
Finding Periodic Apartments:
A Computational Study of

Hyperbolic Buildings

MSc thesis

Jarkko Savela

Supervisors
Associate Professor Matti Järvisalo

Docent Emilia Oikarinen

Examiner
Professor Juha Kontinen

June 18, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Helsingin yliopiston digitaalinen arkisto

https://core.ac.uk/display/328855780?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Faculty of Science Department of Mathematics and Statistics

Jarkko Savela

Finding Periodic Apartments: A Computational Study of Hyperbolic Buildings

Mathematics

MSc thesis June 2020 67 pp.

Geometric group theory, hyperbolic buildings, Boolean satisfiability, combinatorial generation

Kumpula Campus Library

This thesis presents a computational study of a fundamental open conjecture in geometric group
theory using an intricate combination of Boolean Satisfiability and orderly generation. In particular,
we focus on Gromov’s subgroup conjecture (GSC), which states that “each one-ended hyperbolic
group contains a subgroup isomorphic to the fundamental group of a closed surface of genus at
least 2”. Several classes of groups have been shown to satisfy GSC, but the status of non-right-
angled groups with regard to GSC is presently unknown, and may provide counterexamples to the
conjecture. With this in mind Kangaslampi and Vdovina constructed 23 such groups utilizing the
theory of hyperbolic buildings [International Journal of Algebra and Computation, vol. 20, no. 4,
pp. 591–603, 2010], and ran an exhaustive computational analysis of surface subgroups of genus 2
arising from so-called periodic apartments [Experimental Mathematics, vol. 26, no. 1, pp. 54–61,
2017]. While they were able to rule out 5 of the 23 groups as potential counterexamples to GSC, they
reported that their computational approach does not scale to genera higher than 2. We extend the
work of Kangaslampi and Vdovina by developing two new approaches to analyzing the subgroups
arising from periodic apartments in the 23 groups utilizing different combinations of SAT solving
and orderly generation. We develop novel SAT encodings and a specialized orderly algorithm for
the approaches, and perform an exhaustive analysis (over the 23 groups) of the genus 3 subgroups
arising from periodic apartments. With the aid of massively parallel computation we also exhaust
the case of genus 4. As a result we rule out 4 additional groups as counterexamples to GSC leaving
14 of the 23 groups for further inspection. In addition to this our approach provides an independent
verification of the genus 2 results reported by Kangaslampi and Vdovina.

Tiedekunta/Osasto — Fakultet/Sektion — Faculty Laitos — Institution — Department

Tekijä — Författare — Author

Työn nimi — Arbetets titel — Title

Oppiaine — Läroämne — Subject

Työn laji — Arbetets art — Level Aika — Datum — Month and year Sivumäärä — Sidoantal — Number of pages

Tiivistelmä — Referat — Abstract

Avainsanat — Nyckelord — Keywords

Säilytyspaikka — Förvaringsställe — Where deposited

Muita tietoja — Övriga uppgifter — Additional information

HELSINGIN YLIOPISTO — HELSINGFORS UNIVERSITET — UNIVERSITY OF HELSINKI

Contents

1 Introduction 1

2 Finding Surface Subgroups via Graph Search 5
2.1 Setting Up the Graph Search Problem 5
2.2 Properties of Graphs in the Search Space 11

3 Cycleset Decompositions and Group Labelings via SAT 18
3.1 Boolean Satisfiability . 18
3.2 Enumerating the Cycleset Decompositions of Graphs 23
3.3 Checking Graphs for a Group Labeling 28

4 Orderly Generation of Graphs and Their Cyclesets 32
4.1 Towards an Orderly Algorithm . 32
4.2 Projecting Configurations into Graph-cycleset Pairs 34
4.3 Structuring the Orderly Algorithm . 36
4.4 Augmenting Configurations . 37
4.5 Checking Canonicity of Configurations 39
4.6 Optimizations . 41

5 Experiments and Results 43
5.1 Confirmation of Earlier Results for Genus 2 44
5.2 New Results beyond Genus 2 . 44
5.3 Numerical Data . 45
5.4 Performance . 45
5.5 On Correctness . 46

6 Conclusions 49

A Group Representations 60

B Witnesses 63

Chapter 1

Introduction

Computational methods, such as automated reasoning and combinatorial generation,
have proven effective as means to provide insight into many fundamental open mathemat-
ical conjectures and questions. Automated reasoning and combinatorial generation have
been used to settle (prove or disprove) and verify various conjectures [1, 2, 3, 4, 5, 6] as
well as provide new insight into mathematical questions [7, 8, 9, 10, 11, 12] and construct
examples of certain mathematical objects [13, 14, 15, 16, 17, 18, 19, 20]. In this thesis
we utilize a combination of two methods from these categories—namely Boolean satisfi-
ability [21] and orderly generation [22]—to investigate a fundamental unsolved problem
in geometric group theory [23, 24] related to hyperbolic groups.

The notion of hyperbolic groups stems from the work of Gromov, who in his essay
from 1987 outlines the concept [25]. A great deal of research has been done on hyperbolic
groups since, and a number of significant properties of hyperbolic groups have been
discovered [26, 27, 28, 29, 30, 31, 32, 33, 34]. In fact, most finitely generated groups
are hyperbolic, since it has been shown to be highly likely that a randomly constructed
finitely generated group is hyperbolic [25, 35]. In addition to the ubiquity of hyperbolic
groups they have been proven to have important computational properties: their word,
conjugacy and isomorphism problems are decidable [36, 37], unlike the corresponding
problems of groups in general.

Hyperbolic groups can be constructed by different methods one of which is the theory
of buildings. Buildings are mathematical constructions of geometric and combinatorial
nature first defined by Jacques Tits to aid in the study of algebraic groups [38, 39, 40].
Intuitively, buildings are geometric realizations of groups yielding insight into groups
through their geometric properties. The study of buildings has helped mathematicians
both gain insight into the structure of certain groups as well as define entirely new groups,
e.g., the twisted Chevalley group of type 3D4 [41]. Originally research on buildings
focused mostly on so-called spherical and Euclidean buildings that exhibit spherical and
Euclidean geometries, respectively. Hyperbolic buildings, however, have not been studied
as extensively, although interest in them has risen in recent years [42, 43, 44, 45, 46].

The problem we tackle in this thesis is the Gromov subgroup conjecture (GSC) which
states that “every one-ended hyperbolic group contains a subgroup isomorphic to the fun-
damental group of a surface of genus at least 2 ”. GSC has received a fair amount of
attention in terms of classical mathematical treatment [47, 48, 49, 50, 51, 52, 53, 54, 55]
as well as recently from a computational angle [56]. The conjecture has been estab-
lished to hold for various hyperbolic groups [50, 48, 47, 53, 49], and it is even known
that a randomly chosen one-ended hyperbolic group almost always contains a surface

1

subgroup [54].
A class of groups for which GSC remains open consists of so-called non-right-angled

hyperbolic groups, which hence may still provide counterexamples disproving GSC. Non-
right-angled hyperbolic groups have, in fact, been constructed and studied with GSC
in mind. In [57] Kangaslampi and Vdovina constructed 23 non-right-angled hyperbolic
groups through the use of hyperbolic buildings.

In [58] Vdovina outlines the polygonal construction method for the construction of
hyperbolic buildings, which is based on the work of Ballman and Brin [59, 60] as well as
Gaboriau and Paulin [61]. The polygonal construction method allows for the construction
of hyperbolic buildings as universal covers of finite polyhedra. Following this work,
Kangaslampi, Vdovina, and Carbone constructed and classified examples of hyperbolic
buildings using the polygonal construction method. In [57] Kangaslampi and Vdovina
classify the torsion-free groups acting simply transitively on the corresponding buildings,
and in [62] Carbone, Kangaslampi and Vdovina classify the corresponding torsion groups.

Motivated by Gromov’s subgroup conjecture, Kangaslampi and Vdovina continued
investigating the 23 torsion-free groups constructed in [57]. They used computational
methods to check whether the 23 groups contain surface subgroups of genus 2 arising
from so-called periodic apartments [56]. They first show how the existence of periodic
apartments, and thus surface subgroups, reduces to a graph search problem, specifically
to the existence of bipartite, 3-regular, connected graphs that decompose into 8-cycles
and admit a specialized “coloring” by the representation of the group.

The size of these graphs is dictated by the parameter genus, which we denote by
g. Using depth-first search, Kangaslampi and Vdovina exhaustively analyze the g = 2
case and discover periodic apartments in five of the 23 groups thus ruling them out as
possible counterexamples to GSC. They also report that their procedure does not scale
to g = 3 due to the sheer number of graphs that should be considered. While for g = 2
there are 773 bipartite, 3-regular, connected multigraphs, already for g = 3 the number
is ≈ 13 · 109.

In this thesis we continue on the work of Kangaslampi and Vdovina by developing
novel approaches to the graph search problem utilizing different combinations of Boolean
satisfiability and orderly generation which enables scaling the results to higher genera.

Boolean satisfiability [21] refers to the satisfiability problem of propositional logic, i.e.,
the problem of determining whether there exists a truth assignment satisfying the input
propositional formula φ. This problem—often referred to as the SAT problem—is an
archetypal NP-complete problem [63]. Essentially Boolean satisfiability is a constraint
satisfaction problem: propositional logic is the language in which the constraints are
expressed with the search space being the set of truth assignments.

Although the study of Boolean satisfiability was originally of theoretical interest it
has expanded into the practical domain due to the development of efficient algorithms.
Specifically, the SAT problem is well suited for use in the so-called model & solve paradigm
of declarative programming. There are numerous other NP-complete problems besides
SAT, but it is the astounding performance of modern SAT solvers [64] and the flexibil-
ity of modelling with propositional logic [65, 66, 67, 68, 69] which have resulted in its
widespread use. SAT solving has, in fact, been succesfully applied to settle various types
of mathematical conjectures [7, 13, 14, 1, 2, 15, 8, 3, 4, 5, 16].

Besides SAT we employ orderly generation [22, 70, 71, 72, 73, 74] which is a highly
versatile approach used for the generation of isomorph-free collections of combinatorial
objects such as graphs. The efficiency of orderly generation stems from the fact that

2

(graph, cycleset)
pair generation

graph
generation

cycleset
enumeration

check
labeling

(a)

(b)

Figure 1.1: Overviews of the approaches taken in this thesis: part (a) of the diagram
depicts the workflow of the direct approach whereas part (b) depicts the workflow of the
orderly approach.

generating the objects in a specific order and rejecting non-canonical ones at an early
stage allows for avoiding the explicit canonization of the resulting connection. Orderly
generation has been succesfully applied to generate a large variety of combinatorial objects
many of which have been used to study various conjectures [17, 18, 9, 6, 10, 11, 12, 71,
73, 19, 70, 72, 20, 74, 75].

To find the genera 3 and 4 periodic apartments and the corresponding surface sub-
groups in the 23 groups constructed in [57] we modularize the graph search problem
arising from [56] into three subproblems which we solve using Boolean satisfiability and
orderly generation. Particularly, we decompose the search problem into

(i) generating connected, bipartite, and 3-regular graphs of specific size,

(ii) for each of the graphs from (i), determining whether the graph admits a directed
decomposition into a set of cycles of length 8, and if it does, enumerating all of such
cyclesets, and

(iii) for each of the graphs admitting a cycleset decomposition from (ii), checking
whether the graph oriented by its cyclesets admits a specific type of a labeling.

We develop two different approaches, the so-called direct and orderly approaches, for
solving (i)–(iii) in various combinations of SAT and orderly generation as illustrated in
Figure 1.1.

The direct approach consists of employing an off-the-shelf orderly generation tool
called Multigraph [76] to solve part (i), and utilizing SAT for parts (ii) and (iii). For
part (ii) we develop a SAT encoding representing valid cycleset decompositions of graphs
from (i), which allows for the enumeration of the cycleset decompositions of each graph.
For part (iii) we develop a SAT encoding modeling a valid labeling of a graph from (ii)
by a group from [57], which allows for checking the existence of such a labeling.

The orderly approach depicted in Figure 1.1b first generates directly the graphs that
admit a cycleset decomposition after which their cycleset decompositions are enumer-
ated. We essentially solve (i) and (ii) by developing a specialized orderly algorithm. The
remainder of the orderly approach is the same as the direct approach, namely checking
each generated graph for a valid labeling by each of the 23 groups [57].

Using this combination of Boolean satisfiability and orderly generation we are able to
exhaustively treat the genus 3 case as well as the genus 4 case with the aid of massive

3

parallelization. As a result we rule out further 4 groups from the remaining set of possible
counterexamples to GSC thus leaving 14 groups out of the 23 for further inspection.
Our results also serve as an independent validation of the results presented in [56] for
g = 2. The results of this thesis have been published in the Proceedings of LPAR-
23: 23rd International Conference on Logic for Programming, Artificial Intelligence and
Reasoning [77].

Rest of this thesis is organized as follows. We begin in Chapter 2 by explaining how
the graph search problem arises from the geometric setting, and formalizing the problem
decomposition. In the latter part of Chapter 2 we present several useful properties of the
graphs that aid in developing efficient SAT encodings and an efficient orderly algorithm.
In Chapter 3 we formulate two SAT encodings after an overview of propositional logic and
SAT solving. We formulate one encoding for the extraction of cycleset decompositions
of graphs and another for checking a graph for a valid labeling using groups from [57].
Chapter 4 focuses on orderly generation, beginning with a quick overview after which we
develop a specialized algorithm for the generation of graphs along with their admissible
cycleset decompositions. In Chapter 5 we detail the experimental setup and results
achieved, and discuss both performance and correctness of the results. Chapter 6 then
concludes the thesis and considers several possibilities for future work and connections to
other problems. Appendix A provides the representations of groups constructed in [56],
and Appendix B lists example graphs for each of the groups we rule out as possible
counterexamples to GSC.

4

Chapter 2

Finding Surface Subgroups via
Graph Search

In the first half of this chapter we formalize the problem of finding surface subgroups
arising from periodic apartments in the 23 groups constructed in [57] via its reduction to
a graph search problem. In the second half we prove many structural properties of the
graphs that are useful in optimizing the search. We begin with necessary graph-theoretical
definitions.

A graph is a pair (V,E) where V is a set of nodes and E a multiset of edges {v, w}
with v, w ∈ V . Note that it is crucial for all edges to be identifiable in the encodings
we develop in Chapter 3, i.e., the encodings need to be able to tell even parallel edges
apart. For the simplicity of presentation we use the multiset definition of a graph and
make note of cases when we need to be able to identify parallel edges from each other.

A graph G = (V,E) is simple if E contains at most one copy of each element whereas
G is non-simple otherwise. Note that our definition of a graph encompasses both simple
and non-simple graphs. The cardinalities of V and E are called the order and size of G,
respectively. A subgraph of G = (V,E) is a graph G′ = (V ′, E ′) for which V ′ ⊆ V and
E ′ ⊆ E. Nodes v, w ∈ V are said to be adjacent if there exists an edge e ∈ E containing
both, and in this case node v and w are said to be incident to e. The degree of a node
v ∈ V is the number of edges e ∈ E containing v. A graph is k-regular if all its nodes
have degree k for some k ∈ N. Graph G = (V,E) is disconnected if its node set V can
be partitioned into two sets such that there is no edge between the sets, i.e., if there
are V1, V2 ⊆ V such that V1 ∪ V2 = V , V1 ∩ V2 = ∅ and for all e = {v, u} ∈ E either
v, u ∈ V1 or v, u ∈ V2. A graph is connected if it is not disconnected. Graph G = (V,E)
is k-colorable if each of its nodes can be assigned one of k colors in such a way that no
edge e ∈ E joins two nodes of the same color. A 2-colorable graph is also referred to as
being bipartite.

2.1 Setting Up the Graph Search Problem

We begin the setup of the problem focused on in this thesis by considering the 23 hy-
perbolic groups identified and studied by Kangaslampi and Vdovina [57], i.e., the groups
whose surface subgroups we are interested in. Following the notation of [57] we de-
note the 23 groups by T1, . . . , T23. Each of the 23 groups is finitely represented using 15
generators x1, . . . , x15 and 15 relations of length 3 represented using triplets of the form
(xi, xj, xk), with the meaning xixjxk = 1. Note that relations are equivalent to all its

5

Table 2.1: The relations xixjxk = 1 of groups T15, T16, T17, and T18, represented as
triplets (xi, xj, xk) where the generators are x1, . . . , x15.

T15 T16 T17 T18
(x1, x15, x1) (x1, x15, x1) (x1, x15, x1) (x1, x15, x1)
(x10, x2, x1) (x10, x2, x1) (x10, x2, x1) (x10, x2, x1)
(x11, x5, x2) (x11, x5, x2) (x11, x4, x2) (x11, x4, x2)
(x14, x4, x2) (x14, x3, x2) (x14, x6, x2) (x14, x3, x2)
(x3, x6, x3) (x8, x4, x3) (x3, x12, x3) (x9, x5, x3)
(x15, x12, x3) (x14, x9, x3) (x8, x5, x3) (x13, x7, x3)
(x7, x8, x4) (x6, x6, x4) (x8, x13, x4) (x8, x6, x4)
(x15, x13, x4) (x15, x13, x4) (x14, x14, x4) (x14, x8, x4)
(x8, x7, x5) (x7, x7, x5) (x9, x7, x5) (x6, x12, x5)
(x14, x9, x5) (x15, x12, x5) (x11, x9, x5) (x15, x13, x5)
(x9, x11, x6) (x14, x11, x6) (x7, x8, x6) (x7, x9, x6)
(x11, x13, x6) (x11, x13, x7) (x15, x12, x6) (x11, x10, x7)
(x10, x9, x7) (x9, x12, x8) (x10, x13, x7) (x14, x12, x8)
(x12, x12, x8) (x10, x9, x8) (x11, x10, x9) (x13, x11, x9)
(x13, x14, x10) (x13, x12, x10) (x15, x13, x12) (x15, x12, x10)

cyclic permutations which can be shown by straightforward algebraic manipulation. The
relation xixjxk = 1, for example, is equivalent to xjxkxi = 1 as well as xkxixj = 1. As
examples of these groups, the relations of T15, T16, T17 and T18 are listed in Table 2.1. A
complete listing of the representations of each of the 23 groups is provided in Appendix A.
Observe that the relations may contain multiple instances of the same generator. The
group T15, for example, contains the triplet (x1, x15, x1) which has two occurrences of
generator x1.

These groups are examples of non-right-angled hyperbolic groups, a class of groups
for which Gromov’s subgroup conjecture remains open. In [56] Kangaslampi and Vdov-
ina presented a computational study of these 23 groups they constructed earlier [57].
Specifically, they showed in [56] that the question of whether a particular one of these
groups contains a surface subgroup, i.e., a subgroup isomorphic to the fundamental group
of a closed surface, arising from so-called periodic apartments is equivalent to determining
whether a specific type of a graph (with a non-trivial combination of properties) exists.
In other words, the existence of a periodic apartment implies the existence of a surface
subgroup, which in turn implies that the particular group in question is provably not a
counterexample to Gromov’s subgroup conjecture.

Particularly, the graphs whose existence implies the existence of a periodic apartment
have the following properties.

(i) The graphs are bipartite, connected and 3-regular, and their order and size depend
on the parameter g (genus).

(ii) The graphs admit a directed decomposition into cycles of length 8.

(iii) The graphs admit a simultaneous labeling of vertices and edges by the representa-
tion of the group in question subject to specific constraints.

In the following we formulate three parameterized sets of graphs base(g), cycles(g) and
labels(Ti, g) corresponding to (i), (ii) and (iii), respectively. Before diving into the details

6

Figure 2.1: Tesselation with hyperbolic triangles whose angles are π
4
.

and elaborating the constraints formally, we briefly explain how these constraints arise
from the problem of finding a periodic apartment in one of the 23 groups {T1, . . . , T23}.
For a complete description of how exactly the constraints for the graphs arise we refer
the reader to [56].

Let g > 1 be a fixed natural number and Ti one of the 23 groups. Each relation
(xj, xk, xl) of Ti determines an oriented triangle whose edges are labeled with xj, xk and
xl. A periodic apartment of genus g is then a surface of genus g (“donut with g holes”)
constructed from these triangles in a way that the labels and orientations match. The
graph we wish to find is the dual graph of this triangulation, i.e., a graph whose nodes
represent the triangles with an edge between two nodes if the respective triangles share
an edge, see Figure 2.1 for an illustration.

Observe that the graphs must be 3-regular since they represent a triangulation, and
bipartite because every other triangle must have “opposite” orientation. If all triangles
had the same orientation their edges could not be matched to build the surface. Now
the triangles we consider here are assumed to be hyperbolic with all angles π

4
. From

this it then follows that exactly 8 triangles intersect at every corner. The number of
nodes and edges can be deduced to be 16(g − 1) and 24(g − 1) using Euler’s formula
V − E + F = 2 − 2g as follows [56]. We can consider the surface to be tesselated by
regular octagons due to the triangles having angles π

4
(See Figure 2.1). Now each vertex

meets 3 octagons whereas each edge meets 2. Denoting the number of octagons by F we
thus deduce that V = 8F

3
and E = 8F

2
= 4F which combined with Euler’s formula yields

F = 6(g − 1). The number of 8-cycles is thus 6(g − 1) whereas the order and size of the
dual graph are 16(g − 1) and 24(g − 1), respectively.

Definition 1. Let G = (V,E) be a graph and g > 1 be a natural number. Then G ∈
base(g) if |V | = 16(g − 1), |E| = 24(g − 1), and G is connected, bipartite, and 3-regular.

Observe that, due to 3-regularity and connectedness of graphs in base(g), two nodes
can have at most two edges between them. These pairs of parallel edges are called double
edges.

