724 research outputs found

    Registration and Recognition in 3D

    Get PDF
    The simplest Computer Vision algorithm can tell you what color it sees when you point it at an object, but asking that computer what it is looking at is a much harder problem. Camera and LiDAR (Light Detection And Ranging) sensors generally provide streams pixel of values and sophisticated algorithms must be engineered to recognize objects or the environment. There has been significant effort expended by the computer vision community on recognizing objects in color images; however, LiDAR sensors, which sense depth values for pixels instead of color, have been studied less. Recently we have seen a renewed interest in depth data with the democratization provided by consumer depth cameras. Detecting objects in depth data is more challenging in some ways because of the lack of texture and increased complexity of processing unordered point sets. We present three systems that contribute to solving the object recognition problem from the LiDAR perspective. They are: calibration, registration, and object recognition systems. We propose a novel calibration system that works with both line and raster based LiDAR sensors, and calibrates them with respect to image cameras. Our system can be extended to calibrate LiDAR sensors that do not give intensity information. We demonstrate a novel system that produces registrations between different LiDAR scans by transforming the input point cloud into a Constellation Extended Gaussian Image (CEGI) and then uses this CEGI to estimate the rotational alignment of the scans independently. Finally we present a method for object recognition which uses local (Spin Images) and global (CEGI) information to recognize cars in a large urban dataset. We present real world results from these three systems. Compelling experiments show that object recognition systems can gain much information using only 3D geometry. There are many object recognition and navigation algorithms that work on images; the work we propose in this thesis is more complimentary to those image based methods than competitive. This is an important step along the way to more intelligent robots

