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A B S T R A C T   

Oil and gas metering is primarily used as the basis for evaluating the economic viability of oil wells. Owing to the 
economic implications of oil and gas metering, the subject of oil and gas flow rate measurement has witnessed a 
sustained interest by the oil and gas community and the academia. To the best of the authors’ knowledge, despite 
the growing number of published articles on this subject, there is yet no comprehensive critical review on it. The 
objective of this paper is to provide a broad overview of models and modelling techniques applied to the esti-
mation of oil and gas flow rate through chokes while also critically evaluating them. For the sake of simplicity 
and ease of reference, the outcomes of the review are presented in tables in an integrated and concise manner. 
The articles for this review were extracted from many subject areas. For the theoretical pieces related to oil and 
gas flow rate in general, the authors relied heavily upon several key drilling fluid texts. For operational and field 
studies, the authors relied on conference proceedings from the society of petroleum engineers. These sources 
were supplemented with articles in peer reviewed journals in order to contextualize the subject in terms of 
current practices. This review is interspersed with critiques of the models while the areas requiring improvement 
were also outlined. Findings from the bibliometric analysis indicate that there is no universal model for all flow 
situations despite the huge efforts in this direction. Furthermore, a broad survey of literature on recent flow 
models reveals that researchers are gravitating towards the field of artificial intelligence due to the tremendous 
promises it offers. This review constitutes the first critical compilation on a broad range of models applied to 
predicting oil and gas flow rates through chokes.   

1. Introduction 

1.1. Background of the study 

Oil and gas metering is an essential factor used as a benchmark to 
assess the economic viability of oil wells. In addition, knowledge of the 
flow rates of gas, oil and water from different wells gives operators the 
basis to make critical decisions that border on optimizing production, 
flowrates as well as future forecasts of the potential performance of the 
field (Bikmukhametov and Jäschke, 2020a). However, like all facets of 
oil and gas exploration and production, measuring accurately the flow of 
these fluids remains a disturbing challenge both to the production en-
gineer and to those in whose hands the purse strings lie. This is because 
billions of dollars could be lost if flows are not properly measured. For 
instance, statistics from the Nigeria Extractive Industries Transparency 

Initiative (NEITI) show that in 2015, Nigeria had about 9,170,444 
million barrels of oil not adequately accounted for due to the oil and gas 
metering challenge (NEITI, 2015). This challenge is mainly aggravated 
by the complex nature of the flow of gas, oil and water from the wellbore 
to the surface. 

Due to the recurring nature of this challenge, industry players have 
proposed unique ways to either eliminate or reduce to the barest mini-
mum the errors associated with oil and gas metering. One of these 
propositions is the development and use of a Metering Atlas (Scheers 
et al., 2009). Other examples are the Norwegian Handbook for Multi-
phase flow metering published by the Norwegian Society for Oil and Gas 
Measurement (NFOGM) and the manual for petroleum measurement 
standards by the American Petroleum Institute. Oil producing nations on 
the other hand have come up with unique standards to combat this 
challenge. This led to the launching of the Extractive Industries 
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Transparency Initiative (EITI) in 2003 (Lujala et al.,2017). 
Despite these efforts by both the industry and the oil producing na-

tions, the challenge seems to be unabated. Suffice it to say that oil and 
gas measurement typically occurs at two points during oil and gas 
production. These points are located at the wellhead and at the custody 
transfer points. While it is reported that the measurement at the custody 
transfer point is somewhat seamless usually coming off with a low de-
gree of uncertainty (Scheers et al., 2009), however, a higher degree of 
uncertainty comes with the measurement done at the wellhead. A 
typical oil and gas production system highlighting the flow of oil and gas 
from the reservoir through the wellhead, the choke and then to the test 
separator is shown in Fig. 1. 

Given the complexity in measuring oil and gas flow rates, a number 
of approaches have been tried and tested by researchers. One of these 
approaches is the use of predictive models. 

During the last seven decades, the oil and gas literature has been 
diligently paved with series of publications in key journals that project 
virtually all known means of measuring oil and gas flow rates. In 
particular, most of the extant literature on the subject of oil and gas 
metering has been devoted to the development of predictive models. As 
a result, an appreciable number of mathematical models exist in the oil 
metering literature. These models have taken various forms ranging 
from the empirical, theoretical to artificial intelligence based models as 
well ensemble models. Till date, building a single universal model for oil 
and gas flow rate prediction has remained elusive because of the high 
non-linearity effects that emanate from the variation of flow patterns, 
liquid viscosity and density. However, to the best of the authors’ 
knowledge, despite the availability of a huge number of models for 
estimating the flowrate of oil and gas, no critique of these models has 
been done bearing in mind several pertinent acceptable standards. This 
is gap in literature this work seeks to cover. 

1.2. Objective of the study 

The specific objective of this work is to curate extant models for 
predicting fluid flowrates through chokes with the intent of critiquing 
them by assessing their predictive performances as well as their 
empirical or mechanistic methodologies while bearing in mind their 
potential field applications. This is what makes this study novel and 
serves as its major contribution to the existing body of knowledge on the 
subject. Finally, potential issues which might be responsible for lack of 
field applicability of extant prediction models would be isolated and 
recommendations for future research would be presented. 

1.3. Existing approaches to fluid flow rate measurement 

There are three distinct and fundamental approaches to multiphase- 
flow measurements. The first includes fluid separation (using 

separators), the second uses physical metering devices (use of multi-
phase flow meters) and the third involves the use of predictive models 
(virtual flow meters). Production well testing through a test separator is 
by far the most common practice to measure flow rates (Zangl et al., 
2014). 

Regrettably, even though flow rates of oil, gas and water are the most 
important parameters of any hydrocarbon exploitation project, only a 
minor number of wells are permanently connected to a multiphase flow 
meter (Zangl et al., 2014). However, no single multiphase- 
flow-measurement system design or technology resolves all 
multiphase-flow-measurement issues satisfactorily. Each approach has 
benefits as well as shortcomings. These benefits and shortcomings have 
been unpacked and curated in the works by Marshall and Thomas 
(2015) and Bikmukhametov and Jäschke (2020a), however a few are 
outlined in Table 1. 

2. Theory 

2.1. Establishing the review sequence 

Besides getting knowledge of recent advances, a historical perspec-
tive is necessary for important/worthwhile advances in the oil and gas 
industry (Grigg, 2015). Hence, an in-depth literature review on oil and 
gas flow rates is necessary. This literature search conducted is predicated 
on the premise that without a thorough empirically based and theoret-
ical knowledge, one might end up only addressing the symptoms while 
ignoring the real problems. Hence, this review would take a wholistic 
approach of isolating historical research efforts in the area of fluid flow 
rate modelling and extracting the major details of each work with a view 
to highlighting its main findings and critiquing the models. 

Thus, to begin the inquiry, an examination of the existing review 
works on oil and gas flow rate modelling would take first place. The 
existing models for fluid flow rate prediction would follow thereafter 
while a summary of data range used by researchers for fluid flow rate 
modelling comes next. The major findings by the researchers on fluid 
flow rate modelling and a critique of these models would follow there-
after while the review finding climaxes the review. Following this 
sequence would make the work better understood by readers. 

2.1.1. Highlights of previous review articles on fluid flow rate modelling 
through chokes 

This section highlights previous review studies on choke flow rate 
modelling. Three major reviews are available in literature. The focus of 
each review and the major findings of each review work are presented in 
Table 2. 

It is clear from the above, that though the reviews were compre-
hensive, they were focused in one direction i.e. mostly on soft computing 
techniques whereas, techniques such as empirical, theoretical and 
ensemble modelling techniques abound. A review of studies only from 
one area of the subject would result in a conclusion that is applicable 
only to that area in question. On the contrary, a robust review such as 
the one discussed in this paper which assesses a wide range of modelling 
methods would provide a new and useful platform where the model user 
can make informed choices on which method offers the most 
advantages. 

Furthermore, the review this paper presents is a clear departure from 
the much more common traditional “review papers” where the reviewer 
identifies studies in a particular area, summarizes their findings, and 
reports a conclusion in narrative form. While useful, such reviews are 
mainly subjective. This work is not meant to replace the already existing 
valuable review articles on this subject such as the ones in Table 2, but to 
provide a complementary perspective with particular focus on critiques 
of the extant models with the intent to deepen knowledge on the subject; 
this is what makes this review different from other existing ones in the 
literature. Fig. 1. Schematic of an oil production system and its components. 

Source: Mahmud and Abdullah (2017). 
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3. Models for predicting oil and gas flow rate through chokes 

The real essence of modelling choke performance is to give petro-
leum engineers the latitude to optimise the field operating conditions 
and predict the oil and gas flow rates that can be produced by a given 
well (Alimonti et al., 2010). Over the past seven decades, an avalanche 
of models has been developed for flow rate estimation through choke 
valves. The following are the categories of models for predicting oil and 
gas flow rate through chokes. 

3.1. Theoretical models 

Theoretical models are essentially derived from mass, momentum, 
and energy balances and are used in the oil and gas industry because 
they can estimate critical and subcritical flow conditions simultaneously 
under varying flow conditions (Zhibin et al., 2011). In the early 1980s, 
numerous flow measurement tools were designed and tested in oil and 

gas wells (Liu et al., 2008), but they were costly to implement on a 
field-wide basis (Benlizidia, 2009). Therefore, theoretical and analytical 
models were the predominant methods used then to predict flow rate 
through chokes. Due to the slippage effect that occurs between the gas 
and liquid phases as a result of density difference (Shao et al., 2018), slip 
models were developed as part of theoretical models. 

A slip model is essentially a correlation used to estimate the relative 
velocity between two fluid phases (e.g. gas phase and oil phase). 
Table 3a shows the slip models applied to theoretical models for oil and 
gas flow rate prediction. 

According to Zhou et al. (2018), considerations of slip between the 
gas and liquid phases at the choke-throat condition appear unimportant 
for improving a model’s performance. This outcome is a direct conse-
quence of the dominance of annular or mist flow in most field settings, 
wherein the phase slippage appears absent. They cautioned that phase 
slippage should be used while working with laboratory data involving 
lower flow rates. 

Table 1 
Challenges of oil and gas flow rate measurement techniques.  

Flow rate measurement technique Pitfalls of measurement technique 

Use of test separators Cost: Increased capital cost on field development as a result of a separate flowline and a separator needed to accomplish the test (Falcone 
et al., 2001) as well as a test line to test separator in satellite fields (Denney, 1998). 
Space requirements: The separators and the metering equipment require additional space because of their large footprint and the extra load 
they impose especially on offshore platforms (Falcone et al., 2009; Mwalyepelo, 2015). 
Errors: When the test is done using multiphase flow meters, they need to be calibrated using test separator data which often have their 
inherent uncertainties which lead to errors. The difference in operating conditions of test separators and flow conditions can subsequently 
add to the errors 
Speed of measurement: No real time measurement is possible and the process is painfully slow because it takes time for the gas, oil and water 
to divide in the separator (Corneliussen et al., 2005; Mwalyepelo, 2015; Liu, 2016). Only one well can be tested at a time leading to sparse 
measurements over the lifetime of a well (Zangl et al., 2014). Since there are no real time measurements, it cannot be used in a feedback 
system to forestall problems such as slugging or an overdose of chemical injection. 

Use of physical multiphase flow meters 
(MPFM) 

Cost: Quite expensive in installation and maintenance due to the fact that it has moving parts (Falcone et al., 2001; Patel et al., 2014;  
Hasanvand and Berneti, 2015). 
Durability: MPFMs may degrade owing to sand erosion or blockage (Marshall and Thomas, 2015) and may lead to years of inaccurate flow 
rate measurement if unchecked (Mokhtari and Waltrich, 2016). They also fail to measure flow rates accurately at water cut range of 40–60% 
or above 90% (Meribout et al., 2010) 
Health & Safety: Some MPFMs have radioactive sources as detectors which may affect workers (Hasanvand and Berneti, 2015; Roberts and 
Allen, 1993) 

Virtual flow meters (VFM) Data requirements: Lack of sufficient and relevant data due to (i) failure of data measuring devices such as bottom hole pressure (BHP) 
gauges (ii) non-installation of BHP gauges in some wells (Al-Qutami et al., 2017b) (iii) the inherent uncertainty due to measuring device 
errors (Khorzoughi et al., 2013) 
(iv) The gas oil ratio (GOR) of wells are not constants and are subject to change with time but since most VFMs require the expected gas oil 
ratio (GOR) as inputs, the outputs from the VFMs will be biased when these values change (Petukov et al., 2011) 
Acceptance: Largely limited by regulatory agencies (Mokhtari and Waltrich, 2016) due to the fact that there is still a scarce number of 
studies in the literature about VFM model description, validation and field verification (API, 2005). 
Speed of measurement: Since VFMs are model dependent, most of the models require fluid properties and production regimes as inputs thus 
making them have a high computational time (Amin, 2015; Bello et al., 2014).  

Table 2 
Summary of previous review works on flow rate measurement and modelling.  

Author (year) Area covered by review 

Williams (1994) The advantages of multiphase measurement, methods utilized for multiphase measurement to date, research to date, and projected future research 
Rastoin et al. (1997) A review of the performance of three mechanistic models (Ashford and Pierce, 1975; Sachdeva et al., 1986; Perkins, 1990) for predicting 

multiphase flow rates through wellhead chokes 
Oddie and Pearson (2004) An overview some techniques used for flowrate measurement in two-phase flow 
Thorn et al. (2013)  1. Importance of three-phase flow measurement  

2. Reason three phase flow measurement problem still persists 
3.The extant measurement approaches and a description of the main technologies currently used by commercial manufacturers  
4. A review of research developments that could influence the design of future flowmeters 

Zhou (2017) Evaluation of several flow rate models and seven slip models 
Buffa and Baliño (2017) The basic assumptions of two models were reviewed. The models include: Sachdeva et al. (1986) and the model proposed by Al-Safran and Kelkar 

(2009). 
Yan et al. (2018) A review of the soft computing techniques for multiphase flow metering with a particular focus on the measurement of individual phase flow rates 

and phase fractions 
Zhou et al. (2018) Evaluated several models and correlations and compared their relative performances and their potential for field applicability 
Hansen et al. (2019) 1.Current trends and technologies within multi-phase flow measurements 

2. The most promising methods based on accuracy, footprint, safety, maintenance and calibration. 
Bikmukhametov and Jäschke 

(2020a) 
Virtual flow meters (VFM) 

Meribout et al. (2020) A critical review on most existing multiphase flow meter technologies 
Liu et al. (2020) A comprehensive evaluation of established correlations for two-phase (gas-liquid) flow through Venturi tubes  
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Table 3b presents a summary of the theoretical correlations for 
predicting oil and gas flow rate as developed by different authors. The 
assumptions of the models are also presented. According to Al-Safran 
and Kelkar (2009), incorporating the slip models in Table 3a into the 
theoretical models in Table 3b improves the accuracy of their 
predictions. 

3.1.1. Critique of theoretical models 
First, since the information and data (experimental or field) varies 

with respect to the variables to be modelled, the assumptions made, the 
inflexible nature of the theoretical procedures, most theoretical models 
fail in accurate prediction of flow rate. Second, the calculations involved 
with theoretical models are intensive and have a high burden which 
ultimately gulps a lot of time to execute. 

3.2. Empirical models or Gilbert type models 

In recent decades, researchers have presented many models for 
predicting oil and gas flow rates through wellhead chokes. The earliest 
known empirical correlation for critical flow is that of Gilbert (1954). 
Table 4 presents a snapshot of the various researches from which oil and 
gas flow rates were modelled. For ease of reference, the summary is 
presented in a tabular form beginning from the earliest study and ter-
minating with the latest study. Each row of the table corresponds to one 
of the models. Each column corresponds to a vital information about the 
developed model. 

The following can be gleaned from the summary. First, a total of 47 
models were extracted from literature. There were huge similarities in 
the input parameters, the modelling technique and the area from which 
the data were obtained. In most of the cases, the input variables were 
wellhead pressure, gas liquid ratio and choke size. However, by devel-
oping models that consider not only the impact of only these three inputs 
but also additional inputs such as gas specific gravity, oil specific gravity 
and temperature, its accuracy in flow rate prediction can be significantly 
improved (Choubineh et al., 2017). It was also observed that the area 
where the data were obtained was predominantly in the Middle East 
region. Furthermore, while some researchers did not document the size 
of the dataset they utilized, the largest dataset used contained 3354 data 
points and the smallest dataset had 27 data points and the majority of 
the models were for critical flow. Finally, the modelling technique that 
was widely used was the non-linear regression method. The theoretical 
description of this method is presented as follows: 

3.2.1. Overview of non-linear regression 
Regression models are the conventionally used statistical techniques 

for establishing the relationship (either linear or non-linear) existing 
between two or more variables that represent any phenomena. A simple 
linear regression describes the relationship between two variables (e.g. x 
and y) with a straight line (y = mx+ c); while non-linear regression 
describes the relationship between the two variables in a non-linear or 
curved manner (Kenton, 2020). A brief description of two common 
regression models is given as follows:  

(i) Multiple Linear Regression (MLR): MLR simply known as multiple 
regression is an expanded form of simple linear regression used 
for modelling the linear relationship between several indepen-
dent variables and a dependent variable (Chapra and Canale, 
2010). Essentially, MLR is the broadening of the ordinary least 
squares regression since it requires more than one independent 
variable (Hayes, 2021). An MLR model is expressed mathemati-
cally as shown in Equation (1). 

y= βo + β1x1 + β2x2 + …….βpxp+ ∈ (1)  

Where y is the dependent variable; x1, x2, … … …xp are the independent 
variables; β1, β2….βp are estimates of the linear regression and ∈ is the 
random error term (James et al., 2013) 

(ii) Multiple Non Linear Regression (MNLR): MNLR is essentially a 
form of MLR analysis in which data are modelled by a function that is a 
non-linear amalgamation of the parameters of the model. Just as MLR, 
MNLR is dependent on one or more predictor/independent variables. 
Whereas MLR is commonly used for developing simple models, MNLR is 
mainly adopted when it is observed (from a physical standpoint) that the 
relationship between the independent and dependent variables mirrors 
a specific functional form. Mathematically, the general form of a MNLR 
model is as shown in Equation (2). 

y= β0

(
xβ1

1

)(
xβ2

2

)
……

(
xβn

n

)
(2) 

Where β0 , β1 , …..,βn are regression parameters to a set of a number 
of tabulated values of the independent variables: x1, x2, … … …xn; and y 
is the dependent variable (Bilgili and Sahin, 2010). Non-linear regres-
sion utilises trigonometric functions, exponential functions, Gaussian 
functions, power functions, logarithmic functions, Lorenz curves etc. 
(Kenton, 2020). In order to obtain the regression constants of a MNLR 
model, series of iterations are involved. Methods such as Newton- 
Raphson method, Gauss-Newton method, Levenberg-Marquardt 
method, quadratic hill climbing method and method of scoring etc. 
are often utilized (Donthi et al., 2019). For a more comprehensive 
coverage on regression models, the work by James et al. (2013) is 
recommended. 

