’s partial observation. This approach will enable us
to optimize the injection rates based on their effect on the well windows
around them and those in the vicinity of the production wells.

7.4.2 The actions set

In the oil recovery process, the water injection and production rates play a
critical role in determining the economic return of an oil field. To control
these rates, the injection and production rates of each well can be defined
as the action vector: at = [qinj,1, . . . , qinj,Ninj , qprod,1, . . . , qprod,Nprod

]. The opti-
mization of these injection and production rates is a continuous problem.
With eight injectors and four producers, the control of this optimization
problem lies in a multidimensional continuous action space.

To address the multidimensional continuous action space problem, a deep
deterministic policy gradient (DDPG) algorithm is employed to control both
the injection and production rates. In this case, the actor network must
ensure that negative values are not allowed, as negative injection rates can
result in early termination of the episodes. To accomplish this, a rectified
linear unit (ReLU) activation function is utilized in the actor network.

The ReLU has two advantages in this scenario. First, it ensures that only
non-negative values are allowed and negative values are transformed to
zero. Second, its 45-degree straight-line transformation allows for positive
values to remain unchanged. Thus, the selected activation function allows
for any continuous value in the range of 0 ≤ qinj ≤ qmax

inj .

7.4.3 The reward

As aforementioned, the rewards in reinforcement learning are numerical
values that the agent receives after performing an action in a specific state
in the environment. In the context of oil recovery using waterflooding, the
ultimate goal is to maximize the total profit, which is why the net present
value (NPV) can be used as an appropriate reward function. However,
defining the limits on the injection rate can be difficult, so a hybrid reward
function that combines both discrete and continuous elements is used. This
function is presented by equation 7.12.
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NPVt =


N
∑

n=1

Poqo − Cinj−water qwinj − Cprod−water qwprod

1+i
t−tre f

365

0

i f qinj =< qmax
inj

i f qinj > qmax
inj

(7.12)

The terms in equation 7.12 have the following meanings:

• Poil: the oil price in [USD/STB]
• Cinj−water: the cost of water injection in [USD/STB]
• Cprod−water: the cost of produced water handling in [USD/STB]
• qo: the oil production rate in [STB/day]
• qwinj: the water injection rate in [STB/day]
• qwprod: the water production rate in [STB/day]
• t: the current time
• tre f : the reference time to which NPV is discounted
• i: the annual discount factor

The hybrid reward function calculates the NPV by subtracting the costs of
water injection and produced water handling from the oil price and dividing
by a factor that takes into account the time discounting. The function is zero
if the injection rate exceeds the maximum allowable value. This helps ensure
that the agent stays within the constraints of the system while maximizing
the NPV.

The economical parameters are shown in Table 7.2.

Table 7.2: Economical factor for waterflooding use-case

Parameter Value
POil 100

CInjectedWater 12

CProducedWater 3

i[Fraction] 0.2

7.4.4 Neural networks for MADDPG

MADDPG algorithm utilizes neural networks as the function approximator
for the agent policies and value functions. The actor network is responsible
for choosing actions based on the state, while the critic network estimates
the value function of the current state-action pair. The use of neural net-
works in MADDPG allows for the approximation of highly nonlinear and
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complex functions, making it suitable for modeling complex multi-agent
environments. Additionally, neural networks can adapt and improve over
time as they receive feedback and learn from experience.

In reservoir simulation modeling, the use of LSTM in MADDPG networks
offers numerous benefits. With a large number of input variables, LSTM
networks can efficiently manage high-dimensional data, making them a
perfect choice for such complex systems. Moreover, reservoir simulation
models are inherently dynamic and involve complex, nonlinear interactions
between various components. In this regard, the LSTM networks can capture
temporal dependencies and long-term correlations in the data, which is
particularly useful for modeling complex systems.

Additionally, reservoir simulation is a continuous process, and the use of
LSTM networks can help in maintaining data continuity over time. This is
particularly important when dealing with huge changes in the system such
as changes breakthroughs. LSTM networks can retain the previous state
information and update it with the current state, providing more accurate
predictions and better control of the system.

Moreover, the use of LSTM in MADDPG networks allows agents to learn
from their past experiences and adapt their behavior accordingly. This is
particularly essential in reservoir simulation, where the system behavior
can be highly non-linear and dependent on various factors, such as well
placement, production rates, and fluid properties. LSTM networks enable
agents to identify patterns and correlations in the data, thereby adjusting
their decision-making processes accordingly. This leads to a more efficient
reservoir management and improved production rates.

7.5 Summary

This chapter presents a novel approach for optimizing waterflooding in the
oil and gas industry. Conventional methods rely on either model-based or
steady-state formulations, which are insufficient for solving complex real-
world problems. Model-based formulations can be mathematically complex
and require increased complexity for more complicated reservoir models,
whereas steady-state approaches only reach an optimized single point.

A multi-agent reinforcement learning approach is used. It is a model-free
data-driven optimization algorithm in which multiple agents are trained to
optimize their individual actions in response to the actions of other agents.
The agents learn through trial and error and are motivated to achieve

121



7 Cooperative competitive multi-agent reinforcement learning for waterflooding
optimization

a common goal, such as maximizing oil production. This cooperative -
competitive approach allows agents to learn from each other and find an
optimal solution through an iterative process.

DDPG and multi-agent decentralized actor-centralized critic frameworks are
combined to discover various physical and informational strategies in the
reservoir model. The proposed method is applied to a benchmark egg model,
and the learning curve is analyzed. An analysis of the proposed optimization
policy and a comparison with another data-driven optimization approach
are presented in the results chapter.

Overall, this chapter highlights the implementation of cooperative competi-
tive multi-agent reinforcement learning for waterflooding optimization and
provides a valuable contribution to the literature on this topic.
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8.1 Introduction

In this chapter, the results of several models developed for different problems
are reported and their performance is discussed. Each model was evaluated
using appropriate metrics relevant to its specific objective to assess its ability
to achieve the desired outcomes.

First, the results of the virtual flow metering are presented. The developed
model accurately predicted the liquid rate and water cut flow using pump
sensor measurements. This eliminates the need for multiphase flow meters,
which are costly and time consuming to install. The virtual flow metering
model can be used in real time for the continuous monitoring and optimiza-
tion of production rates. In addition, the model was validated using field
data, demonstrating its effectiveness in a real-world application.

Subsequently, the results of the developed predictive maintenance models
for electrical submersible pumps (ESPs) are presented. The ESP predictive
maintenance model utilizes machine-learning algorithms to accurately pre-
dict the probability of ESP failure based on historical data. The effectiveness
of the model was validated using field data, demonstrating its potential to
reduce unplanned downtimes and associated costs by identifying potential
failures before they occur.