    3D mapping and path planning from range data

    Get PDF
    This thesis reports research on mapping, terrain classification and path planning. These are classical problems in robotics, typically studied independently, and here we link such problems by framing them within a common proprioceptive modality, that of three-dimensional laser range scanning. The ultimate goal is to deliver navigation paths for challenging mobile robotics scenarios. For this reason we also deliver safe traversable regions from a previously computed globally consistent map. We first examine the problem of registering dense point clouds acquired at different instances in time. We contribute with a novel range registration mechanism for pairs of 3D range scans using point-to-point and point-to-line correspondences in a hierarchical correspondence search strategy. For the minimization we adopt a metric that takes into account not only the distance between corresponding points, but also the orientation of their relative reference frames. We also propose FaMSA, a fast technique for multi-scan point cloud alignment that takes advantage of the asserted point correspondences during sequential scan matching, using the point match history to speed up the computation of new scan matches. To properly propagate the model of the sensor noise and the scan matching, we employ first order error propagation, and to correct the error accumulation from local data alignment, we consider the probabilistic alignment of 3D point clouds using a delayed-state Extended Information Filter (EIF). In this thesis we adapt the Pose SLAM algorithm to the case of 3D range mapping, Pose SLAM is the variant of SLAM where only the robot trajectory is estimated and where sensor data is solely used to produce relative constraints between robot poses. These dense mapping techniques are tested in several scenarios acquired with our 3D sensors, producing impressively rich 3D environment models. The computed maps are then processed to identify traversable regions and to plan navigation sequences. In this thesis we present a pair of methods to attain high-level off-line classification of traversable areas, in which training data is acquired automatically from navigation sequences. Traversable features came from the robot footprint samples during manual robot motion, allowing us to capture terrain constrains not easy to model. Using only some of the traversed areas as positive training samples, our algorithms are tested in real scenarios to find the rest of the traversable terrain, and are compared with a naive parametric and some variants of the Support Vector Machine. Later, we contribute with a path planner that guarantees reachability at a desired robot pose with significantly lower computation time than competing alternatives. To search for the best path, our planner incrementally builds a tree using the A* algorithm, it includes a hybrid cost policy to efficiently expand the search tree, combining random sampling from the continuous space of kinematically feasible motion commands with a cost to goal metric that also takes into account the vehicle nonholonomic constraints. The planer also allows for node rewiring, and to speed up node search, our method includes heuristics that penalize node expansion near obstacles, and that limit the number of explored nodes. The method book-keeps visited cells in the configuration space, and disallows node expansion at those configurations in the first full iteration of the algorithm. We validate the proposed methods with experiments in extensive real scenarios from different very complex 3D outdoors environments, and compare it with other techniques such as the A*, RRT and RRT* algorithms.Esta tesis reporta investigación sobre el mapeo, clasificación de terreno y planificación de trayectorias. Estos son problemas clásicos en robótica los cuales generalmente se estudian de forma independiente, aquí se vinculan enmarcandolos con una modalidad propioceptiva común: un láser de rango 3D. El objetivo final es ofrecer trayectorias de navegación para escenarios complejos en el marco de la robótica móvil. Por esta razón también entregamos regiones transitables en un mapa global consistente calculado previamente. Primero examinamos el problema de registro de nubes de puntos adquiridas en diferentes instancias de tiempo. Contribuimos con un novedoso mecanismo de registro de pares de imagenes de rango 3D usando correspondencias punto a punto y punto a línea, en una estrategia de búsqueda de correspondencias jerárquica. Para la minimización optamos por una metrica que considera no sólo la distancia entre puntos, sino también la orientación de los marcos de referencia relativos. También proponemos FAMSA, una técnica para el registro rápido simultaneo de multiples nubes de puntos, la cual aprovecha las correspondencias de puntos obtenidas durante el registro secuencial, usando inicialmente la historia de correspondencias para acelerar el cálculo de las correspondecias en los nuevos registros de imagenes. Para propagar adecuadamente el modelo del ruido del sensor y del registro de imagenes, empleamos la propagación de error de primer orden, y para corregir el error acumulado del registro local, consideramos la alineación probabilística de nubes de puntos 3D utilizando un Filtro Extendido de Información de estados retrasados. En esta tesis adaptamos el algóritmo Pose SLAM para el caso de mapas con imagenes de rango 3D, Pose SLAM es la variante de SLAM donde solamente se estima la trayectoria del robot, usando los datos del sensor como restricciones relativas entre las poses robot. Estas técnicas de mapeo se prueban en varios escenarios adquiridos con nuestros sensores 3D produciendo modelos 3D impresionantes. Los mapas obtenidos se procesan para identificar regiones navegables y para planificar secuencias de navegación. Presentamos un par de métodos para lograr la clasificación de zonas transitables fuera de línea. Los datos de entrenamiento se adquieren de forma automática usando secuencias de navegación obtenidas manualmente. Las características transitables se captan de las huella de la trayectoria del robot, lo cual permite capturar restricciones del terreno difíciles de modelar. Con sólo algunas de las zonas transitables como muestras de entrenamiento positivo, nuestros algoritmos se prueban en escenarios reales para encontrar el resto del terreno transitable. Los algoritmos se comparan con algunas variantes de la máquina de soporte de vectores (SVM) y una parametrizacion ingenua. También, contribuimos con un planificador de trayectorias que garantiza llegar a una posicion deseada del robot en significante menor tiempo de cálculo a otras alternativas. Para buscar el mejor camino, nuestro planificador emplea un arbol de busqueda incremental basado en el algoritmo A*. Incluimos una póliza de coste híbrido para crecer de manera eficiente el árbol, combinando el muestro aleatorio del espacio continuo de comandos cinemáticos del robot con una métrica de coste al objetivo que también concidera las cinemática del robot. El planificador además permite reconectado de nodos, y, para acelerar la búsqueda de nodos, se incluye una heurística que penaliza la expansión de nodos cerca de los obstáculos, que limita el número de nodos explorados. El método conoce las céldas que ha visitado del espacio de configuraciones, evitando la expansión de nodos en configuraciones que han sido vistadas en la primera iteración completa del algoritmo. Los métodos propuestos se validán con amplios experimentos con escenarios reales en diferentes entornos exteriores, asi como su comparación con otras técnicas como los algoritmos A*, RRT y RRT*.Postprint (published version