3.2.2. Parameter ranges used in empirical models for oil and gas flow rate 
prediction 

Table 5 is a summary of the range of the parameters used in the 
modeling of fluid flow rate as isolated from literature. It is evident that 
the important parameters are: (1) wellhead pressure, (2) GOR, (3) API 
gravity (4) choke size, (5) gas liquid ratio, (6) temperature while flow 
rate was the output parameter. Wherever information is not indicated, it 
means that no actual reporting was made by the relevant reference. 
From an inspection of the list, it is evident that there is no consensus on 
the input parameters required for modeling fluid flow rate. While most 
studies considered three input parameters (wellhead pressure, choke 
size and GOR), others included parameters such as water cut, BS&W, API 
gravity and gas liquid ratio. The widest range of wellhead temperature 
was in the study by Nasriani et al. (2019) wherein the temperature 
ranges from 191 to 463 ◦F, while the least range was 60–120 ◦F as given 
by Abdul-Majeed (1988). For all wellhead pressure ranges, the highest 
[1400–12000 psia] was that given by Beiranvand et al. (2012), while the 
least [60–350 psia] was by Ganat and Hrairi (2018). For choke size 
range, the highest [37–192(1/64 inch)] was by Nasriani et al. (2019), 

Table 3a 
Summary of slip models utilized in models for oil and gas flow rate prediction.  

Author (s), year Slip model 

R = a0

(
1 − xg

xg

)(a1 − 1)(ρL
ρg

)(a2+1)
(

μL
μg

)a3  

Lockhart and Martenelli (1949) 
a0 = 0.28, a1 = 0.64,a2 = 0.36,a3 = 0.07  

Baroczy (1961) a0 = 1, a1 = 0.74,a2 = 0.65,a3 = 0.13  
Moody (1965) a0 = 1, a1 = 1,a2 = −

2
3
,a3 = 0  

Henry and Fauske (1971) a0 = 1, a1 = 1,a2 = − 0.5,a3 = 0  
Simpson et al. (1983) a0 = 1, a1 = 1,a2 = − 0.83,a3 = 0  
Grolmes and Leung (1985) a0 = 1, a1 = 1,a2 = − 0.5,a3 = 0  
Chisholm (1983) 

S =

[

xg
vg

vL
+ (1 − xg)

]1/2   

Schuller et al. (2006) 
R =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 + xg

(
ρL
ρg

− 1
)√

(1 + 0.6e− 5xg )

Where R = slip factor; S = slip factor; μL = liquid viscosity; μg = gas viscosity; ρL 
= liquid density; ρg = gas density; xg = gas phase mass fraction; a0 , a1, a2, a3 =

dimensionless coefficients; vL = liquid velocity; vg = gas velocity. 
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Table 3b 
Summary of theoretical models for oil and gas flow rate prediction.  

Author(s), year Mass flow rate model and areas of application 

Fortunati (1972) 
q0

o =
Ft(1 − β)

Bo
CvV

( ̅̅̅̅̅
P2

P1

√ )k 

qo
0 =

P2Ft
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

GOR(ρo
o + ρo

g Rs1)
P0ZT
TO

√

qo
o = Liquid rate at standard conditions; Ft = total cross sectional area of the choke passage; Bo = oil formation volume factor; GOR = gas oil ratio; T =

temperature; P2 = downstream pressure; P1 = upstream pressure; k = ratio of specific heat; ρo
o = oil density at standard conditions; ρo

g = gas density at 
standard conditions; Po = Pressure at standard conditions, To = temperature at standard conditions; Z = gas compressibility factor; V = mixture 
velocity; Rsi = Total gas in solution; CV = cumulative discharge coefficient; (1 – β) = liquid concentration in respect to the mixture 
Application: Model can be used for critical and subcritical flow parameter estimation.  

Ashford (1974) 

Q2
m = 2gcA2

2P1144

Rk
k − 1

(1 − y(k− 1)/k) + (1 − y)

V∗
L [1 + Ry− 1/k]

2 

Where Qm = mixture flow rate; R = slip ratio; k = ratio of specific heat; y = pressure ratio; A = Total cross sectional area; P1 = upstream pressure, gc =

gravitational constant; VL = liquid velocity  
Fahim et al. (1978) 

Qo =
πCod2

4βo

[
2gcP1

ρo

(

1 −
P2

P1

)]1
2
(1 − αg)

Qg =
πTscP1Cgd2αg

4βoZT1

[
2gcP1k

ρg1(k − 1)

(

1 −
P2

P1

)k − 1
k
]1
2 

Where Qo = oil flow rate; Qg = gas flow rate; gc = gravitational constant; P1 = Upstream pressure; P2 = Downstream pressure; αg = gas phase fraction; 
Bo = oil formation volume factor; ρo = oil density; d = choke diameter; Co = oil compressibility; π = 3.142; Z = gas deviation factor; k = ratio of specific 
heat; T1 = working temperature; ρg = gas density; TSC = Temperature at standard conditions; Cg = gas compressibility  

Sachdeva et al. (1986) 
Q2

m = CD

{

2gc ∗ 144P1ρ2
m2

[
(1 − x1)(1 − y)

ρL
+

x1k
k − 1

(VG1 − yVG2)

]}0.5 

Where Qm = mass flow rate; k = ratio of specific heat; P1 = Upstream pressure; VG1 = Specific volume of gas at upstream conditions; VG2 = Specific 
volume of gas at downstream conditions; ρm = mixture density; x1 = phase fraction of liquid; ρL = liquid density; gc = gravitational constant; CD =

Discharge coefficient; y = downstream to upstream pressure ratio 
Application: Can be used for critical and subcritical flow parameter estimation  

Perkins (1993) wi = A2ρ2V2 =
A2V2

[

fgv2 +

(
fo
ρo

)

+
fw
ρw

]

Where 

V2 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

288gc{λP1v1[1 − P(n− 1)/n
r ] + [(fo/ρo) + (fw/ρw)]P1(1 − Pr)}

1 −

(
A2

A1

)2
[(fg + α1)/(fgP− 1/n

r + α1)]
2

√
√
√
√
√
√

Where wi = mass flow rate; gc = 32.2 (lbm-ft)/(lbf second2); P1 = Upstream pressure; Pr = Downstream pressure to upstream pressure ratio; A2 = Area of 
choke throat (ft2); A1 = Area of choke at upstream (ft2); fg, fo , fw = weight fraction of gas, oil and water respectively in the flowing stream; ρg , ρo , ρw =

density of gas, oil and water respectively; v1 = Specific volume of liquid; n = polytropic expansion exponent; α =

(
1
v

)(
fo
ρo

+
fw
ρw

)

; λ = fg +
[
(fgCvg + foCvo + fwCvw)M

zR

]

; M = molecular weight; R = Universal gas constant; z = gas compressibility factor; Cvo, Cvw, Cvg = heat capacity of oil, water 

and gas respectively  
Al-Safran and Kelkar 

(2009) 
m2 =

CA2
2p1

[

α(1 − r) +
n

n − 1

(

1 − r
n − 1

n
)]

xgvg1(r− 1/k + α)2
[

xg +
1
R
(1 − xg)

]

Where m = mass flow rate; n = polytropic gas expansion exponent; k = gas specific heat ratio; R = slip ratio; xg = gas quality; r = pressure ratio; vg1 = gas 
specific volume; A = choke cross sectional area; P1 = Upstream pressure; vL = liquid specific volume; C = constant = 2000C2

D ; CD = discharge 

coefficient; α =
R(1 − xg)VL

xgvg1 

Utilized the Schuller et al. (2006) slip model for critical flow and the Grolmes and Leung (1985) model for subcritical flow  
Mwalyepelo and Stanko 

(2016) m = CDA2

{

2ρ2
m2P1

(

xg +

(
1 − xg

R

))[(

R(1 − xg)v1(1 − y) +
kxg

k − 1
(vg1 − yvg2)

)]}0.5 

Where m = mass flow rate (kg/sec); CD = discharge coefficient; A = total cross sectional area (m2); ρm = mixture density; P1 = Upstream pressure; xg =

mass fraction of gas; k = ratio of specific heat; R = slip ratio; v1 = specific volume of liquid; y = ratio of downstream pressure to upstream pressure; vg1 =

specific volume of gas upstream; vg2 = specific volume of gas downstream 
This model utilized the Grolmes and Leung (1985) slip model. 
Application: Can be used for critical and subcritical mass flow rates  

Shao et al. (2018) mc = Cdma 

m2
a = (ρm2A2V2)

2
=

2P1A2
2[λ(y1− 1/k − 1) + Sα(y − 1)]

vg1 ∗

[

xg +
1
S
(xw + xo)

]

∗ [r2(xg + Sα)2
− (xgy− 1/k + Sα)]

Where ma = adiabatic mass flow rate; ρm = mixture density; S = slip ratio; A2 = Area at choke throat; y = ratio of pressure at choke throat to the pressure 

upstream; xg, xo , xw = weight fraction of gas, oil and water respectively; k = ratio of specific heat; α =
1

vg1
∗

(
xw

ρw
+

xo

ρo

)

; λ = xg +
xgCvg

ZRg
= xg

[

k +

1
Z(k − 1)

]

; r = ratio of area at choke throat to area at upstream; vg1 = specific volume of gas at upstream; Cd = discharge coefficient;; Rg = Gas constant, 

8.314 J/mol K; Z = gas compressibility factor; Cvg = specific heat value of gas at constant volume condition, kJ/(kg⋅K) 

(continued on next page) 
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while the least [4–14(1/64 inch)] was by Omana et al. (1968). The most 
used parameters were choke size, wellhead pressure, wellhead temper-
ature and GOR while the least used parameters were water cut and 
BS&W. 

3.2.3. Findings on empirical modelling of oil and gas flow rate 
This section summarizes the major findings by diverse researchers on 

the outcomes of the models they developed using the empirical model-
ling technique. The summary is presented in Table 6 starting with the 
earliest model. 95% of the findings indicate that the empirical modelling 
technique limits the model to the range of data used in developing it. A 
few modifications were observed to have been done to the model by 
Gilbert (1954). These modifications were in the form of inclusions of 
new variables such as BS&W, water cut, bottomhole temperature, pay 
zone depth and tubing size. There is a seeming unanimity amongst re-
searchers, that incorporating new variables such as BS&W and tubing 
size improves the models’ accuracies while variables such as water cut 
and bottom hole temperature diminished the models’ accuracies. 

3.2.4. Critique of the empirical models 

3.2.4.1. Model flexibility. A model’s flexibility is defined as the amount 
of influence data features has on the behaviour of a model (Johnson, 
2017). The critique against the usefulness of Gilbert type models is 
linked to the elements causing inflexibility in the models. The cause of 
the inflexibility is as a result of the fixed analytic form of the Gilbert type 
model. It is fair to say that in most of the contributions by researchers in 
developing the Gilbert type models, the emphasis has been on the 
modification of Gilbert’s model rather than charting a new course. There 
is little difference between the models in terms of the novelty of their 
contributions. 

3.2.4.2. (ii) replicability of Model’s results. The determination of the 
explicit form of a regression equation is the ultimate objective of 
regression analysis. Obtaining the estimates of the model’s parameters 
involves an iterative process. Without the numerical coefficients of these 
parameter and/or the associated constants, the model would limit its 
usefulness. Some models in Table 4 failed to meet this objective. An 
example is the multiple linear regression model by Zangl et al. (2014). 
This model was without the regression coefficients hence this would 
limit the usefulness, applicability and replicability of the results of the 
model. 

In summary, going through the models in Table 4, a common and 
perhaps universal factor amongst the models is the striking resemblance 
of the models with little or no new contributions to knowledge arising 
from the fact that they are mainly modifications of the Gilbert’s model. 
These pitfalls most likely propelled the search for newer modelling ap-
proaches such as artificial intelligence. The next section highlights the 
various models put forward by diverse researchers for estimating oil and 
gas flow rate using the disruptive technology of artificial intelligence. 

3.3. Artificial intelligence based models 

The last few years have seen the introduction of supervised machine 
learning algorithms as tools to exploit data for the purpose of modelling 
oil and gas flow rate. With data available, machine-learning has been 
used to capture potentially complex relationships between oil and gas 
flow rate and the factors affecting it. These approaches can largely be 
divided into: ANN, SVM, Fuzzy logic, Hybrid models etc. The review this 

section presents would serve as a robust framework that unites all the 
individual studies on artificial intelligence (AI) models for flow rate 
prediction into a single piece. For quicker reference and to make the 
review simplified and unambiguous, the salient details of each study are 
presented in tables. A snapshot of this summary is shown in Table 7. This 
table chronicles from the earliest to the latest the research outputs on 
modelling oil and gas flow rates using artificial intelligence techniques 
as put forward by different researchers. 

In a bid to make the summary detailed, the method used by each 
researcher is highlighted; the data source and the number of data points, 
the input parameters as well as the correlation developed by each 
researcher where applicable are also mentioned. A total of 49 papers 
were extracted from extant literature relating to this. While it is 
apparent that various researchers used different input parameter com-
binations to model oil and gas flow rate through chokes (e.g. wellhead 
pressure, gas oil ratio, choke size, oil API, oil water ratio, basic sedi-
ments and water, wellhead temperature etc.), it is clear from Table 7 
that wellhead pressure, gas oil ratio and choke size are the most widely 
used input parameters. In terms of data size, there was a wide variability 
in the size of data points used by the researchers. As large as 17097 data 
points were used by one researcher and as low as 67 was used by 
another. Most of the models were developed for fields in the Middle East 
region. 

From the summary, it is observed that in the last decade, most AI 
based models on estimating oil and gas flow rate revolved mainly 
around the use of artificial neural networks where about 60% of studies 
reviewed pointing to this fact. ANN models are currently, and are ex-
pected to remain the choice for simulating critical and subcritical flows 
in oil and gas production systems, owing to their computational trac-
tability; however, they suffer from poor accuracy and predictive power 
in some cases. In terms of model performance using statistical error 
metrics, it was observed that the models were elegant however due to 
the fact that the number of data points, the modelling technique, the 
number and type of input parameters varied widely, there is no sound 
basis of comparing their performances. A brief description of the arti-
ficial intelligence modelling techniques is presented in the next section. 

3.3.1. Overview of AI methods applied to the prediction of oil and gas flow 
rate 

3.3.1.1. Artificial neural network. Artificial neural networks (ANN) are 
essentially bio-inspired computational systems that are designed to 
learn and utilize the knowledge gained to estimate the outputs of a 
complex system. The basic unit of a neural network is the neuron. These 
neurons are connected together to form a network capable of solving a 
complex problem (Behnoud far and Hosseini, 2017). An ANN comprises 
three layers namely: the input layer, the hidden and the output layer. 
The input layer neurons represents the number of input parameters to 
the network. The hidden layer neurons are tasked with the responsibility 
of feature extraction. The manner in which ANN processes information 
is as follows: First, each of the inputs (I1, I2, I3) are assigned connection 
weights (w). These inputs are then multiplied by their individual 
connection weights. The weighted sum of the inputs and connection 
weights are then combined and a bias term (b) is added to the summa-
tion. The essence of the bias is to either increase or decrease the input 
that goes into the activation function. The summation is passed through 
a transfer or activation function, and the output is then computed and 
transferred to another neuron. Sigmoid transfer function and linear 
activation function (purelin) are recommended for the hidden and 

Table 3b (continued ) 

Author(s), year Mass flow rate model and areas of application 

This model utilized the Schuller et al. (2006) slip model 
Application: Can be utilized for critical and subcritical mass flow rates   
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Table 4 
Summary of researches on oil and gas flow rate prediction using empirical methods.  