Finally, the results of data-driven optimization for steam injection and water
flooding projects are presented. The developed models aim to optimize
the injection rates to improve oil recovery and maximize net present value.
The models were trained using reinforcement-learning algorithms, and
their ability to learn optimal policies for injection rates was demonstrated.
The models were validated using field data, demonstrating their potential
as valuable tools for optimizing the production rates in the oil and gas
industry.
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8.2 Results and discussion of the virtual flow meter

In this section, the models created for predicting sensor data measurements
are evaluated. First, a detailed exploratory data analysis, outlier removal,
data transformation, and feature ranking were performed. The models were
then built using symbolic regression, XGBoosting, and Conv1D with LSTM
algorithms. Finally, the developed models were used to present the predicted
values versus the actual values for various well datasets.

8.2.1 Comparison of the applied algorithms

In this study, real field datasets were used to implement the various models.
These datasets were divided into two sets: the training set and the testing
set. This allowed for a comprehensive evaluation of the performance of the
models, ensuring that they were tested on different subsets of the training
data. The time series split technique was used to create these sets, wherein
the future timeline data were excluded from the testing set. All the testing
metrics were calculated based on the testing set. The training set was used
for training and validation purposes. A 10-fold cross-validation method was
used for the validation process. Utilization of the testing set and validation
method enabled a thorough analysis of the algorithms implemented in this
study.

When comparing different models, it is important to use objective metrics
to quantify their performances. Three commonly used metrics are mean
absolute error (MAE), mean squared error (MSE), and R-squared. These
metrics were used to evaluate the accuracy of a model in predicting outcomes
on a test dataset, which is a set of data that was not used during the model
development process. In addition to the aforementioned three metrics, it is
common to use a cross plot to compare the predicted values of each model
with the actual values in the test data set. A more detailed explanation of the
testing metrics and cross plots is provided to demonstrate their significance
in model evaluation.

The mean absolute error (MAE) is a metric that calculates the average of the
absolute differences between the actual and predicted values. It measures the
average magnitude of the errors in the predictions and provides a measure
of how close the predictions are to the actual values. A lower MAE indicates
better model accuracy.

The mean squared error (MSE) is another metric that calculates the average
of the squared differences between the actual and predicted values. This
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metric is similar to MAE, but it penalizes larger errors more heavily than
smaller ones. A lower MSE also indicates a better accuracy for the model.

R-squared (R2) is a metric that measures the fit of predicted values to actual
values. It is a statistical measure of the proportion of the variance in the
dependent variable that is predictable from the independent variable(s).
R2 ranges from 0 to 1, with a higher value indicating a better fit. A value
of 1 means that the model perfectly predicts the outcome, while a value
of 0 means that the model does not explain any of the variation in the
outcome.

These metrics are important for the scientific evaluation of the effectiveness
of a model because they provide objective measures of its performance. By
comparing the MAE, MSE, and R-squared values of different models, scien-
tists can determine which model is better suited for predicting outcomes in
a particular domain.

Finally, a cross-plot is a graphical representation of the relationship between
two variables. In scientific research, cross-plots are often used to assess the
performance of different models by comparing the predicted values to the
actual values. By comparing the distribution of the points on the graph
to the 45-degree line, researchers can assess the accuracy of each model.
A model with all points lying on the 45-degree line would have perfect
accuracy, while a model with points scattered randomly around the graph
would have poor accuracy.

Tables 8.1 and 8.2 present a comparison of the models built using symbolic
regression, extreme gradient boosting, and a convolutional LSTM neural net-
work to predict the liquid rate and basic sediment, and water (BS&W) in oil
wells. The convolutional-LSTM models provided the best results for both the
liquid rate and the BS&W prediction. However, the XGBoosting algorithm
also performed well in both cases, particularly for BS&W prediction.

The Convolutional-LSTM model outperformed the other two models in
liquid rate prediction, with a mean absolute error (MAE) of 0.113, the
highest R-squared value of 0.95, and a mean squared error (MSE) of 0.041.
The XGBoosting model also showed good results, with an MAE of 0.127,
an R-squared value of 0.92, and an MSE of 0.046. However, the symbolic
regression model had the highest MAE of 0.551, the lowest R-squared value
of 0.44, and the highest MSE of 0.243.

For BS&W prediction, both the Convolutional-LSTM and XGBoosting mod-
els produced good results, with MAE values of 0.036 and 0.031, R-squared
values of 0.905 and 0.908, and MSE values of 0.004 and 0.005, respectively.
The symbolic regression model had the highest MAE (0.41 and the highest
MSE (0.21). The negative predictions produced by the symbolic regression

125



8 Results and Discussion

0 2000 4000 6000 8000
Actual Value

0

2000

4000

6000

8000

Pr
ed

ict
ed

 V
al

ue

a) SR cross-plot

0 2000 4000 6000 8000
Actual Value

0

2000

4000

6000

8000

Pr
ed

ict
ed

 V
al

ue

b) XGBoosting cross-plot

0 2000 4000 6000 8000
Actual Value

0

2000

4000

6000

8000

Pr
ed

ict
ed

 V
al

ue

c) CNN-LSTM cross-plot

Figure 8.1: Cross-plots for liquid production prediction using various algorithms
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Figure 8.2: Cross-plots for basic sediments and water cut prediction using various algo-
rithms

model for some data points made it impossible to calculate the R-squared
value for this model.

Figures 8.1 and 8.2 show cross plots of the predicted versus actual values
for the three algorithms used for the liquid rate and BS&W prediction,
respectively. As previously mentioned, these plots provide a visual repre-
sentation of the performance of each model and illustrate the closeness of
the predicted values to the actual values.

Table 8.1: Models comparison for liquid rate prediction
Metric Symbolic Regression XGBoosting CNN-LSTM
MAE .551 0.137 0.133

R-squared 0.44 0.92 0.95

MSE 0.243 0.046 0.041

Table 8.2: Models comparison for basic sediments and water prediction
Metric Symbolic Regression XGBoosting CNN-LSTM
MAE — 0.031 0.036

R-squared — 0.908 0.905

MSE — 0.005 0.004
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8.2.2 Deep learning results

Among the constructed models, those using CNN-LSTM showed good
results on the test set. Figures 8.3 and 8.4 demonstrate the effectiveness
of the model by quantitatively evaluating it using datasets that were not
used during the training process. These datasets include the last 30% of the
nine wells, which is approximately the same as the data from the last two
years.

For liquid rate prediction, the predicted values were quite accurate for more
stable wells (e.g., wells 2, 5, and 6). However, for wells like 1 and 3, the results
had higher errors. Similar outcomes were observed for basic sediments and
water percent prediction, with good results for most of the wells, except
for those showing a drastic change in BS&W percent (e.g., well 2, as shown
in figure 8.4). This could be due to wells having unstable conditions and
many interventions or the model’s predictability not being sufficient for
such wells.
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Figure 8.3: Liquid rate production per well, the predicted values and actual values

8.2.3 Discussion

The feasibility of building real-time models using machine learning ap-
proaches was demonstrated through this application. The model requires
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Figure 8.4: Basic sediments and water cut percent per well, the predicted values and actual
values

only nine relatively straightforward measurements and provides instanta-
neous predictions due to the simplicity of the time series model.