    Multimodal perception for autonomous driving

    Get PDF
    Mención Internacional en el título de doctorAutonomous driving is set to play an important role among intelligent transportation systems in the coming decades. The advantages of its large-scale implementation –reduced accidents, shorter commuting times, or higher fuel efficiency– have made its development a priority for academia and industry. However, there is still a long way to go to achieve full self-driving vehicles, capable of dealing with any scenario without human intervention. To this end, advances in control, navigation and, especially, environment perception technologies are yet required. In particular, the detection of other road users that may interfere with the vehicle’s trajectory is a key element, since it allows to model the current traffic situation and, thus, to make decisions accordingly. The objective of this thesis is to provide solutions to some of the main challenges of on-board perception systems, such as extrinsic calibration of sensors, object detection, and deployment on real platforms. First, a calibration method for obtaining the relative transformation between pairs of sensors is introduced, eliminating the complex manual adjustment of these parameters. The algorithm makes use of an original calibration pattern and supports LiDARs, and monocular and stereo cameras. Second, different deep learning models for 3D object detection using LiDAR data in its bird’s eye view projection are presented. Through a novel encoding, the use of architectures tailored to image detection is proposed to process the 3D information of point clouds in real time. Furthermore, the effectiveness of using this projection together with image features is analyzed. Finally, a method to mitigate the accuracy drop of LiDARbased detection networks when deployed in ad-hoc configurations is introduced. For this purpose, the simulation of virtual signals mimicking the specifications of the desired real device is used to generate new annotated datasets that can be used to train the models. The performance of the proposed methods is evaluated against other existing alternatives using reference benchmarks in the field of computer vision (KITTI and nuScenes) and through experiments in open traffic with an automated vehicle. The results obtained demonstrate the relevance of the presented work and its suitability for commercial use.La conducción autónoma está llamada a jugar un papel importante en los sistemas inteligentes de transporte de las próximas décadas. Las ventajas de su implementación a larga escala –disminución de accidentes, reducción del tiempo de trayecto, u optimización del consumo– han convertido su desarrollo en una prioridad para la academia y la industria. Sin embargo, todavía hay un largo camino por delante hasta alcanzar una automatización total, capaz de enfrentarse a cualquier escenario sin intervención humana. Para ello, aún se requieren avances en las tecnologías de control, navegación y, especialmente, percepción del entorno. Concretamente, la detección de otros usuarios de la carretera que puedan interferir en la trayectoria del vehículo es una pieza fundamental para conseguirlo, puesto que permite modelar el estado actual del tráfico y tomar decisiones en consecuencia. El objetivo de esta tesis es aportar soluciones a algunos de los principales retos de los sistemas de percepción embarcados, como la calibración extrínseca de los sensores, la detección de objetos, y su despliegue en plataformas reales. En primer lugar, se introduce un método para la obtención de la transformación relativa entre pares de sensores, eliminando el complejo ajuste manual de estos parámetros. El algoritmo hace uso de un patrón de calibración propio y da soporte a cámaras monoculares, estéreo, y LiDAR. En segundo lugar, se presentan diferentes modelos de aprendizaje profundo para la detección de objectos en 3D utilizando datos de escáneres LiDAR en su proyección en vista de pájaro. A través de una nueva codificación, se propone la utilización de arquitecturas de detección en imagen para procesar en tiempo real la información tridimensional de las nubes de puntos. Además, se analiza la efectividad del uso de esta proyección junto con características procedentes de imágenes. Por último, se introduce un método para mitigar la pérdida de precisión de las redes de detección basadas en LiDAR cuando son desplegadas en configuraciones ad-hoc. Para ello, se plantea la simulación de señales virtuales con las características del modelo real que se quiere utilizar, generando así nuevos conjuntos anotados para entrenar los modelos. El rendimiento de los métodos propuestos es evaluado frente a otras alternativas existentes haciendo uso de bases de datos de referencia en el campo de la visión por computador (KITTI y nuScenes), y mediante experimentos en tráfico abierto empleando un vehículo automatizado. Los resultados obtenidos demuestran la relevancia de los trabajos presentados y su viabilidad para un uso comercial.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Jesús García Herrero.- Secretario: Ignacio Parra Alonso.- Vocal: Gustavo Adolfo Peláez Coronad

