87 research outputs found

    Characterization, modeling and simulation of the MIMO propagation channel

    Get PDF
    International audienceThis article deals with several aspects relative to the MIMO propagation channel. Based on simulations and/or measurements, different approaches are used to model the propagation channel. These models are useful for the MIMO system design. Several studies are performed in order to realize realistic simulation of MIMO channel. Different measurement techniques are used in characterizing the propagation channel in various environments. Measurement campaigns made in different situations have been analyzed to obtain the relevant statistical parameters of the channel. Simulation of MIMO channel is then presented. Measurement and simulation results provide an evaluation of the capacity of MIMO channel. Obtained results show feasibility in the integration of MIMO techniques in practical wireless communication systems.Cet article traite de plusieurs aspects relatifs au canal de propagation MIMO. Différentes approches, basées sur des simulations et des mesures, utilisées pour modéliser le canal sont d’abord présentées. Ensuite, les différentes techniques de mesure utilisées dans le but de caractériser le canal de propagation dans divers milieux sont décrites. Des campagnes de mesures effectuées dans différents environnements sont analysées pour obtenir les paramètres statistiques du canal. Quelques problématiques liées à la simulation du canal MIMO sont évoquées notamment en lien avec une simulation réaliste dans des milieux complexes. Les résultats obtenus, en simulation comme en mesure, permettent une évaluation de la capacité du canal MIMO. Ces résultats permettent de discuter de l’intégration des techniques MIMO dans des systèmes de communication sans fil

    Methods and criteria for performance analysis of multiantenna systems in mobile communications

