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A B S T R A C T

Autonomous driving is set to play an important role among intelli-
gent transportation systems in the coming decades. The advantages
of its large-scale implementation –reduced accidents, shorter commut-
ing times, or higher fuel efficiency– have made its development a pri-
ority for academia and industry. However, there is still a long way to
go to achieve full self-driving vehicles, capable of dealing with any
scenario without human intervention. To this end, advances in con-
trol, navigation and, especially, environment perception technologies
are yet required. In particular, the detection of other road users that
may interfere with the vehicle’s trajectory is a key element, since it
allows to model the current traffic situation and, thus, to make deci-
sions accordingly.

The objective of this thesis is to provide solutions to some of
the main challenges of on-board perception systems, such as ex-
trinsic calibration of sensors, object detection, and deployment on
real platforms. First, a calibration method for obtaining the relative
transformation between pairs of sensors is introduced, eliminating
the complex manual adjustment of these parameters. The algorithm
makes use of an original calibration pattern and supports LiDARs,
and monocular and stereo cameras. Second, different deep learning
models for 3D object detection using LiDAR data in its bird’s eye
view projection are presented. Through a novel encoding, the use
of architectures tailored to image detection is proposed to process
the 3D information of point clouds in real time. Furthermore, the
effectiveness of using this projection together with image features is
analyzed. Finally, a method to mitigate the accuracy drop of LiDAR-
based detection networks when deployed in ad-hoc configurations is
introduced. For this purpose, the simulation of virtual signals mim-
icking the specifications of the desired real device is used to generate
new annotated datasets that can be used to train the models.

The performance of the proposed methods is evaluated against
other existing alternatives using reference benchmarks in the field of
computer vision (KITTI and nuScenes) and through experiments in
open traffic with an automated vehicle. The results obtained demon-
strate the relevance of the presented work and its suitability for com-
mercial use.

keywords: 3D object detection; computer vision; multi-modal fu-
sion; convolutional neural networks; autonomous driving
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R E S U M E N

La conducción autónoma está llamada a jugar un papel importante en
los sistemas inteligentes de transporte de las próximas décadas. Las
ventajas de su implementación a larga escala –disminución de acci-
dentes, reducción del tiempo de trayecto, u optimización del consumo–
han convertido su desarrollo en una prioridad para la academia y
la industria. Sin embargo, todavía hay un largo camino por delante
hasta alcanzar una automatización total, capaz de enfrentarse a cual-
quier escenario sin intervención humana. Para ello, aún se requieren
avances en las tecnologías de control, navegación y, especialmente,
percepción del entorno. Concretamente, la detección de otros usuar-
ios de la carretera que puedan interferir en la trayectoria del vehículo
es una pieza fundamental para conseguirlo, puesto que permite mod-
elar el estado actual del tráfico y tomar decisiones en consecuencia.

El objetivo de esta tesis es aportar soluciones a algunos de los
principales retos de los sistemas de percepción embarcados, como
la calibración extrínseca de los sensores, la detección de objetos, y su
despliegue en plataformas reales. En primer lugar, se introduce un
método para la obtención de la transformación relativa entre pares
de sensores, eliminando el complejo ajuste manual de estos parámet-
ros. El algoritmo hace uso de un patrón de calibración propio y da
soporte a cámaras monoculares, estéreo, y LiDAR. En segundo lugar,
se presentan diferentes modelos de aprendizaje profundo para la de-
tección de objectos en 3D utilizando datos de escáneres LiDAR en su
proyección en vista de pájaro. A través de una nueva codificación, se
propone la utilización de arquitecturas de detección en imagen para
procesar en tiempo real la información tridimensional de las nubes
de puntos. Además, se analiza la efectividad del uso de esta proyec-
ción junto con características procedentes de imágenes. Por último,
se introduce un método para mitigar la pérdida de precisión de las
redes de detección basadas en LiDAR cuando son desplegadas en
configuraciones ad-hoc. Para ello, se plantea la simulación de señales
virtuales con las características del modelo real que se quiere utilizar,
generando así nuevos conjuntos anotados para entrenar los modelos.

El rendimiento de los métodos propuestos es evaluado frente a
otras alternativas existentes haciendo uso de bases de datos de refer-
encia en el campo de la visión por computador (KITTI y nuScenes),
y mediante experimentos en tráfico abierto empleando un vehículo
automatizado. Los resultados obtenidos demuestran la relevancia de
los trabajos presentados y su viabilidad para un uso comercial.

palabras clave: detección de objetos 3D; visión por computador;
fusión multimodal; redes convolucionales; conducción autónoma
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1
I N T R O D U C T I O N

The invention of the automobile at the end of the nineteenth cen-
tury was a revolution for the mobility of human beings: longer and
longer distances could be covered in less time, so people became more
connected than ever before. The comfort and ease of use of the new
motorized vehicles soon led to high demand for private cars. Since
then, the number of units in use has increased steadily decade after
decade, to become the most popular means of transport.

The extended use of cars brought many benefits to our lives, such
as greater independence, more travel opportunities, or shorter com-
muting times. However, these advantages came at a non-negligible
cost: as driving spread so did the number of injuries and deaths
caused by road accidents.

To reduce this problem, major efforts are made on three levels. First,
manufacturers evolve the design of vehicles over time so that they are
safer for both the occupants and vulnerable road users (i. e., pedestri-
ans and cyclists). Second, governments make heavy investments to
upgrade road infrastructure. Last, strict driving regulations are ap-
proved to educate drivers’ behavior and limit risk situations.

Nevertheless, there is still a key element in most traffic accidents
that is not addressed by any of these measures: the human factor.
Whenever a human being is the centerpiece of the control of the ve-
hicle, the absence of casualties cannot be guaranteed, no matter how
safe the car is or the road it is driving on.

Fortunately, the first Advanced Driver Assistance Systems (ADAS)
began to be introduced in the mid-twentieth century, with the aim
to assist the driver while driving. This trend, started with the adop-
tion of the Anti-lock Braking System (ABS), was progressively devel-
oped through the integration of new technologies able to identify
objects in blind spots, detect unintentional lane changes, or maintain
a certain speed without becoming too close to the preceding vehicle,
for instance. Nowadays, ADAS are critical components of our vehi-
cles’ safety systems. In fact, the European Union has recently made
mandatory the implementation of ten of these technologies in all cars
manufactured from July 2022 onwards.

Lately, the rapid development of sensors, artificial intelligence, and
Graphic Processing Units (GPUs) have opened up the possibility to
further reduce human intervention in the driving task. The promising
results of Deep Neural Networks (DNNs) for scene understanding,
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planning, and control suggest that fully autonomous vehicles will be
a reality in the near future.

The research presented in this document aims to push forward the
field of multi-modal 3D object detection for automated vehicles, pay-
ing attention to the different stages in the perception pipeline. Thus,
the tasks of sensor calibration, object classification and location, and
deployment into real vehicles are studied. Detailed experimentation
is provided to support the analysis of the proposed methods.

1.1 road transportation challenges

Though modern vehicles mount a myriad of technologies to ease driv-
ing and prevent traffic accidents, road transportation systems still
have some major challenges ahead.

1.1.1 Traffic accidents

According to World Health Organization (WHO), road fatalities rank
in the top ten of world’s most common causes of death [66], as shown
in Figure 1.1. This tragedy is even more dramatic considering people
of 5 to 29 years old, where it holds the first place. Moreover, an ad-
ditional 20 to 50 million people are injured in traffic accidents every
single year. From an economic perspective, studies estimate that the
impact of road crashes accounts for around 3% of the global Gross
Domestic Product (GDP).

Figure 1.1: Worldwide deaths by cause in 2017 [147] (license CC BY 4.0)

Despite deaths caused by road crashes affect all countries world-
wide, its impact is not proportionally distributed with the number of
vehicles in use per world region. As can be observed in Figure 1.2,
low- and medium-income areas have greater death rates than more
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developed countries, although the volume of registered cars is much
lower. This situation may be explained by the differences in the qual-
ity and maintenance of the road infrastructure, the lifespan of vehi-
cles, and the enforcement of traffic regulations [67].

Figure 1.2: Death rate per 100K population by WHO region [44]

Recent studies on European road safety [45] show that among all
traffic participants, cars are the kind of vehicle mostly involved in
road crashes, participating in almost 50% of all fatal accidents (see Fig-
ure 1.3). However, data collected by the WHO indicates that Vulnerable
Road Users (VRUs), such as pedestrians and cyclists, stand for the ma-
jority of deaths. This uneven distribution of fatalities makes it nec-
essary to focus on improving car designs to reduce the damage to
non-occupants in the event of a collision, as well as to identify the
human factors associated to the higher involvement of four-wheeled
vehicles in traffic accidents so that they can be prevented.

Figure 1.3: Road accident fatalities by type of user [45]

In this regard, the national report on road safety in Spain draws
that 90% of car accidents are linked to driver errors [128]. Concretely,
although the causes of most road accidents cannot be easily explained
by a single reason, a set of concurrent human factors have been iden-
tified to stand out over the rest: driver distraction, speeding, and alco-
hol consumption are present in at least the 20-30% of fatal crashes, as
shown in Figure 1.4. Even though weather and road conditions may
also play a major role, the fact that the driver action is so often in-
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volved brings hope that autonomous driving will drastically reduce
the number of traffic accidents and, thus, road fatalities.

Figure 1.4: Presence (%) of concurrent human factors in road accidents in
Spain in 2019 [128]

1.1.2 Climate footprint

The second major challenge of road transportation systems is related
to climate. The WHO estimates that 7 million peoples die every year
of respiratory diseases associated with air pollution [82]. Besides, 90%
of the world population lives exposed to air whose quality is below
the health standards.

The contribution of road transport to these numbers is not negligi-
ble at all. According to the World Resources Institute (WRI), vehicles
are responsible for 11.9% of total greenhouse gas emissions, more
than twice as much as all other means of transport combined [20].
Despite the magnitude, this amount only accounts for exhaust gases
and does not consider those derived from the manufacturing process.
A recent report from the ICCT1 puts the number of deaths by tailpipe
emissions from on-road vehicles at around 245.000 in 2015 [3], with
attributable health damages of 625 billion US$.

In view of this information, it is understandable that there is a
growing interest in promoting the development of Electric Vehicles
(EVs), which will have zero emissions while driving. However, if the
transition to EVs is not coupled with a decarbonization of the energy
sector, air pollution will not be reduced but relocated to non-urban
areas with power plants.

1.1.3 Road networks congestion and traveling times

An average commuter in the USA spends 15 days a year in their ve-
hicle, 54 hours of which are stuck in a traffic jam [1]. However, the
impact of road congestion goes far beyond traveling times. A study

1 International Council on Clean Transportation



1.2 automated driving 7

from the Texas Transportation Institute [170] on mobility in the USA
indicates that time spent in congested networks caused a total waste
of 3.5 billion gallons of fuel just in 2019. For every commuter, being
stuck in traffic meant 22 extra gallons (83 liters) of consumption and
an annual average loss of 1.170$. Considering countrywide informa-
tion, the total cost amounted to 20 billion dollars. Besides, the addi-
tional use of fuel derived from stationary or slow-moving traffic also
has climate consequences. In the same year, an excess of 36 million
tons of greenhouse gas emissions was produced.

Although poor road infrastructure is heavily associated with jams
[48], most causes are linked to human actions. As shown in Figure 1.5,
traffic accidents are responsible of 25% of total congestion. Further-
more, some other factors also point to people’s limitations as being
ultimately responsible. For instance, the weather does not often pro-
duce delays through its direct environmental action, but because it
affects drivers’ behavior. Similarly, a bad schedule of traffic lights sig-
naling or road works may generate slow flows of vehicles.

Hence, even though road networks congestion constitutes a ma-
jor challenge of road transportation systems which requires more re-
search and investment at the infrastructure level, the automation of
cars and the integration of technologies like vehicle-to-infrastructure
communication may alleviate the problem and mitigate its conse-
quences.

Figure 1.5: Causes of road networks congestion in the USA [48]

1.2 automated driving

The seek for increasing automation started with an emerging neces-
sity to improve the safety of on-road vehicles to protect both the oc-
cupants and other road participants. In the 1950s, the first assistive
systems were developed to ease some tasks of the driving operation
and continue evolving over time to achieve the actual ADAS, which
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are usually found in commercial cars. In the last decade, the idea of
fully autonomous vehicles seems no longer unattainable in near fu-
ture thanks to the progress made in the field of machine learning,
which allow processing the vast amount of data captured by modern
sensors to obtain an increasingly accurate scene understanding. This
accurate perception should permit to automate the navigation control
and, thus, overcome the consequences of drivers’ limitations.

1.2.1 ADAS

Since the first cars started to hit the roads, the protection of drivers,
passengers, and people outside has been a major concern for soci-
ety as a whole. Passive systems such as crumple zones or laminated
windshields were soon mounted in commercial units to reduce in-
juries in case of an accident. More advanced features like seatbelts
and airbags were later built to further improve the safety of vehicles
occupants. The growing demand for these systems, along with the de-
velopment of the necessary technology, naturally led to the creation of
active systems tailored to prevent the crash from happening instead
of reducing its consequences [16].

These active systems, also known as Advanced Driver Assistance
Systems, are usually composed of a combination of hardware and
software components and aim to aid the driver in different tasks,
including parking, collision avoidance, or lane changes. Concretely,
some of the most remarkable ADAS are:

Anti-lock Braking System (ABS): invented in 1978, ABS was built
to prevent the locking of the wheels during braking, so the traction
with the surface is not lost, and the driver can keep control of the
vehicle.

Navigation system: early versions came to the market around
1990 with the aim to free the driver from routing tasks so that the
efforts could be focused on the actual driving operation. Global Posi-
tioning System (GPS) sensors were used for localization.

Parking Assistance System (PAS): in the mid-1990s, ultrasonic
sensors were mounted into commercial vehicles with the purpose of
aiding drivers while parking. The system was tailored to guide the
process by emitting a sound when the distance to walls or objects
close to the parking lot becomes to short.

Adaptive Cruise Control (ACC): the development of the elec-
tronic brake and drive control, together with the reduction of the
price of RADAR technology, led to the development of ACC in 1999.
This ADAS allowed to partially automate some driving functions by
keeping a selected speed while maintaining a safe distance to the next
vehicle.
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Lane Departure Warning (LDW) system: cars were equipped
with real-time cameras in order to detect the lane markings and warn
the driver in case of an involuntary change was about to happen. The
first versions of the LDW appeared in the early 2000s.

Collision Avoidance System (CAS): introduced in 2010, these sys-
tems monitor the speed of the own vehicle and the preceding one and
warn the driver to brake in case the distance is about to be reduced
significantly so that the crash can be prevented. A combination of
inexpensive LiDARs (close range) and RADAR (long-range) sensors
are typically used.

As can be observed, the complexity of tasks these assistance sys-
tems are able to help with has notably increased over the years, en-
dowing the automobiles with a higher degree of understanding of
the traffic situation. These features have not only allowed increasing
the safety of cars but are also key technologies for the development
of future autonomous vehicles.

1.2.2 Self-driving cars

The advent of self-driving cars seems the natural evolution from ADAS

as soon as more and more mature technologies become available. Fol-
lowing the advances in science, the degree of human intervention
while driving may be gradually reduced until the need for a per-
son behind the wheel is eventually eliminated. To provide a common
taxonomy for this process, the former Society of Automotive Engi-
neers (SAE), now SAE International, defines a set of six autonomy
levels [83], summarized in Table 1.1. This classification is based on
four criteria:

Dynamic driving task (DDT): all of the real-time operational and
tactical functions required to operate a vehicle in on-road traffic, in-
cluding lateral and longitudinal control, maneuvering, or environ-
ment monitoring.

Object and Event Detection and Response (OEDR): subtask of
the DDT in charge of detecting the objects and events in the environ-
ment and executing the necessary response actions to perform the
DDT (i. e.. lane change, overtaking).

DDT-fallback: the response after a system failure while executing
the DDT or after exiting the Operational Design Domain (ODD). It
may perform the DDT (user fallback) or achieve a minimal risk con-
dition (user or system fallback).

Operational Design Domain (ODD): the set of conditions under
a driving automation system is designed to operate. It may refer to
limitations such as road kind, weather conditions, congestion level,
etc.
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Table 1.1: Summary of the different automation levels defined by SAE Inter-
national [83]

Lvl. Name Drive Monitor Fallback ODD

0

No
Human Human Human n/a

Automation

1

Driver Human &
Human Human Limited

Assistance System

2

Partial
System Human Human Limited

Automation

3

Conditional
System System Human Limited

Automation

4

High
System System System Limited

Automation

5

Full
System System System Unlimited

Automation

Technologies belonging to some of the automation levels defined
by SAE can be found in present commercial vehicles. Lane-keeping as-
sistance systems featured in many mid-height range units are usually
part of the first level, as they apply lateral corrections to the vehicle
to prevent a lane change, but the throttle and braking are performed
by the driver. An evolution of this technology, namely Highway Driv-
ing Assist (HDA), adds the capability to longitudinally control the
vehicle, thus being a case of Partial Automation. Other sound solu-
tions such as Tesla Autopilot and Cadillac Super Cruise also qualify
as Level 2. Recently, Japan authorities certified the Honda Legend as
a conditional automated car thanks to its Traffic Jam Pilot system, be-
ing the first in the world to achieve it. This model is able to control
brakes, acceleration, and steering to drive centered on a lane during
a traffic jam while monitoring the surroundings. Human attention
is not required throughout the process, but the system relies on the
driver in case of failure. Although no other Level 3 vehicles are avail-
able in the market, other actors have directly targeted the next tier:
high automation. This is the case of projects such as Waymo, Aurora,
and nuTonomy robo-taxis, which are testing their technology by of-
fering autonomous rides in predefined limited areas (geofencing). In
all cases, an on-board safety driver is yet required to take control in
case of a risky situation arises. Though the results of these prototypes
are promising, there is still a long road ahead towards achieving full
automation.
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1.3 on-board perception

The automation of cars entails the creation of a set of different tech-
nologies geared towards removing the need for a human behind the
wheel. Consequently, all tasks traditionally carried out by drivers
have to be replaced, including positioning, navigation, control, or en-
vironment monitoring. Although some of these issues are already
solved, mimicking human-like perception is still a daunting chal-
lenge, as it requires not only an outstanding accuracy but also the
adaptability to work in a wide range of driving situations such as
extreme weather, the presence of unknown objects in the roadway, or
unpredictable road conditions.

None of the advances on the automation level of on-road vehicles
would have been possible without the recent evolution of sensors and
perception algorithms. In the last decade, the appearance of efficient
and reliable devices such as modern LiDARs, able to complement the
information gathered by cameras with accurate 3D measurements of
the surroundings, has laid the groundwork for the development of
precise detection methods that enable safe navigation.

1.3.1 Sensors

The requirements for a fully autonomous vehicle (Level 5) entail the
ability to drive in any given situation. This includes that the system
should be capable of dealing with different weathers and illumina-
tion conditions, as well as supporting distinct road topologies with-
out human intervention. Consequently, the selected sensor setups are
usually composed of a set of heterogeneous devices whose joint use
can provide coverage for all the potential scenarios. The combination
of several modalities allows not only to switch between the sensors if
the information of any of them becomes unavailable but to fuse their
data in order to build more robust perception algorithms whenever
is possible.

Even though every manufacturer has a different perception pro-
posal and, thus, there is not a standard sensor setup to be equipped
in an automated vehicle, most of them rely on the same kinds of sen-
sors:

Cameras are passive sensors able to project the 3D world infor-
mation into a 2D plane. According to the electromagnetic spectrum
where they operate, cameras can be classified as visible (400-780nm)
or infrared (IR) (780nm-1mm). Despite the lack of the third dimen-
sion, monocular devices capture rich cues about the visual appear-
ance of objects. The ability to gather shape, color (or temperature),
and texture information is sufficient for tasks such as the detection
and classification of objects on the road or the identification of traffic
signs. Other advantages such as their high resolution, real-time per-
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formance, and low cost make them a reasonable choice for perception
in automated vehicles.

On the other hand, stereo cameras are composed of two lenses
pointing to the same scene and mimic human vision to estimate the
depth of objects in the scene by finding correspondences between the
pair of images. These systems inherit the benefits of their monocular
counterpart and are able to obtain information about the third coor-
dinate. The accuracy of range measurements decreases with distance
and is not comparable to the one provided by active sensors.

Regardless of the type, their operation is heavily affected by ad-
verse weather conditions. As for illumination changes, although color
cameras suffer in extreme bright or dark conditions, they are usually
preferred to IR cameras as visual characteristics are generally more
significant than those derived from thermal differences.

LiDAR is the acronym of LIght Detection And Ranging, and names
a set of active sensors capable of measuring distances to objects by
computing the round-trip time of the emitted light beams, typically
belonging to the near-infrared spectrum (NIR). A rotating mirror is
used to change the horizontal angle from where an array of laser
pulses are triggered, usually spanning for 360°. The readings from a
full revolution generate a 3D point cloud representing the geometry
of the scene. The number of layers of commercial devices often ranges
from 16 to 128, offering different vertical distributions.

While laser scanners are able to provide both accurate 3D shape
and reflectivity information of the surroundings and have an operat-
ing distance up to 200m in the absence of occlusions, they also present
some drawbacks. First, the captured point cloud gets warped when
driving at high speeds, as the beams emitted at different horizon-
tal angles do not share the same origin due to vehicle displacement.
Moreover, objects composed of specular surfaces are difficult to be
detected as the laser signals are deflected. Last, the vertical sparsity
of the cloud leaves parts of the scene uncovered where small objects
may be overlooked.

In the last years, research is focused on building solid-state LiDARs,
which get rid of the rotating mirror and capture all readings at once,
thus solving the cloud deformation problem of actual devices when
mounted on moving platforms. Besides, unlike the preceding models,
their shape does not compromise the vehicles’ design.

RADAR stands for Radio Detection And Ranging and works simi-
larly to LiDAR devices: a transmitter produces electromagnetic (EM)
waves that are reflected whenever they collide with an obstacle. The
returning waves are captured by the receiver, and the position of the
target is estimated based on the direction of the reflected signal and
its time of flight. In addition, through the Dopler effect, the speed of
the detected target is also retrieved. Thanks to the use of EM tech-
nology, these active sensors can work in all weather, as the waves are
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mostly unaffected by rain, fog, or snow phenomena. On the contrary,
radars are very sensitive to the geometry and reflectivity of objects,
which may lead to false positive and false negative detections. Be-
sides, their coarse horizontal resolution can occasionally hinder the
identification of close objects at large distances [119].

Ultrasound sensors are the third kind of active range sensors usu-
ally mounted on vehicles. Their operating principle is identical to the
one of the LiDAR, but ultrasonic sound waves are used instead. Due
to signal attenuation and dispersion, the distance measurements are
limited to a very close range. Nonetheless, the low cost of these sen-
sors makes them an inexpensive solution for non-critical slow-speed
maneuvers such as automatic parking.

A summary of the characteristics of the aforementioned sensors
from a task suitability perspective on perception for autonomous driv-
ing is provided in Figure 1.6.

Figure 1.6: Features of exteroceptive automotive sensors. Figure from [180]

1.3.2 Perception systems

The advances on the capabilities of machine perception in the automo-
tive sector are not only related to the development of better sensors.
The evolution in hardware components such as GPUs, which are key
for efficient image analysis, and the emergence of public annotated
datasets have triggered an unprecedented leap forward in the devel-
opment of more complex neural networks models able to increase the
vehicle’s awareness of the traffic situation.
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Nonetheless, for self-driving cars to become a reality, on-board per-
ception systems need to provide reliable information in real-time to
enable safe and precise navigation and control. To this end, traffic
signaling has to be properly identified, and detection and tracking
of the rest of the traffic participants are required. Besides, accurate
positioning of the vehicle on the road is mandatory.

Following this view, a set of separate tasks are usually defined
to compose the final perception pipeline. However, end-to-end ap-
proaches where an artificial intelligence model takes all sensors infor-
mation as input and provides the control commands as output are
also being explored [21]. Even though the latter has shown some po-
tential, this approach presents a significant disadvantage: it lacks ex-
plainability. Whenever a failure or unexpected behavior occurs, there
is no possibility to blame any specific component, thus being harder
to understand and correct the system limitation.

For this reason, the most accepted line of work adheres to the first
methodology, having different dedicated processes whose partial out-
comes are monitored. Some of the key components of an autonomous
vehicle’s perception pipeline are:

Localization lets the vehicle know its position and orientation in
the world. This module typically relies on GPS and IMUs information,
which offers sufficient precision in most navigation use cases. How-
ever, certain scenarios, such as urban canyons where the signal gets
degraded by reduced satellite visibility, require the use of other lo-
calization techniques using, for instance, semantic road features cap-
tured by vision sensors. On-board perception sensors are also used
for better positioning when High-Definition (HD) maps of the area
are available.

Object detection deals with both the localization and classifica-
tion of elements in the scene. It is usually responsible for providing
an accurate 3D characterization of the objects around, which may
range from other road users to traffic signaling and road marking.
Parameters describing detections usually include category, position,
orientation, and size.

Tracking stage is in charge of endowing previously detected ob-
jects, also known as agents, with a consistent identifier along time, as
well as computing its velocity and most probable trajectory.

Although all these tasks are key to reach full automation, object
detection stands as the most critical stage. On the one hand, the vari-
ability of obstacles to be found imposes high generalization require-
ments to any detection model. On the other hand, other tasks of the
pipeline heavily rely on its output. For instance, HD maps should
be updated to reflect persistent changes on elements of the road in-
frastructure identified at the object detection stage, and the tracking
of agents cannot be carried out with an unstable performance of the
detection process.
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1.4 objectives

This thesis falls in the field of perception systems for automated driv-
ing, focused on multi-modal object detection using information from
LiDAR and camera devices. To this end, a holistic approach was fol-
lowed, with the goal of producing significant contributions along the
entire perception pipeline, from the sensor association stage to the de-
ployment of algorithms on real platforms, with a particular interest
in the development of DNNs frameworks for 3D object detection.

