26 research outputs found

    Verification of Program Transformations with Inductive Refinement Types

    Get PDF
    International audienceHigh-level transformation languages like Rascal include expressive features for manipulating large abstract syntax trees: first-class traversals, expressive pattern matching, backtracking, and generalized iterators. We present the design and implementation of an abstract interpretation tool, Rabit, for verifying inductive type and shape properties for transformations written in such languages. We describe how to perform abstract interpretation based on operational semantics, specifically focusing on the challenges arising when analyzing the expressive traversals and pattern matching. Finally, we evaluate Rabit on a series of transformations (normalization, desugaring, refactoring, code generators, type inference, etc.) showing that we can effectively verify stated properties

    Explaining Hyperproperty Violations

    Get PDF
    Hyperproperties relate multiple computation traces to each other. Model checkers for hyperproperties thus return, in case a system model violates the specification, a set of traces as a counterexample. Fixing the erroneous relations between traces in the system that led to the counterexample is a difficult manual effort that highly benefits from additional explanations. In this paper, we present an explanation method for counterexamples to hyperproperties described in the specification logic HyperLTL. We extend Halpern and Pearl's definition of actual causality to sets of traces witnessing the violation of a HyperLTL formula, which allows us to identify the events that caused the violation. We report on the implementation of our method and show that it significantly improves on previous approaches for analyzing counterexamples returned by HyperLTL model checkers

    MaxSAT-Based Bi-Objective Boolean Optimization

    Get PDF
    Peer reviewe

    Bounded Model Checking of Industrial Code

    Get PDF
    Abstract: Bounded Model Checking(BMC) is an effective and precise static analysis technique that reduces program verification to satisfiability (SAT) solving. However, with a few exceptions, BMC is not actively used in software industry, especially, when compared to dynamic analysis techniques such as fuzzing, or light-weight formal static analysis. This thesis describes our experience of applying BMC to industrial code using a novel BMC tool SEABMC. We present three contributions: First, a case study of (re)verifying the aws-c-common library from AWS using SEABMC and KLEE. This study explores the methodology from the perspective of three research questions: (a) can proof artifacts be used across verification tools; (b) are there bugs in verified code; and (c) can specifications be improved. To study these questions, we port the verification tasks for aws-c-common library to SEAHORN and KLEE. We show the benefits of using compiler semantics and cross-checking specifications with different verification techniques, and call for standardizing proof library extensions to increase specification reuse. Second, a description of SEABMC - a novel BMC engine for SEAHORN. We start with a custom IR (called SEA-IR) that explicitly purifies all memory operations by explicating dependencies between them. We then run program transformations and allow for generating many different styles of verification conditions. To support memory safety checking, we extend our base approach with fat pointers and shadow bits of memory to keep track of metadata, such as the size of a pointed-to object. To evaluate SEABMC, we use the aws-c-common library from AWS as a benchmark and compare with CBMC, SMACK, and KLEE. We show that SEABMC is capable of providing an order of magnitude improvement compared with state-of-the-art. Third, a case study of extending SEABMC to work with Rust - a young systems programming language. We ask three research questions: (a) can SEABMC be used to verify Rust programs easily; (b) can the specification style of aws-c-common be applied successfully to Rust programs; and (c) can verification become more efficient when using higher level language information. We answer these questions by verifying aspects of the Rust standard library using SEAURCHIN, an extension of SEABMC for Rust

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Proceedings of the 21st Conference on Formal Methods in Computer-Aided Design – FMCAD 2021

    Get PDF
    The Conference on Formal Methods in Computer-Aided Design (FMCAD) is an annual conference on the theory and applications of formal methods in hardware and system verification. FMCAD provides a leading forum to researchers in academia and industry for presenting and discussing groundbreaking methods, technologies, theoretical results, and tools for reasoning formally about computing systems. FMCAD covers formal aspects of computer-aided system design including verification, specification, synthesis, and testing

