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Abstract: The leakage of the tribological contact in axial piston pumps significantly impacts the
pump efficiency. Leakage observations can be used to optimize the pump design and monitor the
behavior of the tribological contact. However, due to assembly limitations, it is not always feasible
to observe the leakage of each tribological contact individually with a flow rate sensor. This work
developed a data-driven virtual flow rate sensor for monitoring the leakage of cradle bearings in
axial piston pumps under different operating conditions and recess pressures. The performance of
neural network, support vector regression, and Gaussian regression methods for developing the
virtual flow rate sensor was systematically investigated. In addition, the effect of the number of
datasets and label distribution on the performance of the virtual flow sensor were systematically
studied. The findings are verified using a data-driven virtual flow rate sensor to observe the leakage.
In addition, they show that the distribution of labels significantly impacts the model’s performance
when using support vector regression and Gaussian regression. Neural network is relatively robust
to the distribution of labeled data. Moreover, the datasets also influence model performance but are
not as significant as the label distribution.

Keywords: virtual sensor; leakage monitoring; data-driven method; machine learning; axial piston
pump

1. Introduction

Variable displacement axial piston pumps are widely used in hydraulic work ma-
chinery due to their compact structure, high power density, short fluid path, and easily
adjustable stroke volume [1–3]. This type of pump has multiple tribological contact pairs
where the gaps are filled with a fluid film. The lubricating film balances the forces on
the contact surfaces and directly affects the performance of the tribological contact pairs.
The lubricating film causes leakage losses and reduces the volumetric efficiency of the
axial piston pump. At the same time, the friction between the contact pairs is greatly
reduced, thus increasing the mechanical efficiency of the pump. Research on these tribo-
logical contact pairs in axial piston pumps has been actively conducted in recent years.
Xu et al. [4] investigated the distribution of the hydro-mechanical losses in an axial piston
pump over a wide range of operations. The results show that the volumetric losses are
mainly from the leakage at the tribological contact pairs. Haug and Geimer [5] proposed
a new approach to actively control the oil film pressure between the tribological contact
pairs to achieve higher efficiency. They verified the feasibility of this new concept at the
tribological contact pairs between the swashplate and cradle bearings, cylinder barrel
and distributor plate, and slipper pad and swashplate. Moreover, they indicated that the
method optimizes the swashplate swivel dynamics and reduces the losses at the tribological
contact pairs between the swashplate and cradle bearings. Geffroy et al. [6,7] performed a
geometric optimization of the tribological contact pair between the distributor plate and the

Energies 2022, 15, 6115. https://doi.org/10.3390/en15176115 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15176115
https://doi.org/10.3390/en15176115
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15176115
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15176115?type=check_update&version=2


Energies 2022, 15, 6115 2 of 18

cylinder barrel. The tilt angle and contact pressure between these two parts were reduced
with this optimization, which positively affected the efficiency of the optimization. Liu
and Geimer [8] further investigated the method proposed by Haug and Geimer [5] for
hydrostatic lubrication of tribological contact pairs. They proposed a new optimization
and control method for the lubrication at tribological contact pair swashplate and cradle
bearing. A 90% loss at this tribological contact pair could be reduced with this method
according to the simulation result. In their research, leakage value is the central part of the
optimization process’s objective function and influences the optimal result significantly.

From the literature above, it can be concluded that the leakage at the tribological
contact pairs is one of the performance indexes of the optimization methods and needs to
be measured. In addition, the control performance of active lubrication at the tribological
contact pairs can be observed and evaluated in real-time when the leakage is available.
However, observation of leakage at the tribological contact pairs of series products with
physical flow rate sensors is impractical due to the high cost and the considerable additional
requirement for assembly space. The leakage between tribological pairs has been widely
investigated using first principle modeling and can be used for internal leakage estimation.
Manring [9] provided a simplified mathematical model for leakage out of the piston cham-
ber using a classical orifice equation based on the Bernoulli equation. The discharge flow
was assumed as laminar, and the relation between pressure drop and flow was assumed
as linear. Ivantysynova et al. [10] introduced a novel method integrating the Reynolds
equation and energy equation to simulate gap flow considering elastohydrodynamic effects.
The study was utilized for the piston-cylinder contact pair. According to Li et al. [11], the
nonlinear mathematical model using the Reynolds equation and energy equation could
predict oil film thickness and pressure between the piston pair with high accuracy, which
ensures an accurate estimation of leakage flow. The influence of different parameters such
as swash plate angle, the displacement chamber pressure, and the temperature was also
considered. Bergada et al. [12] utilized a novel analytical approach to produce speedy
and accurate results about leakage on the barrel plate, leakage on the slipper-swash plate,
leakage between piston and barrel, and leakage at spherical piston–slipper bearing. Leak-
age can be estimated with explainable physical phenomena through simulations based
on the fundamental of fluid mechanics. However, assumptions or simplifications in the
simulation lead to model uncertainty, and the dilemma of model accuracy and model
computational cost cannot be solved. The data-driven method is an effective alternative
solution for leakage estimation that excludes first-principles modeling. Nevertheless, very
few studies used the data-driven method for the internal leakage estimation of axial piston
pumps. Özmen et al. [13] provided the research about the prediction of leakage at the
swashplate-slipper contact pair in an axial piston pump using deep neural networks and
provided a promising result with an R score of 0.9952 for the mean value.