Machine learning methods rely on the volume and granularity of data to
develop the capability of predicting the production of an existing or new
well based on past and offset production. The quality of the prediction is
highly dependent on the quality of the input data. If the input is noisy and
inconsistent, the prediction can be unreliable.

To ensure the versatility of the model, data from all wells were employed for
training, and 70% of the data were used for model development to obtain
a comprehensive representation of the entire data range. In order to check
the model’s generalizability, 30% of the available data were reserved for
testing purposes across all well timelines. This allowed the evaluation of the
model’s performance on previously unseen data. The goal was to determine
whether the model was making accurate predictions on new data or just
fitting the training data too well. When the production performance is stable,
the model predicts an R-squared value of 90%. Symbolic regression was also
implemented on the dataset; however, the prediction outcome was poor.

It is concluded that the CNN-LSTM network architecture is quite prominent
in the time-series analysis of sensor data. It provides good results for chal-
lenging sequential datasets with minimal feature engineering. The 1D-CNN
layers were able to automatically extract features and create informative
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representations of the time series. They are highly noise-resistant models
and can extract informative deep features that are independent of time. Ad-
ditionally, LSTM is effective at extracting patterns in the input feature space,
where the input data spans over long sequences. The unique gated architec-
ture of LSTM makes it well-suited for tasks that require the manipulation of
long-term memory, particularly in sequential sensor datasets. Therefore, it
is recommended that research studies utilize this network architecture in
order to effectively handle sequential sensor datasets.
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8.3 Results of predictive maintenance of ESPs

In this section, the outcomes of applying the predictive maintenance model
to ESPs are comprehensively analyzed. The assessment of the model’s
performance is based on key metrics including precision, recall, and F1-
score. Precision, indicating the accuracy of positive predictions, ensures the
model’s capability to correctly identify genuine maintenance events among
its positive forecasts. It plays a pivotal role in minimizing unnecessary main-
tenance actions and associated costs related to false alarms. Similarly, recall
evaluates the model’s proficiency in identifying all relevant instances of
maintenance events, with a higher recall value signifying the model’s effec-
tiveness in capturing a significant portion of actual maintenance occurrences.
Additionally, the F1-score, a harmonic mean of precision and recall, offers a
balanced evaluation of the model’s overall performance.

Moreover, the results in the context of the specific characteristics and re-
quirements of ESP systems are discussed to highlight the strengths and
limitations of the models. The goal of this section is to provide an insightful
evaluation of the performance of the model and highlight its potential for
practical applications in the field of ESP predictive maintenance.

8.3.1 Using XGBoosting

To reduce the false alarms in our model, the raw sensor data have been
pre-processed. Then, the ”standardized” and ”cleaned” time-series data with
their moving difference are entered into feature engineering transformation
through the use of PCA. Finally, a machine learning model is used to classify
the operating point conditions.

The upcoming results are reported in two different ways. Firstly, validation
results are reported using a 10-fold validation. Along with model training,
model validation intends to locate an ideal model with the best execution.
The model’s performance is optimized using the training and validation
datasets. Therefore, the Receiver operating characteristic (ROC) curves are
reported for the 10 folds of the dataset and their mean value. On an ROC
curve, the x-axis represents the false positive rate (FPR), while the y-axis
represents the true positive rate (TPR). Then, the generalization performance
of the model is tested using the testing set. The test dataset remains hidden
during the model training and model performance evaluation stages. In this
regard, a precision-recall curve is used.

Figure 8.5 displays the ROC curves. To interpret the ROC curves, a single
score can be assigned to a classifier model using the ”ROC area under curve”

130



8 Results and Discussion

Figure 8.5: ROC for the proposed model

(AUC), which is obtained by integrating the area under the curve. The score
ranges between 0.0 and 1.0, with 1.0 indicating a perfect classifier. Fig. 8.5
presents the ROC curves for the model with 10-fold validation sets and its
mean curve. The mean ROC AUC value is 0.95.

As mentioned earlier, the second process is testing the proposed model
against a testing set using the precision-recall curve (PRC), which is a
valuable diagnostic tool particularly when classes are very imbalanced. The
PRC trade-off between a classifier’s precision, a measure of result relevancy
and recall, a measure of completeness for every possible cut-off is depicted.
Figure 8.6 shows a precision recall curve PRC for the Pre-Workover and
Workover class.

The ESP dataset is unbalanced. For this reason, it is important to check the
precision and recall for each class of the pumping conditions for better eval-
uation of the classifier. From Figure 8.6 and table 8.3, The precision and the
recall for pre-workover and workover condition is less than those in normal
conditions. This is mainly due to a higher number of data points supporting
the normal labelled status. This is an effect of using an unbalanced dataset.
One approach to address the imbalanced datasets is to oversample the mi-
nority class. The simplest approach involves duplicating examples in the
minority class, although these examples do not add any new information
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Figure 8.6: Precision Recall Curve

Table 8.3: Precision, Recall and F1 score
Precision Recall F1-score Support

Normal 0.99 1.00 1.00 101,726

seven days or less pre-event 0.80 0.60 0.685 0.604

to the model. Instead, new examples can be synthesized from the existing
examples. This is a type of data augmentation for the minority class and
is referred to as the Synthetic Minority Oversampling Technique (SMOTE).
This can be part of further work. However, such procedures are inherently
dangerous because they may result in overfitting of the model.

8.3.2 The usage of 1D-CNN

The 1D-CNN architecture is applied to the time-series sensor data from the
ESP system, in order to learn the patterns that lead to detect failures and
degradation of the system. The input to the 1D CNN model is typically a
set of time-series data such as vibration signals, temperature signals, and
pressure signals, among others mentioned in chapter 5. These signals are
processed through multiple convolutional layers, which learn to extract
meaningful features from the input data. The extracted features are then fed
into one or more fully connected layers, which make the final prediction of
the system’s state.
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In deep learning predictive maintenance applications, the sequence of look
back points refers to the number of past observations or measurements that
are used as inputs to predict the future state of a system or equipment.
These look back points allow the model to learn the patterns and trends
in the data that can indicate an impending failure or degradation of the
system, and make predictions based on those patterns. The appropriate
number of look back points depends on the application itself and should
be determined through experimentation. Table 8.4 presents the f1 scores for
the predictive maintenance model using look back periods of 10, 20, and 30

days. The results show that the model achieved f1 scores of 0.7, 0.76, and
0.77, respectively, indicating improved performance with longer look back
periods.

