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Oil and gas metering is primarily used as the basis for evaluating the economic viability of oil wells. Owing to the
economic implications of oil and gas metering, the subject of oil and gas flow rate measurement has witnessed a
sustained interest by the oil and gas community and the academia. To the best of the authors’ knowledge, despite
the growing number of published articles on this subject, there is yet no comprehensive critical review on it. The
objective of this paper is to provide a broad overview of models and modelling techniques applied to the esti-
mation of oil and gas flow rate through chokes while also critically evaluating them. For the sake of simplicity
and ease of reference, the outcomes of the review are presented in tables in an integrated and concise manner.
The articles for this review were extracted from many subject areas. For the theoretical pieces related to oil and
gas flow rate in general, the authors relied heavily upon several key drilling fluid texts. For operational and field
studies, the authors relied on conference proceedings from the society of petroleum engineers. These sources
were supplemented with articles in peer reviewed journals in order to contextualize the subject in terms of
current practices. This review is interspersed with critiques of the models while the areas requiring improvement
were also outlined. Findings from the bibliometric analysis indicate that there is no universal model for all flow
situations despite the huge efforts in this direction. Furthermore, a broad survey of literature on recent flow
models reveals that researchers are gravitating towards the field of artificial intelligence due to the tremendous
promises it offers. This review constitutes the first critical compilation on a broad range of models applied to
predicting oil and gas flow rates through chokes.

Initiative (NEITI) show that in 2015, Nigeria had about 9,170,444
million barrels of oil not adequately accounted for due to the oil and gas
metering challenge (NEITI, 2015). This challenge is mainly aggravated
by the complex nature of the flow of gas, oil and water from the wellbore
to the surface.

1. Introduction
1.1. Background of the study

Oil and gas metering is an essential factor used as a benchmark to

assess the economic viability of oil wells. In addition, knowledge of the
flow rates of gas, oil and water from different wells gives operators the
basis to make critical decisions that border on optimizing production,
flowrates as well as future forecasts of the potential performance of the
field (Bikmukhametov and Jaschke, 2020a). However, like all facets of
oil and gas exploration and production, measuring accurately the flow of
these fluids remains a disturbing challenge both to the production en-
gineer and to those in whose hands the purse strings lie. This is because
billions of dollars could be lost if flows are not properly measured. For
instance, statistics from the Nigeria Extractive Industries Transparency
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Due to the recurring nature of this challenge, industry players have
proposed unique ways to either eliminate or reduce to the barest mini-
mum the errors associated with oil and gas metering. One of these
propositions is the development and use of a Metering Atlas (Scheers
et al., 2009). Other examples are the Norwegian Handbook for Multi-
phase flow metering published by the Norwegian Society for Oil and Gas
Measurement (NFOGM) and the manual for petroleum measurement
standards by the American Petroleum Institute. Oil producing nations on
the other hand have come up with unique standards to combat this
challenge. This led to the launching of the Extractive Industries

Received 8 December 2020; Received in revised form 25 September 2021; Accepted 29 October 2021

Available online 6 November 2021
0920-4105/© 2021 Elsevier B.V. All rights reserved.


mailto:okorieagwu@uniuyo.edu.ng
www.sciencedirect.com/science/journal/09204105
https://www.elsevier.com/locate/petrol
https://doi.org/10.1016/j.petrol.2021.109775
https://doi.org/10.1016/j.petrol.2021.109775
https://doi.org/10.1016/j.petrol.2021.109775
http://crossmark.crossref.org/dialog/?doi=10.1016/j.petrol.2021.109775&domain=pdf

O.E. Agwu et al.

Transparency Initiative (EITI) in 2003 (Lujala et al.,2017).

Despite these efforts by both the industry and the oil producing na-
tions, the challenge seems to be unabated. Suffice it to say that oil and
gas measurement typically occurs at two points during oil and gas
production. These points are located at the wellhead and at the custody
transfer points. While it is reported that the measurement at the custody
transfer point is somewhat seamless usually coming off with a low de-
gree of uncertainty (Scheers et al., 2009), however, a higher degree of
uncertainty comes with the measurement done at the wellhead. A
typical oil and gas production system highlighting the flow of oil and gas
from the reservoir through the wellhead, the choke and then to the test
separator is shown in Fig. 1.

Given the complexity in measuring oil and gas flow rates, a number
of approaches have been tried and tested by researchers. One of these
approaches is the use of predictive models.

During the last seven decades, the oil and gas literature has been
diligently paved with series of publications in key journals that project
virtually all known means of measuring oil and gas flow rates. In
particular, most of the extant literature on the subject of oil and gas
metering has been devoted to the development of predictive models. As
a result, an appreciable number of mathematical models exist in the oil
metering literature. These models have taken various forms ranging
from the empirical, theoretical to artificial intelligence based models as
well ensemble models. Till date, building a single universal model for oil
and gas flow rate prediction has remained elusive because of the high
non-linearity effects that emanate from the variation of flow patterns,
liquid viscosity and density. However, to the best of the authors’
knowledge, despite the availability of a huge number of models for
estimating the flowrate of oil and gas, no critique of these models has
been done bearing in mind several pertinent acceptable standards. This
is gap in literature this work seeks to cover.

1.2. Objective of the study

The specific objective of this work is to curate extant models for
predicting fluid flowrates through chokes with the intent of critiquing
them by assessing their predictive performances as well as their
empirical or mechanistic methodologies while bearing in mind their
potential field applications. This is what makes this study novel and
serves as its major contribution to the existing body of knowledge on the
subject. Finally, potential issues which might be responsible for lack of
field applicability of extant prediction models would be isolated and
recommendations for future research would be presented.

1.3. Existing approaches to fluid flow rate measurement

There are three distinct and fundamental approaches to multiphase-
flow measurements. The first includes fluid separation (using
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Fig. 1. Schematic of an oil production system and its components.
Source: Mahmud and Abdullah (2017).
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separators), the second uses physical metering devices (use of multi-
phase flow meters) and the third involves the use of predictive models
(virtual flow meters). Production well testing through a test separator is
by far the most common practice to measure flow rates (Zangl et al.,
2014).

Regrettably, even though flow rates of oil, gas and water are the most
important parameters of any hydrocarbon exploitation project, only a
minor number of wells are permanently connected to a multiphase flow
meter (Zangl et al.,, 2014). However, no single multiphase-
flow-measurement system design or technology resolves all
multiphase-flow-measurement issues satisfactorily. Each approach has
benefits as well as shortcomings. These benefits and shortcomings have
been unpacked and curated in the works by Marshall and Thomas
(2015) and Bikmukhametov and Jaschke (2020a), however a few are
outlined in Table 1.

2. Theory
2.1. Establishing the review sequence

Besides getting knowledge of recent advances, a historical perspec-
tive is necessary for important/worthwhile advances in the oil and gas
industry (Grigg, 2015). Hence, an in-depth literature review on oil and
gas flow rates is necessary. This literature search conducted is predicated
on the premise that without a thorough empirically based and theoret-
ical knowledge, one might end up only addressing the symptoms while
ignoring the real problems. Hence, this review would take a wholistic
approach of isolating historical research efforts in the area of fluid flow
rate modelling and extracting the major details of each work with a view
to highlighting its main findings and critiquing the models.

Thus, to begin the inquiry, an examination of the existing review
works on oil and gas flow rate modelling would take first place. The
existing models for fluid flow rate prediction would follow thereafter
while a summary of data range used by researchers for fluid flow rate
modelling comes next. The major findings by the researchers on fluid
flow rate modelling and a critique of these models would follow there-
after while the review finding climaxes the review. Following this
sequence would make the work better understood by readers.

2.1.1. Highlights of previous review articles on fluid flow rate modelling
through chokes

This section highlights previous review studies on choke flow rate
modelling. Three major reviews are available in literature. The focus of
each review and the major findings of each review work are presented in
Table 2.

It is clear from the above, that though the reviews were compre-
hensive, they were focused in one direction i.e. mostly on soft computing
techniques whereas, techniques such as empirical, theoretical and
ensemble modelling techniques abound. A review of studies only from
one area of the subject would result in a conclusion that is applicable
only to that area in question. On the contrary, a robust review such as
the one discussed in this paper which assesses a wide range of modelling
methods would provide a new and useful platform where the model user
can make informed choices on which method offers the most
advantages.

Furthermore, the review this paper presents is a clear departure from
the much more common traditional “review papers” where the reviewer
identifies studies in a particular area, summarizes their findings, and
reports a conclusion in narrative form. While useful, such reviews are
mainly subjective. This work is not meant to replace the already existing
valuable review articles on this subject such as the ones in Table 2, but to
provide a complementary perspective with particular focus on critiques
of the extant models with the intent to deepen knowledge on the subject;
this is what makes this review different from other existing ones in the
literature.
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Table 1
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Challenges of oil and gas flow rate measurement techniques.

Flow rate measurement technique

Pitfalls of measurement technique

Use of test separators

Use of physical multiphase flow meters

(MPFM)

Virtual flow meters (VFM)

Cost: Increased capital cost on field development as a result of a separate flowline and a separator needed to accomplish the test (Falcone
et al., 2001) as well as a test line to test separator in satellite fields (Denney, 1998).

Space requirements: The separators and the metering equipment require additional space because of their large footprint and the extra load
they impose especially on offshore platforms (Falcone et al., 2009; Mwalyepelo, 2015).