In other application areas, the flow rate estimation with data-driven methods has been
well investigated previously, which is commonly called virtual flow sensor. Data-driven
virtual flow sensors have the advantages of cost-effectiveness and fewer operational and
maintenance expenses. Thus, they are ideal alternatives or augments to physical sensors. In
the last decade, data-driven virtual flow rate sensors have been well examined, especially for
applications in oil well production [14]. The increasing available field data, the develop-
ment of data-driven algorithms, and the increasing computational power of training and
application systems guarantee the feasibility of implementing data-driven flow sensors
in industrial applications. A recent study used a neural network with one hidden layer
to develop a virtual flow sensor for multi-phase flow rates [15]. In this study, field data
from oil and gas production wells were utilized. In terms of data preprocessing, min-max
normalization was implemented, and outlier data were processed using a Turkish boxplot
and Z-score. After training with a neural network containing optimized hyperparameters,
the virtual sensor model showed promising performance. The average absolute percentage
error during the test was only about 4%. In addition to these, several other studies have
been carried out to investigate the feed-forward neural network-based virtual sensor for
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flow rate [16–23]. In these studies different activation functions such as the sigmoid func-
tion, radial basic function, etc., as well as network structures were investigated. All of them
were able to provide excellent prediction performance in the system’s steady state. In addi-
tion to the simple feed-forward neural networks (NN), long short-term memory (LSTM)
algorithm [17,24,25] and neural networks combined with novel ensemble learning [26]
have also been investigated. LSTM outperforms feed-forward neural networks in system
transient operation. Moreover, it is robust to noise. The neural network combined with
novel ensemble learning showed a substantial improvement of about 4% in the average
estimation error of oil flow rate compared to standard ensemble methods such as bagging
and stacking. Apart from neural networks, support vector regression (SVR) [27,28] and
Gaussian regression (GR) [29] have also been investigated for the development of virtual
flow rate sensors. Results showed that SVR had a better performance than NN, and GR
had a significant advantage for a system with limited operational data.

The abovementioned studies proved a data-driven flow rate sensor’s promising perfor-
mance. In the first, they indicated the feasibility of a data-driven flow rate sensor. Secondly,
the investigation of model performance among different machine learning algorithms
and hyperparameters was well established. Furthermore, the optimization of regression
algorithms was also studied to improve the virtual flow rate sensor performance. However,
neither the influence of the dataset amount nor the label distribution was considered in the
previous research.

To fill the research gap, we developed a data-driven virtual flow rate sensor for
estimating leakage at the cradle bearing in an axial piston pump to reduce the cost of
using physical flow sensors and avoid the additional assembly space in the current study.
In addition, we systematically investigated the potential role of the data size and label
distribution on the performance of the virtual flow rate sensor. The results show that the
best virtual flow rate sensor model has auspicious performance and obtains R2 as 0.99 on
the test dataset. In addition, an in-depth study of the effect of label distribution on model
performance shows that NN is robust to label distribution. In contrast, the SVR and GP
model shows a vital requirement for the label distribution to achieve good performance.
Last but not least, all models provide significant performance despite the limited dataset.
The contributions of this work are summarized in the following points:

1. This study extends the application of data-driven flow sensors to a new research area
and optimizes the standard development process for data-driven flow sensors.

2. An additional data preprocessing step for developing data-driven flow sensors is
proposed to deal with the skewed distribution of labeled data. Two different data
transformation methods are considered for each of the three commonly-used su-
pervised learning algorithms to analyze the impact of labeled data distribution on
model accuracy.

3. The effect of data size is systematically investigated to design real-world data gen-
eration experiments effectively. In the current study, three different data sizes were
considered. Three commonly-used supervised learning algorithms for data-driven
flow sensor development are investigated for each dataset.

2. Materials and Methods

This research followed the standard pipeline of machine learning regression problems,
i.e., feature selection, input data preprocessing, model training, model validation, and
model testing. In addition to this, we generated datasets of different sizes and scaled the
label data with different methods to achieve this study’s research objectives. The details of
each step are introduced in the following subsections.

2.1. Experimental Data Generation

A variable displacement pump with axial piston rotary group, of swashplate design
and 45 cm3 displacement volume, was considered in the current study. The data are
generated from the simulation [8], where the leakage at the cradle bearing at different recess
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pressures and operating points was calculated. The simulation data can fully achieve the
scientific purpose of determining the best regression model and analyzing the impact of data
size and label distribution. Meanwhile, the expensive process of collecting experimental
data is avoided. Furthermore, we will collect experimental data purposefully on a test
bench and perform further validation in future work according to the results of this study.