    Get PDF
    Multiple-input multiple-output (MIMO) technique is one of the most promising solutions for increasing reliability and spectral efficiency of the radio connection in future mobile communication systems. The performance potential of MIMO systems is well established from theoretical point of view. However, much effort is still needed in the experimental verification of those systems using realistic antennas and channels. It is widely accepted that the antenna properties are of significant importance regarding the performance of single-input single-output (SISO) systems. However, the effect of the antennas on MIMO systems has not been thoroughly studied. Due to the complexity of MIMO systems, evaluation of MIMO antennas becomes increasingly cumbersome and time-consuming process in comparison to simpler systems. In the first part of this work an advanced antenna evaluation technique called experimental plane-wave based method (EPWBM) is generalized and validated to cover MIMO systems. This work is the extension of the previous work where the method has been used in the analysis of SISO systems. The EPWBM is based on the measured or simulated complex 3-D radiation patterns of the antennas and measured directional radio channel data. The EPWBM simplifies antenna evaluation process in comparison to traditional means since the same channel library can be utilized in the evaluation of several antenna systems without performing the same measurements for each prototype antennas separately. It is verified that the EPWBM is sufficiently reliable in comparing the performance of prototype antennas. In the second part of the work new quality factors for MIMO system evaluation enclosing traditional systems as special cases have been developed. The MIMO channel correlation matrix is formulated so that it reveals the ability of MIMO antenna systems to transfer signal power from a transmitter to a receiver and to utilize parallel spatial channels. It is also verified that correct normalization of the channel matrices is of significant importance in the MIMO antenna evaluation. This approach gives comprehensive framework for MIMO antenna evaluation, which takes into account both realistic antenna and channel properties. In the last part of the work insight into the performance of different antennas in different signal propagation environments is given. The performance of the antennas depends on the signal-to-noise-ratio and on the outage probability level considered. Although MIMO systems are based on the utilization of parallel spatial channels, the capability of the system to transfer signal power plays a significant role especially with small MIMO systems. In the realistic dynamic channels the capacity variation is larger than in the ideal channels, which are based on the identically and independently distributed (iid) channel assumption. Large performance variations occur in the realistic channels with directive antennas, when antennas are rotated in the usage environment, whereas omnidirectional ones are more robust but are difficult to realize in practice. The largest differences between the antennas are found at the low outage probability levels due to different radiation properties of the antennas. The systems with the cross-polarized antennas have smaller eigenvalue dispersion and are more robust in performance for the variations of the channel than the systems with co-polarized antennas. On the other hand, the co-polarized antennas possess better capability to transfer signal power and are more robust in performance for the antenna array orientation. From practical point of view, the dual-polarized antennas seem to be the most feasible candidates to be used in MIMO antenna systems due to compact structure, and indoor seems to be the most suitable for MIMO applications due to typically scatter-rich channel.Multiple-input multiple-output (MIMO) tekniika on yksi lupaavimmista ratkaisuista lisätä radioyhteyden luotettavuutta ja spektritehokkuutta tulevaisuuden matkaviestinjärjestelmissä. MIMO järjestelmien suorituskykypotentiaali on teoreettisesti todistettu. Paljon työtä tarvitaan kuitenkin vielä kokeelliseen järjestelmätestaukseen käyttäen realistisia antenneja ja kanavia. On laajasti hyväksyttyä että antennien ominaisuudet ovat merkityksellisiä single-input single-output (SISO) järjestelmien suorituskyvyn kannalta. Antennien vaikutusta MIMO-järjestelmiin ei ole kuitenkaan perusteellisesti tutkittu. MIMO-järjestelmien lisääntyneestä monimutkaisuudesta johtuen, verrattuna yksinkertaisempiin järjestelmiin, MIMO antennien suorituskyvyn arviointi hankaloituu ja vie enemmän aikaa. Työn ensimmäisessä osassa uusi antennien arviointitekniikka nimeltään kokeellinen tasoaaltoihin perustuva menetelmä (EPWBM) on yleistetty käsittämään MIMO järjestelmät ja sen tarkkuus on arvioitu. Tämä työ on laajennus aikaisempaan työhön jossa menetelmää on käytetty SISO-järjestelmien arviointiin. EPWBM perustuu mitattuihin tai simuloituihin antennien kompleksisiin 3-D suuntakuvioihin ja mitattuun suuntatiedon sisältämään kanavadataan. EPWBM yksinkertaistaa antennin suorituskyvyn arviointia perinteisiin menetelmiin verrattuna, koska sama kanavamittausaineisto voidaan hyödyntää usamman antennisysteemin arvioinnissa tekemättä samoja mittauksia jokaiselle antenniprototyypille erikseen. On osoitettu että EPWBM on suhteellisen luotettava prototyyppiantennien suorituskyvyn vertailussa. Työn toisessa osassa on kehitetty uusia hyvyyslukuja MIMO-järjestelmien suorituskyvyn arviointiin sisältäen perinteiset järjestelmät erikoistapauksina. MIMO-kanavamatriisi esitetään siten että se paljastaa MIMO-antennijärjestelmien kyvyn siirtää signaalitehoa lähettimen ja vastaanottimen välillä ja hyödyntää rinnakkaisia kanavia. On myös todistettu että oikeanlainen kanavamatriisien normalisointi on erittäin merkittävää MIMO-antennivertailussa. Tämä lähestymistapa antaa kattavat puitteet MIMO-antennien suorituskyvyn arviointiin ottaen huomioon todelliset antennien ja kanavan ominaisuudet. Työn viimeisessä osassa annetaan käsitys erilaisten antennien suorituskyvystä erilaisissa signaalin etenemisympäristöissä. Antennien suorituskyky riippuu signaalikohinasuhteesta ja tarkasteltavan signaalin luotettavuustasosta. Vaikka MIMO-järjestelmät perustuvat rinnakkaisten kanavien hyödyntämiseen järjestelmän signaalitehon siirto-ominaisuudet ovat merkittäviä erityisesti pienillä MIMO järjestelmillä. Realistisissa dynaamisissa kanavissa kapasiteetinvaihtelu on suurempaa kuin ideaalisissa kanavissa jotka perustuvat oletukseen että signaalit ovat riippumattomasti ja identtisesti jakautuneita (iid). Suurta suorituskykyn vaihtelua esiintyy realistissa kanavissa suuntaavilla antenneilla, kun antenneja pyöritetään käyttöympäristössä, kun taas ympärisäteilevät antennit olisivat jäykempiä suorituskyvyn kannalta mutta käytännössä vaikeampia toteuttaa. Suuremmat erot antennien välillä on löydettävissä matalalta signaalin luotettavuustasolta johtuen antennien erilaisista säteilyominaisuuksista. Kaksipolarisaatioantennijärjestelmillä on pienempi ominaisarvohaje ja niiden suorituskyky on jäykempi kanavan vaihteluille kuin yksipolarisaatioantennijärjestelmä. Toisaalta yksipolarisaatioantenneilla on paremmat signaalitehon siirto-ominaisuudet ja suorituskyky vaihtelee vähemmän antennin katselusuunnan funktiona. Käytännön näkökulmasta katsoen kaksipolarisaatioantennit näyttävät olevan kaikkein toteuttamiskelpoisin vaihtoehto käytettäväksi MIMO-systeemeissä johtuen niiden kompaktista rakenteesta, ja sisätila näyttää olevan sopivin ympäristö MIMO-sovelluksiin johtuen tyypillisesti sirontarikkaasta kanavasta.reviewe