Authors Method/Data size & 
source 

Input Parameters Correlation developed 

Gilbert (1954) Non-linear regression 
268 production datasets 
from Kern County oil 
fields of California 

Wellhead pressure, gas oil 
ratio and choke diameter Qo =

Pwh.D0.546
64

10(GLR)1.89 

Where Qo = Oil flow rate (STB/D); D = choke size (1/64 in); Pwh = Wellhead pressure (psi); GLR 
= gas liquid ratio (SCF/STB)  

Baxendell (1958) Non-linear regression 
Venezuelan oilfields 

Wellhead pressure, gas oil 
ratio and choke diameter Qo =

Pwh .D0.564
64

9.56(GLR)1.93 

Where Qo = Oil flow rate (STB/D); D = choke size (1/64 in); Pwh = Wellhead pressure (psi); GLR 
= gas liquid ratio (SCF/STB)  

Ros (1960) Non-linear regression Wellhead pressure, gas oil 
ratio and choke diameter Qo =

Pwh.D0.5
64

17.4(GLR)2 

Where Qo = Oil flow rate (STB/D); D = choke size (1/64 in); Pwh = Wellhead pressure (psi); GLR 
= gas liquid ratio (SCF/STB)  

Achong (1961) Non-linear regression Wellhead pressure, gas oil 
ratio and choke diameter Qo =

Pwh.D0.65
64

3.82(GLR)1.88 

Where Qo = Oil flow rate (STB/D); D = choke size (1/64 in); Pwh = Wellhead pressure (psi); GLR 
= gas liquid ratio (SCF/STB)  

Poettmann and 
Beck (1963) 

Non-linear regression 
108 data points 

Water oil ratio, specific 
gravities of oil, gas and water, 
liquid density, pressure, 
discharge coefficient, Choke 
area, mixture density, 
specific volume of liquid, 
molecular weight of liquid 

Qo =
86400CDAc

ρm

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
9273.6P

VL(1 + 0.5ML)

√

∗
0.4513(R + 0.766)0.5

R + 0.5663 
Where 
M = 350γO + 0.0764γgR+ 350γw(WOR); R = [0.00504T1Z1(GLR − RS1)]/P1BO1 

ML = 1/[1 + R(ρg1 /ρL1)]; VL = ML/ρL1 

Where Qo = Oil flow rate; WOR=Water oil ratio; γg , γo , γw = specific gravities of gas, oil and 
water respectively; ρL = liquid density; P = pressure, CD = discharge coefficient, A = Choke area, 
ρm = mixture density; vL = specific volume of liquid; ML = Liquid molecular weight; GLR = gas 
liquid ratio; Bo = Oil formation volume factor; T = temperature; Z = gas compressibility factor; 
Rs1 = Solution gas liquid ratio at upstream conditions; ρg = gas density  

Nind (1964) Not reported Wellhead pressure, gas oil 
ratio and choke diameter Q =

P1d2

600R0.5 

Where Q = Flow rate (STB/D); d = choke size (1/64 in); P1 = Wellhead pressure (psi); R = gas 
liquid ratio (SCF/STB)  

Omana et al. 
(1969) 

Multiple regression 
/Experimental tests in 
the Tiger Lagoon field of 
Louisiana with natural 
gas and Water 

Upstream pressure, gas liquid 
ratio, and choke size 

Nql = 0.263N− 3.49
ρ N3.19

pl Q0.67
d N1.8

d (i) Nql = 1.84QL(ρL/σ)1.25; (ii) Nρ = c /ρL ; (iii) Npl =

0.0174Pus
̅̅̅̅̅̅̅̅ρLσ√ (iv) Qd = 1 /(1 + Rs); (v) Nd = 0.01574D64

̅̅̅̅̅̅̅̅ρLσ√

Where Nql = liquid flow rate number; Nd = diameter number; Np = upstream pressure number; 
Qd = gas/liquid ratio number; σ = surface tension; Pus = Upstream pressure (psi); ρL = liquid 
density; D64 = Choke diameter (1/64 in); Rs = Solution gas liquid ratio (SCF/STB)  

Ashford (1974) Not available 
27 data points 

Gas oil ratio, water oil ratio, 
wellhead pressure, choke 
diameter, 

Qo =
1.53CDD2

c P1

(Bo + WOR)0.5
∗
{[T1Z1(GOR − Rs1) + 151P1](γo + 0.000217γgRs1 + WORγw)}

0.5

[T1Z1(GOR − Rs1) + 111P1](γo + 0.000217γgGOR + WORγw)

Where WOR=Water oil ratio; γg , γo , γw = specific gravities of gas, oil and water respectively; ρL 

= liquid density; P = pressure, CD = discharge coefficient, Dc = choke diameter, GOR = gas oil 
ratio; Bo = Oil formation volume factor; T = working temperature; Z = gas compressibility 
factor; Rs1 = Solution gas liquid ratio at upstream conditions  

Akbar (1978) Multiple regression Upstream pressure, gas liquid 
ratio and PVT properties, and 
choke size 

Q = 4.4939 ∗ 10− 3Pf S2 

Q = 3.6495 ∗ 10− 3Pf S2 

Where Q = flow rate (STB/D); S = choke size (1/64 in); Pf = flowing wellhead pressure (psi)  
Pilehvari (1981) Linear Regression 

168 data points 
obtained from 
Experimental tests 

Upstream pressure, gas liquid 
ratio, and choke size p1 =

46.666qLR0.313
p

d2.111 

P1 = Upstream pressure (psi); qL = liquid flow rate (STB/D); Rp = producing gas oil ratio(SCF/ 
STB); d = choke diameter (1/64 in.)  

Abdul-Majeed 
(1988) 

Non-Linear Multiple 
Regression 
155 tests in the East 
Baghdad fields 

Upstream pressure, gas liquid 
ratio, and choke size 

Nql = 272N− 0.2357
ρ N0.6357

p Q0.61505
d N1.6704

d for D < 6/64′′

Nql = 197.6N− 0.3797
ρ N0.5916

p Q0.61648
d N1.7042

d for 6/64 ≤ D < 10/64′′

Nql = 321.837N− 0.07955
ρ N0.37395

p Q0.5928
d N2.0072

d for 10/64 ≤ D < 30/64′′

Q = (19 + 1.53D + 0.83D2)( − 1.8059 + 0.033755P − 8.657 ∗ 10− 6P2)API0.31G− 0.52 

Where D = choke diameter (1/64 in); Nd = diameter number; NL = liquid viscosity number; NqL 

= liquid volume rate number; Nρ = Density or mass ratio number; R = volumetric gas liquid ratio 
(SCF/STB); Qd = dimensionless production number; P = pressure (psi); G = producing gas liquid 
ratio (SCF/STB); API = Oil API gravity; NPL = Upstream pressure number  

Al-Attar and 
Abdul-Majeed 
(1988) 

Non-Linear Multiple 
Regression 
East Baghdad oil field 

Upstream pressure, gas liquid 
ratio, and choke size 

Qo = 0.33567D1.796P0.8756R− 0.2693API− 0.43957 where: Qo = oil flow rate (STB/D); D = choke 
diameter (1/64 in); P = wellhead pressure (psi); R = gas oil ratio (SCF/STB); API = American 
Petroleum Institute oil gravity  

Surbey et al. (1989) Non-linear regression 
/Experimental data 
collected for a high- 
pressure air/water 
system 

Pressure, choke area, gas oil 
ratio qL =

P1A0.4664
c

0.16549849R0.3955
p 

P1 = Upstream pressure (psi); qL = liquid flow rate (STB/D); Rp = producing gas oil ratio (SCF/ 
STB); Ac = choke cross sectional area (ft2)  

(continued on next page) 
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Table 4 (continued ) 

Authors Method/Data size & 
source 

Input Parameters Correlation developed 

Osman and Dokla 
(1990) 

Least squares method 
/87 data points form 8 
wells producing from a 
gas condensate 
reservoir in the Middle 
East 

Upstream pressure, gas liquid 
ratio, and choke size 

P1 = 829QLGLR0.4344/S1.8478 

P1 = 767QgLGR0.5598/S1.8298 

ΔP = 310.01QLGLR0.5919/S1.8626 

ΔP = 302QgLGR0.4038/S1.8587 

Where QL = liquid flow rate (STB/D); S = choke size (1/64 in); P1 = Upstream pressure (psi); 
GLR = gas liquid ratio(SCF/STB); LGR = liquid gas ratio(SCF/STB); Qg = Gas flow rate (MMSCF/ 
D)  

Abdul-Majeed and 
Maha (1991). 

Non-Linear Multiple 
Regression 
210 data points 

Upstream wellhead pressure, 
GLR, choke size, Oil API 
gravity, Upstream 
temperature, Gas specific 
gravity 

Q = (19 + 1.53D + 0.83D2)( − 1.8059 + 0.033755P − 8.657 ∗ 10− 6P2)API0.31G− 0.52 

Where Q = flow rate (STB/D); D = choke diameter (1/64 in); P = pressure (psig); G = producing 
gas liquid ratio, (SCF/STB); API = Oil API gravity  

Al-Towailib and 
Al-Marhoun 
(1994) 

Nonlinear multiple 
regression 
3554 production test 
data from ten fields in 
the Middle East 

Choke size (s), upstream 
wellhead pressure (Pus), oil 
relative density (ɣo), gas 
relative density (ɣg), gas oil 
ratio (Rp), mixture relative 
density (ɣm) 

Qo =
1.886 ∗ 10− 3D2.07P0.981

(γo + 2.18 ∗ 10− 4Rγg)
1.464 

Where Qo = oil flow rate (STB/D); D = choke diameter (1/64 in); P = pressure (psig); γg, γo =

specific gravity of gas and oil respectively; R = producing gas liquid ratio (SCF/STB)  

Elgibaly and 
Nashawi (1998) 

Least squares method 
154 (critical flow) 
106 (Subcritical flow) 
Data points/Iraq, UAE 
and Kuwait, Ashford 
and Pierce paper 

Pressure drop (ΔP), gas liquid 
ratio (R) and choke size (D). 

Q =

[
1204.8913D2.747

R1.13501
p

ΔP

]1
2
[Subcritical flow]

Q =
0.612D1.62

R0.677
p

P [Critical flow]

Where Q = flow rate (STB/D); D = choke diameter (1/64 in); P = pressure (psig); Rp = producing 
gas liquid ratio, (SCF/STB)  

Mesallati et al. 
(2000) 

Non-Linear Multiple 
Regression/62 data 
points (vertical wells) 
and 73 data points 
(horizontal wells), 
Bouri oil field 

Flowing wellhead pressure, 
gas liquid ratio, and surface 
wellhead choke size. 

QL = 0.0564P1.6785
wh GLR− 0.0947DC1.431 [for vertical wells]

QL = 1389.65P− 0.565
wh GLR− 0.00172DC1.132 [for horizontal wells]

Where QL = liquid flow rate (STB/D); DC = choke diameter (1/64 in); Pwh = well head pressure 
(psig); GLR = gas liquid ratio (SCF/STB)  

Ghareeb and 
Shedid (2007) 

Least squares method 
solved using Gaussian 
elimination 
1750 data points from 
352 producing wells in 
Egypt. 

Wellhead temperature, 
bottom hole temperature, 
tubing cross-sectional area, 
producing gas/oil ratio, 
water cut 

Q =
9.2x10− 4T3.27

th H1.2A0.81GOR0.041

T1.2
bh WC0.046 

Where Q = flow rate (STB/D); Tth = wellhead temperature(◦F); Tbh = bottomhole temperature 
(◦F); A = tubing cross sectional area; WC = water cut (%); GOR = gas oil ratio (SCF/STB); H =
well producing depth (ft)  

Al-Rumah and 
Bizanti (2007) 

Regression analysis 
621 data points from 63 
vertical oil wells, 
Sabriyah field in Kuwait 

Flowing wellhead pressure, 
gas liquid ratio, and surface 
wellhead choke size. 

qL =
P0.96614

wh d1.946479
c

188R0.06322
GL 

Where QL = liquid flow rate; dc = choke size, 1/64 in; Pwh = Wellhead pressure, psi; GLR = gas 
liquid ratio  

Al-Attar (2008) Non linear regression/ 
97 data points from 3 
gas condensate wells, 
Middle East 

Pressure drop (ΔP), gas liquid 
ratio (R) and choke size (S). 

Qg = (1 /29653.3)ΔPS1.15537R0.84695 [subcritical flow] Where Qg = gas flow rate (MMSCF/D); S 
= choke size (1/64 in); ΔP = Pressure drop (psi); R = gas liquid ratio (SCF/STB)  

Al-Attar (2009) Regression analysis 
40 field tests for critical 
flow conditions and 139 
field tests for subcritical 
flow conditions all in 
the Middle East 

Gas liquid ratio, choke size, 
upstream pressure 

Cameron LD 
QL = 4.543 ∗ 10− 3P1(GLR − RS1)

0.04921D1.7523
C [subcritical flow]; QL = 1.262 ∗

10− 3P1(GLR)0.2470D1.733
C 

Cameron F 
QL = 9.454 ∗ 10− 5P1(GLR − RS1)

0.79110D1.7358
C ; QL = 1.801 ∗ 10− 1P1(GLR)− 0.64D1.972

C 
Bean Setting 
QL = 2.03 ∗ 10− 3P1(GLR − RS1)

0.14930D1.837
C ; QL = 2.18 ∗ 10− 3P1(GLR)0.0897D1.879

C 
Where QL = liquid flow rate (STB/D); Rs1 = Solution gas liquid ratio at upstream conditions 
(SCF/STB); GLR = gas liquid ratio (SCF/STB); Dc = choke diameter (1/64 in); P1 = Upstream 
pressure (psi)  

Nasriani and 
Kalantari Asl 
(2011). 

Non linear regression 
61 data points 
From 15 wells in 10 
different fields 

Choke size (S), Pressure drop 
(ΔP), gas liquid ratio (R) Qg =

S1.9

9350R− 0.65ΔP Where Qg = gas flow rate(MMSCF/D); S = choke size (1/64 in); ΔP =

Pressure drop(psi); R = gas liquid ratio (SCF/STB)  

Beiranvand and 
Khorzoughi 
(2012) 

Non linear regression 
182 data points 

Wellhead pressure, gas liquid 
ratio, choke size, basic 
sediments and water, 
temperature 

Q =

P0.5
wh S1.5

(

1 −
BS&W
100

).( T
Tsc

)− 0.8

GOR0.1 Where Q = flow rate (STB/D); S = choke size (1/64 in); Pwh 

= Wellhead pressure (psi); GOR = gas oil ratio (SCF/STB); BS&W = basic sediments and water 
(%); T = working temperature (◦F); Tsc = Temperature at standard conditions (◦F)  

Beiranvand et al. 
(2012) 

Levenberg-Marquardt 
algorithm 
748 data points 
Offshore field in Iran 

Wellhead pressure, gas liquid 
ratio, choke size, basic 
sediments and water Qo =

Pwh.D0.586
64

30.49(GLR)2.275 ; Q = 0.0382
PwhS2.151

(

1 −
BS&W
100

)0.5297

GLR0.5154 

Where Q = flow rate (STB/D); D64 = S = choke size (1/64 in); Pwh = Wellhead pressure (psi); 
GLR = gas liquid ratio (SCF/STB); BS&W = basic sediments and water (%)  

(continued on next page) 
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Table 4 (continued ) 

Authors Method/Data size & 
source 

Input Parameters Correlation developed 

Sadiq (2012) Nonlinear multiple 
regression analysis 
Iraqi oil wells 

Choke upstream pressure, 
choke size, producing gas to 
liquid ratio. 

Q = 19049.65P− 0.69D0.704GOR0.101 

Where Q = flow rate (STB/D); D = choke size (1/64 in); P= Pressure (psi); GOR = gas oil ratio 
(SCF/STB)  

Mirzaei-Paiaman 
(2013). 

Nonlinear multiple 
regression analysis/51 
data points from 17 gas 
condensate wells in 7 
Iranian fields 

Choke upstream pressure, 
choke size, and producing gas 
to liquid ratio. 

QL =
0.615744Pwhd1.83

GLR0.736 Where QL = Liquid flow rate(STB/D); d = choke size (1/64 in); Pwh =

Wellhead pressure (psi); GLR = gas liquid ratio(SCF/STB)  

Khorzoughi et al. 
(2013) 

Non-linear method of 
Nelder–Mead and 
Linear regression 
182 production tests in 
a southern offshore field 
in Iran 

GLR, Choke size (S), 
Wellhead pressure, 
Temperature, BS&W 

ln(Q) = − 4.0285568+ 0.56 ln(Pwh)+ 1.94 ln(S)+ 0.73 ln
(

1 −
BS&W
100

)

+ 6.82 ln
(

T
Tsc

)

+

0.047 ln (GLR)
Where Q = flow rate (STB/D); S = choke size (1/64 in); Pwh = Wellhead pressure (psi); GLR = gas 
liquid ratio (SCF/STB); BS&W = basic sediments and water (%); T = working temperature(◦F); 
Tsc = Temperature at standard conditions (◦F)  

Mirzaei-Paiaman 
and Salavati 
(2013) 

Non-linear multiple 
regression analysis/124 
data points from 15 
Persian oil fields 

Choke upstream pressure, 
choke size, gas oil ratio 
(GOR) 

Qo =
0.087607Pwhd1.9215

GOR0.5334 

Where Qo = Oil flow rate (STB/D); d = choke size (1/64 in); Pwh = Wellhead pressure (psi); GOR 
= gas oil ratio (SCF/STB)  

Zangl et al. (2014) ANN, Multiple linear 
regression & Random 
forest classification 
258 data points 

Tubing head pressure, tubing 
head temperature, gas lift 
rate, gas lift injection 
pressure, flowline pressure 

Not stated 

Bairamzadeh and 
Ghanaatpisheh 
(2015) 

Non linear regression 
1300 data points from 
120 Iranian offshore oil 
wells 

Upstream wellhead pressure, 
gas liquid ratio, choke size Ql =

P0.9383
wh ∗ D1.7137

choke
7.8337GLR0.3636 

Where Ql = liquid flow rate (STB/D); Dchoke = choke size (1/64 in); Pwh = Wellhead pressure 
(psi); GLR = gas liquid ratio (SCF/STB))  

Obukohwo et al. 
(2015) 

Not reported Not reported 
QO =

(1 − Wct) ∗ MF ∗ 4.1085
γml ∗ Bot

+
(1 − Gft) ∗ MF ∗ 4.1085

Bot ∗ γml
; Qgs =

Gft ∗ MF ∗ 23.0676
Bot ∗ γmg 

Where Qo = oil flow rate (STB/D); Qgs = gas flow rate (MMSCF/D); γml , γmg = specific gravity of 
oil and water, specific gravity of gas and any oil carry over at test conditions; MF = mass flow 
rate; Wct = water cut(%); Bot = oil formation volume factor; Gft = gas formation volume factor  

Seidi and Sayahi 
(2015) 