For that purpose, the following objectives are set:

1. To provide a practical and efficient solution for the problem of
estimating the extrinsic parameters between common sensor se-
tups used for on-board perception, as an accurate calibration is
an essential requisite before fusing data from different devices.

2. To propose innovative representations of LiDAR data capable
of mitigating the domain gap of detection algorithms caused by
the differences in the characteristics of laser scanners while pre-
serving salient features that enable the identification of multiple
object categories.

3. To study the use of image-based network architectures to per-
form 3D Object detection using LiDAR information so that strict
real-time and precision requirements of the automotive indus-
try can be fulfilled.

4. To explore new LiDAR-camera fusion strategies to maximize
the benefit from the joint use of geometrical and appearance
features captured by these complementary modalities.

5. To address some challenges related to the performance of ex-
isting object detection approaches when used on real domains
with significant differences from those found on well-known
detection datasets.

6. To deploy and evaluate these advances in open-traffic scenar-
ios, providing a deep understanding of their performance and
usability in real use cases.

1.5 outline

This thesis is structured in three parts, which in turn are divided into
different chapters. The content of each chapter is summarized below:

Part i: Problem statement

• Chapter 1 has provided an introduction to the context in which
this work is framed, stating the motivation of the research and
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including the set of specific objectives to be achieved throughout
the thesis.

• Chapter 2 presents a detailed literature review of the most re-
cent findings on perception for autonomous driving. The chap-
ter comprises most popular driving datasets, methods for the
extrinsic calibration of sensor setups, and comprehensive analy-
sis of state-of-the-art deep learning approaches to both 2D and
3D object detection.

Part ii: Proposed methods

• Chapter 3 addresses the extrinsic calibration problem between
sensors commonly used for perception in automotive applica-
tions. An original method to automatically compute the relative
position between camera and LiDAR devices is presented.

• Chapter 4 is devoted to discussing the suitability of the Li-
DAR BEV projection for 3D object detection. Different detection
frameworks are proposed to exploit the features of a novel cell
encoding, including single and multi-modal architectures. Com-
prehensive experimental results are provided to assess their re-
spective performance.

• Chapter 5 tackles some of the domain adaptation issues of
LiDAR-based 3D detection pipelines. An approach to gener-
ate derived training samples from existing annotated datasets
is introduced, so available benchmarks can be used to deploy
models on vehicles using different laser devices. Experimental
analysis both in public datasets and a research platform in open
traffic is presented.

Part iii: Concluding remarks

• Chapter 6 includes the general conclusions of the work de-
scribed in this document and poses different lines of research
which may be explored to further extend the findings of this
thesis.



2
R E L AT E D W O R K S

Perception systems have always played a key role in the path
towards self-driving cars. Through the use of exteroceptive sensors,
many driver assistance systems were developed to endow vehicles
with a certain automation level by augmenting the degree of under-
standing of the traffic scene. The arrival of more advanced sensors, to-
gether with the increased computational capabilities of modern hard-
ware, opened the door for building more complex algorithms able to
exploit the new amount of information.

Artificial Intelligence (AI) models, which learn from data, soon ben-
efited from these advances. Among the different machine learning
categories, supervised methods have historically shown the most suit-
able for machine vision problems. These approaches, which are taught
to establish a relationship between the inputs and the desired out-
puts, require a significant number of labeled samples to perform well
over unknown data. In particular, the training of DNNs demands a
vast amount of examples when the complexity of the true function is
high, which is the case for automotive applications.

In this chapter, a survey of the different topics related to the matter
of this thesis is presented. First, a revision of the major milestones
in the history of self-driving technologies is given, with a focus on
the evolution of on-board machine vision. Second, the most relevant
public datasets which have been key to the development of perception
stacks for autonomous cars are introduced. Then, a review of the
latest works on automatic extrinsic calibration is provided. Finally,
the state of the art in DNNs applied to 2D and 3D object detection is
included.

2.1 autonomous driving

The dream of autonomous driving dates back to the beginning of the
twentieth century. In 1925, the first driverless experiment took place.
A vehicle with no driver at the wheel was teleoperated using radio
signals sent from another car. Since then, many others pursued the
idea of removing the human intervention while driving, most of them
using ad-hoc infrastructure elements to guide vehicles. Nonetheless,
it took six more decades for researchers to start building prototypes
capable of acting over the vehicle control based on a real-time percep-
tion of the environment.

This chapter includes content from [8]

17
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In 1989, Pomerleau et al. [138] presented a three-layer neural net-
work able to generate control commands by using a synchronized
pair of camera and rangefinder called ALVINN1. Their test platform,
Navlab, was able to follow a road under certain field conditions.
In 1995 at the same place, Carnegie Mellon University and Assist-
ware Technology joined efforts to develop RALPH2 [139], a percep-
tion method able to determine the road curvature and compute the
lateral offset with respect to the lane center using a single image
stream. A year later, their vehicle platform was able to drive from
Washington DC to San Diego using this system with minimal human
intervention.

In parallel, the Programme for a European traffic of highest efficiency and
unprecedented safety (PROMETHEUS) was launched in 1987. The main
agenda was focused on boosting the development of software and
hardware to endow vehicles with intelligence and, hence, increase
their automation. The project lasted for eight years and led to numer-
ous advances. For instance, in 1994 Dickmanns et al. [40] presented
an object and road detection and tracking algorithm to assist with the
autonomous operation of a passenger car Mercedes 500 SEL. In the
final demonstration, the car, equipped with four video cameras, was
able to drive more than a thousand miles in a round-trip from Mu-
nich, Germany, to Copenhagen, Denmark, with an average interven-
tion distance of 9km. Moved by this unprecedented success, Franke et
al. [50] extended the driving domain to urban scenarios shortly after.

Albeit self-driving technologies improved significantly with these
projects, the real take-off in this field occurred when the Defense Ad-
vanced Research Projects Agency (DARPA) of the US Department of
Defense called for a set of three races where the competing cars had to
operate autonomously. The $1M prize for the winner of the first com-
petition, where vehicles were required to drive off-road more than
200km from California to Nevada, attracted the attention of the main
American Universities and the automotive sector. In this first edition,
no prize was given as all robots crashed early in the course, and the
longest driven distance was less than 12km. It was assessed that the
presented perception stacks were not mature enough to accurately
detect the road and objects for a safe navigation.

The year after, the second DARPA Grand Challenge was held and,
this time, the vehicles of five participating teams managed to com-
plete the route. The Standford University ranked first, followed by
two entries of Carnegie Mellon University (CMU). The winning robot
Stanley [172, 173] mounted a myriad of sensors including five laser
scanners, two radars, and a monocular color camera to build occu-
pancy maps defining the road free of obstacles ahead of the vehicle.
A similar setup was used by CMU vehicles, though the use of a stereo

1 ALVINN: Autonomous Land Vehicle In a Neural Network
2 RALPH: Rapidly Adapting Lateral Position Handler
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camera provided dense depth and color information in the driving di-
rection. A special mention is required for the sensor configuration of
Team TerraMax [22, 130], which finished in the fifth position. Their
vehicle made use of a four-layer LiDAR device, drawing the path for
upcoming perception pipelines.

After the success of the second race, DARPA announced the last
of the series for 2007: the Urban Challenge. In this edition, teams
were asked to complete the 96km course in less than 6 hours. Apart
from following the route, vehicles needed to deal with other road par-
ticipants, including non-automated cars, drive through intersections,
avoid obstacles, and obey traffic regulations. Boss vehicle [177, 178],
developed by the CMU and General Motors, won the competition.
The primary sensor of the robot was a Velodyne HDL-64, a 64-layer
LiDAR providing dense range measurements in a 360° HFOV, which
enables the detection and tracking of vehicles at long distances. A pic-
ture of the equipped robot can be observed in Figure 2.1. Although a
set of 16 additional sensors were used to complement this device, no
cameras were mounted. The lack of visual information was compen-
sated with the use of a precise world model. As dynamic rules like
traffic lights were not used, the benefits from the use of images could
be disregarded to alleviate the overall processing time.

Figure 2.1: View of the sensor configuration of the Boss vehicle at the
DARPA Urban Challenge in 2007 [178] © 2009 Springer

The impact of the DARPA races pushed forward the development
of autonomous vehicle technologies, and many projects flourished in
the subsequent years. In 2009, the Google car project was launched
after hiring some of the talented researchers who participated in the
Grand Challenges. A year later, Vislab’s vehicle [17] was able to au-
tonomously drive from Parma, Italy, to Shanghai, China, by following
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a leading car operated by a human. Due to the magnitude of the trip
(over 13,000km), no world model was used. The robot was able to
perform road and object detection making use of several LiDAR de-
vices and vision systems. This same laboratory set a new milestone
just four years later when they presented a real-time perception sys-
tem capable of dealing with unrestricted urban scenarios in open traf-
fic under the PROUD project [24]. The sensing devices used by the
BRAiVE prototype are displayed in Figure 2.2.

Figure 2.2: Sensor setup of the BRAiVE platform for the PROUD test[24],
composed by cameras (in yellow), single-line (in green) and four-
layer (in purple) LiDAR devices. © 2015 IEEE

In 2011, Team AnnieWAY [59] from the Karlsruhe Institut of Tech-
nology (KIT), Germany, won the Grand Cooperative Driving Chal-
lenge [99]. In this competition, both the performance of a longitudinal
controller and vehicle-to-vehicle (V2V) communication was assessed
in a platooning setup. The robots were required to follow the pre-
ceding vehicle at a safety distance by exchanging their positions and
velocities. The winning team, led by Geiger, was later responsible
for releasing the first benchmark tailored to self-driving perception
[61]. Two years after, KIT perception technology, founded on their ex-
perience in DARPA Challenges, was embedded in a Mercedes Benz
S-Class to perform a 103km long test in open traffic [212]. The percep-
tion sensors mounted in this vehicle are shown in Figure 2.3.

Driven by the momentum of research achievements, a set of com-
mercial solutions have emerged in the last years. In 2014, Tesla re-
leased the first version of Autopilot3, a Level 2 automated driving
solution equipped in their manufactured vehicles. This system is an
evolving software that aims to reach Level 5 automation using inex-
pensive sensing units (e. g., cameras and ultrasonic sensors) so that
the self-driving technology is affordable for the customers. Other
competitors such as Waymo4 (former Google’s car project) rely on
complementary modalities such as LiDAR, radar, and vision to guar-
antee a robust perception performance. Waymo’s robotaxis have been
operating successfully in geofenced areas in the USA since 2017. More
recently, many car manufacturers have partnered with other technol-

3 https://www.tesla.com/autopilot

4 https://waymo.com/waymo-driver/

https://www.tesla.com/autopilot
https://waymo.com/waymo-driver/
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Figure 2.3: On-board sensors of the experimental vehicle used at the Bertha
Benz historical route test [212] © 2014 IEEE

ogy companies to boost the development of their own autonomous
driving stack. This is the case of Daimler and Bosch, which started a
car-sharing pilot in San Diego, California, in 2019.

2.2 datasets

Advances in machine vision for autonomous cars are tightly related
to the progress of Artificial Intelligence (AI) and, concretely, super-
vised methods. These kinds of algorithms aim to learn a model from
a set of examples that is able to perform well when used in unseen
inputs. As a consequence, a significant amount of labeled data is usu-
ally required for training.

The first major datasets designed for perception tasks such as object
detection were focused on computer vision. Collections such as Cal-
tech101 [49] or PASCAL[46] were composed of thousands of images
and served as benchmarks for early detection algorithms. However,
the number of categories and the amount of annotated samples were
still short to obtain truly generic object detection models.

In this regard, ImageNet [38] database was released in 2009. The set
aimed to provide an annotated large-scale collection of images orga-
nized in a semantic hierarchy mimicking WordNet structure [122]. To
this end, a semi-automatic process was followed. First, image search
engines of the time were used to gather all pictures on the internet for
each of the semantic categories. Then, a manual filtering step was per-
formed to discard wrong samples and balance the number of images
per class. When the dataset was published, it contained more than 3M
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images organized in 5,247 synsets. A tiny sample of the whole dataset
can be observed in Figure 2.4. Some years later, Microsoft built the
COCO dataset [111] to support the research on instance segmenta-
tion of everyday objects. Both the scale and the challenges associated
with these datasets turned them into fundamental pieces of the object
detection publications over the subsequent decade.

Figure 2.4: Sample images from two subtrees of the ImageNet dataset
[38]. Top and bottom rows represent the mammal and vehicle
branches, respectively © 2009 IEEE

Regarding the automotive field, the inflection point came in 2012

with the creation of the KITTI Vision Benchmark Suite [60, 61] as a
result of the collaboration between Stiller’s laboratory (KIT) and the
Toyota Technological Institute at Chicago. Unlike pre-existing datasets
for on-board perception [25, 89], KITTI Benchmark included annota-
tions for common traffic objects using a calibrated multimodal sen-
sor configuration composed by a stereo camera pointing in the for-
ward direction and a Velodyne HLD-64 LiDAR mounted on the roof
to cover the full horizontal field of view. Labels were provided not
only for 2D and 3D detection but also for common robot vision tasks
such as stereo matching, optical flow, visual odometry, SLAM, and
3D tracking. A GPS/IMU receiver was also equipped to obtain the
ground truth for motion-related challenges. Figure 2.5 shows the record-
ing platform and some of the provided annotations. Last but not least,
an evaluation server with public rankings was released to compare
the different submitted methods against common standard metrics.
The availability of such an annotated dataset permitted the scientific
community to work on the field without the need for expensive sen-
sors or a robotic platform, thus pushing forward the state of the art
in machine vision for self-driving applications.

After this milestone, other datasets were soon published [152]. In
2016, Cityscapes [33] was created to provide annotations for a prob-
lem not addressed by KITTI: semantic segmentation. This collection
provided pixel-level classification ground truth of 25k images cap-
tured in urban scenarios recorded in 50 different cities and covering a
wider set of object categories and city traffic scenes than any previous
image segmentation dataset. Also following an image-only approach,
BDD100K [202] was presented in 2018 by Berkeley University. Labels
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Figure 2.5: Recording vehicle and ground truth samples for trajectory, stereo,
optical flow and 3D object detection of the KITTI Benchmark [61]
© 2012 IEEE

for 1M frames divided into a hundred thousand scenes covering a
set of 10 different computer vision challenges were provided. In this
case, the main purpose was to promote the development of multi-task
models.

More recently, a set of larger datasets have emerged driven by the
demand for bulky amounts of annotated data to train new DNNs mod-
els of higher complexity and capabilities. In 2019, nuScenes [26] was
created. To this end, a vehicle equipped with six surrounding cameras
and a top LiDAR to cover 360° with both modalities was used. Several
radar devices and GNSS positioning were also included in the sensor
configuration (see Figure 2.6). Annotations are provided for 3D ob-
jects in the 400k frames that compose the collection. A detailed HD
map containing information of 11 semantic classes was also labeled.
The sequences were recorded in Boston, USA, and Singapore, in or-
der to allow models to generalize to the particularities of dissimilar
domains. Moreover, scenes cover a range of illumination and weather
conditions, including night and rain. In the same year, other compa-
nies with broad experience in the field also opened to the public a
subset of the training data they use to teach the perception models
embedded in their commercial robo-taxis [90, 164].

Albeit these efforts have expanded the horizon of current meth-
ods, the incessant need for new labels to train supervised algorithms
and the high costs of the manual annotation process have led re-
searchers to seek less constrained sources of data: simulated envi-
ronments. In this regard, numerous projects have taken advantage of
modern graphic engines to build realistic simulators to generate un-
limited ground truth for training and testing perception and control
algorithms.
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Figure 2.6: Sensor setup of the recording vehicle used in nuScenes [26]
© 2019 IEEE

Richter et al. [146] explored the idea of reusing photo-realistic worlds
of already developed videogames to generate automatic annotations
to be used for training. To this end, the rendering pipeline of Grand
Theft Auto 5 (GTA5) game was hacked. In another work [55], a syn-
thetic clone of some sequences from the KITTI dataset was presented.
Unlike virtual worlds without a real sibling, the scenarios of this work
were created in a semi-automatic process, taking advantage of anno-
tation provided by the original dataset. Thus, a manual refinement
step was sufficient to obtain realistic results. The main shortcoming
is that the amount of scenes is limited to those defined in the real
benchmark. On the contrary, a wider variety of lighting and weather
conditions can be simulated to enhance existing perception methods.

Alternatively, ad-hoc simulators have also been developed. Ros et
al. published the SYNTHIA dataset [149] in 2016, containing seman-
tic annotations for more than 60k images. Newer versions have ex-
tended the collection by including depth information and instance
labels. One year later, Carla simulator was open-sourced [42]. This
platform includes a set of predefined urban scenarios and sensor con-
figurations, although they can be easily extended. Besides, realistic
illumination and weather changes can be set. By giving full control
of the software, this work allowed researchers to generate an unre-
stricted amount of synthetic training data. Shortly after, Microsoft
released AirSim [154], a dedicated engine to close the gap between
virtual and real data by offering high-fidelity visual appearance and
realistic physics simulations. Although it was initially designed for
testing algorithms in Unmanned Aerial Vehicles (UAVs), self-driving
vehicles were soon included. Sample frames from the mentioned sim-
ulation solutions are shown in Figure 2.7.
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(a) (b) (c)

(d) (e)

Figure 2.7: Snapshots of different simulation environments: (a) Virtual
Kitti [55] © 2016 IEEE; (b) GTA5 [146] © 2016 Springer; (c) SYN-
THIA [149] © 2016 IEEE (d) Carla [42] © 2017 CoRL; (e) Air-
Sim [154] © 2018

2.3 sensor calibration

Multi-sensor perception systems in robotics and automotive platforms
usually presume an a priori knowledge of their positioning. A good
estimate of these coordinates allows to find correspondences between
sensors’ data and, thus, combine their information to build more ro-
bust algorithms. However, measuring the exact position between sen-
sors is not a trivial task, as the optic center of sensor devices is not
generally accessible. Thus, in order to compute the transformation
matrix defining their relative pose, a calibration process is needed.

Motivated by the difficulty to manually adjust the extrinsic param-
eters of a pair of sensors and the common miscalibrations derived by
the operation of mobile robots like cars, many research works have fo-
cused their attention on automating the calibration process. Although
most efforts have tried to address the camera-LiDAR problem, the
emergence of more complex configurations that make use of several
vision and range devices have opened new challenges.

Sensors calibration is commonly seen as a preliminary stage to be
performed before the operation of the robot starts. As a result, this
process takes place in controlled environments and makes use of ad-
hoc scenarios. Even though initial approaches required the interven-
tion of a human to manually annotate the LiDAR-camera correspon-
dences for the final transformation to be obtained [151, 168], the trend
soon shifted into fully automatic methods.

Most extrinsic calibration algorithms use unambiguous fiducial tar-
gets specifically designed to provide key features in the different sen-
sor data modalities. To this end, rectangular [105], triangular [37] or
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polygonal boards [136] are common choices, as planar targets are eas-
ily identifiable using both range or color information.

To further enhance the calibration of sensor pairs where cameras
are involved, planar boards are frequently endowed with visual mo-
tives which offer higher quality features than those derived from
shape detection in the image space. QR markers [39] and, specially,
checkerboards [182] are often used. The use of several calibration arti-
facts (see Figure 2.8) in a single scene [62] or in multiple frames [208]
has also been explored and typically leads to better results.

Figure 2.8: Calibration setup for Geiger et al. [62] © 2012 IEEE

Similarly, other approaches have opted for customized calibration
patterns to make them more distinguishable in either domain. Velas
et al. [181] proposed an approach enabling the estimation of the ex-
trinsic parameters using a single point of view, based on the detection
of circular features on a planar board. In a parallel work [211], the use
of a checkerboard with holes at the tiles’ center was presented.

Alternatively, some methods have successfully used 3D objects like
spheres[137] or boxes [140] as calibration targets.

A second set of works aim to perform the calibration process with-
out the use of any calibration artifacts. Unlike the former group, they
take advantage of the elements available in the scene to establish the
required correspondences to compute the relative pose.

Similar to target-based methods, most approaches rely on extract-
ing features within the overlapping field of view of the sensors. The
registration of linear characteristics computed in both modalities have
been used, both in outdoor [163] and indoor scenarios [124], achiev-
ing acceptable results (see Figure 2.9). Other works, more tailored to
automotive applications, have benefited from the objects commonly
found in traffic environments to perform extrinsic parameters estima-
tion, such as the ground plane ahead the vehicle [148].

Pandey et al. [131, 132] present the calibration problem as the max-
imization of mutual information between LiDAR and camera inten-
sity values. Likewise, Castorena et al. [27] focused on optimizing the
edge alignment between an interpolated dense depth map and image
intensity features using simulated annealing.

In another fashion, some approaches dispose of the feature extrac-
tion stage and try to solve the extrinsic calibration issue as the corre-
spondence between the trajectories of the sensors in a moving plat-
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Figure 2.9: Line extraction on the image and LiDAR modalities in a typical
calibration scene for [124] © 2013 IEEE

form. Thus, the robot requires to compute the odometry for each of
the sensors separately. The relative pose is then estimated by solv-
ing the transformation between sensors that allow aligning both tra-
jectories. Although less precise due to the accumulated error from
the computation of the ego-motion stage, these kinds of algorithms
have proved suitable for sensor pairs with overlapping [135] and non-
overlapping field of views [2, 169]

In the last years, the potential shown by Convolutional Neural Net-
works (CNNs) in perception tasks has also been applied to address
the calibration issue. RegNet [153] made use of a deep convolutional
neural network to perform a targetless end-to-end calibration pro-
cess, where the extrinsic parameters are inferred from a single frame
and continuously adjusted online during the operation. Although pre-
cise, this method suffers from generalization problems as it has to be
trained on a previously calibrated configuration. On the other hand,
CalibNet [85] followed a self-supervised approach that iteratively re-
aligns the LiDAR cloud so that photometric and geometric errors are
minimized.

Pushed by the increasing use of multi-LiDAR setups in the percep-
tion stack of automated vehicles, some research works have proposed
specific methods for range-to-range calibration. First approaches made
use of a third sensor to compute the relative pose of the desired pair
of laser scanners [56] [74]. Moreover, a coarse seed pose was needed
to guide the process and ensure a proper final transformation. More
recently, Jiao et al. [86] presented a more convenient method that gets
rid of the additional device and is solely based on three linearly inde-
pendent planar surfaces.

Although the literature on sensor calibration methods is extensive,
the evaluation of their results remains an open issue. The absence of
real ground truth, which requires a precise relative pose as a refer-
ence that cannot be obtained in practice, has led to the use of custom
schemes, which are difficult to extend to other domains and eventu-
ally based on inaccurate manual annotations. In this regard, Levin-
son and Thrun [102] presented a method to detect miscalibrations
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through the variations in an objective function computed from the
discontinuities in the scene. A more recent work tried to address the
assessment problem by measuring the mean line reprojection error of
ad-hoc planar targets edges [123].

2.4 object detection in images

Although visual reasoning is an effortless task for humans, comput-
ers struggle to obtain knowledge from images. As a result, computer
vision techniques need to be applied to exploit the pixels’ information
and infer valuable outputs, such as the detection and classification of
objects.

2.4.1 Historical background

Classical methods for object detection usually consist of three sepa-
rate steps: feature computation, candidate generation, and classifica-
tion. First, the image is processed to extract features considering local
information of pixels. Second, a set of Regions of Interest (ROIs) of
several shapes and locations are proposed by means of sliding win-
dows or more advanced approaches like Selective Search [175]. Last, a
classification method is applied over these candidate regions. This lat-
ter stage is usually based on the use of machine learning algorithms
that take hand-crafted features as inputs. As these features need to
be designed by humans, they are limited in their representation capa-
bilities.

Several local filters based on differences in shape or pixel intensities
have been developed for object detection purposes. Haar-like features
[184], Histogram of Oriented Gradients (HOG) [36] or scale-invariante
feature transforms (SIFT) [115] are a common choice for the detection
of cars [77, 134, 162] and pedestrians [155, 183, 210]. For the classifi-
cation part, distinct discriminative models are used, such as Support
Vector Machines (SVMs) [34] or AdaBoost [52]. Although the results
provided by any classification architecture differ for the same input
set, Benenson et al. [15] discuss that the accuracy of classical models
is mainly limited by the number and variety of the input features.

In this regard, Neural Networks (NNs) stand as an alternative ap-
proach capable of addressing the drawbacks of hand-crafted features,
as they are able to jointly learn features from the input and perform
the classification task in an end-to-end fashion. This way, the train-
ing procedure is not only dedicated to giving a higher weight to the
features that enhance discrimination between object categories, but
also to learning the best representation that maximizes the desired
objective function. Although researchers encountered difficulties to
apply NNs for computer vision problems in the 1980s [101], novel
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DNNs approaches to image processing showed promising results at
the beginning of the twenty-first century [75].

2.4.2 Convolutional neural networks

Despite regular neural networks can be applied to computer vision
problems, the all-to-all mapping of neurons between layers makes
them impractical for data structures containing thousands or millions
of inputs, like image pixels. To tackle this issue, convolutional layers
were introduced in 1980 by Fukushima et al. [53] based on the find-
ings of [81], which demonstrated that the human visual cortex was
made of individual neurons that get excited by small regions of the
visual space, called receptive fields.

A convolution is a filter function that takes the pixel values in the
vicinity of a given position in the image and computes a weighted
sum of them, followed by a bias offset. The receptive field or ker-
nel size of the convolution function is usually small, but it extends
through the depth of the input volume. In the forward pass, an acti-
vation map is generated by computing the dot product of the kernel
matrix at all coordinates of the input. As a network layer, both the
weights of the convolution and the bias are the learnable parameters.