    Flexible real-time MIMO channel sounder for multidimensional polarimetric parameter estimation

    Get PDF
    This paper describes the architecture of a fully parallel multiple-input multiple-output (MIMO) channel sounder. It has been designed to give in real-time the full polarimetric channel matrix which is then exploited to display, for example, the bi-directional channel characteristics as the angle of arrival (AoA) and angle of departure (AoD) of the multipath components. This 16x16 sounder, working at a center frequency of 1.35 GHz, uses an OFDM transmission scheme with an 80 MHz bandwidth. Applications of this sounder are then illustrated by studying the outdoor to indoor propagation characteristics

    Characterisation of MIMO radio propagation channels

    Get PDF
    Due to the incessant requirement for higher performance radio systems, wireless designers have been constantly seeking ways to improve spectrum efficiency, link reliability, service quality, and radio network coverage. During the past few years, space-time technology which employs multiple antennas along with suitable signalling schemes and receiver architectures has been seen as a powerful tool for the implementation of the aforementioned requirements. In particular, the concept of communications via Multiple-Input Multiple-Output (MIMO) links has emerged as one of the major contending ideas for next generation ad-hoc and cellular systems. This is inherently due to the capacities expected when multiple antennas are employed at both ends of the radio link. Such a mobile radio propagation channel constitutes a MIMO system. Multiple antenna technologies and in particular MIMO signalling are envisaged for a number of standards such as the next generation of Wireless Local Area Network (WLAN) technology known as 802.1 ln and the development of the Worldwide Interoperability for Microwave Access (WiMAX) project, such as the 802.16e. For the efficient design, performance evaluation and deployment of such multiple antenna (space-time) systems, it becomes increasingly important to understand the characteristics of the spatial radio channel. This criterion has led to the development of new sounding systems, which can measure both spatial and temporal channel information. In this thesis, a novel semi-sequential wideband MIMO sounder is presented, which is suitable for high-resolution radio channel measurements. The sounder produces a frequency modulated continuous wave (FMCW) or chirp signal with variable bandwidth, centre frequency and waveform repetition rate. It has programmable bandwidth up to 300 MHz and waveform repetition rates up to 300 Hz, and could be used to measure conventional high- resolution delay/Doppler information as well as spatial channel information such as Direction of Arrival (DOA) and Direction of Departure (DOD). Notably the knowledge of the angular information at the link ends could be used to properly design and develop systems such as smart antennas. This thesis examines the theory of multiple antenna propagation channels, the sounding architecture required for the measurement of such spatial channel information and the signal processing which is used to quantify and analyse such measurement data. Over 700 measurement files were collected corresponding to over 175,000 impulse responses with different sounder and antenna array configurations. These included measurements in the Universal Mobile Telecommunication Systems Frequency Division Duplex (UMTS-FDD) uplink band, the 2.25 GHz and 5.8 GHz bands allocated for studio broadcast MIMO video links, and the 2.4 GHz and 5.8 GHz ISM bands allocated for Wireless Local Area Network (WLAN) activity as well as for a wide range of future systems defined in the WiMAX project. The measurements were collected predominantly for indoor and some outdoor multiple antenna channels using sounding signals with 60 MHz, 96 MHz and 240 MHz bandwidth. A wide range of different MIMO antenna array configurations are examined in this thesis with varying space, time and frequency resolutions. Measurements can be generally subdivided into three main categories, namely measurements at different locations in the environment (static), measurements while moving at regular intervals step by step (spatial), and measurements while the receiver (or transmitter) is on the move (dynamic). High-scattering as well as time-varying MIMO channels are examined for different antenna array structures

    Millimeter Wave Multi-user Performance Evaluation Based on Measured Channels with Virtual Antenna Array Channel Sounder