    Logical and deep learning methods for temporal reasoning

    Get PDF
    In this thesis, we study logical and deep learning methods for the temporal reasoning of reactive systems. In Part I, we determine decidability borders for the satisfiability and realizability problem of temporal hyperproperties. Temporal hyperproperties relate multiple computation traces to each other and are expressed in a temporal hyperlogic. In particular, we identify decidable fragments of the highly expressive hyperlogics HyperQPTL and HyperCTL*. As an application, we elaborate on an enforcement mechanism for temporal hyperproperties. We study explicit enforcement algorithms for specifications given as formulas in universally quantified HyperLTL. In Part II, we train a (deep) neural network on the trace generation and realizability problem of linear-time temporal logic (LTL). We consider a method to generate large amounts of additional training data from practical specification patterns. The training data is generated with classical solvers, which provide one of many possible solutions to each formula. We demonstrate that it is sufficient to train on those particular solutions such that the neural network generalizes to the semantics of the logic. The neural network can predict solutions even for formulas from benchmarks from the literature on which the classical solver timed out. Additionally, we show that it solves a significant portion of problems from the annual synthesis competition (SYNTCOMP) and even out-of-distribution examples from a recent case study.Diese Arbeit befasst sich mit logischen Methoden und mehrschichtigen Lernmethoden für das zeitabhängige Argumentieren über reaktive Systeme. In Teil I werden die Grenzen der Entscheidbarkeit des Erfüllbarkeits- und des Realisierbarkeitsproblem von temporalen Hypereigenschaften bestimmt. Temporale Hypereigenschaften setzen mehrere Berechnungsspuren zueinander in Beziehung und werden in einer temporalen Hyperlogik ausgedrückt. Insbesondere werden entscheidbare Fragmente der hochexpressiven Hyperlogiken HyperQPTL und HyperCTL* identifiziert. Als Anwendung wird ein Enforcement-Mechanismus für temporale Hypereigenschaften erarbeitet. Explizite Enforcement-Algorithmen für Spezifikationen, die als Formeln in universell quantifiziertem HyperLTL angegeben werden, werden untersucht. In Teil II wird ein (mehrschichtiges) neuronales Netz auf den Problemen der Spurgenerierung und Realisierbarkeit von Linear-zeit Temporallogik (LTL) trainiert. Es wird eine Methode betrachtet, um aus praktischen Spezifikationsmustern große Mengen zusätzlicher Trainingsdaten zu generieren. Die Trainingsdaten werden mit klassischen Solvern generiert, die zu jeder Formel nur eine von vielen möglichen Lösungen liefern. Es wird gezeigt, dass es ausreichend ist, an diesen speziellen Lösungen zu trainieren, sodass das neuronale Netz zur Semantik der Logik generalisiert. Das neuronale Netz kann Lösungen sogar für Formeln aus Benchmarks aus der Literatur vorhersagen, bei denen der klassische Solver eine Zeitüberschreitung hatte. Zusätzlich wird gezeigt, dass das neuronale Netz einen erheblichen Teil der Probleme aus dem jährlichen Synthesewettbewerb (SYNTCOMP) und sogar Beispiele außerhalb der Distribution aus einer aktuellen Fallstudie lösen kann

    Tools and Algorithms for the Construction and Analysis of Systems

    Get PDF
    This open access book constitutes the proceedings of the 28th International Conference on Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2022, which was held during April 2-7, 2022, in Munich, Germany, as part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2022. The 46 full papers and 4 short papers presented in this volume were carefully reviewed and selected from 159 submissions. The proceedings also contain 16 tool papers of the affiliated competition SV-Comp and 1 paper consisting of the competition report. TACAS is a forum for researchers, developers, and users interested in rigorously based tools and algorithms for the construction and analysis of systems. The conference aims to bridge the gaps between different communities with this common interest and to support them in their quest to improve the utility, reliability, exibility, and efficiency of tools and algorithms for building computer-controlled systems

    Finding Periodic Apartments : A Computational Study of Hyperbolic Buildings

    Get PDF
    This thesis presents a computational study of a fundamental open conjecture in geometric group theory using an intricate combination of Boolean Satisfiability and orderly generation. In particular, we focus on Gromov’s subgroup conjecture (GSC), which states that “each one-ended hyperbolic group contains a subgroup isomorphic to the fundamental group of a closed surface of genus at least 2”. Several classes of groups have been shown to satisfy GSC, but the status of non-right-angled groups with regard to GSC is presently unknown, and may provide counterexamples to the conjecture. With this in mind Kangaslampi and Vdovina constructed 23 such groups utilizing the theory of hyperbolic buildings [International Journal of Algebra and Computation, vol. 20, no. 4, pp. 591–603, 2010], and ran an exhaustive computational analysis of surface subgroups of genus 2 arising from so-called periodic apartments [Experimental Mathematics, vol. 26, no. 1, pp. 54–61, 2017]. While they were able to rule out 5 of the 23 groups as potential counterexamples to GSC, they reported that their computational approach does not scale to genera higher than 2. We extend the work of Kangaslampi and Vdovina by developing two new approaches to analyzing the subgroups arising from periodic apartments in the 23 groups utilizing different combinations of SAT solving and orderly generation. We develop novel SAT encodings and a specialized orderly algorithm for the approaches, and perform an exhaustive analysis (over the 23 groups) of the genus 3 subgroups arising from periodic apartments. With the aid of massively parallel computation we also exhaust the case of genus 4. As a result we rule out 4 additional groups as counterexamples to GSC leaving 14 of the 23 groups for further inspection. In addition to this our approach provides an independent verification of the genus 2 results reported by Kangaslampi and Vdovina
    corecore