2.1.1. Feature Selection

Before we dive into the leakage model at the cradle bearing, the structure of an axial
piston pump is present in Figure 1a. The pistons (1) move in a cylinder (2) and are supported
on the swashplate (5) with the help of sliding shoes (6). By driving the cylinder block,
which is firmly connected to the drive shaft (4), the pump’s operation of the piston executes
the necessary piston stroke and displaces fluid. Behind the distributor plate (3), the control
kidneys are arranged on the cylinder. The inlet (E) and the outlet (A) of the hydraulic fluid
are specified by the control kidneys [30].The displacement volume of axial piston pump
is changed by adjusting the swashplate angle α. Sliding shoes (6) transport the force FL
from the fluid in the cylinder to part (5), which is related to the pressure pinlet at pump inlet
and the pressure poulet at pump outlet, the displacement α and the pump rotation speed
φ̇. FL is especially high and needs to be compensated. As shown in Figure 1b, with the
hydrostatic lubrication, the pressure in the recess pocket is operated with the volume flow
Qvs at supply pressure pvs, so that the FL is compensated. Supply pressure pvs is from the
relative high pressure side of the pump itself. prec represents the pressure at the recess area
and QL stands for the leakage flow at the bearing into the pump house.

(a)

(b) (c)

Figure 1. Illustration of the leakage at cradle bearing in an Axial piston pump. (a) Structure of an
axial piston pump in swash plate design with distributor plate [30]. 1: piston, 2: cyliner, 3: distributor
plate, 4: axis, 5: swashplate, 6: sliding shoes, E: inlet, A: outlet, α: Swashplate displacement φ̇: rotation
velocity. (b) Pressure distribution at cradle bearing with hydrostatic lubrication. (c) A example of
cradle bearing leakage model at swashplate.

The features of the regression model in this study were chosen based on an under-
standing of the leakage model. The tribological contact between the swashplate and
cradle bearing is considered as a rectangular gap [30] and mathematically described as
Equation (1), where ∆p represents the pressure difference between the pumping house
and recess pressure, bi and li stand for the width and length of the gap, respectively.
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Furthermore, h represents the gap where the leakage flows, and µ describes the fluid’s
dynamic viscosity.

Q =
∆pbih3

12µli
(1)

In order to give a clearer illustration, the leakage model of the cradle bearing is shown
in Figure 1c, where the length of the cradle bearing is L, and the width is B, while the
length of the recess is l and the width is b. For the leakage calculation from edge (1) and (3),
bi = B, li = L−l

2 , while for the leakage calculation from edge (2) and (4), bi = L, li = B−b
2 .

The total leakage of the cradle bearing is the sum of the leakage of edges (1) to (4). This
equation shows that the leakage at the bearing is related to the pressure in the recess, the
bearing’s geometry, the fluid’s dynamic viscosity, and the clearance between the swashplate
and the bearing. Furthermore, at a steady state, the clearance is related to the pump’s
operating point and the pressure in the recess. This study’s focus is to estimate the cradle
bearing leakage at different pump operating points and recess pressures, so the temperature
is kept constant in the experiment. Therefore, unlike other studies on virtual flow rate
sensors [15,31], e.g., the impact of temperature was not considered in this study. In addition,
since only one product was investigated in this study, the impact of geometry was not
considered either. Therefore, pump operating points, including rotation speed, swashplate
position, pump inlet- and outlet pressure, and recess pressure on both pump inlet- and
outlet sides, were selected to construct a virtual flow rate sensor for measuring cradle
bearing leakage.

2.1.2. Data Generating Using Latin Hypercube Sampling

Latin Hypercube Sampling (LHS) is a K-dimensional extension of Stratified Sampling,
and Latin Square Sampling [32]. It is widely used to generate random high dimensional
points for statistical experimental design and is often a better alternative to Monte Carlo
sampling (MCS). MCS can also generate random points, but compared to MCS, LHS can
obtain data points with the same representativeness and precision by sampling fewer
points. For example, Iman [33] showed that the data variance of MCS with 1000 points is
the same as that of LHS with 10 points, which shows a cost saving of a factor of 100 when
using LHS instead of MCS.

The main idea of LHS is stratification [32,33], where data points are equally stratified
according to the number of desired points. In general, the Stratified Sampling divides the
cumulative distribution function of the random one dimensional variable X1 vertically
into N non-overlapping parts [0, 1/N), [1/N, 2/N), . . . , and [(N-1)/N,1]. For example,
in Figure 2a, five sampling points are required to be generated, then the cumulative
distribution function(CDF) is divided into five equal intervals [0, 1/5), [1/5, 2/5), . . . , and
[4/5, 1]. Afterward, one sample point will be randomly selected in each interval [33].
The Latin Square Sampling handles the two-dimensional variable X1 and X2 and is shown
in Figure 2b. Each variable is processed with the Stratified Sampling separately. Then,
the sampled value in the same stratification is combined into a pair, and one random
point will be selected. Following the same procedure, LHS deals with K-dimensional
variable X1, X2, ..., XK.