    Get PDF

    Typical MIMO propagation channels in urban macrocells at 2GHz

    Get PDF
    International audienceA directional wideband measurement campaign was performed in urban macrocells at 2 GHz using a channel sounder and a 8-sensor linear antenna array at the base station. Directions of arrival at the Base Station (BS) were estimated by beamforming using the antenna array. Directions of arrival at the Mobile Station (MS) were estimated by beamforming using parts of the measurement route. Global parameters (delay spread, azimuth spread at BS, maximum factor and street canyon factor) were processed from the Azimuth-Delay Power Profiles (ADPP) at BS and MS. In this paper, we compare the statistics of these four parameters with the statistics of those simulated by the 3GPP-SCM system-level model and the statistics of those reported in the literature. We find an acceptable agreement between our measurements and the SCM model except for the delay spread and the street canyon factor. The azimuth spread at BS mean Value (9.5°) and delay spread mean value (0.250 μs) are also in accordance with values reported in other references. Azimuth spreads are ranged from 7° to 11°, and delay spreads are ranged from 0.1 μs to 1 μs. From a statistical analysis of global parameters, we show that most of the measured propagation Channels can be classified in three main categories: low spatial diversity at MS and BS, high spatial diversity at MS and BS, low spatial diversity at BS and high spatial diversity at MS

    Characterisation of MIMO propagation channel in multi-link scenarios

    Get PDF
    Tässä diplomityössä kehitettiin mittausjärjestelmä dynaamisen laajakaistaisen moniyhteyksisen MIMO-etenemiskanavan mittaamiseen 5.3 GHz:n taajuusalueella. Järjestelmä kykenee mittaamaan yhtaikaisesti kaksi 32x32 MIMO kanavaa, joissa maksimidoplertaajuus on 11.73 Hz. Työn puitteissa järjestettiin kaksi mittauskampanjaa joista saatua mittausdataa käytettiin järjestelmän testaamiseen ja kehittämiseen. Työn kirjallinen osuus aloitettiin kirjallisuuskatsauksella olemassaolevista MIMO-kanavamalleista ja MIMO-kanavamittauksista. Kirjallisuuskatsauksen tuloksena huomattiin ettei aiemmin ole suoritettu moniyhteyksisen MIMO-kanavan mittauksia. Myös MIMO-järjestelmän perusperiaatteisiin ja MIMO-kanavaluotaustekniikoihin tutustuttiin. Eri mahdollisuuksia moniyhteyksisen MIMO-kanavan mittaamiseen pohdittiin ja työssä kehitettiin kahden kanavaluotaimen yhteiskäyttöön perustuva mittausjärjestelmä. Jotta järjestelmä saatiin toimimaan, täytyi TKK:n kanavaluotaimeen tehdä muutamia muutoksia. Lopuksi työssä esitettiin mittauskampanjoiden tuloksia, joiden perusteella voidaan sanoa, että järjestelmä kykenee mittaamaan moniyhteyksisen MIMO-kanavan impulssivasteet, ja siten mittausjärjestelmää voidaan käyttää moniyhteyksisen MIMO-kanavan mittaamiseen ja työn puitteissa järjestettyjen mittauskampanjoiden tuloksia tällaisten etenemiskanavien analysointiin.In this master's thesis a measurement system for dynamic wideband double directional multi-link MIMO propagation measurements at 5.3 GHz was developed. The system is able to measure two 32x32 MIMO channels simultaneously with maximum doppler frequency of 11.73 Hz. Two measurement campaigns using this system were conducted, and measurement data from the campaigns were analyzed to verify the correct operation of the system. The literal part of the work begun with a literature review on existing MIMO channel models and MIMO channel sounding measurements. In this survey it was seen that no dynamic MIMO multi-link measurements have been performed previously. Also the basics of the MIMO systems and MIMO propagation channel measurement technigues were studied. The possible configurations for measuring the multi-link MIMO channel were considered and a system based on two existing channel sounding equipment was presented. The interoperability of the sounders was made possible with some system modifications done to the TKK sounder. Finally it was shown that the measurement system is able to produce impulse responses of MIMO propagation channel in multi-link scenarios, and so the measurement system can be used for simultaneous measurements of dynamic multi-link MIMO channels and the data of the measurement campaigns conducted as a part of this thesis can be used for analyzing this kind of channels

    Propagation channel measurement system development and channel characterization at 5.3 GHz