When compared to regular perceptrons, convolutional layers have
a set of advantages for image processing. On the one hand, CNNs ex-
ploit local connectivity of adjacent neurons, following the principles
of visual receptive fields. As layers get stacked, the model is capable
of learning more global features, as overlapping kernels incorporate
information from connected units. On the other hand, the use of the
same operation across the whole input volume enables uniform re-
sponses for a given input feature vector regardless of its position, thus
providing translation invariance. Moreover, the number of model pa-
rameters remains unchanged for any input size.

In addition to convolutional layers, CNNs are usually composed of
other types of operations required to build complex objective func-
tions and generate the desired output volume.

To perform image classification, Fukushima et al. [53] proposed a
downsampling layer that averages the activations from units inside
the kernel. Applying this layer to non-contiguous positions generates
a map of reduced size. This operation allows to decrease the memory
footprint and lower the computational requirements of the model,
as subsequent convolutions are fed with smaller input volumes. Al-
though the method worked well for Japanese character recognition,
the averaging operation hampered the identification of sharp cues. To
address this drawback, subsequent works switched to the use of max-
pooling, as this layer outputs the maximum value of a sub-region,
preserving salient features.
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To be able to approximate the model to arbitrary complex objec-
tive functions, non-linearities are required. To this end, activation lay-
ers are applied to the output of linear operations like convolutions.
Rectified Linear Units (ReLUs), for instance, performs an element-wise
clipping-to-zero to remove the negative values from activation maps.
Despite being the most popular activation layer in CNNs, other non-
linear functions like sigmoid or tanh can be applied. A special mention
is needed with the Softmax function, which is usually used as the last
layer in multinomial logistic regression problems, as it normalizes the
output logits to a probability distribution of the predicted classes, so
they all add up to 1.

Regular artificial neurons are also part of some convolutional neu-
ral models. Once the feature map has been significantly reduced by
a sequence of convolutional and downsampling operations, Fully-
Connecteds (FCs) layers can be used to leverage all activation units
from the input volume regardless their spatial positioning. When
used, FCs layers are usually appended at the end of the pipeline to
predict the final classification scores, just before the Softmax normal-
ization.

Even though CNNs have been successfully applied to a variety of
computer vision problems, the scientific community become aware
of their true potential with the emergence of DNNs, fostered by the
extended usage of GPUs for training [129, 159]. The acceleration of
the training process allowed to feed networks with unprecedented
volumes of data, so the depth of the models started to increase to
be able to learn discriminative features to classify among a growing
number of categories. Benchmarks like ImageNet [38] favored this
trend and led to the creation of popular CNNs architectures nowadays:

AlexNet: Krizhevsky et al. [94] won the ImageNet ILSVRC chal-
lenge in 2012 with a slightly deeper architecture than LeNet. Contrary
to its predecessor, AlexNet uses more than one convolution between
ReLU activation layers.

ZFNet: the model created by Zeiler and Fergus [203] introduces
minor changes to AlexNet, most of them related to parameter tuning.
Besides, the filter and stride size of the first layers are reduced to
enhance the quality of the corresponding feature maps. This network
won the 2013 ImageNet Challenge.

GoogLeNet: the main contribution of the ILSVRC 2014 winner
[166] was the Inception module, which allowed to significantly reduce
the number of parameters of the model (less than 10% of the number
in AlexNet). With the use of 1x1 convolutions, the width and depth
of the network could be increased while decreasing the computation
bottleneck. It is one of the early adopters of Batch Normalization [84].

VGGNet: this name defines a set of CNNs[161] sharing a common
structure but with different depths. It follows a similar approach to
AlexNet, although kernels are reduced to 3x3 convolutions with a
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higher number of filters. The most popular model is the VGG16, al-
though there exist other variants with a distinct number of stacked
layers.

ResNet: He et al. presented the Residual Neural Networks [73] at
ILSVRC 2015. This architecture introduced the skip connections, which
allows building deeper models while preventing the associated degra-
dation problem. As the network depth increases, the accuracy satu-
rates before it starts going down as more layers get stacked. The resid-
ual block, shown in Figure 2.10, establishes a relationship between the
layer input and the output through the identity function, forcing the
convolutional operation to learn a simple residual. This way, if an ex-
cessive number of layers were added, it would be easier for the model
to learn to produce a zero residual than the identity function.

Xception: this model [32] is an adaptation of the inception model.
However, Xception relies on the use of depth-wise separable convo-
lutions, which is equivalent to set all Inception cross-channel convolu-
tions to 1x1, and its spatial correlations to 3x3 kernel.

Figure 2.10: ResNet block diagram [73] © 2016 IEEE

2.4.3 CNNs for object detection

With the advent of DNNs, representation learning models soon outper-
formed classical approaches on vision classification problems. How-
ever, the localization of objects inside images still exceeded the ca-
pabilities of these works. In this regard, Girshick et al., inspired by
classical pipelines, presented the Region-based Convolutional Neu-
ral Network (R-CNN) [64, 65], a CNN which uses ROIs of an image
to perform classification (see Figure 2.11). The generation of image
patches used as input was made through Selective Search [175], and
all candidate regions were warped to a fixed-size vector to compute
CNN features. After a set of convolutions, the resulting features are
fed to dedicated per-category binary SVM classifiers. Due to the high
amount of candidate regions, the algorithm was very computationally
expensive.
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Figure 2.11: R-CNN detection architecture [64] © 2014 IEEE

To tackle this shortcoming, a major evolution of the method was
released soon after [63]. Fast R-CNN introduces ROI pooling, a key con-
cept that allows to feed the whole image at once through the convo-
lutional layer of the model and extract the candidate regions directly
over the features map without stopping the gradient computation.
This improvement simplified the training process and dramatically
reduced the computation time of the algorithm.

Two years later, Ren et al. [145] introduced the final iteration of
the architecture: Faster R-CNN. This work presented the concept of
Region Proposal Networks (RPNs), a neural network branch aimed to
perform a positive-negative classification of a set of predefined boxes,
as well as a box refinement. The patches are classified with an ob-
jectness score, which is used to filter out ROIs belonging to the image
background. Positive samples are then applied to extract candidate
regions by means of the ROI pooling operation. Using the proposed
Region Proposal Network (RPN), the external candidate generator is
no longer needed. Selected ROIs are then fed to the model heads as in
previous versions of the framework. For Faster R-CNN to be trained
in an end-to-end fashion, a multi-task loss able to optimize both the
Region Proposal Network (RPN) and the classification head is used.
Figure 2.12 illustrates the different components of the approach.

In order to mitigate the performance bottleneck of Region Proposal
Networks (RPNs), single-stage detectors have attracted considerable
attention. Redmon et al. [143] propose to learn both the class probabil-
ities and the bounding box parameters using the feature map result-
ing from the latest layer in a CNN based on GoogleLeNet [165]. Dis-
pensing with the region proposal branch reduces the computational
time, making it more suitable for real-time applications. An overview
of the framework is shown in Figure 2.13. On the other hand, Sin-
gle Shot Multibox Detector (SSD) [112] commits to a fully convolu-
tional pipeline where the class and box inference also leverages in-
termediate feature maps. In order to cope with the high foreground-
background classification imbalance while training, a hard negative
mining strategy is followed. The detection at multiple scales and
the use of default boxes, similar to anchors in [145], outperforms
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(a) Overview of Faster R-CNN (b) RPN

Figure 2.12: Faster R-CNN detection architecture [145] © 2017 IEEE

YOLO’s accuracy. However, the joint classification of positive objects
and background examples still prevent comparable performance to
two-stage detectors. To overcome this limitation, Lin et al. [110] in-
troduced the Focal Loss, which forces to focus the learning on hard
examples and reduces the contribution of the vast number of nega-
tive examples. When published, RetinaNet [110] outperformed any
existing two-stage framework while maintaining the speed of other
one-stage detectors. Although several new approaches have been pre-
sented ever since [47, 100, 144], the performance of modern two-stage
detector prevails.

Figure 2.13: YOLO detection architecture [143] © 2016 IEEE

2.5 3d object detection

While detection of objects in the image space is sufficient for many
computer vision applications, the perception systems for autonomous
driving aim to infer a spatial understanding to enable safe control and
navigation tasks. Among the different sensor configurations typically
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found in automated vehicles, those based on cameras and LiDAR de-
vices have gathered the attention of most research studies due to the
low-cost and precise geometry information, respectively. As a result,
the single or combined use of these devices has led to a myriad of
frameworks for the 3D object detection problem.

2.5.1 Image-based detection

A first group of approaches makes use of appearance information pro-
vided by camera sensors to perform 3D object detection. Like those
described in Section 2.4, these methods benefit from both the struc-
tureness and the rich, dense features of image data. However, the
lack of explicit spatial information becomes a major challenge when
the objective is the inference of accurate 3D bounding boxes for the
objects in the scene.

To address this shortcoming, different lines of work are being ex-
plored. On the one hand, the detection of keypoints defining the ob-
ject geometry to later find a 3D correspondence with annotated CAD
models has proved to be effective in end-to-end models [6, 28]. Fig-
ure 2.14 illustrates an overview of the method in [6].

Figure 2.14: Association between detected keypoints in the image space and
a CAD model used for 3D box estimation in [6] (license CC
BY-NC-ND 4.0))

Similarly, other approaches advocate for simplifying the task and
rely solely on the estimation 2D keypoints of the target 3D bounding
box before the final regression. Liu et al. [113] uses the image projec-
tion of the center of 3D anchors, while Li et al. [104] also includes the
box vertices in the keypoint detection stage.

On the other hand, some studies focus on exploiting the implicit
consistency between the 2D and 3D boxes in the image view. In this
regard, Gahler et al. [54] proposes to split the common 2D detection
problem into two subtasks: front and side detection. These two ROIs

compose a MergeBox with a pair of visible surfaces of every object,
which are then used to infer the final regression from compatible 3D
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anchors. Likewise, [103] performs a joint estimation of the 2D box
and the object heading to populate an oriented 3D box which is fur-
ther refined by the network. Naiden et al. [127] follows a compara-
ble framework, but the spatial box is computed from a least-square
minimization instead of from orientation cues. Other methods add
complementary losses to improve the detection of overlapping objects
[31].

Finally, other works prefer to tackle the absence of range data be-
fore performing the 3D detections. In [23], depth-aware convolutions
are used in combination with regular kernels. However, the explicit
estimation of the disparity map, which contains pixel-wise depth in-
formation, is usually the preferred solution [41, 142, 193]. Among this
latter fashion, some methods take advantage of the estimated depth
to build a pseudo lidar cloud and apply point-based inference models
[117, 189], as shown in Figure 2.15. Ku et al. [96] suggest the delim-
itation of the depth estimation problem to object candidates so the
model can optimize the output to regions of interest. Also based on
depth computation, a different set of approaches stack the range in-
formation as an additional channel in the image and perform the 3D
regression with variations of popular 2D detectors [41, 116].

Figure 2.15: Depth estimation and pseudo-lidar point cloud infered from an
RGB image in [189] © 2019 IEEE

A quantitative snapshot of the current state-of-the-art methods for
monocular 3D detection can be found in Table 2.1. Among the differ-
ent approaches to 3D detection from images, the most representative
methods have been selected for comparison.

2.5.2 LiDAR-based detection

The task of object detection using LiDAR sensors exploits the spatial
representation provided by modern laser scanners [150]. These de-
vices are able to faithfully capture both the 3D shape and reflective-
ness of the objects in the environment, usually spanning the whole
horizontal field of view. Although this information is sufficient to
identify and classify the different road participants, the characteris-
tics of the collected data pose a challenge when deploying such al-
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Table 2.1: BEV and 3D object detection performance of selected monocular
methods on the testing set of the KITTI Benchmark. Results are
given for the Car category and Moderate difficulty

Method Key Concept AP BEV (%) AP 3D (%)

RTM3D [104] Keypoints 14.20 10.34

MonoPair [31] KP + Pair distance 14.83 9.99

AM3D [117] Image depth 17.32 10.74

MonoPSR [96] Object depth 12.58 7.25

M3D-RPN [23] Depth as channel 13.67 9.71

gorithms for real-time applications. Thus, its lack of structure and
sparsity has led to the creation of different lines of research based on
distinct representations of LiDAR information.

The first group of works uses the LiDAR input as-is in order to ob-
tain better features based on the fine-grained geometry and intensity
values provided by the captured point clouds. Although some ap-
proaches utilize the information from the raw cloud through all the
layers to produce the final 3D detection boxes [157], most approaches
rely on a previous downsizing of the cloud to reduce the computa-
tional load. For instance, Point-RCNN [156] reduces the size of the
LiDAR cloud by performing a background-foreground classification
of the points before feeding the positive set into the final 3D box es-
timation networks. Other proposals, such as STD [199], lay between
raw and voxel-based pipelines using a point-wise feature extraction
over the whole LiDAR set followed by a discretization step that sig-
nificantly reduces the inference time.

The second subset of networks takes a voxelized version of the
LiDAR data as input. This kind of representation reduces the infor-
mation volume and guarantees a regular structure that enables its
processing using 3D convolutions. Space is divided into a volumetric
grid where each 3D cell, also known as voxel, stores features com-
puted from the points lying inside. Many approaches combine voxel
feature encoders with region proposal networks, either using a single
[196, 209] or multiple voxel scales [97] as inputs. Similarly, Part-A2

[157] follows a two-stage approach, where, firstly, both intra-object
parts and point-wise semantic segmentation are estimated and fed
to a part-aggregation step that produces the final detections. Other
works predict the final 3D boxes following single-stage [114] or anchor-
free [188] schemes.

Finally, a third approach aims to further compact the input by mak-
ing use of bidimensional representations of the LiDAR cloud. To this
aim, the laser data is projected into pseudo-images, decreasing the
processing time and enabling the use of 2D object detection networks.
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Figure 2.16: Overview of the VoxelNet architecture [209] © 2018 IEEE

Among this group of frameworks, those taking the BEV projection
as input are the most popular. Some works use hand-crafted BEV im-
ages to feed single-stage [160, 197], or two-stage object detectors [192].
Each cell in the 2D input typically includes information on the inten-
sity, height, and distribution of the points lying inside. In MODet
[206], the representation of the BEV is simplified to a binary occu-
pancy grid. Alternatively, PointPillars [98] introduced a learned BEV

encoding produced by a PointNet network able to compute features
directly from the original 3D points contained in the cell.

Although less frequently, other papers make use of the Range View
(RV) projection of the LiDAR to perform end-to-end object detection.
LaserNet [120] is able to predict per-point class and bounding box
distributions that are then clustered to obtain the final BEV detections.
Recently, RangeRCNN [108] presented a novel approach able to learn
cues in the range projection of the LiDAR cloud and transfer them to
the BEV representation to produce the final 3D box estimation.

Table 2.2 includes the results of some selected frameworks to allow
the reader to understand the current state of the art in the field of
LiDAR-based object detection.

Table 2.2: BEV and 3D object detection performance of selected LiDAR-
based methods on the testing set of the KITTI Benchmark. Results
are given for the Car category and Moderate difficulty

Method Key Concept AP BEV (%) AP 3D (%)

Voxel-FPN [97] 3D Grid 87.21 76.70

CenterNet [188] Anchor-Free 88.29 77.62

PointPillars [98] Learnt BEV 86.56 74.31

RangeRCNN [108] Range image 88.40 81.33
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2.5.3 Fusion-based detection

In order to cope with the limitations of the camera and LiDAR modal-
ities, a third research line aims for the joint use of data from both
sensors in a fusion perception framework. The main motivation is
the possibility to combine complementary information sources to en-
hance the learned representation of the objects and increase the ro-
bustness of the model among different detection ranges or weather
and illumination conditions. Nevertheless, how these modalities are
fused effectively is yet a matter of research.

Some approaches have opted for a sequential pipeline, where the
output of image processing facilitates object detection in the point
cloud. In this regard, 2D ROIs have been used to reduce the search
space before applying 3D detectors [141, 158, 190, 204]. On the other
hand, semantic segmentation in the image space is also a common
choice. Distinct methods make use of pixel-wise classification via
3D-2D projection, either to filter background points [198] or as an
additional component for every point in the LiDAR cloud [29, 185].
Likewise, FusionPainting [195] addresses the joint use of 2D and 3D
semantic cues. Alternatively, Yin et al. [200] proposes the generation
of 3D virtual points to reduce the sparsity of objects clouds by using
the information from 2D instance segmentation masks.

On the contrary, another set of works performs LiDAR-camera fu-
sion at the feature level. To this end, both the image and the laser
sweep are fed into a network, where encoded characteristics are com-
bined at certain layers so that the model is able to learn to best exploit
the statistics coming from both sensor modalities. Although initial
approaches took advantage of several projection views of the LiDAR
cloud as input [30] (see Figure 2.17), most approaches solely rely of
the BEV and camera information by explicitly performing manual 3D-
2D feature mapping [80, 95, 106, 107, 187] or in a learnt manner [201].

Figure 2.17: MV3D fusion network diagram [30] © 2017 IEEE

Finally, late fusion schemes have also been explored in the litera-
ture. For this purpose, separate detections in the image and LiDAR
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space are combined either as a validation step for low-resolution
lasers canners [57], or to enhance the results of a 3D LiDAR detec-
tor by finetuning the classification scores [133].

Table 2.3: BEV and 3D object detection performance of selected fusion-based
methods on the testing set of the KITTI Benchmark. Results are
given for the Car category and Moderate difficulty

Method Key Concept AP BEV (%) AP 3D (%)

F-PointNet[141] 2D Det. + Frustum 84.67 69.79

MV3D [30] RV-BEV-Image 78.93 63.63

PointPainting [185] 2D Seg. + 3D Det. 88.11 71.70

MMF [106] Dense Fusion 88.21 77.43

3D-CVF [201] Learnt Feat. Map 89.56 80.05

CLOCS [133] Late fusion 89.48 82.28

2.6 conclusion

This chapter has presented a survey on some of the research lines re-
lated to the scope of this thesis. A historical revision of autonomous
driving technologies has been drawn, with special attention to the
evolution of their sensor setups and machine vision techniques. Ad-
ditionally, some of the most recent works in the field of multimodal
perception have been introduced, identifying the current trends and
the open questions.

Based on the state-of-the-art review, the focus of this thesis is di-
rected towards generating new solutions to help solve some of the
challenges faced by these technologies. Namely, a set of approaches
are proposed in the areas of sensor calibration, 3D object detection,
and deployment in real platforms.
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S E N S O R S C A L I B R AT I O N

Autonomous driving relies on accurate information about the en-
vironment to make proper decisions concerning the trajectory of the
vehicle. High-level inference modules receive these data from the per-
ception systems, which must be therefore endowed with an excep-
tional degree of robustness under different circumstances such as il-
lumination and weather.

Consequently, the design of perception systems intended for on-
board automotive applications is currently geared towards topologies
with several complementary sensory modalities. Vision systems are
frequent in close-to-market vehicle setups [51] due to their ease of in-
tegration and their ability to provide appearance information. Stereo-
vision systems, which use a pair of cameras separated by a fixed
distance to get depth information about the environment, stand out
as a cost-effective solution able to provide additional dense 3D infor-
mation to model the surroundings of the vehicle.

On the other hand, the remarkable development of 3D laser scan-
ning technology has enabled its widespread use in both research and
industrial driving applications in recent years. Unlike vision systems,
LiDAR range measurements are accurate and, frequently, provide in-
formation in a full 360° field of view. Configurations made of more
than one LiDAR device are becoming more and more popular since
they allow gathering high-resolution data using compact setups.

Due to the particular features of these sensory technologies, they
are suitable to be part of the same perception system, providing com-
plementary information. To best exploit multi-sensor topologies, data
from the different devices must be appropriately combined. In the
most usual setup, sensors have overlapping fields of view (as in Fig-
ure 3.1), and the advantages conferred by their joint use come from
the ability to make correspondences between both data representa-
tions. This is the case, for example, with popular multi-modal 3D
detectors [30, 141]. These methods assume that the relative pose be-
tween the sensors, given by their extrinsic parameters, has been ob-
tained beforehand and is available during operation. Due to the field
of application, an extraordinary accuracy in the calibration is required
so that it is still valid for data association at long distances.

Nevertheless, current calibration methods still do not provide a
comprehensive response to the need to estimate the extrinsic param-
eters of certain sensor setups, such as the ones found in autonomous

This chapter includes content from [69] and [14]

43



44 sensors calibration
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Figure 3.1: Sample calibration scenario for an arbitrary setup with a camera
and two LiDAR scanners, where the calibration target is placed
in the overlapping field of view of the involved sensors.

driving. They are either excessively focused on specific configura-
tions, lacking generalization ability, require burdensome ad-hoc en-
vironments, or have not been sufficiently validated due to the un-
availability of objective assessment methods.

In this chapter, we present an original self-calibration method tai-
lored to automotive sensor setups composed of vision devices and
multi-layer LiDAR scanners. The approach makes use of a novel fidu-
cial calibration target that allows the unambiguous extraction of ro-
bust reference points in each of the supported modalities. At a second
stage, the optimal transform relating a pair of sensors is obtained
through the registration of the detected 3D key points.

Along with the calibration method, we also introduce a novel frame-
work for the assessment of extrinsic calibration algorithms based on
a simulation environment. This approach provides a perfect ground
truth of the transform between sensors in space and establishes a fair
benchmark for comparing calibration methods through metrics that
truly represent the accuracy of the final estimation. Besides, it allows
testing virtually unlimited sensor devices and relative poses to guar-
antee the generality of the results.

An extensive set of experiments using the proposed evaluation
benchmark shows that the accuracy of the calibration estimate ex-
ceeds other approaches in the literature. Tests on real sensors corrob-
orate the results obtained in the simulation environment, confirming
the adequacy of the method for self-driving applications.

The implementation of the method has been made publicly avail-
able to promote reproducibility and provide researchers with a conve-
nient tool to face the usual problem of extrinsic calibration in an easy
and effective way. The software makes use of open source libraries
and is published as a package in the popular ROS framework1. The
synthetic test suite used for the experimentation has also been re-
leased2.

1 http://wiki.ros.org/velo2cam_calibration

2 https://github.com/beltransen/velo2cam_gazebo

http://wiki.ros.org/velo2cam_calibration
https://github.com/beltransen/velo2cam_gazebo
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3.1 automatic extrinsic calibration

The proposed calibration solution estimates the rigid-body transfor-
mation that defines the relative pose between a pair of sensors. Each
of these sensors can be a monocular camera, a stereo camera, or a
multi-layer LiDAR scanner, in any possible combination. Rangefind-
ers with a lower resolution (e. g., 16-layer devices) are also supported.

The transformation between the pair of sensors can be defined by
a vector of six parameters θ = (tx, ty, tz, rx, ry, rz), which describe
the position and rotation of one of the devices in the reference frame
attached to the other one. Rotations around the axes (rx, ry, rz) are
usually referred to as roll, pitch, and yaw angles.

Parameters in θ unambiguously define a matrix T that can be used
to transform a 3D point between the two coordinate systems. For
instance, in a LiDAR-monocular setup, a point pM in monocular co-
ordinates, {M}, can be transformed into LiDAR space, {L}, by means
of pL = TLMpM once the transformation matrix TLM is built. Note
that, in that particular case, the parameters θLM, used to obtain TLM,
express the pose of {M} with respect to {L}.

With the proposed approach, the transformation is obtained au-
tomatically from data retrieved by the sensors to be calibrated. A
custom-made planar target is used to provide features that are de-
tected and paired between both data representations. As noticeable
in the two different embodiments shown in Figure 3.2, this calibra-
tion pattern is endowed with geometrical and visual characteristics
that enable the estimation of keypoints in LiDAR, stereo, and monoc-
ular modalities. On the one hand, four circular holes are used to take
advantage of geometrical discontinuities in LiDAR and stereo point
clouds. On the other hand, four ArUco markers [58] are placed near
the corners so that 3D information can be inferred from monocular
images.

(a) (b)

Figure 3.2: Two different embodiments of the custom calibration pattern
made with a CNC machine



46 sensors calibration

The method does not impose severe limits on the relative pose be-
tween the devices and is therefore suitable for sensor setups where
the magnitudes of the translation and rotation parameters are sub-
stantial. Only two reasonable constraints are required. First of all,
there has to be an overlapping area between the sensors’ field of
view, where the calibration target is to be placed. Secondly, the holes
in the pattern must be well visible in the data retrieved by the sen-
sors; in particular, whenever range data is involved in the calibration,
each circle must be represented by at least three points. In the case of
multi-layer LiDAR sensors, this means that at least two scan planes
intersect with each of the circles. Moreover, the parameters intrinsic
to each device are assumed known.

The procedure is designed to be performed in a static environment.
Although the method can provide a quick estimate of the extrinsic
parameters with just one pose of the target, it is possible to increase
the accuracy and robustness of the results by accumulating several
positions, as will be shown later.

The proposed calibration algorithm, illustrated in Figure 3.3, is di-
vided into two different stages: the first one involves the segmentation
of the calibration target and the localization of the reference points in
each of the sensors’ coordinate systems; afterward, the second one
performs the computation of the transformation parameters that en-
able the registration of the reference points.

R
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SENSOR 2 TARGET SEGMENTATION

SENSOR 1 TARGET SEGMENTATION

Figure 3.3: Overview of the different stages of the presented method: tar-
get segmentation, geometric consistency check, point aggrega-
tion, and sensor registration

3.1.1 Target segmentation

This first stage aims to localize the calibration target in each sensor’s
data. Consequently, the measurements at this step are relative to the
local coordinate system of the corresponding sensor. As the features
used to localize the pattern are different for each modality, three dif-
ferent variants of the procedure are proposed here, one per sensor
type. In all cases, the output of this stage is a set of four 3D points
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representing the center of the holes in the target, in local coordinates.
These points will be later used to find correspondences between the
different data sources.