Next we consider the graphs in G = (V,E) ∈ base(g) which admit a cycleset. Let
directed(E) = {(v1, v2), (v2, v1) | {v1, v2} ∈ E} denote the decomposition of E into
directed edges. A cycleset for G = (V,E) ∈ base(g) is a set of 6(g − 1) cycles of
length 8 in directed(E) covering the directed decomposition1. Observe that each di-

1We follow the notation in [56] and refer to these structures as cycles instead of walks.

7

(a) (b)

(c) (d)

Figure 2.2: Two invalid ways of routing 8-cycles are shown in (a) and (c). Subfigures (b)
and (d), on the other hand, show two valid ways of routing 8-cycles.

Figure 2.3: The 2 possible orientations of a node.

rected edge is covered exactly once by the decomposition: The number of directed
edges |directed(E)| = 2|E| = 48(g − 1) equals exactly the number of edges required
8 · 6(g − 1) = 48(g − 1). This implies that each undirected edge is traversed twice (once
in each direction).

Formally, an 8-cycle in G is a sequence (e0, . . . , e7), where for each i ∈ {0, . . . , 7},
ei ∈ directed(E) and for the end-points of consecutive edges ei = (v′, v) and e(i+1) mod 8 =
(v, v′′) it holds that v′ 6= v′′ if ei and e(i+1) mod 8 originate from the same undirected edge.
Special care needs to be taken with this definition in the case of non-simple graphs as
noted in [56]. The definition forbids an 8-cycle from “doubling back”, i.e., the 8-cycle
cannot contain edges e = (a, b) and e′ = (b, a) in subsequent positions if e and e′ arise
from the same undirected edge. If the directed edges e and e′, however, correspond to
different undirected edges we may have an 8-cycle containing e and e′ at consecutive
positions, see Figure 2.2 for an illustration.

Definition 2. Let G = (V,E) be a graph such that G ∈ base(g) for some g > 1. Then
G ∈ cycles(g) if G contains a cycleset, i.e., a set of 6(g − 1) 8-cycles, where each edge in
directed(E) is traversed exactly once.

There may be several cyclesets for G ∈ cycles(g); we denote by cyclesets(G) the set of
all cyclesets of G. Hence cyclesets(G) = ∅ implies G 6∈ cycles(g) and vice versa. Observe
that a cycleset covers all the edges in G, and this allows one to uniquely order the incident
edges of each node. There are exactly two ways in which the cycles can pass through a
node (see Figure 2.3), and hence each node has an orientation determined by the cycles
passing through it. Let edges(v) be the set of edges incident to vertex v for each v ∈ V .
The orientation of a node v is represented using an order function Ov mapping each
e ∈ edges(v) to its successor. For instance, in the topmost case in Figure 2.3 the order
function Ov is defined as Ov(e1) = e3, Ov(e2) = e1, and Ov(e3) = e2.

8

Table 2.2: A cycleset of graph G2
7.

1 3 2 1 4 5 6 7
2 14 15 12 16 17 14 3
4 7 8 9 10 11 12 13
5 13 15 17 18 19 10 20
6 20 9 21 22 23 21 8
11 19 24 22 23 24 18 16

Figure 2.4: Graph G2
7

Example 1. Consider the graph G2
7 shown in Figure 2.4. Observe that G2

7 is a non-
simple graph with two double edges. Now, G2

7 ∈ base(2), i.e., G2
7 is bipartite, connected,

3-regular and has 16 nodes and 24 edges. The nodes of the graph are colored black/white
to indicate bipartiteness.

Furthermore, G2
7 ∈ cycles(2), i.e., cyclesets(G2

7) 6= ∅. One of the cyclesets of G2
7 is

listed in Table 2.2 (using the names of undirected edges to avoid obscuring the figure
too much). Each node is passed through exactly three times by the cycles (in the case
of double edges the node is passed twice by the same cycle and once by another). Each
undirected edge is traversed twice (once in each direction). The orientations arising from
the cycleset in Table 2.2 are denoted using arrows around the nodes in Figure 2.4.

We are now ready to define the graphs that represent periodic apartments of the
hyperbolic building corresponding to some group Ti. Recall that the nodes of any such
graph represent triangles whose sides have labels xi and edges between nodes represent
the adjacency of the triangles. To represent the action of group Ti on the apartment, we
need to define conditions for a valid labeling for G ∈ cycles(g), which corresponds to a
labeling of the sides of the triangles.

9

Definition 3. Let G = (V,E) ∈ cycles(g) for some g > 1. A labeling of G using group
Ti, denoted by (Lv, Le), consists of two functions:

• Lv mapping v ∈ V to relations (xi, xj, xk) of Ti, and

• Le mapping e ∈ E to generators xi of Ti,

in a way that the label of node v matches the labels of e ∈ edges(v), i.e., for all v ∈ V it
holds that if Lv(v) = (xi, xj, xk), then {Le(e) | e ∈ edges(v)} = {xi, xj, xk}.

The acceptability of a labeling depends on the orientations of the nodes of G. The
orientations are determined by the cyclesets of G ∈ cycles(G) together with a chosen 2-
coloring (due to bipartiteness). We assume here a fixed 2-coloring of G using colors black
and white. Intuitively, the labeling of a white node has to match the orientation of the
node, and the labeling of a black node has to match the inverted orientation of the node.
Furthermore, two adjacent nodes in G cannot be labeled with the same triplet unless (1)
the triplet contains two occurrences of the same generator, (2) the connecting edge is
labeled with the duplicated generator, and (3) the index of the generator in the triplet is
different for both nodes. For a detailed discussion on how exactly these constraints arise,
we refer the reader to [56]. For an intuition of the conditions (1)–(3), recall that the
triangles tesselating the “surface with g holes” are oriented and have their sides labeled
with elements xi (generators of Ti), and the sides of two adjacent triangles that overlap
must have the same label. Additionally, due to the nature of the group action, two
triangles of the same type (i.e., labelled using the same triplet of Ti) cannot share the
same side. This means that two triangles of the same type with three different labels xi,
xj and xk cannot be adjacent. Two triangles of the same type, however, can be adjacent
if their labels are xi, xi and xj, since then they may be attached from different sides
which have the same label, see Figure 2.5.

Definition 4. Let G = (V,E) ∈ cycles(g) for some g > 1 and W ∈ cyclesets(G). A
labeling (Lv, Le) of G using Ti respects the orientation induced by W if the following
conditions hold for each v ∈ V with edges(v) = {e1, e2, e3} and orientation Ov(e1) = e2,
Ov(e2) = e3, Ov(e3) = e1 in W .

(i) Lv(v) = (Le(e1), Le(e2), Le(e3)) if v is white.

(ii) Lv(v) = (Le(e3), Le(e2), Le(e1)) if v is black.

(iii) For each e = {v, w} ∈ E, if Lv(v) = Lv(w), then this label (triplet) has two
occurrences of the same generator xi, Le(e) = xi, and the orientations of v and w
are such that e has different position (index) in Lv(v) and Lv(w).

Given W ∈ cyclesets(G), a labeling using Ti is valid with respect to W if it satisfies
conditions (i)–(iii) of Definition 4, and otherwise invalid.

Example 2. Figure 2.6 illustrates examples of valid and invalid labelings. In (a)–(c),
valid labelings in the neighborhood of a white node, a black node, and for two adjacent
nodes which are assigned the same triple, respectively, are illustrated. Invalid labels are
illustrated in (d)–(f). In (d) the labels of the edges do not match the triple; in (e) the
labels match the triplet but in the wrong order; and (f) illustrates how a labeling of two
adjacent nodes which are assigned the same triplet may fail. Here the generators x1 in
bold in (c) and (f) denote the elements of the triplets corresponding to the label of the
connecting edge.

10

Figure 2.5: Invalid (left) and valid (right) adjacent triangles.

(a) (b) (c)

(d) (e) (f)

Figure 2.6: Examples of valid labelings in (a)–(c) and invalid labelings (d)–(f), see Ex-
ample 2.

Finally, we define the set of graphs that admit a valid labeling.

Definition 5. Let G = (V,E) be a graph such that G ∈ cycles(g) for some g > 1, and let
Ti be one of the 23 groups constructed in [57]. We say that G ∈ labels(Ti, g), if for some
set W ∈ cyclesets(G) there exists a valid labeling (Lv, Le) of G using Ti with respect to
W .

Observe that labels(Ti, g) ⊆ cycles(g) ⊆ base(g) for all g > 1 and Ti such that i ∈
{1, . . . , 23}. The existence of a graph G ∈ labels(Ti, g) is connected to the existence of
surface subgroups in Ti as follows.

Theorem 1 ([56]). Let Ti be one of the 23 groups constructed in [57] and g > 1 a natural
number. If labels(Ti, g) 6= ∅, then there exists a periodic apartment in the hyperbolic
building corresponding to Ti that is invariant under the action of a genus g surface.

The existence of a periodic apartment in the hyperbolic building implies the existence
of a surface subgroup of genus g. Hence, if labels(Ti, g) 6= ∅, then Gromov’s subgroup
conjecture holds for Ti. It is not known, however, whether the existence of a surface
subgroup of genus g implies the existence of a periodic apartment.

Corollary 1. Let Ti and g be as defined in Theorem 1. If labels(Ti, g) 6= ∅, then there
exists a subgroup in Ti isomorphic to the fundamental group of a genus g surface.

2.2 Properties of Graphs in the Search Space

In this section we prove many useful structural properties satisfied by graphs in cycles(g)
for g > 1. The properties we show arise mainly from the interaction between double

11

Figure 2.7: Directed decomposition of a double edge.

(a) (b)

Figure 2.8: Unacceptable routing of cycles near double edges.

edges and 8-cycles. We also prove a connection between the cyclesets of G ∈ cycles(g)
and the orientations of nodes.

First we show that the existence of a cycleset in a graph G ∈ cycles(g) implies a low
upper bound on the number of double edges. To prove this we first demonstrate a result
already used in [56] that shows how 8-cycles can pass through double edges. Using this
observation we then demonstrate a correspondence between the numbers of cycles and
double edges yielding us a useful upper bound.

For any graph G = (V,E) and each e ∈ directed(E) we use ē to denote the opposite
directed edge originating from the same undirected edge in E. In other words if e =
(a, b) ∈ directed(E) then ē = (b, a), and the pair (e, ē) is the result of splitting an
undirected edge e∗ = {a, b} ∈ E. In the following we refer to truncations of an 8-
cycle as a subwalk. The sequence (e3, e4, e5), for example, is a length-3 subwalk of the
8-cycle (e1, e2, e3, e4, e5, e6, e7, e8).

Lemma 1 ([56]). Let g > 1 be a natural number, G = (V,E) ∈ cycles(g), W ∈
cyclesets(G) and w ∈ W a cycle passing through a double edge. Now w contains subwalk
(e3, e1, e2, ē3) with e1, e2, e3 ∈ directed(E) arising from distinct undirected edges incident
to the same nodes.

Proof. Assume that G = (V,E) ∈ cycles(g) for some g > 1, v1, v2, u1, u2 ∈ V and
ei, ēi ∈ directed(E) for i ∈ {1, 2, 3, 4} as depicted in Figure 2.7. Let w be the cycle in
W ∈ cyclesets(G) containing edge e3. The successor of e3 in w must be either e1 or ē2
with both choices leading to a symmetrical situation. We assume that e1 follows e3 in w,
i.e., w contains subwalk (e3, e1). Now edge e1 in w must be followed by either e2 or e4,
with the first choice necessarily leading to w containing subwalk (e3, e1, e2, ē3) and the
second choice leading to a contradiction as we will demonstrate next.

We now assume that w contains (e3, e1, e4). Since the cycles in W cover the entire
graph, we know that some cycle w′ ∈ W contains ē3. The cycle w′ now contains either
(ē4, e2, ē3) or (ē4, ē1, ē3). In the first case edges ē1 and ē2 would be left orphaned and
unable to participate in any 8-cycle as shown in Figure 2.8a. The second case, shown
in Figure 2.8b, would result in edges e2 and ē2 being orphaned. This is a contradiction
since W was assumed to be a cycleset, which by definition covers the entire graph.

12

Figure 2.9: An 8-cycle passing a double edge.

We then show that each 8-cycle may traverse at most one double edge.

Theorem 2. Let g > 1 be a natural number, G = (V,E) ∈ cycles(g), W ∈ cyclesets(G)
and w ∈ W a cycle. Now w contains at most one subwalk of the form (e3, e1, e2, ē3) where
e1, e2 and e3 arise from distinct undirected edges.

Proof. Assume to the contrary that cycle w contains two subwalks of the form
(e3, e1, e2, ē3) as stated in the theorem. We denote w = (e3, e1, e2, ē3, e4, e5, e6, e7), see
Figure 2.9 for an illustration. Now cycle w must contain directed edges x and x̄ arising
from the same undirected edge and additionally x̄ must be the third edge following x in
w since the subwalk is of the form (x, ∗, ∗, x̄). Note first that x cannot be e3 or ē3 since
each directed edge may be used only once. The possible pairs (x, x̄) are thus (e1, e4),
(e2, e5), (e4, e7), (e6, e1) and (e7, e2).

If (x, x̄) = (e1, e4) we would have that v1 = v3 and v2 = v4, which would imply that v1
and v2 have degree greater than 3. If (x, x̄) = (e2, e5), on the other hand, we would have
that v1 = v5 and v2 = v4 and again v2 would have degree at least 4. The cases (e6, e1)
and (e7, e2) are handled similarly.

The case (x, x̄) = (e4, e7), however, fails for an entirely different reason. Assuming
(x, x̄) = (e4, e7) we know, since the graph is 3-regular, that there is a third undirected
edge incident to v3 whose directed components we denote by a and ā, see Figure 2.10.
Edges e3, ē3, e4 and ē4 = e7 cannot be a part of any other cycle. Now, since all edges are
used by the cycles, there must exist a cycle w′ ∈ W containing subwalk (a, ā). But this
is a contradiction since no cycle may contain (e, ē) for any e ∈ directed(E).

This yields the corollary that each double edge has to meet two distinct cycles.

Corollary 2. Each double edge is traversed by two distinct cycles.

Proof. Consider the directed decomposition of a double edge as depicted in Figure 2.7.
The only way to use up all directed edges is if there are cycles w,w′ ∈ W such that
w contains (e3, e1, e2, ē3) and w′ contains (ē4, ē1, ē2, e4). Additionally w and w′ must
be distinct due to Theorem 2 since each 8-cycle may contain only one subwalk of type
(x, y, z, x̄).

Using the two previous results we finally show an upper bound for the number of
double edges.

Theorem 3. Let g > 1 be a natural number and G ∈ cycles(g). There are at most 3(g−1)
double edges in G.

Proof. Definition 2 states that graph G ∈ cycles(g) decomposes into 6(g − 1) cycles of
length 8. Taken together, Theorem 2 and Corollary 2 state that each double edge is
traversed by two distinct cycles, neither of which meet any other double edges. The
maximum number of double edges in G ∈ cycles(g) is thus 6(g − 1)/2 = 3(g − 1).

13

Figure 2.10: An impossible 8-cycle.

(a) (b)

Figure 2.11: (a) Square gadget connected to node v2. (b) Attached square gadgets.

The upper bound on the number of double edges in G ∈ cycles(g) is remarkably low
and offers opportunities for optimizing the generation and search of graphs admitting
cyclesets, i.e., G ∈ cycles(g). A much less remarkable upper bound of 8(g − 1) double
edges is deducible for graphs in base(g), and this bound for base(g) is in fact strict since
graphs admitting 8(g − 1) double edges exist in base(g) \ cycles(g).2 Additionally there
are graphs with n double edges in base(g) for every n ∈ {0, . . . , 8(g − 1)} a significant
amount of which have n > 3(g − 1). This indicates that starting the search procedure
with input from cycles(g) instead of base(g) should result in a significant reduction of the
search space.

Next we show that the existence of double edges in G ∈ cycles(g) implies the presence
of a specific subgraph near each double edge in G. Using this result we are then able to
give a useful lower bound on the distance between distinct double edges in G.

Theorem 4. Let g > 1 be a natural number and G = (V,E) ∈ cycles(g). Assume that
v1, v2 ∈ V and e∗1, e

∗
2 are distinct undirected edges {v1, v2}. Now v2 has a square attached

to it as depicted in Figure 2.11a.

Proof. Since G ∈ cycles(g) we know that cyclesets(G) 6= ∅. Let W ∈ cyclesets(G) and
w ∈ W a cycle passing v2 twice, see Figure 2.9. To prove that v2 indeed has an attached
square subgraph in G it suffices to show that v3, v4, v5 and v6 are distinct nodes. Clearly
nodes adjacent in Figure 2.9 must be distinct since the contrary would imply the existence
of a loop in G. Therefore node v3 must be distinct from v4 and similarly for pairs (v4, v5),
(v5, v6) and (v6, v3). Nodes v3 and v5, on the other hand, must be distinct since v3 = v5
would imply that ē4 = e5 and further that w contains subwalk (e4, ē4).

2 Consider for example a cycle graph with alternating double and single edges.

14

(a) (b)

Figure 2.12: (a) Double edge with a gadget. (b) Two entangled 8-cycles.

Now assume that v4 = v6. Due to 3-regularity we know that either e5 and e6 or e4
and e7 originate from the same undirected edge. The first case implies that ē5 = e6, and
further that w contains (e5, ē5), a contradiction. The case ē4 = e7, on the other hand,
was shown to result in a contradiction in Theorem 2. Therefore v4 and v6 must also be
distinct, and the proof is finished.

Note that the result of the previous theorem applies to both nodes v1 and v2. Thus,
each node of a double edge has a ”square gadget” attached to it. The gadgets attached
to different nodes, however, are not necessarily disjoint, see Figure 2.11b.

Corollary 3. The minimum distance between nodes incident to double edges (excluding
the neighboring node) is 4.

Proof. The proof follows by straightforward case analysis. Assume a situation as depicted
in Figure 2.12a. A double edge at a distance of 1 from v2 would have to be at v3, which
is clearly impossible since the graph is 3-regular. A double edge at distance of 2, on the
other hand, would have to be located next to v4 or v6, which is again impossible due to
3-regularity. Similarly node v5, which is at distance 3 from v2, cannot have a double edge.
The only remaining node to consider is v7, which is also at distance 3 from v2.

We thus assume that node v7 has a double edge. This implies that the cycle passing
v7 twice has the form depicted in Figure 2.9. Now the only way to map the 8-cycles is
the one in Figure 2.12b, which leaves the remaining edges of v4 and v5 orphaned thereby
causing some 8-cycle to contain (x, x̄) for some x ∈ directed(E). This is a contradiction,
and therefore v7 cannot have a double edge either. Since any edge at distance < 3 from
v2 cannot have a double edge, the minimum distance from v2 to another node with a
double edge is at least 4.

Graphs with double edges at distance 4 from each other exist implying that the bound
cannot be improved. See, e.g., graph G3

112 on page 11 in [56].
Now we proceed to consider the correspondence of cyclesets to the orientations of

nodes. Let g > 1 be a natural number and G = (V,E) ∈ base(g). Recall that an
orientation of a node v ∈ V is an order function Ov that maps each undirected edge to
its successor. For example Ov defined by Ov(e

∗
1) = e∗2, Ov(e

∗
2) = e∗3 and Ov(e

∗
3) = e∗1 is an

15

Figure 2.13: Different orientations of a node.

orientation of v ∈ V given that the incident undirected edges of v are e∗1, e
∗
2 and e∗3, see

Figure 2.13. In the following we instead represent orientations of nodes as sets of pairs of
directed edges as follows. Denote the directed decomposition of the edges incident to v
by ei and ēi for i ∈ {1, 2, 3}. Now we may represent the orientation Ov defined above as
the set Odir

v = {(e1, ē2), (e2, ē3), (e3, ē1)}. With this notation we may now state and prove
that orientations of nodes split directed(E) into disjoint cycles.

Theorem 5. Let g > 1 be a natural number, G = (V,E) ∈ base(g) and Odir
v an orienta-

tion for each v ∈ V . Now
⋃
v∈V O

dir
v is a union of cycles covering all of directed(E).

Proof. Let e = (v, v′) ∈ directed(E) be an arbitrary directed edge. Observe first that e is
(i) contained in one pair (∗, e) of Odir

v , (ii) contained in one pair (e, ∗) of Odir
v′ , and (iii)

not contained in any Odir
u where u 6= v, v′.

Now the relation
⋃
v∈V O

dir
v ⊂ directed(E) × directed(E) contains exactly one pair of

the form (∗, e) which defines a unique predecessor for each e ∈ directed(E). And similarly
the unique pair of the form (e, ∗) defines a unique successor for each e ∈ directed(E).

The partition of directed(E) is then extracted as the equivalence classes of the reflexive-
transitive closure of

⋃
v∈V O

dir
v . Furthermore, each partition must represent a cycle in G

since every e ∈ directed(E) has a unique predecessor and successor, i.e., no e is an end or
a beginning of a path.

In other words we just proved that the assignment of an orientation to each node of
a graph G ∈ base(g) gives rise to a disjoint set of cycles in G. The lengths of the cycles,
however, are not necessarily 8. A natural next question is whether every cycleset, i.e.,
set of 8-cycles, corresponds to some assignment of orientations to nodes. The following
theorem demonstrates that the answer is yes, but first we need to define some notation.

Let W be a cycleset of G = (V,E) ∈ cycles(g) where g > 1 is a natural number. We
define rel(W) to be the relational representation of cycleset W , i.e.,

rel(W) = {(e, e′) | e′ is the successor of e in some cycle w ∈ W}.

In other words rel(W) ⊂ directed(E)×directed(E) is the collection of predecessor-successor
pairs of edges according to the cycles in W .

Theorem 6. Let g > 1 be a natural number, G = (V,E) ∈ cycles(g), and W ∈
cyclesets(G). Now rel(W) =

⋃
v∈V O

dir
v for some assignment of orientations Odir

v for
all v ∈ V .