Non-linear regression 
67 data sets from South 
Iranian gas condensate 
reservoirs 

Choke size, Gas Liquid ratio, 
pressure drop across choke Qg =

0.015S1.27ΔP0.56

(LGR)0.4 Where Qg = gas flow rate(MMSCF/D); S = choke size (1/64 in); ΔP =

Pressure drop (psi); LGR = liquid gas ratio (SCF/STB)  

Bokhamseen et al. 
(2015) 

Generalized reduced 
gradient (GRG2) non- 
linear algorithm/64 
data points from 16 
separator tests 

Choke diameter, upstream 
pressure, upstream 
temperature, gas specific 
gravity, gas and condensate 
rates and GOR 

qg =
Pupd1.85

59.88CGR0.11 ; qg =
0.211d1.92Pup
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
γg(Tup + 460)

√

Where Qg = gas flow rate (MMSCF/D); d = choke size (1/64 in); Pup = Upstream pressure(psi); 
CGR = condensate gas ratio; Tup = Upstream temperature(◦F); γg = gas specific gravity  

Nasriani and 
Kalantari Asl, 
(2015) 

Non-linear regression/ 
64 data points from 15 
high rate wells located 
in Iran 

Choke size (S), Pressure drop, 
gas liquid ratio 

Qg = (1 /6868169.43)ΔPS2.25544R0.750342 ; Where Qg = gas flow rate (MMSCF/D); S = choke size 
(1/64 in); ΔP = Pressure drop(psi); R = gas liquid ratio (SCF/STB)  

Okon et al. (2015) Multivariate 
regression/64 data 
points 
Niger Delta (Nigeria) oil 
wells 

Wellhead pressure, gas liquid 
ratio, choke size, flowing 
temperature, basic sediments 
and water 

Pwh =
5.1474(GLR0.5048)q

S1.7098 

Pwh =

⎡

⎢
⎢
⎣

19.65(GLR0.6749)q

S1.8133
(

1 −
BS&W
100

)0.2235( T
TSC

)0.000029

⎤

⎥
⎥
⎦

0.757 

Where q = flow rate (STB/D); S = choke size (1/64 in); Pwh = Wellhead pressure (psi); GLR = gas 
liquid ratio (SCF/STB); BS&W = basic sediments and water(%); T = working temperature(◦F); 
Tsc = Temperature at standard conditions (◦F)  

Lak et al. (2017) Multivariate 
regression/864 data 
points 
From Persian Gulf 
offshore 

Wellhead pressure and 
temperature, choke diameter, 
separator pressure and 
temperature 

Pwh =
0.25Tk

whR0.899ql

S1.76 

Where ql = liquid flow rate(STB/D); S = choke size (1/64 in); Pwh = wellhead pressure(psi); R =
gas liquid ratio(SCF/STB); Twh = Wellhead temperature (◦F)  

Choubineh et al. 
(2017) 

Non-linear regression/ 
113 data points from 12 
South Iran oil wells 

Well head pressure, choke 
size, oil specific gravity, gas 
specific gravity, temperature, 
gas liquid ratio 

QL =

0.067662 x Pwh ∗ D2.08918
64 ∗ γ0.625862

g ∗ γ1.583074
o ∗

(
T

Tsc

)0.000453

GLR0.508714 

QL =
0.059094 ∗ Pwh ∗ D2.101865

64
GLR0.560742 

Where QL = liquid flow rate(STB/D); D64 = choke size (1/64 in); Pwh = Wellhead pressure (psi); 
GLR = gas liquid ratio(SCF/STB); T = working temperature(◦F); Tsc = Temperature at standard 
conditions(◦F); γg = gas specific gravity; γo = oil specific gravity  

Ganat and Hrairi 
(2018) 

Non-linear regression 
96 data points from 
North African oil wells 

Wellhead temperature, 
bubble point pressure (pb), 
producing gas-oil ratio, WHP, 
overall shut in time (t), and 
water cut 

QO = 0.002236(WHPa − WHPb)
0.976949WHT1.013912t− 0.97168GOR0.634736(100 − WC)1pb0.011189 

Where Qo = oil flow rate (STB/D); WHP = wellhead pressure (psi); WHT = wellhead 
temperature (◦F); GOR = gas oil ratio (SCF/STB); WC = water cut (%)  

(continued on next page) 
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Table 4 (continued ) 

Authors Method/Data size & 
source 

Input Parameters Correlation developed 

Fuladgar and 
Vatani (2019) 

Multi variable linear 
regression/142 data sets 
from South West Iran 

Wellhead pressure, choke 
size and producing gas liquid 
ratio 

Q =
0.3135P.807949

wh C1.740565
s

R0.407676 ; Where Q = flow rate (STB/D); CS = choke size (1/64 in); Pwh =

Wellhead pressure (psi); R = gas liquid ratio (SCF/STB)  
Nasriani et al. 

(2019) 
Non-linear regression/ 
234 production data 
points 

Liquid gas ratio, choke size 
(S) and the pressure drop 
across the choke 

Qg =
0.0437S1.1136ΔP0.4836

(LGR)0.3129 ; Where Qg = gas flow rate (MMSCF/D); S = choke size (1/64 in); ΔP 

= Pressure drop(psi); LGR = liquid gas ratio (SCF/STB)  
Al-Rumah and 

Alenezi (2019) 
Non-linear regression/ 
835 data points 

Liquid gas ratio (RGL), choke 
size (d) and the pressure drop 
across the choke (Pwh), API 
gravity 

qL =
P0.91772

wh d2.0346
c API1.104824

249.8503R0.61029
GL 

qL =
P0.848836

wh d1.883216
c

3.337139R0.553744
GL 

; Where qL = liquid flow rate (STB/D); dc = choke size (1/64 in); Pwh =

Wellhead pressure (psi); RGL = gas liquid ratio(SCF/STB); API = oil API gravity  
Jumaah (2019) Non linear regression/ 

33 production tests data 
from 12 wells produce 
from Tertiary Reservoir 
in Khabaz oil field 

Gas oil ratio (GOR), choke 
size (D), Flowing wellhead 
pressure (Pwf), water cut 

Q = PWF
D0.000275

1.7634GOR0.9058 

Q = PWF
D0.0000486

1.733GOR1.159 ∗

(

1 −
Wct
100

)1.3936 

Where Q = flow rate (STB/D); Wct = water cut (%); GOR = gas oil ratio(SCF/STB); PWF =
flowing wellhead pressure (psi); D = choke diameter (1/64 in)  

Kargarpour (2019) Semi analytical 
approach/399 data 
points 

Oil API gravity (SpGr), 
Upstream choke pressure 
(P1), GOR, Choke size (d), 
downstream choke pressure 
(P2) 

qBPD = P1d2 ∗

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

̅̅̅̅̅
P1

√

552 ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1 −
P2

P1

)

SpGr

√
√
√
√
√

+
GOR

65554 ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
P2

P1

)1.5625[

1 −

(
P2

P1

)0.21875]
√

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

− 1 

Where qBPD = well flow rate (STB/D); P1 = upstream choke pressure (psi); GOR = gas oil ratio 
(SCF/STB); d = choke diameter (1/64 in); P2 = downstream choke pressure (psi); SpGr = liquid 
specific gravity with respect to water   

Table 5 
Summary of range of data used by researchers on the use of empirical techniques in modelling oil and gas through chokes.  

Author(s), Year Flow rate (STB/ 
D) 

Wellhead 
pressure (psia) 

API 
gravity 

GOR (SCF/ 
STB) 

Water 
cut (%) 

Choke size 
(1/64 inch) 

Gas liquid ratio 
(SCF/STB) 

Wellhead 
Temperature (◦F) 

BS&W 
(%) 

Gilbert (1954)   25–40   6–18    
Omana et al. (1968) 800 400–1000    4–14    
Abdul-Majeed (1988) 10.5–4728 100–4374 17–56.3   4–40 102–18594 60–120  
Surbey et al. (1989) 450–3550 85–950    27–90 140–5200 48–132  
Al-Towailib and 

Al-Marhoun (1994) 
172–33847 97–1880 27–40 12–5026  16–160  160–240  

Elgibaly and Nashawi 
(1998) 

31–6501 180–5100 26–58 127–12163.3 0–92.3 5.9–72  105–170  

Al-Rumah and Bizanti 
(2007) 

45–6900 120–1400    16–91 17–1900   

Al-Attar (2008) 260–1917     24–128  155–180  
Nasriani and Kalantari 

Asl (2011) 
9.30–110.35 
MMSCF/D 

1131–4452    40–192 51–1453 113–200  

Beiranvand and 
Khorzoughi (2012) 

183–9284 133–883  36–885  25.6–40  87.6–162 0.1–53 

Beiranvand et al. 
(2012) 

3000–24000 1400–12000    16–40 80–260  0.1–30 

Mirzaei-Paiaman 
(2013). 

266.3–5706 832–8410    24–128 1743–51300   

Mirzaei-Paiaman and 
Salavati (2013) 

198–9643 115–4308 22.97–43 158–20324  16–128    

Bokhamseen et al. 
(2015) 

3–26 MMSCF/D 1500–4500  2500–3500  16–72  140–230  

Nasriani and Kalantari 
Asl, (2015) 

9.3–110.35 1131–4452    40–192 51–1453 113–200  

Okon et al. (2015) 263–5313 36–2320    16–76 93–4134 100–150 0–0.884 
Bairamzadeh and 

Ghanaatpisheh 
(2015) 

110–11200 103–1120    12–92 12–30782   

Lak et al. (2017) 281–2520 1580–4180    24–64 13900–43300 95–151  
Ganat and Hrairi 

(2018) 
200–3350 60–350 30–40 300–1100 0–98 16–64    

Fuladgar and Vatani 
(2019) 

100,000 200–4000 19–34 290–1670  12–52  205–271  

Nasriani et al. (2019) 5.4–113.3 14.5–2104    32–192 0.69–178.8 191.93–463.73  
Kargarpour (2019)  38–5538 12.8–42 61–6044  8–96    
Al-Rumah and Alenezi 

(2019) 
10.5–6892 85–4374 11–56    102–18579   

Jumaah (2019) 400–2900 445–1854   0–4.7 16–42 847–2595    
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output layers respectively (Mekanik et al., 2013). This process is 
depicted in Fig. 2. 

The first step in modelling with ANN is the training of the network. 
Data are processed through the input layer to the hidden layer(s) then all 
the way to the output layer. In the output layer, the predicted data are 
compared with the actual data. The difference between actual and 
predicted data is transferred back to the model to update the individual 
weights between each connection and the biases of each layer. This 
process is called epoch. In this way, training continues for all the dataset 
until the average error reduce to certain defined limit (Demuth et al., 
2009). Network performance also depends upon the number of neurons 
in the hidden layer, fewer neurons cause under-fitting and excessive 
neurons cause over-fitting, so optimization is required for the designing 
of neurons (Aalst et al., 2010; Haykin, 1999). The overall correlation 
between inputs and output for an ANN model is as shown in Equation (3) 
(Fazeli et al., 2013). 

yk = fo

[
∑

j
wkj.fh

(
∑

i
wjixi + bj

)

+ bk

]

(3) 

Where x is an input vector; wij represents the weight from the ith 
neuron in the input layer to the jth in the hidden layer; bj represents the 
bias of jth hidden neuron; wkj represents the weight from the jth neuron 
in the hidden layer to the kth neuron in the output layer; bk represents 
the bias of kth output neuron and fh and fo are the activation functions 
for the hidden and output neuron respectively. The following are the 
types of ANN: (i) Modular Neural Networks (ii) Feedforward 

backpropagation Neural Network (iii) Radial basis function (RBF) 
Neural Network (iv) Kohonen Self Organizing Neural Network (v). 
Recurrent Neural Network (RNN) (vi) Convolutional Neural Network 
(CNN) (vii) Long/Short Term Memory (viii) Multilayer perceptron 
(MLP) (ix) Deep neural network 

3.3.1.2. Fuzzy logic. Fuzzy logic by definition is an accurate computa-
tional system which has the capability to interpret and represent infor-
mation that is vague, incomplete, uncertain, imprecise, ambiguous or 
partially true (Zadeh, 2009; Yadav and Singh, 2011). The fuzzy logic 
system has the ability to capture the non-linear relationship of an 
input-output model without an exact mathematical formula (Liu and Li, 
2005). Modelling with fuzzy logic entails utilizing a linguistic approach 
(descriptive language) established on fuzzy logic with fuzzy propositions 
(Adeyemi et al., 2016). The operational mechanism of fuzzy logic is to 
map an input space (universe of discourse) to an output space, using a 
list of “if then” statements referred to as rules (Castillo and Melin, 2001). 
Thus, a fuzzy model can be viewed as an assemblage of various linear 
models implemented locally in the fuzzy regions described by the rule 
premises with the final model being represented by the intermediate or 
interpolation of the linear models (Lima et al., 2015). According to 
Kayacan and Khanesar (2016), fuzzy logic system is carried out in four 
basic steps namely: input data fuzzification, fuzzy rules evaluation, ag-
gregation of outputs of fuzzy rules and output defuzzification. 

3.3.1.3. Hybrid intelligent systems. A technique that results from the 
amalgam of two or more methods is called a hybrid. In artificial 

Table 6 
Summary of findings by researchers on the use of empirical techniques in modelling critical flow rate of oil well fluids.  

Author(s), Year Method used Major findings and conclusions 

Ashford (1974)  The discharge coefficient necessary to predict rate of production ranges between 0.642 and 1.218. 
Akbar (1978) Multiple linear regression Production data that is accurate is required to obtain an average of the flow rates of oil and gas. 
Abdul-Majeed (1988) Non-linear regression The rate of production predicted by the original and modified forms of the Omana model is not strongly 

related to the viscosity of oil. 
Surbey et al. (1989) Non-linear regression The model is limited to only multi-orifice-valve (MOV) chokes. 
Osman and Dokla (1990)  The model developed is most accurate when pressure drop data is used instead of choke upstream pressure. 
Al-Towailib and Al-Marhoun 

(1994) 
Non-linear regression Taking into account the mixture density in oil and gas flow rate models is necessary. 

Elgibaly and Nashawi (1996) Least squares method The developed model is used for critical flow rate prediction and requires PVT data. 
Ghareeb and Shedid (2007) Least squares method solved using 

Gaussian elimination 
The accuracy of the model’s prediction is linked to its taking into account other variables that were not 
accounted for by the Gilbert model such as size of tubing, depth of payzone and wellhead temperature. 

Al-Attar (2009) Regression analysis For critical and subcritical flow conditions, the model developed outperformed extant models. Data on 
water cut are required for developing models for these conditions. 

Nasriani and Kalantari Asl 
(2011) 

Non-linear regression The range to which the developed model can be applied is as follows: choke size: 40–192 (1/64 in), GLR: 
51–1453 MSCF/STB, Wellhead flowing temperature: 113–200 ◦F, Upstream pressure: 1131–4452 psi, 
Downstream pressure: 825–3045 psi. 

Beiranvand and Khorzoughi 
(2012) 

Non-linear regression Basic sediments and water (BS&W) and temperature are important variables that significantly affect flow 
rate prediction and therefore should be accounted for when developing flow rate models. 

Beiranvand et al. (2012) Non linear regression BS&W is an important variable that significantly affect oil and gas flow rate prediction. 
Mirzaei-Paiaman (2013) Nonlinear multiple regression 

analysis 
Since a wide range of data was utilized in developing the model, it can be applied to many fields around the 
world. 

Mirzaei-Paiaman and Salavati 
(2013) 

Nonlinear multiple regression 
analysis 

The developed model is less complex than existing models making it more convenient for use. 
Since a wide range of data was utilized in developing the model, it can be applied to many fields around the 
world. 

Khorzoughi et al.(2013) Non-linear method of Nelder–Mead 
and Linear regression 

Incorporating BS&W and temperature in the developed models improved its accuracy. 

Zangl et al. (2014) Linear regression, ANN, Random 
Forest classification 

Of the three modelling techniques, the model developed using ANN had a higher predictive accuracy than 
the others followed by the random forest classification and then the linear regression model 

Okon et al. (2015) Multivariate regression analysis The models can be used to predict oil production rate in fields in the Niger Delta area of Nigeria 
Bairamzadeh and 

Ghanaatpisheh (2015) 
Non-linear regression analysis The developed model outperformed those of Gilbert (1954), Ros (1960), Achong (1961) and Baxendell 

(1958). 
Moghaddasi et al. (2015) Not stated In comparison with the models proposed by Gilbert (1954), Ros (1961), Baxendell (1958), Achong (1961), 

Pilehvari (1981) the Baxendell (1958) model captured more accurately the dynamics of the data from 14 
wells from the Asmari reservoir located in southwest Iran. 

Lak et al. (2017) Multivariate regression Uncertainty in the flow rate of water diminishes the regression’s accuracy. 
Ganat and Hrairi (2018) Non-linear regression The developed model is quick, reliable, and can be adapted to any ESP oil well as well as artificially 

onshore and offshore flowing wells but can only be applied to critical flow conditions. 
Fuladgar and Vatani (2019) Multi variable linear regression An evaluation of the new correlation indicated that it could significantly improve accuracy of flowrate 

predictions in contrast to previous prominent correlations 
Nasriani et al. (2019) Non-linear regression This model works best when applied within the range of the following production parameters: LGR of 

0.7–178.8 bbl/MMscf, a choke size: 24/64 to 192/64, gas flow rate of 5.4–113.3 MMscfD.  
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Table 7 
Summary of critical and subcritical flow models based on artificial intelligence.  

Authors Method/ 
Architecture 

Data size/source Inputs and Output Parameters Performance 
metrics 

ZareNezhad and 
Aminian (2011) 

ANN [3–30 – 1] 97 data points Inputs: Pressure drop (psi), gas-to-liquid ratios (SCF/STB), choke size (1/64 in.) 
Output: Gas flow rate (MMSCF/D) 

R2 = 0.9996; 
RMSE = 0.26; 
AARE (%) =
0.486 

Berneti and 
Shahbazian, 
(2011). 