Errors: When the test is done using multiphase flow meters, they need to be calibrated using test separator data which often have their
inherent uncertainties which lead to errors. The difference in operating conditions of test separators and flow conditions can subsequently
add to the errors

Speed of measurement: No real time measurement is possible and the process is painfully slow because it takes time for the gas, oil and water
to divide in the separator (Corneliussen et al., 2005; Mwalyepelo, 2015; Liu, 2016). Only one well can be tested at a time leading to sparse
measurements over the lifetime of a well (Zangl et al., 2014). Since there are no real time measurements, it cannot be used in a feedback
system to forestall problems such as slugging or an overdose of chemical injection.

Cost: Quite expensive in installation and maintenance due to the fact that it has moving parts (Falcone et al., 2001; Patel et al., 2014;
Hasanvand and Berneti, 2015).

Durability: MPFMs may degrade owing to sand erosion or blockage (Marshall and Thomas, 2015) and may lead to years of inaccurate flow
rate measurement if unchecked (Mokhtari and Waltrich, 2016). They also fail to measure flow rates accurately at water cut range of 40-60%
or above 90% (Meribout et al., 2010)

Health & Safety: Some MPFMs have radioactive sources as detectors which may affect workers (Hasanvand and Berneti, 2015; Roberts and
Allen, 1993)

Data requirements: Lack of sufficient and relevant data due to (i) failure of data measuring devices such as bottom hole pressure (BHP)
gauges (ii) non-installation of BHP gauges in some wells (Al-Qutami et al., 2017b) (iii) the inherent uncertainty due to measuring device
errors (Khorzoughi et al., 2013)

(iv) The gas oil ratio (GOR) of wells are not constants and are subject to change with time but since most VFMs require the expected gas oil
ratio (GOR) as inputs, the outputs from the VFMs will be biased when these values change (Petukov et al., 2011)

Acceptance: Largely limited by regulatory agencies (Mokhtari and Waltrich, 2016) due to the fact that there is still a scarce number of
studies in the literature about VFM model description, validation and field verification (API, 2005).

Speed of measurement: Since VFMs are model dependent, most of the models require fluid properties and production regimes as inputs thus
making them have a high computational time (Amin, 2015; Bello et al., 2014).

3. Models for predicting oil and gas flow rate through chokes

The real essence of modelling choke performance is to give petro-
leum engineers the latitude to optimise the field operating conditions
and predict the oil and gas flow rates that can be produced by a given
well (Alimonti et al., 2010). Over the past seven decades, an avalanche
of models has been developed for flow rate estimation through choke
valves. The following are the categories of models for predicting oil and
gas flow rate through chokes.

3.1. Theoretical models

Theoretical models are essentially derived from mass, momentum,
and energy balances and are used in the oil and gas industry because
they can estimate critical and subcritical flow conditions simultaneously
under varying flow conditions (Zhibin et al., 2011). In the early 1980s,
numerous flow measurement tools were designed and tested in oil and

Table 2
Summary of previous review works on flow rate measurement and modelling.

gas wells (Liu et al., 2008), but they were costly to implement on a
field-wide basis (Benlizidia, 2009). Therefore, theoretical and analytical
models were the predominant methods used then to predict flow rate
through chokes. Due to the slippage effect that occurs between the gas
and liquid phases as a result of density difference (Shao et al., 2018), slip
models were developed as part of theoretical models.

A slip model is essentially a correlation used to estimate the relative
velocity between two fluid phases (e.g. gas phase and oil phase).
Table 3a shows the slip models applied to theoretical models for oil and
gas flow rate prediction.

According to Zhou et al. (2018), considerations of slip between the
gas and liquid phases at the choke-throat condition appear unimportant
for improving a model’s performance. This outcome is a direct conse-
quence of the dominance of annular or mist flow in most field settings,
wherein the phase slippage appears absent. They cautioned that phase
slippage should be used while working with laboratory data involving
lower flow rates.

Author (year) Area covered by review

Williams (1994)

Rastoin et al. (1997)
multiphase flow rates through wellhead chokes

Oddie and Pearson (2004)

Thorn et al. (2013) 1. Importance of three-phase flow measurement

The advantages of multiphase measurement, methods utilized for multiphase measurement to date, research to date, and projected future research
A review of the performance of three mechanistic models (Ashford and Pierce, 1975; Sachdeva et al., 1986; Perkins, 1990) for predicting

An overview some techniques used for flowrate measurement in two-phase flow

2. Reason three phase flow measurement problem still persists
3.The extant measurement approaches and a description of the main technologies currently used by commercial manufacturers

Zhou (2017)
Buffa and Balino (2017)

Yan et al. (2018)

Zhou et al. (2018)
Hansen et al. (2019)

Bikmukhametov and Jaschke
(2020a)

Meribout et al. (2020)

Liu et al. (2020)

4. A review of research developments that could influence the design of future flowmeters

Evaluation of several flow rate models and seven slip models

The basic assumptions of two models were reviewed. The models include: Sachdeva et al. (1986) and the model proposed by Al-Safran and Kelkar
(2009).

A review of the soft computing techniques for multiphase flow metering with a particular focus on the measurement of individual phase flow rates
and phase fractions

Evaluated several models and correlations and compared their relative performances and their potential for field applicability

1.Current trends and technologies within multi-phase flow measurements

2. The most promising methods based on accuracy, footprint, safety, maintenance and calibration.

Virtual flow meters (VFM)

A critical review on most existing multiphase flow meter technologies
A comprehensive evaluation of established correlations for two-phase (gas-liquid) flow through Venturi tubes
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Table 3a
Summary of slip models utilized in models for oil and gas flow rate prediction.

Author (s), year

R = (1 7xg>(arl) <ﬂL>(ﬂz+l) I’ s
—qo —=% L FL
Xg Pg Hg

. ap =0.28, a =0.64,a2 = 0.36,a3 = 0.07
Lockhart and Martenelli (1949)
Baroczy (1961) a =1,a; =0.74,a; = 0.65,a3 = 0.13

Slip model

Moody (1965) a=1a =1a = — %,ag =0
Henry and Fauske (1971) @ =1a =1a=-05a =0
Simpson et al. (1983) a =1,a =1l,aa = —083,a3 =0
Grolmes and Leung (1985) @ =1a =la =-05a =0

Chisholm (1983) V. 1/2
S = [xgvi+ 1 7xg)}
L

R=]1 +xg(”—L— 1) (1 + 0.6e5%)
Pg

Where R = slip factor; S = slip factor; y;, = liquid viscosity; u, = gas viscosity; p;
= liquid density; pg = gas density; x; = gas phase mass fraction; ao , a1, az, as =
dimensionless coefficients; v, = liquid velocity; v, = gas velocity.

Schuller et al. (2006)

Table 3b presents a summary of the theoretical correlations for
predicting oil and gas flow rate as developed by different authors. The
assumptions of the models are also presented. According to Al-Safran
and Kelkar (2009), incorporating the slip models in Table 3a into the
theoretical models in Table 3b improves the accuracy of their
predictions.

3.1.1. Critique of theoretical models

First, since the information and data (experimental or field) varies
with respect to the variables to be modelled, the assumptions made, the
inflexible nature of the theoretical procedures, most theoretical models
fail in accurate prediction of flow rate. Second, the calculations involved
with theoretical models are intensive and have a high burden which
ultimately gulps a lot of time to execute.

3.2. Empirical models or Gilbert type models

In recent decades, researchers have presented many models for
predicting oil and gas flow rates through wellhead chokes. The earliest
known empirical correlation for critical flow is that of Gilbert (1954).
Table 4 presents a snapshot of the various researches from which oil and
gas flow rates were modelled. For ease of reference, the summary is
presented in a tabular form beginning from the earliest study and ter-
minating with the latest study. Each row of the table corresponds to one
of the models. Each column corresponds to a vital information about the
developed model.

The following can be gleaned from the summary. First, a total of 47
models were extracted from literature. There were huge similarities in
the input parameters, the modelling technique and the area from which
the data were obtained. In most of the cases, the input variables were
wellhead pressure, gas liquid ratio and choke size. However, by devel-
oping models that consider not only the impact of only these three inputs
but also additional inputs such as gas specific gravity, oil specific gravity
and temperature, its accuracy in flow rate prediction can be significantly
improved (Choubineh et al., 2017). It was also observed that the area
where the data were obtained was predominantly in the Middle East
region. Furthermore, while some researchers did not document the size
of the dataset they utilized, the largest dataset used contained 3354 data
points and the smallest dataset had 27 data points and the majority of
the models were for critical flow. Finally, the modelling technique that
was widely used was the non-linear regression method. The theoretical
description of this method is presented as follows:

3.2.1. Overview of non-linear regression
Regression models are the conventionally used statistical techniques
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for establishing the relationship (either linear or non-linear) existing
between two or more variables that represent any phenomena. A simple
linear regression describes the relationship between two variables (e.g. x
and y) with a straight line (y = mx+ ¢); while non-linear regression
describes the relationship between the two variables in a non-linear or
curved manner (Kenton, 2020). A brief description of two common
regression models is given as follows:

(i) Multiple Linear Regression (MLR): MLR simply known as multiple
regression is an expanded form of simple linear regression used
for modelling the linear relationship between several indepen-
dent variables and a dependent variable (Chapra and Canale,
2010). Essentially, MLR is the broadening of the ordinary least
squares regression since it requires more than one independent
variable (Hayes, 2021). An MLR model is expressed mathemati-
cally as shown in Equation (1).

Y=PotBixi +foxa Bx,+ € 1)

Where y is the dependent variable; x7, xa, ... ... ... X, are the independent
variables; f, f,...., are estimates of the linear regression and ¢ is the
random error term (James et al., 2013)

(i) Multiple Non Linear Regression (MNLR): MNLR is essentially a
form of MLR analysis in which data are modelled by a function that is a
non-linear amalgamation of the parameters of the model. Just as MLR,
MNILR is dependent on one or more predictor/independent variables.
Whereas MLR is commonly used for developing simple models, MNLR is
mainly adopted when it is observed (from a physical standpoint) that the
relationship between the independent and dependent variables mirrors
a specific functional form. Mathematically, the general form of a MNLR
model is as shown in Equation (2).