    Reliable and safe autonomy for ground vehicles in unstructured environments

    Get PDF
    This thesis is concerned with the algorithms and systems that are required to enable safe autonomous operation of an unmanned ground vehicle (UGV) in an unstructured and unknown environment; one in which there is no speci c infrastructure to assist the vehicle autonomy and complete a priori information is not available. Under these conditions it is necessary for an autonomous system to perceive the surrounding environment, in order to perform safe and reliable control actions with respect to the context of the vehicle, its task and the world. Speci cally, exteroceptive sensors measure physical properties of the world. This information is interpreted to extract a higher level perception, then mapped to provide a consistent spatial context. This map of perceived information forms an integral part of the autonomous UGV (AUGV) control system architecture, therefore any perception or mapping errors reduce the reliability and safety of the system. Currently, commercially viable autonomous systems achieve the requisite level of reliability and safety by using strong structure within their operational environment. This permits the use of powerful assumptions about the world, which greatly simplify the perception requirements. For example, in an urban context, things that look approximately like roads are roads. In an indoor environment, vertical structure must be avoided and everything else is traversable. By contrast, when this structure is not available, little can be assumed and the burden on perception is very large. In these cases, reliability and safety must currently be provided by a tightly integrated human supervisor. The major contribution of this thesis is to provide a holistic approach to identify and mitigate the primary sources of error in typical AUGV sensor feedback systems (comprising perception and mapping), to promote reliability and safety. This includes an analysis of the geometric and temporal errors that occur in the coordinate transformations that are required for mapping and methods to minimise these errors in real systems. Interpretive errors are also studied and methods to mitigate them are presented. These methods combine information theoretic measures with multiple sensor modalities, to improve perceptive classi cation and provide sensor redundancy. The work in this thesis is implemented and tested on a real AUGV system, but the methods do not rely on any particular aspects of this vehicle. They are all generally and widely applicable. This thesis provides a rm base at a low level, from which continued research in autonomous reliability and safety at ever higher levels can be performed

    Multi-Sensor Fusion for 3D Object Detection

    Get PDF
    Sensing and modelling of the surrounding environment is crucial for solving many of the problems in intelligent machines like self-driving cars, autonomous robots, and augmented reality displays. Performance, reliability and safety of the autonomous agents rely heavily on the way the environment is modelled. Two-dimensional models are inadequate to capture the three-dimensional nature of real-world scenes. Three-dimensional models are necessary to achieve the standards required by the autonomy stack for intelligent agents to work alongside humans. Data driven deep learning methodologies for three-dimensional scene modelling has evolved greatly in the past few years because of the availability of huge amounts of data from variety of sensors in the form of well-designed datasets. 3D object detection and localization are two of the key requirements for tasks such as obstacle avoidance, agent-to-agent interaction, and path planning. Most methodologies for object detection work on a single sensor data like camera or LiDAR. Camera sensors provide feature rich scene data and LiDAR provides us 3D geometrical information. Advanced object detection and localization can be achieved by leveraging the information from both camera and LiDAR sensors. In order to effectively quantify the uncertainty of each sensor channel, an appropriate fusion strategy is needed to fuse the independently encoded point clouds from LiDAR with the RGB images from standard vision cameras. In this work, we introduce a fusion strategy and develop a multimodal pipeline which utilizes existing state-of-the-art deep learning based data encoders to produce robust 3D object detection and localization in real-time. The performance of the proposed fusion model is evaluated on the popular KITTI 3D benchmark dataset

    A Survey on Global LiDAR Localization

    Full text link
    Knowledge about the own pose is key for all mobile robot applications. Thus pose estimation is part of the core functionalities of mobile robots. In the last two decades, LiDAR scanners have become a standard sensor for robot localization and mapping. This article surveys recent progress and advances in LiDAR-based global localization. We start with the problem formulation and explore the application scope. We then present the methodology review covering various global localization topics, such as maps, descriptor extraction, and consistency checks. The contents are organized under three themes. The first is the combination of global place retrieval and local pose estimation. Then the second theme is upgrading single-shot measurement to sequential ones for sequential global localization. The third theme is extending single-robot global localization to cross-robot localization on multi-robot systems. We end this survey with a discussion of open challenges and promising directions on global lidar localization