ANN and 
Imperialist 
Competitive 
Algorithm (ICA) 
[2–7 – 1 ] 

31 wells in Iran Inputs: Temperature (◦F), pressure (psi) 
Output: Oil flow rate (STB/D) 

R2 = 0.9703; 
MSE = 0.0123 

Al-Shammari (2011) ANFIS 796 data points 
Middle East 

Inputs: Flowing wellhead pressure (psi), liquid rate, water cut (%), gas oil ratio (SCF/STB), 
oil API, reservoir temperature (◦F), tubing inside diameter (in.), gauge depth (ft) 
Output: Flowing pressure at gauge depth (psi) 

R2 = 0.93; AARE 
(%) = 4.93 

Al-Khalifa and 
Al-Marhoun 
(2013) 

ANN [6–9 – 5–8 – 
1] 

4031 data points Inputs: Upstream wellhead pressure (psi), temperature (◦F), choke size (1/64 in.), oil and gas 
relative densities (γo and γg), production GOR (SCF/STB) 
Output: Liquid critical flow rate (STB/D) 

R = 0.986; 
RMSE = 10.5; 
APE = 0.4; AAPE 
= 6.7 

Ahmadi et al. (2013) i. ANN 
ii. Fuzzy Logic 
iii. ANN-ICA 

1600 data set of 
50 wells in Iran 

Inputs: Temperature (◦F), pressure (psi) 
Output: Oil flow rate (STB/D) 

ANN: R2 =

0.93909; MSE =
0.091343 
Fuzzy logic: R2 

= 0.9037; MSE 
= 0.0073664 
ANN-ICA: R2 =

0.99505; MSE =
0.0030392 

Nejatian et al. 
(2014) 

Least-Squares 
Support Vector 
Machine 
(LSSVM) 

171 (orifice) 164 
(nozzle) data 
points 

Inputs: Reynolds number, d/D (ratio of choke diameter to pipe diameter) 
Output: Choke flow coefficient 

Orifice: R2 =

0.9993; RMSE =
0.0016; AARE =
0.1881 
Nozzle: R2 =

0.9955; RMSE =
0.0038; AARE =
0.2529 

Bello et al. (2014) Hybrid 
intelligence 
system 

Data from 
literature 

Inputs: Flowing bottom hole pressures (psi), flowing bottomhole temperatures (◦F), tubing 
pressures (psi), tubing temperatures(◦F), choke opening position, gas oil ratio (SCF/STB), oil 
water ratio, API gravity 
Output: Oil and gas flow rates (STB/D; MMSCF/D) 

Not reported 

Kaydani et al. (2014) Genetic 
programming 

200 data points Inputs: Upstream wellhead pressure (P) (psi), gas oil ratio (GOR)(SCF/STB), and surface 

wellhead choke size (D) (1/64 in.) q = 1000 ∗

⎡

⎢
⎢
⎣9.59 ∗ 10− 5

Pu ∗

(
D

2500

)2

GOR
+

0.0254 ∗ D
2500

⎤

⎥
⎥
⎦

(Critical flow) 

q = 1000

⎡

⎢
⎢
⎣

3.447 ∗ 10− 7

0.975

(
ΔP
100

)2
∗

(
D

2500

)3

(
GOR
1000

) ∗

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
0.145 ∗ ΔP

100
+

0.0254 ∗ D
2500

+
GOR
1000

√
⎤

⎥
⎥
⎦

1/4 

(Subcritical flow) 
Output: Liquid critical flow rate & Liquid subcritical flow rate (STB/D)  

Critical flow: R2 

= 0.988; RMSE 
= 0.006, AARE 
= 0.102 
Subcritical flow: 
R2 = 0.90; RMSE 
= 0.014; AARE 
= 0.155 

Zangl et al. (2014) ANN 258 data points Inputs: Tubing head pressure (psi), tubing head temperature (◦F), gas lift rate, gas lift 
injection pressure, flowline pressure (psi) 
Outputs: Liquid rate, Water rate, Oil rate (STB/D) 

Liquid rate: R2 =

0.9706 
Water rate: R2 =

0.9706 
Oil rate: R2 =

0.9308 
Al-Ajmi et al. (2015) ANN 174 data points Inputs: Well head pressure (psi), choke size (1/64 in.), temperature (◦F), gas oil ratio (SCF/ 

STB), water cut,(Pupstream T.S/GLR), Gilbert correlation, gas liquid ratio 
Output: Liquid critical flow rate (STB/D) 

R2 = 0.89, MAPE 
= 15.15 

Hasanvand and 
Berneti (2015) 

ANN [2–7 – 1] 600 datasets (31 
wells)Iran 

Inputs: Temperatures (◦F) and pressures of lines (psi) 
Output: Oil critical flow rate (STB/D) 

R2 = 0.98741; 
RMSE = 0.09746 

Al-Ajmi et al. (2015) ANN 421 data points Inputs: Pupstream, Pdownstream/Pupstream, temperature/Pupstream, ΔP/Pupstream, water cut, GOR. 
WC, gas liquid ratio (SCF/STB), Log (S), 1/log (choke size) 
Output: Liquid subcritical flow rate (STB/D) 

R2 = 0.93; MAPE 
= 15.7 

Seidi and Sayahi 
(2015) 

Genetic 
algorithm 

67 data sets 
Iranian gas 
reservoirs 

Inputs: Choke size (1/64 in), Gas Liquid ratio (SCF/STB), pressure drop across choke (psi) 
Output: Gas condensate subcritical flow rate 

R2 = 0.9189; 
RMSE = 7.655 

Elhaj et al. (2015) ANN 
Fuzzy logic 
SVM 
Functional 
Network 
Decision Tree 

162 data points 
from a field in 
Sudan 

Inputs: Choke size (1/64 in.), Upstream tubing pressure (psi), downstream tubing pressure 
(psi), upstream tubing temperature (◦F), gas gravity 
Output: Gas flow rate (MMSCF/D) 

ANN: R2 =

0.99986; AARE 
(%) = 0.828133 
Fuzzy logic: 
AARE (%) =
0.681219 
SVM: AARE (%) 
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Table 7 (continued ) 

Authors Method/ 
Architecture 

Data size/source Inputs and Output Parameters Performance 
metrics 

= 1.662585 
Functional 
network: AARE 
(%) = 4 
Decision tree: 
AARE (%) =
0.836 

Zareiforoush et al. 
(2015) 

ANN [6–17 – 1] 399 data points Inputs: Wellhead pressure (psi), Wellhead temperature (◦F), Choke size (1/64 in), Specific 
gravity of gas, specific gravity of oil, basic sediments and water 
Output: Wet Factor 

Not reported 

Ghadam and Kamali 
(2015). 

Comparative 
Neural Fuzzy 
Inference System 

84 data points Inputs: Temperature (◦F), produced gas density, rate of produced liquids, ratio of liquid to gas 
(SCF/STB), apparent velocity of gas, and apparent velocity of liquid 
Output: Gas critical flow rate (MMSCF/D) 

R2 = 1; MAE =
0.0466 

Gorjaei et al. (2015) PSO-LSSVM 276 data points, 
Iran 

Inputs: Choke upstream pressure (psi), gas liquid ratio (SCF/STB) and choke size (1/64 in.) 
Output: Oil flow rate (STB/D) 

R2 = 0.9935; 
AARE (%) = 0.7 

Okon and Appah 
(2016) 

ANN i. [3–6 – 5–1 
– 1] 
ii. [5–6 – 6–1 – 1] 

64 data points, 
Nigeria 

Inputs: Flowing wellhead pressure (psi), choke size (1/64 in.), gas-liquid ratio (SCF/STB), 
flowing temperature (◦F) and basic sediments and water (BS&W) 
Output: Oil critical flow rate (STB/D) 

i. R2 = 0.9653; 
RMSE = 0.365; 
AARE (%) =
0.192 
ii. R2 = 0.9951; 
RMSE = 0.4533; 
AARE (%) =
0.1045 

Naseri et al., (2017) ANN (GA-RBF) 308 (nozzle) 243 
(orifice) datasets. 

Inputs: Ratio of choke diameter to the pipe diameter (d/D), Reynolds number 
Output: Choke flow performance 

R2 = 0.999695; 
RMSE =
0.003755; AARE 
= 0.339991 

Baghban et al. 
(2016) 

Support Vector 
Machines (SVM) 

100 data points, 
Iran 

Inputs: Wellhead pressure (psi), gas oil ratio (SCF/STB), diameter of choke (1/64 in.) 
Output: Liquid flow rate (STB/D) 

R2 = 0.9998 

Choubineh et al. 
(2017) 

ANN-TLBO 
[6–10 – 8–1] 

113 data points, 
Iran 

Inputs: Well head pressure (psi), choke size (1/64 in.), oil specific gravity, gas specific 
gravity, temperature (◦F), gas liquid ratio (SCF/STB) 
Output: Liquid critical flow rate (STB/D) 

R2 = 0.981; 
RMSE = 714; 
ARE(%) = 2.09; 
AARE = 6.5 

Al-Qutami et al. 
(2017a) 

ANN (RBF) 200 data points Inputs: Bottom-hole pressure (psi), WHP (psi), WHT (◦F), Choke valve opening percentage 
Output: Gas flow rate (MMSCF/D) 

R2 = 0.93978; 
RMSE = 1.334; 
MAPE = 6,16 

Al-Qutami et al. 
(2017b) 

ANN 
4–7 – 1 [Oil] 
4–6 – 1 [gas] 

591 data points Inputs: Choke valve opening percentage (CV%), well-head pressure (psi), well-head 
temperature (◦F), and bottom-hole pressure (psi). 
Output: Gas flow rate (MMSCF/D) and oil flow rate (STB/D) 

Oil: R2 = 0.965, 
RMSE =
1.24899; MAPE 
= 4.22 
Gas: R2 = 0.954; 
RMSE =
1.35277; MAPE 
= 2.27 

Rostami and Ebadi 
(2017) 

Gene expression 
programming 
(GEP) And 
Artificial Neural 
Network 

119 data points 
South west Iran 

Inputs: Choke diameter (d) (1/64 in), GOR (SCF/STB), gas specific gravity (γ), wellhead 
pressure (Pwh) (psi), oil API 
Output: Liquid flow rate (STB/D) 
Q = A+ B+ C+ D 
A = 139.3d − 0.1GOR+ 69.6γ − 34.8API 
B = − 21.6(d ∗ API0.5)+ 34.9γ2 + 0.0235(d ∗ Pwh)+ 492 

C = − 0.0138(γ ∗ Pwh) ∗ (2P1
wh − d2 ∗ API) ∗

(
γ + API

d + 2GOR

)

D = 0.00548(γ ∗ Pwh) ∗ (γ + API) ∗

(
GOR + Pwh − d2 ∗ API

GOR

)

GEP: R2 =

0.9342; RMSE =
383.5479; ARE 
(%) = 7.7492; 
AARE (%) = 14.8 
ANN: R2 =

0.975; RMSE =
289.535; ARE 
(%) = 2.139; 
AARE(%) =
7.915 

Ghorbani et al. 
(2017) 

Firefly 
optimization 
algorithm 

92 datasets 
Pazanan1 gas 
condensate field, 
Aghajari Region, 
Iran 

Inputs: Choke diameter (D64)(1/64 in), gas specific gravity (γg), flowing fluid temperature (T) 
(◦F), upstream (Pup) and downstream pressure (Pdown) (psi) 

Output: Gas flow rate (MMSCF/D) qg =

0.0001D2.3481935
64

(
Pup

14.7

)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1
γgT

)

0.0001
[(

Pdown

Pup

)1.0360972
−

(
Pdown

Pup

)1.498291]
√
√
√
√

R2 = 0.9677; 
RMSE = 0.0071; 
ARE (%) =
5.32005; AARE 
(%) = 20.21 

Buhulaigah et al. 
(2017) 

Artificial Neural 
Network 

174 data points, 
Middle east 

Inputs: Flowing wellhead pressure (psi), effective length (Le), ft., open hole size (inches), 
choke size (%), reservoir pressure (psi), average permeability (in mD), number of laterals 
Output: Oil flow rate (STB/D) 

R2 = 0.914 

Loh et al. (2018) Deep LSTM 
network model in 
the EnKF 
framework 

2 mature gas 
wells in the 
North sea 

Inputs: Tubing head pressure sensor 1, Tubing head pressure sensor 2, Tubing head pressure 
sensor 3, temperature and top-side choke valve opening, flow rate 
Output: Gas flow rates (MMSCF/D) 

Not reported 

Al-Qutami et al. 
(2018) 

Neural network 
ensemble and 
adaptive 
simulated 
annealing 

238 data points Inputs: Downhole pressure (psi), wellhead temperature (◦F), wellhead pressure (◦F), and 
choke valve opening percentage 
Output: Liquid (STB/D) and gas flow rates (MMSCF/D) 

ANN: RMSE =
0.0585; STDEV 
= 0.0046; MAPE 
= 4.7 
Adaptive 
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Table 7 (continued ) 

Authors Method/ 
Architecture 

Data size/source Inputs and Output Parameters Performance 
metrics 

simulated 
annealing: 
RMSE = 0.0442; 
STDEV = 0.0036; 
MAPE = 2.35 

Andrianov (2018) Long Short-Term 
Memory model 
and ANN [2-10- 
10-10-1] 

7855 data points Inputs: Pressure (psi), temperature (◦F) 
Output: Gas, oil and water flow rates 

Not reported 

Ghorbani et al. 
(2018) 

MLP, RBF, 
LSSVM 
ANFIS, GEP 

1037 data points 
from Cheshmeh 
Khosh, Iran 

Inputs: Pressure (psi), temperature (◦F), viscosity (μ), square root of differential pressure 
(ΔP^0.5), and oil specific gravity (SG). 
Output: Liquid critical flow rate (STB/D) 

MLP: R2 =

0.999998; RMSE 
= 54.1785; 
AARE = 0.128 
RBF: R2 =

0.998918; RMSE 
= 1291.7; AARE 
= 2.677 
LSSVM: R2 =

0.9982; RMSE =
1692.837; AARE 
= 4.2 
ANFIS: R2 =

0.999566; RMSE 
= 824; AARE =
2.524 
GEP: R2 =

0.999935; RMSE 
= 394.8156; 
AARE = 1.22 

Mohammadmoradi 
et al. (2018) 

Multivariate 
linear regression 
and ANN [3-8-1] 
(Hybrid model) 

1600 data points 
from 12 deviated 
wells, Persian 
Gulf 

Inputs: (i) Choke size (1/64 in.), wellhead pressure (psi), gas condensate ratio (SCF/STB) 
(ii) Choke size (1/64 in.), wellhead pressure (psi), wellhead temperature (◦F) 
Output: Gas flow rate (MMSCF/D), Gas condensate rate 

ARE (%) = (i) 
1.89, (ii) 1.88 
[gas] 
1.89, 1.71 [for 
gas condensate]- 
MLP 
AARE (%) = (i) 
1.09, (ii) 0.45 
[gas] 
0.35, 0.51 [for 
gas condensate]- 
ANN 

Sun et al. (2018) Recursive Neural 
Network-Long 
short term 
memory (RNN- 
LSTM) 

Eagle Ford shale 
play in West 
Texas 

Inputs: Daily oil, gas and water production data with the tubing head pressure and wellhead 
pressure 
Output: Gas, oil and water flow rates 

RMSE: 81.65 
RMSE: 151.27 

Omrani et al. (2018) Artificial Neural 
Network i. MLP, 
ii. LSTM 

Gas well in the 
North Sea 

Inputs for gas flow rate: Flowline Pressure (psi), wellhead pressure (psi), wellhead 
temperature (◦F) 
Inputs for liquid flow rate: Bottomhole pressure (psi), wellhead pressure (psi), gas flow rate 
Output: Gas rate (MMSCF/D) & Liquid rate (STB/D) 

MLP: R2 = 0.98 
LSTM: R2 = 0.98 

Rashid et al. (2019) RBF-ANN-GA 276 data points Inputs: Upstream pressure (Pup), Gas-Liquid ratio (GLR), and Choke diameter 
Output: Liquid critical rate 

R2 = 0.9864; 
RMSE =
292.3785; AARE 
= 2.6103 

Ghorbani et al. 
(2019) 

Genetic 
algorithm (GA) 

182 data points 
Reshadat oil 
field, Iran 

Inputs: Wellhead pressure (Pwh) (psi), choke size (D64), (1/64 in); gas-liquid ratio (GLR) 
(SCF/STB), and basic sediments and water (BS&W) (%) 
Output: Oil critical flow rate 

QL =
Pwh(D64)

1.7056
(1 − BS&W%)

− 0.164

1.3522(GLR)0.74042  

R2 = 0.997; 
RMSE = 562.5; 
ARE = − 2.89; 
AARE = 7.33   

Kalam et al. (2019) ANN [5–19 – 1] 
Functional 
Networks 
ANFIS 

17097 data 
points from 7 
wells 

Inputs: Flowing well-head pressure (psi), upstream temperature (◦F), choke size (1/64 in.), 
and flowrate of condensate and water 
Output: Gas flow rate (MMSCF/D) 

ANN: R2 =

0.9532; AARE =
7.386 
Functional 
network: R2 =

0.91; AARE = 12 
ANFIS: R2 =

0.95; AARE = 14 
Amaechi et al. 