Proof. We prove the statement by showing that a suitable set of orientations can be
directly extracted from rel(W). Let v ∈ V be an arbitrary node of G and denote the

16

directed edges pointing towards v by e1, e2 and e3. Now the edges pointing away from v
are ē1, ē2 and ē3, see Figure 2.13. The possible orientations are {(e1, ē2), (e2, ē3), (e3, ē1)}
and {(e1, ē3), (e3, ē2), (e2, ē1)}. We know that exactly one of the orientations must be a
subset of rel(W) since W covers the entire graph and these are the only possible ways
to route the cycles around v. We thus define Odir

v to be the orientation that is a subset
of rel(W). Now clearly

⋃
v∈V O

dir
v ⊆ rel(W) and the other direction follows from the fact

that every pair (e, e′) ∈ rel(W) is in some Odir
v .

We have now proved in Theorems 5 and 6 that each assignment of valid orientations
to nodes of G ∈ base(g) corresponds to some set of cycles covering G and that each set
of 8-cycles corresponds to some assignment of orientations. This may seem simple and
obvious, but it provides a powerful aid in formulating SAT encodings. This is because the
orientation of a node v is a local property, i.e., only edges incident to v need to be referred
to. The existence of a set of cycles covering a graph G, however, is a global property,
i.e., all edges of G need to be referred to. What the previous two theorems then show
is that we can enforce a global property of a graph by referring to only local properties
of its nodes, and this is exactly what we do in the encoding presented in Section 3.2.
Additionally, the proof of Theorem 6 yields us a procedure for extracting the orientations
of nodes implied by a cycleset.

17

Chapter 3

Cycleset Decompositions and Group
Labelings via SAT

In this chapter we develop two SAT encodings, one for enumerating the cycleset decom-
positions of a graph and another for checking a graph for a labeling by one of the groups
from [57]. Before formulating the encodings we present an overview on Boolean modelling
and SAT solving.

3.1 Boolean Satisfiability

Propositional logic is a formal language consisting of inductively defined formulas and
an associated semantics for the formulas. The formulas are constructed inductively from
atoms (propositional variables) p0, p1, . . . and the usual connectives: negation ¬, conjunc-
tion ∧, disjunction ∨, implication→ and bi-implication↔. The formulas are interpreted
over assignments which are functions mapping each propositional variable to 0 or 1. A
formula φ is satisfied by assignment s if φ evaluates to 1 under the usual semantics of the
connectives with each atom pi taking on value s(pi). An assignment s satisfying formula
φ is referred to as a model of φ, and we use models(φ) to refer to the set of all models
of formula φ. A formula φ is then said to be satisfiable if there exists some assignment
s that satisfies φ, i.e., if models(φ) is nonempty, and this is the problem referred to as
the Boolean satisfiability (SAT) problem. In other words, Boolean satisfiability is the
problem taking as input a propositional formula φ and yielding a binary answer stating
whether φ is satisfiable. Two formulas φ and ψ are said to be equisatisfiable if φ being
satisfiable is equivalent to ψ being satisfiable, i.e., either both are are satisfiable or both
are unsatisfiable. Note that all equivalent formulas are equisatisfiable, but there are equi-
satisfiable formulas which are not equivalent. A more thorough treatment of propositional
logic can be found in, e.g., [78, 79].

Programs developed to solve the SAT problem are called SAT solvers, and most
practical implementations accept their input in a standard form called conjunctive normal
form. A formula in conjunctive normal (CNF) form uses only three connectives (¬, ∨
and ∧) and consists of a conjunction of clauses, i.e., it is of the form∧

i∈I

Ci,

where Ci is a clause for each i ∈ I. A clause then is a disjunction of literals which
are atoms pi or their negations, i.e., a clause is of the form

∨
i∈I li where li is either

18

pi or ¬pi for all i ∈ I. CNF is a convenient standard format partly due to the fact
that efficient polynomial-time algorithms exist for transforming arbitrary formulas into
linear-size, equisatisfiable CNF formulas [80, 81].

The significance of the SAT problem stems from the fact that it is an NP-complete
problem but admits algorithms that are efficient over inputs encountered in practice.
The NP-completeness of SAT refers to it being in the complexity class NP and having
the property that every other NP-problem reduces to SAT. Problems in NP are gen-
erally characterized as being computationally intractable although practically efficient
algorithms to NP-complete problems are known. One such example is the CDCL algo-
rithm for SAT [82, 83, 84, 85, 86, 87, 88, 89]. However, before discussing algorithmics we
consider the process of modelling problems using propositional logic.

Modelling with Propositional Logic Modelling problems using propositional logic
can roughly be split into two parts:

(1) specifying the search space, and

(2) formulating the constraints in CNF.

Part (1) thus consists of deciding the domain of binary variables (i.e. the propositional
atoms) over which the constraints are formulated which in practice boils down to naming
and deciding the intended meaning of variables the encoding will refer to. Part (2) then
consists of producing a propositional formula in CNF that models the constraints required
for the problem.

Some constraints are relatively straightforward to encode as clauses. The at-least-one
constraint, for example, can be encoded as a single clause

∨
i∈I xi, which evaluates to true

whenever at least one of xi for i ∈ I evaluates to true. Other constraints not easily stated
in CNF can be formulated using the full set of connectives instead, since the formula can
be efficiently translated into an equisatisfiable CNF formula with only linear increase in
its size [80, 81].

The following example presents an encoding for finding a 3-coloring of a graph.

Example 3 (Graph coloring). Let G = (V,E) be a graph. A 3-coloring of G is an
assignment of three colors to the nodes of G such that no adjacent nodes have the same
color. In other words, G is 3-colorable if there exists a total function c : V → {0, 1, 2}
such that c(v) 6= c(u) for all {v, u} ∈ E.

To model the situation using propositional logic we take for each v ∈ V and each
i ∈ {0, 1, 2} a variable xiv with the intended meaning that v has color i if xiv is true. We
then construct a Boolean formula 3-col(G) such that any assignment of truth values to
variables xiv satisfying 3-col(G) corresponds to a 3-coloring of G.

A satisfying assignment to 3-col(G) should

(1) represent a total function c : V → {0, 1, 2} assigning one color to each node, and

(2) assign the colors to v ∈ V such that no adjacent vertices have the same color.

We represent (1) by stating separately that each node v ∈ V maps to at least one and at
most one color c(v) ∈ {0, 1, 2}. For each v ∈ V the encoding includes a clause

C≥1v = x0v ∨ x1v ∨ x2v =
∨

i∈{0,1,2}

xiv

19

ensuring that at least one of xiv for i ∈ {0, 1, 2} is set true by any satisfying assignment.
The encoding contains clauses ¬x0v ∨ ¬x1v, ¬x0v ∨ ¬x2v and ¬x1v ∨ ¬x2v for every v ∈ V to
guarantee that every node has at most one color. We denote this as

C≤1v =
∧

i,j∈{0,1,2}
i 6=j

¬xiv ∨ ¬xjv = (¬x0v ∨ ¬x1v) ∧ (¬x0v ∨ ¬x2v) ∧ (¬x1v ∨ ¬x2v).

Clause ¬x0v ∨ ¬x1v, for example, evaluates to false whenever x0v and x1v are set true, thus
blocking any satisfying assignment from setting x0v and x1v true simultaneously. Taken
together the formulas C≥1v and C≤1v thus ensure that exactly one of {x0v, x1v, x2v} is set true
by any satisfying assignment. Constraint (1) can therefore be represented as formula

F1 =
∧
v∈V

(
C≥1v ∧ C≤1v

)
.

Constraint (2) can also be encoded using binary clauses since a clause of the form
¬xiv ∨ ¬xiu is satisfied only when either xiv or xiu evaluates to false. Essentially these
clauses block xiv and xiu from being simultaneously satisfied. The encoding thus contains

¬xiv ∨ ¬xiu

for each edge {v, u} ∈ E and each color i ∈ {0, 1, 2}. The formula

F2 =
∧

{v,u}∈E

∧
i∈{0,1,2}

(
¬xiv ∨ ¬xiu

)
thus encodes constraint (2).

The encoding 3-col(G) is thus the conjunction of formulas F1 and F2, i.e.,

3-col(G) = F1 ∧ F2.

A problem often encountered in propositional encodings is the existence of symmetries.
Generally symmetries refer to transformations of structures that preserve properties of
said structures, exemplified by rotations and reflections of geometric figures (square, cube,
etc.) which preserve their shape. In the context of Boolean satisfiability the structures
are assignments of a formula φ and the preserved property is satisfying φ. The SAT
encoding 3-col(G) from Example 3 contains symmetries as we will show next.

Example 4. Let G = (V,E) be a graph, and let c : V → {0, 1, 2} be a 3-coloring of G.
From c we can easily derive more colorings by changing the names of the colors. Consider
for example c′ defined as follows.

c′(v) =

0 if c(v) = 1

1 if c(v) = 0

2 if c(v) = 2

Essentially c′ is the same as c except that colors 0 and 1 have been swapped. Clearly c′

must be a 3-coloring since c is one, but the assignment of 3-col(G) corresponding to c is

mc =
∧
v∈V
c(v)=0

x0v ∧
∧
v∈V
c(v)=1

x1v ∧
∧
v∈V
c(v)=2

x2v

20

whereas the one corresponding to c′ is

mc′ =
∧
v∈V
c(v)=0

x1v ∧
∧
v∈V
c(v)=1

x0v ∧
∧
v∈V
c(v)=2

x2v.

We have now two syntactically different models of 3-col(G) corresponding to colorings
that differ only in naming of the colors. Since c′ is a 3-coloring exactly when c is we
deduce that mc′ must satisfy 3-col(G) exactly when mc does.

Models mc and mc′ in the previous example are called symmetric since they are either
both satisfiable or both unsatisfiable. The redundancy of the encoding arising from the
existence of symmetric models may be undesirable, but the problem can be mitigated by
modifying the encoding. So-called symmetry-breaking constraints can be added to the
formula resulting in a new formula without symmetric models. We next show one way of
breaking symmetry in 3-col(G).

Example 5. Each 3-coloring of G determines a partition of the set of nodes V into 3
parts such that no adjacent nodes belong to the same part. We break the symmetry by
augmenting the formula with constraints that block all but one equivalent 3-colorings. To
achieve this we first define an arbitrary linear order ≤ over V . The set of colors {0, 1, 2}
inherits an ordering as a subset of N. We next wish to state that the least node of color
0 precedes the least node of color 1 which precedes the least node of color 2. We use
variable yiv to mean that node v is the least node of color i. For each color i ∈ {0, 1, 2}
the encoding contains clause ∨

v∈V

yiv

to ensure that each color has yiv set true for at least one node. To guarantee that any
node for which yiv is set true has the correct color the encoding contains

¬yiv ∨ xiv

for each v ∈ V and i ∈ {0, 1, 2}. This binary clause enforces xiv to be set true if yiv is set
true and thus represents the implication yiv → xiv. The encoding also contains

¬yiv′ ∨ ¬xiv

for each i ∈ {0, 1, 2} and each v, v′ ∈ V such that v < v′ which represents the implication
yiv′ → ¬xiv. These implications essentially state that any preceding node of v′ cannot have
color i if yiv′ is set true thereby ensuring that the v′ for which yiv′ holds is the least node
of color i. To enforce the least nodes of each color to be ordered according to the colors
the encoding contains clauses

¬y1v ∨ ¬y0v′
and

¬y2v ∨ ¬y1v′
for each v, v′ ∈ V such that v < v′.

The encoding then consists of the formula 3-col(G) as well as the symmetry-breaking
constraints presented here.

21

The addition of symmetry-breaking constraints to an encoding as shown in Example 5
is referred to as static symmetry breaking [90, 91, 92, 93]. Augmenting an encoding with
symmetry-breaking constraints naturally increases the size of the formula, which may
result in degraded performance of solving the formula. Compact symmetry-breaking
constraints are thus an important research topic in declarative programming.

Including so-called lex-leader [90, 91, 92, 93] constraints is one of the simplest ways
to break symmetries when encoding problems into CNF. The rough idea is to constrain
the model such that only the lexicographically least model out of all equivalent models
satisfies the CNF. We use this type of symmetry-breaking constraints in the SAT encoding
presented in Section 3.2 to rule out all but one assignment corresponding to each distinct
underlying structure, in our case a cycleset of a graph.

Conflict-driven clause learning The most important modern complete algorithm for
solving SAT is the conflict-driven clause learning algorithm often referred to as CDCL [82,
83, 84, 85, 86, 87, 88, 89]. This algorithm requires the input formula to be in conjunctive
normal form (CNF).

The main parts of CDCL are unit propagation, conflict learning and non-chronological
backtracking (backjumping). Intuitively, CDCL tries to construct an assignment s satis-
fying the input formula φ by assigning a value for each atom in turn and testing whether
the assigned values satisfy φ. If the values assigned to atoms are sufficient to satisfy φ
the algorithm terminates with a positive answer. If, on the other hand, the data so far
is insufficient to determine the valuation of φ under s the algorithm assigns a value for
the next atom. Lastly, if the assignment thus-far is enough to determine s(φ) = 0, the
algorithm extracts a clause blocking this conflict, adds it to φ (conflict learning) and
backjumps far enough to erase the assignment resulting in the conflict. The role of unit
propagation is to compute the consequences of the current partial assignment in φ. For
a thorough description of CDCL refer to [21].

The CDCL algorithm implemented using efficient data structures and utilizing ap-
propriate optimizations has proven a very effective tool for declarative programming.
Efficient implementations include, e.g., Minisat [94] which we use in this work through
the Pysat library [95]. In practice SAT solvers can be used to solve a wide array of
computational problems through the model & solve paradigm. In this paradigm solving a
problem boils down to encoding the desired problem as a propositional formula and using
an off-the-shelf SAT solver to find satisfying assignments which correspond to solutions to
the problem. All NP-problems can be reduced to SAT due to its NP-completeness, and
the user actually implements such a reduction when encoding a problem in propositional
logic.

SAT solvers also find uses in solving problems beyond NP via them being used as
NP-oracles, i.e., implementing programs that make calls to a SAT solver. An important
ingredient of the efficient use of SAT solvers as NP-oracles is incremental solving, which
refers to saving the state of the solver between repeated calls. This is especially useful
when repeated calls are made for an input formula that is only slightly modified between
calls, e.g., by adding or deleting clauses.

Model enumeration Model enumeration, sometimes referred to as all-SAT, is the
problem of finding every satisfying assignment of a propositional formula φ [96, 97, 98,
99, 100]. One of the simplest methods for model enumeration is the so-called blocking

22

clause method which works as follows. To find the models of CNF formula φ = φ0 we
iterate the process of

(i) finding some model m of φi, and

(ii) creating a new formula φi+1 satisfied exactly by the models of φi except for m.

Since for each finite Boolean formula there are finitely many assignments to consider—
that is 2#variables—it follows that the number of satisfying assignments must be< 2#variables

and thus finite. The above procedure is then guaranteed to terminate since the number
of satisfying assignments decreases by one at each step. The formula φi+1 is also easily
constructed from CNF formula φi and model m of φi. Denote by truelits(m) the collection
of literals set true by m. The so-called blocking clause bc(m) of m is the disjunction of
negated literals in truelits(m), i.e.

bc(m) =
∨

l∈truelits(m)

¬l.

Adding the blocking clause to φi we then get

φi+1 = φi ∧ bc(m),

which is in CNF since φi is in CNF and bc(m) is a clause.
Incremental SAT solving can be easily applied to the blocking clause method since

the working formula changes only by the addition of one clause between SAT calls. This
increases performance of the method since conflict clauses already learned can be utilized
in the subsequent SAT calls without having the relearn them.

While the growth of the working formula can make the blocking clause method un-
wieldy for certain formulas, it does not present a problem in this work due to the relevant
formulas having relatively few models. However, techniques for mitigating the growth of
the working formula exist [101, 97] although they are not necessary in this work.

3.2 Enumerating the Cycleset Decompositions of

Graphs

In this section we develop a SAT encoding φcycles(G, g) for checking whether a given
graph G = (V,E) in base(g) (for an arbitrary genus g > 1) is in cycles(g). The encoding
we formulate also allows for the enumeration of cyclesets(G) as it captures all cyclesets
in cyclesets(G), i.e., the models of φcycles(G, g) correspond exactly to cyclesets(G). Ex-
isting model enumeration techniques, such as the blocking clause method explained in
Section 3.1, can be applied to enumerate cyclesets(G) for a given graph G ∈ base(g).

Recall that a graph G is in cycles(g) if G ∈ base(g) and the directed decomposition
of G admits a set of N = 6(g − 1) cycles of length 8 (Definition 2). Recall also that
directed(E) denotes the decomposition of undirected edges in E into directed ones, and
that the 8-cycles can not have two subsequent directed edges originating from the same
undirected edge (see Figure 2.2). Now, finding a cycleset of G boils down to partitioning
directed(E) into N mutually disjoint collections of size 8 while ensuring that each partition
forms a cycle. We achieve the partitioning by considering the cycles to be lists of size
8 and using straightforward cardinality constraints. To make sure that the consecutive

23

for each e ∈ directed(E) :
∑

p∈{0,...,N−1}

inCycle(e, p) = 1 (3.1)

∑
i∈{0,...,7}

index(e, i) = 1 (3.2)

for each p ∈ {0, . . . , N − 1} :
∨

e∈directed(E)

inCycle(e, p) (3.3)

for each p ∈ {0, . . . , N − 1}, i ∈ {0, . . . , 7}, e1, e2 ∈ directed(E) such that e1 6= e2 :

¬inCycle(e1 , p) ∨ ¬index(e1 , i) ∨ ¬inCycle(e2 , p) ∨ ¬index(e2 , i) (3.4)

for each v ∈ V, p ∈ {0, . . . , N − 1}, (e, e′) ∈ pairs1(v) :

¬orient(v)→ (inCycle(e, p)↔ inCycle(e ′, p)) (3.5)

for each v ∈ V, p ∈ {0, . . . , N − 1}, (e, e′) ∈ pairs0(v) :

orient(v)→ (inCycle(e, p)↔ inCycle(e ′, p)) (3.6)

for each v ∈ V, i ∈ {0, . . . , 7}, i′ = (i+ 1) mod 8, (e, e′) ∈ pairs1(v) :

¬orient(v)→ (index(e, i)↔ index(e ′, i ′)) (3.7)

for each v ∈ V, i ∈ {0, . . . , 7}, i′ = (i+ 1) mod 8, (e, e′) ∈ pairs0(v) :

orient(v)→ (index(e, i)↔ index(e ′, i ′)) (3.8)

for each p ∈ {0, . . . , N − 1}, e, e′ ∈ directed(E) such that e′ < e :

inCycle(e, p) ∧ index(e, 0)→ ¬inCycle(e′, p) (3.9)

for each p ∈ {1, . . . , N − 1}, e, e′ ∈ directed(E) such that e′ < e :

inCycle(e′, p) ∧ index(e′, 0)→
∧
p′<p

¬(inCycle(e, p′) ∧ index(e, 0)) (3.10)

Figure 3.1: SAT encoding of cyclesets.

edges in each list follow one another we make use of orientations of nodes, and Theorems 5
and 6 stating that each cycleset of G corresponds to an assignment of orientations to the
nodes of G. The orientations essentially determine how the incident edges of each node
are routed.

We name the N lists using natural numbers {0, . . . , N − 1} and consider the lists
to have indices {0, . . . , 7}. We use Boolean variables inCycle(e, p) to denote that e ∈
directed(E) is in cycle (list) p ∈ {0, . . . , N − 1}, and the variables index(e, i) to denote
that e is at index i ∈ {0, . . . , 7} of its cycle. We also use Boolean variables orient(v) to
denote which of the two possible orientations node v has.

We list the constraints of the SAT encoding φcycles(G, g) in Figure 3.1. Intuitively the
encoding is composed of three parts:

1) ensuring unique assignment of edges into cycles (3.1)–(3.4),

2) enforcing the orientations of nodes to be compatible with the partitioning of
directed(E) (3.5)–(3.8), and

3) breaking certain symmetries present in the encoding otherwise (3.9)–(3.10).

The constraints (3.1)–(3.4) ensure that the elements of directed(E) are partitioned into
the N lists of size 8. Constraints (3.1) intuitively state that each e ∈ directed(E) must be

24

assigned to exactly one cycle (list) p ∈ {0, . . . , 7}. We encode this constraint using the
well-known pairwise encoding which represents the exactly-one constraint using two other
constraints: at-least-one and at-most-one. The at-least-one constraint

∑
p inCycle(e, p) ≥

1 corresponds to the clause ∨
p∈{0,...,N−1}

inCycle(e, p)

which evaluates to 0 if all of the conjuncts inCycle(e, p) evaluate to 0, and to 1 otherwise.
The at-most-one constraint

∑
p inCycle(e, p) ≤ 1 corresponds to a set of binary clauses.

For each p, p′ ∈ {0, . . . , N − 1} such that p 6= p′ the encoding contains clause

¬inCycle(e, p) ∨ ¬inCycle(e, p′)

which evaluates to 0 if both inCycle(e, p) and inCycle(e, p′) evaluate to 1 blocking the
simultaneous satisfaction of inCycle(e, p) and inCycle(e, p′). The pairwise exactly-one en-
coding results in a quadratic number of binary clauses which does not present issues in
this work since the relevant domains considered here are small.

The exactly-one constraints (3.2), stating that each e ∈ directed(E) is assigned a
unique index, are similarly pairwise encoded. Constraint (3.3), on the other hand, states
that the cycles must be non-empty, and is not strictly necessary here since each e ∈
directed(E) is constrained to belong to exactly one cycle and the size of directed(E) is
exactly 8N = 48(g − 1), i.e., the number of cycle-index pairs for the graphs in base(g),
and we do not use the encoding for any other graphs. However, this constraint seems to
speed up solving times. Constraint (3.4) blocks two distinct edges e1, e2 ∈ directed(E)
from being assigned to the same partition at the same index: If e1, e2 ∈ directed(E) are
both assigned to cycle p at index i, the clause (3.4) will evaluate to 0. Note that our
encoding works with both simple and non-simple graphs as long as edges between the
same nodes, i.e., parallel edges, are given distinct names.