Although the processing of LiDAR and stereo data has some dif-
ferences, especially at the beginning of the segmentation stage, both
share a common trunk once the useful range data is represented in a
3D point cloud structure. The monocular alternative is substantially
different as it relies on the ArUco markers instead.

The procedure described in this section is intended to be applied
to every data frame provided by the corresponding sensor. Data from
all sensors are processed in parallel, so they do not have to share a
common trigger nor have identical refresh rates, as long as the scene
is static.

3.1.1.1 LiDAR data preprocessing

Data from a LiDAR scanner is assumed to be represented as a 3D
point cloud, PL0 , with measurements distributed into different layers,
as typical in mechanical devices based on rotating mirrors. Each point
in the cloud is defined as pi = (x,y, z, i), being the three first values its
spatial coordinates, and i the reflectivity or intensity. In the proposed
method, the point’s reflectivity is dismissed. A sample laser point
cloud can be observed in Figure 3.4.

Figure 3.4: LiDAR point cloud of a sample calibration scenario

Before feeding the data to the segmentation stage, pass-through
filters are applied in the three cartesian coordinates to remove points
outside the area where the target is to be placed, avoiding spurious
detections that could slow down the processing. The limits of the
pass-through filters must be set according to the location and size of
the sensors’ overlapping area. The resulting cloud, PL1 , must represent
both the calibration target and the points behind it, visible from the
LiDAR through the holes.

As a first step towards segmenting the holes in the pattern, the
points representing the edges of the target must be extracted. For the
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LiDAR modality, we follow the method in [102] to find depth discon-
tinuities. Each point in the cloud, pi ∈ PL1 , is assigned a magnitude
representing the depth gradient with respect to their neighbors:

pi,∆ = max(pi−1,r − pi,r,pi+1,r − pi,r, 0) (3.1)

Where pi,r is the range measurement given by the sensor for the point
pi (i. e., the spherical radius coordinate), and pi−1 and pi+1 are the
points adjacent to pi in the same scan plane. Then, we filter out all
points pi with a discontinuity value pi,∆ < δdiscont,L, resulting in PL2 .
Note that this procedure assumes that measures from rays passing
through the holes exist, so they must collide with some solid located
behind the target within the measurement range of the LiDAR.

3.1.1.2 Stereo data preprocessing

When one of the sensors to be calibrated is a stereo-vision system,
data processing starts by converting the raw image pair into a dis-
parity map using a stereo matching algorithm. For this map to be
obtained, the correspondences between the projection of every 3D
point in the scene into the image planes of both cameras have to be
computed. In most common stereo rigs, these two planes are coin-
cident, and the images can be rectified so that their epipolar lines
are aligned with their horizontal axes (i. e.for each point in the left
camera, its counterpart in the right image is located in the same ver-
tical coordinate). Hence, for a 3D point P, being p1 = (u1, v1) and
p2 = (u2, v2) the image coordinates of its projection in the left and
right images, respectively, and v1 = v2, its disparity value can be
calculated as d = u2 − u1.

In our experiments, the Semi-Global Block Matching (SGBM) vari-
ant of [76] is used, which we found reasonably accurate for disparity
estimation. Note that, when this modality is involved, the calibration
target is expected to have some texture (e. g., wood grain) so that the
stereo correspondence problem can be successfully solved. However,
we found that the intensity differences caused by the pattern borders
themselves are generally sufficient.

After the disparity map has been computed, a point cloud PS0 can
be built. Since the system is assumed canonical and the baseline be-
tween cameras known, the image coordinates and the disparity value
of every pixel can be used to obtain the corresponding 3D points us-
ing the pinhole model. Figure 3.5 shows the disparity map and 3D
point cloud of a pair of images captured by a stereo rig.

Similar to the LiDAR branch, pass-through filters are applied to PS0
to limit the search space. However, for the stereo modality, the extrac-
tion of the points representing the target edges in the filtered cloud,
PS1 , relies on the appearance information provided by one of the im-
ages of the stereo pair. Concretely, a Sobel filter is applied over the
image, and then, all points in PS1 that map to pixels with a low value
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(a) (b)

Figure 3.5: Disparity map (a) and 3D point cloud (b) of a sample calibration
scenario captured with a stereo camera

in the Sobel image (smaller than τsobel,S) are filtered out, producing
PS2 . In this way, edge segmentation is less affected by inaccuracies in
border localization, which are frequent in stereo matching.

3.1.1.3 Range data

The steps followed to segment the pattern holes in the preprocessed
point clouds are common for both the LiDAR and stereo modalities.
as can be seen in Figure 3.6. The intended outcome is an estimate of
the 3D location of the centers in sensor coordinates.

Plane Segmentation: First of all, RANSAC is applied to P1 (the
cloud resulting from the pass-through filters, either PL1 or PS1), which
provides a plane model π representing the calibration target. To en-
sure the model’s accuracy, we use a tight RANSAC threshold δplane,
which neutralizes all the points representing extraneous objects and
impose that the plane must be roughly vertical in sensor coordinates,
with a tolerance αplane. If it is impossible to find a plane that fits the
data, the current frame is discarded.

Afterwards, the plane model π is employed in P2 (i. e., the cloud
representing the edges of the pattern) to remove all the points not
belonging to the plane. A threshold of δinliers is considered for the
inliers. Consequently, the new cloud P3 contains only points repre-
senting the edges of the calibration target; that is, the outer borders
and the holes.

Transformation to 2D Space: As all the remaining points be-
long to the same plane, dimensionality reduction is performed at this
point. This is implemented by transforming P3 so that the XY-plane
coincides with π and projecting all the 3D points onto π. Points in the
resulting P4 cloud are, therefore, in 2D space.

Circle Segmentation: Next, a model of the pattern holes present
in P4 is extracted through 2D circle segmentation. This step is per-
formed iteratively in a process that seeks out the most supported
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circle and removes its inliers before starting the search for the next
one. Iterations continue until the remaining points are not enough to
describe a circle. If at least four circles have been found, the proce-
dure moves forward; otherwise, the current frame is not considered.
Inliers are required to be below a threshold of δcircle from the model,
and only circles within a radius tolerance of δradius are considered.

The points found in the circle segmentation procedure are checked
for geometric consistency with the dimensions of the pattern. To that
end, the centers are grouped in sets of four, and the dimensions of
the rectangle that they form (diagonal, height, width, and perimeter)
are compared with the theoretical ones, with a tolerance δconsistency

expressed as a percentage of deviation from the expected values. Pre-
sumably, only one set of centers will fulfill these restrictions; if either
none or more than one sets pass the check, the frame is discarded.
This step is intended to prune out spurious detections that may occur
due to confusion with other elements in the scene.

Once the holes are correctly identified, their centers are converted
back from the 2D space defined by π to the 3D space in sensor coordi-
nates, forming the cloud Pp. Note that Pp must contain exactly four
points.

PLANE 
SEGMENTATION

LIDAR

(a)

PLANE 
SEGMENTATION

STEREO

(b)

Figure 3.6: Target segmentation stages in the LiDAR (a) and stereo (b) range
modalities: plane segmentation, target and circles detection, and
keypoints extraction

3.1.1.4 Monocular data

If the sensor to be calibrated is a monocular camera, the extraction of
the reference points requires the detection of ArUco markers, which
provide the cues necessary to retrieve the geometry of the target.

ArUco markers are synthetic square markers made of a black bor-
der and an inner binary matrix designed to allow its unequivocal
identification [58]. In our calibration target, four ArUco markers are
used, one on each corner; due to this location, they do not affect either
target or hole detection by other modalities.
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As both the intrinsic parameters of the camera and the marker di-
mensions are known, it is possible to retrieve the 3D pose of each
marker with respect to the camera through the resolution of a classic
perspective-n-point (PnP) problem. In our implementation, we han-
dle our four-marker setup as an ArUco board, which allows estimating
the pose of the calibration target accurately by using all the markers
jointly. An iterative Levenberg-Marquardt optimization is carried out
to find the board pose that minimizes the reprojection error [167],
using the average pose of the four individual markers as an initial
guess. As a result, the 3D position of the center of the board is ob-
tained, along with its orientation in space.

To generate a set of four points equivalent to the Pp clouds ob-
tained from range data, we extract the points representing the cen-
ter of the reference holes by taking advantage of the fact that their
relative positions in the calibration target are known. These points
constitute the resulting cloud PMp .

Figure 3.7 shows the different steps for the estimation of the target
keypoints in the image space.

Figure 3.7: Target segmentation stages in the image data: ArUco detection,
estimation of the target’s 3D pose, and keypoints extraction

3.1.2 Point aggregation

At the end of the segmentation stage, two clouds Pp must have been
generated, one per sensor involved in the calibration. Each represents
the 3D location of the reference points (the centers of the target holes)
for a single static scene in the coordinate frame attached to the respec-
tive sensor.

These data would be enough to find the transform representing
the relative pose of the sensors. However, different sources of noise
inherent to the method (e. g., sensor noise and non-deterministic pro-
cedures such as RANSAC) can affect the accuracy of the result. To
increase the robustness of the algorithm, we augment the information
available by repeatedly applying the segmentation step and accumu-
lating the results in two different ways.

3.1.2.1 Accumulation over several frames

Since it is usually feasible to maintain the calibration scene static for
a certain period, we accumulate the points that compose Pp over N
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data frames to generate P ′p and then perform Euclidean clustering
on this cumulative cloud. If more than four clusters are found, data is
considered unreliable and not used for registration; otherwise, cluster
centroids, stored in the resulting cloud Pc, are employed as a consol-
idated estimate of the centers’ locations. The clustering parameters,
namely cluster tolerance δcluster, minimum cluster sizeNcluster,min, and
maximum cluster sizeNcluster,max, depend on the number of iterations
taken into account.

According to the experimental results shown later, N = 30 is usu-
ally adopted, which offers satisfactory results in a limited timeframe.
Naturally, the time necessary to complete the procedure depends on
the sensor’s framerate but is rarely longer than a few seconds.

3.1.2.2 Accumulation over several target poses

As will be shown later, the method can deliver an estimated calibra-
tion with a single target position. However, it is possible to increase
the accuracy of the estimation by considering more than four refer-
ence points. If the segmentation procedure is repeated for M differ-
ent poses of the calibration target with respect to the sensors, the Pc
clouds obtained with each pose are accumulated in a P ′c cloud where
4×M reference points are available to perform the registration stage.

If the poses of the target are selected so that the resulting reference
points are not coplanar and cover a wide range of distances from
the sensors, the additional constraints provided by the new poses
solve possible ambiguities and improve the overall quality of the final
calibration.

3.1.3 Registration

As a result of the segmentation stage, two clouds P ′c, one per sensor,
are obtained. They contain the estimated 3D location of the centers of
the circles expressed in sensor coordinates; that is, with respect to a
frame attached to the sensor.

The goal of the registration step is to find the optimal parameters
θ̂ so that when the resulting transformation T̂ is applied, it results
in the best alignment (i. e., minimum distance) between the reference
points obtained from both sensors. Note that the approach has been
designed to handle only two sources at a time so that the problem
can be viewed as a multi-objective optimization with 4×M objective
functions.

Before that, the registration procedure needs that every point in
one of the P ′c clouds is correctly paired with its homologous in the
other cloud; that is, pairs of points representing the same reference
points in both clouds must be associated.
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3.1.3.1 Point association

A point association procedure has been developed to avoid assuming
that reference points in both Pc clouds have the same ordering in
their respective coordinate frames. Note that this condition would
not be fulfilled when calibrating a front-facing 360° LiDAR and a
rear-looking camera, for instance.

Therefore, we convert the four centers in each Pc to spherical coor-
dinates and only presume that the point that appears highest in the
cloud, that is, the one with the lowest inclination angle, belongs to
the upper row of the calibration target (i. e., either the top-left or the
top-right circle).

Distances from this point to the other three determine the correct
ordering. In that way, each point can be associated with the circle
in the calibration target that it represents: top-left (tl), top-right (tr),
bottom-left (bl), and bottom-right (br). The procedure is repeated for
each of the M poses of the calibration target, so that each point pi in
P ′c is provided with labels pi,a and pi,m containing the hole in the
pattern and the pose to which it corresponds, respectively:

pi,a ∈ {tl, tr,bl,br} (3.2)

pi,m∈ {1, . . . ,M} (3.3)

3.1.3.2 Solution

Later, the two resulting clouds, obtained from two arbitrary modali-
ties X and Y and denoted here by P ′Xc and P ′Yc , undergo a Umeyama
registration procedure [176], responsible for finding the rigid trans-
formation that minimizes the distance between their corresponding
points. That is, assuming that the points in each cloud, pXi ∈ P ′Xc and
pYi ∈ P ′Yc , are ordered so that, ∀i:

pXi,a = pYi,a ∧ p
X
i,m = pYi,m (3.4)

Then, the desired transformation matrix T̂XY is the one that mini-
mizes the least-squares error criterion given by:

1

4 ·M

4·M∑
i=1

‖pXi − TXYpYi ‖2 (3.5)

This optimization problem is solved through singular value de-
composition (SVD) and provides a closed-form solution from which
the set of parameters expressing the relative position between both
sensors, θ̂XY , can be straightforwardly retrieved. Conveniently, the
Umeyama method handles singular situations where all the points
are coplanar, as is the case when a single pattern position (M = 1) is
used, thus avoiding misjudging them as reflections.
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3.1.4 Experimental results

The validation of the proposed approach has been addressed from
two different perspectives. First, tests on a realistic synthetic test suite
have been performed to retrieve plentiful quantitative data with re-
spect to perfect ground truth. Second, the method has also been ap-
plied in a real environment to prove its validity in real use cases.

All the experiments were carried out without user intervention, ex-
cept for the setup of the scenario and the tuning of the pass-through
filters mentioned in Section 3.1.1, which must be coarsely adapted to
the location of the calibration pattern. The rest of the parameters were
set to a fixed value for all the experiments, as reported in Table 3.1.
Unless otherwise stated, reference points are accumulated over 30

frames (N = 30); however, it should be noted that every frame deliv-
ered by the sensors counts toward this limit, regardless of whether a
four-point solution has been extracted from it. Conversely, only suc-
cessful frames (N ′) are taken into account for the cluster size limits.

Table 3.1: Setting of constant parameters in the method

Parameter Description

Preprocessing (edge segmentation)

δdiscont,L = 10 cm Distance threshold (LiDAR)

τsobel,S = 128 Sobel intensity threshold (stereo)

Plane segmentation

δplane = 10 cm Distance threshold

αplane = 0.55 rad Angular tolerance

δinliers = 10 cm Distance threshold for outlier removal

Circle segmentation

δcircle,L = 5 cm Distance threshold (LiDAR)

δcircle,S = 1 cm Distance threshold (stereo)

δradius = 1 cm Radius tolerance (stereo)

δconsistency = 6 cm Geometry consistency tolerance

Clustering

Ncluster,min = 1
2N
′ Minimum cluster size

Ncluster,max = N ′ Maximum cluster size

δcluster = 5 cm Cluster tolerance
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3.1.4.1 Synthetic test environment

As stated before, the quantitative assessment of the set of extrinsic
parameters relating two sensors in space is a nontrivial issue, as it is
impossible, in practice, to obtain exact ground truth. Most works deal-
ing with extrinsic calibration in the literature use manual annotations
[62] or other approximations such as scene discontinuities [102].

In order to provide a comprehensive set of data describing the per-
formance of the presented method, we propose a novel evaluation ap-
proach based on a synthetic test suite, where the exact-ground truth
of the relative transformation between sensors is available. The open-
source Gazebo simulator [93] was used, and the operation modes of
the three sensor modalities considered in this work (i. e., LiDAR, and
stereo and monocular cameras) were faithfully replicated, taking into
account the specifications of real devices in terms of field of view, res-
olution, and accuracy. Table 3.2 shows the set of devices used in the
experiments.

Table 3.2: Sensor models used in the synthetic environment

Device Modality Resolutiona HFOV

FLIR Bumblebee XB3 Stereo 1280 × 960 43
◦

Velodyne VLP-16 LiDAR 16 layers, 0.2◦ 360
◦

Velodyne HDL-32 LiDAR 32 layers, 0.2◦ 360
◦

Velodyne HDL-64 LiDAR 64 layers, 0.2◦ 360
◦

FLIR Blackfly S 31S4C-C Monocular 2048 × 1536 85
◦

a
Image resolution, for cameras, and number of channels and hor-

izontal (azimuth) angular resolution, for LiDAR scanners.

Remarkably, the different LiDAR devices employed in the experi-
ments are fairly representative of the diversity of laser scanners avail-
able in the market regarding the number of scanning layers and their
distribution, thus enabling the assessment of the adaptability of the
reference point extraction approach.

A model of the fiducial calibration target was also created by mim-
icking the appearance of the actual wooden embodiment shown in
Figure 3.2a. In the experiments, the target was placed with a wall be-
hind so that LiDAR beams going through the circular holes reach a
surface, generating the necessary gradient between foreground and
background points.

Gaussian noise ε ∼ N(0, (Kσ0)2) was applied to the sensors’ cap-
tured data, with σ0 = 0.007 and σ0 = 0.008m for the pixel inten-
sities (expressed in a range from 0 to 1) and the LiDAR distances,
respectively. The noise factor K allows simulating ideal, noise-free
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environments (K = 0), realistic environments (K = 1), and noisy envi-
ronments (K = 2). K = 1 is used by default.

Despite the eventual domain gap, experiments in this controlled
setup enable systematic analysis and provide valuable insight into
the method that will be otherwise unfeasible. Experimentation in the
synthetic suite can be divided into three different focus points: ref-
erence point extraction, calibration with a single target position, and
multi-pose calibration.

3.1.4.2 Single-sensor experiments

The first set of tests is aimed to analyze the accuracy in the extraction
of the reference points from the four circular openings in the cali-
bration target. Four different relative positions between sensor and
calibration pattern, combining translations and rotations, were con-
sidered. Table 3.3 shows the position of the calibration pattern in
sensor coordinates for each of these configurations, assuming that
axes are defined as customary in LiDAR devices; i. e., x pointing for-
ward, y to the left, and z upward. Besides, translation is denoted by
(tx, ty, tz), whereas (rx, ry, rz) represent roll, pitch, and yaw rotations
(in radians).

Table 3.3: Relative sensor-target poses for reference point extraction assess-
ment

Translation (m) Rotation (rad)

Cfg. tx ty tz |t| rx ry rz

P1 2.00 0.00 −0.50 2.06 0.0 0.0 0.0

P2 3.63 −0.50 −0.28 3.67 0.8 0.0 0.0

P3 5.38 −0.10 −0.50 5.41 0.0 −0.2 0.0

P4 6.50 −1.39 −1.43 6.80 0.0 0.0 −0.4

These setups were purposely chosen to investigate the limits of
the reference point extraction branches. In fact, the method was un-
able to provide results in some extreme configurations; concretely,
with the VLP-16 LiDAR in P3 and P4, the HDL-32 LiDAR in P4, and
the stereo camera in P4 as well. In the case of the LiDAR scanners,
their limited resolution made it impossible to find the circles at far
distances, whereas the stereo was affected by the substantial degra-
dation in depth estimation that this modality suffers as the distance
increases. In typical use cases, it should be possible to avoid these
situations by restricting the pattern locations to a reasonable range of
distances with respect to the sensors.

The reference point localization performance was measured by de-
termining the distance between the estimation provided by the ap-
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proach and the ground-truth position of the center of the correspond-
ing circle. The assignment was unambiguous in all cases and could be
straightforwardly performed based on distance. Results were aggre-
gated over three iterations for each pose and modality to account for
the effect of the stochastic processes in the pipeline (e. g., RANSAC
segmentations).

Firstly, Figure 3.8 analyzes the effect of noise in the reference points
location error. The results show that the procedure is highly robust
to noise in all the modalities, given that the impact is limited to an
increase in the standard deviation of the error in noisy situations
(K = 2). In all cases, the error is well below 1 cm for the P1 and
P2 configurations (upwards and downwards triangle markers in the
graph), whereas P3 (circle markers) and, especially, P4 (square mark-
ers) involve a significant increase across all the noise levels. This fact
is particularly noticeable for the monocular modality (please note the
different scale in the y-axis), where the accuracy in the detection of
the ArUco markers proves to be much more sensitive to the size of
their projections onto the image than to the pixel-wise noise.
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Figure 3.8: Euclidean error in single-frame reference point localization vs.
noise level (K) for each tested modality. The mean is depicted
as a solid line, whereas the shaded area represents the standard
deviation. Mean errors for each pose are depicted as individual
markers (P1: upwards triangle, P2: downwards triangle, P3: cir-
cle, P4: square)

Focusing on the realistic noise setup (K = 1), Figure 3.9 shows the
single-frame estimation error in each of the four configurations, fur-
ther highlighting the relative position between sensor and calibration
pattern as a significant factor. Apart from the most challenging con-
figurations, the reference point localization proves accurate and pre-
cise across all the modalities, with LiDAR scanners exhibiting high
robustness even in P3 and P4. As mentioned before, monocular strug-
gles with these configurations but shows an excellent performance in
P1 and P2.

The effect of the point aggregation and clustering strategy intro-
duced in Section 3.1.2.1 is investigated in Table 3.4, where the root-
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Figure 3.9: Euclidean error in single-frame reference point localization, for
each tested configuration and modality, with realistic noise

mean-square error (RMSE) of single-frame estimations and cluster
centroids at 30 iterations are compared under realistic noise condi-
tions. The cluster centroid proves to be a consistently better represen-
tation of the reference points than the single-frame estimation in all
cases, achieving a more remarkable improvement in situations with
high dispersion; e. g., stereo in P3 (25.22% error reduction) or HDL-64

also in P3 (19.02% error reduction).

Table 3.4: RMSE (mm) in reference point location using a single-shot estima-
tion (S) and the cluster centroid at N = 30 (C)

P1 P2 P3 P4

S C S C S C S C

Stereo 1.84 1.83 7.82 6.83 10.11 7.56 - -

VLP-16 3.98 3.87 8.39 8.27 - - - -

HDL-32 4.12 3.98 8.82 8.61 8.02 7.41 - -

HDL-64 3.81 3.74 7.38 7.29 9.99 8.09 14.43 14.28

Mono 2.82 2.80 4.92 4.91 35.78 35.58 34.70 33.87

Once again, the results suggest that the accuracy in reference point
extraction is primarily impacted by the relative pose of the calibration
target and, to a lesser extent, by the sensor modality. In contrast, the
density of LiDAR data seems to have little influence on the results,
although minor differences in the way laser beams interact with the
target depending on the layer distribution produce a few counterin-
tuitive results.
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3.1.4.3 Single-pose experiments

Next, the full calibration pipeline will be evaluated considering only
a single target position; that is, for M = 1. To that end, four combina-
tions representative of real automotive sensor setups were analyzed:

a. HDL-32/HDL-64 (LiDAR/LiDAR)

b. Monocular/HDL-64 (camera/LiDAR)

c. Monocular/monocular (camera/camera)

d. Stereo/HDL-32 (camera/LiDAR)

Setups A and C embody situations where several devices of the
same modality are included in the same sensor setup to enhance the
field of view or the resolution of the captured data, whereas setups B
and D exemplify setups aimed at camera-LiDAR sensor fusion. Both
situations are frequently found in the onboard perception literature,
even jointly on the same platform, e. g., [26].

For each setup, the three different relative positions between sen-
sors reported in Table 3.5 were considered. They were picked as a
challenging set of configurations involving a wide range of transla-
tions and rotations. Representative pictures of these poses in the syn-
thetic test suite are depicted in Figure 3.10. As in the previous case,
three different iterations were considered in the results for each pos-
sibility. In all cases, the calibration pattern was placed arbitrarily in
a location suitable for both sensors. Like in the per-sensor analysis,
different distances to the target are used to further study its effect on
final calibration.

Table 3.5: Transformation parameters of the different calibration scenarios

Cfg. tx (m) ty (m) tz (m) ψ (rad) θ (rad) φ (rad)

P1 −0.300 0.200 −0.200 0.300 −0.100 0.200

P2 −0.128 0.418 −0.314 −0.103 −0.299 0.110

P3 −0.433 0.845 1.108 −0.672 0.258 0.075

The analysis is now focused on the final calibration result. There-
fore, following [62], results are given in terms of the linear (et) and
angular (er) errors between the estimated rigid-body transformation
and the ground truth:

et = ‖t̂− t‖ (3.6)

er = 6 (R̂−1R) (3.7)
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(a) (b) (c)

Figure 3.10: Sensor setups for the single-pose experiments in the synthetic
environment: P1 (a), P2 (b), and P3 (c)

Where t is the translation vector, t = (tx, ty, tz), and R the 3× 3 ro-
tation matrix, representing the rx, ry, and rz rotations; both elements
compose the transformation matrix:

T =

[
R t

0 1

]
(3.8)

In the first place, the effect of the number of data frames used for
reference point extraction, N, was studied. Figure 3.11 aggregates the
error for every setup and configuration when the calibration proce-
dure is stopped at a point in the N = [1, 40] interval. The results
suggest that the method can provide a reliable estimation of the ex-
trinsic parameters in a wide range of values of N, even with very few
iterations. Nevertheless, N = 30 offers a fair accuracy-time tradeoff
where outliers are extremely rare.
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Figure 3.11: Linear (a) and angular (b) calibration errors vs. number of itera-
tions considered for clustering (N). The solid line represents the
median and the shaded area, the interquartile range (IQR)

Table 3.6 shows the linear (et) and angular (er) calibration errors
sorted by sensor setup and configuration for N = 30. Monocular/-
monocular calibration (setup C) shows excellent accuracy and pre-
cision, in line with the reference point extraction results, featuring
errors up to 100 times smaller than the rest of the setups. On the con-
trary, the stereo/HDL-32 (setup D) presents higher errors, likely due
to the difficulties found by the stereo matching procedure to provide
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an accurate depth estimation at the distance where the pattern was
placed in the experiments. Despite this, we observed that the imple-
mentation of the ArUco detector in use (OpenCV aruco module) was
considerably more sensitive to light conditions than the stereo match-
ing approach, so the method based on the stereo modality might still
be useful in some instances. Overall, the results are reasonably accu-
rate, even though the single-target situation poses a very challenging
case for registration due to the coplanarity of the reference points,
which can eventually become a source of ambiguity.