Table 8.4: F1 Scores for Different Look Back Days

Look Back Days F1 Score

20 0.7
30 0.76

40 0.77

As previously mentioned, the evaluation results for a classification problems
are obtained based on the precision, recall, and F1-score metrics. The results
showed that the model was able to perform well in classifying both the
normal and seven days or less pre-event conditions.

The precision for the normal class was 0.89, which means that the model
correctly classified 89% of the instances as normal. The recall for the normal
class was 0.78, which means that 78% of the actual normal instances were
correctly classified by the model. The F1-score for the normal class was 0.83,
which is the harmonic mean of precision and recall and provides a balance
between the two.

For the seven days or less pre-event class, the precision was 0.79, which
means that 79% of the instances that were classified as seven days or less
pre-event were actually seven days or less pre-event. The recall was 0.70,
which means that 70% of the actual seven days or less pre-event instances
were correctly classified by the model. The F1-score was 0.75, which again
provides a balance between precision and recall.

One of the key advantages of using a 1D CNN for ESP predictive main-
tenance is that it is able to handle high-dimensional time-series data and
automatically extract relevant features from the data. Additionally, the 1D
CNN model is able to learn from large amounts of data, allowing it to
capture complex patterns and relationships in the data.
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Table 8.5: Performance Comparison of 1D-CNN for Seven Days or Less Pre-event

precision recall f1-score
Normal 0.89 0.78 0.83

Seven Days or Less Pre-Event 0.82 0.7 0.75

Table 8.6: Performance Comparison of Vanilla LSTM and LSTM with Attention for Seven
Days or Less Pre-event

Algorithm precision recall
Vanilla LSTM 0.8 (normal) / 0.73 (pre-event) 0.89 (normal) / 0.69 (pre-event)
LSTM with Attention 0.88 (normal) / 0.78 (pre-event) 0.86 (normal) / 0.75 (pre-event)

Another advantage of using 1D CNN for ESP predictive maintenance is
that it can be trained end-to-end, meaning that the entire model is trained
simultaneously and no manual feature engineering is required. This makes
it easier to implement and maintain and also allows for quick adaptation to
new data as it becomes available.

In conclusion, the use of 1D CNN for ESP predictive maintenance can
provide significant benefits over traditional machine learning approaches.
With its ability to handle high-dimensional time-series data, learn from large
amounts of data, and be trained end-to-end, 1D CNN is a powerful tool for
improving the accuracy and reliability of ESP predictive maintenance.

8.3.3 Vanilla LSTM and LSTM with attention for predictive
maintenance

In this study, the performance of Vanilla LSTM and LSTM with attention
models for predictive maintenance of ESPs (Electrical Submersible Pumps)
are evaluated. The results were compared based on prediction accuracy,
precision, recall, and F1-score. The results obtained are shown in the table
8.6.

According to Table 8.6, the precision of the Vanilla LSTM model for normal
and seven days or less before an event are 0.80 and 0.73, respectively, while
the recall is 0.89 and 0.69. On the other hand, the LSTM with Attention model
has a precision of 0.88 and 0.78 for the normal and pre-event conditions,
respectively, with a recall of 0.86 and 0.75. The results indicate that the
LSTM with Attention model has better precision and recall scores than the
Vanilla LSTM model for the pre-event condition, but the Vanilla LSTM model
performs slightly better for the normal condition in terms of precision.
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Hence, these results indicate that the LSTM with attention model was better
at correctly identifying the instances of failure and hence, was able to predict
the maintenance needs of ESPs more accurately. The higher precision and
recall values of the LSTM with attention indicate that the model was able to
correctly identify the instances of failure without raising many false alarms
and was able to correctly predict most of the actual failures.

8.3.4 Discussion of the findings

The findings of this study suggest that, LSTM with attention emerged as the
best performing model for predictive maintenance of electrical submersible
pumps compared with Vanilla LSTM, 1D CNN, and PCA-XGBoosting. The
attention mechanism in LSTM helps the model to selectively focus on the
most relevant features and information, thus enhancing its performance
compared to the traditional Vanilla LSTM model.

The improved performance of LSTM with attention can be attributed to its
ability to dynamically weigh and allocate attention to different parts of the
input sequence, which is crucial for analyzing sequential data in predictive
maintenance. This ability enables the model to effectively capture complex
dependencies and patterns in the data, leading to improved accuracy and
reliability in predictions.

Also, the application of focal loss in predictive maintenance of electrical
submersible pumps (ESPs) showed promising results. The use of focal loss
helped in improving the performance of the classification model, particularly
in handling the imbalanced nature of the dataset. The focal loss allowed the
model to focus more on the pre-events data points, which is the minor class,
resulting in better precision and recall for the failure class.

Despite LSTM with attention being the best performing model in this study,
1D CNN also showed promising results and came in second place. The 1D
CNN architecture used in this study consisted of two convolutional and
max pooling layers, and utilized batch normalization to aid in training. This
suggests that 1D CNN is also a viable option for predictive maintenance in
ESPs, though it may not be as effective as LSTM with attention. The results
of this study demonstrate the potential for utilizing deep learning models in
predictive maintenance and highlight the importance of choosing the right
model for a specific problem. In this case, LSTM with attention was found
to be the best option for predictive maintenance of ESPs, but it is possible
that different models may be more effective for different types of predictive
maintenance problems.

135



8 Results and Discussion

8.4 Results and discussion of steam injection
optimization using RL

In this section, the results of the learning process and the optimization of the
steam injection rate over time are examined. Specifically, the agent’s learning
curve and the optimal steam injection rate policy are of interest. To evaluate
the effectiveness of the agent’s policy in optimizing steam injection rates,
a quasi-experimental comparison is conducted with the base case where
the injection rate is held constant at 138 bbl/day. This quasi-validation
approach will allow us to assess the relative performance of the agent’s
policy in maximizing the cumulative net present value over the production
horizon.

Figure 8.7 illustrates the learning curve for our agent, where the line rep-
resents the cumulative net present value for each episode after 820 days.
Large variations in the NPV of initial episodes can be observed, which can
be attributed to poor approximations of the actor-network. Typically, the
critic is a state-value function that evaluates the new state after each actor
selection to determine whether things have improved or become worse than
expected. The decisive parameter for this evaluation is called the temporal
difference error (TD). As the number of episodes increases, the critic learns
about the policy currently being followed by the actor. This critique takes
the form of a TD error, which is the sole output of the critic and drives all
learning in both the actor and critic.