In the current study, six-dimensional inputs were considered in the experiment, in-
cluding pump outlet pressure, pump inlet pressure, pump speed, swashplate position, and
recess pressure at the pump’s inlet side and outlet side. As described in Table 1, we consider
pump outlet pressure between 10 bar and 315 bar, pump inlet pressure between 0.8 bar and
60 bar, pump speed between 1000 rpm and 3000 rpm, swashplate position between 0 % and
100 %, and recess pressure at the pump’s inlet side and outlet side varying between 0 % to
100 % and 0 % to 80 % of the pump outlet pressure. We used the maximin criterion from
MATLAB to generate samples of the variable in Table 1. The minimum distance between
the generated points was maximized during the iterations. After the defined iterations, a
Latin hypercube sample matrix is returned.
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Figure 2. A example of Stratified Sampling and Latin Square Sampling [34]. (a) Stratified Sampling.
(b) The Latin Square Sampling.

Table 1. Experiment of Design: the Range of searched Parameters.

Pressure at Pump
Outlet [bar]

Pressure at Pump
Inlet [bar] Pump Speed [rpm] Swashplate Postion

[%]

Recess Pressure at
the Inlet Side in
Percent of Outlet

Pressure [%]

Recess Pressure at
the Outlet Side in
Percent of Outlet

Pressure [%]

(10, 315) (0.8, 60) (1000, 3000) (0, 100) (0, 100) (0, 80)

For the research purpose, we generated datasets of three sizes through LHS with target
dataset sizes of 1780, 555, and 330. After obtaining the datasets, the datasets with recess
pressure less than 1 bar and pump outlet pressure less than inlet pressure were removed
based on physical constraints. Thus, we ended up with three datasets with 1609, 501, and
300 points. We will train all three datasets equally to compare the effect of the dataset size
on the model performance and select the best dataset size afterward.

2.2. Data Preprocessing

The preprocessing of model features significantly impacts the model’s performance
because different features are often in different ranges [35]. For each feature to contribute
equally to the model, the ranges of these features should be normalized. If there is an
enormous difference between features, the features with the lower value will contribute
little to the model. Furthermore, the computational efficiency of the model training is
also improved after the features are normalized. In addition, the distribution of label
values in this study is obviously skewed. In order to find out the effect of data label
distribution on the model’s performance, a comparison between labels with transformation
and without transformation (NT) was performed. Two commonly-used scaling methods
were considered, i.e., log transform (LT), and square root transform (SRT).

2.2.1. Fearture Normalization

The features used for model training are normalized using Z-score [36] with Equation (2),

z =
x− u

s
(2)

where x is the original training data point, u is the mean of the training data, and s is the
standard deviation of the training data. The mean and standard deviation are stored in the
scalar function and used later for new inputs into the regression model.
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2.2.2. Label Scaling

All label data were handled with SRT and LT for the training in different experiments.
Figure 3 with nine subplots shows the relative histogram of label data about cradle-bearing
leakage. For the subplots in Figure 3a–i, the index 1 and 2 represent the pump outlet side
and the inlet side, respectively. The subplots in each row show the results of the different
label transformations, and the column represents different data sizes. It is noticed that the
cradle-bearing leakage performs differently at the inlet and outlet pressure sides. The label
data without transformation for all data sizes for both sides lack symmetry. However, the
skewness without transformation for the pump inlet side is more pronounced. Moreover,
while the SRT in subplots with index 1 transforms the data to the best symmetry, the LT in
subplots with index 2 shows the best transformation result. As a result, except utilizing
SRT and LT on the label data for both pressure sides, the SRT on the data for the outlet
pressure side and the LT on the inlet pressure side were carried out additionally.

Figure 3. Relative histogram of label data with different data sizes and label transformation method.
(a1) Model: 300 data points about leakage at pump outlet side without transformation. (b1) Model:
501 data points about leakage at pump outlet side without transformation. (c1) Model: 1609 data
points about leakage at pump outlet side without transformation. (d1) Model: 300 data points about
leakage at pump outlet side using SRT. (e1) Model: 501 data points about leakage at pump outlet
sideusing SRT. (f1) Model: 1609 data points about leakage at pump outlet side using SRT. (g1) Model:
300 data points about leakage at pump outlet side using LT. (h1) Model: 501 data points about leakage
at pump outlet sideusing LT. (i1) Model: 1609 data points about leakage at pump outlet side using LT.
(a2) Model: 300 data points about leakage at pump inlet side without transformation. (b2) Model: 501
data points about leakage at pump inlet side without transformation. (c2) Model: 1609 data points
about leakage at pump inlet side without transformation. (d2) Model: 300 data points about leakage
at pump inlet side using SRT. (e2) Model: 501 data points about leakage at pump inlet sideusing SRT.
(f2) Model: 1609 data points about leakage at pump inlet side using SRT. (g2) Model: 300 data points
about leakage at pump inlet side using LT. (h2) Model: 501 data points about leakage at pump inlet
side using LT. (i2) Model: 1609 data points about leakage at pump inlet side using LT.

2.3. Regression Model Design

In this study, regression models for data-driven flow sensors are developed using the
following methods: neural network (NN), support vector regression (SVR), and Gaussian
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regression (GR). For each training, the best hyperparameters were obtained based on the
grid search performed by the R2 score for the final evaluation. The machine learning
algorithms in the sklearn library [37] were used in the program.

