51,514 research outputs found

    LEARNING ORGANIC CHEMISTRY REMOTELY: METHODS TO REDUCE THE DISTANCE BETWEEN EXPERTS AND STUDENTS

    Get PDF
    Australia has a high distance chemistry education enrolment due to its disparate population (Dalgarno, Bishop, & Bedgood, 2012). While distance education provides extensive opportunities for students to develop theoretical knowledge, there are challenges in teaching organic chemistry remotely due to its emphasis on laboratory-based skills and assessments (Neeland 2007; Rhodes 2010). Here we report on a two-stage research project to explore how distance chemistry education is conducted and perceived: 1) a review of learning theory and methods used for contemporary distance chemistry education; 2) a survey of high school science teachers across school archetypes regarding available resources, and teacher perspectives of successful approaches in science education. Informed by the results of our research, we will develop instructional resources to improve distance teaching of practical chemistry skills. Our initial findings suggest that distance teaching methods employed, are highly dependent on the classroom or home environment and resources available. In this talk, we will share results from both stages of our research project. We will then map out our plans for resource development to enhance distance learning in practical chemistry for school students, undergraduates and citizens. This research is being completed in partnership with the Breaking Good citizen science project (Motion, 2020). REFERENCES Dalgarno, B., Bishop, A. G., and Bedgood, D. R. (2012). The Potential of Virtual Laboratories for Distance Education Science Teaching: Reflections from the Development and Evaluation of a Virtual Chemistry Laboratory. UniServe Science Improving Learning Outcomes Symposium Proceedings (pp. 90-95). Uniserve Science, University of Sydney. Motion, A. “Breaking Good.” Breaking Good. Retrieved June 19, 2020, from (https://www.breakinggoodproject.com). Neeland, E. (2007). A One-Hour Practical Lab Exam for Organic Chemistry. Journal of Chemical Education 84(9), 1453. Rhodes, M. (2010). A Laboratory Practical Exam for High School Chemistry. Journal of Chemical Education 87(6), 613–15

    Exploration of the Potential of using a Virtual Laboratory for Chemistry Teaching at Secondary School Level in Lesotho

    Get PDF
    With the ever-increasing economic challenges facing education in Lesotho and indeed the world at large, there is a need for innovative solutions to support academic programmes without compromising quality. The use of computer simulations and video demonstrations is increasingly finding use globally in order to respond to economic challenges and purportedly to improve understanding of abstract phenomena. This manuscript presents the views of the chemistry teachers and students registered at the National  University of Lesotho (NUL) towards the development of a Virtual Laboratory (VL) where the experiments in the secondary school chemistry syllabus, will be video-recorded and distributed to schools. The results demonstrated a need for VL since only 4 % of the respondents indicated having performed more than 10 experiments with reasons ranging from poorly equipped laboratories (66 %) to no laboratories (6 %) for fewer to no experiments having been performed. This venture is generally accepted (96 % of 166 respondents) with only a minority stating it can never replace physical laboratory. Distribution of the VL would require innovative means since internet accessibility seems a challenge for most schools with accessibility of only 35 %.KEYWORDS: Lesotho, secondary school chemistry, experiments, poorly equipped laboratories, virtual laboratory

    A comparative analysis of virtual and traditional laboratory chemistry learning

    Get PDF
    Laboratory experimentation in the context of school science is a widely advocated teaching strategy for the simplification of several abstract scientific concepts. Laboratory-based learning activities have proven to enhance learners’ conceptual and procedural understandings of micro chemical phenomena, thus boosting achievement in chemistry content tests. In the South African education landscape where there is inequitable distribution of resources for laboratory-based science learning, this study exploited how available virtual learning resources could also be used for learning chemistry concepts, and further compared student achievement in chemistry content test post intervention with both traditional and virtual laboratory learning resources. In this quasi- experimental study, we provided a group of third-year pre-service science teachers (n=50) with four chemistry concepts to learn using a hands-on traditional (control group) and a virtual laboratory (experimental group) intervention. The same pre and post chemistry content test was administered to control and experimental groups of pre-service teachers (herein also referred to as students), before and after learning interventions, with the aim of assessing students’ achievements post- learning in the two different laboratory environments. Tests scores were analysed and the results of a paired-sample t-test showed a statistically significant difference between pre- and post-test results for all groups of students. Using independent sample t-tests, we further compared post-test scores for the control and experimental groups which revealed the mean post-test score of the experimental group (M = 79.36, SD = 8.306), being significantly higher than that of the control group (M = 68.72, SD = 9.076) at t (48) = 4.32, p < .01. The findings from these tests indicated that, students obtained significantly higher achievement scores post- laboratory learning interventions and that virtual laboratory interventions yielded significantly higher achievement scores than traditional laboratory interventions. Based on these findings, the researchers concluded that, laboratory learning has a positive impact on achievement in chemistry and that virtual laboratories provide a worthy complement for traditional laboratories when learning abstract and difficult chemistry concepts. Implications of these findings and some recommendations for practice and research are also discussed herein