(2019) 
ANN [9–1 – 1] 
and Generalized 
Linear Model 
(GLM) 

Production data 
from 224 wells, 
China 

Inputs: Reservoir thickness (ft), shale content, porosity, permeability of the formation (mD), 
gas saturation, volume of fracture fluid, pump rate, fracture pressure of the formation, fluid 
flow-back rate 
Output: Gas flow rate(MMSCF/D) 

ANN: MSE =
1.24 
GLM: MSE =
1.57 

Al Kadem et al. 
(2019) 

ANN [3–10 – 1] 1854 data points Inputs: Flowing wellhead pressure (psi), and choke size (1/64 in), and gas oil ratio (SCF/STB) 
Output: Oil flow rate (STB/D) 

R2 = 0.8; AARE 
= 3.7 
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Table 7 (continued ) 

Authors Method/ 
Architecture 

Data size/source Inputs and Output Parameters Performance 
metrics 

Abedelrigeeb et al. 
(2019) 

ANN-PSO hybrid 
[4–25 – 1–1] 
Fuzzy Logic 

2445 
(volatile),766 
(black oil), 
Middle East 

Inputs: Oil flow rate (STB/D), Upstream tubing pressure (psi), mixture density, Gas oil ratio 
(SCF/STB) 
Output: Choke size (1/64 in.) 

ANN-PSO: R2 =

0.913; RMSE =
15; AARE =
10.96 
Fuzzy logic: R2 

= 0.89; RMSE =
18.02; AARE =
12.57 

Hassan et al. (2019) ANN [3–20 – 1] 
Fuzzy Logic 
Radial Basis 
Network 

250 data sets Inputs: Permeability ratio (Kh/Kv), Flowing bottomhole pressure (psi) and Lateral length (ft) 
Output: Liquid flow rate (STB/D) 

ANN: R2 = 0.98; 
AARE = 7.23 
Fuzzy logic: R2 

= 0.99; AARE =
13.92 
RBN: R2 = 0.99; 
AARE = 11.14 

Khan et al. (2019) ANFIS 
SVM 
ANN [5–6 – 1 ] 

1500 data points Inputs: Choke size (1/64 in.), Upstream pressure (psi), Upstream and Downstream 
Temperature (◦F), Oil API Gravity 
Output: Oil flow rate (STB/D) 

ANFIS: R2 =

0.991; AARE =
2.4 
SVM: R2 = 0.96; 
AARE = 3.7 
ANN: R2 =

0.994; AARE =
2.5 

Nazari and 
Alshafloot (2019) 

Extra Tree 
Regression 
Random Forest 
Regression & 
K-Nearest 
Neighbor 
Regression 

4323 data points 
from oil fields in 
the Middle East 

Inputs: Upstream pressure (psi), gas liquid ratio (SCF/STB), choke size (1/64 in.), 
temperature (◦F), differential pressure (psi) water-cut (%), gas oil ratio (SCF/STB), and flow 
regime (critical or subcritical) 
Output: Gross liquid flow rate (STB/D) 

Extra Tree 
Regression: R2 =

0.54 
Random Forest 
Regression: R2 =

0.50 
K-Nearest 
Neighbor: R2 =

0.44 
Khamis et al. (2020) ANN 

Fuzzy logic 
SVM and 
Functional 
networks 

10, 440 data 
points from fields 
in the Middle 
East 

Inputs: Choke sizes (1/64 in.), downstream and upstream wellhead tubing pressures (psi), 
gas relative density, mixture density and oil API 
Output: Oil (STB/D) and gas flow rates (MMSCF/D) 

ANN: R2 = 0.84 
Fuzzy logic: R2 

= 0.81 
SVM: R2 = 0.997 
Functional 
networks: R2 =

0.81 
Khan et al. (2020) ANN, ANFIS 

SVM 
Functional 
networks 

1400 data points 
from an Asian oil 
field 

Input: Choke size (1/64 in.), Upstream pressure (MPa), upstream and downstream 
temperatures (◦F), and oil API gravity 
Output: Oil flow rate (STB/D) 

ANN: R2 =

0.9936; AARE =
2.5618 
ANFIS: R2 =

0.9905; AARE =
2.4355 
Functional 
networks: R2 =

0.9614; AARE =
3.7396 

Bikmukhametov and 
Jäschke (2020b) 

MLP neural 
network 
LSTM neural 
network 
Gradient 
boosting 

Data from a 
subsea field on 
the Norwegian 
Continental Shelf 

Inputs: Pressure (psi) and temperature (◦F) at the bottom hole of the well; Pressure and 
temperature upstream of the choke; Pressure and temperature downstream of the choke; 
Choke opening; Well tubing length (ft); Well tubing diameter (in.); Fluid composition. 
Output: Oil flow rate (STB/D) & Gas flow rate (MMSCF/D) 

Oil rate: MLP: 
RMSE = 0.0458; 
LSTM: RMSE =
0.0476 
Gradient 
boosting: RMSE 
= 0.0463 
Gas rate: MLP: 
RMSE = 0.0328; 
LSTM: RMSE =
0.278 
Gradient 
boosting: RMSE 
= 0.0367 

Hotvedt et al. (2020) Hybrid model Edvard Grieg 
oilfield, Norway 

Inputs: Pressures (psi), temperatures (◦F) and choke opening (1/64 in.), mass fraction of oil, 
mass fraction of gas 
Output: Oil flow rate (STB/D) 

RMSE = 15; 
MAE = 8 

Dutta and Kumar 
(2020) 

ANN-FPA 20 data points 
from 
experiments 

Inputs: Different sensor output voltages, pipe diameter (in.) and liquid conductivity 
Output: Liquid flow rate (STB/D) 

RMSE = 0.75%; 
ARE = 99.25% 

Marfo and Kporxah 
(2020) 

Artificial Neural 
Network [4–2 – 1 
] 

1600 data sets, 
Jubilee field, 
Ghana 

Inputs: Gas production rate (Qg)(MMSCF/D), tubing head pressure (THP)(psi), flowing 
bottom-hole pressure (FBHP)(psi), production time (t) 
Output: Oil flow rate (STB/D) 
QO = 766.65 − 0.32t+ 738.82Qg − 0.67THP+ 0.33FBHP  

R = 0.9966; 
MAPE = 3.18 
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intelligence, a seamless merger of two or more machine learning tech-
niques with the aim of complementing each other is called hybrid 
computational intelligence or hybrid intelligent systems (Anifowose, 
2011). The main drive for combining two techniques is due to the fact 
that no single technique is adequate for all predictive or classification 
situations (Helmy and Anifowose, 2010). The essence of combining two 
or more techniques is to produce a versatile and robust technique whose 
performance is enhanced (Tsakonas and Dounias, 2002). Hybrid intel-
ligent systems combine the strength (or best properties) of each method 
while repressing the deficiencies of each individual technique in the 
hybrid (Anifowose et al., 2017). Hybrid intelligent systems can be built 
in different ways and for different reasons namely: for feature selection, 
architecture integration/optimization and data manipulation (Anifo-
wose et al., 2017). Examples of hybrid techniques that are based on 
model parameters optimization include: Artificial Neural Network – 
Particle Swarm Optimization (ANN-PSO), Genetic Algorithm - Adaptive 
Neuro-Fuzzy Inference System (GANFIS) Artificial Neural Network – 
Genetic Algorithm (ANN-GA), Artificial Neural Network-Imperialist 
Competitive Algorithm (ANN-ICA), Particle Swarm Optimization- 
Least Square Support Vector Machine (PSO-LSSVM), Artificial Neural 
Network – Flower Pollination Algorithm (ANN-FPA), Artificial Neural 
Network – Teaching Learning Based Optimization (ANN-TLBO). For 
architectural integration, Adaptive Neuro-Fuzzy Inference System 
(ANFIS) can be used. For data manipulation, hybrid algorithms such as: 
Principal Component Analysis – Artificial Neural Network (PCA – ANN), 
Fuzzy Ranking – Support Vector Machines (FR-SVM), Singular Value 
Decomposition – Extreme Learning Machine (SVD-ELM) are used. 

3.4.1.4. Support vector machine (SVM). Support vector machine (SVM) 
is a machine learning technique that was developed by Vapnik (1995). 
This technique is based on the statistic learning theory. There are basi-
cally two ideas on which the SVM technique is based. The first is margin 
maximisation and the second is non-linear classification. SVM is based 
on the concept of decision planes that define decision boundaries. An 

SVM model attempts to pick up the input data characteristics in order to 
classify and predict new observations based on the training data. 

The working principle of SVM is that it finds an suitable line of 
separation called a ‘hyperplane’ to precisely categorize two or more non- 
identical classes in a given classification problem. SVM uses a linear 
model to implement nonlinear class boundaries via some nonlinear 
mapping input vectors into a high-dimensional feature space (Samanta 
et al., 2003). The main goal of SVM is to find out the optimal hyperplane 
or the maximum margin classifier which is the farthest from the obser-
vations. The notation used to define a hyperplane is given by: f(x) =
β0 + βTx where β represents the weight vector and β0 is the bias. The 
optimal hyperplane can be represented in an infinite number of different 
ways by scaling of β and β0. A good separation of classes is achieved by 
having a hyperplane that has the largest distance to the nearest training 
data points. Generally, the training examples that are in close proximity 
to the hyperplane are referred to as support vectors. To handle non-linear 
data in SVM, mathematical functions called kernel functions are used. 
The kernel has the function of transforming input data to the required 
form. Examples of kernel functions include: linear, non-linear, poly-
nomial, radial basis and sigmoid functions. 

3.5.1.5. Genetic algorithms (GA). Genetic algorithm (GA) is essentially a 
search optimization algorithm that is rooted in the principles of natural 
selection. GA mirrors the idea of “survival of the fittest” which is a process 
in a natural system where the strong adapts while the weak perishes 
(Goodman, 2009). GA is a population based method in which the 
members of the population are rated on the basis of their fitness. This 
population represent possible solutions to the problem. The fitness value 
portrays a chromosome’s ability to adapt and produce new offspring. 
Put differently, GA generates an initial population of possible solutions 
and then recombines them in a manner to steers their search toward 
more favourable areas of the search domain (Mitchell, 1995). 

Basically, a GA is made up of five major processes namely: (i) a 
random number generation process, (ii) a fitness evaluation unit, (iii) a 
reproduction process, (iv) a crossover (recombination) process, and (v) a 
mutation operation. Whereas the reproductive process chooses the 
fittest candidates out of the population, the crossover process helps in 
the combination of the fittest chromosomes and the passage of 
outstanding genes to the next generation. The mutation operation helps 
in gene alteration in a chromosome (Bhattacharjya, 2012; Uzel and Koc, 
2012). The algorithm terminates when an optimal solution (best fitness) 
is obtained or the maximum number of generations has been reached. 
Genetic Programming (GP) is the generalized form that emanates from 
GA (Cheng, 2007). GP is a predictive algorithm that mirrors the evolu-
tion of living organisms (Koza, 1992). Though GP and GA have the same 
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Hassan et al. (2020) Artificial Neural 
Network i. [4–4 – 
1 ] 
ii. [5–20 – 1 ] 

850 data points  (i) Inputs for hydraulically fractured horizontal well: dimensionless pressure (PD), number 
of fractures (n), fracture conductivity (CFD), permeability ratio (Kv/Kh)  

(ii) Inputs for fishbone well: lateral length, number of laterals, distance between laterals, 
permeability ratio, flowing bottomhole pressure 

Output: Oil flow rate (STB/D) 

i. R = 0.993; 
AAPE = 8.39% 
ii. R = 0.995; 
AAPE = 6.36% 

Al-Rumah et al. 
(2020) 

ANN [3–39 – 23 - 
1] 
LSSVM 
SIMPLEX 

1111 data points 
obtained from 
literature 

Inputs: Wellhead pressure (psi), choke diameter (1/64 in.), gas liquid ratio (SCF/STB) 
Output: Liquid flow rate (STB/D) 

ANN: R2 =

0.9292; RMSE =
863.98; AARE =
22.06% 
LSSVM: R2 =

0.9477; RMSE =
719.6; AARE =
21.5% 
SIMPLEX: R2 =

0.885; RMSE =
1067; AARE =
26.8%  

Fig. 2. Schematic diagram of an artificial neural network process.  
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framework, GP is a structure optimization method while GA is a 
parameter optimization method (Alavi et al., 2011). Another modified 
form of GA and GP proposed by Ferreira (2001) is the gene expression 
programming (GEP). The GEP algorithm generates a population of 
randomly chosen individual chromosomes and thereafter transforms 
each individual into different shapes and sizes of expression trees. These 
expression trees represent solutions with mathematical expressions. The 
GEP model has a striking similarity to the GP in that they both have the 
fitness function, function and terminal sets, control parameters and 
terminal conditions in common. (Aslam et al., 2020). 

3.3.2. Parameter ranges used in AI models for oil and gas flow rate 
prediction 

Table 8 presents a summary of the range of the parameters used in 
the modelling of fluid flowrate. It is evident that the important param-
eters are: (1) wellhead pressures, (2) GOR, (3) oil and gas specific 
gravity (4) choke size, (5) gas oil ratio, (6) wellhead temperature while 
flowrate was the output parameter. Wherever information is not indi-
cated, it means that no actual reporting was made in the relevant 
reference. 

From an inspection of the list, it is evident that there is no consensus 
on the input parameters required for modeling fluid flowrate. While 
most studies considered four input parameters (wellhead pressure, 

choke size, temperature and GOR), others included parameters such as 
water cut and gas liquid ratio. The widest range for temperature was in 
the study by Khan et al. (2019) and Khan et al.(2020) wherein tem-
peratures are in the range of have 62–292 ◦F, whereas, the least range 
was 60–120 ◦F as given by Gorjaei et al. (2015). For wellhead pressure 
range [115–4308 psia], the highest was by Baghban et al. (2016) while 
the least [5.469–28.4 psia] was by Kaydani et al. (2014). For choke size 
range, the highest [7.7–192 (1/64 inch)] was that given by Al Kadem 
et al. (2019), while the least [20–37 (1/64 inch)] was given by Abe-
delrigeeb et al. (2019). It is observed that water cut was the least used 
parameter amongst the researchers, while wellhead pressure, choke size, 
GOR and wellhead temperature were the most used parameters. 

3.3.3. Findings on AI modelling of oil and gas flow rate 
Table 9 presents a summary of the major findings by various re-

searchers on the artificial intelligence based models they developed for 
predicting oil and gas flow rates as showcased in Table 7. Their findings 
are generally situated within one or more of the following domains. The 
domains are accuracy of the models, performance comparison, ease of 
use and the application range. 

In summary, from Table 9, many computational intelligence algo-
rithms, such as artificial neural networks (ANNs), adaptive neuro-fuzzy 
inference system (ANFIS), support vector machine (SVM), and support 

Table 8 
Summary of range of data used by researchers on the use of AI techniques in modelling flow rate of oil and gas.  

Author(s), Year Flow rate (STB/ 
D) 

Wellhead 
pressure 
(psia) 

Oil specific 
gravity 

Gas specific 
gravity 

GOR (SCF/ 
STB) 

Wellhead 
Temperature 
(◦F) 

Choke size 
(1/64 inch) 

Water cut 
(%) 

GLR (SCF/ 
STB) 

Al-Shammari 
(2011) 

639–21300 92–1550 25.4–47.5  11–6300 160–233  0–97.5  

Al-Khalifa and 
Al-Marhoun 
(2013) 

268–26400 38–3141 0.765–0.997 0.708–1.4 10–5812 141–326 12–172 Not 
available 

Not available 

Kaydani et al. 
(2014) 

100–4500 5.469–28.4   400–1500 120–180 0.2m–3.2 m   

Elhaj et al. 
(2015) 

2.17–17.17 
MMScf/d 

520–1840  0.588–0.632  535.2–564 16–128   

Seidi and Sayahi 
(2015) 

11.3–113 
MMscf/d 

14.5–1407    109–211 40–192 Not 
applicable 

0.688–32.215 

AlAjmi et al. 
(2015) 

692–8028 830–1590 Not available Not available 224–4574 69–147 16–73 0–64.5 97.3–4574 

Baghban et al. 
(2016) 

198–9646 115–4308   158–20324  16–112   

Buhulaigah et al. 
(2017) 

972–9350 276.8–1621     5–100   

Gorjaei et al. 
(2015) 

668.4–14480.8 1646–3000     21–68  828.1–13095.1 

Al-Qutami et al. 
(2017b) 

4712.9–14190 3843.8065 - 
4642.658    

143.06–149.9 10.9–34.3   

Rostami and 
Ebadi (2017) 

198–9643 115–4308 22.97–43 0.63–1.04 158–20324  16–112   

Choubineh et al. 
(2017) 

1324–22150 50–2940 0.808–0.92 0.6886–1.236 107–3660 90–135 24–80 Not 
available 

Not available 

Ghorbani et al. 
(2017) 

0.27–55.590 284–6115  0.62–0.82  80–163 16–80   

Ghorbani et al. 
(2018) 

2195–119005 0.8–250 0.8820–0.997   57.2–240.8    

Kalam et al. 
(2019) 

1.82–87.71 
MMSCF/D 

47.62–1590   174–1981  4–100   

Ghorbani et al. 
(2019) 

205–34450 133–881     25.6–64  36–885 

Abedelrigeeb 
et al. (2019) 

735–25396 280–1600 32–37  14–3200  20–37   

Khan et al. 
(2019) 

211–1795 241–1483 26.9–31   62–292 12–54   

Al Kadem et al. 
(2019) 

1073–19526 222–1589     7.7–192   

Khamis et al. 
(2020) 

312–20308 200–1360   100–3507  17–159   

Khan et al. 
(2020) 

210–1795 240–1483 26.9–31   62–292 12–54    
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vector regression (SVR), were reported as effective for estimating oil and 
gas flow rates. One point that runs through the findings of the re-
searchers is that the AI models have good predictive capability, how-
ever, they agree that the performance of these machine learning models 
could be improved through hybridization with other machine learning 
methods especially evolutionary algorithms. Such hybrids provided 
more robust and efficient models that can effectively learn complex flow 
systems in 3.3.4an adaptive manner. Although literature includes 
numerous evaluation performance analyses of individual machine 
learning models, there was no definite conclusion reported with regards 
to which models function better in certain applications. 