Constraints (3.5)–(3.8) encode that the partitions of directed(E) are cycles, i.e., an
edge e = (x, y) at index i in cycle p implies the edge at the next index (i+ 1 mod 8)
starts at y. Here we utilize the orientations of nodes to enforce cyclicity. Let us consider
the edges incident to a node v, i.e., edges(v) = {e1, e2, e3}. We denote the corresponding
directed edges by eouti and eini where eouti refers to the directed edge going outwards from
v and vice versa for eini . Figure 3.2 illustrates the situation. Additionally, let Ov(e1) = e2,
Ov(e2) = e3, and Ov(e3) = e1 correspond to orientation 1, and Ov(e1) = e3, Ov(e2) = e1,
and Ov(e3) = e2 correspond to orientation 0 (as in Figure 2.3). We then denote by
pairs1(v) the successor pairs of the directed edges corresponding to orientation 1, i.e.,
pairs1(v) = {(ein1 , eout2), (ein2 , e

out
3), (ein3 , e

out
1)} and by pairs0(v) the successor pairs corre-

sponding to orientation 0, i.e., pairs0(v) = {(ein1 , eout3), (ein3 , e
out
2), (ein2 , e

out
1)}. These pairs

of directed edges are the ones that should be placed at subsequent indices of the corre-
sponding cycles (depending on the assignment of orientations to nodes). The constraint
(3.5) then encodes, for each v ∈ V , that the edges appearing in pairs1(v) are assigned
to the same partition if v has orientation 1 and the constraint (3.6) encodes the same
for pairs0(v) and orientation 0. Constraint (3.7) ensures that for each v ∈ V and each
(e, e′) ∈ pairs1(v) edge e has index i whereas edge e′ has the immediately following index
i + 1 mod 8 if v has orientation 1, while constraint (3.8) encodes the same for pairs0(v)
and orientation 0. Essentially these constraints ensure that the incident edges of each
node are routed according to the orientation assigned to the node.

The encoding as described so far, i.e., constraints (3.1)-(3.8), is sufficient to ensure
that any satisfying assignment indeed corresponds to a cycleset constructed by assigning

25

Figure 3.2: Directed decomposition of edges e1, e2 and e3 incident to the same node.

e ∈ directed(E) to cycle p at index i if inCycle(e, p) and index(e, i) are true under the
assignment. However, there are several distinct assignments satisfying constraints (3.1)-
(3.8) that correspond to the same cycleset.

Let m be a model of φcycles(G, g) and denote the N 8-cycles corresponding to m by
C0, . . . , CN−1. Each Ci (i ∈ {0, . . . , N − 1}) is then a list of size 8 containing directed
edges e ∈ directed(E). Notice first that we can derive a new model m′ of φcycles(G, g) by
swapping the names of the cycles as follows. For some chosen pair of cycles Ci, Cj (i 6= j)
consider the set of cycles where C ′i = Cj, C

′
j = Ci and C ′k = Ck for all k /∈ {i, j}. The

model m′ corresponding to this naming of the cycles is constructed from m by swapping
the truth values of inCycle(e, i) and inCycle(e, j) for all e ∈ directed(E). Notice also that
lists

(e0, e1, e2, e3, e4, e5, e6, e7)

and
(e7, e0, e1, e2, e3, e4, e5, e6)

represent the the same cycle, but with a different indexing of the edges. We can therefore
construct models by cyclically permuting the indices of the edges in a cycle, and these
models will correspond to the same set of cycles.

The underlying cycleset thus remains unchanged under any permutation of the names
of the cycles, i.e., any permutation of {0, . . . , N − 1}, and similarly the indices of edges
in any cycle can be cyclically permuted without changing the cycle. These symmetries
do not only degrade performance but make cycleset enumeration very cumbersome due
to the huge number of symmetric models. The number of permutations of {0, . . . , N −1}
is N ! wheres the number of cyclic permutations of the indices is 8N . The total number of
these permutations is thus 8NN ! which is of the order 108 for genus 2 and 1019 for genus
3 (and grows increasingly fast).

Since enumerating all cyclesets of an input graph G ∈ base(g) is what we use the
encoding for we employ specific symmetry-breaking constraints to block all but one model
corresponding to each cycleset. We do this by introducing ordering constraints for which
we introduce a linear ordering of directed(E) and use the natural ordering of {0, . . . , N −
1}. We break the rotational symmetry of the cycle indices by enforcing the edge at index
0 to be the least edge in each cycle. Intuitively constraint (3.9) states that edge e being
assigned to cycle p at index 0 blocks the assignment of e′ to the same cycle. Since the
constraint is stated for each pair of edges (e, e′) such that e′ < e it effectively enforces
the edge at index 0 to be the least edge in cycle p.

To break the permutation symmetry of the cycle names we enforce the cycles
{0, . . . , N − 1} to be ordered ascendingly according to the edge of index 0 in each cy-
cle, i.e., the edge of index 0 of cycle p is smaller than the edge of index 0 of cycle p′ if

26

p′ > p. Constraint (3.10) thus states that e′ being assigned to cycle p at index 0 blocks
the assignment of any larger edge e to index 0 in a preceding cycle p′ < p.

All in all, the encoding captures cyclesets(G) for any given G, and in particular, any
satisfying assignment of φcycles(G, g) can be projected into a cycleset W ∈ cyclesets(G) as
follows. Let m be a satisfying assignment to φcycles(G, g). For each p ∈ {0, . . . , N − 1}
we construct an 8-cycle Cp by finding the e ∈ directed(E) such that m(inCycle(e, p)) = 1.
These directed edges constitute the 8-cycle Cp. The ordering of these edges can be
deduced by considering the head and tail of each directed edge or, alternatively, by
finding the indices determined by the encoding. The index of edge e belonging to Cp is
the unique i such that index(e, i) is true in m. We thus define a function projcycles from
the models of φcycles(G, g) to cyclesets(G) such that each m ∈ models(φcycles(G, g))

projcycles(m) = {Cp | p ∈ {0, . . . , N − 1}}

where Cp = (e0, . . . , e7) and each ei ∈ Cp is such that m(inCycle(ei, p)) = 1 and
m(index(ei, i)) = 1.

Theorem 7 (Correctness of the cycleset encoding). Let g > 1 be a natural number and
G ∈ base(g). There exists a bijective mapping between the satisfying assignments of
φcycles(G, g) and W ∈ cyclesets(G).

Proof. We will show that projcycles as defined previously is the unique bijective mapping
from models(φcycles(G, g)) to cyclesets(G). Let m be an arbitrary satisfying assignment of
φcycles(G, g) and W = {C0, . . . , CN−1} its image under projcycles. Cardinality constraints
(3.1) and (3.2) of φcycles(G, g) ensure that each e ∈ directed(E) is associated with exactly
one number p ∈ {0, . . . , N − 1} (indicating the cycle e belongs to) and one number
i ∈ {0, . . . , 7} (indicating the index of e), respectively. Each directed edge e ∈ directed(E)
thus belongs to a unique cycle Cp at unique index i. The constraint (3.4), on the other
hand, ensures that no other e′ occupies that same cycle at the same index. Each Ck ∈ W
thus consists of 8 distinct directed edges with no edge belonging to two distinct Ck. The
cycles Ck ∈ W form a partition of directed(E), since |directed(E)| = 48(g − 1) and W
contains 8N = 8 · 6(g − 1) = 48(g − 1) distinct e ∈ directed(E).

The model m determines a unique orientation for each v ∈ V depending on whether
orient(v) is true or false under m. Constraints (3.5)–(3.8) then ensure that each of the
directed edges incident to v have a unique predecessor/successor, thus ensuring that
Ck ∈ W are indeed directed cycles.

The symmetry-breaking constraints (3.9) and (3.10) ensure that only one satisfying
assignment maps to each cycleset, which makes the projection mapping projcycles injective.

To show that projcycles is surjective, i.e., there exists a model of φcycles(G, g) for each
possible W ∈ cyclesets(G) it suffices to name the cycles using {0, . . . , N − 1} and to give
consistent indices to the directed edges of each cycle. Constructing a suitable assignment
m is then straightforward.

Hence, if φcycles(G, g) is unsatisfiable, then G 6∈ cycles(g), and if φcycles(G, g) is satis-
fiable, then G ∈ cycles(g) and the satisfying assignments, when projected, yield exactly
cyclesets(G).

27

3.3 Checking Graphs for a Group Labeling

We next consider whether a graph G = (V,E) ∈ walks(g) can be labeled using some
Ti ∈ {T1, . . . , T23}, i.e., whether G ∈ labels(Ti, g). We formulate a SAT encoding taking
as input a graph G, a group Ti and a cycleset W ∈ cyclesets(G) which can be used
to decide whether there exists a labeling of G using Ti that is valid with respect to W
(see Definitions 3 and 4). We refer to the encoding as φlabels(G, Ti,W). If there exists
W ∈ cyclesets(G) such that φlabels(G, Ti,W) is satisfiable, then G ∈ labels(Ti, g), whereas
if φlabels(G, Ti,W) is unsatisfiable for all W ∈ cyclesets(G), then G 6∈ labels(Ti, g). Recall
that cyclesets(G) can be obtained, e.g., via enumerating the models of the cycleset
encoding presented in Section 3.2, or alternatively through orderly generation, as shown
later in Chapter 4.

Recall that each of the groups {T1, . . . , T23} are represented using 15 generators xi
and 15 length–3 relations, which we represent as triplets (xi, xj, xk). A labeling of G ∈
cycles(g) using group Ti is a simultaneous labeling of the nodes with triplets and edges
with generators of Ti such that each node has a triplet containing the labels of its incident
edges. Whether or not a labeling of G = (V,E) using Ti is valid with respect to a cycleset
W ∈ cyclesets(G) depends on the orientations of v ∈ V induced by W as well as a chosen
2-coloring of G. Recall that an orientation of v ∈ V is a cyclic ordering of the edges
incident to v. In a valid labeling the triplet of each white v matches the triplet of the
labels of its incident edges in the cyclic order defined by W . The same holds for black
nodes except that the cyclic ordering is reversed. Additionally the index of the label
of edge e = {v, u} cannot be the same in the triplets of v and u. In order to simplify
the encoding, we reverse the orientations of black nodes arising from the cycleset W and
input the adjusted orientations to the encoding as we will explain shortly.

The labeling encoding consists of three parts:

1) ensuring that each edge and node is given a unique label (3.11)–(3.13),

2) enforcing consistency between the labels of each node and its incident edges (3.14),
and

3) enforcing consistent labeling of adjacent nodes (3.15)–(3.17).

Before explaining the individual constraints we make the necessary definitions and as-
sumptions.

Assume that G = (V,E) ∈ walks(g) for fixed g > 1, and let W ∈ cyclesets(G) be one of
its cyclesets. We denote the generators and relations of a fixed Ti by L and T , respectively.
Let (VB, VW) be a 2-coloring of G, i.e., VB ∪ VW = V and VB ∩ VW = ∅ such that there is
no edge in E consisting of nodes only in VB or only in VW . Let O : V → E×E×E denote
the orientations of nodes as triplets such that if O(v) = (e1, e2, e3), then the orientation
of v is the cyclic permutation (e1e2e3). Note that triplets (e2, e3, e1) and (e3, e1, e2) refer
to the same orientation as (e1, e2, e3). To make the encoding more uniform we define the
adjusted orientations O′ : V → E × E × E by flipping the orientations of black nodes,
i.e., O′(v) = O(v) for all v ∈ VW and O′(v) = (O(v)[2], O(v)[1], O(v)[0]) for all v ∈ VB.
Using the adjusted orientations, items (i) and (ii) in Definition 4 will coincide.

From the adjusted orientation O′(v) = (e1, e2, e3), representing a cyclic ordering of
edges(v), we derive an ordering of the labels of the edges as (l1, l2, l3), where li ∈ L
is the label of ei for i ∈ {1, 2, 3}. The label of node v, on the other hand, is also
a triplet t = (x, y, z) ∈ T of elements in L. Since the triplets (y, z, x) and (z, x, y),

28

for each e ∈ E :
∑
l∈L

edgeLabel(e, l) = 1 (3.11)

for each v ∈ V :
∑
t∈T

nodeLabel(v , t) = 1 (3.12)∑
o∈{0,1,2}

offset(v , o) = 1 (3.13)

for each v ∈ V, o ∈ {0, 1, 2}, t ∈ T :

nodeLabel(v , t) ∧ offset(v , o)→
∧

i∈{0,1,2}

edgeLabel(ei , li) (3.14)

where ei = O′(v)[i], li = t[(i+ o) mod 3]

for each {v1, v2} ∈ E, t = (l1, l2, l3) ∈ T such that l1 6= l2 6= l3 6= l1 :

¬nodeLabel(v1 , t) ∨ ¬nodeLabel(v2 , t) (3.15)

for each e = {v1, v2} ∈ E, t = (l, l, l′) ∈ T such that l 6= l′ :

nodeLabel(v1 , t) ∧ nodeLabel(v2 , t)→ edgeLabel(e, l) (3.16)

for each e = {v1, v2} ∈ E, (o1, o2) ∈ bad offsetsGW (e), t = (l, l, l′) ∈ T such that l 6= l′,

nodeLabel(v1 , t) ∧ nodeLabel(v2 , t)→ ¬offset(v1 , o1) ∨ ¬offset(v2 , o2) (3.17)

Figure 3.3: The constraints in the labeling encoding.

represent the same cyclic ordering of the labels, we use a Boolean variable offset(v, o),
where o ∈ {0, 1, 2} to denote which representative of triplet t node v has. Other variables
used in the encoding are edgeLabel(e, l) and nodeLabel(v , t) denoting that edge e ∈ E
has label (generator) l ∈ L and node v ∈ V has label (triplet) t ∈ T .

The constraints of the encoding φlabels(G, Ti,W) are shown in Figure 3.3. The cardi-
nality constraints in (3.11)–(3.13) are encoded to clausal form using the pairwise encoding
already discussed in Section 3.2. The pairwise encoding is applicable here because the
relevant domains, i.e., E, L, V and T are of relatively small size for the graphs and groups
we consider. Constraint (3.11) intuitively states that each edge e ∈ E is assigned exactly
one label l ∈ L, whereas constraints (3.12) and (3.13) state that each node v ∈ V is as-
signed exactly one triplet t ∈ T and offset o ∈ {0, 1, 2}. The constraint in (3.14) expands
to sets of three clauses via straightforward algebraic manipulation of the connectives:

¬nodeLabel(v , t) ∨ ¬offset(v , o) ∨ edgeLabel(e0 , l0)

¬nodeLabel(v , t) ∨ ¬offset(v , o) ∨ edgeLabel(e1 , l1)

¬nodeLabel(v , t) ∨ ¬offset(v , o) ∨ edgeLabel(e2 , l2)

Let t = (t0, t1, t2) be the triplet corresponding to offset 0. Now the triplets corresponding
to offsets 1 and 2 are (t1, t2, t0) and (t2, t0, t1), respectively. The edges e0, e1, e2 form the
adjusted orientation of node v, i.e., O′(v) = (e0, e1, e2). The labels l0, l1 and l2, on the
other hand, form the chosen representative of the triplet of v, i.e., if offset o = 0, then
(t0, t1, t2) = (l0, l1, l2). If the offset is o = 1, then (t1, t2, t0) = (l0, l1, l2), and with offset
o = 2 we have (t2, t0, t1) = (l0, l1, l2). This is described by the equation

li = t[(i+ o) mod 3].

What the constraints in (3.14) then encode is that if node v has triplet t and offset o,

29

Table 3.1: Matching triplet t with edges incident to v.

ov = 0 ov = 1 ov = 2
(t0, t1, t2) (t1, t2, t0) (t2, t0, t1)
(e0, e1, e2) (e0, e1, e2) (e0, e1, e2)

Table 3.2: Matching triplet t with edges incident to u.

ou = 0 ou = 1 ou = 2
(t0, t1, t2) (t1, t2, t0) (t2, t0, t1)
(e2, e3, e4) (e2, e3, e4) (e2, e3, e4)

then the labels of the edges incident to v (e0, e1 and e2) match the labels of the chosen
representative of triplet t.

Constraints in (3.14) together with cardinality constraints in (3.11)–(3.13) rule out
cases (d) and (e) in Figure 2.6. In other words these constraints suffice to ensure that
edges incident to any node v have labels from the triplet of v and the labels are in the
correct order with respect to the given orientation of v.

Constraints in (3.15)–(3.17) together with the cardinality constraints (3.11)–(3.13),
on the other hand, rule out cases where adjacent nodes are assigned triples inconsistently,
such as case (f) in Figure 2.6. Intuitively, constraint (3.15) blocks any pair {v1, v2} of
adjacent nodes from receiving the same triplet t with three distinct labels. Constraint
(3.16) states that connecting edge e = {v1, v2} of adjacent nodes having the same triplet
t = (l, l, l′) with only 2 distinct elements has the duplicated label l.

As stated in Definition 4 the position of the label of the connecting edge between two
nodes must be different in the triplets of the nodes, see cases (c) and (f) in Figure 2.6.

Example 6. Let v, u ∈ V be two adjacent nodes both labeled using triplet t = (t0, t1, t2)
with t0 = t1. Denote the adjusted orientations of v and u by O′(v) = (e0, e1, e2) and
O′(u) = (e2, e3, e4), respectively. The offset assigned to v determines the way triplet t and
O′(v) are matched together as shown in Table 3.1. Similarly the offset ou determines the
same for node u as shown in Table 3.2.

If ov = 1 then e0 has the label t1, e1 the label t2 and e2 the label t0. Now e0 and e2
have the same label since t0 = t1, but the label is derived from different position of triplet
t.

According to the definition of a valid labeling the connecting edge e2 must not match
the same index in the triples of v and u. In our example this will happen if v has offset
ov = 1 and u has offset ou = 0 since e2 will then match t0 in the triplet of v as well as the
triplet of u. Orientations ov = 2 and ou = 1 result in the same situation except that e2
matches t1 in both v and u. Note that the case ov = 0 and ou = 2 leads to e2 gaining label
t2 from both v and u, but with t2 not being the repeated label this case is already blocked
by constraint (3.16).

The offsets of the nodes along with the chosen triplet determine the positions of the
label as shown in Example 6. We thus define the set of illegal pairs of offsets and rule
them out as stated in (3.17). We define the set of illegal pairs of offsets for e ∈ E as

bad offsetsGW (e) = {(o1, o2) | e = {v1, v2}, o1, o2 ∈ {0, 1, 2}, i1 + o1 = i2 + o2 mod 3

where O′(v1)[i1] = e and O′(v2)[i2] = e}.

30

Here, i1 and i2 are the indices of the connecting edge e in the orientations of v1 and v2,
respectively. The sums i1 + o1 and i2 + o2 (mod 3), on the other hand, represent the
indices of the label of e in the triplets of v1 and v2, respectively. The set bad offsetsG(e)
thus contains the pairs of offsets that would give the label of e = {v1, v2} the same index
in both v1 and v2.

Example 7. Continuing with Example 6 we note that e2 is the edge connecting v =: v1
and u =: v2. The indices are then i1 = 2 and i2 = 0, since O′(v) = (e0, e1, e2) and
O′(u) = (e2, e3, e4). The element of t = (t0, t1, t2) matching e2 in v is thus (i1 + ov
mod 3) = (2+ov mod 3) whereas the ti matching e2 in u is (i2+ou mod 3) = ou mod 3.
The pairs (ov, ou) satisfying equation 2+ov = ou mod 3 are (0, 2), (1, 0), and (2, 1), which
are thus the illegal offsets for v and u, i.e., bad offsetsGW (e2) = {(0, 2), (1, 0), (2, 1)}.

Next we state the correctness of the labeling encoding φlabels(G, Ti,W), and explain
briefly why it is correct.

Theorem 8 (Correctness of the labeling encoding). Let G ∈ cycles(g) for g > 1, and
Ti be one of the 23 groups constructed in [57] . Then G ∈ labels(Ti, g) iff there exists
W ∈ cyclesets(G) such that φlabels(G, Ti,W) is satisfiable.

Proof sketch. Cardinality constraints (3.11)-(3.13) ensure that each node and edge is as-
signed a unique label. The cardinality constraints together with (3.14) blocks any assign-
ment of labels to a node and its incident edges that is inconsistent with the orientations
arising from cycleset W . Lastly the cardinality constraints along with (3.15)-(3.17) block
any illegal labeling of adjacent nodes.

Observe that a valid labeling for G with respect to W using Ti can be directly ex-
tracted from a satisfying assignment to φlabels(G, Ti,W), which allows one to construct the
periodic apartment in the hyperbolic building corresponding to Ti that is invariant under
the action of a genus g surface. Projecting a satisfying assignment of φlabels(G, Ti,W) into
a labeling of G = (V,E) is straightforward.

Assume that m is a model of φlabels(G, Ti,W). Now the model m sets exactly one
variable nodeLabel(v, t) true for each node v ∈ V , due to cardinality constraints (3.12)
in Figure 3.3, and the t ∈ T for which m(nodeLabel(v, t)) = true becomes the label of v.
Similarly, due to cardinality constraints (3.11), m sets exactly one variable edgeLabel(e, l)
true for each edge e ∈ E, and again the label l that makes edgeLabel(e, l) true in m
becomes the label of e.

31

Chapter 4

Orderly Generation of Graphs and
Their Cyclesets

In this chapter we develop an orderly algorithm for directly generating the graphs ad-
mitting cycleset decompositions. This algorithm also enumerates the distinct cycleset
decompositions of each graph it generates. Before developing our specialized algorithm
we give an overview of an off-the-shelf orderly generation program we utilize in this thesis.