Figure 8.8 shows the optimal steam injection curves for the A2C agent and
the base model over time. Four specific regions can be distinguished in the
optimal injection policy: from 0 to 380 days, the injection rate has slightly
changed between 98 and 118 bbl/day. The second region is from 380 to 640

days where the injection rate increased from 118 bbl/day to a maximum
value of 148 bbl/day. The third region (from 640 to 780) shows a steep
decrease in the injection rate from 148 bbl/day to 98 bbl/day. The fourth
region is from 780 to 820 showing a slight change between 98 bbl/day and
108 bbl/day. Based on Figure 8.7, and from an economic perspective, it is
clear that the policy defined by the agent was able to achieve the highest net
present value. However, the question that arises here is how such a policy
can be justified from a physical point of view.

The main factor that explains the success of this policy is its ability to
minimize the cumulative heat loss to the surrounding rocks. Figures 8.9b
and 8.9a show the rate of heat loss and cumulative loss to the surrounding
rocks. It is evident that the policy defined by the A2C agent to change
the steam injection rate results in less heat loss to the surrounding rocks
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Figure 8.7: Learning curve of RL
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Figure 8.8: Field water injection total versus time
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compared to the base case. This effect explains the success of this policy in
optimizing oil recovery through water injection.

Also, it is important to study the effect of this injection policy on the
produced oil and water. Figures 8.10 - 8.11 show that the total water cut and
the cumulative water production are lower in the agent policy case than in
the base case. This may be due to slightly smaller injection rates at the first
region of the production horizon, which lead to the steam chamber growing
vertically.

Figure 8.12a-8.12b show the oil rate and cumulative oil production over
time. The agent policy shifted the profile of oil production rate, with the
second peak moving from day 260 to day 400. In the A2C policy, this led to
a reduction in the sharp decrease happening afterwards and a delay in the
steam breakthrough in the near and far wells. Figures 8.13a and 8.13b show
the total steam production from the near and far wells in both the A2C and
base cases. While the near well started to produce steam after 160 days in
the A2C case, it started after 140 days in the base case. The same happened
for the far well, with an approximately 80-day difference.

To conclude, the aim of this work is to propose the application of an actor-
critical reinforcement learning (RL) approach to optimize steam injection
rates based on compositional modeling of fluids flowing through porous
media. The objective is to find a policy capable of maximizing the cumulative
net present value at the end of the production horizon by optimizing well
water injection rates. The actor network’s purpose is to estimate the value
function by mimicking the environment’s inputs and outputs’ physics. The
policy distribution is then updated in the critic network’s suggested direction.
After successive interactions between the agent (actor-critic network) and
the reservoir simulation model, the agent chooses a series of actions (steam
injection rate over time) aimed at maximizing the project’s net present value.
The results from both the base and optimum policy cases are compared
from a physical perspective to provide an explanation for the increase in
the net present value of the entire project. This work represents the first
step in implementing a cooperative-competitive multi-agent actor-critic
reinforcement learning framework to optimize multi-pad oil wells.
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a) Heat losses per day versus time
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Figure 8.9: Field Heat losses versus time
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Figure 8.10: Field water cut versus time
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Figure 8.11: Cumulative water production versus time
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Figure 8.12: Field oil production versus time
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a) Steam production in the near production well
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Figure 8.13: Cumulative steam production per well versus time
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8.5 Results of the waterflooding optimization
using multi-agent RL

The optimization of waterflooding using multi-agent deep deterministic
policy gradient (DDPG) on the Egg model is a recent advancement in the
field of enhanced oil recovery (EOR). The Egg model is a simplified repre-
sentation of a reservoir used to study and optimize oil production processes.
The results of waterflooding optimization using multi-agent DDPG on the
Egg model have shown promising improvements in oil production com-
pared to traditional methods. The optimization process has been shown
to increase the total oil production while reducing the amount of injected
water and the pressure drop in the reservoir. This resulted in a more effi-
cient and cost-effective solution for enhanced oil recovery. In the following
sections, the detailed results of applying Multi-agent deep deterministic
policy gradient (MADDPG) to the Egg model are presented. Subsequently, a
comparison between the MADDPG injection policy and the Multi-Objective
Particle Swarm Optimization (MOPSO) injection policy is presented.

8.5.1 Performance of applying MADDPG on the Egg model

The purpose of this study was to evaluate the performance of the Multi-
Agent Deep Deterministic Policy Gradient (MADDPG) algorithm on a
multiple-well simulation model. The results of the experiments are pre-
sented. The impact of different configurations of the critic networks’ are
investigated. These parameters are the hidden layer sizes and the noise
standard deviation values on the training and performance of the algorithm.
Finally, the performance of the MADDPG algorithm is evaluated in opti-
mizing waterflooding based on several metrics, including cumulative oil
production, water cut, and injection rate.

Experiments Results

Firstly, experiments are conducted to evaluate the efficacy of the MADDPG
algorithm on a simulation egg model for water flooding by varying the
configurations of the deterministic policy gradient algorithm. Those are
the noise standard deviation values that were used in exploration and
the critic networks’ hidden layer sizes. Specifically, the impact of these
parameters is investigated on the training and performance of the MADDPG
algorithm and provides important insights into the optimal configurations
for achieving the best results.
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The noise standard deviation is a parameter that is used to incorporate
randomness into the training process, which can help to prevent the agents
from becoming overly reliant on a particular set of actions. Adding Noise
has two different impacts. Noise can be harmful as it can lead to systematic
overestimation. On the other hand, adding noise can encourage exploration
by introducing randomness into the system, which is useful for discovering
new information or improving performance. To evaluate the impact of
different noise standard deviation values, experiments with values of 0.4,
0.3, 0.2 and 0.1 are coducted.

As shown in Figure 8.14, the configuration with a noise standard deviation
of 0.2 outperforms the other two configurations, achieving a higher average
reward and more consistent learning by the agents. There are several reasons
why using such a moderate level of noise can lead to more stable and
consistent learning:

• Exploration-Exploitation Trade-off: In any learning algorithm, there is
a trade-off between exploration and exploitation. Exploration allows
the agents to discover new strategies and policies, while exploitation al-
lows them to refine and optimize their existing strategies. Adding noise
to the environment can encourage the agents to explore more, without
completely abandoning their existing strategies. Using a moderate
level of noise strikes a balance between exploration and exploitation,
allowing the agents to learn more effectively.

• Avoiding Local Optima: In a complex environment, there may be
multiple local optima, which are suboptimal solutions that are still
better than most other alternatives. Without enough exploration, the
agents may converge to one of these suboptimal solutions and get
stuck there. Adding noise to the environment can help the agents to
escape from local optima and find better solutions.

• Robustness: A moderate level of noise can make the agents more
robust to changes in the environment. In a dynamic environment, the
optimal strategy may change over time, and the agents need to be able
to adapt quickly. By learning to deal with a moderate level of noise,
the agents can become more resilient to unexpected changes in the
environment.

Overall, using a moderate level of noise can help to promote more stable
and consistent learning by the agents in a MARL algorithm by balancing
exploration and exploitation, avoiding local optima, and increasing the
agents’ robustness.