Table 3.6: Mean (and standard deviation) of linear (et) and angular (er)
calibration errors for different setups using a single target pose
(M = 1)

Set. Error P1 P2 P3

A
et (cm) 8.94 (1.49) 17.39 (2.13) 11.95 (1.56)

er (10−2 rad) 4.36 (0.72) 3.91 (0.48) 5.80 (0.78)

B
et (cm) 10.34 (0.53) 4.31 (0.29) 9.68 (0.22)

er (10−2 rad) 5.08 (0.26) 2.23 (0.13) 4.74 (0.12)

C
et (cm) 0.17 (0.01) 0.08 (0.00) 0.16 (0.00)

er (10−2 rad) 0.03 (0.01) 0.04 (0.00) 0.04 (0.00)

D
et (cm) 9.62 (1.12) 47.02 (1.49) 31.60 (2.95)

er (10−2 rad) 2.85 (0.34) 14.87 (0.47) 8.75 (0.84)

Table 3.7 shows a comparison of the proposed approach with two
single-pose LiDAR-camera calibration methods in the literature: the
one by Geiger et al. [62], which estimates both the intrinsic and ex-
trinsic parameters of the sensors with only one shot, and the one pro-
posed by Velas et al. [181], which makes use of a calibration pattern
very similar to ours. For a fair comparison, all the methods were fed
with sensor data from the synthetic test suite. The sensor setup was
composed of the stereo camera and the HDL-64 LiDAR introduced
in Table 3.2. We consider the two available options for reference point
extraction in visual data: stereo and monocular, the latter employing
the left image of the stereo rig as input. The errors were averaged
over the same three poses used in the previous experiments.

According to these results, the stereo and mono alternatives yield
similar accuracy, significantly outperforming the other methods. Par-
ticularly noteworthy is the substantial improvement in angular error
brought about by our approach, which stands out as the only one
suitable for data fusion at far distances. These results prove that the
baseline method, requiring a single pose of the calibration pattern
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Table 3.7: Mean (and standard deviation) of linear (et) and angular (er) cal-
ibration errors using a single target pose (M = 1)

Method et (m) er (rad)

Geiger et al. [62] 0.93 (0.36) 1.30 (1.35)

Velas et al. [181] 0.99 (1.17) 0.35 (0.37)

Ours (Stereo-LiDAR) 0.12 (0.09) 0.04 (0.03)

Ours (Monocular-LiDAR) 0.12 (0.12) 0.04 (0.03)

(M = 1), works acceptably and provides a solid foundation for the
full version with M > 1.

3.1.4.4 Multi-pose experiments

The last set of experiments focuses on the aggregation strategy pre-
sented in Section 3.1.2.2, where the registration procedure is per-
formed on M× 4 points coming from M different calibration target
positions. The sensor setups are identical to those used in the single-
pose tests, but only the first configuration (P1) has been selected. For
every sensor pair, the calibration pattern was moved along five differ-
ent poses within a range of 5× 5 m in front of the devices, up to 6m
in depth. To avoid the eventual bias introduced by the order in which
these positions are used, results are obtained through three different
iterations in which the sorting is changed.

The evolution of the linear and angular calibration errors with
M follows an almost-exponential decay for all the tested setups, as
shown in Figure 3.12 (please note the logarithmic scale). Only by in-
troducing an additional target pose, an average reduction of 61.2%
(linear) / 68.15% (angular) can be achieved. Increasing the number
of poses is positively beneficial up to M = 3; higher values lead to
mixed effects ranging from almost neutral to slightly positive. Nev-
ertheless, when five poses are employed, the average errors drop by
85.42% (linear) / 87.01% (angular). The largest decreases correspond
to the HDL-32/HDL-64 setup, where the reduction is around 97% for
both kinds of errors, yielding a final calibration with a deviation of
6.5mm and 0.002 rad from the ground truth.

The proposed approach has been compared with the state-of-the-
art method recently introduced by Zhou et al. [208], aimed at LiDAR-
camera calibration using one or several views of a checkerboard. To
that end, we used the implementation included in the MATLAB Li-
dar Toolbox [171]. Tests were performed with the monocular/HDL-64

sensor setup, using M = 2 and M = 3 poses of the respective calibra-
tion patterns. Mean calibration errors by both methods are shown in
Table 3.8.
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Figure 3.12: RMSE of the linear (a) and angular (b) calibration errors (m and
rad) vs. number of calibration poses (M) for four sensor setups

Table 3.8: Mean of linear (et) and angular (er) calibration errors using sev-
eral target poses (M > 1)

M = 2 M = 3

Method et (cm) er (10−2 rad) et (cm) er (10−2 rad)

Zhou et al. [208] 1.51 0.63 1.08 0.50

Ours 1.15 0.39 0.82 0.24

As apparent from the results, the performance of both approaches
is comparable, although our solution achieves consistent improve-
ments that even exceed 50% for the angular error when M = 3. These
results confirm the effectiveness of the aggregation of reference points
across different target locations, providing a calibration solution that
features subcentimeter accuracy.

3.1.4.5 Real test environment

The set of experiments presented in the previous section offers a sys-
tematic and exact analysis of the performance of the proposed calibra-
tion method. Nevertheless, experiments in a real use case were also
carried out to validate the applicability of the approach, assessing its
adequacy to meet the requirements of the intended application.

The CNC manufactured calibration targets shown in Figure 3.2
were employed in the process. We performed two rounds of exper-
iments using different sensor stacks to test the multiple capabilities
of the approach adequately. Both configurations were mounted on an
experimental vehicle’s roof rack.
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For the first round, depicted in Figure 3.13a, two Velodyne VLP-16

LiDARs and a Bumblebee XB3 camera were mounted in a rig, with
rotations emulating the ones that can be found in vehicle setups. In
this step, we performed two different calibration procedures: monoc-
ular/LiDAR, involving one of the cameras of the stereo system and
one of the LiDAR scanners, and LiDAR/LiDAR, between the two
VLP-16 devices.

In the second round, we used the topology shown in Figure 3.13b,
with the Bumblebee XB3 stereo camera, a Basler acA2040-35gc cam-
era with a 90° HFOV lens, a Robosense RS-LiDAR-32, and a Velo-
dyne VLP-16 Hi-Res LiDAR. Here, we tested three different calibra-
tion alternatives: stereo/LiDAR, linking the XB3 and the VLP-16 Hi-
Res scanner, monocular/LiDAR, this time with the wide-angle Basler
camera and the RS-LiDAR-32, and monocular/monocular, between
two of the cameras of the stereo system.

(a)

(b)

Figure 3.13: The two sensor setups used in the real experiments. Calibrated
pairs of devices are framed with the same color

The sensors used in these experiments have very different features
from each other; thus, the VLP-16 Hi-Res LiDAR has a tighter layer
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distribution than the regular VLP-16, whereas the RS-LiDAR-32 has
twice as many scan planes, but they are irregularly spread, with much
higher density around the central area. All the devices pose their own
challenges for calibration, as the set of locations where the four cir-
cles of the calibration pattern are fully visible is much more limited
than, for example, with the Velodyne HDL-64. As for the cameras, the
narrow field of view exhibited by the XB3’s cameras (43°) contrasts
with the wide angle of the Basler. Overall, the number and variety
of sensors and combinations used in the experiments ensure the gen-
erality of the results. As with the synthetic experiments, points were
extracted from the accumulation of N = 30 frames, and M = 5 tar-
get poses were used. The rest of the parameters remained unchanged
from Table 3.1.

Ground truth of the relative position between sensors was not avail-
able, but some illustrative statistics about the performance of the cali-
bration procedure with real sensors are presented below. On the one
hand, Figure 3.14 shows the dispersion of the estimated reference
points across different poses of the calibration pattern, each repre-
sented by a point. Data from the five separate calibration procedures
are included. The black line represents the mean, the dark shadow
spans the standard deviation, and the light shadow covers 1.96 times
the standard error of the mean.

Narrow c. Wide c. Stereo c. 16-layer L. H-R 16-l. L. 32-layer L.
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Figure 3.14: Dispersion in the localization of the reference points in real ex-
periments for the different camera (c.) and LiDAR (L.) devices

The results confirm that the dispersion in the LiDAR and stereo
modalities is significantly higher than the one exhibited by its monoc-
ular counterpart, as suggested by the tests in the synthetic environ-
ment. However, the deviation is still small enough to enable higher
accuracy in registration. It is possible to observe the presence of out-
liers corresponding to some particular poses of the calibration pattern;
however, they do not raise relevant issues for the multi-pose calibra-
tion as they are well mitigated by the rest of the poses.
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On the other hand, Figure 3.15 shows the difference, measured in
linear and angular errors, of the calibrations performed with M ∈
[1, 4] versus the final result with M = 5. The results validate the con-
clusion drawn in the previous section: using several pattern poses
(M > 1) causes significant changes in the calibration result up to 3

poses, where it plateaus.
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Figure 3.15: Linear and angular deviation from the final calibration result at
M = 5 in real experiments

In the particular case of the narrow-angle camera/narrow-angle
camera calibration, the result can be compared with the baseline pro-
vided by the manufacturer for the rectified stereo pair, yielding an
average error across coordinates of 2.73mm.

Finally, qualitative results are presented through the projection of
LiDAR point clouds onto the image plane for different sensor setups.
Figure 3.16 depicts various examples of traffic scenarios captured by a
sensor stack composed of a narrow-angle monocular camera and two
16-layer LiDARs, calibrated following separated camera-LiDAR and
LiDAR-LiDAR procedures. On the other hand, the performance of
the method for a sensor configuration with a stereo camera, a wide-
angle monocular camera, a high-resolution 16-layer LiDAR, and a
32-layer LiDAR is illustrated in Figure 3.17. This time, the pairwise
calibration has been performed using the stereo rig with the 16-layer
LiDAR, and the monocular camera with the 32-layer scanner. For all
samples, a zoomed view of specific regions is provided so that the
details can be well perceived.

As shown, the use of the extrinsic parameters extracted by the
proposed approach enables a perfect registration between both data
modalities. The quality of the sensors’ alignment is especially notice-
able when vertical thin objects are represented in the scene (i. e., lamp
poles or trees), as can be seen in the close-up views. Moreover, it is
remarkable how well the method performs even at far distances from
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the vehicle, considering that the calibration target is usually located
within a limited distance to the sensors so that the pattern can be
successfully segmented in all modalities. The outstanding accuracy
at long ranges can be explained by the use of multiple poses, which
further increases the precision obtained through a single-pose proce-
dure, as depicted in Figure 3.15.
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Figure 3.16: Calibration results in different traffic scenarios for a sensor
setup composed of a narrow monocular camera and two
16-layer LiDARs. The LiDAR point clouds have been pro-
jected onto the image using the extrinsic parameters estimated
through camera-LiDAR and LiDAR-LiDAR calibrations
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(a)

(b)

(c)

Figure 3.17: Calibration results in different traffic scenarios for two sensor
configurations: (a-b) a stereo camera with a Hi-Res 16-layer Li-
DAR; (c) a wide-angle camera with a 32-layer LiDAR. The Li-
DAR point clouds have been projected onto the image using the
estimated extrinsic parameters.
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3.2 conclusion

In this chapter, we have presented an approach for the automatic es-
timation of the extrinsic parameters representing the relative pose of
any pair of sensors involving LiDARs, monocular or stereo cameras,
of the same or different modalities. Unlike the existing works, the sim-
plicity of the calibration scenarios and the characteristics provided by
the proposed target allow obtaining accurate results for most sensing
setups featured by autonomous vehicles. Moreover, minimal user in-
tervention is required during the process. Thanks to the design of the
framework, the algorithm should be easily extendable to other sen-
sors commonly found in vehicles (e. g., radars), as long as the fiducial
target is endowed with elements that allow its unequivocal character-
ization in the 3D space using the new data representation.

Additionally, we have introduced an advanced simulation suite
that copes with the traditional imprecision at performance assess-
ment and provides exact ground truth that enables a reliable eval-
uation of extrinsic calibration methods.

Results obtained from the conducted experiments demonstrate that
the algorithm presented in this chapter notably outperforms existing
approaches. Tests on real data confirm the accuracy obtained in the
simulation environment. The utilization of the proposed solution for
the calibration of the multi-modal sensor configuration used for the
perception system of an autonomous vehicle, described in Chapter 5,
further validates its suitability for automotive applications.

Although there is still a road ahead, this proposal provides a prac-
tical approach to solve a common problem for the scientific commu-
nity working in this field, bringing autonomous driving and robotics
solutions closer to their final deployment. In this regard, the calibra-
tion software has been open-sourced3, gathering remarkable attention
among both academia and industry practitioners around the world.

3 As of December 2021, the repository of the project https://github.com/beltransen/
velo2cam_calibration features 350 stars and 115 forks.

https://github.com/beltransen/velo2cam_calibration
https://github.com/beltransen/velo2cam_calibration
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The precise classification and localization of other traffic partici-
pants is a task of paramount importance to increase the level of au-
tomation of vehicles, as it provides the decision-making modules with
the necessary information to perform the right maneuvers. Although
historically, most efforts in the field of object detection were dedi-
cated to the image space, the 2D characterization of elements in the
surroundings is not sufficient to perform safe navigation.

Even though some approaches have made use of the pinhole model
to infer depth from the signal captured by monocular camera devices,
the results are not accurate enough for automotive applications. On
the other hand, the degradation with the distance of the depth esti-
mation computed through stereo pairs prevents its usage for medium
and high-speed use cases.

To this effect, the incorporation of range sensors into the percep-
tion pipeline is key to finding the spatial positioning of the road users
around. In this regard, LiDAR scanners have shown superior perfor-
mance over radar devices, as they provide more precise and consis-
tent measurements. Indeed, thanks to the increment of the resolution
of modern multi-layer LiDARs in the last decade, they have become
part of the sensor configuration of most autonomous prototypes un-
der development. By using a single device of this kind, vehicles can
capture dense geometrical information of the environment in 360° .

As a consequence, the detection and classification of objects in the
scene may not only rely on image cues but can also benefit from
laser features, traditionally relegated to object localization purposes.
Although this brings new opportunities to foster new advances in the
3D object detection field, it also poses some challenges that need to
be addressed.

On the one hand, detection frameworks that take LiDAR informa-
tion as input need to handle the bulkiness and sparsity of the point
clouds in real-time, which is a non-trivial task. On the other hand,
new fusion strategies need to be developed to effectively combine
features from complementary sensors like cameras and LiDARs, so
that previous single-modality object detection approaches can be out-
performed both in terms of accuracy and robustness.

In this chapter, the LiDAR’s BEV projection is proposed as an effec-
tive trade-off between having a detailed representation of the scene
geometry and offering a relatively simple data structure that can be

This chapter includes content from [12], [9] and [8]
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processed efficiently. The convenience of its use for on-board 3D de-
tection is studied in a twofold approach. First, a two-stage object
detection pipeline based on RGB-oriented architectures is presented.
Experiments show that our network is able to provide state-of-the-
art results while working at almost 10hHz. Second, different fusion
strategies are explored to exploit the joint use of image and BEV fea-
tures in 3D object detection frameworks. To this end, a single-stage
model is proposed so that real-time performance is guaranteed both
when the network is used on its own or as a part of a more complex
perception solution.

4.1 two-stage 3d object detection

The application of machine learning techniques to the information
gathered by high-resolution multi-layer LiDARs has led to promising
results in the field of 3D object detection in traffic scenarios. These
methods are able to endow vehicles with a reasonably accurate per-
ception under a wide range of scene conditions, providing greater
robustness than camera devices in some situations where their relia-
bility is compromised, such as night driving. However, dealing with
the sparse nature of laser scans requires the engineering of innovative
approaches suitable for online operation.

In this regard, several research lines are being explored, either con-
sidering the point cloud as-is or through a simplified representation.
Using the raw cloud enables to preserve all features and avoid any
loss of information, although the uneven layout of the points in space
forces to build new model architectures to encode meaningful de-
scriptors from unordered data, which often are computationally ex-
pensive. To ease the design of inference networks and deal with spar-
sity, different alternatives have emerged. Voxel-based approaches dis-
cretize the LiDAR points into spatial cells, losing some information
along the way. However, the resulting format is an ordered grid with a
regular distribution of data much easier to process. Similarly, LiDAR
projections dispense of some of the original information to produce
2D representations, which significantly enhance the efficiency during
inference.

Here, we propose BirdNet, a framework for 3D detection and classi-
fication based on a novel LiDAR’s BEV encoding containing distance-
invariant features that enable the identification of multiple object cat-
egories using a single frame as input. Through the use of the BEV

projection, deep learning models originally intended for image in-
puts can be applied, thus leveraging the detection architectures from
a more mature field. The pipeline may be divided into input prepa-
ration, inference network, and 3D estimation, whose details can be
found in the following sections.
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4.1.1 Bird eye’s view generation

The first stage of the pipeline is in charge of converting the LiDAR
raw point cloud, where each point P = {x,y, z, i} contains the Carte-
sian coordinates in meters and the intensity value from the reflected
laser beam, into a bidimensional structure known as BEV. This grid
map stores the LiDAR readings as seen from an orthographic top
view, where each cell represents a square pillar lying in a theoreti-
cal ground plane. At each position, information of the LiDAR points
falling inside the pillar is encoded. The main advantage of this format
over the raw laser signal is that, as a 2D pseudo-image, the BEV pro-
jection can be fed to CNN detectors. Besides, it offers other interesting
characteristics for automotive applications:

• The impact caused by the dimensionality reduction at the ver-
tical axis is low, as it is presumable that the traffic participants
which are likely to interact with the ego-vehicle lay on the same
plane.

• Since all road actors move on the ground plane, there are no
occlusions between objects in this view.

• The scale of the elements in the scene is preserved at all dis-
tances, so prior knowledge of average object dimensions can be
used to ease the detection phase.

The BEV is a matrix of M×N square cells of size s2, so that it ex-
tends for a total area of sM × sN. Each cell can encode a variable
number of features C, thus composing a final 3D tensor with dimen-
sions of M ×N × C. Regarding the encoding, we propose the use
of three different channels, storing information about the height, in-
tensity, and density of the cloud, whose details will explained later.
As for the dimensions, they should be selected in accordance with
the specifications of the LiDAR device in use and the application re-
quirements, taking into account that the accuracy of the detection
degrades as the sparsity of the cloud increases. Therefore, both the
number and vertical distribution of the laser scans, the desired de-
tection distance, and the time requirements need to be considered.
In our experiments in the KITTI dataset, regions of 70 × 35m and
45× 50m have been used. For the cell size, we empiricall yfound that
a resolution of s = 5cm allows for the detection of both large and
small objects (i. e.cars, pedestrians, and cyclists). The use of a higher
resolution barely improves the results while having a severe impact
in the inference time, whereas greater cell sizes drop the performance
for less bulky road users.

The three encoded features, which mimic the RBG channels of a
color image, are shown in Figure 4.1. They describe the maximum
height (Hmax), mean intensity (I), and density (D) of the points falling
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inside the corresponding pillar of the grid. These features aim to pro-
vide an invariant representation of objects regardless of their distance
to the LiDAR device. Even though the intensity and height readings
are roughly homogeneous in the whole operating area of the range
scanner, the number of points in a cell is directly related to its position
in the space. Hence, a novel normalized density channel representing
the number of laser readings divided by the maximum possible is
proposed instead.

Before computing each of the image channels, upper and lower
boundaries in the vertical axis are set to filter out points below the
theoretical ground plane or above a maximum height Htop, since ob-
jects of interest are unlikely to be located in such regions. The mini-
mum height is set to the −Zlidar, being Zlidar the height of the LiDAR
sensor over the ground. The value of Htop corresponds to an offset of
3m above this plane. The magnitudes of all features are scaled to the
0–255 range.

(a) (b) (c)

Figure 4.1: Baseline BEV feature encoding: (a) Maximum height. (b) Mean
intensity. (c) Normalized density. Contrast corrected for visual-
ization [8] © IEEE 2021

In order to build the density channel, the maximum number of
points at each cell needs to be known. To this end, the properties
of both the multi-layer LiDAR device and the pillars of the BEV are
considered. From the sensor perspective, the number and vertical dis-
tribution (elevation angles) of the set of scan layers, L, and their hor-
izontal angular (azimuth) resolution, ∆θ determine the number of
beams traversing through a region in the space. As for the grid cells,
the maximum number of possible points is affected by their size and
position. Hence, the normalized density feature is defined as:

D(x,y) =
Npoints(x,y)

Nmax(x,y,L,∆θ)
, (4.1)

where D(x,y) is the density value at the position (x,y), Npoints(x,y)
the number of points measured in that cell, and Nmax(x,y,L,∆θ), the
maximum number of points.

The function Nmax(x,y,L,∆θ) can be obtained by geometric deriva-
tion. Let us limit the analysis to the 0–Htop range with respect to the
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theoretical ground plane considered for the BEV image’s computation.
The maximum number of points from a particular LiDAR layer that
can be contained in a BEV s× s cell is given by the case in which a
solid cuboid is placed at that location, spanning the whole volume
represented by the cell (s× s×Htop). The problem then boils down
to finding the number of points that would fall in that hypothetical
cuboid.

The analysis will be performed on a per-layer basis so that the final
value will be obtained as the sum of the contributions of each layer,
Nmax,l:

Nmax(x,y,L,∆θ) =
∑
l∈L

Nmax,l(x,y, l,∆θ). (4.2)

When taking into account the paths of the laser beams, each layer
can be seen as a cone (without the base) whose vertex is in the Li-
DAR rotation axis. By definition, the planes limiting the represented
volume (i.e., planes at z = 0 and z = Htop) are aligned with the Li-
DAR scanner. Therefore, the intersection of each of the cones with
these planes is a circle.

A top view of the situation is shown in Figure 4.2, where the inter-
section of the LiDAR layers with the upper and lower limits are de-
picted in grey/black, and the cell for which Nmax is being computed
is outlined in blue as the ABCD square. As shown, three different
cases can be distinguished, depending on the relative position of the
square representing the cell with respect to the circle generated by
the intersection of the LiDAR layer with the vertical limits:

a) The square is completely outside the circle.

b) The circle cuts the square at two points, P0 and Pn.

c) The square is completely inside the circle.

(a) (b) (c)

Figure 4.2: Horizontal cross-section of possible LiDAR-cell intersection sce-
narios: (a) No intersection. (b) LiDAR ring intersects with the up-
per/lower plane of the 3D pillar. (c) The cell is fully intersected
by the laser plane [8] © IEEE 2021
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In case a), no point from that layer can fall in the cell under con-
sideration, so Nmax,l = 0. In the other two cases, LiDAR beams from
the analyzed layer would indeed collide with the s× s×Htop cuboid.
Points in the cell would be those in the interval between θ0 and θn,
each representing the azimuth angle of one of the border points (P0
and Pn). Then, Nmax,l can be straightforwardly computed given the
horizontal resolution of the LiDAR scanner, ∆θ:

Nmax,l =

⌈
|θn − θ0|

∆θ

⌉
. (4.3)

The calculation of θ0 and θn from P0 and Pn is trivial. Let Pi,x and
Pi,y denote the x and y coordinates of point Pi, for i ∈ {0,n}; then

θi = arctan
(
Pi,x
Pi,y

)
. (4.4)

Therefore, the focus is on the localization of points P0 and Pn. In
case c), P0 and Pn coincide with the B and D vertices of the square
representing the cell, as shown in Figure 4.2c. As the grid is arbitrarily
created, these positions are known. However, in case b), P0 and Pn
are in intermediate positions in the BC and CD sides of the square.
The computation of their positions involves solving the system of
equations posed by the equations of the circle and the lines where
the BC and CD segments lie. Let us denote Vy and Vy the x and
y coordinates of one of the vertices of the square, V . Thus, point Pi
(either i = 0 or i = n) must satisfy

P2i,x + P
2
i,y = d2

Pi,y −Cy =
Vy −Cy
Vx −Cx

(Pi,x −Cx)
(4.5)

Here, d denotes the radius of the circle, and V is one of the vertices
connected with C; that is, either V = D (if i = 0) or V = B (if i = n).
Among the two solutions obtained, only one would be feasible at the
current location.

This is also the way to determine the case corresponding to each
cell (x,y) among the three discussed above: in a), the points of inter-
section will be closer to the origin than the square, and in c), they will
be further away.

This approach deals with the differences in data density across the
measurement range inherent to the LiDAR modality. Hence, the re-
sulting BEV image fits better with the parameter sharing paradigm
of convolutional layers, which assumes that features are invariant to
location.

Despite calculating the cell-wise number of maximum points may
be computationally expensive for large BEV dimensions, the process
can be performed in an offline manner prior to the start of the opera-
tion, as the density normalization map is the same for all frames.
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4.1.2 Inference framework

To perform object detection on the presented BEV images, we adopt
the Faster R-CNN meta-architecture [145], as it offers excellent perfor-
mance for objects of different dimensions. This two-stage approach
consists of three main components: the CNN feature encoder or back-
bone, the Region Proposal Network (RPN), and the desired detection
heads. The backbone processes the input through a set of convolu-
tional operations and generates a feature map, which is then shared
by the region proposal generation branch and the final estimation lay-
ers. Although the architecture was designed to process RGB inputs,
it can be fed with arbitrary 2D structures such as LiDAR projections.