Multigraph is a program that generates exhaustive lists of connected (multi)graphs
of a given size and degree sequence, and it has an option to generate only bipartite
graphs [76]. The program is thus suitable for generating base(g) (for g > 1), i.e., bipartite,
3-regular, connected graphs on 16(g − 1) nodes and 24(g − 1) edges. There are no
publications about Multigraph, but another graph generator called Minibaum [71, 102]
utilizes similar methods. The principal difference between Minibaum and Multigraph is
the fact that Minibaum can generate only simple graphs whereas Multigraph is able to
generate non-simple graphs as well. Both generators are based on orderly generation [22].

However, a large majority of graphs in base(g) does not belong to cycles(g). We
therefore develop an algorithm for the exhaustive generation of graphs in cycles(g) and
cyclesets(G) for each G ∈ cycles(g). We achieve this by generating configurations which
can be mapped to pairs (G,W) where G ∈ cycles(g) and W ∈ cyclesets(G). The algorithm
is based on Read’s orderly generation method [22] and we develop optimizations specific
to our configurations. In orderly generation the explicit removal of duplicates in the
isomorph-free collection is avoided by generating configurations in a specific order and
outputting only canonical configurations greater than the previous one.

4.1 Towards an Orderly Algorithm

Central notions required to develop an orderly generation algorithm are a formal definition
of a configuration and their linear ordering, a notion of canonicity as well as a depth
parameter and a method of augmentation. The idea of the construction is to take N =
6(g − 1) bipartite directed cycles of length 8 and glue the directed edges together (into
undirected edges) while preserving the connectedness and bipartiteness of the induced
graph and ensuring that the resulting graph is 3-regular. We number the cycles with
elements c ∈ C = {0, . . . , N − 1}, and in each cycle, its directed edges with i ∈ I =
{0, . . . , 7}. Hence, each directed edge is identified by a pair (c, i) ∈ C × I. We set
the source node of each directed edge at even (odd) index black (white) to indicate
bipartiteness. In other words the source nodes of directed edges (c, 0), (c, 2), (c, 4) and

32

(c, 6) are black and the source nodes of directed edges (c, 1), (c, 3), (c, 5) and (c, 7) are
white.

Formally a configuration X is a list of ordered pairs xi = 〈e1, e2〉 of edge identifiers
e1 = (c1, i1) and e2 = (c2, i2), representing the directed edges that have been glued to-
gether to form undirected edges. We take the depth parameter to be the length of a
configuration. There are 8N distinct edge identifiers since there are N 8-cycles, and
therefore the maximal length of a configuration is 4N . Denote by C(N) the set of con-
figurations of length at most 4N built from N 8-cycles. We define an ordering of C(N)
by lifting the natural lexicographic ordering of edge identifiers e = (c, i) to lists of pairs
of edge identifiers, i.e., configurations. Thus e1 = (c1, i1) ≤ e2 = (c2, i2) if c1 < c2
or c1 = c2 and i1 < i2. Now x = 〈e1, e2〉 ≤ x′ = 〈e′1, e′2〉 if e1 < e′1 or e1 = e′1 and
e2 < e′2. The ordering of configurations takes into account their varying length, i.e.,
X = (x0, . . . , xl) ≤ Y = (y0, . . . , yk) if (i) X = Y , (ii) l < k, or (iii) l = k and ∃i such
that xi < yi and xj = yj for all j < i.

Observe that configurations X ,Y ∈ C(N) may be syntactically different representa-
tions of the same graph-cycleset pair. Specifically, the names of cycles and their edges
bear no relevance to the induced graph-cycleset pair. We may thus permute the cycle
names arbitrarily and the indices of edges in steps of two (due to bipartiteness). Stated
group-theoretically, the symmetry group of C(N) is the direct product of the symmetric
group on N elements SN (corresponding to permuting the names of cycles) and the N -
wise product of the cyclic group of 4 elements (corresponding to permuting the indices).
Each group element π = (π′, o0, . . . , oN−1) ∈ SN × CN

4 thus consists of a permutation of
cycle names π′ ∈ SN as well a cyclic permutation oc ∈ C4 of indices {0, . . . , 7} (in steps of
two) of each cycle c ∈ {0, . . . , N − 1}. In the following definition we state how elements
of SN × CN

4 act on individual edges e = (c, i).

Definition 6 (Effect of SN×CN
4 on edge identifiers). Let π = (π′, o0, . . . , oN−1) ∈ SN×CN

4

and (c, i) be an edge identifier, i.e., c ∈ {0, . . . , N − 1} and i ∈ {0, . . . , 7}. The effect of
group element π = (π′, o0, . . . , oN−1) on edge identifier (c, i) is defined as

π(c, i) = (π′(c), oc(i)).

Definition 6 states that the permutation π′ ∈ SN of {0, . . . , N − 1} affects the cycle
name whereas the index is mapped by the cyclic permutation oc chosen from o0, . . . , oN−1
according to which cycle edge (c, i) belongs to. Now, supplied with the action of SN×CN

4

on individual edge identifiers, we are ready to lift the action of SN × CN
4 to the level of

pairs of edges and further to the level of configurations.

Definition 7 (Action of SN×CN
4 on configurations). Let π = (π′, o0, . . . , oN−1) ∈ SN×CN

4

and X = (x0, . . . xl) where xi = 〈e1i , e2i 〉 for all i ∈ {0, . . . , l}. Now the effect of π =
(π′, o0, . . . , oN−1) on configuration X is defined as

π(X) = sort(π(x0), . . . π(xl)),

where π(xi) = sort(〈π(e1i), π(e2i)〉) for all i ∈ {0, . . . , l}.

Intuitively, Definition 7 states that a permutation π ∈ SN × CN
4 acts on the pairs

of edges by mapping the individual edges while ensuring lexicographic ordering. The
configuration itself is then mapped by applying π to the individual pairs of X which are
then arranged according to lexicographic order. Sorting the pairs and the list is vital

33

Table 4.1: Permuting a configuration step by step in Example 8.

pair edges permuted pair sorted
〈(0, 0), (1, 1)〉 〈(1, 6), (0, 1)〉 〈(0, 1), (1, 6)〉
〈(0, 1), (1, 2)〉 〈(1, 7), (0, 2)〉 〈(0, 2), (1, 7)〉
〈(0, 2), (0, 7)〉 〈(1, 0), (1, 5)〉 〈(1, 0), (1, 5)〉
〈(1, 0), (1, 3)〉 〈(0, 0), (0, 3)〉 〈(0, 0), (0, 3)〉

for ensuring that the permuted configurations are, indeed, valid configurations according
to our definitions. Keeping the configurations lexicographically ordered helps us avoid
certain symmetries in the linear representation of configurations.

Now two configurations X and Y are equivalent if there exists a permutation π ∈
SN ×CN

4 such that X = π(Y). Stated in group-theoretic terms, the equivalence classes of
configurations are exactly the orbits of SN ×CN

4 acting, as stated in Definition 7, on the
set of configurations. We denote by [X] the equivalence class of X ∈ C(N), i.e., [X] =
{Y ∈ C(N) | Y and X are equivalent}. To obtain a unique, canonical, representative
of each equivalence class, we take the least configuration according to the lexicographic
order. In other words, the canonical representative of [X] is the least Y ∈ [X].

Example 8 (Equivalent configurations). Let us map configuration

X = (〈(0, 0), (1, 1)〉, 〈(0, 1), (1, 2)〉, 〈(0, 2), (0, 7)〉, 〈(1, 0), (1, 3)〉)

using permutation π ∈ SN ×CN
4 swapping cycles 0 and 1 with cyclic offsets o0 = −2 and

o1 = 0. Permutation π thus maps edges (0, i) to (1, i−2 mod 8) and edges (1, j) to (0, j)
for all i, j ∈ {0, . . . , 7}. When applying π to a pair 〈e, e′〉 the edges are first permuted
after which the pair must be sorted to make sure it is in lexicographic order. Table 4.1
lists the results of applying π to each pair in X . The middle column (edges permuted)
shows the pair after applying π to the edges but before sorting has been done.

Lastly we collect the permuted pairs, i.e., the entries in the rightmost column (pair
sorted), and order them lexicographically to get

Y = π(X) = (〈(0, 0), (0, 3)〉, 〈(0, 1), (1, 6)〉, 〈(0, 2), (1, 7)〉, 〈(1, 0), (1, 5)〉)

Now X and Y are equivalent configurations since Y is the result of applying π to X .
Observe also that Y < X because 〈(0, 0), (0, 3)〉 < 〈(0, 0), (1, 1)〉.

4.2 Projecting Configurations into Graph-cycleset

Pairs

Before delving into the details of the orderly generation algorithm we first consider how
the underlying graph and orientations of its nodes can be extracted from a configuration.
Recall that each cycleset corresponds to an assignment of orientations to nodes of the
graph as shown in Theorem 6. We describe how to extract the orientations directly since
they are required by the labeling encoding described in Section 3.3.

Assume that X = (x0, . . . , xl−1) ∈ C(N) is a configuration of length l = 4N con-
structed from N = 6(g − 1) (for a fixed g > 1) directed bipartite 8-cycles. Each edge
identifier e = (c, i) refers to a directed edge, and thus each pair xi = 〈e, e′〉 corresponds

34

Figure 4.1: Pair 〈e, e′〉 in a configuration implies that vsrce is identified with vtgte′ and vsrce′
with vtgte .

to an undirected edge formed by attaching directed edges e and e′ pointing in opposite
directions. We denote the source and target nodes of e by vsrce and vtgte , respectively. The
source node vsrce of every e = (c, i) with even index i is colored black whereas the source
node of every odd-indexed edge is colored white. Now attaching edges e = (c, i) and
e′ = (c′, i′) also implies that the source node of e is identified with the target node of
e′ and vice versa, i.e., node vsrce is identified with vtgte′ and vsrce′ is identified with vtgte , see
Figure 4.1.

We denote by Vconf the nodes of the 8-cycles, i.e., Vconf = {vsrce | e ∈ C× I}. Using the
procedure just described we partition Vconf by iterating through elements x0, . . . , xl−1 and
identifying the nodes as described. We enforce transitivity to actually obtain a partition,
i.e., having identified v with u and u with w we also identify v with w. We denote the
partitions part(Vconf) = {[v] | v ∈ Vconf} with [v] being the unique partition containing v.
Each equivalence class [v] now corresponds to a node of the underlying graph with the
size of [v] being equal to its degree (since each identified node contributes 2 halves of an
undirected edge).

The graph G = (V,E) underlying configuration X is constructed as follows. We set
V = part(Vconf) making each v ∈ V a set of identified nodes of the 8-cycles. Each pair
xi = 〈e, e′〉 of X corresponds to single undirected edge, and the incident nodes of this
undirected edge are found as the equivalence classes of the source nodes of e and e′ as
illustrated in Figure 4.2. To construct the multiset of edges E we therefore iterate through
X , and for each pair 〈e, e′〉 add edge {[vsrce], [vsrce′]} to E.

What remains to be done is to determine the orientation of each v ∈ V . Denote the
incident undirected edges of v ∈ V by e∗i for i ∈ {1, 2, 3}. Denote each incoming half of

Figure 4.2: Finding the orientation of a node.

35

Algorithm 1: Orderly generation algorithm orderly(X , l, N)

Input: configuration X , level l, number of 8-cycles N
Output: the list of maximal length canonical representatives of C(N) having X

as their prefix
G ← () /* empty list */

if l = 4N then
if canonical(X) then G ← append(G,X)

else
A← augmentations(X)
while A 6= () do

a← pop(A) /* returns first element while removing from A */

X ′ ← append(X , a)
if canonical(X ′) then G ← append(G, orderly(X ′, l + 1, N))

return G

e∗i by ei and each outgoing half by ēi as in Figure 2.13. We deduce that either e1 and ē2
or e1 and ē3 must originate from the same cycle since each directed edge is belongs to an
8-cycle. The above choice in fact determines the orientation of v. If e1 and ē2 originate
from the same cycle, then so must pairs (e2, ē3) and (e3, ē1) in which case the orientation
of v given as a cyclic permutation is (e∗1, e

∗
2, e
∗
3). In the latter case it is deduced similarly

that v must have orientation (e∗1, e
∗
3, e
∗
2).

4.3 Structuring the Orderly Algorithm

Our orderly generation algorithm is outlined as Algorithm 1. The recursive algorithm
starts with an initial configuration X of length l and incrementally constructs a list
of canonical configurations of maximal length (4N) having X as their prefix. Hence,
starting from the empty configuration, we obtain the list of canonical configurations built
from N 8-cycles. The main parts of the algorithm are the augmenting and canonicity
checking steps. Augmenting adds a new pair 〈e1, e2〉 to the end of configuration X thereby
increasing its length by 1. Canonicity checking consists of determining whether a given
configuration is the canonical representative of its equivalence class, and is performed
greedily after each augmentation step since this efficiently prunes the search space.

For the algorithm to work correctly, it needs to output exactly one configuration from
each equivalence class of configurations, and this representative configuration should be
the canonical one. It is straight-forward to see that our algorithm satisfies the follow-
ing conditions, which are a slightly stronger variant of Read’s necessary and sufficient
conditions [22] for the correctness of orderly generation.

(i) Each canonical configuration of length q + 1 can be produced from exactly one
canonical configuration of level q.

(ii) If X and Y are configurations of length q and X < Y , the canonical configurations
produced by augmenting X must precede the ones produced by augmenting Y .

(iii) The augmenting operation produces the new configurations in order.

36

(a) (b)

Figure 4.3: (a) Glueing edges (0, 7) and (1, 2) is allowed, since one index is odd while the
other is even. (b) Glueing (0, 7) to (1, 1) is not allowed, since both indices are odd.

4.4 Augmenting Configurations

Let X = (x0, . . . xl−1) be a configuration of length l. The augmenting subroutine
produces a list of pairs 〈e1, e2〉 used in the main algorithm to extend X , denoted by
augmentations(X). To ensure correctness the list augmentations(X) should contain every
element p = 〈e1, e2〉 for which append(X , p) is canonical. Note that if augmentations(X)
contains elements yielding non-canonical configurations, correctness is still maintained,
but empirical performance may degrade. Also note that any canonical configuration not
having X as a prefix will be produced by augmenting some other suitable configuration
X ′.

We denote the free edges of X by Efree
X = (C × I)\ edges(X), where edges(X) consists

of all the edge identifiers appearing in the ordered pairs xi ∈ X . The list augmentations(X)
thus consists of pairs 〈e1, e2〉 where e1, e2 ∈ Efree

X . For each pair, we set e1 to the least
element in Efree

X , denoted by emin. For e2 we consider a subset E ′ of the remaining elements
Efree
X \ {emin}, i.e., augmentations(X) = (〈e1, e2〉 | e1 = emin, e2 ∈ E ′) with the pairs listed

in order.
For E ′ ⊆ Efree

X \{emin} we observe the following. Denote e1 = (c1, i1), e2 = (c2, i2), and
let cmax be the largest cycle number appearing in X . To ensure bipartiteness we include
in E ′ only edges e2 such that i2 has different parity to i1, see Figure 4.3 for examples. If
edges(X) = {0, . . . , cmax}× I, then all the edges currently in X have already been paired.
In this case augmenting with a new pair would yield a configuration with a disconnected
underlying graph, and hence if edges(X) = {0, . . . , cmax} × I, we set E ′ = ∅. Finally,
E ′ is reduced by observing that we need to ensure that any partial configuration can be
augmented to a full configuration so that the underlying graph is 3-regular. Two types
of nodes can prevent this: (i) nodes with degree > 3 or (ii) nodes with degree 1 or 2 such
that their degree cannot be increased by augmenting. Hence we exclude from E ′ all edges
that would result in such nodes in the underlying graph, guaranteeing the 3-regularity of
the induced graph in a configuration of maximal length 4N .

We ensure eventual 3-regularity by determining which pairs 〈e1, e2〉 when added to X
would create a node of type (i) or (ii) as follows. Let V be the set of nodes of the directed
8-cycles, i.e., V = {vsrce |e ∈ C× I}. Let v ∈ V be the node between two subsequent edges
e, e′, i.e., e = (c, i), e′ = (c, inext) and v = vtgte = vsrce′ . Node v is called blocked in X if both
e and e′ are present in X , i.e., e, e′ ∈ edges(X), see Figure 4.4. Recall that the underlying
graph of X is constructed by considering which nodes v ∈ V are identified in the process
of attaching pairs of undirected edges to create directed edges. The nodes v ∈ V thus
form equivalence classes with each class corresponding to a single of the underlying graph.

37

Figure 4.4: On the right node v is blocked since both e and e′ are paired with some
directed edges. On the left node v is not blocked.

The size of each equivalence class [v] ⊂ V then corresponds to the degree of node. We
call an equivalence class [v] blocked in X if every node v′ ∈ [v] is blocked in X . A blocked
[v] corresponds to a node of the underlying graph whose degree cannot be increased by
augmenting, whereas non-blocked [v] correspond to nodes whose degree may increase by
further augmentations.

For each e2 ∈ E ′ we construct the equivalence classes of nodes in V for X ′ =
append(X , 〈e1, e2〉) and check which equivalence classes [v] ⊂ V are blocked in X ′. We
then iterate through the equivalence classes [v] checking two properties corresponding
to (i) and (ii). If an equivalence class [v] of size > 3 is found we remove e2 from E ′ to
prevent nodes of type (i). On the other hand, if a blocked equivalence class [v] of size 1
or 2 exists, we reject e2 to prevent nodes of type (ii).

Observe that while these considerations are enough to guarantee that only augmenta-
tions yielding connected, bipartite, eventually 3-regular underlying graphs are produced,
E ′ can be reduced even further by excluding pairs that would necessarily yield a non-
canonical configuration.

Let cmax be the largest cycle number appearing in X . Any augmentation of X with
〈(c1, i1), (c2, i2)〉, where c2 > cmax+1 cannot be canonical, since a lexicographically smaller
one is obtained by swapping c2 and cmax + 1 (and such a symmetry exists in SN × CN

4).
Hence, we may remove any edges belonging to cycles c > cmax + 1 from E ′ thereby
restricting E ′ to be a subset of {0, . . . , cmax + 1} × I. Also, since any edge identifier
(cmax + 1, i), where i > 1 may be mapped to either (cmax + 1, 0) or (cmax + 1, 1) using
a permutation that does not move edges in any other cycle, it suffices to consider only
indices 0 and 1 with cmax + 1.

Furthermore, edges in the same cycle are allowed to be glued together, and this will
produce a configuration corresponding to a graph with one or more double edges. Since
each cycle may have at most one self-attachment due to 3-regularity, if e1 = (c, i) is the
first element of the pairs in augmentations(X) and cycle c already has a self-attachment,
we may remove all edges (c, j) from E ′.

Example 9. Let X = (〈(0, 0), (0, 3)〉, 〈(0, 1), (1, 0)〉). Now

edges(X) = {(0, 0), (0, 1), (0, 3), (1, 0)}

and cmax = 1. The free edges of X are thus

Efree
X = ({0, 1, 2} × {0, . . . , 7}) \ {(0, 0), (0, 1), (0, 3), (1, 0)}

with the least free edge being minEfree
X = (0, 2). We therefore set e1 = (0, 2) and for the

second edge e2 we consider all (c, i) ∈ Efree
X for which i is odd (to ensure bipartiteness).

Since cycle 0 already has a self-attachment in X , i.e., pair 〈(0, 0), (0, 3)〉, we need not
consider any edges from cycle 0, and due to cycle 2 not being present in X it suffices to
consider only edge (2, 1) of cycle 2. So far we have trimmed the set E ′ ⊂ Efree

X \ {e1}
down to {(1, 1), (1, 3), (1, 5), (1, 7), (2, 1)}, but we must trim it even further to guarantee
eventual 3-regularity.

38

Algorithm 2: Canonicity checking algorithm, canonical(X)

Input: configuration X
Output: Boolean indicating whether X is canonical
cmax ← largest cycle number in X
for c ∈ {0, . . . , cmax} do

for a ∈ {0, 2, 4, 6} do
π ← {〈(c, i), (0, i+ a mod 8)〉 | i ∈ {0, . . . , 7}}
π ← extend(π,X) /* extend π to a full permutation */

Y ← π(X) /* compute Y */

if Y < X then return false

return true /* No equivalent configuration smaller than X was found

*/

Denote the source node of edge (c, i) by vci . Due to pair 〈(0, 0), (0, 3)〉 we must identify
v00 with v04 and v01 with v03 and due to 〈(0, 1), (1, 0)〉 we must identify v01 with v11 and v02
with v10. The equivalence classes of nodes of X are thus {v00, v40, }, {v02, v10} and {v01, v03, v11}
with the rest being singletons. The only blocked node of X is v01 since both (0, 0) and
(0, 1) are in X . None of the equivalence classes of X are therefore blocked. Consider
adding 〈(0, 2), (2, 1)〉 to X . Due to the new pair we need to identify v02 with v22 and v03
with v21 yielding the equivalence classes (omitting singletons) {v00, v40, }, {v02, v10, v22} and
{v01, v03, v11, v21}. Since there is now an equivalence class of size 4 we must reject the choice
e2 = (2, 1).

Using similar reasoning we must in fact reject (1, 7), (1, 5) and (1, 3) leaving only
(1, 1). Hence augmentations(X) = {〈(0, 2), (1, 1)〉}.

4.5 Checking Canonicity of Configurations

It is not known whether graph isomorphism in general is polynomial-time computable,
but in the restricted case of degree-bounded graphs the isomorphism problem is, in fact,
polynomial-time computable [103]. In our case, the graphs underlying configurations
are 3-regular, and hence it is not surprising that configurations can be canonized in
polynomial-time.

We outline our canonicity checking procedure in Algorithm 2. Given a configuration
X = (x0, . . . xq−1) of length q the algorithm iterates through X while constructing the
permutation minimizing the configuration. If this permutation produces a configuration
smaller than X , we conclude that X is not canonical. The algorithm goes through
permutations mapping each cycle to 0 with different offsets. Once it is fixed which cycle
maps to 0 and with which offset, there is only one way to extend the permutation in a
way that minimizes Y = π(X), and hence it suffices to iterate through every value for c
and a instead of trying every element of SN ×CN

4 . Here, an essential observations is that
any configuration X produced by the augmentation in our algorithm is connected.