Aside from evaluating the effect of noise, the impact of the hidden layer size
is also investigated. The critic network plays a critical role in the MADDPG
algorithm, as it estimates the state and action values of the agents based on
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Figure 8.14: Learning Curve for MADDPG for various standard deviation values

their observed environment. The number of neurons in the critic network’s
hidden layers determines the complexity of the function approximation and
can significantly impact the performance of the algorithm. To evaluate the
effect of different hidden layer sizes, experiments with three configurations
are conducted. They consist of 64, 256, and 512 neurons. As shown in
figure 8.15, the experiments revealed that the 256*256 configuration of the
critic networks yielded the best results in terms of learning the optimal
flooding strategy. This configuration was found to be particularly effective
in capturing the complex relationships between the various parameters
involved in the flooding process, which, in turn, allowed the agents to learn
the optimal policy more efficiently. overall, the agents achieved a stable
average reward that was close to the optimal value. This indicates that
the algorithm was able to learn the optimal policy for the water injection
simulation environment.

Overall, our experiments demonstrate the importance of carefully select-
ing the configurations of the critic networks’ hidden layer sizes and noise
standard deviation values in the MADDPG algorithm for water flooding
simulation. The results suggest that 256*256 hidden layer sizes and 0.2 noise
standard deviation values can help to promote more stable and consistent
learning. These insights can be valuable for optimizing the Multi-agent
reinforcement learning (MARL) algorithm for different applications and do-
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Figure 8.15: Learning Curve for MADDPG for various network structures

mains, and can contribute to the development of more effective and efficient
multi-agent systems.

Performance Evaluation

In this step, the efficacy of the MADDPG algorithm is assessed in optimizing
waterflooding using several key metrics, including cumulative oil produc-
tion, water cut, and injection rate. The results from each testing metric will
be compared against a baseline strategy in a quasi-experimental design.

The cumulative oil production, which represents the total amount of oil
recovered from the reservoir during the waterflooding process, was used
to evaluate the effectiveness of the optimized waterflooding strategy. The
optimized strategy resulted in a significant increase in cumulative oil pro-
duction, as shown in Figure 8.16. The cumulative oil production achieved
with the optimized strategy was higher than that achieved with the baseline
strategy.

The cumulative water production was used to evaluate the effectiveness of
the optimized strategy in reducing the amount of water produced during
the waterflooding process. As shown in Figure 8.17, the optimized strategy
resulted in a slight reduction in water cut.
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Figure 8.16: Cumulative Oil Production
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Figure 8.17: Cumulative Water Production
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Figure 8.18: Cumulative Water Injected

The injection rate was used also to evaluate the effectiveness of the optimized
strategy in maximizing oil recovery while minimizing water production. As
shown in Figure 8.18, the optimized strategy resulted in a slight reduction
in injection rate with respect to the baseline strategy while maintaining high
oil production rates.

During the simulation, the agent learned to maximize the instant NPV of
oil production by applying a high injection capacity in the initial months.
Fig. 8.19 shows the agent’s strategy. This strategy can be explained by the
fact that injecting water into the reservoir can increase the pressure and
push the oil towards the production wells, resulting in higher oil production
rates. However, injecting too much water can also increase the water cut
values in the production wells, which means that more water than oil is
being produced. This can lead to higher operational costs.

Therefore, the agent adapted its strategy over time by decreasing the injection
rates as the water cut values in the production wells increased. This is a
rational decision, as reducing the injection rates can help to control the water
cut values and to optimize the production of oil. However, the agent also
slightly increased the injection rates again later on. This can be explained by
the fact that injecting some water is still necessary to maintain the pressure
in the reservoir and to avoid the premature abandonment of the wells.
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Moreover, this strategy demonstrated a noticeable jump in the value of
accumulative NPV during the production period. indicating it provides
a more efficient sweeping policy and hence results in higher profits. The
rate of produced water for each production well are demonstrated in Figs.
8.20.

Finally, the status of oil and water distribution in the reservoir during the
production related to the studied strategies can be observed every four
months in Fig. 8.21. These snapshots are for the optimum policy. The figure
illustrates the spatial distribution of oil and water in the reservoir over time
as the injectors and producers operate according to the studied strategies.
The reservoir is divided into a grid of cells, and the color of each cell in the
figure represents the fraction of oil present in that cell. By observing the
change in color over time, one can see how the oil is being displaced and
recovered by the injected water. In conclusion, the results of waterflooding
optimization using MADDPG can be promising but the specifics of the
results depend on the specific details of the problem and the algorithm
used.

8.5.2 Comparison between Multi-agents reinforcement
learning (MADDPG) and Multi objective particle
swarm optimization (MOPSO)

In this section, the performance of two optimization methods is compared,
namely MADDPG algorithm and MOPSO, in the context of waterflooding
optimization. First, a brief overview of MOPSO and its applications are
presented. Then, the advantages and disadvantages of both algorithms
in production optimization are demonstrated. Finally, the results of both
algorithms are compared.

MOPSO is a widely-used optimization algorithm that has been applied
in various fields, including petroleum engineering. In the context of oil
recovery, MOPSO has been used for optimizing various parameters, such as
well placement, injection rates, and production schedules.

Previous studies have demonstrated the effectiveness of MOPSO in opti-
mizing waterflooding operations. For example, in a study by (M. M. Farahi
et al. 2021; M. Farahi et al. 2021), MOPSO was used to optimize the water
injection rate. The results showed that MOPSO was able to significantly im-
prove the oil recovery factor compared to the initial baseline scenario. These
studies demonstrated the potential of MOPSO for optimizing waterflooding
operations and highlight the importance of considering multiple objectives,
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Figure 8.19: Optimal injection rates in m3/day for eight wells resulted from MADDPG
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Figure 8.20: Water Production Per Well

such as maximizing oil production and minimizing water injection, in the
optimization process.

The comparison between the results of waterflooding optimization using
MADDPG and MOPSO can provide insight into the relative strengths and
weaknesses of these two approaches. RL algorithms are often used in dy-
namic decision-making problems, where the model adapts to changing con-
ditions over time. In waterflooding, RL was used to optimize the injection
and production strategies based on the changing state of the reservoir simu-
lation. On the other hand, PSO algorithms are optimization techniques in-
spired by the behavior of bird flocks and fish schools. They have been applied
to various optimization problems, including waterflooding (M. M. Farahi
et al. 2021). PSO algorithms typically perform well in multi-dimensional
optimization problems and can find optimal solutions quickly.