= () () oo (o01) @
Where §, , # , .....,5, are regression parameters to a set of a number
of tabulated values of the independent variables: x;, xa, ... ... ... X,; and y

is the dependent variable (Bilgili and Sahin, 2010). Non-linear regres-
sion utilises trigonometric functions, exponential functions, Gaussian
functions, power functions, logarithmic functions, Lorenz curves etc.
(Kenton, 2020). In order to obtain the regression constants of a MNLR
model, series of iterations are involved. Methods such as Newton-
Raphson method, Gauss-Newton method, Levenberg-Marquardt
method, quadratic hill climbing method and method of scoring etc.
are often utilized (Donthi et al., 2019). For a more comprehensive
coverage on regression models, the work by James et al. (2013) is
recommended.

3.2.2. Parameter ranges used in empirical models for oil and gas flow rate
prediction

Table 5 is a summary of the range of the parameters used in the
modeling of fluid flow rate as isolated from literature. It is evident that
the important parameters are: (1) wellhead pressure, (2) GOR, (3) API
gravity (4) choke size, (5) gas liquid ratio, (6) temperature while flow
rate was the output parameter. Wherever information is not indicated, it
means that no actual reporting was made by the relevant reference.
From an inspection of the list, it is evident that there is no consensus on
the input parameters required for modeling fluid flow rate. While most
studies considered three input parameters (wellhead pressure, choke
size and GOR), others included parameters such as water cut, BS&W, API
gravity and gas liquid ratio. The widest range of wellhead temperature
was in the study by Nasriani et al. (2019) wherein the temperature
ranges from 191 to 463 °F, while the least range was 60-120 °F as given
by Abdul-Majeed (1988). For all wellhead pressure ranges, the highest
[1400-12000 psia] was that given by Beiranvand et al. (2012), while the
least [60-350 psia] was by Ganat and Hrairi (2018). For choke size
range, the highest [37-192(1/64 inch)] was by Nasriani et al. (2019),
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Table 3b
Summary of theoretical models for oil and gas flow rate prediction.
Author(s), year Mass flow rate model and areas of application
i k
Fortunati (1972) 0 F( 7/1)(: v 12
9o — B )
s PyFy

GOR(7; + pgRa) "o
g% = Liquid rate at standard conditions; Ft = total cross sectional area of the choke passage; Bo = oil formation volume factor; GOR = gas oil ratio; T =
temperature; P, = downstream pressure; P; = upstream pressure; k = ratio of specific heat; pj = oil density at standard conditions; pg = gas density at
standard conditions; Po = Pressure at standard conditions, To = temperature at standard conditions; Z = gas compressibility factor; V = mixture
velocity; Ry = Total gas in solution; Cy = cumulative discharge coefficient; (1 — p) = liquid concentration in respect to the mixture
Application: Model can be used for critical and subcritical flow parameter estimation.

Ashford (1974) Rk

Rk wenmy g
@ =2gCA§P1144’<*1( YAy

V;[1 + Ry VK
Where Qp, = mixture flow rate; R = slip ratio; k = ratio of specific heat; y = pressure ratio; A = Total cross sectional area; P; = upstream pressure, g. =
gravitational constant; Vy, = liquid velocity

Fahim et al. (1978) 1
”Cad2 {2&1’1 ( P2>:|§
=— 1---= 1-a
@ 4B L po Py ( 2
k-11
2Ty P1Cyd®ay [p 2g:Pik (1 B P_z) T] 2
4B,ZT; o (k—1) Py

Where Q, = oil flow rate; Qg = gas flow rate; g. = gravitational constant; P, = Upstream pressure; P, = Downstream pressure; a, = gas phase fraction;
B, = oil formation volume factor; p, = oil density; d = choke diameter; C, = oil compressibility; 7 = 3.142; Z = gas deviation factor; k = ratio of specific
heat; T; = working temperature; p, = gas density; Tsc = Temperature at standard conditions; C; = gas compressibility

1—x1)(1—- x1k 05
Q@ = CD{2gC * 144P; p2, [7( p)< Y) =g (Ve —yVe2)

. —

Where Q,, = mass flow rate; k = ratio of specific heat; P; = Upstream pressure; Vg1 = Specific volume of gas at upstream conditions; Vg, = Specific
volume of gas at downstream conditions; p,, = mixture density; x; = phase fraction of liquid; p; = liquid density; g. = gravitational constant; Cp =
Discharge coefficient; y = downstream to upstream pressure ratio
Application: Can be used for critical and subcritical flow parameter estimation

Sachdeva et al. (1986)

Perkins (1993) w Aop, V. AV,
i =Axp Vo = —F
pon () 7]
o Pw
Where
vy | 2888LPI[L — BV (fo/py) + (/o) P11~ o)}

Ay
Where w; = mass flow rate; g. = 32.2 (Ibm-ft)/(Ibf second?); P; = Upstream pressure; P, = Downstream pressure to upstream pressure ratio; A, = Area of
choke throat (ft?); A; = Area of choke at upstream (ft2); fg: fo, fw = weight fraction of gas, oil and water respectively in the flowing stream; p,, p,, p,, =
1
density of gas, oil and water respectively; v; = Specific volume of liquid; n = polytropic expansion exponent; a = (;) 6&+/{l) sA=fg +
0 w

{(fgcvg +foCuo +wavw)M}

2
1- (’3) [, + )/ (P 7 + )

; M = molecular weight; R = Universal gas constant; z = gas compressibility factor; C,,, Cy, Cyy = heat capacity of oil, water

zZR
and gas respectively
Al-Safran and Kelkar n-1
51 1)
m? =

x5+ 0 [ 4 21
Where m = mass flow rate; n = polytropic gas expansion exponent; k = gas specific heat ratio; R = slip ratio; x, = gas quality; r = pressure ratio; vy = gas
specific volume; A = choke cross sectional area; P; = Upstream pressure; v, = liquid specific volume; C = constant = 2000C3 ; Cp = discharge
R(1—x)V,

XgVg1
Utilized the Schuller et al. (2006) slip model for critical flow and the Grolmes and Leung (1985) model for subcritical flow

coefficient; a =

Mwalyepelo and Stanko — 05
(20]}]6;J m = CDA2{2/’%12P1 (Xg + (l Rxg>> [(R(l —xgi(1-y)+ kkfgl (Va1 *.ngQ))J }
Where m = mass flow rate (kg/sec); Cp = discharge coefficient; A = total cross sectional area (m?); pm = mixture density; P; = Upstream pressure; X, =
mass fraction of gas; k = ratio of specific heat; R = slip ratio; v; = specific volume of liquid; y = ratio of downstream pressure to upstream pressure; vy; =
specific volume of gas upstream; vy, = specific volume of gas downstream
This model utilized the Grolmes and Leung (1985) slip model.
Application: Can be used for critical and subcritical mass flow rates

Shao et al. (2018) me = Cgmg

2P, AZ[A(y' VK — 1) + Sa(y — 1)]

m2 = (puaAaVs)® =
Vg1 * [Xg +1(xw +Xo)] # [P (g + Sa)* — (xgy /% + Sa)]

S
Where m, = adiabatic mass flow rate; p,, = mixture density; S = slip ratio; A, = Area at choke throat; y = ratio of pressure at choke throat to the pressure
. . . . . . 1 Xw | X, poe
upstream; Xg, X,, X,y = weight fraction of gas, oil and water respectively; k = ratio of specific heat; « = — (—W +7°> 54 =X+ ac -/ P Xg |k +
Vgl Pw Po ZR,
1

Zi(k 1 ; T = ratio of area at choke throat to area at upstream; v, = specific volume of gas at upstream; C; = discharge coefficient;; R; = Gas constant,
8.314 J/mol K; Z = gas compressibility factor; C,, = specific heat value of gas at constant volume condition, kJ/(kg-K)

(continued on next page)
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Author(s), year Mass flow rate model and areas of application

This model utilized the Schuller et al. (2006) slip model

Application: Can be utilized for critical and subcritical mass flow rates

while the least [4-14(1/64 inch)] was by Omana et al. (1968). The most
used parameters were choke size, wellhead pressure, wellhead temper-
ature and GOR while the least used parameters were water cut and
BS&W.

3.2.3. Findings on empirical modelling of oil and gas flow rate

This section summarizes the major findings by diverse researchers on
the outcomes of the models they developed using the empirical model-
ling technique. The summary is presented in Table 6 starting with the
earliest model. 95% of the findings indicate that the empirical modelling
technique limits the model to the range of data used in developing it. A
few modifications were observed to have been done to the model by
Gilbert (1954). These modifications were in the form of inclusions of
new variables such as BS&W, water cut, bottomhole temperature, pay
zone depth and tubing size. There is a seeming unanimity amongst re-
searchers, that incorporating new variables such as BS&W and tubing
size improves the models’ accuracies while variables such as water cut
and bottom hole temperature diminished the models’ accuracies.

3.2.4. Critique of the empirical models

3.2.4.1. Model flexibility. A model’s flexibility is defined as the amount
of influence data features has on the behaviour of a model (Johnson,
2017). The critique against the usefulness of Gilbert type models is
linked to the elements causing inflexibility in the models. The cause of
the inflexibility is as a result of the fixed analytic form of the Gilbert type
model. It is fair to say that in most of the contributions by researchers in
developing the Gilbert type models, the emphasis has been on the
modification of Gilbert’s model rather than charting a new course. There
is little difference between the models in terms of the novelty of their
contributions.