4.1.2.1 Feature encoder

For the feature encoder, any convolutional feature extractor intended
for image detection may be selected depending on the requirements
of the specific application. In our experiments, we have used both
the VGG-16 [161], and Resnet-50 [73] architectures, as they offer an
excellent trade-off between accuracy and computation speed. Regard-
less of the backbone of choice, the scale of the objects at a given fea-
ture map level needs to be considered so that small instances such as
pedestrians and cyclists are not represented by too few pixels, which
may hamper their detection. To this effect, the fourth pooling layer of
the VGG-16 has been removed so that the last convolutional layer is 8
times smaller than the input tensor, instead of the original reduction
of 16. In the ResNet case, its Feature Pyramid Network (FPN) version
has been used, as it provides detections at downsampling resolutions
of 4, 8, and 16, improving even further the performance for less bulky
traffic participants.

4.1.2.2 Proposals generation

Once the features maps have been computed through the encoder lay-
ers, the RPN can take them as input to produce the set of proposals
that will be forwarded to the heads of the model. For every element
in the input tensor, this CNN tiny subnetwork is responsible for the
estimation of an objectness score, which will be used to discard back-
ground cells where no objects of interest are located, and an array of
residuals to refine the dimensions of a set of predefined axis-aligned
candidate boxes k, known as anchors. Thus, for each position in the
feature map, an output of 2k and 4k is obtained for anchors classifica-
tion and regression, respectively. The sizes of the anchors are selected
through a statistical analysis of the geometry of the projection of road
users on the BEV. For efficiency reasons, only three scales, with box
areas of 162, 482, and 802 pixels, and three ratios, of 1 : 1, 1 : 2, and
2 : 1, are employed. After a Non-Maximum Suppression (NMS) pro-
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cedure to remove highly overlapping proposals, the remaining boxes
are sorted by their probability score of being an object, and the top
300 are selected. The refined anchor encoded by the residuals is then
used to extract the object candidates from the backbone’s feature map
through a pooling process. Here, we adopt the ROIAlign method in-
troduced in [72] to increase the localization accuracy of the ROI pool
operation of the vanilla architecture.

4.1.2.3 Detection heads

The network estimation of the final detections includes the object cat-
egory and the box parameters. Namely, the heads of the proposed
model produce a box encoding described its center (x, y), its size (l,
w), given by the dimensions of the minimum axis-aligned rectangle
enclosing the object-oriented bounding box, and the heading angle θ,
as shown in Figure 4.3a.

To infer the desired parameters, three sibling branches are em-
ployed. First, a classification head that replicates the configuration
of the original Faster R-CNN architecture is used. In our case, the
last FC layer generates an output of Ncls + 1 logits, being the first
Ncls elements the probability of the candidate to belong to each of
the object categories of interest, and the last one an additional score
to allow the identification of background proposals classified as false
positives at the RPN stage. A softmax operation is used for the nor-
malization of the scores. Unlike other approaches in the literature,
our framework performs simultaneous detection and classification of
all relevant classes using a single model. Hence, we set Ncls = 3 to
match the object types of the KITTI dataset, used for evaluation.

The second head is dedicated to the inference of the size and loca-
tion of the bounding box. The regression targets of the four estimated
magnitudes are defined as:

∆x = λx ·
x− xp
wp

∆y = λy ·
y− yp
lp

∆w = λw ·
ln (w)

wp

∆l = λl ·
ln (l)

lp

(4.6)

being x,y,w,l the real position and dimension values, xp,yp,wp,lp
the anchor parameters refined by the RPN, and λi; i ∈ {x,y, l,w} the
target-wise weights to scale the residuals so that they roughly have
unit variance.

Finally, to fully describe the position of a detected object, its orienta-
tion has to be known. To do so, the Faster R-CNN has been endowed
with a third branch which formulates the heading estimation as a clas-
sification problem, where the yaw angle is discretized into Nbin angle
bins of equal amplitude, following the approach presented in [70].
The final orientation is obtained as a weighted average of the centers
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(a) (b)

Figure 4.3: 2D detection refinement process. (a) Network output: class, axis-
aligned detection, and yaw estimation; (b) 2D refined box [12]
© IEEE 2018

of the predicted angle bin and its highest-scoring neighbor. The prob-
abilities of the selected bins obtained after a softmax normalization
of the output logits are used as weights. To ease the learning, bins are
defined so that the most common orientations(i. e., forward/rear, and
left/right) are represented unambiguously.

Both the size regression and the angle classification are performed
on a per-category basis, as the refinement of the anchor candidates is
done in the RPN.

4.1.2.4 Multi-task training

To train the proposed framework, a multi-task loss is used to opti-
mize the model parameters for the different targets to be estimated:
generation of proposals, classification, box size residuals, and objects
orientation:

L = Lp,cls +Lp,bbox +Lcls +Lbbox +Lθ (4.7)

The first two components, Lp,cls and Lp,bbox, represent the objectness
classification and box regression of the proposals in the RPN, respec-
tively. while the other terms account for the loss of the output of the
three network heads.

All the elements composing the loss function follows the approach
of the original Faster R-CNN detection framework. Therefore, the
classification targets (i. e., Lp,cls, Lcls, and Lθ) are optimized via cross-
entropy losses:

Lcls = −
1

N

N∑
i=1

y∗i · log(ŷi), (4.8)

where y∗ stands for the one-hot ground-truth vector and ŷ for the
network’s estimation after softmax. Although they all share the same
objective function, the different classification components differ from
each other in the number of categories. A foreground-background
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binary classification is trained through Lp,cls, while Lcls and Lθ are
multinomial losses with Ncls and Nbin possible labels, respectively. In
all cases, the loss is normalized over the number of training samples
used in each iteration at the corresponding stage, N.

On the other hand, residuals outputs make use of the mean abso-
lute error loss (L1):

Lreg =
1

N

N∑
i=1

|ŷi − y
∗
i |, (4.9)

where y∗i denotes the ground-truth value and ŷi for the predicted
residual. Again, the loss is normalized over the number of training
samples.

In addition, two different strategies are applied to reduce the im-
pact of the high class imbalance in the KITTI dataset. On the one
hand, the final object categories are optimized as a weighted multino-
mial logistic loss where the underrepresented classes have a higher
contribution to the final loss. On the other hand, training BEV samples
are augmented by performing random horizontal flipping to increase
the variability of the objects and enhance the model’s generalization
capabilities.

To accelerate the convergence of the objective function, network pa-
rameters are initialized with a model pre-trained on ImageNet [71].
Experiments suggest that this approach is still valid, although the
learned weights were optimized to extract features on inputs of very
different nature, i. e., RGB images. For the new layers, Xavier initial-
ization is used [68].

The association between anchors and object labels is based on their
Intersection over Union (IoU), following the approach in [145]. For the
optimization of the proposals and final box parameters losses, only
the error corresponding to the ground-truth class is considered. Be-
sides, a NMS operation is carried out to remove redundant detections
at inference time.

4.1.3 3D box estimation

Although the detections in the BEV are usually enough for safe nav-
igation, the estimation of 3D boxes is also a topic of interest in the
field of perception for automotive applications. Knowing the vertical
position and height of the objects may be of help when trying to com-
bine outputs coming from different frameworks in the same vehicle
or from multiple agents in the context of cooperative detection.

Two different approaches have been studied. In the first version of
the BirdNet framework, see Figure 4.4, a final stage was responsible
for processing the model output to generate the oriented 3D boxes.
In a second iteration, this step has been removed, and both the z coor-
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dinate and the object height h are estimated by the network together
with the rest of the box parameters, as shown in Figure 4.5.

4.1.3.1 Hand-crafted estimation of the 3D parameters

Figure 4.4: BirdNet object detection framework. The three outputs of the
network are: class (green), 2D bounding box (red) and yaw angle
(purple). For the final 3D box estimation, the axis-aligned detec-
tion, the orientation, and the ground estimation are used

Computing an oriented 3D box from the aforementioned predicted
parameters entails a twofold task. On the one hand, the estimated
axis-aligned detection and the yaw angle need to be processed to
output the minimum oriented box enclosing the object in the BEV

perspective, as shown in Figure 4.3. On the other hand, the box pa-
rameters in the third axis have to be calculated.

To obtain the object-aligned 2D boxes, prior information of the
average physical dimensions of each of the categories is used. Con-
cretely, a constant width w ′ is used for each object type, whose value
is selected based on a statistical analysis of the annotated instances
of the class in the dataset. In our experiments, w ′ is set to 1.8m
for cars and 0.6m for the pedestrian and cyclist detections. Having
the width fixed, the two length candidates are computed following
(Equation 4.10) and (Equation 4.11), as the combination of w ′ and
the predicted heading will unlikely provide a unique solution that
perfectly fits the axis-aligned rectangle. Then, their corresponding ori-
ented bounding boxes are obtained, and the choice of the final length
l ′ is given by the box that maximizes the IoU with the non-rotated
enclosing detection.

lw =

∣∣∣∣∣hbbox −
∣∣cos(θ+ π

2 ) ·wfixed
∣∣

cos θ

∣∣∣∣∣ (4.10)

lh =

∣∣∣∣∣wbbox −
∣∣sin(θ+ π

2 ) ·wfixed
∣∣

sin θ

∣∣∣∣∣ (4.11)

For the final 3D boxes to be fully encoded, the detections need to
be endowed with information on their height and vertical position.
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To this end, the raw point cloud is used to compute a coarse ground
plane estimation, which is later used to get the bottommost z coordi-
nate of the obstacles. A grid is created for the XY plane of the LiDAR
point cloud, where each position stores the minimum height of the
points falling inside. The size of the square cells should be big enough
to guarantee that they cannot be fully covered by an object of interest
so that laser beams can hit the ground. To remove the noise caused
by outliers, a median blur is applied to the resulting grid. Afterward,
the height of the object h ′ can be straightforwardly computed by sub-
tracting the minimum height, taken from the ground grid cells below
the detection, to the maximum height value inside the rotated BEV

box found at the corresponding image channel. The vertical coordi-
nate of the 3D object center C = (x,y, z) will be then given by adding
half the object height to the z of the ground plane.

4.1.3.2 Learned estimation of the 3D parameters

Figure 4.5: BirdNet+ object detection framework. The three outputs of the
end-to-end network are: class (green), oriented 2D bounding box
(red) and object heigh and z position (blue)

As a logical evolution of the presented work, the framework has
been extended to an end-to-end model capable of predicting 3D ori-
ented boxes from the proposed BEV projection, known as BirdNet+.
To this effect, two additional residuals are learned using the bound-
ing box regression head. The parameters for encoding the vertical
information of the boxes, i. e., ∆z and ∆h, follow the same fashion as
the ones used for object detection in the XY plane.

Furthermore, a few other changes have been made. On the one
hand, the estimated length and width of the object now correspond
to the final desired dimensions, although the RPN still generate axis-
aligned candidates. On the other hand, a hybrid approach has been
adopted to improve the yaw angle prediction, so the estimation of
the heading is encoded as an Nbin classification plus a residual esti-
mation, which enables a greater precision than the method used in
the preceding pipeline.

Naturally, the global loss has been updated to include the optimiza-
tion of the new regression targets, which are carried out through L1
losses like in the first version of the network.
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As will be shown in the results, the introduced changes enhance the
object detection performance both in the 3D and the BEV domains.

4.1.4 Experimental results

A comprehensive set of experiments are carried out to assess the va-
lidity of the proposed framework using the well-known KITTI Object
Detection Benchmark [61]. Thus, the object categories under evalua-
tion are Car, Pedestrian and Cyclist.

In this section, we present a twofold analysis of the BirdNet pipeline.
On the one hand, a series of ablation studies are reported to quantify
the effect of changes in the input features, the network design, and the
training initialization strategy over the performance of the approach.
To this end, the training set of the KITTI dataset is used, since 3D
annotations of objects in the scene are publicly available. The sam-
ples are divided into training and validation splits as in [30]. On the
other hand, an evaluation of the overall performance of our solution
is provided through a comparison with state-of-the-art LiDAR-based
detectors in the official testing set.

The results detailed below follow the KITTI benchmark official met-
rics for the tasks of BEV and 3D object detection, where average preci-
sion (AP) is computed for each category of interest (c):

APc =
1

40

∑
r∈R

pinterp(r), (4.12)

which accounts for the average value, over 40 recall values r ∈ R, of
the interpolated precision pinterp, derived from the precision p as

pinterp(r) = max
r̃>r

p(r̃), (4.13)

For a predicted detection to be counted as positive, a certain over-
lap with the corresponding object labels is required. The IoU thresh-
olds used for both the BEV and 3D detection tasks are 70%, 50%, and
50%, for the three aforementioned categories, respectively.

To comply with the KITTI annotation policy, detections are com-
puted for objects within the field of view of the camera. Consequently,
the BEV images only contain information of LiDAR measurements in
front of the vehicle. Besides, points falling outside a span of 110° cen-
tered in the forward direction are removed from the projection. For
the ablation studies, we cover a region of 70× 35m, whereas for the
overall performance evaluation a 45 × 50m BEV is used. As for the
grid resolution, cells of 0.05m size are employed.

A specific hyperparameters configuration is set for each of the
tested feature encoders:

• VGG: the model is trained for 150k iterations using a batch size
of 1. The learning rate for the Stochastic Gradient Descent (SGD)
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optimizer is initialized at 10−3 and decays by a factor of 10
every 50k iterations.

• ResNet: the model is trained for 40k iterations with a batch size
of 4. SGD is again used to optimize the objective function, here
with a constant learning rate of 0.01.

For the overall evaluation of the networks in the KITTI testing set,
where the whole training samples are used, the number of total iter-
ations and the learning rate decay steps are doubled. In all cases, the
number of proposals in the RPN is fixed to 300.

4.1.4.1 Ablation studies

Given that the BEV projection transforms LiDAR data into a pseudo-
image structure which can be fed into popular 2D object detection
architectures, it is interesting to investigate whether the proposed
model can benefit from the common practice of initializing RGB-
based CNN networks using weights of a pre-trained model. As usual,
we take parameters optimized on the ImageNet dataset. Table 4.1
shows the results of BirdNet using the VGG-16 backbone . As can
be seen, the pre-trained model provides a significantly higher per-
formance despite the differences between features of both domains,
indicating the convenience of adopting the fine-tuning approach over
training the network from scratch.

Table 4.1: BEV and 3D detection performance (mAP %) using different
weight initialization strategies, with Nb = 8 [12] © IEEE 2018

initial weights mAP 3D (%) mAP BEV (%)

Easy Moder. Hard Easy Moder. Hard

ImageNet 22.92 18.02 16.92 54.46 41.61 40.57

gaussian 19.76 15.04 14.75 41.89 30.77 29.92

On the other hand, the effect of variations to some network’s hyper-
parameters is shown in Table 4.2. Different alternatives are studied:

1. preserving or removing the pool4 operation of the backbone.

2. filtering or not the points belonging to the ground.

3. two possible resolutions for the orientation binning (Nbin).

Removing the fourth pooling layer in the VGG backbone reduces
the downsampling, so the scale of the shared feature map used for
both region proposal and the final estimation is doubled. As shown
in the results, it is beneficial for the overall performance, making a
remarkable difference in the detection of the smallest objects.
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Table 4.2: BEV detection performance (AP %) on the validation set for differ-
ent variants [12] © IEEE 2018

Class pool4 ground Nbin BEV Detection (AP)

Easy Mod. Hard

Car

7 3 8 72.32 54.09 54.50

7 3 16 73.73 54.84 56.06

3 3 8 70.29 49.84 54.52

3 7 8 66.63 48.52 47.98

7 7 16 70.19 52.36 52.53

7 7 8 69.80 52.56 48.44

Ped

7 3 8 43.62 39.48 36.63

7 3 16 44.21 39.13 35.67

3 3 8 25.01 23.23 21.84

3 7 8 24.59 23.07 22.25

7 7 16 41.73 37.17 34.81

7 7 8 36.19 32.97 31.39

Cyc

7 3 8 47.44 31.26 30.57

7 3 16 50.45 33.07 31.15

3 3 8 41.87 27.49 25.79

3 7 8 37.60 23.55 22.62

7 7 16 41.59 26.94 26.21

7 7 8 45.23 29.32 26.89

Regarding the ground plane, two configurations taking the raw
and the filtered clouds as input have been investigated to understand
whether the points belonging to the ground provide or not useful
features for the detection task. For their removal, a height map algo-
rithm was used, where the maximum difference in height between
the points inside a cell is computed, and those falling on cells whose
values lay below a certain threshold are discarded. As apparent, the
disposal of these points hurts the performance of the method, which
may be explained by the fact that although these cells do not contain
information of the objects of interest, they give a meaningful context
that can be leveraged by convolutions receptive fields.

Lastly, the experiments regarding the optimal slicing policy for
the heading estimation throw that an output of Nbin = 16 achieves
slightly better accuracy than using half the number of angle cate-
gories. The minor differences may be caused by the trade-off between
the resolution and the number of samples for each orientation bin.
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Henceforward, in view of these findings, all results referring to
the vanilla BirdNet model correspond to a configuration without the
pool4 layer, 16 yaw categories, and fed with a BEV projection made
from the whole LiDAR point cloud.

Table 4.3: BEV detection performance (AP %) on the validation set for differ-
ent inputs [12] © IEEE 2018

Class I D H BEV Detection (AP)

Easy Mod. Hard

Car

3 7 7 55.04 41.16 38.56

7 3 7 70.94 53.00 53.30

7 7 3 69.80 52.90 53.69

3 3 3 72.32 54.09 54.50

Ped

3 7 7 36.25 30.43 28.37

7 3 7 38.21 32.72 29.58

7 7 3 38.37 34.04 32.37

3 3 3 43.62 39.48 36.63

Cyc

3 7 7 33.09 22.83 21.79

7 3 7 43.77 28.62 26.99

7 7 3 48.06 31.21 30.40

3 3 3 47.44 31.26 30.57

Finally, the novel cell encoding introduced in Section 4.1.1 is an-
alyzed. To this end, four different networks are compared: three of
them being trained using images with only one of the proposed chan-
nels, and a fourth one using the whole three-layer BEV projection. As
can be observed on Table 4.3, the intensity features provide the least
meaningful cues for object detection, which might be expected due to
many factors affecting reflectance measurements [88]. Besides, both
the normalized density and the maximum height channels provide
similar numbers, going well beyond those obtained using intensity in-
formation. Finally, the results produced when using the three-channel
input image exhibit greater AP for all categories, proving their com-
plementarity and, as a consequence, showing the positive effect of
aggregating them.

4.1.4.2 Performance evaluation

A comparison of both versions of the proposed framework on the
KITTI validation set is provided in Table 4.4. Hereon, an input BEV of
45× 50m is used in the experiments since we found these dimensions
are best suited to the annotated area in front of the vehicle. As can
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be seen, the numbers suggest that the modifications introduced in
BirdNet+ have a significant impact on the final results, boosting the
accuracy in both BEV and 3D detection tasks. The effect of the back-
bone change is made evident by the gap in the performance on the
top view, as the prediction at multiple scales has led to an increase of
about 20 points in all difficulty levels for the Pedestrian and Pedestrian
classes. Furthermore, learning the box parameters of the vertical axis
has proven a more convenient approach than its manual calculation.
Thus, the degradation of the results from 2D to 3D is much lower in
the end-to-end configuration, being of special interest the differences
in the detection of vehicles.

Table 4.4: BEV and 3D detection performance (AP %) of BirdNet on the
KITTI validation set

Class Method AP 3D (%) AP BEV (%)

Easy Mod. Hard Easy Mod. Hard

Car
BirdNet 50.27 37.07 36.94 87.69 63.57 63.37

BirdNet+ 81.26 68.71 66.74 91.90 82.99 82.58

Ped.
BirdNet 40.87 35.26 31.85 49.10 42.84 39.15

BirdNet+ 61.07 54.01 49.01 70.65 64.07 58.50

Cyc.
BirdNet 51.76 31.81 29.77 55.14 34.20 31.96

BirdNet+ 70.11 50.23 47.59 71.64 52.25 49.50

Even though the results from the vanilla BirdNet model look ap-
preciably lower, the demanding requirements of the official KITTI
metrics prevent the numbers from capturing the real potential of the
method that will be qualitatively shown later on. This holds particu-
larly true in the detection of the Car category, where the required 0.7
threshold for the overlapping between the predicted and the ground-
truth boxes sets as false positives many of the detections. By studying
the recall at different IoU thresholds (see Figure 4.6), we can observe
that our method is able to locate more almost all vehicles in the Easy
difficulty, and more than 70% of vehicles in the Moderate and Hard.
Similarly, our method is capable of detecting pedestrians very effi-
ciently at lower IoU. On the contrary, it has some problems at Cyclist
detection. BirdNet+ data is also plotted to enrich the understanding
of the differences between both versions.

Based on these findings, a comparison detection with the state-of-
the-art LiDAR-based approaches in the literature at the date of pub-
lication of the BirdNet framework is shown in Table 4.5. In this case,
an IoU threshold of 0.5 is applied, as it offers sufficient accuracy for
Car detection in automotive applications. Results have been extracted
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Figure 4.6: BEV recall at different IoU thresholds for both versions of the
BirdNet framework

from the respective original works. Again, BirdNet+ numbers are in-
cluded to provide information about the whole picture.

Table 4.5: BEV and 3D detection performance (AP %) for the Car category
of different LiDAR-based approaches on the KITTI validation set
with IoU 0.5 (%). LiDAR data can be used as BEV, Range View (RV),
or as-is (RAW)

Method Data AP 3D (%) AP BEV (%) T

Easy Mod. Hard Easy Mod. Hard (s)

MV3D BEV+RV 95.74 88.57 88.13 86.18 77.32 76.33 0.24

VeloFCN RV 67.92 57.57 52.56 79.68 63.82 62.80 1

F-PC_CNN* RAW 87.16 87.38 79.40 90.36 88.46 84.75 0.5

BirdNet BEV 95.52 70.36 72.21 95.65 72.71 74.76 0.11

BirdNet+ BEV 95.34 89.37 88.96 95.39 91.28 89.29 0.11

* Uses 2D image detections to filter the cloud.

As shown in the table, our pipeline outperforms VeloFCN by a
large margin and provides comparable results to the other two meth-
ods, though being slightly lower for the Moderate and Hard difficulties.
It is noteworthy to mention that our solution is the only one produc-
ing multi-class predictions, being the other models only designed for
vehicle detection. Moreover, MV3D makes use of both the BEV and RV

projections, and F-PC_CNN fuses LiDAR and RGB information. Be-
sides, BirdNet is by far the framework with the fastest execution time,
nearly operating at 10hHz, which is often considered the minimum
frequency for real-time perception applications.

Finally, the evaluation of the method on the official KITTI bench-
mark testing set is presented in Table 4.6. Results of comparable meth-
ods are also reported. Here, the two models have been trained with
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the samples of the full training set, used as train/val subsets in the
previous experiments.

Table 4.6: BEV and 3D detection performance (AP %) of different ap-
proaches using LiDAR as input on the KITTI testing set. LiDAR
data can be used as BEV, RV or voxelized (VX). In addition, some
of the methods make use of RGB images (I) [8] © IEEE 2021

Cls Method Data AP 3D (%) AP BEV (%) T

Easy Mod. Hard Easy Mod. Hard (ms)

C
ar

MODet BEV - - - 90.80 87.56 82.69 50

PIXOR++ BEV - - - 93.28 86.01 80.11 35

AVOD-FPN* I+BEV 83.07 71.76 65.73 90.99 84.82 79.62 100

MV3D (L) BEV+RV 68.35 54.54 49.16 86.49 78.98 72.23 240

C-YOLO I+VX 55.93 47.34 42.60 77.24 68.96 64.95 60

TopNet-Ret. BEV - - - 80.16 68.16 63.43 52

BirdNet BEV 40.99 27.26 25.32 84.17 59.83 57.35 110

BirdNet+ BEV 76.15 64.04 59.79 87.43 81.85 75.36 115

Pe
de

st
ri

an

AVOD-FPN* I+BEV 50.46 42.27 39.04 58.49 50.32 46.98 100

C-YOLO I+VX 17.60 13.96 12.70 21.42 18.26 17.06 60

TopNet-Ret. BEV - - - 18.04 14.57 12.48 52

BirdNet BEV 22.04 17.08 15.82 28.20 23.06 21.65 110

BirdNet+ BEV 41.55 35.06 32.93 48.9 42.87 40.59 115

C
y c

lis
t

AVOD-FPN* I+BEV 63.76 50.55 44.93 69.39 57.12 51.09 100

TopNet-Ret. BEV - - - 47.48 36.83 33.58 52

C-YOLO I+VX 24.27 18.53 17.31 32.00 25.43 22.88 60

BirdNet BEV 43.98 30.25 27.21 58.64 41.56 36.94 110

BirdNet+ BEV 65.67 53.84 49.06 70.84 59.58 54.2 115

* AVOD makes use of two separate models: one for Car and another for Pedestrian
and Cyclist detection.

As can be seen, BirdNet+ outperforms other LiDAR-only approaches
in the literature and yields a detection performance close to top-
performing fusion pipelines, all at a framerate around 10 FPS. Re-
garding BirdNet original framework, its detection accuracy for vehi-
cles falls some points behind the one achieved by other Car-only BEV

methods. On the contrary, the results on the other categories are com-
parable to the rest of multi-class approaches, regardless of whether
they are fed solely with LiDAR inputs or also with RGB data.

Figure 4.7 depicts the results of both BirdNet and BirdNet+ mod-
els on several sample frames from the KITTI testing set. As can be
observed, the end-to-end framework improves the results of its pre-
decessor in the detection of small objects, reducing the number of
false positives and providing more adjusted boxes. Regarding vehi-
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cle identification, both networks perform similarly in the short and
medium range, while BN+ is able to provide detections at larger dis-
tances. Moreover, the height and vertical position are generally better
in the second generation of the pipeline.