The extending of a partial permutation π in extend(π,X) works as follows. Assume
that permutation π maps cycle c to 0 with offset a. The pairs of X containing edges
from cycle c will become the prefix of the permuted configuration Y = π(X) since 0
is the least cycle. Let cindex(π,X) = {c} and cindex(π,Y) = {0} be the sets of cy-
cle indices currently mapped by π in X and Y , respectively. Since the configuration

39

X is connected, there is at least one pair of edges 〈(c1, i1), (c2, i2)〉 in X such that
c1 ∈ cindex(π,X) and c2 6∈ cindex(π,X) or c1 6∈ cindex(π,X) and c2 ∈ cindex(π,X).
Out of these pairs we choose the one whose permuted element is the smallest. Let
us assume that this pair is 〈(c1, i1), (c2, i2)〉 and c1 ∈ cindex(π,X) (the other case where
c2 ∈ cindex(π,X) can be treated in a similar fashion). We extend π to map c2 to c′, where
c′ = max(cindex(π,Y)) + 1, in order to produce the smallest possible Y . The correspond-
ing offset is chosen such that it makes the index i′ in π(c2, i2) = (c′, i′) as small as possible.
After updating cindex(π,X) = {c2}∪ cindex(π,X) and cindex(π,Y) = {c′}∪ cindex(π,Y),
the permutation π can be extended in this way as long as X contains pairs in which one
of the cycle identifiers has already been permuted and the other has not. If at any point
X contains only pairs where both cycle indices are either permuted or not permuted, and
|cindex(π,Y)| 6= cmax + 1, where cmax is the largest cycle number appearing in X , then
none of the cycles in the range of π are attached to cycles outside its range. This would
mean that the graph corresponding to the configuration consists of at least two disjoint
components, which contradicts the fact the augmentation algorithm we use only produces
connected configurations.

Example 10. Let X be configuration

X = (〈(0, 0), (1, 1)〉, 〈(0, 1), (1, 2)〉, 〈(0, 2), (0, 7)〉, 〈(1, 0), (1, 3)〉)

Let us simulate body of the inner loop in Algorithm 2 with values c = 1 and a = 0.
Now cindex(π,X) = {1} and cindex(π,Y) = {0} with π mapping edge (1, i) to (0, i) for
all i ∈ {0, . . . , 7}. Since 0 6∈ cindex(π,X) the edges (0, i) are outside the domain of π.
Configuration X becomes

(〈(0, 0), (0, 1)〉, 〈(0, 1), (0, 2)〉︸ ︷︷ ︸
pairs with only one edge mapped by π

, 〈(0, 2), (0, 7)〉〈(0, 0), (0, 3)〉)

After applying π on the edges with the underlined edges being outside the domain of π.
Now to find out how to π should map edges of cycle 0 we need to consider the pairs that
have one edge in the domain of π and the other outside the domain, i.e., the first two
pairs. Out of these two pairs we choose the one whose edge belonging to the domain of π
is the smallest, namely 〈(0, 0), (0, 1)〉.

Observe that the least cycle available is 1 since cindex(π,Y) = {0} and mapping cycle
0 to any value > 1 would necessarily result in a larger configuration than mapping cycle
0 to 1. Compare, e.g., pairs 〈(0, 1), (1, 0)〉 and 〈(0, 1), (2, 0)〉. Additionally the best offset
o0 is 0 since any other offset would result in edge (0, 0) to be mapped to an edge greater
than (1, 0). We thus extend π to map cycle 0 to 1 with offset 0.

Applying the updated π on the edges of X we get

(〈(1, 0), (0, 1)〉, 〈(1, 1), (0, 2)〉, 〈(1, 2), (1, 7)〉, 〈(0, 0), (0, 3)〉)

which after sorting yields

Y = π(X) = (〈(0, 0), (0, 3)〉, 〈(0, 1), (1, 0)〉, 〈(0, 2), (2, 1)〉, 〈(1, 2), (1, 7)〉)

Now the algorithm would terminate returning false since Y < X , i.e., a permutation
yielding a smaller configuration was found.

40

Figure 4.5: 8-cycles passing a double edge.

4.6 Optimizations

We have already noted some optimizations such as the ones regarding augmenting, which
reduce the number of augmentations of each configuration by ruling out ones that are
guaranteed to yield invalid or non-canonical configurations. Since using these optimiza-
tions guarantees that every augmentation of a valid configuration is bipartite and con-
nected we may dispose of checking these two properties in the validity checking procedure.
However, the validity checking procedure is still required to ensure extendability into a
configuration with underlying 3-regular graph.

In addition to these optimizations we discovered that configurations of maximum
length with a certain prefix can never be canonical. To elaborate, let N = 6(g − 1) for
an arbitrary natural number g > 1 and consider configurations built out of N bipartite,
directed 8-cycles. Now since each configuration consists of pairs of edge identifiers such
that each edge appears at most once, and there are 8N edge identifiers the maximum
length of a configuration must be 4N . In a configuration of length 4N each edge identifier
must then appear exactly once.

Theorem 9. Assume that X = (x0, . . . , x4N−1) is a configuration of length 4N and that
x0 = 〈(0, 0), (0, 5)〉. Then X is not canonical.

Proof. Since X is a configuration of maximum length we know that every edge identifier
from the N 8-cycles appears exactly once in X . This means that every directed edge
e has been paired up with some other directed edge e′ in X . Additionally since cycle
0 has a self-attachment, namely 〈(0, 0), (0, 5)〉, we know that it traverses a double edge.
This is because edges (0, 6) and (0, 7) cannot be attached to each other (see Figure 4.6)
meaning that they must be paired up with edges from cycles other than 0. However,
edges (0, 6) and (0, 7) can only be paired up with consecutive edges from the same cycle
as depicted in Figure 4.5 since any other arrangement would not meet the requirement
of 3-regularity. We therefore know that there exists an i ∈ {0, . . . , 7} such that pair
〈(c, i), (c, i + 3 mod 8)〉 is in X where c is the cycle whose edges are attached to (0, 6)
and (0, 7), see Figure 4.5.

Now to show that X is not the minimal representative of its equivalence class we con-
struct a permutation π mapping X to Y = (y0, . . . , y4N−1) for which y0 = 〈(0, 0), (0, 3)〉.
Let π ∈ SN ×CN

4 be the permutation swapping cycles 0 and c while keeping other cycles
as they are, and let the offset of cycle c be oc = −i with all other offsets being zero, i.e.,
oj = 0 for all j ∈ {0, . . . , N − 1} \ {c}. Combining this with the fact that 〈(c, i), (c, i+ 3
mod 8)〉 ∈ X we know that π(〈(c, i), (c, i + 3 mod 8)〉) = 〈(0, 0), (0, 3)〉 ∈ Y . Since
〈(0, 0), (0, 3)〉 is the smallest possible pair it is clear that y0 = 〈(0, 0), (0, 3)〉. And now
Y < X because y0 < x0, and therefore X is not canonical.

Using Theorem 9 we may then state that there are only two pairs that a canonical
configuration of length 4N may have as its first element.

41

Figure 4.6: Pair 〈(0, 6), (0, 7)〉 is cannot appear in any X since this would result in a
blocked node of degree 1. In fact no pair 〈(0, i), (0, i + 1 mod 8)〉 for i ∈ I is allowed in
any configuration.

Corollary 4. Let X = (x0, . . . , x4N−1) be a canonical configuration of length 4N . Now
x0 must be either 〈(0, 0), (0, 3)〉 or 〈(0, 0), (1, 1)〉.

Proof. Denote x0 = 〈(c, i), (c′, i′)〉. Clearly (c, i) must be the least edge identifier (0, 0)
since if it were any other the pair would not be the first in X . Now since i is even
we know that i′ must be odd, and the case c′ > 1 is impossible since we could apply
a permutation mapping c′ to 1 yielding a smaller configuration. We additionally know
that cases (c′, i′) ∈ {(0, 1), (0, 7)} are impossible since that would lead to an invalid
configuration due to creating a node of degree 1, see Figure 4.6. The case (c′, i′) = (0, 5)
is ruled out by Theorem 9. Cases (c′, i′) ∈ {(1, 3), (1, 5), (1, 7)}, on the other hand, would
contradict the canonicity of X since we could permute such that (c′, i′) maps to (1, 1).
Now the only remaining choices for (c′, i′) are 〈(0, 0), (0, 3)〉 and 〈(0, 0), (1, 1)〉.

The cases (c′, i′) ∈ {(1, 3), (1, 5), (1, 7)} of the previous corollary are ruled out by
the algorithm already when considering a configuration X = (〈(0, 0), (c′, i′)〉) of length
1. This is because the canonicity checking procedure will discover the permutation π
mapping (c′, i′) to (1, 1) and X will be ruled out as non-canonical.

The case X = (〈(0, 0), (0, 5)〉), however, is not immediately ruled out as non-canonical.
This is because there exists no permutation mapping cycle 0 to itself such that pair
〈(0, 0), (0, 5)〉 is mapped to 〈(0, 0), (0, 3)〉. Any configuration starting with 〈(0, 0), (0, 5)〉
is eventually ruled out for not being canonical, but this requires knowledge of the other
cycle with self-attachment attached to cycle 0 as in the proof of Theorem 9. Therefore the
algorithm may dispose of such a configuration as non-canonical only after the respective
pair 〈(c, i), (c, i + 3 mod 8)〉 has been added to the configuration, and this may require
building up a configuration of considerable length. Due to Theorem 9, however, we may
simply skip configurations starting with 〈(0, 0), (0, 5)〉.

42

Chapter 5

Experiments and Results

In this chapter we report on results obtained by employing different combinations of
orderly generation (recall Chapter 4) and the SAT encodings for enumerating cycleset
decompositions and labeling graph-cycleset pairs (recall Sections 3.2 and 3.3, respec-
tively). In particular, we confirm the results earlier reported in [56] for genus g = 2
using two semi-independent ways. Furthermore, we exhaustively treat the cases of g = 3
and g = 4, altogether ruling out 4 further groups out of the 23 Ti’s. We report on
the runtime distribution of employing the MiniSAT solver [94] through the PySAT in-
terface [95] for finding cyclesets and labelings. All experiments were run on comput-
ing nodes with Xeon E5-2680 v4 2.4-GHz processors and 256-GB RAM under Cen-
tOS 7. Our implementation, empirical data and witness graphs found are available via
https://bitbucket.org/coreo-group/periodic-apartments/.

In the following, we will refer by G+SAT2 to the approach consisting of

(i) generating base(g), i.e., all connected, bipartite, and 3-regular graphs with 16(g−1)
nodes and 24(g − 1) edges (for a given genus g) using off-the-shelf tool Multi-
graph [76];

(ii) using the SAT encoding of Section 3.2 to enumerate the cyclesets of the graphs in
(i); and

(iii) using the SAT encoding of Section 3.3 to determine the existence of a labeling for
the graph-cycleset pairs from (ii).

In contrast, we will refer by OG+labelSAT to the approach consisting of

(i’) generating the graph-cycleset pairs directly with the orderly approach of Chapter 4,
and

(ii’) Checking the existence of a labeling for each pair using the encoding of Section 3.3.

Table 5.1: Groups ruled out at genus g with those not ruled out at smaller value of g in
bold.

Approach Genus 2 Genus 3 Genus 4

G+SAT2 T1, T2, T7, T9, T18

OG+labelSAT T1, T2, T7, T9, T18 T1, T2, T6, T7, T9, T13, T16, T18 T1, T2, T7, T9, T15, T18

43

https://bitbucket.org/coreo-group/periodic-apartments/

5.1 Confirmation of Earlier Results for Genus 2

Kangaslampi and Vdovina exhaustively treated the genus 2 case [56]. Their approach
consisted of

(i) generating all connected, bipartite, 3-regular graphs with 16 nodes and 24 edges
while treating simple and non-simple graphs separately;

(ii) for each of these 773 graphs a depth-first search for determining the sets of 6 8-
cycles, and

(iii) specialized depth-first search over each of the graph-cycleset pairs to determine if
the pair admits a labeling.

As reported in [56], this approach does not scale beyond g = 2. Both our approaches
differ from the one used by Kangaslampi and Vdovina. The G+SAT2 approach differs
in terms of using SAT solvers for enumerating the possible cycleset decompositions (see
Section 3.2) and checking each graph-cycleset pair for a valid labeling (see Section 3.3).
The OG+labelSAT approach, on the other hand, generates directly a stricter set of
graphs; cycles(g) instead of base(g). OG+labelSAT also employs a SAT solver for checking
the existence of labelings. Both our approaches are thus independent of the one by
Kangaslampi and Vdovina. We, however, call our two approaches semi-independent since
they share the last part in which graph-cycleset pairs are checked for valid labelings.

Using both G+SAT2 and OG+labelSAT we exhaustively treated the case of genus
g = 2. The results obtained with these approaches were identical: both approaches
found genus 2 periodic apartments for groups T1, T2, T7, T9 and T18 (see Table 5.1).
These results agree perfectly with those reported in [56]. The genus 2 results have thus
been reproduced three times by methods which are at least semi-independent.

5.2 New Results beyond Genus 2

As already mentioned, Kangaslampi and Vdovina were unable to scale their approach
beyond genus 2. In contrast, our OG+labelSAT approach, using straightforward par-
allelization, allowed for an efficient exhaustive analysis of genera 3 and 4. As a result,
we are able to rule out four more groups: T6, T13, T15 and T16 (the groups in bold in
Table 5.1). We provide concrete witnesses for each Ti and g for which labels(Ti, g) is
nonempty. Each concrete witness is a graph in labels(Ti, g) proving the nonemptiness of
the set, and the membership of each such graph in labels(Ti, g) is fairly straightforward
to check. See Section 5.5 for a discussion regarding the correctness and reliability of the
results. Examples of concrete witnesses for the four new groups T6, T13, T15, and T16 are
provided in Appendix B. For an exhaustive listing of the witness graphs found, see the
website https://bitbucket.org/coreo-group/periodic-apartments/

For groups T6, T13 and T16 we discovered genus–3 graphs whereas for T15 we discovered
genus–4 graphs. Overall we may conclude that groups T1, T2, T6, T7, T9, T13, T15, T16 and
T18 are the only groups out of the 23 Ti’s that have a periodic apartment of genus ≤ 4.
Since the existence of a periodic apartment implies the existence of a surface subgroup (see
Theorem 1 and Corollary 1) these groups are thus ruled out as possible counterexamples
to Gromov subgroup conjecture.

44

https://bitbucket.org/coreo-group/periodic-apartments/

Table 5.2: Statistics for different steps of the approaches.

Approach Genus Orientable graphs Labelable graphs Pairs Hits
G+SAT2 2 12 4 274 152
OG+labelSAT 2 12 4 84 15
OG+labelSAT 3 1399 26 5 872 67
OG+labelSAT 4 – 127 6 125 906 491

5.3 Numerical Data

Table 5.2 gives more detailed statistics on the different steps on the approaches. The
columns Orientable graphs and Labelable graphs show the number of graphs ad-
mitting a cycleset and the number of graphs admitting a valid labeling with some group
Ti. The column Pairs, on the other hand, shows the number of graph-cycleset pairs for
each approach, and the Hits column shows the number of graph-cycleset pairs admit-
ting a labeling with some group Ti. The discrepancies for the genus 2 case in columns
Pairs and Hits results from the fact that our orderly generation algorithm used in the
OG+labelSAT approach achieved stronger symmetry breaking than the cycleset enumer-
ation via a SAT encoding in G+SAT2. Specifically, some cyclesets produced in G+SAT2

using the encoding of Section 3.2 are the same modulo an automorphism of the graph
in question. Note that the stronger symmetry breaking in OG+labelSAT results in a
noticeably smaller average number of cyclesets per graph. The numbers of graphs for
which cyclesets exists (column Orientable graphs) and which admit a valid labeling
(Labelable graphs), on the other hand, are the same for G+SAT2 and OG+labelSAT
(as should be).

Table 5.3 shows the number of distinct graph-cycleset pairs that admit a labeling
using each Ti for different genera. The groups missing from the table do not have any
labeling-admitting graph-cycleset pairs for genus ≤ 4. Observe that groups T1, T2, T7, T9
and T18 have graph-cycleset pairs for genus values g ∈ {2, 3, 4} with the number increasing
as genus g increases. Groups T6, T13 and T16, on the other hand, have labelable graph-
cycleset pairs only for genus 3 and their number is very low. Notice also that group T15
has a similarly low number of valid graph-cycleset pairs at genus 4.

Table 5.4 shows the sizes of labels(Ti, g), i.e., the numbers of non-isomorphic graphs
of genus g admitting a labeling with Ti. A first observation is that most of these numbers
are lower than the corresponding ones in Table 5.3 indicating that some graphs have
multiple cyclesets admitting a valid labeling for various Ti’s.

From this we can conclude using Corollary 1 that groups T1, T2, T7, T9, and T18 have
surface subgroups of genera 2, 3, and 4. Groups T6, T13, and T16, however, have surface
subgroups of genus 3, but no surface subgroups (arising from periodic apartments) of
genera 2 and 4. Similarly group T15 has a surface subgroup of genus 4 but no surface
subgroups of genera 2 or 3 arising from periodic apartments.

5.4 Performance

The SAT-based labeling phase of both approaches was quite efficient for genus 2, with
cumulative runtimes of 420 seconds for G+SAT2 and 143 seconds for OG+labelSAT.
The SAT-based cycleset generation phase of G+SAT2 over the 773 graphs generated

45

Table 5.3: The numbers of graph-cycleset pairs admitting a labeling with each group Ti.

T1 T2 T6 T7 T9 T13 T15 T16 T18
genus 2 9 3 0 3 3 0 0 0 6
genus 3 16 5 4 6 5 1 0 9 36
genus 4 133 22 0 35 31 0 6 0 348

Table 5.4: The numbers of non-isomorphic graphs admitting a labeling with each group
Ti.

T1 T2 T6 T7 T9 T13 T15 T16 T18
genus 2 2 1 0 1 1 0 0 0 2
genus 3 6 3 2 3 2 1 0 7 10
genus 4 40 12 0 15 12 0 2 0 82

using Multigraph (phase (i)) took a total of 348 seconds, while the orderly generation
phase of OG+labelSAT took 3 seconds, which suggested that OG+labelSAT would scale
better of the two to larger genera. The better scaling of OG+labelSAT to higher genera
was supported by the numbers of graphs / graph-cycleset pairs generated at genus 3.

While Multigraph (phase (i) of G+SAT2) would generate 13 703 003 409 graphs
at genus 3, orderly generation at genus 3 resulted in 5872 graph-cycleset pairs, out of
which 67 admit a labeling; see Table 5.2. For genus 4 we generated 6 125 906 graph-
cycleset pairs, out of which 491 admit a labeling. At genus 3, orderly generation took
approximately 14 hours and the labeling phase less than 8 hours. Orderly generation of
genus 4 configurations took 883 500 hours, and checking them for labeling took 7 241
hours. Figure 5.1 shows the total runtime of the labeling phase per graph-cycleset pair
over the 23 Ti’s for genus 3 (left) and genus 4 (right). The number plotted in the graphs
is thus the sum of the runtimes of 23 SAT calls; one for each group Ti. The shape of the
curve suggests that large majority of the graph-cycleset pairs required little time for the
labeling phase and a small fraction required much longer. The median runtimes of the
labeling phase at genus 3 and 4 are approximately 2 and 3 seconds, respectively. It is
also worth stating that each individual SAT call took less than 2 seconds at genus 3 and
12 seconds at genus 4.

5.5 On Correctness

We may draw two rather different conclusions from the experiments and their results as
described previously:

(i) the existence of periodic apartments for certain groups Ti, and

(ii) the non-existence of periodic apartments for other Ti.

Firstly we claim that groups T1, T2, T6, T7, T9, T13, T16 and T18 have periodic
apartments of genus 3, and this claim is evidenced by graphs in labels(Ti, 3) for
i ∈ {1, 2, 6, 7, 9, 13, 16, 18}. Similarly we claim that groups T1, T2, T7, T9, T15 and
T18 have a periodic apartment of genus 4 witnessed by graphs in labels(T15, i) for
i ∈ {1, 2, 7, 9, 15, 18}. Examples of these graphs for T6, T13, T15 and T16 are shown
in Appendix B. Secondly, we claim that no group other than T1, T2, T6, T7, T9, T13, T16

46

 0

 4

 8

 12

 0 2000 4000 6000

t(s)

Figure 5.1: Runtime distribution of the labeling phase of OG+labelSAT for genus 3 (left)
and genus 4 (right). The total runtime of 23 SAT calls (one for each Ti) per graph-cycleset
pair is plotted.

or T18 have a periodic apartment of genus 3, and similarly that no group other than T1,
T2, T7, T9, T15 or T18 have a periodic apartment of genus 4.

The validity of the claims of type (i) hinges on the correctness of Theorem 1 and
whether it holds that labels(Ti, g) 6= ∅. Theorem 1 has been shown in [56], and the non-
emptiness of labels(Ti, g) is witnessed by concrete graphs, which can be manually checked
to be contained in labels(Ti, g). Therefore, after the concrete witnesses we have produced
have been validated, claims (i) do not depend on the correctness of our SAT encodings
(Sections 3.2 and 3.3) or the orderly generation algorithms (Chapter 4).

The claims of type (ii), however, depend critically on the correctness of the SAT
encoding of Section 3.3 as well as the orderly generation algorithm of Chapter 4. The
reason is that claims (ii), after applying Theorem 1, reduce to showing that labels(Ti, g) is
empty, and our approach essentially enumerates cycles(g) ⊇ labels(Ti, g) and then checks
whether each G ∈ cycles(g) is contained in labels(Ti, g). The main difference is thus that
claims (i) are existential claims (“There is a graph with properties ...”) which can be
validated by checking the concrete witnesses produced whereas (ii) are universal claims
(“Every graph fails to satisfy ...”).