3.2.4.2. (ii) replicability of Model’s results. The determination of the
explicit form of a regression equation is the ultimate objective of
regression analysis. Obtaining the estimates of the model’s parameters
involves an iterative process. Without the numerical coefficients of these
parameter and/or the associated constants, the model would limit its
usefulness. Some models in Table 4 failed to meet this objective. An
example is the multiple linear regression model by Zangl et al. (2014).
This model was without the regression coefficients hence this would
limit the usefulness, applicability and replicability of the results of the
model.

In summary, going through the models in Table 4, a common and
perhaps universal factor amongst the models is the striking resemblance
of the models with little or no new contributions to knowledge arising
from the fact that they are mainly modifications of the Gilbert’s model.
These pitfalls most likely propelled the search for newer modelling ap-
proaches such as artificial intelligence. The next section highlights the
various models put forward by diverse researchers for estimating oil and
gas flow rate using the disruptive technology of artificial intelligence.

3.3. Artificial intelligence based models

The last few years have seen the introduction of supervised machine
learning algorithms as tools to exploit data for the purpose of modelling
oil and gas flow rate. With data available, machine-learning has been
used to capture potentially complex relationships between oil and gas
flow rate and the factors affecting it. These approaches can largely be
divided into: ANN, SVM, Fuzzy logic, Hybrid models etc. The review this

section presents would serve as a robust framework that unites all the
individual studies on artificial intelligence (AI) models for flow rate
prediction into a single piece. For quicker reference and to make the
review simplified and unambiguous, the salient details of each study are
presented in tables. A snapshot of this summary is shown in Table 7. This
table chronicles from the earliest to the latest the research outputs on
modelling oil and gas flow rates using artificial intelligence techniques
as put forward by different researchers.

In a bid to make the summary detailed, the method used by each
researcher is highlighted; the data source and the number of data points,
the input parameters as well as the correlation developed by each
researcher where applicable are also mentioned. A total of 49 papers
were extracted from extant literature relating to this. While it is
apparent that various researchers used different input parameter com-
binations to model oil and gas flow rate through chokes (e.g. wellhead
pressure, gas oil ratio, choke size, oil API, oil water ratio, basic sedi-
ments and water, wellhead temperature etc.), it is clear from Table 7
that wellhead pressure, gas oil ratio and choke size are the most widely
used input parameters. In terms of data size, there was a wide variability
in the size of data points used by the researchers. As large as 17097 data
points were used by one researcher and as low as 67 was used by
another. Most of the models were developed for fields in the Middle East
region.

From the summary, it is observed that in the last decade, most Al
based models on estimating oil and gas flow rate revolved mainly
around the use of artificial neural networks where about 60% of studies
reviewed pointing to this fact. ANN models are currently, and are ex-
pected to remain the choice for simulating critical and subcritical flows
in oil and gas production systems, owing to their computational trac-
tability; however, they suffer from poor accuracy and predictive power
in some cases. In terms of model performance using statistical error
metrics, it was observed that the models were elegant however due to
the fact that the number of data points, the modelling technique, the
number and type of input parameters varied widely, there is no sound
basis of comparing their performances. A brief description of the arti-
ficial intelligence modelling techniques is presented in the next section.

3.3.1. Overview of AI methods applied to the prediction of oil and gas flow
rate

3.3.1.1. Artificial neural network. Artificial neural networks (ANN) are
essentially bio-inspired computational systems that are designed to
learn and utilize the knowledge gained to estimate the outputs of a
complex system. The basic unit of a neural network is the neuron. These
neurons are connected together to form a network capable of solving a
complex problem (Behnoud far and Hosseini, 2017). An ANN comprises
three layers namely: the input layer, the hidden and the output layer.
The input layer neurons represents the number of input parameters to
the network. The hidden layer neurons are tasked with the responsibility
of feature extraction. The manner in which ANN processes information
is as follows: First, each of the inputs (I3, Iy, I3) are assigned connection
weights (w). These inputs are then multiplied by their individual
connection weights. The weighted sum of the inputs and connection
weights are then combined and a bias term (b) is added to the summa-
tion. The essence of the bias is to either increase or decrease the input
that goes into the activation function. The summation is passed through
a transfer or activation function, and the output is then computed and
transferred to another neuron. Sigmoid transfer function and linear
activation function (purelin) are recommended for the hidden and
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Summary of researches on oil and gas flow rate prediction using empirical methods.

Authors

Method/Data size &
source

Input Parameters

Correlation developed

Gilbert (1954)

Baxendell (1958)

Ros (1960)

Achong (1961)

Poettmann and
Beck (1963)

Nind (1964)

Omana et al.
(1969)

Ashford (1974)

Akbar (1978)

Pilehvari (1981)

Abdul-Majeed
(1988)

Al-Attar and
Abdul-Majeed
(1988)

Surbey et al. (1989)

Non-linear regression

268 production datasets

from Kern County oil
fields of California

Non-linear regression

Venezuelan oilfields

Non-linear regression

Non-linear regression

Non-linear regression
108 data points

Not reported

Multiple regression

/Experimental tests in
the Tiger Lagoon field of
Louisiana with natural

gas and Water

Not available
27 data points

Multiple regression

Linear Regression
168 data points
obtained from
Experimental tests

Non-Linear Multiple
Regression

155 tests in the East
Baghdad fields

Non-Linear Multiple
Regression
East Baghdad oil field

Non-linear regression
/Experimental data
collected for a high-
pressure air/water
system

Wellhead pressure, gas oil
ratio and choke diameter

Wellhead pressure, gas oil
ratio and choke diameter

Wellhead pressure, gas oil
ratio and choke diameter

Wellhead pressure, gas oil
ratio and choke diameter

Water oil ratio, specific
gravities of oil, gas and water,
liquid density, pressure,
discharge coefficient, Choke
area, mixture density,
specific volume of liquid,
molecular weight of liquid

Wellhead pressure, gas oil
ratio and choke diameter

Upstream pressure, gas liquid
ratio, and choke size

Gas oil ratio, water oil ratio,
wellhead pressure, choke
diameter,

Upstream pressure, gas liquid
ratio and PVT properties, and
choke size

Upstream pressure, gas liquid
ratio, and choke size

Upstream pressure, gas liquid
ratio, and choke size

Upstream pressure, gas liquid
ratio, and choke size

Pressure, choke area, gas oil
ratio

P, D346
QO = A7 1.8
10(GLR)

Where Q, = Oil flow rate (STB/D); D = choke size (1/64 in); P,,, = Wellhead pressure (psi); GLR
= gas liquid ratio (SCF/STB)

Py DY

 9.56(GLR)'
Where Q, = Oil flow rate (STB/D); D = choke size (1/64 in); P,, = Wellhead pressure (psi); GLR
= gas liquid ratio (SCF/STB)

__PunDE?

" 17.4(GLR)*
Where Q, = Oil flow rate (STB/D); D = choke size (1/64 in); P,, = Wellhead pressure (psi); GLR
= gas liquid ratio (SCF/STB)

__ P DE®

 3.82(GLR)'®®
Where Q, = Oil flow rate (STB/D); D = choke size (1/64 in); P,, = Wellhead pressure (psi); GLR
= gas liquid ratio (SCF/STB)

86400CpA, 9273.6P
P V(1 +0.5M;)

0.4513(R + 0.766)"°
R+ 0.5663

Q, =

Where
M = 350y, + 0.0764y,R + 350y, (WOR); R = [0.00504T1Z; (GLR — Rs1)]/P1Bo1
My =1/[1 +R(pgy /p11)ls Vi = Mi/pa
Where Q, = Oil flow rate; WOR=Water oil ratio; 7, 7,. ,, = specific gravities of gas, oil and
water respectively; p; = liquid density; P = pressure, Cp = discharge coefficient, A = Choke area,
pm = mixture density; v, = specific volume of liquid; M;, = Liquid molecular weight; GLR = gas
liquid ratio; B, = Oil formation volume factor; T = temperature; Z = gas compressibility factor;
R;1 = Solution gas liquid ratio at upstream conditions; p, = gas density

P d?
Q = go0R0S
Where Q = Flow rate (STB/D); d = choke size (1/64 in); P; = Wellhead pressure (psi); R = gas
liquid ratio (SCF/STB)