3.3.4. Critique of the artificial intelligence (AI) based models reported in 
literature 

This section of the paper takes a critical look at the AI models for 
predicting oil and gas flow rate as extracted from the literature. The 

critique looks at the applicability of the model in the field, its replica-
bility, its generalizability and the computational cost of the models. In 
order to be objective, this critique restrained itself from implicitly 
assigning more weight or credence to one study over another based on 
any criteria, rather its focus is twofold: (i) To critically explore the 
strengths, weaknesses and scope of each of these models and how the 
challenges and gaps in each model is helping to shape the trend in the 
evolving improvement of fluid flow rate models (ii) To serve as a form of 
feedback that would help further/deepen knowledge on the subject. 

3.3.4.1. Input feature selection and field applicability of the models. 
One major problem with most AI solutions published so far is in the 
choice of the input variables. Selecting the most relevant input features 
for training and testing is fundamental to simplifying the models and 
enhancing their performances. This problem explains some of the 
challenges of field applicability of the models. It is important to mention 

Table 9 
Summary of findings by researchers on the use of AI techniques in modelling critical flow rate of oil well fluids.  

Author(s), Year Method used Major findings and conclusions 

ZareNezhad and 
Aminian (2011) 

Artificial Neural Network The model can be utilized for a robust design of wellhead chokes under subcritical flow conditions 
of gas condensates. 

Berneti and 
Shahbazian, (2011) 

ANN and Imperialist Competitive Algorithm (ANN- 
ICA) 

The predictive performance of the ICA-ANN soft sensor outweighs that of ANN; because ICA-ANN 
combines both the local and global searching ability of the ANN and ICA respectively. 

Ahmadi et al. (2013) ANN, Fuzzy Logic, Artificial neural network - 
Imperialist Competitive Algorithm (ANN-ICA) 

Of the three methods used in the work, the ANN-ICA technique performed better than the fuzzy 
logic and artificial neural network techniques. 

Seidi and Sayahi 
(2015) 

Genetic algorithm The proposed model is capable of estimating high flow rates of gas condensate wells under sub- 
critical conditions particularly in case of large choke sizes. 

Elhaj et al. (2015) ANN, Fuzzy logic 
SVM, Functional network, Decision tree 

Of the five techniques studied, the fuzzy logic and artificial neural network techniques gave the 
best results for gas flow rate prediction. 

Hasanvand and Berneti 
(2015) 

Artificial Neural Network The ANN multiphase flow meter eliminates the need for a separator and has no source of 
radioactive emissions, thus is safe for both field personnel and the environment. 

Zareiforoush et al. 
(2015) 

Artificial Neural Network The proposed ANN model can predict wet factor with 95% accuracy. 

Choubineh et al. 
(2017) 

Hybrid method (ANN-TLBO) (i) Beyond being useful for prediction of liquid critical flow rate in oil wells in Southern Iran, it 
could as well be used worldwide 
(ii) A modest increase in prediction capability was observed with the six parameter models 
compared to the three parameter model. 

Rostami and Ebadi 
(2017) 

Gene Expression Programming (GEP) 
Artificial Neural Network 

The ANN model performed better than the GEP model. However, ANN does not establish an 
explicit mathematical relationship between the input and output parameters whereas the GEP 
model can present explicit correlations which can be integrated easily into commercial software 

Buhulaigah et al. 
(2017) 

Artificial Neural Network In comparison with other models, the neural network model proved to be more accurate given the 
dataset used. 

Ghorbani et al. (2018) MLP, RBF, LSSVM 
ANFIS and GEP 

The predictive accuracy was highest for the MLP algorithm while the GEP and RBF also achieved 
high levels of accuracy. However, the ANFIS and LSSVM algorithms performed less, especially in 
terms of predicting low flowrates in the region of <40,000 STB/day. 

Andrianov (2018) LSTM and ANN The LSTM model performed better than the ANN model even when a single pressure reading is 
used for the training. 

Al-Qutami et al. (2018) Neural network ensemble and adaptive simulated 
annealing 

The proposed model performs well in its predictions and is inexpensive to develop compared to 
existing models. Though ensemble techniques may attract additional computational costs, this is 
offset by the enhanced performance achieved 

Kalam et al. (2019) ANN, Functional Networks and ANFIS The ANN model had higher prediction accuracy than the FN and ANFIS models with accuracy 
levels in excess of 90% being recorded 

Abedelrigeeb et al. 
(2019) 

ANN-PSO The predictive capability (in terms of speed and accuracy) of the hybrid of ANN and PSO was 
higher than that of the fuzzy logic model 

Hassan et al. (2019) ANN, Fuzzy Logic 
Radial Basis Function 

In forecasting the productivity of the fishbone wells, the neural network model outperformed the 
fuzzy logic and the radial basis function models 

Amaechi et al. (2019) ANN and Generalized Linear Model (GLM) From the analysis, it was observed that the ANN model performed better than the GLM model with 
both models having a mean square error of 1.24 and 1.57 respectively. 

Rashid et al. (2019) Artificial Neural Network The proposed model is valid given the how close the errors of the training, testing and validation 
datasets are to each other. 

Khan et al. (2019) ANFIS, SVM, ANN In comparison with other correlations developed in the work (ANFIS, SVM) and those existing in 
literature, the ANN performed better than these correlations. 

Khamis et al. (2020) ANN, Fuzzy Logic 
SVM, Functional Networks 

Comparing the four techniques of ANN, fuzzy logic (FL), SVM and functional networks in terms of 
their predictive capability, the fuzzy logic model gave the best predictions. 

Khan et al. (2020) ANN, ANFIS 
SVM, Functional networks 

Among the four techniques of ANN, ANFIS, SVM and functional networks utilized, the ANN 
technique proved to provide the optimal model. 

Dutta and Kumar 
(2020) 

Artificial Neural Network – Flower Pollination 
Algorithm (ANN-FPA) 

Owing to the few number of parameters to be adjusted during the process of optimization, the ANN 
and flower pollination can easily be implemented. The proposed ANN-based FPA method has the 
capability to solve problems in real time with great precision. 

Marfo and Kporxah 
(2020) 

ANN and Decline Curve Analysis methods In comparison with the decline curve analysis methods (Exponential, Harmonic and Hyperbolic), 
the ANN model has a better predictive capability with higher accuracy 

Hassan et al. (2020) Artificial Neural Network The proposed ANN model has the ability to compute well performance in a relatively simple 
manner and can easily be incorporated into commercial software.  
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that a greater percentage of the AI based models developed presently 
make use of gas oil ratio (GOR) or gas liquid ratio (GLR) as input. First, 
Elgibaly and Nashawi (1998) asserted that the total GOR is usually not 
obtained from routine production tests but are determined from PVT 
analysis. Al-Qutami et al. (2018) shared the same viewpoint when they 
reported that GOR is usually obtained from laboratory sampling and 
therefore cannot be used to determine flow rate in the field. 

Second, in most oil field operations, the produced gas is either vented 
or flared and as a result the value of the stock-tank GOR is usually not 
available (El-Banbi et al., 2018). To estimate stock tank GOR, models 
dependent on conditions at the primary separator are utilized. This fact 
resonates with the view held by Zhou et al. (2018) wherein they re-
ported that in most field conditions, accurate measurements of the input 
data, such as pressure, temperature, and GOR have large uncertainties. 
Mohammadmoradi et al. (2018) zooms in on this same point. They 
opined that during the field production lifetime, there are influential 
variables that are not exactly known or continuously monitored one of 
which is the condensate gas ratio. 

Third, a close look at the in-house company models as shown in 
Table 12 used by companies indicate that the GOR/GLR parameter is 
conspicuously missing, thus suggesting that it may not be relevant for 
field computation of fluid flow rates. Bokhamseen et al. (2015) also 
found out through sensitivity analysis that condensate gas ratio (CGR) 
had an insignificant effect on gas flow rate prediction. According to 
Woodroof (2020), the total gas oil ratio is typically not fully measured in 
a well test; hence, the gas flow rates of a multiphase flowmeter (MPFM) 
cannot be reliably validated. Furthermore, the fact that engineers prefer 
to use easily obtained parameters in any engineering calculation (Leal 
et al., 2013) makes the use of the models that include GOR in their 
models irrelevant for field application. 

In summary, since GOR when used as an input cannot be measured 
by relatively inexpensive means due to its variation with composition, 
thus, utilizing it as an input would not quite be economical. Nonetheless, 
several studies adopted this parameter for predicting oil and gas flow 
rate. However, it must be stated that not all the studies reviewed made 
use of this parameter. Cases where this parameter was excluded or not 
taken into consideration are in the works of Elhaj et al. (2015), Al-Qu-
tami et al. (2018), Khan et al. (2019), Khan et al. (2020), Bikmukha-
metov and Jäschke (2020b). While GOR is a sticky point to handle, other 
researchers have zoomed in other factors such as temperature and water 
cut. For instance, Zhou et al. (2018) reported that while choke size and 
upstream pressure are the two most important parameters affecting 
prediction performance, however by contrast, the effects of water-cut 
and temperature are relatively small. In addition, some researchers 
developed models to determine the flow rate wherein they used pa-
rameters that are difficult to obtain in real time; an example of such 
parameter is reservoir permeability as seen in the works by Hassan et al. 
(2019) and Buhulaigah et al. (2017) as well as fluid properties such as 
fluid viscosity as seen in the work by Ghorbani et al. (2018). Finally, the 
lack of sensitivity analysis on the impact of the input variables on oil and 
gas flow rate prediction for most of the studies reported is considered 
missing points in the literature. 

3.3.4.2. (ii) replicability of model results. Replicability is the foundation 
that enables the independent validation of the findings or results of a 
research (Dou et al., 2018). According to Miłkowski et al. (2018), the 
ability to reproduce/replicate the results of a scientific model is closely 
linked with some of the general features of a scientific study. The pos-
sibility to replicate the results from published research is one of the 
major challenges in model development using AI. This makes it some-
what challenging to re-implement AI models based on the information in 
the published research. The reason being that the details of the model 
have not been made available. For instance, AI techniques such as ANN 
used by most researchers in the literature for developing flow rate cor-
relations have been inadequate because the necessary details of the 

model namely the weights and biases of the network that can be used for 
reproducing the results of the models were not presented by the re-
searchers. Instances are found in the works of Al-Khalifa et al. (2013); 
Ahmadi et al. (2013); Zangl et al. (2014); Okon and Appah (2016); 
Buhulaigah et al. (2017); Rostami and Ebadi (2017); Amaechi et al. 
(2019); Marfo and Kporxah (2020); Khamis et al. (2020); Bikmukha-
metov and Jäschke (2020b). However, only a few included these details 
in their work. They are Hassan et al. (2019), Hassan et al. (2020), Khan 
et al. (2019) and Khan et al.(2020). 

To underscore the importance of these details, Chaabene et al. 
(2020) states that an explicit vector of weights and biases coupled with a 
fixed number of hidden layers and hidden neurons obtained after 
numerous trials results in a well-defined ANN model. Secondly, an 
impediment to the use of most AI techniques such as support vector 
machine (SVM) and ANN is their black box nature which do not allow 
for a clear mathematical equation relating the input data to the output; 
thus, they are not user-friendly and cannot be integrated into commer-
cial software. Little wonder, Bikmukhametov and Jäschke (2020b) 
opined that AI models are often considered as black-box solution which 
is one reason they are still not widely used in operation of process en-
gineering systems. However, one AI technique – the gene expression 
programming (GEP) or multigene genetic programming (MGGP) is one 
that can evolve explicit equations which could easily be integrated into 
commercial software (Rostami et al., 2017). These explicit models can 
be seen in the works by Rostami and Ebadi (2017); Kaydani et al. (2014) 
and Ghorbani et al. (2017) and Ghorbani et al. (2019). 

3.3.4.3. Generalizability of the models. The functionality and robustness 
of a model resides in its ability to generalize. Generalization simply put 
refers to the consistency in which a model predicts when unseen data is 
supplied to it (Kronberger, 2010). According to Alexander et al. (2015), 
the gold standard for gauging a model’s generalizability is to subject it to 
an independent dataset (data that was not used to develop the model). 
Using an independent dataset is vital as it reveals the true predictive 
capability of the model (Lawson and Marion, 2008). 

According to Beck and Kurz (2020), generalizability of a model is one 
of the most prized features of any model. They added that generaliz-
ability of a model is not just limited to the model’s applicability beyond 
its training regime, but also includes a reliable backup structure in cases 
where the model has the potential to fail. While ANN is the prepon-
derant method used by most researchers to develop oil and gas flow rate 
models, it must be said that it has a strong ability to find the local 
optimistic solution while it weak in finding the global optimistic solu-
tion. Hence, this most likely has a great effect on the generalizability and 
robustness of the models developed especially for models that were not 
cross validated. As a solution to the local convergence problem, Christou 
et al. (2019), asserts that using Extreme Learning Machines (ELM) as an 
alternative method can put the problem to rest. 

3.3.4.4. Complexity and computational burden of developed models. Ac-
cording to Beck and Kurz (2020), it is generally observed that a model 
would gain wider acceptability amongst a community of users if the 
model is computationally cheap, robust and easy to understand and 
implement. Hence, a balance has to be struck between a model’s 
complexity or completeness, its prediction time and its accuracy or 
precision (Downton, 2012). Most of the models reviewed in this work 
were developed using ANN. According to Bonfitto et al. (2019), the 
network architecture chosen by the user determines how effective and 
accurate an ANN model would be. This is because the chosen architec-
ture may cause the resulting network to occupy much space in the 
program memory while also increasing the processing time (Bonfitto 
et al., 2019). Memory occupation is directly linked to the number of 
neurons contained in the hidden layer of the network. 

Though several ANN architectures have been proposed by diverse 
authors in the literature for predicting oil and gas flow rates, however, to 
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the best of the authors’ knowledge, there is no mention of the compu-
tational burden of these architectures by any of them; hence the 
computational cost of the ANNs are missing points in the literature. 
Thus, for a given model, a compromise has to be made between the 
model’s effectiveness and its memory consumption. This work therefore 
aligns itself with the thoughts of Kalechofsky (2016) who posits that 
having a complex model is not consistent with having good predictions. 

3.3.4.5. Model performance assessment. There is need for quantifying 
the performance of a model after it has been trained and subjected to a 
test data (Scheinost et al., 2019). The performance of a model essentially 
entails computing the deviations between the actual values and the 
model’s prediction. This can be evaluated in diverse ways. Thus, 
defining the chosen metric before the analysis is necessary (Scheinost 
et al., 2019).While there exist so many metrics that can be used to assess 
the performance of models, some of the studies reviewed used only a 
single statistical metric to assess the performance of their model. This is 
found in the works by Baghban et al. (2016) and Nazari and Alshafloot 
(2019) wherein they used only the goodness of fit (R2) while Amaechi 
et al. (2019) and Bikmukhametov and Jäschke (2020b) used the MSE 
and RMSE values to assess their models performance respectively. Bello 
et al. (2014) mentioned that they used the absolute error metric, how-
ever, the values were missing. Others utilized two metrics as follows: 
Dutta and Kumar (2020) – (RMSE and accuracy); Zangl et al. (2014) – 
(R2 and average error metrics); Marfo and Kporxah (2020) and Hassan 
et al. (2020) – (the correlation coefficient (R) and mean absolute per-
centage error); Ahmadi et al. (2013) – (R2 and MSE); Beiranvand and 
Khorzoughi (2012) – (average error and average absolute error) while 
ZareNezhad and Aminian (2011) made use of three statistical metrics. It 
is interesting however to mention that Rostami and Ebadi (2017) made 
use of 11 metrics to evaluate the performance of their models. Concerns 
raised about the performance of some metrics such as RMSE and MAPE 
by Al-Qutami et al. (2018) indicate that though both metrics can be used 
to assess a model’s performance, however, they do not show how ac-
curate the model is for the flow metering application. Hence, they rec-
ommended the use of the cumulative deviation plot. 

Criticisms have trailed the use of some of these metrics especially 
when used as the only means of assessing a model’s performance. For 
instance, Spiess and Neumeyer (2010) asserts that using R2 as the only 
means of demonstrating the validity of a model is not state-of-the-art. In 
its place, they suggested that either the Akaike Information Criterion or 
the Bayesian Information Criterion value should be used. Archontoulis 
and Miguez (2015) also zooms in on this same point. They posit that 
although often used, the R2 does not represent a good metric of model 
performance for nonlinear models. Li (2017) also shares the same sen-
timents. He argues that R and R2 beyond being incorrect, does not 
measure a model’s accuracy except if the values for the actual and 
predicted match perfectly. Wallach (2006) listed one of the limitations 
of the R2 value as not being able to account for the number of parameters 
and advised that other metrics or combinations of metrics should be 
used. Finally, one drawback of using R2 as a performance metric is that it 
can show very good results even when the output has a large variance. 
Hence, the R2 value can be misinforming if there are a few output values 
that are far away from the overall scatter of the actual and predicted 
values. In this case, these few points can increase R2 artificially (Kuhn 
and Johnson, 2019). In summary, while we do not claim that any one 
metric is better than another, rather a combination of metrics would be 
more useful in assessing a model’s performance. 

3.3.4.6. Effect of data size. According to Hemmati-Sarapardeh et al. 
(2020), the reliability or otherwise of AI models has a lot to do with the 
quality and size of the data used for developing the model. Using a large 
sized dataset with a wide range of data points will lead to the devel-
opment of a better predictive model with the model being more likely to 
pick up on generalizable features (Hemmati-Sarapardeh et al., 2020). 

Furthermore, the use of large datasets increases the power to discern the 
relationships amongst input variables and the output and decreases the 
chances of overfitting. 