    Intelligent Traffic Monitoring Systems for Vehicle Classification: A Survey

    Full text link
    A traffic monitoring system is an integral part of Intelligent Transportation Systems (ITS). It is one of the critical transportation infrastructures that transportation agencies invest a huge amount of money to collect and analyze the traffic data to better utilize the roadway systems, improve the safety of transportation, and establish future transportation plans. With recent advances in MEMS, machine learning, and wireless communication technologies, numerous innovative traffic monitoring systems have been developed. In this article, we present a review of state-of-the-art traffic monitoring systems focusing on the major functionality--vehicle classification. We organize various vehicle classification systems, examine research issues and technical challenges, and discuss hardware/software design, deployment experience, and system performance of vehicle classification systems. Finally, we discuss a number of critical open problems and future research directions in an aim to provide valuable resources to academia, industry, and government agencies for selecting appropriate technologies for their traffic monitoring applications.Comment: Published in IEEE Acces

    Detection of Power Line Supporting Towers via Interpretable Semantic Segmentation of 3D Point Clouds

    Get PDF
    The inspection and maintenance of energy transmission networks are demanding and crucial tasks for any transmission system operator. They rely on a combination of on-theground staff and costly low-flying helicopters to visually inspect the power grid structure. Recently, LiDAR-based inspections have shown the potential to accelerate and increase inspection precision. These high-resolution sensors allow one to scan an environment and store it in a 3D point cloud format for further processing and analysis by maintenance specialists to prevent fires and damage to the electrical system. However, this task is especially demanding to handle on time when we consider the extensive area that the transmission network covers. Nonetheless, the transition to point cloud data allows us to take advantage of Deep Learning to automate these inspections, by detecting collisions between the grid and the revolving scene. Deep Learning is a recent and powerful tool that has been successfully applied to a myriad of real-life problems, such as image recognition and speech generation. With the introduction of affordable LiDAR sensors, the application of Deep Learning on 3D data emerged, with numerous methods being proposed every day to address difficult problems, from 3D object detection to 3D point cloud segmentation. Alas, state-of-the-art methods are remarkably complex, composed of millions of trainable parameters, and take several weeks, if not months, to train on specific hardware, which makes it difficult for traditional companies, like utilities, to employ them. Therefore, we explore a novel mathematical framework that allows us to define tailored operators that incorporate prior knowledge regarding our problem. These operators are then integrated into a learning agent, called SCENE-Net, that detects power line supporting towers in 3D point clouds. SCENE-Net allows for the interpretability of its results, which is not possible in conventional models, it shows an efficient training and inference time of 85 mn and 20 ms on a regular laptop. Our model is composed of 11 trainable geometrical parameters, like the height of a cylinder, and has a Precision gain of 24% against a comparable CNN with 2190 parameters.A inspeção e manutenção de redes de transmissão de energia são tarefas cruciais para operadores de rede. Recentemente, foram adotadas inspeções utilizando sensores LiDAR de forma a acelerar este processo e aumentar a sua precisão. Estes sensores são objetos de alta precisão que conseguem inspecionar ambientes e guarda-los no formato de nuvens de pontos 3D, para serem posteriormente analisadas por specialistas que procuram prevenir fogos florestais e danos à estruta eléctrica. No entanto, esta tarefa torna-se bastante difícil de concluir em tempo útil pois a rede de transmissão é bastasnte vasta. Por isso, podemos tirar partido da transição para dados LiDAR e utilizar aprendizagem profunda para automatizar as inspeções à rede. Aprendizagem profunda é um campo recente e em grande desenvolvimento, sendo aplicado a vários problemas do nosso quotidiano e facilmente atinge um desempenho superior ao do ser humano, como em reconhecimento de imagens, geração de voz, entre outros. Com o desenvolvimento de sensores LiDAR acessíveis, o uso de aprendizagem profunda em dados 3D rapidamente se desenvolveu, apresentando várias metodologias novas todos os dias que respondem a problemas complexos, como deteção de objetos 3D. No entanto, modelos do estado da arte são incrivelmente complexos e compostos por milhões de parâmetros e demoram várias semanas, senão meses, a treinar em GPU potentes, o que dificulta a sua utilização em empresas tradicionais, como a EDP. Portanto, nós exploramos uma nova teoria matemática que nos permite definir operadores específicos que incorporaram conhecimento sobre o nosso problema. Estes operadores são integrados num modelo de aprendizagem prounda, designado SCENE-Net, que deteta torres de suporte de linhas de transmissão em nuvens de pontos. SCENE-Net permite a interpretação dos seus resultados, aspeto que não é possível com modelos convencionais, demonstra um treino eficiente de 85 minutos e tempo de inferência de 20 milissegundos num computador tradicional. O nosso modelo contém apenas 11 parâmetros geométricos, como a altura de um cilindro, e demonstra um ganho de Precisão de 24% quando comparado com uma CNN com 2190 parâmetros