2.3.1. Neural Network

Neural Network has been actively used in research projects in the last decades, from
supervised and unsupervised learning to reinforcement learning. Various neural networks
have been developed and well studied, such as recurrent neural networks, convolutional
neural networks, Long short-term memory, and feed-forward neural networks. As a three-
layer neural network can arbitrarily approximate any continuous and discrete multi-
variate functions [38,39], it was considered in the current research. A four-layer Feed
Forward Neural Network was also utilized to build a more complex function for the
multi-output regression.

In Figure 4, a fully connected three-layer neural network is shown on the left. The
leftmost layer is the input layer, which receives the feature signals. The value from the
input layer is passed forward, multiplied with the weights of the hidden layer, and then
transformed with a nonlinear activation function before being passed to the output layer.
The activation function of the hidden layer in this study was chosen as the rectified linear
activation function (ReLU) function, described by Equation (3). ReLU has become the
default activation function for many different neural networks since models using it are
easier to train and often achieve better performance.

f (x) =

{
0 x<0
x x=>0

(3)

Figure 4. A three layer feed forward neural network with description of artificial neurons.

The output layer deals with the hidden layer signal and weights but follows no
activation function. The detailed illustration of artificial neurons is shown on the right
side in Figure 4. In addition, the mathematical description of the neuron is shown as
Equation (4), where u1 represents the neuron output, xi, i ∈ (1, 2, 3) is the neuron input,
and wi, i ∈ (1, 2, 3) is the weight.

u1 = f (x1w1 + x2w2 + x3w3) (4)

During the training process, different solvers for weight optimization, learning rate
rnn, batch size nbat, regularization term α, and the size of hidden layer nhidden are studied.
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2.3.2. Support Vector Regression

Support Vector learning is one of the standard machine learning methods [40–42]. The
basic idea of SVR is to find a function f (x), which estimates the target value according to
the feature x. The SVR model guarantees an estimation error smaller than ε, and ignores
the error if it is smaller than ε. At the same time the function f (x) should be as fast as
possible [43]. f (x) is denoted as Equation (5)

f (x) = 〈w, x〉+ b with w ∈ X and b ∈ R (5)

where {(x1, y1), ..., (xl , yl)} ⊂ X represents the space of the input features. The goal of the
optimization is shown as Equation (6) [43]

minimize
1
2
||w||2 + C

l

∑
i=1

(ξi + ξ∗i )

with the constrains


yi − f (x) <= ε + ξi

f (x)− yi <= ε + ξ∗i
ξi, ξ∗i >= 0

(6)

where the slack variables ξ are introduced to tolerate the correct margin boundary and
make the optimization problem feasible, and the constant C > 0 changes the trade-off
between the flatness of f (x) and the tolerance ε. The soft margin loss setting for a linear
SVM and the function of ξ are visualized in Figure 5.

Figure 5. The soft margin loss setting for a linear SVM. [44]

In the current research, the SVR algorithm with kernel function is implemented. The
dataset is transferred into another space with the kernel function, enabling a linear learning
algorithm to learn a nonlinear function. The present training process with SVR includes
studying kernel function fk, regularization parameter C, kernel coefficient γ, the width
of error tube ε, and the degree of the polynomial kernel function deg. The details of the
algorithms are well introduced in [42].

2.3.3. Gaussian Regression

To solve the Gaussian regression problem the Gaussian processes [45] are implemented.
As per Equation (7), the available dataset (X, y) = {(xi, yi)|i = 1, ..., N} and the new data
point (X∗, y∗) are assumed to fit a Gaussian distribution with mean of 0.[

y
y∗

]
∼ N

(
0,
[

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
(7)

where K is the suitable covariance function, also called the kernel function. According to
the conditional distribution property of the multidimensional Gaussian distribution,

y∗|y ∼ N (K(X∗, X)K(X, X)−1y, K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗)) (8)
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According the properties of the Gaussian distribution p(y∗|y) is maximum when
y∗ = K(X∗, X)K(X, X)−1y. Thus, the regression problem is solved by finding the suitable
kernel function and the mean function. In the current research, to solve the Gaussian
regression problem, different kernel functions, the value added to the diagonal of the kernel
matrix αgp, and the number of restarts of the optimizer for finding the kernel’s parameters
n are studied.

2.4. Performance Indicator

In this study, the coefficient of determination R2 [46] described by Equation (9) is used
as a performance metric, which indicates the best estimator during the grid search for
hyperparameters and shows the final testing and evaluation results of the model.

R2 = 1− ∑(yi − ŷi)
2

∑(yi − ȳi)2 (9)

The value of R2 varies from negative values to 1. The best value for R2 is 1, which
means the performance is better as the value gets closer to 1. If the value is negative, the
performance of the model is very poor. In addition, 0 means that the prediction of the labels
has no relationship with the input feature values.