As seen in Table 7, most of the extant models exhibited good per-
formances by dealing with databases of different sizes. According to 
Hemmati-Sarapardeh et al. (2020), utilizing more than 100 experi-
mental points for building the intelligent models leads to reliable results. 
Going by this, about 10% of the models in Table 7 were developed with 
less than 100 data points. This cold start problem arising due to lack of 
sufficient data is worth looking into. However, it is gratifying to note 
that 90% of the studies utilized datasets having a wide range with a good 
number of data points. 

In addition, some studies developed ANN models using minimal 
number of data points and reported training coefficients close to 1. This 
is despite the well-known guidelines in ANN literature that the ratio of 
number of data points to the number of weights in the network should be 
greater than or equal to 2 to avoid overtraining (Kakar, 2018). Here, the 
weights of the network are the unknown variables and the training set is 
the number of equations. Thus, the sum of the all weights in a network at 
least must be equal to number of training set data. For instance, to 
develop an ANN model consisting of 3 input neurons, 12 hidden neurons 
and 1 output neuron, [(3x12) + (12x1)] = 48 unknown variables must 
be estimated by neural network; then at least 48 data points are required 
as the training data. This was not seen in the works of Okon and Appah 
(2016); Choubineh et al. (2017) and ZareNezhad and Aminian (2011). 
This may have led to overtraining of the network. Moreover all of the 
studies listed above did not discuss how they handled their model to 
avoid the overtraining of the network. 

4. Predicting flowrate of oil and gas using a fusion of sensors 
and artificial intelligence techniques 

Traditional sensors incorporating soft computing techniques provide 
an effective solution to the measurement of phase flowrates. Indirect 
techniques based on traditional sensors incorporating soft-computing 
algorithms, such as artificial neural network (ANN), support vector 
machine (SVM), least-squares support vector machines (LSSVM) and 
extreme learning machine (ELM) together with genetic algorithms or 
particle swarm optimization, have also been applied to two-phase or 
multiphase flow measurement. Some sensors that can be utilized with 
these AI techniques include: wire mesh sensors (WMS), ultrasonic and 
differential pressure sensors etc. According to Xu et al. (2020), these 
methods are practicable in the laboratory and not in the field. The 
studies where a combination of these sensors was made with AI tech-
niques is presented in Table 10. From Table 10, it is observed that ANN 
was the AI technique mostly utilized for the ensemble models. 

4.1. Findings on using a fusion of sensors and AI methods in modelling of 
oil & gas flow rate 

Table 11 provides a summary of the findings by researchers who used 
a fusion of sensors and AI techniques for predicting oil and gas flowrates. 
From the summary, the ANN algorithm is the most frequently used AI 
method for fusion with sensors. Other techniques such as SVM and ge-
netic programming have also been reported. In some studies where ANN 
and SVM were used, the researchers reported the superiority of the SVM 
over the ANN algorithm in terms of accuracy and robustness. While most 
of the studies reviewed reported remarkable results and possible field 
applicability for the hybrid system, the combination (Venturi tube and 
dual electrical capacitance tomography (ECT) sensors + convolutional 
neural network (CNN)) proposed by Xu et al. (2020) was said to be 
unsuitable for field application owing to the fact that the combined CNN 
and ECT had a high computational burden. 
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5. Company based flow rate prediction models 

In estimating oil and gas flow rate, each company have their unique 
technique or model. These models are largely based on experience or on 
empirical analysis. Table 12 highlights these models and the respective 
companies that apply them. It is observed that the models are mainly for 
predicting gas flow rates. For most of the models, wellhead pressure, 
choke size and wellhead temperatures were the predominantly used 
input parameters. Unlike the models for predicting gas flow rate in 
Table 4 that have GLR or CGR as input parameters, these company based 
models for predicting gas flow rate are completely devoid of this 
parameter. Owing to the confidentiality of the models, the models’ co-
efficients are not included. 

6. Summary, conclusions and recommendations 

This study has comprehensively and systematically identified and 
critically appraised papers which either developed novel correlations or 
updated existing prediction models for oil and gas flow rate through 
chokes. The work assessed their performance and highlighted errors that 
may have been made in their formulation. A total of 120 flow rate 
correlations were isolated and critically reviewed. Among them, 44 

correlations are based on the non-linear regression technique, 6 are in 
house company based models, 9 correlations are theoretical based 
models, 49 correlations are based on AI techniques and 12 correlations 
are based on an amalgam of sensors and machine learning models. This 
paper avoided an encyclopaedic account of every paper on this subject; 
rather it made an in-depth discussion of current progress and challenges 
highlighting those areas of interest and significance. Based on this, the 
following conclusions are drawn:  

• Most of the oil and gas flow rate prediction models are either limited 
in the range of application due to data constraints or are too regional 
in their application. Many of the empirical and AI based models were 
developed for oilfields in the Middle East region.  

• It is observed that the size of the dataset used for developing the 
models varies from one study to another. Studies that considered 
fewer data examples may record accurate results. However, the 
models developed in these instances have the tendency to come off 
with higher error values when exposed to new data compared to 
those developed from more extensive databases.  

• While it is attractive to attempt making models comprehensive by 
incorporating numerous input variables, the model could become so 

Table 10 
Traditional sensor fusion with machine learning algorithms.  

Reference Sensor AI technique Inputs from sensor & Outputs + data size Performance 

Sheppard and 
Russell (1993) 

Gamma-ray densitometer ANN Input: 12 time series measurements 
Output: Gas & liquid mass flow rates [12 data sets] 

Root mean square: 13% 

Geng et al. (2006) Slotted orifice ANN [9-7-2] Inputs: Signal features in time and frequency, fluid 
properties, pipeline parameters 
Output: Gas and liquid mass flow rate 

Relative error 
Gas:±6% 
Liquid: ±12% 

Huang et al. 
(2009) 

Conductivity sensor LSSVM Input: Not stated 
Output: Total volume flow rate and total mass flow rate of 
oil-water two-phase flow [104 conductivity values] 

Maximum relative error of the total 
volume flow rate is <±1.0%. Relative 
error of total mass flowrate <5% 

Meribout et al. 
(2009) 

1) Venturi sensor and 2) 
conductance, capacitance, 
ultrasonic, or differential pressure 
sensor 

ANN Inputs: ρ, venturi, and ΔP probes 
Outputs: Gas, oil & water flow rates [240 data points] 

Average error 
Gas: 4.68% 
Oil: 6.20% 
Water: 3.91% 

Xu et al. (2011) Throat-extended Venturi meter 
(TEVM) 

ANN [11-20- 
1] [Gas] 
[11-18-1] 
[Water] 
SVM 

Inputs: Signals from: differential pressure (DP) across the 
converging section and a DP across the extended throat 
section, temperature, and static pressure 
Output: Gas and liquid flow rate [1460 data vectors] [Wet 
gas flow] 

Relative error 
Gas: SVM – .86% 
Gas: ANN – .14% 
Water: SVM – 4.25% 
Water: ANN: 4.77% 

Shaban and 
Tavoularis 
(2014) 

Differential pressure sensor ANN Inputs: Five features from the time histories of ΔP, and the 
correlation coefficient of the pressure fluctuations 
measured by the two pressure transducers in the test 
section 
Outputs: Gas and liquid flow rate [570 data points] 

Average absolute relative error (i) 
Liquid: 6.1–8.7 
(ii) Gas: 6.2–16 

Wang et al. 
(2017) 

Coriolis flowmeters BP-ANN 
RBF-ANN 
SVM 
GP 

Inputs: Observed density drop, apparent mass flowrate, 
damping, and DP 
Outputs: Gas and liquid flow rates [237 data points for 
ANN]  

Bahrami et al. 
(2019) 

Piezoresistance differential pressure 
transducers, inline viscometer & 
thermometer 

ANN [5-7-7- 
3] 

Inputs: Temperature, viscosity, standard deviation, 
coefficients of skewness and kurtosis 
Output: Gas, oil water flow rates [5400 sets of data from 
two oil fields] 

R2 value 
Gas: 0.997 
Oil: 0.997 
Water: 0.995 

Jeshvaghani 
et al. (2019) 

Gamma-ray attenuation ANN [2-5-2- 
2] 

Inputs: Detector counts and pressure difference 
Outputs: Air & water flow rates [32 data points] 

For air: 
RMSE: 10.71; MRE: 0.86% 
For Water: 
RMSE: 2.14; MRE: 1.27% 

Li et al. (2020) Cone throttle device ANN [8-12- 
1] [Gas] 
[8-17-5-1] 
[Liquid] 

Inputs: Gas density, Three probability density function 
(PDF) and two power spectral density (PSD) of the 
upstream-throat differential pressure (DPwg) signals, Mean 
values of: upstream-throat DP, permanent pressure loss 
Outputs: Gas & Liquid flow rate [442 data points]; [Wet Gas 
flow] 

For gas 
MAPE: 1.53 
MRE: 0.05 
& 
For liquid 
MAPE:12.83 
MRE: − 3.66 

Dave and Manera 
(2020) 

Wire mesh sensor (WMS) ANN 
CNN 
FNN 

Inputs: Not stated 
Outputs: Super ficial velocities 
for gas-liquid flows 

Not stated 

Xu et al. (2020) Venturi tube and dual electrical 
capacitance tomography (ECT) 
sensors 

CNN Inputs: Flow patterns obtained by image construction 
Outputs: Oil flow rate, gas flow rate [520,000 data points] 

Average relative error: oil flow rate is 
4.6%; gas flow rate is 1.4%  
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complex so much so that the results are no longer transparent and its 
field applicability becomes nearly impossible.  

• In developing a model, a good balance has to be made regarding the 
model’s computational demand, its complexity, prediction time and 
ease of use. 

The following are the recommendations for future studies:  

• Developing models which meets the needs of the user in the field (e. 
g. models requiring easily obtained input parameters that are readily 

Table 11 
Summary of findings by researchers in using traditional sensors with machine learning algorithms in predicting oil and gas flow rates.  

Reference Sensor, AI technique Major findings 

Sheppard and 
Russell (1993) 

Gamma-ray densitometer + ANN While ANN is effective in its predictions, however, its performance can be enhanced by: (i) 
utilizing a dataset with a wide coverage that accommodates all flow rate combinations (ii) 
instead of just one network, using a series of networks to characterize flows in separate regimes 
while using one network as the controller. 

Geng et al. (2006) Slotted orifice +
ANN [9–7 – 2] 

Results obtained show that the method provides an efficient means for developing 2-phase flow 
meters. The ANN output is stable and repeatable with the technique of ANN ensemble 

Meribout et al. 
(2009) 

1) Venturi sensor and 2) conductance, capacitance, 
ultrasonic, or differential pressure sensor + ANN 

The results indicate that classification in real-time for up to 90% gas fraction can be obtained 
with a relative error <10% 

Xu et al. (2011) Throat-extended Venturi meter (TEVM) + ANN [11-20- 
1] [Gas] 
[11-18-1] [Water] 
SVM 

The proposed combination of AI techniques with TEVM yielded an easy but viable technique to 
the metering of wet gas. Both the SVM and ANN models developed were able to capture the 
complex relationship between the 2-phase flow rates and the signal features. In comparison, the 
SVM method outperformed the ANN method in the prediction of the gas and water flow rates. 

Shaban and 
Tavoularis (2014) 

Differential pressure sensor + ANN It was observed that the (i) probability density function and (ii) power spectral density of the 
differential pressure signals were strong indicators of the phase flow rates. The independent 
component analysis was useful in preserving most of the information embedded in these two 
flow properties and enabled their usage without requiring an unreasonably huge amount of 
calibration measurements. 

Wang et al. (2017) Coriolis flowmeters + BP-ANN, RBF-ANN, 
SVM, GP 

On the basis of accuracy and robustness, the SVM model outperformed the models developed 
using the BP-ANN, RBF-ANN and GP. 

Bahrami et al. (2019) Piezoresistance differential pressure transducers, inline 
viscometer & thermometer + ANN [5-7-7-3] 

Incorporating the ANN with the pressure signals, detectors can be used without transmitter, 
hence a reduction in cost is achieved. This combination would use radioactive transmissions 
which detrimental to field personnel and the environment. The possibility of having the 
measurements done in different operating conditions (temperature, pressure, GOR etc.), implies 
it is possible to use it for many years without the need for calibration 

Jeshvaghani et al. 
(2019) 

Gamma-ray attenuation + ANN [2-5-2-2] Using this gamma-ray attenuation + ANN model combination would enable an efficient 
prediction of flow rates at varying temperatures even when the proposed ANN is trained only at 
a specific temperature. This way, the need for either using several ANNs or the need for the 
recalibration of the measuring system would be eliminated. 

Li et al. (2020) Cone throttle device + ANN [8-12-1] [Gas] 
[8-17-5-1] [Liquid] 

The advantages of the proposed combination (cone throttle device + ANN model) include: its 
high accuracy, inexpensive nature, ease of implementation. The cone has the capability to 
provide valid and sensitive differential pressure (DP) signals for bringing out features as pointers 
of the liquid and gas flow rates 

Dave and Manera 
(2020) 

Wire mesh sensor (WMS) + ANN, CNN 
FNN 

The combination of WMS and neural network has the potential to yield accurate estimations of 
super ficial velocities in gas-liquid flows. It is possible to train only one neural network for the 
purposes of estimating the flow rate for multiple flow regimes. 

Xu et al. (2020) Venturi tube and dual electrical capacitance 
tomography (ECT) sensors + CNN 

The CNN algorithm has a high computational burden; currently, it is difficult to integrate it into 
measurement devices in the industry, neither is it possible for them to be transformed into 
portable devices. Therefore, there is need to improve and reduce the computational cost of the 
ECT image reconstruction algorithm in order for it to be useful to the industry. Real-time flow 
measurement in the field is difficult using this method.  

Table 12 
Flow rate correlations of worldwide services/operator companies.  

Company Correlation 

Schlumberger (SLB) 
Qg = (a1C.S.2 + a2C.S. + a3) ∗ WHP /(S.G. ∗ (WHT + 460))

a4

1000  

Halliburton 
Qg =

[(C.S./64)b1 ∗ b2 ∗ b3 ∗ (WHP + b4)]

(S.G. ∗ (WHT + 460))b5 ∗ (wet factor/1000)
Eni 

Qg = c1 ∗ WHP/(S.G. ∗ (WHT + 460))
c2

1000  

Texas A & I 
Qg = d1 ∗ Cd ∗ A ∗ WHP/(S.G. ∗ (WHT + 460))

d2

1000  

Dry gas correlation 
Qg = e1 ∗ (WHP + e2) ∗ (C.S.)

e3

1000  

Saudi Aramco 
qg = 0.479

(
D64

64

)2.0871
∗

0.7Pup
̅̅̅̅̅̅̅
γgT

√ [old model] 

qg = 0.00149228D2.118654173
64

(
Pup

14.7

)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(

1
γgT

)

1.586085251
[(

Pdown

Pup

)0.739034
−

(
Pdown

Pup

)1.369516866]
√
√
√
√ (Source: Leal et al., 2013)  

NB: Qg = gas flow rate (MMSCF/D); D64 = C.S = Cd = choke size (1/64 in.); WHT = wellhead temperature (◦F); WHP = wellhead pressure (psi); S.G. = specific 
gravity; Pup = Upstream pressure (psi); γg = gas specific gravity; T = temperature (◦F); Pdown = downstream pressure (psi); a1, a2, a3, a4, b1, b2, b3,b4, b5 c1, c2, d1, 
d2, e1, e2, e3 = constants. 
(Source: Zareiforoush et al., 2015) 
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available in their databases) is an area to be explored. This would 
assist such users make quick real-time decisions in the field.  

• For the insights from the different models to be useful, it is necessary 
that models be transparent. Although there are varied views on what 
makes up an acceptable degree of transparency, it almost always 
refers to a disclosure of model’s basic assumptions, algorithms, 
weights, biases, coefficients as well as the data used to develop the 
model. Including these as part of a research work is recommended. 

• It is inevitable that noise would always be part of real time or dy-
namic data. A model that performs well in predictions with clean 
data could be thrown into disarray by an unexpected stream of noise 
in the data. To forestall this, incorporating noise to data during 
model training and development would make for a more robust 
model in the presence of noise. This is an area open for research. 
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Symbols and Nomenclature 

Ac Choke throat area 
AARE Average Absolute Relative Error 
AI Artificial Intelligence 
ANFIS Adaptive Neuro-Fuzzy Inference System 
ANN-FPA Artificial Neural Network – Flower Pollination Algorithm 
ANN Artificial Neural Network 
ANN-PSO Artificial Neural Network-Particle Swarm Optimization 
ANN-TLBO Artificial Neural Network -Teaching-learning-based 

optimization 
API American Petroleum Institute 
ARE Average Relative Error 
AARE Average Absolute Relative Error 
BHP Bottom Hole Pressure 
BS&W Basic Sediments & Water 
CD Discharge Coefficient 
CNN Convolutional Neural Network 
C.S Choke Size 
GA-RBF Genetic Algorithm-Radial Basis Function 
GEP Gene expression programming 
GLR Gas Liquid Ratio 
GOR Gas Oil Ratio 
GVF Gas Volume Fraction 
ICA Independent Component Analysis 
LGR Liquid Gas Ratio 
LSSVM Least-Squares Support Vector Machine 
LSTM Long Short-Term Memory 
M Total pound mass of oil, gas and water per stock tank oil 
MAE Mean Absolute Error 
MAPE Mean Absolute Percentage Error 
MGGP Multigene genetic programming 

ML Machine Learning 
ML Mass liquid flow rate 
MLP Multi Layer Perceptron 
MPFM Multiphase flow meters 
MSE Mean Square Error 
PCA Principal Component Analysis 
PDF Probability Density Function 
PSD Power Spectral Density 
PVT Pressure Volume Temperature 
Q Flow Rate 
R2 Goodness of fit 
RBF Radial Basis Function 
RNN Recurrent Neural Networks 
SVM Support Vector Machines 
VFM Virtual Flow Metering 
WHP Well Head Pressure 
WHT Well Head Temperature 
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