Necessary and sufficient conditions for the correctness of orderly generation algorithms
are outlined by Read in [22]. Using these conditions it is possible to prove the correctness
of our orderly generation algorithm, but this does not suffice since the implementation
itself may contain bugs. The implementation and algorithm could of course be formally
verified, but we have refrained from doing so in this work.

When it comes to the SAT encoding we must consider whether the encoding works
as intended as well as the correctness of the SAT solver in use. Any correctness issues
with SAT solvers, however, can be remedied using existing techniques. One option would
be to use formally verified SAT solvers [104, 105, 106]. While formally verified solvers
guarantee the correctness of their output their performance tends to be lower than the
best-available solvers. Another option would be to use a proof producing SAT solver,
i.e., one that produces either a model or a resolution refution of the input formula [107,
108, 109, 110, 111]. The resolution refutation of an unsatisfiable formula can then be
checked independently of the used solver. The relatively low overhead of proof logging
and verification allows it to be employed even for large proofs such as the proof of Boolean
Pythagorean triples [2].

On another note, the heuristic reliability of some results can also be enhanced by repro-
duction of the same results via independent means. We have, for example, produced the
results for genus 2 using two semi-independent methods (G+SAT2 and OG+labelSAT),

47

and these results agree perfectly with the ones produced by Kangaslampi and Vdov-
ina [56]. While this may make the results easier to trust it is no formal proof.

All in all we consider the positive results, i.e., the discovered periodic apartments,
to be highly reliable, especially the genus–2 results which have been reproduced several
times. The negative results, i.e., the claims of the non-existence of periodic apartments for
certain Ti, should be trusted under the assumption that our SAT encodings and orderly
generation algorithm are correct and correctly implemented.

48

Chapter 6

Conclusions

We presented a computational study of the applicability of combinations of SAT solv-
ing and orderly generation to a problem arising from geometric group theory, dealing
in particular with determining whether one of 23 specific groups earlier put forth by
Kangaslampi and Vdovina [56] would serve as a counterexample to the famous subgroup
conjecture of Gromov. While earlier computational treatment of this problem setting
was restricted to genus 2 [56], we showed that a combination of SAT solving and orderly
generation allows for significantly scaling up (by several orders of magnitude) to genera
3 and 4. As a result, we provided an independent confirmation of the earlier results
for genus 2 [56], and ruled out four more groups out of the 23 as counterexamples to
Gromov’s subgroup conjecture by exhaustively treating genera 3 and 4.

While we utilized orderly generation to produce cycles(g) and SAT solvers to check
which of the generated inputs belong to labels(Ti, g), other approaches could have been
taken as well. We considered using SAT solvers to generate the cycleset-admitting graphs
cycles(g) or the periodic apartments labels(Ti, g) directly. The problem with these ap-
proaches seemed to be the existence of numerous symmetries making it difficult to for-
mulate a performant encoding. Utilizing efficient symmetry-breaking we could use SAT
solvers to directly generate the graphs in labels(Ti, g) and this is indeed a possible avenue
of further research.

Another possibility would be to modify our orderly generation algorithm to generate
labels(Ti, g) directly. This would require us to develop an efficient canonicity checking
algorithm and would probably require several problem-specific optimizations like our
generator for cycles(g).

The problem of finding periodic apartments seems to be connected to edge-matching
puzzles [112, 113, 114] as well and investigating this connection is another possible line of
further research. Efficient computational methods used to solve edge-matching puzzles
could be helpful in finding periodic apartments since the problem boils down to matching a
specific number of triangles whose edges are labeled. In our case, however, the tesselation
of these triangles is not in the 2-dimensional plane.

The cycle double cover conjecture [115], which is a long-standing open problem in
graph theory, is also connected to the problem of periodic apartments considered in this
work. The conjecture states that “each bridgeless graph contains 2-cover consisting entire
of cycles”. The computational tools used in this work, e.g., the encoding introduced in
Section 3.2, could be modified to study the cycle double cover conjecture empirically.
Computational methods have been used in studying this conjecture [116] but no coun-
terexamples have been found.

49

Yet another possibility opened up by the results of our experiments is that of manual
inspection of the found graphs, cyclesets, and labelings to try and derive some insight
into the problem of finding periodic apartments. Many of the witness graphs found seem
symmetric even by visual examination, see the graph in Figure B.2 for example.

Acknowledgments

I finished this thesis while working in the Constraint Reasoning and Optimization group
(CoReO) led by Associate Professor Matti Järvisalo at University of Helsinki. I am in-
debted to my colleagues in the group and staff of the Department of Computer Science,
especially the IT for Science group. To my advisors, Associate Professor Matti Järvisalo
and Docent Emilia Oikarinen, I offer my deepest gratitude. It was their encouragement,
patience and invaluable advice that made this work possible. I also offer my thanks
to Doctor Riikka Kangaslampi for insightful discussions on the problem and to Doctor
Markus Meringer and Professor Gunnar Brinkmann for correspondence on orderly gen-
eration and Multigraph. I also thank my partners, family and friends for their love and
support during the writing of this thesis.

This work was financially supported by Academy of Finland (grants 312662 and
322869). Computational resources were provided by Finnish Grid and Cloud Infras-
tructure (FCGI) [117].

50

Bibliography

[1] B. Konev and A. Lisitsa, “Computer-aided proof of Erdős discrepancy properties,”
Artificial Intelligence, vol. 224, pp. 103–118, 2015.

[2] M. Heule, O. Kullmann, and V. Marek, “Solving and verifying the Boolean
Pythagorean triples problem via cube-and-conquer,” in Theory and Applications
of Satisfiability Testing - SAT 2016 - 19th International Conference, Bordeaux,
France, July 5-8, 2016, Proceedings (N. Creignou and D. Le Berre, eds.), vol. 9710
of Lecture Notes in Computer Science, pp. 228–245, Springer, 2016.

[3] M. Heule, “Schur number five,” in Proceedings of the Thirty-Second AAAI Con-
ference on Artificial Intelligence, (AAAI-18), the 30th innovative Applications of
Artificial Intelligence (IAAI-18), and the 8th AAAI Symposium on Educational Ad-
vances in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, Febru-
ary 2-7, 2018 (S. McIlraith and K. Weinberger, eds.), pp. 6598–6606, AAAI Press,
2018.

[4] F. Brandl, F. Brandt, M. Eberl, and C. Geist, “Proving the incompatibility of
efficiency and strategyproofness via SMT solving,” Journal of the ACM, vol. 65,
no. 2, pp. 6:1–6:28, 2018.

[5] J. Brakensiek, M. Heule, and J. Mackey, “The resolution of Keller’s conjecture,”
CoRR, vol. abs/1910.03740, 2019.

[6] Z.-P. Xu, J.-L. Chen, and O. Gühne, “Proof of the Peres conjecture for contextu-
ality,” Physical Review Letters, vol. 124, 2020.

[7] P. Herwig, M. Heule, M. van Lambalgen, and H. van Maaren, “A new method to
construct lower bounds for Van der Waerden numbers,” The Electronical Journal
of Combinatorics, vol. 14, no. 1, 2007.

[8] F. Brandt, C. Geist, and D. Peters, “Optimal bounds for the no-show paradox via
SAT solving,” Mathematical Social Sciences, vol. 90, pp. 18–27, 2017.

[9] N. Francetic, S. Herke, B. McKay, and I. Wanless, “On Ryser’s conjecture for
linear intersecting multipartite hypergraphs,” European Journal of Combinatorics,
vol. 61, pp. 91–105, 2017.

[10] F. Brandt, P. Harrenstein, and H. Seedig, “Minimal extending sets in tournaments,”
Mathematical Social Sciences, vol. 87, pp. 55–63, 2017.

[11] J. Goedgebeur, K. Ozeki, N. van Cleemput, and G. Wiener, “On the minimum leaf
number of cubic graphs,” Discrete Mathematics, vol. 342, no. 11, pp. 3000–3005,
2019.

51

[12] N. Kaplan, S. Kimport, R. Lawrence, L. Peilen, and M. Weinreich, “Counting arcs
in projective planes via Glynn’s algorithm,” Journal of Geometry, vol. 108, no. 3,
pp. 1013–1029, 2017.

[13] O. Kullmann, “Green-Tao numbers and SAT,” in Theory and Applications of Satis-
fiability Testing - SAT 2010, 13th International Conference, SAT 2010, Edinburgh,
UK, July 11-14, 2010. Proceedings (O. Strichman and S. Szeider, eds.), vol. 6175
of Lecture Notes in Computer Science, pp. 352–362, Springer, 2010.

[14] C. Geist and U. Endriss, “Automated search for impossibility theorems in social
choice theory: Ranking sets of objects,” Journal of Artificial Intelligence Research,
vol. 40, pp. 143–174, 2011.

[15] F. Brandt and C. Geist, “Finding strategyproof social choice functions via SAT
solving,” Journal of Artificial Intelligence Research, vol. 55, pp. 565–602, 2016.

[16] B. Klocker, H. Fleischner, and G. Raidl, “A SAT approach for finding sup-
transition-minors,” in Learning and Intelligent Optimization - 13th International
Conference, LION 13, Chania, Crete, Greece, May 27-31, 2019, Revised Selected
Papers (N. Matsatsinis, Y. Marinakis, and P. Pardalos, eds.), vol. 11968 of Lecture
Notes in Computer Science, pp. 325–341, Springer, 2019.

[17] L. Finschi and K. Fukuda, “Complete combinatorial generation of small point con-
figurations and hyperplane arrangements,” in Proceedings of the 13th Canadian
Conference on Computational Geometry, University of Waterloo, Ontario, Canada,
August 13-15, 2001, pp. 97–100, 2001.

[18] C. Desrosiers, P. Galinier, P. Hansen, and A. Hertz, “Automated generation of
conjectures on forbidden subgraph characterization,” Discrete Applied Mathemat-
ics, vol. 162, pp. 177–194, 2014.

[19] P. Österg̊ard, P. Lampio, and F. Szöllősi, “Orderly generation of Butson Hadamard
matrices,” Mathematics of Computation, vol. 89, no. 321, pp. 313–331, 2020.

[20] Y. Matsumoto, S. Moriyama, H. Imai, and D. Bremner, “Matroid enumeration for
incidence geometry,” Discrete & Computational Geometry, vol. 47, no. 1, pp. 17–43,
2012.

[21] A. Biere, M. Heule, H. van Maaren, and T. Walsh, eds., Handbook of Satisfiability,
vol. 185 of Frontiers in Artificial Intelligence and Applications. IOS Press, 2009.

[22] R. Read, “Every one a winner or how to avoid isomorphism search when cataloguing
combinatorial configurations,” Annals of Discrete Mathematics, vol. 2, pp. 107–120,
1978.

[23] P. de la Harpe, Topics in geometric group theory. Chicago Lectures in Mathematics,
University of Chicago Press, 2000.

[24] C. Druţu and M. Kapovich, Geometric group theory, vol. 63 of Colloquium Publi-
cations. American Mathematical Society, 2018.

[25] M. Gromov, “Hyperbolic groups,” in Essays in group theory, pp. 75–263, Springer,
1987.

52

[26] M. Mitra, “Ending laminations for hyperbolic group extensions,” Geometric and
Functional Analysis, vol. 7, no. 2, p. 379, 1997.

[27] O. Kharlampovich and A. Myasnikov, “Hyperbolic groups and free constructions,”
Transactions of the American Mathematical Society, vol. 350, no. 2, pp. 571–613,
1998.

[28] B. Bowditch, “Cut points and canonical splittings of hyperbolic groups,” Acta math-
ematica, vol. 180, no. 2, pp. 145–186, 1998.

[29] N. Brady, “Finite subgroups of hyperbolic groups,” International Journal of Algebra
and Computation, vol. 10, no. 4, pp. 399–406, 2000.

[30] M. Coornaert and G. Knieper, “An upper bound for the growth of conjugacy classes
in torsion-free word hyperbolic groups,” International Journal of Algebra and Com-
putation, vol. 14, no. 4, pp. 395–401, 2004.

[31] J. Roe, “Hyperbolic groups have finite asymptotic dimension,” Proceedings of the
American Mathematical Society, vol. 133, no. 9, pp. 2489–2490, 2005.

[32] E. Jaligot, A. Muranov, and A. Neman, “Independence property and hyperbolic
groups,” Bulletin of Symbolic Logic, vol. 14, no. 1, pp. 88–98, 2008.

[33] D. Osin, “On the universal theory of torsion and lacunary hyperbolic groups,”
Groups Complexity Cryptology, vol. 1, no. 2, pp. 311–319, 2009.

[34] M. Deraux, J. Parker, and J. Paupert, “Census of the complex hyperbolic sporadic
triangle groups,” Experimental Mathematics, vol. 20, no. 4, pp. 467–486, 2011.

[35] A. Ol’shanskii, “Almost every group is hyperbolic,” International Journal of Alge-
bra and Computation, vol. 2, no. 1, pp. 1–18, 1992.

[36] F. Dahmani and V. Guirardel, “Foliations for solving equations in groups: free,
virtually free, and hyperbolic groups,” Journal of Topology, vol. 3, no. 2, pp. 343–
404, 2010.

[37] F. Dahmani and V. Guirardel, “The isomorphism problem for all hyperbolic
groups,” Geometric and Functional Analysis, vol. 21, no. 2, pp. 223–300, 2011.

[38] J. Tits, Buildings of spherical type and finite BN-pairs, vol. 386. Springer-Verlag,
1974.

[39] J. Tits, “Structures et groupes de Weyl,” in Séminaire Bourbaki (1964/1965),
Éxpose No. 288, pp. 169–183, Société Mathématique de France, 1966.

[40] P. Abramenko and K. Brown, Buildings: theory and applications, vol. 248 of Grad-
uate Texts in Mathematics. Springer Science & Business Media, 2008.

[41] J. Tits, “Sur la trialité et certains groupes qui s’en déduisent,” Publications
Mathématiques de l’Institut des Hautes Études Scientifiques, vol. 2, no. 1, pp. 14–60,
1959.

[42] A. Thomas, “Lattices in hyperbolic buildings,” Geometry, Topology, and Dynamics
in Negative Curvature, vol. 425, p. 345, 2016.

53

[43] T. Marquis, “On geodesic ray bundles in buildings,” Geometriae Dedicata, vol. 202,
pp. 27–43, 2019.

[44] E. Stark, “Topological rigidity fails for quotients of the Davis complex,” Proceedings
of the American Mathematical Society, vol. 146, no. 12, pp. 5357–5366, 2018.

[45] D. Constantine and J.-F. Lafont, “Marked length rigidity for Fuchsian buildings,”
Ergodic Theory and Dynamical Systems, vol. 39, no. 12, pp. 3262–3291, 2019.

[46] J. Bounds and X. Xie, “Quasi-isometric rigidity of a class of right-angled Coxeter
groups,” Proceedings of the American Mathematical Society, vol. 148, no. 2, pp. 553–
568, 2020.

[47] C. Gordon, D. Long, and A. Reid, “Surface subgroups of Coxeter and Artin groups,”
Journal of Pure and Applied Algebra, vol. 189, no. 1, pp. 135 – 148, 2004.

[48] D. Calegari, “Surface subgroups from homology,” Geometry & Topology, vol. 12,
no. 4, pp. 1995–2007, 2008.

[49] C. Gordon and H. Wilton, “On surface subgroups of doubles of free groups,” Journal
of the London Mathematical Society, vol. 82, no. 1, pp. 17–31, 2010.

[50] D. Futer and A. Thomas, “Surface quotients of hyperbolic buildings,” International
Mathematics Research Notices, vol. 2012, no. 2, pp. 437–477, 2011.

[51] H. Wilton, “One-ended subgroups of graphs of free groups with cyclic edge groups,”
Geometry & Topology, vol. 16, no. 2, pp. 665–683, 2012.

[52] V. Markovic, “Criterion for Cannon’s conjecture,” Geometric and Functional Anal-
ysis, vol. 23, no. 3, pp. 1035–1061, 2013.

[53] S. Kim and S. Oum, “Hyperbolic surface subgroups of one-ended doubles of free
groups,” Journal of Topology, vol. 7, no. 4, pp. 927–947, 2014.

[54] D. Calegari and A. Walker, “Random groups contain surface subgroups,” Journal
of the American Mathematical Society, vol. 28, no. 2, pp. 383–419, 2015.

[55] H. Wilton, “Essential surfaces in graph pairs,” Journal of the American Mathemat-
ical Society, vol. 31, no. 4, pp. 893–919, 2018.

[56] R. Kangaslampi and A. Vdovina, “Hyperbolic triangular buildings without periodic
planes of genus 2,” Experimental Mathematics, vol. 26, no. 1, pp. 54–61, 2017.

[57] R. Kangaslampi and A. Vdovina, “Cocompact actions on hyperbolic buildings,”
International Journal of Algebra and Computation, vol. 20, no. 4, pp. 591–603,
2010.

[58] A. Vdovina, “Combinatorial structure of some hyperbolic buildings,” Mathematis-
che Zeitschrift, vol. 241, no. 3, pp. 471–478, 2002.

[59] W. Ballmann and M. Brin, “Polygonal complexes and combinatorial group theory,”
Geometriae Dedicata, vol. 50, no. 2, pp. 165–191, 1994.

54

[60] W. Ballmann and M. Brin, “Orbihedra of nonpositive curvature,” Publications
Mathématiques de l’Institut des Hautes Études Scientifiques, vol. 82, pp. 169–209,
1995.

[61] D. Gaboriau and F. Paulin, “Sur les immeubles hyperboliques,” Geometriae Dedi-
cata, vol. 88, no. 1-3, pp. 153–197, 2001.

[62] L. Carbone, R. Kangaslampi, and A. Vdovina, “Groups acting simply transitively
on vertex sets of hyperbolic triangular buildings,” LMS Journal of Computation
and Mathematics, vol. 15, pp. 101–112, 2012.

[63] S. Cook, “The complexity of theorem-proving procedures,” in Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971, Shaker
Heights, Ohio, USA (M. Harrison, R. Banerji, and J. Ullman, eds.), pp. 151–158,
ACM, 1971.

[64] M. Heule, M. Järvisalo, and M. Suda, “SAT competition 2018,” Journal of Satisfi-
ability, Boolean Modelling and Computation, vol. 11, no. 1, pp. 133–154, 2019.

[65] C. Sinz, “Towards an optimal CNF encoding of Boolean cardinality constraints,” in
Principles and Practice of Constraint Programming - CP 2005, 11th International
Conference, CP 2005, Sitges, Spain, October 1-5, 2005, Proceedings (P. van Beek,
ed.), vol. 3709 of Lecture Notes in Computer Science, pp. 827–831, Springer, 2005.

[66] A. van Gelder, “Another look at graph coloring via propositional satisfiability,”
Discrete Applied Mathematics, vol. 156, no. 2, pp. 230–243, 2008.

[67] T. Philipp and P. Steinke, “PBLib - A library for encoding pseudo-boolean con-
straints into CNF,” in Theory and Applications of Satisfiability Testing - SAT 2015
- 18th International Conference, Austin, TX, USA, September 24-27, 2015, Pro-
ceedings (M. Heule and S. Weaver, eds.), vol. 9340 of Lecture Notes in Computer
Science, pp. 9–16, Springer, 2015.

[68] V. Nguyen, “SAT encodings of finite-CSP domains: A survey,” in Proceedings of the
Eighth International Symposium on Information and Communication Technology,
Nha Trang City, Viet Nam, December 7-8, 2017, pp. 84–91, ACM, 2017.

[69] A. Boudane, S. Jabbour, B. Raddaoui, and L. Sais, “Efficient SAT-based encodings
of conditional cardinality constraints,” in LPAR-22. 22nd International Conference
on Logic for Programming, Artificial Intelligence and Reasoning, Awassa, Ethiopia,
16-21 November 2018 (G. Barthe, G. Sutcliffe, and M. Veanes, eds.), vol. 57 of EPiC
Series in Computing, pp. 181–195, EasyChair, 2018.

[70] C. Colbourn and R. Read, “Orderly algorithms for generating restricted classes of
graphs,” Journal of Graph Theory, vol. 3, no. 2, pp. 187–195, 1979.

[71] G. Brinkmann, “Fast generation of cubic graphs,” Journal of Graph Theory, vol. 23,
no. 2, pp. 139–149, 1996.

[72] G. Royle, “An orderly algorithm and some applications in finite geometry,” Discrete
Mathematics, vol. 185, no. 1-3, pp. 105–115, 1998.

55

[73] M. Meringer, “Fast generation of regular graphs and construction of cages,” Journal
of Graph Theory, vol. 30, no. 2, pp. 137–146, 1999.

[74] J. Goedgebeur, Generation Algorithms for Mathematical and Chemical Problems.
PhD thesis, Ghent University, 2013.

[75] A. Kohnert and S. Kurz, “Integral point sets over Zmn ,” Discrete Applied Mathe-
matics, vol. 157, no. 9, pp. 2105–2117, 2009.

[76] G. Brinkmann, “Multigraph.” personal communication, 2019.

[77] J. Savela, E. Oikarinen, and M. Järvisalo, “Finding periodic apartments via Boolean
satisfiability and orderly generation,” in LPAR23. LPAR-23: 23rd International
Conference on Logic for Programming, Artificial Intelligence and Reasoning (E. Al-
bert and L. Kovacs, eds.), vol. 73 of EPiC Series in Computing, pp. 465–482, Easy-
Chair, 2020.

[78] J. Harrison, Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

[79] M. Ben-Ari, Mathematical Logic for Computer Science, 3rd Edition. Springer, 2012.

[80] G. Tseitin, “On the complexity of derivation in propositional calculus,” in Automa-
tion of Reasoning 2, pp. 466–483, Springer-Verlag, 1983.