    Get PDF
    The wireless access has proven its usability for reliable communication and data conveying link for a long time. The ever growing usage of wireless communications systems has been driving the research to study even faster and more interference tolerant wireless solutions. A key concept towards achieving these goals are the detailed analysis and modeling of the propagation channel. In both of these aspects the availability of reliable measurement data is a prerequisite. This thesis concentrates on contributing to the measurement system development in single- and dual-link cases as well as measurement data analysis for specific wireless systems. In the first part of the thesis the physical radiowave propagation phenomena are briefly related to the challenges of the modern wireless communication systems. Through the analysis of the propagation channel conducted earlier in the literature, the main phenomena for modeling the propagation channel are illustrated, and the current modeling approaches are described. The hardware related design challenges are described along with the recent achievements in the measurement system development. Specifically, the design of antenna arrays for estimation of the parameters of the double directional channel model is illustrated. A measurement system developed for characterizing the double directional channel in the 5.3 GHz frequency range is presented along with the evaluation of the accuracy of the measurment system for the spatial characterization. The developed measurement system is further extended to enable simultaneous, double directional dual-link propagation channel measurements, and the first directional results from a measurement campaign are presented. In the second part, the important feature of the spatial dimensionality of the propagation channel is considered through measurement data acquired using the developed measurement system. The basics of the single- and dual-link MIMO communications systems and cooperative communications are presented. The analysis of the spatial domain used in MIMO communications systems is extended to multiuser scenario. Furthermore, cooperative communications system is analyzed

    Evaluation of performance of mobile terminal antennas

    Get PDF
    Fast development of new mobile communications equipment results in demand for fast and reliable evaluation methods to estimate the performance of mobile terminals because the performance of antennas located on the terminals varies in different multipath propagation environments. Two methods presented in this thesis provide new possibilities in antenna design because, from now on, the performance of new antennas can be tested already before a prototype antenna is constructed by using existing radio channel libraries and simulated radiation patterns of the antennas. The performance can be estimated by calculating the mean effective gain (MEG) of the antenna using the elevation power distribution or by a plane wave -based method using sets of incident plane waves and the radiation pattern of an antenna. In addition to different propagation environments, the effects of the user on performance can be included in the evaluation. In this thesis, estimating the MEG of different antennas using the elevation power distribution and the power patterns of the antennas is shown to be an accurate and fast method by comparing the results with direct radio channel measurements. The mean difference between the methods is −0.18 dB with standard deviation of 0.19 dB. The usefulness of the evaluation method is demonstrated by evaluating the performance of several antennas located on mobile terminals. The antenna evaluation provided important and unique knowledge of the effect of both the environment and the user on performance. Because in calculating the radiation efficiency of the antenna we assume uniform incident field, the efficiency can result in a performance estimation that does not correspond to real usage situations. Therefore, including the environmental effects in the evaluation procedure is important, although the effect of the antenna is more important than the effect of the environment on MEG. It was noticed with calculated Gaussian-shaped beams that tilting or changing the beamwidth of a mobile terminal antenna has an effect of about 2 dB on MEG in multipath environments. Matching the polarization of the antenna to that of the environment can improve the performance more. A novel incident plane wave -based tool has been developed for evaluating the performance of antenna configurations designed for diversity and Multiple-Input Multiple-Output (MIMO) systems. In this thesis, the instantaneous joint contribution of incident field consisting of a number of extracted plane waves and the complex three-dimensional radiation pattern of the antenna is shown to be accurate and extremely fast way to estimate the diversity advantages of different antenna configurations in time-variable radio channels. The difference between the diversity gains achieved by the plane wave -based method and by the direct radio channel measurements is on average less than 0.9 dB. Moreover, the radio channel can be exactly the same for all antenna configurations under test. Furthermore, this thesis includes evaluation of the performance of different MIMO antenna configurations. The studied antenna configurations have been selected from the 16×64 MIMO channel measurement data. A novel way of using one omnidirectional reference antenna in a normalization procedure is shown to be reasonable especially in cases of antenna arrays consisting of directive elements. Three different propagation environments are used as evaluation platforms. The azimuth orientation of mobile terminal antennas may influence the performance of a MIMO antenna configuration significantly. In MIMO configurations compact dual-polarized receiving antennas provide capacity performance almost equal to the arrays employing single polarization.reviewe
    corecore