    “Education Network” a new way to teach Chemistry

    Get PDF
    The complexity of chemistry has implications for the teaching of chemistry. That chemistry is a very complex subject. The majority of the students at University think that chemistry is a difficult discipline and they have difficulty in understanding the concepts. Moreover, students' interest in chemistry decreases the first year at university. The reason for this decrease might be that the contents of chemistry laboratory classes are boring, out of date and lacking of dynamism that students experience through visual media tools. For these reasons, new programs and methodologies should be developed. Those are based on making chemistry relevant through problem solving and collaborative learning hold promise for reforming chemistry education. It is about an education according to circumstances, which is adapted to context and virtual behaviour of people. It's time to CRUSH boredom by transforming your classroom into an Escape Room adventure. School-based escape games are a great teaching tool. The students while playing, learn. The most important point is that they won’t realize they’re doing both at the same time. In this work, an educational gamification experience based on the escape room concept was developed. The first (Do It Yourself) DIY Escape Room was built the year before at Mechanical Engineer Degree started, that took more than three weeks of work. It was presented to other professors to the same subject at different degrees. That DIY Escape Room was modified and adapted to each group. Each professor changed the clues, problems and so on in order to orientate the topic as much as possible to their students.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    The potential of virtual laboratories for distance education science teaching: reflections from the development and evaluation of a virtual chemistry laboratory

    Get PDF
    A virtual chemistry laboratory has been developed at Charles Sturt University, based on an accurate 3D model of the Wagga Wagga undergraduate teaching laboratory. The initial version of the virtual laboratory has been designed to enable distance education chemistry students to become familiar with the laboratory prior to their residential school. It allows for free exploration and for collecting and assembling items of apparatus. It also allows students to read information about the items of apparatus and about laboratory procedures. This paper describes the current features of the virtual laboratory and discusses the pedagogical rationale for its development. Results from questionnaires completed by pilot testers and by the first group of students who used it as part of their laboratory orientation are included. The results of tests comparing the laboratory familiarity of students who used the virtual laboratory with those who viewed equivalent still images are also presented. The paper concludes with a description of features to be added during the next stage of development, which will include the ability for students to undertake virtual experiments while exploring concepts using macroscopic, molecular and symbolic representations

    An augmented reality-based virtual chemistry laboratory to support educational and research activities of 11th grade students

    Get PDF
    The organization of high school students' research and learning activities in chemistry requires a significant amount of experimental work. The performance of experimental work in chemistry at school faces a number of problems, both purely material and organizational, to which the need for distance learning has recently been added. This article describes the state of use of augmented reality technologies in modern chemistry education and the possibilities of using augmented reality technologies to support students' learning and research activities in chemistry. To solve the research tasks, cloud-based augmented reality development tools (A-Frame and AR.js) were used. The developed tool is a virtual chemistry laboratory using augmented reality technologies: individual markers correspond to reagents, and a pairwise combination of markers triggers a video recording of chemical interaction between the corresponding pair of reagents. The article describes the development of augmented reality software to support eleventh graders' learning and research activities in chemistry in the form of an augmented reality-based virtual chemistry laboratory and its implementation in the teaching process

    From Plastic Models to Virtual Reality Headsets: Enhancing Molecular Structure Education for Undergraduate Students

    Get PDF
    The comprehension of molecular structure is pivotal in chemistry education. Over the past decade, Mahidol University International College has employed various teaching tools for the introductory chemistry laboratory class. This paper outlines our evolutionary shift from traditional tools, such as plastic and plasticine models, to the integration of computer software, and ultimately to augmented reality (AR) and virtual reality (VR) tools—specifically, MoleculARweb and MolecularWebXR developed by École Polytechnique Fédérale de Lausanne researchers. In this paper, we detail the implementation of these tools in our classes and present the outcomes of student surveys. Our instructional focus encompasses VSEPR, Atomic Orbitals, Molecular Orbitals, Skeletal Formula, and Enantiomers. This paper not only serves as a model for educators in general chemistry at secondary school or university levels to incorporate technology into their classrooms but also showcases a collaborative endeavor between Swiss and Thai researchers