[81] D. Plaisted and S. Greenbaum, “A structure-preserving clause form translation,”
Journal of Symbolic Computation, vol. 2, no. 3, pp. 293–304, 1986.

[82] J. Marques-Silva and K. Sakallah, “GRASP - a new search algorithm for satisfiabil-
ity,” in Proceedings of the 1996 IEEE/ACM International Conference on Computer-
Aided Design, ICCAD 1996, San Jose, CA, USA, November 10-14, 1996 (R. Ruten-
bar and R. Otten, eds.), pp. 220–227, IEEE Computer Society / ACM, 1996.

[83] J. Marques-Silva and K. Sakallah, “GRASP: A search algorithm for propositional
satisfiability,” IEEE Transactions on Computers, vol. 48, no. 5, pp. 506–521, 1999.

[84] M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik, “Chaff: Engineering
an efficient SAT solver,” in Proceedings of the 38th Design Automation Conference,
DAC 2001, Las Vegas, NV, USA, June 18-22, 2001, pp. 530–535, ACM, 2001.

[85] C. Gomes, B. Selman, and H. Kautz, “Boosting combinatorial search through ran-
domization,” in Proceedings of the Fifteenth National Conference on Artificial In-
telligence and Tenth Innovative Applications of Artificial Intelligence Conference,
AAAI 98, IAAI 98, July 26-30, 1998, Madison, Wisconsin, USA (J. Mostow and
C. Rich, eds.), pp. 431–437, AAAI Press / The MIT Press, 1998.

[86] E. Goldberg and Y. Novikov, “Berkmin: A fast and robust sat-solver,” Discrete
Applied Mathematics, vol. 155, no. 12, pp. 1549–1561, 2007.

[87] L. Ryan, Efficient algorithms for clause-learning SAT solvers. Master’s thesis,
Simon Fraser University, 2004.

56

[88] R. Bayardo and R. Schrag, “Using CSP look-back techniques to solve real-world
SAT instances,” in Proceedings of the Fourteenth National Conference on Artificial
Intelligence and Ninth Innovative Applications of Artificial Intelligence Conference,
AAAI 97, IAAI 97, July 27-31, 1997, Providence, Rhode Island, USA (B. Kuipers
and B. Webber, eds.), pp. 203–208, AAAI Press / The MIT Press, 1997.

[89] M. Lewis, T. Schubert, and B. Becker, “Speedup techniques utilized in modern SAT
solvers,” in Theory and Applications of Satisfiability Testing, 8th International Con-
ference, SAT 2005, St. Andrews, UK, June 19-23, 2005, Proceedings (F. Bacchus
and T. Walsh, eds.), vol. 3569 of Lecture Notes in Computer Science, pp. 437–443,
Springer, 2005.

[90] J. Crawford, M. Ginsberg, E. Luks, and A. Roy, “Symmetry-breaking predicates for
search problems,” in Proceedings of the Fifth International Conference on Principles
of Knowledge Representation and Reasoning (KR’96), Cambridge, Massachusetts,
USA, November 5-8, 1996 (L. Aiello, J. Doyle, and S. Shapiro, eds.), pp. 148–159,
Morgan Kaufmann, 1996.

[91] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Solving difficult SAT instances
in the presence of symmetry,” in Proceedings of the 39th Design Automation Con-
ference, DAC 2002, New Orleans, LA, USA, June 10-14, 2002, pp. 731–736, ACM,
2002.

[92] F. Aloul, A. Ramani, I. Markov, and K. Sakallah, “Solving difficult instances
of Boolean satisfiability in the presence of symmetry,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 9, pp. 1117–
1137, 2003.

[93] F. Aloul, I. Markov, and K. Sakallah, “Shatter: efficient symmetry-breaking for
boolean satisfiability,” in Proceedings of the 40th Design Automation Conference,
DAC 2003, Anaheim, CA, USA, June 2-6, 2003, pp. 836–839, ACM, 2003.

[94] N. Eén and N. Sörensson, “An extensible SAT-solver,” in Theory and Applications
of Satisfiability Testing, 6th International Conference, SAT 2003. Santa Margherita
Ligure, Italy, May 5-8, 2003 Selected Revised Papers (E. Giunchiglia and A. Tac-
chella, eds.), vol. 2919 of Lecture Notes in Computer Science, pp. 502–518, Springer,
2003.

[95] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python toolkit for
prototyping with SAT oracles,” in Theory and Applications of Satisfiability Test-
ing - SAT 2018 - 21st International Conference, SAT 2018, Held as Part of the
Federated Logic Conference, FloC 2018, Oxford, UK, July 9-12, 2018, Proceedings
(O. Beyersdorff and C. Wintersteiger, eds.), Lecture Notes in Computer Science,
pp. 428–437, Springer, 2018.

[96] O. Grumberg, A. Schuster, and A. Yadgar, “Memory efficient all-solutions
SAT solver and its application for reachability analysis,” in Formal Methods in
Computer-Aided Design, 5th International Conference, FMCAD 2004, Austin,
Texas, USA, November 15-17, 2004, Proceedings (A. Hu and A. Martin, eds.),
vol. 3312 of Lecture Notes in Computer Science, pp. 275–289, Springer, 2004.

57

[97] Y. Yu, P. Subramanyan, N. Tsiskaridze, and S. Malik, “All-SAT using minimal
blocking clauses,” in 2014 27th International Conference on VLSI Design and 2014
13th International Conference on Embedded Systems, Mumbai, India, January 5-9,
2014, pp. 86–91, IEEE Computer Society, 2014.

[98] S. Jabbour, J. Lonlac, L. Sais, and Y. Salhi, “Extending modern SAT solvers for
models enumeration,” in Proceedings of the 15th IEEE International Conference
on Information Reuse and Integration, IRI 2014, Redwood City, CA, USA, August
13-15, 2014 (J. Joshi, E. Bertino, B. Thuraisingham, and L. Liu, eds.), pp. 803–810,
IEEE Computer Society, 2014.

[99] T. Toda and T. Soh, “Implementing efficient all solutions SAT solvers,” ACM
Journal of Experimental Algorithmics, vol. 21, no. 1, pp. 1.12:1–1.12:44, 2016.

[100] T. Toda and K. Tsuda, “BDD construction for all solutions SAT and efficient
caching mechanism,” in Proceedings of the 30th Annual ACM Symposium on Ap-
plied Computing, Salamanca, Spain, April 13-17, 2015 (R. Wainwright, J. Cor-
chado, A. Bechini, and J. Hong, eds.), pp. 1880–1886, ACM, 2015.

[101] W. Zhao and W. Wu, “ASIG: an all-solution SAT solver for CNF formulas,” in
11th International Conference on Computer-Aided Design and Computer Graphics,
CAD/Graphics 2009, Huangshan, China, August 19-21, 2009, pp. 508–513, IEEE,
2009.

[102] G. Brinkmann, “Minibaum webpage.” http://caagt.ugent.be/minibaum/. Ac-
cessed: 2020-01-24.

[103] E. Luks, “Isomorphism of graphs of bounded valence can be tested in polynomial
time,” Journal of Computer and System Sciences, vol. 25, no. 1, pp. 42–65, 1982.

[104] M. Fleury and C. Weidenbach, “A verified SAT solver framework including opti-
mization and partial valuations,” in LPAR 2020: 23rd International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, Alicante, Spain, May
22-27, 2020 (E. Albert and L. Kovács, eds.), vol. 73 of EPiC Series in Computing,
pp. 212–229, EasyChair, 2020.

[105] D. Oe, A. Stump, C. Oliver, and K. Clancy, “versat: A verified modern SAT solver,”
in Verification, Model Checking, and Abstract Interpretation - 13th International
Conference, VMCAI 2012, Philadelphia, PA, USA, January 22-24, 2012. Proceed-
ings (V. Kuncak and A. Rybalchenko, eds.), vol. 7148 of Lecture Notes in Computer
Science, pp. 363–378, Springer, 2012.

[106] F. Maric, “Formal verification of a modern SAT solver by shallow embedding into
isabelle/HOL,” Theoretical Computer Science, vol. 411, no. 50, pp. 4333–4356, 2010.

[107] N. Wetzler, M. Heule, and W. Hunt, “DRAT-trim: Efficient checking and trimming
using expressive clausal proofs,” in Theory and Applications of Satisfiability Test-
ing - SAT 2014 - 17th International Conference, Held as Part of the Vienna Sum-
mer of Logic, VSL 2014, Vienna, Austria, July 14-17, 2014. Proceedings (C. Sinz
and U. Egly, eds.), vol. 8561 of Lecture Notes in Computer Science, pp. 422–429,
Springer, 2014.

58

[108] N. Wetzler, M. Heule, and W. Hunt, “Mechanical verification of SAT refuta-
tions with extended resolution,” in Interactive Theorem Proving - 4th International
Conference, ITP 2013, Rennes, France, July 22-26, 2013. Proceedings (S. Blazy,
C. Paulin-Mohring, and D. Pichardie, eds.), vol. 7998 of Lecture Notes in Com-
puter Science, pp. 229–244, Springer, 2013.

[109] E. Goldberg and Y. Novikov, “Verification of proofs of unsatisfiability for CNF
formulas,” in 2003 Design, Automation and Test in Europe Conference and Expo-
sition (DATE 2003), 3-7 March 2003, Munich, Germany, pp. 10886–10891, IEEE
Computer Society, 2003.

[110] P. Lammich, “Efficient verified (UN)SAT certificate checking,” Journal of Auto-
mated Reasoning, vol. 64, no. 3, pp. 513–532, 2020.

[111] A. Darbari, B. Fischer, and J. Marques-Silva, “Industrial-strength certified SAT
solving through verified SAT proof checking,” in Theoretical Aspects of Computing
- ICTAC 2010, 7th International Colloquium, Natal, Rio Grande do Norte, Brazil,
September 1-3, 2010. Proceedings (A. Cavalcanti, D. Déharbe, M. Gaudel, and
J. Woodcock, eds.), vol. 6255 of Lecture Notes in Computer Science, pp. 260–274,
Springer, 2010.

[112] E. Demaine and M. Demaine, “Jigsaw puzzles, edge matching, and polyomino pack-
ing: Connections and complexity,” Graphs and Combinatorics, vol. 23 (Supple-
ment), pp. 195–208, 2007.

[113] M. Heule, “Solving edge-matching problems with satisfiability solvers,” in Pro-
ceedings of the Second International Workshop on Logic and Search (LaSh 2008),
pp. 88–102, University of Leuven, 2008.

[114] C. Ansótegui, R. Béjar, C. Fernández, and C. Mateu, “On the hardness of solving
edge matching puzzles as SAT or CSP problems,” Constraints, vol. 18, no. 1, pp. 7–
37, 2013.

[115] F. Jaeger, “A survey of the cycle double cover conjecture,” in North-Holland Math-
ematics Studies, vol. 115, pp. 1–12, Elsevier, 1985.

[116] J. Hägglund and K. Markström, “On stable cycles and cycle double covers of graphs
with large circumference,” Discrete Mathematicss, vol. 312, no. 17, pp. 2540–2544,
2012.

[117] “Finnish Grid and Cloud Infrastructure,” 2019. urn:nbn:fi:research-infras-
2016072533.

59

Appendix A

Group Representations

In this appendix we list for the readers’ convenience the representations of the 23 groups
constructed by Kangaslampi and Vdovina in [57], studied by the aforementioned authors
in [56] as well as the present authors in this work. These groups are the only torsion-free
groups acting simply transitively on the nodes of hyperbolic triangular buildings with the
smallest generalized guadrangle as the link. The representations of the groups consist of
generators x1, . . . , x15 as well as the relations xixjxk = 1 listed below the name of each
group as triplets (xi, xj, xk).

T1 T2 T3 T4 T5 T6
(x1, x10, x1) (x1, x10, x1) (x1, x10, x1) (x1, x10, x1) (x1, x10, x1) (x1, x10, x1)
(x15, x2, x1) (x15, x2, x1) (x15, x2, x1) (x15, x2, x1) (x15, x2, x1) (x15, x2, x1)
(x11, x9, x2) (x11, x9, x2) (x11, x3, x2) (x11, x3, x2) (x11, x4, x2) (x11, x4, x2)
(x14, x3, x2) (x14, x3, x2) (x14, x5, x2) (x14, x5, x2) (x14, x3, x2) (x14, x5, x2)
(x7, x4, x3) (x7, x4, x3) (x7, x4, x3) (x7, x4, x3) (x8, x6, x3) (x4, x7, x3)
(x15, x13, x3) (x15, x13, x3) (x15, x8, x3) (x15, x8, x3) (x14, x8, x3) (x7, x6, x3)
(x8, x6, x4) (x8, x6, x4) (x8, x9, x4) (x8, x9, x4) (x7, x5, x4) (x12, x12, x3)
(x12, x11, x4) (x12, x11, x4) (x12, x12, x4) (x12, x13, x4) (x15, x13, x4) (x15, x9, x4)
(x5, x8, x5) (x5, x8, x5) (x9, x6, x5) (x9, x6, x5) (x6, x9, x5) (x8, x8, x5)
(x10, x12, x5) (x10, x12, x5) (x13, x13, x5) (x13, x12, x5) (x14, x12, x5) (x14, x13, x5)
(x6, x14, x6) (x7, x14, x6) (x8, x11, x6) (x8, x11, x6) (x11, x12, x6) (x9, x14, x6)
(x7, x12, x7) (x12, x7, x6) (x10, x13, x6) (x10, x12, x6) (x7, x11, x7) (x11, x9, x6)
(x13, x9, x8) (x13, x9, x8) (x9, x14, x7) (x9, x14, x7) (x15, x9, x8) (x15, x13, x7)
(x14, x15, x9) (x14, x15, x9) (x10, x12, x7) (x10, x13, x7) (x10, x13, x9) (x10, x12, x8)
(x13, x11, x10) (x13, x11, x10) (x15, x14, x11) (x15, x14, x11) (x12, x13, x10) (x13, x11, x10)

60

T7 T8 T9 T10 T11 T12
(x1, x10, x1) (x1, x10, x1) (x1, x10, x1) (x1, x10, x1) (x1, x10, x1) (x1, x10, x1)
(x15, x2, x1) (x15, x2, x1) (x15, x2, x1) (x15, x2, x1) (x15, x2, x1) (x15, x2, x1)
(x11, x5, x2) (x11, x4, x2) (x11, x4, x2) (x11, x8, x2) (x11, x6, x2) (x11, x3, x2)
(x14, x4, x2) (x14, x7, x2) (x14, x6, x2) (x14, x5, x2) (x14, x4, x2) (x14, x9, x2)
(x4, x7, x3) (x5, x12, x3) (x5, x9, x3) (x3, x11, x3) (x5, x7, x3) (x9, x14, x3)
(x7, x6, x3) (x8, x5, x3) (x8, x7, x3) (x9, x7, x3) (x8, x12, x3) (x13, x7, x3)
(x12, x12, x3) (x10, x13, x3) (x10, x13, x3) (x5, x9, x4) (x10, x13, x3) (x4, x12, x4)
(x15, x13, x4) (x7, x9, x4) (x8, x5, x4) (x7, x6, x4) (x9, x9, x4) (x7, x6, x4)
(x8, x8, x5) (x15, x14, x4) (x14, x14, x4) (x11, x12, x4) (x13, x8, x4) (x5, x8, x5)
(x14, x9, x5) (x8, x6, x5) (x10, x12, x5) (x13, x13, x5) (x5, x11, x5) (x10, x13, x5)
(x9, x11, x6) (x7, x13, x6) (x7, x12, x6) (x9, x12, x6) (x8, x7, x6) (x9, x8, x6)
(x11, x13, x6) (x11, x9, x6) (x15, x9, x6) (x10, x13, x6) (x14, x14, x6) (x10, x12, x6)
(x15, x9, x7) (x13, x15, x8) (x8, x11, x7) (x15, x8, x7) (x15, x15, x7) (x15, x15, x7)
(x10, x12, x8) (x14, x12, x9) (x15, x13, x9) (x15, x14, x8) (x10, x12, x9) (x13, x11, x8)
(x13, x14, x10) (x12, x11, x10) (x12, x13, x11) (x12, x14, x10) (x13, x12, x11) (x12, x14, x11)

T13 T14 T15 T16 T17 T18
(x1, x15, x1) (x1, x15, x1) (x1, x15, x1) (x1, x15, x1) (x1, x15, x1) (x1, x15, x1)
(x10, x2, x1) (x10, x2, x1) (x10, x2, x1) (x10, x2, x1) (x10, x2, x1) (x10, x2, x1)
(x11, x3, x2) (x11, x3, x2) (x11, x5, x2) (x11, x5, x2) (x11, x4, x2) (x11, x4, x2)
(x14, x4, x2) (x14, x5, x2) (x14, x4, x2) (x14, x3, x2) (x14, x6, x2) (x14, x3, x2)
(x7, x5, x3) (x7, x4, x3) (x3, x6, x3) (x8, x4, x3) (x3, x12, x3) (x9, x5, x3)
(x15, x12, x3) (x15, x12, x3) (x15, x12, x3) (x14, x9, x3) (x8, x5, x3) (x13, x7, x3)
(x8, x13, x4) (x8, x6, x4) (x7, x8, x4) (x6, x6, x4) (x8, x13, x4) (x8, x6, x4)
(x14, x9, x4) (x12, x9, x4) (x15, x13, x4) (x15, x13, x4) (x14, x14, x4) (x14, x8, x4)
(x9, x6, x5) (x8, x13, x5) (x8, x7, x5) (x7, x7, x5) (x9, x7, x5) (x6, x12, x5)
(x11, x8, x5) (x14, x8, x5) (x14, x9, x5) (x15, x12, x5) (x11, x9, x5) (x15, x13, x5)
(x7, x8, x6) (x7, x9, x6) (x9, x11, x6) (x14, x11, x6) (x7, x8, x6) (x7, x9, x6)
(x11, x12, x6) (x12, x11, x6) (x11, x13, x6) (x11, x13, x7) (x15, x12, x6) (x11, x10, x7)
(x10, x13, x7) (x10, x13, x7) (x10, x9, x7) (x9, x12, x8) (x10, x13, x7) (x14, x12, x8)
(x14, x10, x9) (x14, x10, x9) (x12, x12, x8) (x10, x9, x8) (x11, x10, x9) (x13, x11, x9)
(x15, x13, x12) (x15, x13, x11) (x13, x14, x10) (x13, x12, x10) (x15, x13, x12) (x15, x12, x10)

61

T19 T20 T21 T22 T23
(x1, x15, x1) (x1, x10, x1) (x5, x2, x1) (x4, x2, x1) (x4, x2, x1)
(x10, x2, x1) (x15, x6, x1) (x6, x4, x1) (x7, x3, x1) (x6, x5, x1)
(x11, x6, x2) (x3, x7, x2) (x13, x3, x1) (x12, x5, x1) (x14, x3, x1)
(x14, x9, x2) (x8, x9, x2) (x10, x7, x2) (x10, x13, x2) (x10, x7, x2)
(x4, x11, x3) (x12, x8, x2) (x15, x12, x2) (x15, x10, x2) (x15, x11, x2)
(x7, x4, x3) (x5, x4, x3) (x11, x14, x3) (x11, x6, x3) (x11, x8, x3)
(x12, x5, x3) (x11, x14, x3) (x14, x8, x3) (x14, x8, x3) (x14, x12, x3)
(x9, x14, x4) (x6, x11, x4) (x12, x15, x4) (x7, x15, x4) (x9, x13, x4)
(x8, x13, x5) (x15, x13, x4) (x13, x11, x4) (x15, x9, x4) (x13, x10, x4)
(x12, x8, x5) (x9, x15, x5) (x9, x10, x5) (x12, x11, x5) (x12, x15, x5)
(x9, x8, x6) (x10, x12, x5) (x13, x9, x5) (x13, x14, x5) (x13, x9, x5)
(x13, x7, x6) (x14, x11, x6) (x9, x8, x6) (x8, x9, x6) (x8, x9, x6)
(x14, x10, x7) (x8, x13, x7) (x10, x11, x6) (x12, x7, x6) (x10, x12, x6)
(x15, x12, x10) (x14, x9, x7) (x8, x15, x7) (x11, x13, x8) (x7, x15, x7)
(x15, x13, x11) (x13, x12, x10) (x14, x12, x7) (x14, x10, x9) (x11, x14, x8)

62

Appendix B

Witnesses

In Figures B.1, B.2, and B.3 we show example graphs from labels(T6, 3), labels(T13, 3), and
labels(T16, 3), respectively. In Figure B.4 we present an example of a graph in labels(T15, 4).
The arrows around the nodes of the graphs denote the orientations arising from the
cycleset allowing the graph to be labeled. Bipartiteness is indicated using colors black
and white, and the xi’s denote the labels of edges. The triplet of each node can be
deduced from the labels of its incident edges.

63

Figure B.1: Graph G3
2668 labeled using T6.

64

Figure B.2: Graph G3
2056 labeled using T13.

65

Figure B.3: Graph G3
2211 labeled using T16.

66

Figure B.4: Graph G4
1988473 labeled using T15.

67

	Introduction
	Finding Surface Subgroups via Graph Search
	Setting Up the Graph Search Problem
	Properties of Graphs in the Search Space

	Cycleset Decompositions and Group Labelings via SAT
	Boolean Satisfiability
	Enumerating the Cycleset Decompositions of Graphs
	Checking Graphs for a Group Labeling

	Orderly Generation of Graphs and Their Cyclesets
	Towards an Orderly Algorithm
	Projecting Configurations into Graph-cycleset Pairs
	Structuring the Orderly Algorithm
	Augmenting Configurations
	Checking Canonicity of Configurations
	Optimizations

	Experiments and Results
	Confirmation of Earlier Results for Genus 2
	New Results beyond Genus 2
	Numerical Data
	Performance
	On Correctness

	Conclusions
	Group Representations
	Witnesses