Ny = 0.263N, > N31°QI¥NL® (i) Ng = 1.84Qu(p,/0)"*%; (ii) N, =c/py ; (iii) Ny =

0.0174Py,
VPLo
Where Ny; = liquid flow rate number; N; = diameter number; N, = upstream pressure number;
Qq = gas/liquid ratio number; ¢ = surface tension; P,; = Upstream pressure (psi); p, = liquid
density; Dg4 = Choke diameter (1/64 in); R; = Solution gas liquid ratio (SCF/STB)
1.53CpD2P;  {[T1Z1(GOR — Ry) + 151P1](7, + 0.0002177,Ry; -+ WORy,,)}"°
" (B, + WOR)®®  [T1Z1(GOR — Rq1) + 111P1](y, + 0.0002177,GOR + WORy,,)
Where WOR=Water oil ratio; 7, 7,, 7,, = specific gravities of gas, oil and water respectively; p;
= liquid density; P = pressure, Cp = discharge coefficient, D, = choke diameter, GOR = gas oil
ratio; B, = Oil formation volume factor; T = working temperature; Z = gas compressibility
factor; Rgy = Solution gas liquid ratio at upstream conditions
Q = 4.4939 + 103P;S?
Q = 3.6495 « 1073p;S?
Where Q = flow rate (STB/D); S = choke size (1/64 in); P¢ = flowing wellhead pressure (psi)
46.666qLR“,’ 313
P =""gpm
P; = Upstream pressure (psi); q; = liquid flow rate (STB/D); R, = producing gas oil ratio(SCF/
STB); d = choke diameter (1/64 in.)
Ny = 272N;o 2357Ng 6357 QUSI505 N16704 for ) < 6 /64"
Ny = 197A6N/j° 3797Ng 5916 QUS1648 NL7042 for 6 /64 < D < 10/64"
Ny = 321.837N, 007955 N0-37395 Q) 5928 N2.9972 for 10/64 < D < 30/64”
Q = (19 + 1.53D + 0.83D%)( — 1.8059 + 0.033755P — 8.657 * 10-°P2)API?31 G052
Where D = choke diameter (1/64 in); Ny = diameter number; Ny = liquid viscosity number; Ny
= liquid volume rate number; N, = Density or mass ratio number; R = volumetric gas liquid ratio
(SCF/STB); Q4 = dimensionless production number; P = pressure (psi); G = producing gas liquid
ratio (SCF/STB); API = Oil API gravity; Np;, = Upstream pressure number
Q, = 0.33567D! 790 p0-8756 R~0.2693 A p~0.43957 where: Qo = oil flow rate (STB/D); D = choke
diameter (1/64 in); P = wellhead pressure (psi); R = gas oil ratio (SCF/STB); API = American
Petroleum Institute oil gravity
P, A0:4664
— c
- 0.16549849R0395>
P; = Upstream pressure (psi); g, = liquid flow rate (STB/D); R, = producing gas oil ratio (SCF/
STB); A, = choke cross sectional area (ft%)

() Qi =1/(1+Ry);(¥) Ny =0.01574Deq,/p6

qL

(continued on next page)
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Authors

Method/Data size &
source

Input Parameters

Correlation developed

Osman and Dokla
(1990)

Abdul-Majeed and
Maha (1991).

Al-Towailib and
Al-Marhoun
(1994)

Elgibaly and
Nashawi (1998)

Mesallati et al.
(2000)

Ghareeb and
Shedid (2007)

Al-Rumah and
Bizanti (2007)

Al-Attar (2008)

Al-Attar (2009)

Nasriani and
Kalantari Asl
(2011).

Beiranvand and
Khorzoughi
(2012)

Beiranvand et al.
(2012)

Least squares method
/87 data points form 8
wells producing from a
gas condensate
reservoir in the Middle
East

Non-Linear Multiple
Regression
210 data points

Nonlinear multiple
regression

3554 production test
data from ten fields in
the Middle East

Least squares method
154 (critical flow)
106 (Subcritical flow)
Data points/Iraq, UAE
and Kuwait, Ashford
and Pierce paper

Non-Linear Multiple
Regression/62 data
points (vertical wells)
and 73 data points
(horizontal wells),
Bouri oil field

Least squares method
solved using Gaussian
elimination

1750 data points from
352 producing wells in
Egypt.

Regression analysis

621 data points from 63
vertical oil wells,
Sabriyah field in Kuwait

Non linear regression/
97 data points from 3
gas condensate wells,
Middle East

Regression analysis

40 field tests for critical
flow conditions and 139
field tests for subcritical
flow conditions all in
the Middle East

Non linear regression
61 data points

From 15 wells in 10
different fields

Non linear regression
182 data points

Levenberg-Marquardt
algorithm

748 data points
Offshore field in Iran

Upstream pressure, gas liquid
ratio, and choke size

Upstream wellhead pressure,
GLR, choke size, Oil API
gravity, Upstream
temperature, Gas specific
gravity

Choke size (s), upstream
wellhead pressure (Pys), oil
relative density (y,), gas
relative density (Yg), gas oil
ratio (Rp), mixture relative
density (Ym)

Pressure drop (AP), gas liquid
ratio (R) and choke size (D).

Flowing wellhead pressure,
gas liquid ratio, and surface
wellhead choke size.

Wellhead temperature,
bottom hole temperature,
tubing cross-sectional area,
producing gas/oil ratio,
water cut

Flowing wellhead pressure,
gas liquid ratio, and surface
wellhead choke size.

Pressure drop (AP), gas liquid
ratio (R) and choke size (S).

Gas liquid ratio, choke size,
upstream pressure

Choke size (S), Pressure drop
(AP), gas liquid ratio (R)

Wellhead pressure, gas liquid
ratio, choke size, basic
sediments and water,
temperature

Wellhead pressure, gas liquid
ratio, choke size, basic
sediments and water

P; = 820Q; GLRO-4344 /518478
Py = 767QgLGRO %59 /518298

AP = 310.01Q,GLR"3%19 /518626

AP = 302Q,LGRO4038 /518587

Where Q;, = liquid flow rate (STB/D); S = choke size (1/64 in); P; = Upstream pressure (psi);
GLR = gas liquid ratio(SCF/STB); LGR = liquid gas ratio(SCF/STB); Qg = Gas flow rate (MMSCF/
D)

Q = (19 + 1.53D + 0.83D?)( — 1.8059 + 0.033755P — 8.657 * 10-°P2)AP[°-31 G052

Where Q = flow rate (STB/D); D = choke diameter (1/64 in); P = pressure (psig); G = producing
gas liquid ratio, (SCF/STB); API = Oil API gravity

_ 1.886x1073p>7p0%8!
& = (v +2.18  10-*Ry,)
Where Qo = oil flow rate (STB/D); D = choke diameter (1/64 in); P = pressure (psig); 7, 7, =
specific gravity of gas and oil respectively; R = producing gas liquid ratio (SCF/STB)

1

1204.8913D2747 2
wAP] [Subcritical flow)

1.13501
RP

0.612D'62 "
= WP [Critical flow]
Where Q = flow rate (STB/D); D = choke diameter (1/64 in); P = pressure (psig); R, = producing
gas liquid ratio, (SCF/STB)
Q = 0.0564PLE785GLR=0-9947DC1431 [for vertical wells|
Q. = 1389.65P, 565 GLR~0-00172DC1132 [for horizontal wells]
Where Qy, = liquid flow rate (STB/D); DC = choke diameter (1/64 in); Pwh = well head pressure
(psig); GLR = gas liquid ratio (SCF/STB)

9.2x10~473:27 H1 2A081 GORO.041
Q=

TLZWCO046
Where Q = flow rate (STB/D); Ty, = wellhead temperature(°F); T, = bottomhole temperature
(°F); A = tubing cross sectional area; WC = water cut (%); GOR = gas oil ratio (SCF/STB); H =
well producing depth (ft)

_ pogeeld 1946479
~ 188RYY%322

Where Q;, = liquid flow rate; d. = choke size, 1/64 in; P,, = Wellhead pressure, psi; GLR = gas
liquid ratio

Qq = (1/29653.3)APS! 15537 R0846%5 [subcritical flow] Where Qg = gas flow rate (MMSCF/D); S
= choke size (1/64 in); AP = Pressure drop (psi); R = gas liquid ratio (SCF/STB)

qL

Cameron LD
Qi = 4.543 ¥ 1073P; (GLR — Rs1)****! DL75%3 [subcritical flow]; Q;, = 1.262 *
1073P; (GLR)®*7°pL733
Cameron F
Qi = 9.454 % 1075P; (GLR — Rs1)*7?"1°DL73%8; Q; = 1.801 + 10~'P; (GLR) **DL72
Bean Setting
Q. = 2.03%1073P; (GLR — Rs1)***°DL8%; @, = 2.18 + 10-3P; (GLR)* " D},87
Where Q;, = liquid flow rate (STB/D); Ry; = Solution gas liquid ratio at upstream conditions
(SCF/STB); GLR = gas liquid ratio (SCF/STB); D, = choke diameter (1/64 in); P; = Upstream
pressure (psi)
g19

Qs = 5350R 065
Pressure drop(psi); R = gas liquid ratio (SCF/STB)

AP Where Q, = gas flow rate(MMSCF/D); S = choke size (1/64 in); AP =

. -0.8
ris(1-557) ()
Q= COROT 5 Where Q = flow rate (STB/D); S = choke size (1/64 in); P,

= Wellhead pressure (psi); GOR = gas oil ratio (SCF/STB); BS&W = basic sediments and water
(%); T = working temperature (°F); T;, = Temperature at standard conditions (°F)

» hsz,lsl 1 BS& 0.5297
Py.D25% " 100

= 30.49(GLR)2 7> ;Q GLRO5154
Where Q = flow rate (STB/D); Dg4 = S = choke size (1/64 in); P,, = Wellhead pressure (psi);
GLR = gas liquid ratio (SCF/STB); BS&W = basic sediments and water (%)

= 0.0382

(continued on next page)
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Authors

Method/Data size &
source

Input Parameters

Correlation developed

Sadiq (2012)

Mirzaei-Paiaman
(2013).

Khorzoughi et al.
(2013)

Mirzaei-Paiaman
and Salavati
(2013)

Zangl et al. (2014)

Bairamzadeh and
Ghanaatpisheh
(2015)

Obukohwo et al.
(2015)

Seidi and Sayahi
(2015)

Bokhamseen et al.
(2015)

Nasriani and
Kalantari Asl,
(2015)

Okon et al. (2015)

Lak et al. (2017)

Choubineh et al.
(2017)

Ganat and Hrairi
(2018)

Nonlinear multiple
regression analysis
Iraqi oil wells

Nonlinear multiple
regression analysis/51
data points from 17 gas
condensate wells in 7
Iranian fields
Non-linear method of
Nelder-Mead and
Linear regression

182 production tests in
a southern offshore field
in Iran

Non-linear multiple
regression analysis/124
data points from 15
Persian oil fields

ANN, Multiple linear
regression & Random
forest classification

258 data points

Non linear regression
1300 data points from
120 Iranian offshore oil
wells

Not reported

Non-linear regression
67 data sets from South
Iranian gas condensate
reservoirs

Generalized reduced
gradient (GRG2) non-
linear algorithm/64
data points from 16
separator tests
Non-linear regression/
64 data points from 15
high rate wells located
in Iran

Multivariate
regression/64 data
points

Niger Delta (Nigeria) oil
wells

Multivariate
regression/864 data
points

From Persian Gulf
offshore

Non-linear regression/
113 data points from 12
South Iran oil wells

Non-linear regression
96 data points from
North African oil wells

Choke upstream pressure,
choke size, producing gas to
liquid ratio.