2.5. Experiment Setup

Table 2 lists the 12 experimental setups. Experiments 1 to 4 applied NN and performed
different transformation strategies for the label data: no transformation for both outputs,
SRT for both outputs, LT for both outputs, and SRT at the pump outlet side and LT at the
pump inlet side. Experiments 5 to 8 and 9 to 12 were trained for SVT and GP, respectively.
The transformation for the label data was the same as for experiments 1 to 4. In addition,
to select the best hyperparameters, the grid search method was utilized during each
experiment. The search range of the hyperparameters is described in the rightmost column.
Since this experimental setup is valid for three different datasets, there are 36 experiments
in the current study.

Table 2. Experiments of regression model training process.

Experiment Index Label Scaling Regression Model Searched Hyperparameter and Range

1 NT + NT NN

solver: (lbfgs, adam)
nbat: (8, 16, 32, 64)
α: (0.1, 0.01, 0.001, 0.0001)
rnn: (0.001, 0.01, 0.05, 0.1)
nhidden: ((32, 32), (32, 16), (64, 32), 24, 35, 64)

2 SRT + SRT NN

solver: (lbfgs, adam)
nbat: (8, 16, 32, 64)
α: (0.1, 0.01, 0.001, 0.0001)
rnn: (0.001, 0.01, 0.05, 0.1)
nhidden: ((32, 32), (32, 16), (64, 32), 24, 35, 64)

3 LT + LT NN

solver: (lbfgs, adam)
nbat: (8, 16, 32, 64)
α: (0.1, 0.01, 0.001, 0.0001)
rnn: (0.001, 0.01, 0.05, 0.1)
nhidden: ((32, 32), (32, 16), (64, 32), 24, 35, 64)

4 SRT + LT NN

solver: (lbfgs, adam)
nbat: (8, 16, 32, 64)
α: (0.1, 0.01, 0.001, 0.0001)
rnn: (0.001, 0.01, 0.05, 0.1)
nhidden: ((32, 32), (32, 16), (64, 32), 24, 35, 64)

5 NT + NT SVR

fk : (rbf, linear, poly, sigmoid)
C: (16, 14, 12, 10, 5, 1, 0.5, 0.1)
γ: (scale, auto)
ε: (0.00001, 0.0001 0.001, 0.01, 0.1, 1)
deg: (2, 3, 5)
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Table 2. Cont.

Experiment Index Label Scaling Regression Model Searched Hyperparameter and Range

6 SRT + SRT SVR

fk : (rbf, linear, poly, sigmoid)
C: (16, 14, 12, 10, 5, 1, 0.5, 0.1)
γ: (scale, auto)
ε: (0.00001, 0.0001, 0.001, 0.01, 0.1, 1)
deg: (2, 3, 5)

7 LT + LT SVR

fk : fk : (rbf, linear, poly, sigmoid)
C: (16, 14, 12, 10, 5, 1, 0.5, 0.1)
γ: (scale, auto)
ε: (0.00001, 0.0001, 0.001, 0.01, 0.1, 1)
deg: (2, 3, 5)

8 SRT + LT SVR

fk : (rbf, linear, poly, sigmoid)
C: (16, 14, 12, 10, 5, 1, 0.5, 0.1)
γ: (scale, auto)
ε: (0.00001, 0.0001 0.001, 0.01, 0.1, 1)
deg: (2, 3, 5)

9 NT + NT GR

fk : (rbf, 0.1rfb + constant)
αgp: (1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001,
0.00001, 1 × 10−7)
n: 5, 8, 10, 12, 15, 18, 20)

10 SRT + SRT GR

fk : (rbf, 0.1rfb + constant)
αgp: (1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001,
0.00001, 1 × 10−7)
n: 5, 8, 10, 12, 15, 18, 20

11 LT + LT GR

fk : (rbf, 0.1rfb + constant)
αgp: (1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001,
0.00001, 1 × 10−7)
n: 5, 8, 10, 12, 15, 18, 20

12 SRT + LT GR

fk : (rbf, 0.1rfb + constant)
αgp: (1, 0.5, 0.1, 0.05, 0.01, 0.001, 0.0001, 0.00001,
1 × 10−7)
n: 5, 8, 10, 12, 15, 18, 20)

3. Results

In Table 3, the results of 36 experiments using different data sizes, label scaling strate-
gies, and regression algorithms are presented. The experimental results contain the training
process R2 score and the R2 scores of the test data. Since the model contains two output
signals, R2 represents the average of the R2 scores of the two outputs. The training score in
this result refers to the average scores on the validation dataset during the 10-fold cross-
validation. The test score represents the final evaluation of the test dataset after training.
Moreover, each set of experiment results is the best outcome over the hyperparameter
optimization process.

Table 3 shows that NN has the highest test R2 scores of 0.97, 0.95, and 0.99 for each
dataset, and all scores are above 0.88 for all datasets and labeling strategies. In addition,
NN delivers nearly perfect model performance in the maximal dataset, scoring above 0.98
for all label scaling strategies. In contrast, both SVR and GP exhibit high sensitivity to label
scaling methods. Their scores drift as high as 0.4 on the maximal dataset. The LT + LT or
SRT + LT transformations strongly impact the model performance, making the model the
worst performer in each dataset. For example, the GP model for the maximal dataset drops
from 0.95 to 0.55 after implementing the LT + LT label scaling method, and SVR drops from
0.90 to 0.54 after implementing the SRT + LT label scaling method. Moreover, the score of
the experiment with label scaling decreases compared to the score without label scaling.
Furthermore, although these drops were present in both training and test scores, the drop
in test scores was more pronounced than in training scores.