To make a comprehensive evaluation, it is important to consider multiple
performance metrics, as each one provides a different perspective on the
effectiveness of the optimization process. The most commonly used met-
rics for waterflooding optimization include the total oil production and
the amount of injected water. In addition, the optimum strategy for each
algorithm is presented.
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Figure 8.21: status of the reservoir during water-flooding process
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In terms of total oil production, the results of waterflooding optimization
using multi-agent DDPG on the Egg model have shown significant improve-
ments compared to MOPSO methods. Fig 8.22 shows the total oil production
of MOPSO vs MADDPG.
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Figure 8.22: Total oil production MADDPG Vs MOPSO

The amount of injected water is another important metric to consider in this
comparison. The results of waterflooding optimization using MOPSO have
shown a reduction in the amount of injected and produced water compared
to MADDPG. Fig 8.23a,8.23b shows a comparison of MOPSO vs MADDPG
in terms of the amount of injected and produced water.

Based on the information provided, it appears that the multi-agent DDPG
approach on the Egg model has led to higher total oil production compared
to the MOPSO method. However, the MOPSO method resulted in a reduction
in the amount of injected water compared to MADDPG. These differences
suggest that the two methods have different strengths and weaknesses and
may be more suitable for different optimization objectives.

It is also possible that the MOPSO method has reached a sub-optimal point
in terms of the total oil production, resulting in a reduced amount of injected
water. Further analysis would be necessary to confirm this hypothesis.

Therefore, comparing the NPV of the two methods can provide valuable
insights into their economic feasibility and profitability. It is possible that
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Figure 8.23: comparison MOPSO vs MADDPG in terms of the amount of injected and
produced water
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the method that performs better in terms of the total oil production or water
injection rate may not necessarily result in the highest NPV. Fig. 8.24 shows
a comparison between MOPSO and MADDPG in terms of NPV.
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Figure 8.24: NPV comparison MOSPO Vs MADDPG

Based on the comparison of net present value (NPV) between MADDPG
and MOPSO, it appears that the MADDPG method has resulted in higher
economic viability and profitability than MOPSO. This suggests that MAD-
DPG has optimized the waterflooding process more efficiently, resulting in
a better balance between the production of oil and the injection of water.

However, it is important to note that the MOPSO method may have reached a
sub-optimal point in terms of NPV, and it is possible that further exploration
of the search space may yield better results. Additionally, the difference in
NPV between the two methods may be due to the fact that they optimize
multiple objectives, which may have different trade-offs.

It is important to note that these results may vary depending on the specific
conditions of the reservoir and the optimization process. However, the
comparison between waterflooding optimization using multi-agent DDPG
and MOPSO has shown that the multi-agent DDPG approach can result in
significant improvements in the total oil production, the amount of injected
water, and the pressure drop in the reservoir compared to MOPSO.

In conclusion, the comparison between waterflooding optimization using
multi-agent DDPG and MOPSO highlights the potential of the multi-agent
DDPG approach for improving the efficiency and effectiveness of enhanced
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oil recovery processes. Further research and development in this area is
likely to result in even more significant improvements in the future.

8.5.3 Discussion of the Results and Findings

The use of a multi-agent deep deterministic policy gradient (MADDPG) in
this optimization process allows for a more efficient and effective solution
than traditional methods. This is because the multi-agent approach allows
for the simultaneous control of multiple wells in the reservoir rather than
controlling each well individually. The MADDPG algorithm, which is a
variant of reinforcement learning, allows agents to learn from their actions
and improve their decision making over time.

The MADDPG algorithm has shown a great potential for solving the com-
plex problem of waterflooding in a cooperative competitive setting. However,
the performance of these algorithms depends significantly on the noise level
of the environment in which the agents operate. The effects of different noise
standard deviation values on the performance of the MADDPG algorithm
were investigated. The results showed that a moderate level of noise, rep-
resented by a noise standard deviation of 0.2, led to the best performance,
achieving a higher average reward and a lower standard deviation. This
suggests that using a moderate level of noise can promote more stable and
consistent learning by the agents.

The results of waterflooding optimization using MADDPG and MOPSO
showed promising results in terms of maximizing oil recovery and mini-
mizing water production. The MADDPG algorithm showed superior per-
formance compared to MOPSO, as it achieved a higher total oil production
and a lower water cut.

One possible explanation for the superior performance of MARL could be
the ability of the multi-agent system to learn and adapt to the changing
conditions of the reservoir, as well as the behavior of other agents in the
system. This adaptability allows agents to explore the solution space better
and find optimal solutions.

Another advantage of MADDPG over MOPSO is its ability to capture the
complex interdependencies between the injection and production rates of
different wells. This allows the agents to optimize the waterflooding process
on a global level, considering the impact of each well on the overall system
performance.

Overall, the results suggest that MADDPG can be an effective approach for
waterflooding optimization, with the potential to outperform traditional
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optimization methods, such as MOPSO. However, it is important to note that
the results and conclusions drawn from the comparison between MADDPG
and MOPSO for waterflooding optimization may depend on the specific
details of the problem and the algorithms used. Therefore, future research
can explore the potential of other MADDPG algorithms for waterflooding
optimization under uncertainties such as reservoir heterogeneity, uncertain
production data, and variations in operational constraints.
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9 Conclusions and
Recommendations

9.1 Conclusions

A framework of data analytics applications for subsurface energy systems
was used to outline various applications. A proof-of-concept project was
created for each study to demonstrate the impact of these applications on
subsurface energy system production. For real-time descriptive applica-
tions, liquid rate and water cut predictions using ESP sensor data were
implemented and explained. A predictive maintenance model for the early
diagnosis of ESP systems was introduced for predictive analytics. Finally,
steam flooding and water flooding models were used for prescriptive ana-
lytics to optimize injection policies using reinforcement learning. This work
elaborate on a wide range of applications of artificial intelligence on the
upstream sector. In the following section, the most important points of the
various applications involved are concluded:

• In the descriptive study, a new real-time data-driven model was intro-
duced to calculate the multi-phase flow rate using ESP-assisted well
data sets. The study began with a detailed exploratory data analysis at
both the univariate and multivariate levels on the ESP sensor dataset,
followed by feature prioritization experiments to identify the most
dominant parameters affecting rate prediction. The algorithms imple-
mented involved symbolic regression, XGBoost, and deep learning
techniques, including a pipeline of a Convolutional Neural Network
(CNN) and a Long Short-Term Memory (LSTM) algorithm, which
were successfully used for real-time prediction of the liquid rate and
water cut based on ESP sensor data. Finally, the mean absolute error,
mean squared error, and R-squared were compared across the different
models.
The feasibility of building a predictor model using machine learning
approaches for this specific application was demonstrated. Because the
model uses only nine relatively straightforward variables, predictions
are provided instantaneously, owing to the simplicity of the time-series
model. However, the accuracy of the prediction is highly dependent on
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the quality of the input data. If the input data are noisy and inconsis-
tent, prediction may be unreliable. When the production performance
is stable, the model predicts with an R-squared accuracy above 90%.
Symbolic regression was also applied to the dataset; however, the
prediction outcome was poor.
The use of the CNN-LSTM network architecture is quite prominent
in the time-series analysis of sensor data. The 1D-CNN layers are
capable of automatically extracting features and creating informative
representations of time series. They are highly noise-resistant and can
extract informative deep features that are independent of time. LSTM
networks are highly effective and reliable for extracting patterns in
the input feature space, where the input data span long sequences.
The unique gated LSTM architecture can manipulate its memory state
in such a way that long-term data relations can be stored. Therefore,
the implementation of such a network architecture for future research
studies using sequential sensor datasets is highly recommended.