(a) (b) (c)

(d) (e) (f)

Figure 4.7: Results on the KITTI testing set. BirdNet detections are shown
on the top row, while BirdNet+ results are in the bottom row

4.2 single-stage 3d object detection

To further investigate the suitability of the LiDAR’s BEV for 3D object
detection purposes, its applicability to fusion paradigms has been
studied. In this case, a single-stage approach is proposed so that it
can comply with the tight computational and time requirements of
on-board processing, regardless of the selected fusion strategy. The
baseline architecture, which uses only LiDAR data as input, works
at a frame rate of around 50Hz while providing a superior accuracy
than the one of the vanilla BirdNet framework.
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In the following sections, the different image-LiDAR fusion schemes
that have been evaluated are introduced, and the details of each
model configuration are provided. Finally, the experimental results
on the KITTI benchmark are shown to provide a fair comparison
among the presented solutions.

4.2.1 Fusion arquitectures

Combining the information captured by complementary sensors such
as LiDARs and cameras may be beneficial for dealing with complex
tasks such as 3D object detection in traffic scenarios, where a myr-
iad of objects of uncountable geometries and appearances can inter-
fere with the trajectory of the vehicle. However, although establishing
correspondences between their data is roughly trivial if the extrin-
sic transformation between devices is available, extracting knowledge
from their joint use is yet a matter of research.

The kind of input formats and strategies used when fusing image
and LiDAR information determines how well the framework is able
to exploit features from both modalities. Regarding the format, we
propose the use of the LiDAR scans in their BEV projection, as it has
proven suitable for accurate 3D object detection. As for the fusion
schemes, several alternatives have been explored:

Early Fusion. Raw features from the images and the raw LiDAR
point clouds are combined before the network is fed. To do so, the
laser beams are projected onto the image plane, and the pixel values
are appended as new channels to each point in the cloud. Thus, the
points of the resulting cloud store information about their 3D posi-
tion, their reflectivity, and their corresponding image features. Two
different setups have been tested, using the RGB color and grayscale,
respectively.

Sequential Fusion. The second type of strategy aims to take ad-
vantage of two steps, where the outputs of image-based detectors
are used to enhance the input of the LiDAR model. This line of
work draws from the early multi-modal methods, which applied a
detect-and-locate approach using images and low-resolution laser data,
respectively. In our experiments, we employ the output of a 2D in-
stance detector to modify the encoded features of the projected Li-
DAR points falling inside detected objects. Namely, a Mask R-CNN
model has been used [72]. Several variations have been considered:

• Using the vanilla BEV encoding plus the addition of separate
per-category channels, either using a binary mask or object-wise
classification score.

• Filtering the cells not belonging to objects detected in the image
space, leaving just the original LiDAR encoding or including
the mentioned additional features.
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Feature-level Fusion. This strategy consists of processing the data
from both modalities in separate backbones within the network and
fusing their information at one or several feature map scales before
the final estimation heads are fed. Although this scheme has been
studied by some RPN approaches in the literature, no single-stage
architectures are known. Here, we propose a geometrical coherent fu-
sion scheme, where information from both streams is fused through
efficient indexing based on 3D-2D correspondences. Two different
merging operations are evaluated: addition and concatenation.

Despite the rapid evolution of monocular depth estimation net-
works, the 3D object detection accuracy of methods that solely rely
on RGB information as input is not yet comparable to their LiDAR
counterparts. For this reason, late fusion schemes, where the outputs
of two separate detectors are combined, are excluded from the com-
parison.

Some samples of the aforementioned new input channels are shown
in Figure 4.8. As can be seen in subfigures 4.8c and 4.8b, certain cells
behind the objects also contain image-based features. Most of these ar-
tifacts are generated when establishing correspondences between the
two modalities, as some LiDAR beams that fall in regions occluded
from the camera perspective are projected within the contours of the
detected instances. In addition, any inaccuracies in the output of the
image detector may also cause this effect. This misprojection affects
as well the channels storing color information.

(a) (b) (c)

Figure 4.8: Three sample channels that incorporates image information to
BEV: (a) RGB. (b) Object classification scores scaled to 0-255. (c)
Maximum height of cells belonging to objects detected in 2D.
Contrast corrected for visualization

4.2.2 Inference framework

In order to have a baseline network capable of operating in real-time
regardless of the fusion scheme followed to incorporate information
from images, a single-stage convolutional detector is proposed. These
kinds of architectures dispose of the auxiliary proposal generation
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branch to reduce the computational load, as the time required to per-
form the pooling operation of RPNs and the subsequent per-candidate
prediction often hinder the applicability of two-stage pipelines to on-
board perception tasks. Although BirdNet has shown outstanding re-
sults working at around 10Hz, its use for online 360° detection will
entail having a coarser cell resolution, leading to a performance drop.

For this reason, the proposed architecture directly estimates the
class and 3D boxes of objects from the feature map extracted by the
backbone through the use of three detection heads. Figure 4.9 shows
an overview of the baseline model. As can be seen, several ResNet
blocks are used as encoder. The final configuration is composed of
the common stem layer (i. e., a 7x7 convolution and a max pooling) fol-
lowed by two groups of 3 and 4 normal convolutions, respectively. A
comparison with alternative backbones is provided in Section 4.2.3.1.

Figure 4.9: Proposed single-stage 3D detection framework. The three out-
puts of the network are: class (green), 3D bounding box (red)
and yaw angle (purple)

4.2.2.1 Feature-level fusion

Most existing approaches that combine LiDAR and image informa-
tion within the layers of the network are based on two-stage architec-
tures. The main reason for this kind of design is that it allows to per-
form the fusion operation at the object level [30, 95]. Separate streams
process the different modalities through the backbone layers and, at
some point, the projections of the 3D proposals in each tensor are
used to extract and fuse the anchor’s features from each data source.
Although these frameworks provide acceptable improvements over
their LiDAR-only counterparts, the use of the RPN branch compro-
mises their throughput speed. Regarding single-stage approaches, at-
tempts have been made to teach the network how to transfer the fea-
tures from the image space to the BEV [107]. Despite its promising
results for vehicles, this method fails to generalize well for less repre-
sented classes, as it requires a huge amount of training samples.

In order to evaluate the feature-level fusion scheme in our frame-
work for multi-class detection, we present a new approach to merg-
ing the information from two modalities by exploiting geometrical
correspondences between the modalities without the need for region
pooling operations. The operation lies on the nature of single-stage
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detectors, which leverage the receptive field of consecutive CNN lay-
ers to build rich pixel-wise features, so simple prediction heads can
infer the final outputs at each position. Following this principle, we
propose to perform the fusion through an efficient indexing layer that
extracts the feature vectors of each anchor candidate by projecting the
coordinates of each 3D box center onto the corresponding encoded
map. Once both tensors with the anchor features are obtained, their
information can be merged. A diagram of the proposed scheme is
shown in Figure 4.10. In our experiments, two fusion operations are
explored: addition and concatenation. To avoid the slow anchor-wise
processing of R-CNN-like methods, the indexing operation arranges
the candidates’ information in the top-view representation, preserv-
ing the BEV layout and enabling further spatial reasoning.

Figure 4.10: Proposed fusion scheme: the centers of the 3D anchors are pro-
jected onto the feature maps encoded from BEV and image in-
puts, so the anchor-wise features can be fused

4.2.2.2 Detection heads

The proposed framework provides 3D detections encoded by nine pa-
rameters: one for the category, three for the 3D position of the object
center (x, y, and z), another three for the dimensions of the enclosing
cuboid (length l, width w, and height h), and two additional ones
for its orientation on the road plane, or yaw angle (sin(θ) and cos(θ)).
Detections are given in the LiDAR coordinate system, and both the
location and dimensions units are expressed in meters (m) within the
network.

Three sibling branches are employed for the prediction of the ob-
jects’ parameters: a classification head to determine the object cate-
gory, and two regression heads to estimate the box position and size,
and the heading, respectively. All branches are composed of four con-
volutional layers of kernel size 3 that are fed with the shared tensor
from the output of the last layer in the feature encoder.
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Regarding the 3D box characterization, the position (x,y, z) and di-
mensions (w, l,h) of the objects are encoded as residuals with respect
to the reference proposals. Hence, the targets are defined as:

∆x = λx ·
x− xp
wp

∆y = λy ·
y− yp
lp

∆z = λz ·
z− zp
hp

∆w = λw ·
ln (w)

wp

∆l = λl ·
ln (l)

lp

∆h = λh ·
ln (h)

hp

(4.14)

where λi is used to scale the residuals to approximately have unit
variance, and ip is the dimension of the box parameter i of the anchor
box.

Since the nature of angles artificially amplifies the errors between
similar orientations (e. g., π and −π), a residual approach is followed
to estimate the heading of the objects, instead of inferring the abso-
lute magnitude. Concretely, the angle prediction branch generate two
regression targets, encoded as:

∆sin = sin(θ− θp)

∆cos = cos(θ− θp)
(4.15)

where θp stands for the orientation of the anchor, which in our exper-
iments is set to 0.

Using these two values, the yaw angle (θ) can be unambiguously
computed:

θ = θp + arctan
(
∆sin
∆cos

)
(4.16)

4.2.2.3 Multi-task learning

To optimize the proposed network for the classification of objects, the
estimation of the 3D box size and location, and the regression of the
yaw angle, a weighted multi-objective loss function made of three
components is used:

L = ωcls ·Lcls +ωbox ·Lbox +ωθ ·Lθ (4.17)

In our experiments, we found that ωcls = 1, ωbox = 1, and ωθ = 4

yield optimal results.
Due to the particularities of single-stage approaches, where there

exists a huge imbalance between anchors corresponding to objects
and background, the prediction of categories cannot be trained through
a conventional cross-entropy loss. Instead, we make use of a focal loss
[110], which helps focus on the examples that are hardest to learn (i. e.,
those belonging to objects) and reduces the contribution of predomi-
nant classes (i. e., background):

Lcls = −α(1− pt)
γ log(pt) (4.18)
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where pt is defined as:

pt =

p if y = 1

1− p otherwise
(4.19)

being p ∈ [0, 1] the estimated probability for the class y, and y equal
0 for all categories except for the ground-truth label, in a one-hot
encoding fashion.

To cope with the significant differences among the amount of sam-
ples of each category, the weighting parameter has been experimen-
tally set as α ∈ {0.75, 0.99, 0.99, 0.1} for Car, Pedestrian, Cyclist and
Background, respectively.

Regarding the residuals optimization, the smooth L1 loss have been
used:

Lreg =

0.5(ŷ− y)2 if |ŷ− y| < 1

|ŷ− y|− 0.5 otherwise
(4.20)

where y is the ground-truth value, and ŷ the output of the network.
For the computation of the regression losses, only the errors of the

ground-truth labels are considered. Besides, a per-category weight
αreg is applied to the residual targets so that the impact of the class
imbalance is mitigated.

In this respect, the matching between anchor boxes and detections
aims to equalize the number of positive proposals of each category.
To this end, the dimensions of the most frequent objects (i. e., cars)
are shrunk before the anchors whose center falls inside the ground-
truth box in the BEV projection are marked as positive. In parallel,
those having the center inside the object boundaries but outside the
positive downscaled region are ignored during training.

4.2.3 Experimental results

Following the evaluation approach introduced in Section 4.1.4, the
KITTI benchmark has been used to assess the performance of the
proposed single-stage network. Hence, the accuracy in the detection
of Car, Pedestrian, and Cyclist objects that are visible in the vehicle’s
front camera is measured using the Average Precision (AP) metric.

Once again, a set of ablation studies using the training-validation
splits from [30] were carried out to tune the final model configuration.
In this case, these experiments address both the baseline architecture
and the different fusion schemes. Finally, a comparison to other recent
works on the official testing set is provided.

Guided by the findings from the BirdNet framework, all results
make use of a 45 × 50m BEV with a cell resolution of 0.05m2. Be-
sides, the model has been trained for 80 epochs with a batch size of



4.2 single-stage 3d object detection 97

4. For optimizing the losses, SGD has been used with a weight decay
of 0.0005 and a momentum of 0.9. An initial learning of 0.0004 is set,
which decays by a factor of 10 at epochs 50 and 75. Horizontal flip-
ping is randomly applied to increase the number of training samples.

4.2.3.1 Ablation studies

Mimicking the feature extractor in BirdNet+, a ResNet encoder is
used. In order to identify the configuration that maximizes the model
performance, a set of backbone settings have been tested, with a differ-
ent number of layers and depths. Table 4.7 shows the average results
of all categories in both the BEV and 3D spaces.

Table 4.7: BEV and 3D detection performance (AP %) of different backbones

Backbone mAP 3D (%) mAP BEV (%)

Easy Moder. Hard Easy Moder. Hard

Resnet18-C3 46.47 35.43 32.12 59.07 47.71 44.52

Resnet18-C4 27.74 21.92 19.80 39.45 33.42 31.02

Resnet34-C3 50.13 38.88 35.29 62.08 51.31 47.70

Resnet34-C4 28.55 22.52 20.49 40.73 34.73 32.22

Resnet50-C3 45.78 35.63 32.71 59.66 48.35 45.20

Resnet50-C4 30.68 25.04 23.04 45.34 38.15 35.65

On the one hand, the use of features after the third ResNet block
yields better results than C4, as the downsampling in the latter layer
hurts de detection of Pedestrian and Cyclist. On the other hand, the
model using Resnet34 offers better performance at this scale. The gap
with the other two encoders is due to its greater size at C4 level. In the
case of ResNet18 configuration, the fewer number of layers may be in-
sufficient to learn the desired targets with precision. As for ResNet50,
the bottleneck module reduces the parameters per block, which hurts
its performance when pruned at early stages. Henceforward, the re-
ported results make use of features from C3 from a ResNet34 encoder.

Before studying the distinct multi-modal fusion schemes, the per-
formance of the proposed LiDAR-based single-stage detector (SS) is
compared to the two versions of the BirdNet framework (BN and
BN+) in Table 4.8.

As can be seen, the non-RPN model is able to outperform the orig-
inal BirdNet pipeline in both Car and Pedestrian detection. In the Cy-
clist category, BN offers better accuracy, as the focal loss is unable to
completely cope with the high class imbalance. As for BirdNet+, its
numbers are still better in BEV and 3D, being especially notable the
gap in the detection of small objects. This difference agrees with the
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Table 4.8: BEV and 3D detection performance (AP %) of the different LiDAR-
based proposals on the KITTI validation set

Class Method AP 3D (%) AP BEV (%) FPS

Easy Mod. Hard Easy Mod. Hard

Car
BN 50.27 37.07 36.94 87.69 63.57 63.37 9.1

BN+ 81.26 68.71 66.74 91.90 82.99 82.58 8.7

SS 62.78 50.74 45.53 85.04 75.75 71.34 47.6

Ped.
BN 40.87 35.26 31.85 49.10 42.84 39.15 9.1

BN+ 61.07 54.01 49.01 70.65 64.07 58.50 8.7

SS 43.65 38.25 34.53 52.81 47.10 43.14 47.6

Cyc.
BN 51.76 31.81 29.77 55.14 34.20 31.96 9.1

BN+ 70.11 50.23 47.59 71.64 52.25 49.50 8.7

SS 43.96 27.64 25.82 48.39 31.09 28.61 47.6

results found in the literature in other fields such as 2D object detec-
tion in images [87]. On the contrary, the recall at different IoU thresh-
olds shown in Figure 4.11 demonstrates that the strict overlapping
required for the detection of vehicles dilutes the real performance on
these kinds of objects.

Regarding the throughput of all models, the single-stage architec-
ture operates at a remarkable 47.6Hz, providing a 5× greater frame
rate than their two-stage counterparts.
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Figure 4.11: BEV recall at different IoU thresholds for both versions of the
BirdNet framework

Once the baseline model has proven valid for the 3D object de-
tection using BEV tensors as input, the suitability of different image-
LiDAR fusion strategies can be evaluated. Namely, nine configura-
tions have been explored:
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• Two early fusion schemes using the original cell encoding plus
additional gray (E1) or RGB (E2) channels.

• Two sequential fusion schemes using the original cell encoding
plus class-wise binary (S1) or classification score (S2) features
obtained through correspondences with the outcome of the 2D
object detector.

• Three sequential fusion schemes using the original (S3) and the
two encodings described above (S4 and S5, respectively), but
where features of cells not belonging to objects are set to zero.

• Two feature-level fusion schemes using the concatenation (F1) and
the addition (F2) operations to combine features from both sen-
sor modalities.

Their results are depicted in Table 4.9, where the numbers for the
LiDAR-only baseline (B) are included as a reference.

As apparent from the table, the different configurations have un-
like impact on the vanilla model. In the early fusion approaches, al-
though the use of image information may help in the detection of
four or two-wheeled road users, it causes a slight downfall in the
overall performance. This might be explained by the fact that raw
color information, either in its gray or RGB representation, cannot be
properly exploited in a top-view representation, as the aggregation of
cues from all points in a cell blurs salient features and reduces the dif-
ferences between the objects and the background. Moreover, valuable
geometrical information provided by images cannot be leveraged.

Regarding the sequential fusion approaches, two different outcomes
are observed. On the one hand, when the image data is used to com-
plement the original BEV encoding, it yields a notable improvement
over the baseline in all categories and difficulties, with a higher effect
in the top-view metrics. These new channels endow the input tensor
with valuable information about regions of interest where the proba-
bility of having an object is high. Moreover, the predicted category is
also encoded, easing the learning of the classification head. It is note-
worthy that the configuration using the confidence score performs
better than the binary maps, suggesting this way that the model is
able to correct some false positives coming from the RGB modality.
On the other hand, when the 2D detections are used to narrow down
the search space by filtering out background points (S3, S4, and S5),
the 3D accuracy of the model dramatically drops. As only cells be-
longing to objects are preserved, important information around the
objects is lost, leaving the detector without the necessary context to
determine the vertical coordinate of the box center. Among the dif-
ferent configurations, their mAP is consistent with their non-filtering
counterparts.
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Finally, the feature-level schemes drop the overall results by a few
points, especially when doing the fusion through concatenation. Al-
though the addition configuration shows some potential for Cyclist
detection, its precision on the other categories falls behind the base-
line. Though this behavior is coincident with those experienced by
other works in the literature with respect to the Car class [30, 95], it
is not the expected outcome for the small objects. This might be ex-
plained by the inability of the indexing operation used to establish
correspondences among the feature maps of the two modalities to
mimic the ROI pooling of variable-size anchors found in RPN. The
use of features from multiple scales may address this limitation.

4.2.3.2 Performance assessment

After the baseline architecture and the best fusion strategy have been
identified through the ablation studies, the overall performance of
the single-stage detector can be assessed in the KITTI testing set. Ta-
ble 4.10 shows a comparison with other existing approaches. As usual,
both models have been trained using all samples from the official
training split.

As can be seen, the baseline model offers competitive performance,
being superior to other multi-class approaches solely using BEV in-
puts (i. e., BirdNet and TopNet). On the contrary, car-only LiDAR de-
tectors benefit from their specialization, providing a better accuracy
in this category.

Regarding the sequential fusion approach, it confirms the trend
shown in the validation split, boosting the baseline’s precision in
the detection of small objects. Besides, its results are comparable to
MV3D and F-PC_CNN, while operating at a significantly superior
rate. As for Complex-YOLO, our solution presents much higher num-
bers. On the other hand, AVOD, ContFuse, and F-PointNets fusion
schemes are able to exploit image features in a very effective way,
outperforming our proposal by a large margin. However, the compar-
ison with the first two methods is not totally fair, as AVOD makes use
of separate models for vehicles and small objects, while ContFuse dis-
regards Pedestrian and Cyclist categories. With respect to F-PointNets
pipeline, the use of raw cloud data in the box inference stage allows
filtering background information since points in frustum do contain
all the necessary information. As a result, the search space is signif-
icantly narrowed down, and the possibility of getting false positive
detections is diminished.

The outcome of both the proposed LiDAR baseline and the best
fusion configuration on some scenes of the KITTI test set is shown
in Figure 4.12. Regarding vehicles, both frameworks provide excel-
lent performance as observed in the BEV, where all objects inside the
field of view are properly located. Despite the inherent difficulties of
single-stage models with small objects, it can be observed that most
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(a) (b) (c)

(d) (e) (f)

Figure 4.12: Results on the KITTI testing set. Detections of the LiDAR-based
model are shown on the top row, while those produced by the
selected fusion scheme are displayed on the bottom row.

Pedestrian and Cyclist instances in the close and mid-range distances
are detected, though their 3D box characterization is not always per-
fectly adjusted.

The main advantage given by the use of image information is evi-
denced when comparing Figure 4.12a and 4.12d, or Figure 4.12c and
4.12f. In the former, the fusion model exploits the additional channels
to better classify spurious detections as background. In the latter, this
data helps in the discrimination between similar categories. Although
quantitative results proved that images cues are generally beneficial,
they occasionally lead to false positives when, for instance, the 2D
detector produces a misprediction with high confidence, as in Fig-
ure 4.12e.
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4.3 conclusion

In this chapter, the task of on-board 3D object detection for automated
driving through the use of LiDAR’s BEV projection as input has been
addressed. To this end, a novel cell encoding containing an ad-hoc
normalized density channel able to provide distance-invariant fea-
tures has been introduced. Contrary to existing approaches, the pro-
posed projection is sufficient to infer fully characterized 3D boxes
without needing auxiliary data sources.

To demostrate its suitability for 3D detection, two different frame-
works have been presented. On the one hand, the BirdNet pipeline
makes use of a Faster R-CNN architecture to estimate the class and
oriented boxes of vehicles, pedestrians, and cyclists in the scene. At
the date of publication, the vanilla version yielded state-of-the-art re-
sults in the KITTI BEV benchmark among methods using the top-
view projection. In its second iteration (i. e., BirdNet+), the accuracy
of the model was widely enhanced by extending the learned encod-
ing of the boxes to the third dimension and improving the feature
backbone, again outperforming most existing comparable works.

On the other hand, a single-stage approach has been proposed to
explore different image-BEV fusion strategies that can be used in
real-time automotive applications. The baseline configuration, which
solely takes LiDAR data as input, outperforms some recent two-stage
detectors in the literature while operating nearly at 50Hz. Despite
the lack of RPN, the network is able to provide fairly accurate detec-
tions of small road participants at near distances. When used in con-
junction with image information, the model presents assorted behav-
iors, depending on the selected fusion paradigm. Among the tested
schemes, sequential fusion is the only configuration that consistently
boosts performance. Combining the raw features in an early fashion
has shown ineffective in the BEV space. Regarding the fusion at the
feature-level, the proposed strategy has been unable to exploit image
cues. However, further investigation may be required. Some ideas to
enhance its capabilities will be drawn in Chapter 6.
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Table 4.9: BEV and 3D detection performance (AP %) of the different fusion
configurations on the KITTI validation set

Cls Cfg AP 3D (%) AP BEV (%) T

Easy Mod. Hard Easy Mod. Hard (ms)

Car

B 62.78 50.74 45.53 85.04 75.75 71.34 21

E1 63.57 51.93 47.90 87.37 76.42 73.48 22

E2 62.02 49.62 45.65 86.37 73.51 70.50 23

S1 62.26 51.02 46.75 87.71 75.60 70.98 77

S2 62.42 51.12 46.76 87.85 76.07 72.92 77

S3 52.58 42.74 38.89 86.98 74.68 68.63 75

S4 56.71 47.44 44.19 86.09 74.66 70.49 77

S5 60.84 47.89 42.75 87.49 75.03 70.40 77

F1 57.52 45.38 42.03 84.48 72.54 68.21 32

F2 57.51 45.16 41.90 84.71 72.22 68.13 30

Ped

B 43.65 38.25 34.53 52.81 47.10 43.14 21

E1 39.51 35.81 32.41 49.56 45.77 42.21 22

E2 37.18 33.02 29.95 47.17 41.81 38.40 23

S1 42.43 36.90 33.69 56.63 50.52 46.89 77

S2 43.70 39.29 35.91 56.51 51.22 47.30 77

S3 32.45 27.42 24.28 49.44 42.46 37.67 75

S4 33.35 27.86 24.81 50.67 42.62 38.67 77

S5 31.22 26.21 23.31 49.36 41.60 37.70 77

F1 40.43 36.93 33.31 50.62 46.96 43.19 32

F2 39.73 36.22 33.00 49.84 44.88 41.48 30

Cyc

B 43.96 27.64 25.82 48.39 31.09 28.61 21

E1 44.22 27.42 25.92 49.71 31.41 29.42 22

E2 40.58 25.05 23.42 43.06 26.74 25.33 23

S1 42.42 26.89 25.44 51.34 33.78 32.50 77

S2 45.45 29.23 27.65 52.62 35.20 33.25 77

S3 29.63 18.78 17.68 38.93 24.21 22.67 75

S4 36.28 24.22 22.88 43.58 29.60 26.98 77

S5 38.60 24.94 23.63 48.21 31.22 29.26 77

F1 41.47 25.58 24.19 47.91 30.04 28.42 32

F2 45.44 28.67 26.73 51.07 32.87 29.99 30
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Table 4.10: BEV and 3D detection performance (AP %) of different ap-
proaches using LiDAR data on the KITTI testing set. LiDAR data
can be used in different formats: raw, BEV, RV or voxelized (VX).
Some of the methods make use of RGB images (I).