To visualize the impact of different factors on model performance with the information
provided by Table 3, Figure 6 is illustrated. The location of the dots indicates the utilized
regression model and the method of label data processing, where the x-axis provides the
method of label processing, and the y-axis provides information on the regression model.
The color of the dots indicates the level of the test R2 score, with closer to purple indicating a
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higher score and closer to yellow indicating a lower score. The three subplots in Figure 6a–c
show the experimental results for data sizes 300, 501 and 1609. It can be seen from the
plots that NN has the best model performance because dark circles in all datasets and with
different label scaling methods represent the results consistently. In contrast, SVR and GR
show relatively lighter colors when applying LT + LT or SRT + LT label scaling.

Table 3. Model Performance.

Experiment
Index Data Points Label Scaling Regression

Model
Training R2

Score Test R2 Score

1 300 NT + NT NN 0.95 0.97
2 300 SRT + SRT NN 0.94 0.96
3 300 LT + LT NN 0.94 0.88
4 300 SRT + LT NN 0.95 0.91
5 300 NT + NT SVR 0.87 0.94
6 300 SRT + SRT SVR 0.87 0.88
7 300 LT + LT SVR 0.85 0.63
8 300 SRT + LT SVR 0.89 0.77
9 300 NT + NT GP 0.86 0.91
10 300 SRT + SRT GP 0.86 0.88
11 300 LT + LT GR 0.84 0.68
12 300 SRT + LT GP 0.85 0.65
13 501 NT + NT NN 0.96 0.95
14 501 SRT + SRT NN 0.96 0.95
15 501 LT + LT NN 0.96 0.93
16 501 SRT + LT NN 0.97 0.94
17 501 NT + NT SVR 0.90 0.90
18 501 SRT + SRT SVR 0.89 0.89
19 501 LT + LT SVR 0.87 0.81
20 501 SRT + LT SVR 0.90 0.83
21 501 NT + NT GP 0.86 0.88
22 501 SRT + SRT GP 0.87 0.88
23 501 LT + LT GR 0.87 0.41
24 501 SRT + LT GP 0.89 0.65
25 1609 NT + NT NN 0.99 0.99
26 1609 SRT + SRT NN 0.98 0.98
27 1609 LT + LT NN 0.99 0.99
28 1609 SRT + LT NN 0.98 0.99
29 1609 NT + NT SVR 0.94 0.95
30 1609 SRT + SRT SVR 0.92 0.90
31 1609 LT + LT SVR 0.90 0.61
32 1609 SRT + LT SVR 0.93 0.54
33 1609 NT + NT GP 0.93 0.95
34 1609 SRT + SRT GP 0.91 0.92
35 1609 LT + LT GR 0.89 0.54
36 1609 SRT + LT GP 0.89 0.55

Figure 6. Visualization of R2 to Model and label. (a) Model: 300 data points. (b) Model: 501 data
points. (c) Model: 1609 data points.

In addition, we demonstrate the performance of the NN, SVR, and GP on the test
dataset in Figures 7–9, respectively. There are 24 subplots in each figure, and the x-axis of
each subplot represents the predicted values of the test data, while the y-axis represents the
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labeled values of the test data. The solid blue line is the function y = x, which indicates the
ideal situation where the predicted values match the labeled values, while the “*” indicates
the test results. For the 24 subplots a–l, the indexes 1 and 2 represent the pump outlet side
and the inlet side, respectively. In addition, the plots in each row show the results of the
different labeling of the dataset. Moreover, the column indicates the different data sizes
utilized for each subplot.

Figure 7. Neural Network Test Results Visualization. (a1,2) Model: 300 data points without trans-
formation on both sides of the pump. (b1,2) Model: 501 data points without transformation on both
sides of the pump. (c1,2) Model: 1609 data points without transformation on both sides of the pump.
(d1,2) Model: 300 data points using SRT on both sides of the pump. (e1,2) Model: 501 data point
susing SRT on both sides of the pump. (f1,2) Model: 1609 data points using SRT on both sides of the
pump. (g1,2) Model: 300 data points using LT on both sides of the pump. (h1,2) Model: 501 data
point susing LT on both sides of the pump. (i1,2) Model: 1609 data points using LT on both sides of
the pump. (j1,2) Model: 300 data points using SRT on data of pump’s outlet side and LT on data of
pump’s inlet side. (k1,2) Model: 501 data points using SRT on data of pump’s outlet side and LT on
data of pump’s inlet side. (l1,2) Model: 1609 data points using SRT on data of pump’s outlet side and
LT on data of pump’s inlet side.