Choke upstream pressure,
choke size, and producing gas
to liquid ratio.

GLR, Choke size (S),
Wellhead pressure,
Temperature, BS&W

Choke upstream pressure,
choke size, gas oil ratio
(GOR)

Tubing head pressure, tubing
head temperature, gas lift
rate, gas lift injection
pressure, flowline pressure
Upstream wellhead pressure,
gas liquid ratio, choke size

Not reported

Choke size, Gas Liquid ratio,
pressure drop across choke

Choke diameter, upstream
pressure, upstream
temperature, gas specific
gravity, gas and condensate
rates and GOR

Choke size (S), Pressure drop,
gas liquid ratio

Wellhead pressure, gas liquid
ratio, choke size, flowing
temperature, basic sediments
and water

Wellhead pressure and
temperature, choke diameter,
separator pressure and
temperature

Well head pressure, choke
size, oil specific gravity, gas
specific gravity, temperature,
gas liquid ratio

Wellhead temperature,
bubble point pressure (pb),
producing gas-oil ratio, WHP,
overall shut in time (t), and
water cut

Q — 19049,65P70'69D0'704GOR0 101
Where Q = flow rate (STB/D); D = choke size (1/64 in); P= Pressure (psi); GOR = gas oil ratio
(SCF/STB)

1.83
Q= % Where Q; = Liquid flow rate(STB/D); d = choke size (1/64 in); P, =

Wellhead pressure (psi); GLR = gas liquid ratio(SCF/STB)

In(Q) = — 4.0285568 + 0.56 In(P,4) + 1.94 In(S) + 0.73 1n<1 - Bf%v) +6.82In (Tl) +
sc

0.047 In (GLR)

Where Q = flow rate (STB/D); S = choke size (1/64 in); P, = Wellhead pressure (psi); GLR = gas

liquid ratio (SCF/STB); BS&W = basic sediments and water (%); T = working temperature(°F);

T, = Temperature at standard conditions (°F)

_0.087607P,;,d'-0*5

- GOR0-5334
Where Q, = Oil flow rate (STB/D); d = choke size (1/64 in); P,, = Wellhead pressure (psi); GOR
= gas oil ratio (SCF/STB)

Not stated

9383 1.7137
P?vh * Dchoke

Q =7 8337GLRO %%
Where Q; = liquid flow rate (STB/D); Do = choke size (1/64 in); P, = Wellhead pressure

(psi); GLR = gas liquid ratio (SCF/STB))
Qo = (1 — We) x MF % 41085Jr (1 — Gp) * MF + 4.1085 _ Gy = MF % 23.0676
Ymi * Bot Bot * Ymi ’ Bot * Ymg

Where Q, = oil flow rate (STB/D); Qg = gas flow rate (MMSCEF/D); 7y , ¥y = Specific gravity of
oil and water, specific gravity of gas and any oil carry over at test conditions; MF = mass flow
rate; W, = water cut(%); By, = oil formation volume factor; G = gas formation volume factor

~ 0.0158"# APO%6
Q= TR
Pressure drop (psi); LGR = liquid gas ratio (SCF/STB)

Where Q, = gas flow rate(MMSCF/D); S = choke size (1/64 in); AP =

Pupdl 85

. 0.211d'%2p,,,
9 ~ 59.88cGrRo1T % ~

7¢(Tup + 460)
Where Q, = gas flow rate (MMSCF/D); d = choke size (1/64 in); P,, = Upstream pressure(psi);
CGR = condensate gas ratio; Ty, = Upstream temperature(°F); y, = gas specific gravity

Qq = (1 /6868169.43) APS225544R0.750342 s Where Q, = gas flow rate (MMSCF/D); S = choke size
(1/64 in); AP = Pressure drop(psi); R = gas liquid ratio (SCF/STB)

_ 5.1474(GLR%5*®)q

Pun 517098

0.757
19.65(GLR%574)q

S18133 (1 _ BS&W) %225 T 0.000029
100 Tsc

Where q = flow rate (STB/D); S = choke size (1/64 in); P,, = Wellhead pressure (psi); GLR = gas
liquid ratio (SCF/STB); BS&W = basic sediments and water(%); T = working temperature(°F);
T, = Temperature at standard conditions (°F)

0.25T%, R¥%¢q,
Pyn = 5

S176

Where q; = liquid flow rate(STB/D); S = choke size (1/64 in); P,,, = wellhead pressure(psi); R =
gas liquid ratio(SCF/STB); T\, = Wellhead temperature (°F)

Pyn =

T 0.000453
0.067662 x P,y + DEJOIE « (0625862 1582074 (T)
SC
QL - GLRO.508714
~0.059094 * Pyp * D2 01865

GLRO-560742
Where Q;, = liquid flow rate(STB/D); D¢4 = choke size (1/64 in); P,,, = Wellhead pressure (psi);
GLR = gas liquid ratio(SCF/STB); T = working temperature(°F); T;. = Temperature at standard
conditions(°F); 7, = gas specific gravity; y, = oil specific gravity

Qo = 0.002236(WHP, — WHP,)*%76%* WHT1 013912097168 GOR0.634736 (100 — WC)' ph0 011189
Where Qo = oil flow rate (STB/D); WHP = wellhead pressure (psi); WHT = wellhead
temperature (°F); GOR = gas oil ratio (SCF/STB); WC = water cut (%)

(continued on next page)



O.E. Agwu et al.

Table 4 (continued)

Journal of Petroleum Science and Engineering 208 (2022) 109775

Authors

Method/Data size &
source

Input Parameters

Correlation developed

Fuladgar and
Vatani (2019)

Nasriani et al.
(2019)

Al-Rumah and
Alenezi (2019)

Jumaah (2019)

Kargarpour (2019)

Multi variable linear
regression/142 data sets
from South West Iran
Non-linear regression/
234 production data
points

Non-linear regression/
835 data points

Non linear regression/
33 production tests data
from 12 wells produce
from Tertiary Reservoir
in Khabaz oil field

Semi analytical
approach/399 data
points

Wellhead pressure, choke
size and producing gas liquid
ratio

Liquid gas ratio, choke size
(S) and the pressure drop
across the choke

Liquid gas ratio (RGL), choke
size (d) and the pressure drop
across the choke (Pwh), API
gravity

Gas oil ratio (GOR), choke
size (D), Flowing wellhead
pressure (Pwf), water cut

Oil API gravity (SpGr),
Upstream choke pressure
(P1), GOR, Choke size (d),
downstream choke pressure

(P2)

~0.3135p57949 1740565

Q= — Rodrere ; Where Q = flow rate (STB/D); Cs = choke size (1/64 in); P, =

Wellhead pressure (psi); R = gas liquid ratio (SCF/STB)
0.0437S1-1136 A p0.4836
= ( LGR)0.3129

= Pressure drop(psi); LGR = liquid gas ratio (SCF/STB)
PO91772 420346 A p1 104824

_ ¢

t 249 8503R%510%

_ PO848836 41883216
3.337139R%55744

Wellhead pressure (psi); RGL = gas liquid ratio(SCF/STB); API = oil API gravity

0000275

; Where Q, = gas flow rate (MMSCF/D); S = choke size (1/64 in); AP

qL Where g, = liquid flow rate (STB/D); d. = choke size (1/64 in); P, =

B —
Q 1.7634GOR0 9058

D0.0000486 Wet 1.3936
Q = PWF73360RT1 * (1 - m)

Where Q = flow rate (STB/D); Wct = water cut (%); GOR = gas oil ratio(SCF/STB); PWF =
flowing wellhead pressure (psi); D = choke diameter (1/64 in)
-1

VP
qep = P1d * B + GOR
(1 p2> P, 1565 P, 021575
(m) sson@) =)
552 % $pGr

Where ggpp = well flow rate (STB/D); P; = upstream choke pressure (psi); GOR = gas oil ratio
(SCF/STB); d = choke diameter (1/64 in); P, = downstream choke pressure (psi); SpGr = liquid
specific gravity with respect to water