    Understanding a Dynamic World: Dynamic Motion Estimation for Autonomous Driving Using LIDAR

    Full text link
    In a society that is heavily reliant on personal transportation, autonomous vehicles present an increasingly intriguing technology. They have the potential to save lives, promote efficiency, and enable mobility. However, before this vision becomes a reality, there are a number of challenges that must be solved. One key challenge involves problems in dynamic motion estimation, as it is critical for an autonomous vehicle to have an understanding of the dynamics in its environment for it to operate safely on the road. Accordingly, this thesis presents several algorithms for dynamic motion estimation for autonomous vehicles. We focus on methods using light detection and ranging (LIDAR), a prevalent sensing modality used by autonomous vehicle platforms, due to its advantages over other sensors, such as cameras, including lighting invariance and fidelity of 3D geometric data. First, we propose a dynamic object tracking algorithm. The proposed method takes as input a stream of LIDAR data from a moving object collected by a multi-sensor platform. It generates an estimate of its trajectory over time and a point cloud model of its shape. We formulate the problem similarly to simultaneous localization and mapping (SLAM), allowing us to leverage existing techniques. Unlike prior work, we properly handle a stream of sensor measurements observed over time by deriving our algorithm using a continuous-time estimation framework. We evaluate our proposed method on a real-world dataset that we collect. Second, we present a method for scene flow estimation from a stream of LIDAR data. Inspired by optical flow and scene flow from the computer vision community, our framework can estimate dynamic motion in the scene without relying on segmentation and data association while still rivaling the results of state-of-the-art object tracking methods. We design our algorithms to exploit a graphics processing unit (GPU), enabling real-time performance. Third, we leverage deep learning tools to build a feature learning framework that allows us to train an encoding network to estimate features from a LIDAR occupancy grid. The learned feature space describes the geometric and semantic structure of any location observed by the LIDAR data. We formulate the training process so that distances in this learned feature space are meaningful in comparing the similarity of different locations. Accordingly, we demonstrate that using this feature space improves our estimate of the dynamic motion in the environment over time. In summary, this thesis presents three methods to aid in understanding a dynamic world for autonomous vehicle applications with LIDAR. These methods include a novel object tracking algorithm, a real-time scene flow estimation method, and a feature learning framework to aid in dynamic motion estimation. Furthermore, we demonstrate the performance of all our proposed methods on a collection of real-world datasets.PHDComputer Science & EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttps://deepblue.lib.umich.edu/bitstream/2027.42/147587/1/aushani_1.pd

    Robust 3D IMU-LIDAR Calibration and Multi Sensor Probabilistic State Estimation

    Get PDF
    Autonomous robots are highly complex systems. In order to operate in dynamic environments, adaptability in their decision-making algorithms is a must. Thus, the internal and external information that robots obtain from sensors is critical to re-evaluate their decisions in real time. Accuracy is key in this endeavor, both from the hardware side and the modeling point of view. In order to guarantee the highest performance, sensors need to be correctly calibrated. To this end, some parameters are tuned so that the particular realization of a sensor best matches a generalized mathematical model. This step grows in complexity with the integration of multiple sensors, which is generally a requirement in order to cope with the dynamic nature of real world applications. This project aims to deal with the calibration of an inertial measurement unit, or IMU, and a Light Detection and Ranging device, or LiDAR. An offline batch optimization procedure is proposed to optimally estimate the intrinsic and extrinsic parameters of the model. Then, an online state estimation module that makes use of the aforementioned parameters and the fusion of LiDAR-inertial data for local navigation is proposed. Additionally, it incorporates real time corrections to account for the time-varying nature of the model, essential to deal with exposure to continued operation and wear and tear. Keywords: sensor fusion, multi-sensor calibration, factor graphs, batch optimization, Gaussian Processes, state estimation, LiDAR-inertial odometry, Error State Kalman Filter, Normal Distributions Transform
    • …
    corecore