    Activitats contextualitzades en el laboratori virtual

    Get PDF
    En aquest article es presenten quatre activitats noves basades en la utilització del laboratori virtual de «The ChemCollective», destinades a l'ensenyament de la química a l'educació secundària, i se'n discuteix la integració en el currículum català de batxillerat. Les activitats «Identificació de substàncies il·legals», «Prova d'insaturacions», «Determinació i eliminació de la duresa de l'aigua» i «Un fungicida per a les fruites» estan contextualitzades i segueixen l'aproximació metodològica de la investigació dirigida. Es discuteixen també les observacions i els comentaris de la implementació de dues d'aquestes activitats a l'aula. Les activitats es poden trobar al web http://www.chemcollective.org/iqs/index_ca.htm i a l'aplicació de recursos al currículum (ARC) del Departament d'Ensenyament.In this paper four new activities based on the use of virtual laboratory «The ChemCollective» for Chemistry education are presented and its integration in the Catalan school curriculum is discussed. The activities are «The identification of illegal substancies», «Saturation test», «Determination and elimination of the hadness of water» and «A fungicide for fruit». They are contextualized and based on the inquiry learning. We also discuss the observations and comments of the implementation of two of these activities in the classroom. These activities can be found on the web http://www.chemcollective.org/iqs/index_ca.htm and on the web of ARC of the Department of Education

    Virtual chemistry laboratory: Effect of constructivist learning environment

    Get PDF
    The lab applications, which were started to be applied through mid 19th century, not only provide a new point of view but also bring about a new dimension to the lessons. At early times they were used to prove theoretical knowledge but lately they turned into environments where students freely discover knowledge as an individual or in groups. The activities that have come up with the recent form of labs substantially contributed to training ideal students for constructivist approach, who research, inquire, test, seek solutions, wear scientist shoes and deeply reason about the concept of concern. However, on the present stage of our educational system, these activities cannot be included in science lessons for several reasons. At that point virtual labs emerged as an alternative solution for the problems of the instruction in science courses. Thanks to virtual labs presenting different disciplines in a flexible manner, the interaction between the teacher and the learner become 7/24 independent from time and place. This article presents a study that provides insight in the appropriateness of Virtual and real laboratory applications on constructivist learning environment using interactive virtual chemistry laboratory (VCL) development was used in academic year of 2009-2010 for a six week period. The sample of this quasi-experimental study was 90 students from three different 9th grade classrooms of an Anatolian Secondary school in the center of Trabzon city. The student groups were randomly attained as one experimental and two control groups. The data collection tools of the study were; questionnaire of teaching philosophy (QTP), Semi-structured interviews and unstructured observations. The results showed that virtual chemistry laboratory software was just as effective as real chemistry laboratory and it positively affected the facilitating of constructivist learning environment. It was determined that the students in experimental group conducted the experiments as precise as the real ones; they felt themselves safe during the experiments; they could relate the experiments with daily life; they had the opportunity to investigate both macro-molecular and symbolical dimensions of the experiments. It was speculated that using virtual chemistry laboratories as a supportive complement in education will become an indispensable instructional material in terms of both the economy of the nation and the persistency of the learning

    Validity and worth in the science curriculum: learning school science outside the laboratory

    Get PDF
    It is widely acknowledged that there are problems with school science in many developed countries of the world. Such problems manifest themselves in a progressive decline in pupil enthusiasm for school science across the secondary age range and the fact that fewer students are choosing to study the physical sciences at higher levels and as careers. Responses to these developments have included proposals to reform the curriculum, pedagogy and the nature of pupil discussion in science lessons. We support such changes but argue from a consideration of the aims of science education that secondary school science is too rooted in the science laboratory; substantially greater use needs to be made of out-of-school sites for the teaching of science. Such usage should result in a school science education that is more valid and more motivating and is better at fulfilling defensible aims of school science education. Our contention is that laboratory-based school science teaching needs to be complemented by out-of-school science learning that draws on the actual world (e.g. through fieldtrips), the presented world (e.g. in science centres, botanic gardens, zoos and science museums) and the virtual worlds that are increasingly available through information and communications technologies (ICT)
    corecore