Table 5
Summary of range of data used by researchers on the use of empirical techniques in modelling oil and gas through chokes.
Author(s), Year Flow rate (STB/  Wellhead API GOR (SCF/ Water Choke size Gas liquid ratio Wellhead BS&W
D) pressure (psia) gravity STB) cut (%) (1/64 inch) (SCE/STB) Temperature (°F) (%)
Gilbert (1954) 25-40 6-18
Omana et al. (1968) 800 400-1000 4-14
Abdul-Majeed (1988) 10.5-4728 100-4374 17-56.3 4-40 102-18594 60-120
Surbey et al. (1989) 450-3550 85-950 27-90 140-5200 48-132
Al-Towailib and 172-33847 97-1880 27-40 12-5026 16-160 160-240
Al-Marhoun (1994)
Elgibaly and Nashawi 31-6501 180-5100 26-58 127-12163.3 0-92.3 5.9-72 105-170
(1998)
Al-Rumah and Bizanti 45-6900 120-1400 16-91 17-1900
(2007)
Al-Attar (2008) 260-1917 24-128 155-180
Nasriani and Kalantari 9.30-110.35 1131-4452 40-192 51-1453 113-200
Asl (2011) MMSCF/D
Beiranvand and 183-9284 133-883 36-885 25.6-40 87.6-162 0.1-53
Khorzoughi (2012)
Beiranvand et al. 3000-24000 1400-12000 16-40 80-260 0.1-30
(2012)
Mirzaei-Paiaman 266.3-5706 832-8410 24-128 1743-51300
(2013).
Mirzaei-Paiaman and 198-9643 115-4308 22.97-43 158-20324 16-128
Salavati (2013)
Bokhamseen et al. 3-26 MMSCF/D  1500-4500 2500-3500 16-72 140-230
(2015)
Nasriani and Kalantari 9.3-110.35 1131-4452 40-192 51-1453 113-200
Asl, (2015)
Okon et al. (2015) 263-5313 36-2320 16-76 93-4134 100-150 0-0.884
Bairamzadeh and 110-11200 103-1120 12-92 12-30782
Ghanaatpisheh
(2015)
Lak et al. (2017) 281-2520 1580-4180 24-64 13900-43300 95-151
Ganat and Hrairi 200-3350 60-350 30-40 300-1100 0-98 16-64
(2018)
Fuladgar and Vatani 100,000 200-4000 19-34 290-1670 12-52 205-271
(2019)
Nasriani et al. (2019) 5.4-113.3 14.5-2104 32-192 0.69-178.8 191.93-463.73
Kargarpour (2019) 38-5538 12.8-42 61-6044 8-96
Al-Rumah and Alenezi 10.5-6892 85-4374 11-56 102-18579
(2019)
Jumaah (2019) 400-2900 445-1854 0-4.7 16-42 847-2595

10



O.E. Agwu et al.

Table 6
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Summary of findings by researchers on the use of empirical techniques in modelling critical flow rate of oil well fluids.

Author(s), Year

Method used

Major findings and conclusions

Ashford (1974)
Akbar (1978)
Abdul-Majeed (1988)

Surbey et al. (1989)

Osman and Dokla (1990)

Al-Towailib and Al-Marhoun
(1994)

Elgibaly and Nashawi (1996)

Ghareeb and Shedid (2007)

Al-Attar (2009)

Nasriani and Kalantari Asl
(2011)

Beiranvand and Khorzoughi
(2012)

Beiranvand et al. (2012)

Mirzaei-Paiaman (2013)

Mirzaei-Paiaman and Salavati
(2013)

Khorzoughi et al.(2013)
Zangl et al. (2014)
Okon et al. (2015)
Bairamzadeh and

Ghanaatpisheh (2015)
Moghaddasi et al. (2015)

Lak et al. (2017)
Ganat and Hrairi (2018)
Fuladgar and Vatani (2019)

Nasriani et al. (2019)

Multiple linear regression
Non-linear regression

Non-linear regression
Non-linear regression

Least squares method

Least squares method solved using
Gaussian elimination

Regression analysis

Non-linear regression

Non-linear regression

Non linear regression
Nonlinear multiple regression
analysis

Nonlinear multiple regression
analysis

Non-linear method of Nelder-Mead
and Linear regression

Linear regression, ANN, Random
Forest classification

Multivariate regression analysis
Non-linear regression analysis

Not stated

Multivariate regression
Non-linear regression

Multi variable linear regression

Non-linear regression

The discharge coefficient necessary to predict rate of production ranges between 0.642 and 1.218.
Production data that is accurate is required to obtain an average of the flow rates of oil and gas.

The rate of production predicted by the original and modified forms of the Omana model is not strongly
related to the viscosity of oil.

The model is limited to only multi-orifice-valve (MOV) chokes.

The model developed is most accurate when pressure drop data is used instead of choke upstream pressure.
Taking into account the mixture density in oil and gas flow rate models is necessary.

The developed model is used for critical flow rate prediction and requires PVT data.

The accuracy of the model’s prediction is linked to its taking into account other variables that were not
accounted for by the Gilbert model such as size of tubing, depth of payzone and wellhead temperature.
For critical and subcritical flow conditions, the model developed outperformed extant models. Data on
water cut are required for developing models for these conditions.

The range to which the developed model can be applied is as follows: choke size: 40-192 (1/64 in), GLR:
51-1453 MSCF/STB, Wellhead flowing temperature: 113-200 °F, Upstream pressure: 1131-4452 psi,
Downstream pressure: 825-3045 psi.

Basic sediments and water (BS&W) and temperature are important variables that significantly affect flow
rate prediction and therefore should be accounted for when developing flow rate models.

BS&W is an important variable that significantly affect oil and gas flow rate prediction.

Since a wide range of data was utilized in developing the model, it can be applied to many fields around the
world.

The developed model is less complex than existing models making it more convenient for use.

Since a wide range of data was utilized in developing the model, it can be applied to many fields around the
world.

Incorporating BS&W and temperature in the developed models improved its accuracy.

Of the three modelling techniques, the model developed using ANN had a higher predictive accuracy than
the others followed by the random forest classification and then the linear regression model

The models can be used to predict oil production rate in fields in the Niger Delta area of Nigeria

The developed model outperformed those of Gilbert (1954), Ros (1960), Achong (1961) and Baxendell
(1958).

In comparison with the models proposed by Gilbert (1954), Ros (1961), Baxendell (1958), Achong (1961),
Pilehvari (1981) the Baxendell (1958) model captured more accurately the dynamics of the data from 14
wells from the Asmari reservoir located in southwest Iran.

Uncertainty in the flow rate of water diminishes the regression’s accuracy.

The developed model is quick, reliable, and can be adapted to any ESP oil well as well as artificially
onshore and offshore flowing wells but can only be applied to critical flow conditions.

An evaluation of the new correlation indicated that it could significantly improve accuracy of flowrate
predictions in contrast to previous prominent correlations

This model works best when applied within the range of the following production parameters: LGR of
0.7-178.8 bbl/MMscf, a choke size: 24/64 to 192/64, gas flow rate of 5.4-113.3 MMscfD.

output layers respectively (Mekanik et al., 2013). This process is
depicted in Fig. 2.

The first step in modelling with ANN is the training of the network.
Data are processed through the input layer to the hidden layer(s) then all
the way to the output layer. In the output layer, the predicted data are
compared with the actual data. The difference between actual and
predicted data is transferred back to the model to update the individual
weights between each connection and the biases of each layer. This
process is called epoch. In this way, training continues for all the dataset
until the average error reduce to certain defined limit (Demuth et al.,
2009). Network performance also depends upon the number of neurons
in the hidden layer, fewer neurons cause under-fitting and excessive
neurons cause over-fitting, so optimization is required for the designing
of neurons (Aalst et al., 2010; Haykin, 1999). The overall correlation
between inputs and output for an ANN model is as shown in Equation (3)
(Fazeli et al., 2013).

Vi =fo Zwkj:f/r ijixi +b; | +bi 3
7 7

Where x is an input vector; w; represents the weight from the ith
neuron in the input layer to the jth in the hidden layer; b; represents the
bias of jth hidden neuron; wy; represents the weight from the jth neuron
in the hidden layer to the kth neuron in the output layer; by represents
the bias of kth output neuron and f,, and f, are the activation functions
for the hidden and output neuron respectively. The following are the
types of ANN: (i) Modular Neural Networks (ii) Feedforward
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backpropagation Neural Network (iii) Radial basis function (RBF)
Neural Network (iv) Kohonen Self Organizing Neural Network (v).
Recurrent Neural Network (RNN) (vi) Convolutional Neural Network
(CNN) (vii) Long/Short Term Memory (viii) Multilayer perceptron
(MLP) (ix) Deep neural network

3.3.1.2. Fuzzy logic. Fuzzy logic by definition is an accurate computa-
tional system which has the capability to interpret and represent infor-
mation that is vague, incomplete, uncertain, imprecise, ambiguous or
partially true (Zadeh, 2009; Yadav and Singh, 2011). The fuzzy logic
system has the ability to capture the non-linear relationship of an
input-output model without an exact mathematical formula (Liu and Li,
2005). Modelling with fuzzy logic entails utilizing a linguistic approach
(descriptive language) established on fuzzy logic with fuzzy propositions
(Adeyemi et al., 2016). The operational mechanism of fuzzy logic is to
map an input space (universe of discourse) to an output space, using a
list of “if then” statements referred to as rules (Castillo and Melin, 2001).
Thus, a fuzzy model can be viewed as an assemblage of various linear
models implemented locally in the fuzzy regions described by the rule
premises with the final model being represented by the intermediate or
interpolation of the linear models (Lima et al., 2015). According to
Kayacan and Khanesar (2016), fuzzy logic system is carried out in four
basic steps namely: input data fuzzification, fuzzy rules evaluation, ag-
gregation of outputs of fuzzy rules and output defuzzification.