Energies 2022, 15, 6115 14 of 18

Figure 8. Support Vector Regression Test Results Visualization. (a1,2) Model: 300 data points without
transformation on both sides of the pump. (b1,2) Model: 501 data points without transformation on
both sides of the pump. (c1,2) Model: 1609 data points without transformation on both sides of the
pump. (d1,2) Model: 300 data points using SRT on both sides of the pump. (e1,2) Model: 501 data
point susing SRT on both sides of the pump. (f1,2) Model: 1609 data points using SRT on both sides
of the pump. (g1,2) Model: 300 data points using LT on both sides of the pump. (h1,2) Model: 501
data point susing LT on both sides of the pump. (i1,2) Model: 1609 data points using LT on both sides
of the pump. (j1,2) Model: 300 data points using SRT on data of pump’s outlet side and LT on data of
pump’s inlet side. (k1,2) Model: 501 data points using SRT on data of pump’s outlet side and LT on
data of pump’s inlet side. (l1,2) Model: 1609 data points using SRT on data of pump’s outlet side and
LT on data of pump’s inlet side.

From the three graphs in a row, we can better observe the effect of data size on model
performance. The point * is closer to the ideal blue line with more data. For 1609 data
points, the predicted and labeled values of NN and SVR overlap very well. Furthermore,
we can observe that the method of label scaling affects the model’s performance strongly.
For the NN and SVR, the impact is more evident at the pump inlet side, while for the GP it
is well noticed in all cases. In addition, the model performs better for the pump outlet side,
where the prediction points better agree with the ideal matter. In contrast, the prediction
points show more significant variance and error for the pump inlet side.
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Figure 9. Gaussian Process Regression Test Results Visualization. (a1,2) Model: 300 data points with-
out transformation on both sides of the pump. (b1,2) Model: 501 data points without transformation
on both sides of the pump. (c1,2) Model: 1609 data points without transformation on both sides of the
pump. (d1,2) Model: 300 data points using SRT on both sides of the pump. (e1,2) Model: 501 data
point susing SRT on both sides of the pump. (f1,2) Model: 1609 data points using SRT on both sides
of the pump. (g1,2) Model: 300 data points using LT on both sides of the pump. (h1,2) Model: 501
data point susing LT on both sides of the pump. (i1,2) Model: 1609 data points using LT on both sides
of the pump. (j1,2) Model: 300 data points using SRT on data of pump’s outlet side and LT on data of
pump’s inlet side. (k1,2) Model: 501 data points using SRT on data of pump’s outlet side and LT on
data of pump’s inlet side. (l1,2) Model: 1609 data points using SRT on data of pump’s outlet side and
LT on data of pump’s inlet side.

4. Discussion

On the one hand, the current study aims to broaden the application area of data-driven
flow sensors and, on the other hand, to complete the research gap on the influence of label
distribution and data volume on the development of data-driven flow sensors. For the
research purposes above, the following three research questions were answered:

1. Does the data-driven flow rate sensor model in the current research achieve the
equivalent or better performance than the earlier study about the data-driven flow
rate sensor?

2. How does the label distribution affect the performance of the data-driven flow rate
sensor?

3. How does the data amount influence the performance of the data-driven flow
rate sensor?

Three different regression algorithms were examined with hyperparameter optimiza-
tion. The results show that the multi-output data-driven flow rate sensor performs sat-
isfactorily in observing cradle-bearing leakage in axial piston pumps. The best model
trained with the NN algorithm achieves an R2 of 0.99, which means that the predicted
values match the labeled values very well and beat the performance shown in the earlier
studies [15,47]. This result proves the feasibility of a data-driven flow rate sensor in a new
application area. In addition, the study results show that the distribution of labels has a
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strong influence on the model performance when using the GP and SVR algorithms. In
contrast, the performance of the NN algorithm is independent of the label distribution. The
study also shows a correlation between data volume and model performance, with data size
having the most significant impact on model performance for the SVR and NN algorithms.

By answering the research questions, this study provides the following academic
contributions as well as implications:

1. It extends the application area of data-driven flow sensors and is an optimized guide-
line for developing virtual sensors in methodology.

2. The impact of data size on the accuracy of developing data-driven flow sensors
is systematically investigated. Three different data groups guarantee the model’s
accuracy when labeled data are not transformed. Therefore small data can meet the
model’s needs when predicting flow rate with a data-driven approach. The application
areas of data-driven flow sensors are diverse, and AI models’ performance and
data requirements vary significantly from application to application. Consequently,
this research cannot provide general guidance for different applications, but the
implications of the results of this study play a significant role in guiding us on how to
design real-world data generation experiments effectively. In industrial applications,
where lack of data volume or expensive data acquisition process is common, it is
essential to analyze the problem with simulated data for scenarios before real-world
data collection.

3. We propose an additional data preprocessing step for developing data-driven flow
sensors to handle the skewed distribution of labeled data. The results suggest that,
especially when using SVR or GP as a training model, the distribution of the la-
beled data should be analyzed and processed before training the model to obtain
better performance.

The methodology and findings gained from the current research are meaningful.
However, the direct transaction of the virtual sensor to the actual product may be limited
by the data inaccuracy of the simulation. Further research is needed to verify the accuracy
of the predictions using experimental data from the test rig. Since the data generation
process is very time-consuming and expensive, we will refer to the results with simulated
data to effectively collect data for the investigated axial piston pump.
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