• In predictive analytics, a study for predictive maintenance of electrical
submersible pumps was presented. It processes the sensor measure-
ments through two pipelines. The first pipeline involves dimensionality
reduction techniques, projecting the dataset onto new, lower dimen-
sions. The transformed data was then fed into the XGBoost supervised
algorithm, using input features (PCA-projected features) paired with
labeled outputs indicating the seven days before reported failures for
ESP. Each input-output pair could be considered a ”data point” for
training. The model’s performance was assessed on a validation set,
achieving a mean AUC of 0.95 for a 10-fold validation.
The second pipeline of the study focused on exploring deep learning
techniques, specifically 1D-CNN, LSTM, and LSTM with attention, for
predicting pre-failure events. The performance of the algorithms was
evaluated with data shifted by different lookback periods, and the best
shift was used to build all models.
The study concluded that LSTM with attention is the best performing
model for predictive maintenance of electrical submersible pumps,
outperforming Vanilla LSTM, 1D CNN, and PCA-XGBoosting. The
attention mechanism in LSTM allows the model to selectively focus
on relevant features, enabling it to capture complex patterns and de-
pendencies in the data. Focal loss also showed promise in improving
model performance. The study highlights the potential of deep learn-
ing models in predictive maintenance and emphasizes the importance
of choosing the right model for a specific problem.

• For prescriptive analytics studies, RL algorithms have been successfully
able to interact with complex problems in steam-flooding and water-
flooding environments. The first application studied a steam-flooding
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environment using a single RL agent. The state of the environment was
defined by the cumulative oil production, cumulative steam injection,
and cumulative water production. The agent was able to learn an
optimal injection rate policy that maximized the net present value.
The second application addressed the more complex problem of water-
flooding with multiple agents, where each agent had a partial obser-
vation of the well window surrounding it. The agents learned how to
manipulate the injection rate policy to maximize the net present value,
resulting in improved oil recovery and reduced water production.
The use of MADDPG, a multi-agent reinforcement learning algorithm,
has shown promising results in optimizing waterflooding processes,
allowing for simultaneous control of multiple wells and capturing
complex interdependencies. It outperformed traditional optimization
methods and achieved higher oil production and lower water cut.
The algorithm’s performance depends on the noise level of the en-
vironment, and moderate noise levels can promote more stable and
consistent learning by agents.

9.2 Recommendations

The application of machine learning in the digital oilfield holds significant
potential for further optimizing the efficiency and performance in the oil
and gas industry. However, ongoing research is crucial for further advance-
ment. The proposed framework of descriptive, predictive, and prescriptive
modeling can serve as a guide for future studies.

Descriptive modeling has been used to expand the application of virtual
sensing, particularly in the context of virtual flow metering. The integra-
tion of data exploration and machine learning algorithms has significantly
improved the technology and empowered the virtual flow meters. This
framework can be applied to other artificial lift systems that provide data to
create virtual flowmeters.

Predictive modeling is a crucial aspect of data analytics in the digital oilfield,
and predictive maintenance is considered one of its most critical applications.
Deep learning performs a crucial role in predictive maintenance applica-
tions that handle complex and imbalanced datasets for machinery failure
prediction. This is because deep learning algorithms can extract complex
features and patterns from unstructured or high-dimensional data, enabling
accurate predictions of equipment failure. Moreover, deep learning algo-
rithms can effectively learn from unbalanced datasets, which allows them to
correctly identify rare events, and thereby enhance the accuracy of predictive
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maintenance applications. Researchers can also focus on exploring new al-
gorithms, such as transfer learning, which can further improve the accuracy
of predictions. Additionally, the application of hybrid systems for system
dynamics identification and data-driven modeling can be combined with
physics-informed machine learning algorithms to predict critical parameters
for specific flow phenomena, such as liquid loading, or to predict pump
problems.

Prescriptive modeling, which involves the use of machine learning algo-
rithms to make decisions and control processes, also holds great potential in
the digital oilfield. Deep reinforcement learning has shown promising results
in solving complex decision-making problems in physics and engineering,
but its application in the digital oil field remains to be fully explored. Future
research can focus on addressing the challenges posed by high-dimensional
states in reinforcement learning as well as the application of these algorithms
in controlling fluid flow.

In conclusion, the proposed framework of descriptive, predictive, and pre-
scriptive modeling represents a significant step forward in the application
of data analytics in the digital oilfield. By integrating these modeling ap-
proaches, it is possible to develop more accurate and efficient solutions for
monitoring and controlling oil and gas operations.

The continued exploration and development of new algorithms and tech-
niques has the potential to further optimize the efficiency and performance
of the oil and gas industry. The use of machine learning can lead to im-
provements in various areas, including production optimization, equipment
maintenance, and safety management.

Furthermore, the success of machine learning in the digital oilfield can serve
as a model for other industries seeking to incorporate data-driven decision
making. As the amount of data generated by industrial processes continues
to grow, the need for sophisticated machine-learning algorithms and models
will increase. By investing in this technology, subsurface energy production
industries can improve their efficiency, productivity, and profitability while
reducing their environmental impacts and ensuring the safety of their
workers.
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Abbreviations

CHP Casing head pressure
CNN Convolutional neural network
Current Variable speed drive output current
DDPG Deep deterministic policy gradient
EDHF Electrical downhole failures
ESP Electrical submersible pump
FLP Flow line pressure
FRQ Pump frequency
LSTM Long short term memory algorithm
MADDPG Multi-agent deep deterministic policy gradient
MAE Mean absolute error
MARL Multi-agent reinforcement learning
MDHF Motor downhole failures
MDP Morkov decision process
MSE Mean squared error
MOPSO Multi-Objective Particle Swarm Optimization
MT Motor temperature
NN neural network
NPV Net present value
OU Ornstein-Uhlenbeck
PCA Principle component analysis
PIP Pump intake pressure
PDP Pump discharge pressure
RL Reinforcement learning
RNN Recurrent neural network
ROC Receiver operating characteristic
SVM Support vector machine
SRP Sucker rod pump
VFM Virtual flow meter
WHP Well head pressure
WHT Well head temperature
WOR water-oil ratio
XGBoosting Extreme gradient boosting
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