3.3.1.3. Hybrid intelligent systems. A technique that results from the
amalgam of two or more methods is called a hybrid. In artificial
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Table 7
Summary of critical and subcritical flow models based on artificial intelligence.
Authors Method/ Data size/source Inputs and Output Parameters Performance
Architecture metrics

ZareNezhad and ANN [3-30 - 1] 97 data points Inputs: Pressure drop (psi), gas-to-liquid ratios (SCF/STB), choke size (1/64 in.) R? = 0.9996;

Aminian (2011) Output: Gas flow rate (MMSCF/D) RMSE = 0.26;
AARE (%) =
0.486

Berneti and ANN and 31 wells in Iran Inputs: Temperature (°F), pressure (psi) R? = 0.9703;
Shahbazian, Imperialist Output: Oil flow rate (STB/D) MSE = 0.0123
(2011). Competitive

Algorithm (ICA)
[2-7-11
Al-Shammari (2011) ANFIS 796 data points Inputs: Flowing wellhead pressure (psi), liquid rate, water cut (%), gas oil ratio (SCF/STB), R? = 0.93; AARE
Middle East oil API, reservoir temperature (°F), tubing inside diameter (in.), gauge depth (ft) (%) = 4.93
Output: Flowing pressure at gauge depth (psi)

Al-Khalifa and ANN [6-9-5-8- 4031 data points  Inputs: Upstream wellhead pressure (psi), temperature (°F), choke size (1/64 in.), oiland gas R = 0.986;
Al-Marhoun 1] relative densities (yo and yg), production GOR (SCF/STB) RMSE = 10.5;
(2013) Output: Liquid critical flow rate (STB/D) APE = 0.4; AAPE

=6.7

Ahmadi et al. (2013)  i. ANN 1600 data set of Inputs: Temperature (°F), pressure (psi) ANN: R? =

ii. Fuzzy Logic 50 wells in Iran Output: Oil flow rate (STB/D) 0.93909; MSE =

iii. ANN-ICA 0.091343
Fuzzy logic: R?
= 0.9037; MSE
= 0.0073664
ANN-ICA: R? =
0.99505; MSE =
0.0030392

Nejatian et al. Least-Squares 171 (orifice) 164  Inputs: Reynolds number, d/D (ratio of choke diameter to pipe diameter) Orifice: R? =

(2014) Support Vector (nozzle) data Output: Choke flow coefficient 0.9993; RMSE =
Machine points 0.0016; AARE =
(LSSVM) 0.1881
Nozzle: R? =
0.9955; RMSE =
0.0038; AARE =
0.2529
Bello et al. (2014) Hybrid Data from Inputs: Flowing bottom hole pressures (psi), flowing bottomhole temperatures (°F), tubing Not reported
intelligence literature pressures (psi), tubing temperatures(°F), choke opening position, gas oil ratio (SCF/STB), oil
system water ratio, API gravity
Output: Oil and gas flow rates (STB/D; MMSCF/D)
Kaydani et al. (2014) Genetic 200 data points Inputs: Upstream wellhead pressure (P) (psi), gas oil ratio (GOR)(SCF/STB), and surface Critical flow: R?
programming p ( D \? = 0.988; RMSE
v M) 0.0254+D = 0.006, AARE
. . - 5 )
wellhead choke size (D) (1/64 in.) ¢ = 1000 % |9.59 x 10 COR 5500 — 0102
Subcritical flow:
(Critical flow) R? = 0.90; RMSE
AP\ 2 D \3 1/4 = 0.014; AARE
4= 1000 3.447 %1077 (ﬁ) * (ﬁ) . \/04145 AP 00254+D  GOR =0.155
0.975 GOR 100 2500 1000
(t500)
(Subcritical flow)
Output: Liquid critical flow rate & Liquid subcritical flow rate (STB/D)
Zangl et al. (2014) ANN 258 data points Inputs: Tubing head pressure (psi), tubing head temperature (°F), gas lift rate, gas lift Liquid rate: R? =
injection pressure, flowline pressure (psi) 0.9706
Outputs: Liquid rate, Water rate, Oil rate (STB/D) Water rate: R% =
0.9706
Oil rate: R? =
0.9308
Al-Ajmi et al. (2015) ANN 174 data points Inputs: Well head pressure (psi), choke size (1/64 in.), temperature (°F), gas oil ratio (SCF/  R? = 0.89, MAPE
STB), water cut,(Pypsiream T-S/GLR), Gilbert correlation, gas liquid ratio =15.15
Output: Liquid critical flow rate (STB/D)

Hasanvand and ANN [2-7 - 1] 600 datasets (31 Inputs: Temperatures (°F) and pressures of lines (psi) R? = 0.98741;
Berneti (2015) wells)Iran Output: Oil critical flow rate (STB/D) RMSE = 0.09746

Al-Ajmi et al. (2015) ANN 421 data points Inputs: Pypstreams> Pdownstream/Pupstream, temperature/Pypstream, AP/Pupstream, Water cut, GOR. RZ= 0.93; MAPE

WG, gas liquid ratio (SCF/STB), Log (S), 1/log (choke size) =15.7
Output: Liquid subcritical flow rate (STB/D)

Seidi and Sayahi Genetic 67 data sets Inputs: Choke size (1/64 in), Gas Liquid ratio (SCF/STB), pressure drop across choke (psi) RZ= 0.9189;
(2015) algorithm Iranian gas Output: Gas condensate subcritical flow rate RMSE = 7.655

reservoirs

Elhaj et al. (2015) ANN 162 data points Inputs: Choke size (1/64 in.), Upstream tubing pressure (psi), downstream tubing pressure ANN: R? =

Fuzzy logic from a field in (psi), upstream tubing temperature (°F), gas gravity 0.99986; AARE
SVM Sudan Output: Gas flow rate (MMSCF/D) (%) = 0.828133
Functional Fuzzy logic:
Network AARE (%) =
Decision Tree 0.681219

SVM: AARE (%)

(continued on next page)
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Authors Method/ Data size/source Inputs and Output Parameters Performance
Architecture metrics
= 1.662585
Functional
network: AARE
(%) =4
Decision tree:
AARE (%) =
0.836
Zareiforoush et al. ANN [6-17 - 1] 399 data points Inputs: Wellhead pressure (psi), Wellhead temperature (°F), Choke size (1/64 in), Specific Not reported
(2015) gravity of gas, specific gravity of oil, basic sediments and water
Output: Wet Factor
Ghadam and Kamali Comparative 84 data points Inputs: Temperature (°F), produced gas density, rate of produced liquids, ratio of liquid to gas ~ R? = 1; MAE =
(2015). Neural Fuzzy (SCF/STB), apparent velocity of gas, and apparent velocity of liquid 0.0466
Inference System Output: Gas critical flow rate (MMSCF/D)
Gorjaei et al. (2015) PSO-LSSVM 276 data points, Inputs: Choke upstream pressure (psi), gas liquid ratio (SCF/STB) and choke size (1/64 in.) R? = 0.9935;
Iran Output: Oil flow rate (STB/D) AARE (%) = 0.7
Okon and Appah ANNi. [3-6-5-1 64 data points, Inputs: Flowing wellhead pressure (psi), choke size (1/64 in.), gas-liquid ratio (SCF/STB), i. R? = 0.9653;
(2016) -1] Nigeria flowing temperature (°F) and basic sediments and water (BS&W) RMSE = 0.365;
ii. [5-6-6-1-1] Output: Oil critical flow rate (STB/D) AARE (%) =
0.192
ii. R* = 0.9951;
RMSE = 0.4533;
AARE (%) =
0.1045

Naseri et al., (2017)

Baghban et al.
(2016)

Choubineh et al.
(2017)

Al-Qutami et al.
(2017a)

Al-Qutami et al.
(2017b)

Rostami and Ebadi
(2017)

Ghorbani et al.
(2017)

Buhulaigah et al.
(2017)

Loh et al. (2018)

Al-Qutami et al.
(2018)

ANN (GA-RBF)

Support Vector
Machines (SVM)
ANN-TLBO
[6-10 - 8-1]

ANN (RBF)

ANN
4-7 -1 [0il]
4-6 — 1 [gas]

Gene expression
programming
(GEP) And
Artificial Neural
Network

Firefly
optimization
algorithm

Artificial Neural
Network

Deep LSTM
network model in
the EnKF
framework
Neural network
ensemble and
adaptive
simulated
annealing

308 (nozzle) 243
(orifice) datasets.

100 data points,
Iran
113 data points,
Iran

200 data points

591 data points

119 data points
South west Iran

92 datasets
Pazananl gas
condensate field,
Aghajari Region,
Iran

174 data points,
Middle east

2 mature gas
wells in the

North sea

238 data points

Inputs: Ratio of choke diameter to the pipe diameter (d/D), Reynolds number
Output: Choke flow performance

Inputs: Wellhead pressure (psi), gas oil ratio (SCF/STB), diameter of choke (1/64 in.)
Output: Liquid flow rate (STB/D)

Inputs: Well head pressure (psi), choke size (1/64 in.), oil specific gravity, gas specific
gravity, temperature (°F), gas liquid ratio (SCF/STB)

Output: Liquid critical flow rate (STB/D)

Inputs: Bottom-hole pressure (psi), WHP (psi), WHT (°F), Choke valve opening percentage
Output: Gas flow rate (MMSCF/D)

Inputs: Choke valve opening percentage (CV%), well-head pressure (psi), well-head
temperature (°F), and bottom-hole pressure (psi).
Output: Gas flow rate (MMSCF/D) and oil flow rate (STB/D)

Inputs: Choke diameter (d) (1/64 in), GOR (SCF/STB), gas specific gravity (y), wellhead
pressure (Pwh) (psi), oil API
Output: Liquid flow rate (STB/D)
Q=A+B+C+D
A =139.3d— 0.1GOR + 69.6y — 34.8API
B = — 21.6(d * API°S) + 34.97% + 0.0235(d * Pyp,) + 492
v+ API

d+ ZGOR)
GOR + P,y — d2  API

GOR

C = — 0.0138(y * Pyp) * (2P, — d2 = API) * (
D = 0.00548(y * Pyy) * (v + API) * (

Inputs: Choke diameter (Dg4)(1/64 in), gas specific gravity (), flowing fluid temperature (T)
(°F), upstream (P,,) and downstream pressure (Pgoun) (psi)

Output: Gas flow rate (MMSCF/D) q; =

P 1 P, 1.0360972 P 1.498291
0.0001D23481935 (—”") — 00001KM>