Cls Method Data AP 3D (%) AP BEV (%) T

Easy Mod. Hard Easy Mod. Hard (ms)

C
ar

F-PC_CNN I+RAW 60.06 48.07 45.22 83.77 75.26 70.17 500

MV3D I+BEV+RV 68.35 54.54 49.16 86.49 78.98 72.23 240

AVOD-FPN* I+BEV 83.07 71.76 65.73 90.99 84.82 79.62 100

F-PointNets I+RAW 81.20 70.39 62.19 88.70 84.00 75.33 170

C-YOLO I+VX 55.93 47.34 42.60 77.24 68.96 64.95 60

ContFuse I+BEV 82.54 66.22 64.04 88.81 85.83 77.33 60

Ours (S2) I+BEV 67.49 50.72 44.43 85.08 74.10 68.64 77

MODet BEV - - - 90.80 87.56 82.69 50

PIXOR++ BEV - - - 93.28 86.01 80.11 35

TopNet-Ret. BEV - - - 80.16 68.16 63.43 52

BirdNet BEV 40.99 27.26 25.32 84.17 59.83 57.35 110

BirdNet+ BEV 76.15 64.04 59.79 87.43 81.85 75.36 115

Ours (B) BEV 65.38 48.21 43.01 85.31 74.11 68.64 21

Pe
de

st
ri

an

AVOD-FPN* I+BEV 50.46 42.27 39.04 58.49 50.32 46.98 100

F-PointNets I+RAW 51.21 44.89 40.23 58.09 50.22 47.20 170

C-YOLO I+VX 17.60 13.96 12.70 21.42 18.26 17.06 60

Ours (S2) I+BEV 27.21 21.62 19.87 35.52 28.61 26.86 77

TopNet-Ret. BEV - - - 18.04 14.57 12.48 52

BirdNet BEV 22.04 17.08 15.82 28.20 23.06 21.65 110

BirdNet+ BEV 41.55 35.06 32.93 48.9 42.87 40.59 115

Ours (B) BEV 24.69 20.38 18.28 31.71 26.08 24.60 21

C
y c

lis
t

AVOD-FPN* I+BEV 63.76 50.55 44.93 69.39 57.12 51.09 100

F-PointNets I+RAW 71.96 56.77 50.39 75.38 61.96 54.68 170

C-YOLO I+VX 24.27 18.53 17.31 32.00 25.43 22.88 60

Ours (S2) I+BEV 49.15 35.47 31.89 58.72 43.86 39.90 77

TopNet-Ret. BEV - - - 47.48 36.83 33.58 52

BirdNet BEV 43.98 30.25 27.21 58.64 41.56 36.94 110

BirdNet+ BEV 65.67 53.84 49.06 70.84 59.58 54.2 115

Ours (B) BEV 41.24 30.51 27.77 48.98 38.07 33.88 21

* AVOD makes use of two separate models: one for Car and another for Pedestrian and
Cyclist detection.
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D E P L O Y M E N T I N R E A L P L AT F O R M S

The breakthrough of deep learning and the arrival of large-scale an-
notated datasets for the automotive sector pushed the scientific com-
munity towards the development of new perception algorithms. The
use of standard benchmarks enabled a fair comparison of the pub-
lished works and fostered the research on new machine vision mod-
els to outperform existing approaches.

Despite the rapid evolution in the field, the performance of current
perception frameworks still suffers if the operational domain is not
similar to the one in which they have been trained: when the input
data is significantly different between the training and testing stages,
the accuracy drops. In the field of scene understanding, the domain
gap phenomenom may occur when driving on very distinct scenarios,
e.g. cities of unlike countries, under diverse weather conditions, or
when information captured by unknown devices is used.

In all cases, the effect is produced by the variations in the signals
of the elements around, caused by either real appearance changes or
by the disparities between sensors specifications.

To address these limitations, modern datasets like nuScenes [26] in-
clude recordings from several countries and climate conditions. This
increases the generalization capabilities of the networks and partially
alleviates the problem. However, trained models struggle when be-
ing fed with data from custom sensor configurations, hampering its
deployment on real vehicles.

In this regard, some solutions have been developed to reduce the
performance drop issue, under the name of Domain Adaptation (DA).
Their goal is to learn domain-invariant features so that the model
provides a similar accuracy in both the source (train) and target (test)
domains. Although these methods have been successfully applied to
tasks like 2D detection [91] or semantic segmentation [205] in images,
its application to LiDAR is still limited to certain projections [191].

In this chapter, a proposal tailored to close the domain gap for Li-
DAR object detection pipelines is presented. Contrary to existing DA

approaches, the method aims to generate training data in the target
domain using annotations of existing datasets. A set of comprehen-
sive experiments on the KITTI Benchmark [61] supports its suitability
for the task. Additionally, a complete perception framework trained
following this approach is embedded in a self-driving vehicle. Results
of the tests in open traffic further validate the solution.

This chapter includes content from [10], [11], and [121]
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5.1 synthetic lidar cloud generation for 3d perception

The unavailability of a sufficient number of multi-modal datasets for
the training and evaluation of object detection frameworks and the
sensitivity of current perception approaches to changes in the sensor
configuration may decelerate their deployment on automated vehi-
cles, which usually mount ad-hoc sensor sets designed to meet the
requirements of specific use cases. Significant differences in the ex-
trinsic calibration between sensors or in the LiDAR characteristics
produce substantial changes in the perceived representation of the
objects, as shown in Figure 5.1. As a consequence, these differences of-
ten yield to a degradation of the models’ performance, making them
unsuitable for demanding applications such as autonomous driving
[4].

KITTI 10m nuScenes 10m

(a)

KITTI 30m nuScenes 30m

(b)

KITTI 10m nuScenes 10m

(c)

KITTI 30m nuScenes 30m

(d)

Figure 5.1: Representations of several objects in the scene at multiple dis-
tances as captured by KITTI and nuScenes LiDAR devices

To tackle this problem, we propose a method to automate the gen-
eration of new annotated datasets for 3D object detection using the
information from existing ones. Concretely, the presented approach
is geared towards building a 3D mesh representation of the driving
scenario using the readings from subsequent LiDAR sweeps, so that
a synthetic point cloud of the scene can be simulated for any possible
rangefinder model. This way, both the inner specifications of the de-
vice and its relative position to the car coordinates can be chosen to
recreate available 3D detection benchmarks as if they were captured
using a different LiDAR sensor, eliminating the need for recording
and labeling ad-hoc datasets whenever a novel sensor configuration
is built. As the sensitivity to light reflections of distinct LiDAR devices
does not behaves uniformly, this work focuses on the generation of
realistic spatial coordinates for the points in the cloud, disregarding
intensity values.
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Hence, the presented approach is divided into three stages. First,
dynamic objects are isolated from the static parts of the scene so that
multiple frames can be aggregated properly. Second, a mesh of trian-
gles is approximated to a 3D point cloud resulting from the accumu-
lation of a sequence of LiDAR clouds received within a given time
frame. Lastly, a virtual LiDAR device is simulated by ray tracing the
laser beams defined by its internal parameters, e. g., layers distribu-
tion and horizontal resolution. Even though the formulation of the
solution allows for single-frame operation, the joint use of multiple
LiDAR clouds has proved to enhance the synthetic output.

5.1.1 Multi-frame alignment

Due to the sparsity of the data captured by rangefinders, there are
many details of the scene geometry that cannot be represented by
the point cloud of a single frame. Besides, oclussions produced by
non-static elements such as vehicles and other road participants lead
to regions with no laser information. As a consequence, the LiDAR-
based 3D reconstruction of the environment benefits from the use
of multiple frames captured from a moving platform, as temporary
occluded areas might be visible when seen from different viewpoints
and the density of the cloud increases as the number of aggregated
cloud does.

In order to accumulate frames over time, all point clouds have to
be transformed to a common coordinate system so that they can be
successfully aligned. However, as some of the elements composing
the driving scenario are dynamic, the sweeps aggregation is not an
straightforward process, as moving objects will introduce artifacts
into the final cloud. To this end, a pre-processing stage is needed
so points belonging to the static and non-static parts of the scene,
hereon also referred as background and foreground respectively, can
be handled separately.

Before any frame can be accumulated, background and foreground
clouds have to be computed. To obtain the former, data belonging to
dynamic objects has to be filtered out from raw LiDAR data. To this
end, the parameters of the 3D object labels {t, s, θ} –being t the transla-
tion vector (tx, ty, tz), s the dimensions (sx, sy, sz), and θ the obstacle
heading– are used to select and remove the foreground points.

Once the background points have been isolated for each single Li-
DAR scan, multiple frames can be added to form an aggregated dense
cloud describing the whole scene. For the alignment to be performed,
the relative position between LiDAR readings needs to be known.
This can be achieved by means of an odometry method, where trans-
lation and rotation increments are computed using the information of
on-board sensors such as cameras or LiDARs, or by using global po-
sitioning provided by GPSs. Although both approaches provide the re-
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quired relative poses between frames, the latter is usually preferred as
it does not suffer from cumulative errors (drift). Fortunately enough,
most object detection benchmarks for automotive perception includes
a per-frame ground truth of the location and orientation of the vehicle
in the world.

Hence, to align multiple sweeps, each frame is transformed from
its local coordinates system {L} to a shared coordinate system {S}, fol-
lowing:

CSi = (R|t) CLi (5.1)

being CLi the background point cloud at a certain instant i, CSi the
points transformed into the shared axis, and R and t the rotation and
translation matrix from the {L} to {S}.

On the other hand, points belonging to dynamic objects at each
frame can be combined for the sake of shape completion. In the same
way as with its background counterpart, this process reduces sparsity
and allows to obtain a more detailed representation of their geome-
try. Unlike the static cloud, the foreground points cannot be handled
as a whole, as the alignment of data belonging to different objects
is given by distinct geometrical transformations, i. e., their relative
pose between frames differs from one object to another, depending
on their motion. Consequently, the aggregation of every object cloud
is performed separately. It is noteworthy to mention that changes in
the shape of objects are not considered, yielding to some artifacts
when accumulating points of deformable road users like pedestrians,
as will be discussed in Section 5.1.4.

As for the background alignment, the position and orientation of
the foreground elements need to be known for every frame. This infor-
mation is given by their corresponding 3D annotations, which have
been previously used to remove non-static LiDAR readings. More-
over, a unique identifier for the same object over time is required so
that clouds of different obstacles are not added together. In this re-
gard, most datasets provide this information. Otherwise, a tracking
algorithm similar to the one described in Section 5.2.2.3 can be used to
associate labels of the same object at different frames, where labeled
boxes can be seen as the output of a single-frame detector.

After extracting all clouds of the same object, they are aligned in
a common coordinate system. For simplicity, the selected axis corre-
sponds to the object’s coordinates system {O}. Working in the object
local coordinates eases the process, as the alignment of each cloud to
this shared axis is given by the inverse transformation of the given
annotated 3D bounding box so that axis origin matches the center of
the label, and the object’s rotation is set to zero. Thus, every point is
transformed following:

POi = (R|t)−1 PLi (5.2)



5.1 synthetic lidar cloud generation for 3d perception 109

being PLi and POi the points of the object at a frame i in local and
object axes, respectively, and R|t the transformation between the coor-
dinates systems.

Finally, the dense clouds of every foreground element can be moved
back to their original position at a given frame {L} by applying the
traslation and rotation described by their corresponding label:

PLi = (R|t) POi (5.3)

5.1.2 Reconstruction of the scene

The second phase of the pipeline is tailored to build a 3D mesh that
fits the resulting cloud from the motion-aware aggregation of multi-
ple LiDAR frames described in the previous section. This reconstruc-
tion aims to serve as a continuous surface able to model the geometry
of the traffic scene based on a dense yet sparse cumulative cloud so
that synthetic LiDAR signal can be simulated. Henceforward, the de-
scribed steps are applied to both the object and background point sets
independently.

The proposed algorithm is based on [78], who models the shape
of the ground surface by fitting the cells of an irregular grid to the
points lying inside from a top-view perspective. Due to the nature of
LiDAR data, our method operates in spherical coordinates. As a re-
sult, every point of the cloud in the Cartesian space Pc = (x,y, z) has
to be transformed into spherical coordinates Ps = (θ,φ, r) following:

r =
√
x2 + y2 + z2

θ = arctan (y/x)

φ = arcsin (z/r)

(5.4)

where θ stands for the horizontal angle of the beam, φ for the vertical
inclination and r for the range.

The presented meshing approach is divided into two sequential
stages. First, a coarse approximation of the scene geometry is per-
formed using an even distribution of triangles over the field of view.
Then, a fine-grained mesh is derived to increase the fitting capabilities
of the coarse grid to the shape of the environment.

After the transformation between coordinates systems is performed,
a rectangular grid with a cell resolution of ∆θ×∆φ is used to divide
the spherical space into square tiles. Figure 5.2 shows an intuition
of the process in the Cartesian space, as it might be a more familiar
representation for the reader. Once the patches are defined, each cell
gets assigned a range value r equal to the average range of the points
falling inside. The resulting depth map is composed of tiles whose
coordinates are contiguous along θ and φ, but unlinked in the range
axis. As the goal of the method is to build a connected mesh, for every
vertex V = (θ,φ), which may be a corner of up to four neighbor tiles,
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its r coordinate is set to the average depth values of the surrounding
cells. By modifying the range of the vertices, the patches are divided
into two triangles, and the grid becomes connected again. To avoid
the creation of surfaces for regions of the scene where no LiDAR in-
formation is available, triangles containing no points are removed.

Figure 5.2: Overview of the spherical grid generation process as seen in
Cartesian axes. The red volume represents the area covered by
a square patch. Points falling inside the highlighted tile are dis-
played in dark gray [10] © IEEE 2019

The outcome of this first stage is a coarse mesh composed by reg-
ular triangular faces of equal size in the θφ plane, whose ability to
adjust to the point cloud geometry mainly depends on the dimension
of its initial cells. However, picking a resolution is not a trivial task,
as any selected value sets a tradeoff between obtaining a more faith-
ful representation of the scene geometry and reducing the amount of
holes in the mesh, e.g. areas containing no points.

To address this shortcoming, the structure of the resulting mesh is
converted into a multi-resolution grid, where every vertex may have
between four and eight triangle neighbors, except those located in
the borders. In so doing, the former regular distribution of cells be-
comes a more flexible organization of triangular cells which can be
recursively divided to adapt the local resolution of the grid at a given
region of the scene where LiDAR information presents high variance.
Thus, the adaptability of the mesh can be increased wherever it is
needed without generating unwanted holes.

Even though the higher resolution, the greater the fitting capabili-
ties of the mesh, the number of subdivisions of a triangle is limited by
the resolution of its neighbors so that the four or eight connectivity
of the vertices is preserved. To this end, the procedure is performed
in a breadth-first fashion, evaluating the candidacy of every cell at a
given resolution level to be subdivided. This way, the grid remains in
a valid state at every step of the refinement process.
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For a triangle to be considered a candidate, the error between the
face plane and the LiDAR points falling inside the patch must be
greater than a threshold δ. The fitting error is computed by means of
the bidirectional Hausdorff distance between the triangle vertices Vi
and its corresponding point cloud set Pi:

dH(V,P) = max(d̃H(V,P), d̃H(P,V)) (5.5)

where the one-sided Hausdorff distance is defined as:

d̃H(A,B) = max
a∈A

min
b∈B
‖a− b‖ (5.6)

A triangle may be divided by its altitude segment, creating two sib-
ling faces. Whenever a candidate is divided, so does the triangle that
meets its hypotenuse (or bottom neighbor), if any. For a split opera-
tion to be performed, two conditions have to be fulfilled. First, the
triangle to be split and its bottom neighbor must have equal size. Sec-
ond, the newly created children faces must contain at least one point,
except if any of the resulting triangles would not have a bottom neigh-
bor. In this case, the empty child is removed. If both requirements are
met, the candidate is divided. The refinement process stops when for
every triangle in the mesh dH(Vi,Pi) < δ, or no triangle can be split.
Figure 5.3 shows a feasible configuration for a refined mesh.

 Level 0  Level 1  Level 2  Level 3  Level 4  Level 5

Figure 5.3: Sample of the multi-resolution grid used for mesh approxima-
tion in a valid state [10] © IEEE 2019

After the split operations are performed, the range coordinate of the
newly created vertices must be recalculated. To this end, the approach
previously followed for the coarse meshing procedure is conducted
so that the final value is computed as the average of the ranges of
the neighbor triangle faces. After this step, the multi-resolution mesh
becomes connected again.



112 deployment in real platforms

Once the vertices of the triangles composing the mesh are obtained,
they are converted back into Cartesian space by computing the (x,y, z)
coordinates of each vertex in the cloud reversing the Cartesian-to-
spherical transformation performed before.

Since the reconstruction of the background and foreground meshes
are handled independently, grids of unlike resolutions can be used.
Moreover, selecting different fitting thresholds δ for static and non-
static objects is also possible so that different levels of refinement are
applied to each of the meshes. These parameters may be tuned to, for
instance, increase the details of the objects’ surfaces while keeping
a low number of holes in background surfaces such as the road or
buildings. Figure 5.4 shows the computed meshes a sample frame.
Lastly, background and foreground meshes are merged to reproduce
the original layout of the geometry of the environment, as shown in
Figure 5.4f.

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Results of the 3D reconstruction pipeline: (a) background points;
(b) background mesh; (c) foreground points; (d) foreground
mesh; (e) all points; (f) final mesh [10] © IEEE 2019
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To provide the reader with a side-by-side comparison of the out-
come of the described stages, the coarse and fine-grained meshes of
two sample objects are shown in Figure 5.5. The surfaces are repre-
sented through the edges of the triangles so that the details can be
better observed.

(a) (b)

(c) (d)

Figure 5.5: Reconstructed meshes of two different objects at the end of the
coarse phase (a, b) and after the multi-resolution refinement (c,
d) [10] © IEEE 2019

5.1.3 LiDAR simulation

The third and last phase of the proposed approach deals with the
generation of the synthetic LiDAR scans as if a real device was oper-
ating in the scene reconstructed in the previous stage. By simulating
a virtual device, a LiDAR point cloud can be computed for every
frame from the annotated dataset, thus being possible to create new
datasets for any custom LiDAR configuration.

In order to perform the simulation, both the pose and the charac-
teristics of the virtual device have to be defined. Thus, the resulting
point cloud depends on two variables: ξ = (x,y, z,φ, θ,ψ), which de-
fines the translation along the x, y and z axis and the rotation around
x (roll), y (pitch) and z (yaw) of the origin of the desired simulated
scanner; and the intrinsic parameters of the sensing unit L = {(Φ, θ)}
where Φ = {φ1,φ2, ...,φN} being φi the vertical angle of ring i, N
the number of layers of the device, and θ the horizontal resolution or
azimuth.
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Regarding the simulation procedure, the behavior of real LiDAR
devices is mimicked by conducting a ray tracing algorithm. Therefore,
a laser beam is triggered from the origin of the sensor following a
rotation around the Z axis -using the azimuth as the step size- for
all inclination angles described by the distribution of the device rings.
For every possible combination of (φi, θ), the intersection between the
corresponding ray and the triangle faces composing the reconstructed
mesh is computed. Since the calculation of the intersection between a
line and a plane for so many beams at each sweep is computationally
demanding, the well-known Möller-Trumbore [125] algorithm is used,
as it allows to compute these intersection points without solving the
triangle’s plane equation.

Though the separate reconstruction of background and foreground
meshes brings the possibility of having occluded surfaces once the
final scene is composed, the ray tracing algorithm is designed to com-
pute a single intersection point for each laser beam. Thus, although
a ray might go through more than one triangle of the mesh, only the
collision with the closest face is returned. Beams not colliding with
the mesh within a maximum distance are ignored and do not con-
tribute to the generated point cloud.

Despite the inherent measurement inaccuracies derived from the
approximation of a mesh surface to an aggregated LiDAR point cloud,
an additional noise signal is added to the virtual laser readings in
order to increase the realism of the generated data. To this end, a ran-
dom error following a normal distribution with a mean of zero, based
on the specifications of the real device is applied to each point of the
cloud.

Figure 5.6 includes the outcome of several executions of the pro-
posed pipeline over the same scene for different LiDAR models. As
can be observed, the alignment of just 30 consecutive frames captured
when the recording platform is moving is enough to obtain a dense
representation of the scene suitable for the aforementioned meshing
algorithm. Once the 3D mesh is computed, any LiDAR device can be
simulated to generate training and testing data for a given custom
sensor configuration.

5.1.4 Experimental results

To evaluate the proposed synthetic LiDAR generation approach, a
comprehensive quantitative analysis of the resulting clouds is con-
ducted.

The process is performed in a twofold manner. On the one hand,
the similarity of the simulated data to their real counterparts is as-
sessed by comparing both clouds with an annotated ground truth
originally geared towards benchmarking depth prediction algorithms.
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(a) (b)

(c) (d)

Figure 5.6: Simulation of different LiDAR sensors for the same 3D recon-
structed mesh (in gray). (a) Velodyne HDL32E; (b) Velodyne
VLP32C; (c) Velodyne HDL64E; (d) Velodyne VLS128 [10] © IEEE
2019

On the other hand, the performance of three different state-of-the-
art 3D detection frameworks when trained using the generated laser
scans is compared to the results they provide using the original Li-
DAR information as input. All the selected methods take point clouds
as input, although the laser data is processed in different ways. In the
work of Qi et al. [141], the cloud is used in its raw format, although 2D
detections are used to isolate the frustum candidate regions. In SEC-
OND [196], the LiDAR data is discretized into a spatial grid made of
voxels before 3D convolutions are applied. Finally, a fusion pipeline
is also evaluated [95], where a BEV projection is created before feeding
the network with both laser and image information.

5.1.4.1 Evaluation of the reconstruction quality

The first type of evaluation aims to determine the quality of the re-
constructed mesh by comparing the depth of the simulated LiDAR
points to a label depth map. To this end, the KITTI Depth Prediction
Evaluation Benchmark [174] is used. This dataset provides depth an-
notations in the image space so that the precision of LiDAR clouds
can be assessed by projecting the points to the camera frame and
measuring their corresponding depth error. After image projection,
the percentage of correct pixels can be computed by determining the
number of points where

∣∣∣Dci −Dgti ∣∣∣ < ε fulfills, beingDci the value of

the z coordinate of point i in camera coordinates, Dgti its correspond-
ing ground truth depth, and ε the error threshold.
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To establish a fair comparison, the intrinsic parameters of the vir-
tual scanner are set to match those of the LiDAR device used in the
reference dataset. Therefore, the laser model used to capture both the
real and synthetic clouds is a Velodyne HDL64E. Statistics are com-
puted over a random selection of 2.000 frames from the benchmark.
For every frame, a window size of 30 sweeps is aligned -including
data from both the preceding and subsequent LiDAR sweeps- to
enhance the output of the 3D reconstruction phase. Regarding the
meshes configuration, a spherical grid with a cell resolution of ∆θ = 1,
∆φ = 2 and a fitting threshold of δ = 0.1 is used for the background
elements. The size of the tiles for the coarse foreground mesh remains
equal, although the adaptation capabilities of the reconstruction are
increased by setting δ = 0.01. These parameters have been empiri-
cally obtained and may be adjusted for other applications or LiDAR
devices with significant differences.

Figure 5.7 depicts the depth error of both the original LiDAR cloud
and the synthetic signal as the percentage of points located at dif-
ferent distances whose range error is lower than a certain threshold.
As can be observed, the real laser data presents differences when
compared to the manually annotated ground truth depth map, being
particularly noteworthy those of points falling beyond 20 meters dis-
tance. Regarding the simulated cloud, it obtains comparable metrics
for near distances, where the error falls under the specifications of
the real device margins. These remarkable results validate the suit-
ability of the proposed meshing algorithm, even though the scene
geometry is approximate from partial data aggregated from a few
laser sweeps. On the other hand, as the range of the points increases,
the quality of the signal degrades proportionally. This situation is ex-
plained by two different factors that directly determine the number
of points available at any range: the number of scans used during
the aggregation step and the traveling distance of the vehicle within
the corresponding time frame. For longer distances, the number of
frames considered at the meshing stage becomes a key factor, as the
density of the cloud significantly increases as the ego-vehicle moves
forward. Hence, for larger window sizes, the sparsity of the aggre-
gated LiDAR cloud decreases and, as a result, a finer resolution can
be computed for distant scene regions, reducing the reconstruction
error.

5.1.4.2 Evaluation through 3D object detectors in KITTI

The second evaluation criteria focus on assessing the validity of the
simulated LiDAR datasets when used to train different 3D object de-
tection frameworks. Concretely, a comparison of the performance of
the aforementioned networks is made between models trained with
real and virtual data. As in the evaluation of the reconstruction qual-
ity, both the specifications of the simulated device and its positioning
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Figure 5.7: Correct points (%) for increasing error thresholds at different dis-
tances to the reference sensor. The scale of the colormap ranges
from 0% (black) to 100% (white). (a) Original Velodyne HDL64E.
(b) Simulated Velodyne HDL64E [10] © IEEE 2019

in the ego-vehicle mirror those of the original rangefinder. Moreover,
to guarantee a fair analysis, both models are fed with the original
laser scans at the validation stage. In so doing, insights on the degree
of similarity between real and synthetic sweeps can be obtained.

The well-known KITTI Object Benchmark is used to conduct the
described experiments. Results of the different frameworks for BEV

can be found in Table 5.1, whereas those for 3D are depicted in Ta-
ble 5.2. As in the experiments presented in Chapter 4, the Average
Precision (AP) metric is used to determine the ability of the meth-
ods to detect cars, pedestrians, and cyclists, using Intersection over
Union (IoU) thresholds of 0.7, 0.5, and 0.5, respectively. Likewise, the
performance at the three standard difficulty levels is shown.

As can be seen, the performance of all selected methods for the
detection of vehicles in the BEV is comparable when using either real
or simulated LiDAR clouds as training data. In the 3D evaluation,
the Frustum network suffers more than the other two models, as
the differences between clouds have a greater impact on methods
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Table 5.1: KITTI BEV object detection results on the validation set for models
trained with real and synthetic inputs [10] © IEEE 2019

Class Method AP BEV (real) AP BEV (synthetic)

Easy Moder. Hard Easy Moder. Hard

Car
Frustum 86.93 81.27 72.91 82.27 72.57 63.98

AVOD 89.03 79.84 79.41 75.36 78.28 77.79

SECOND 89.83 86.93 79.42 89.47 79.07 78.38

Ped.
Frustum 70,21 60.79 53.10 64.42 55.77 49.38

AVOD 53.47 48.44 42.50 36.21 32.62 30.65

SECOND 62.33 59.33 53.21 65.20 56.42 54.61

Cyc.
Frustum 78.66 57.51 53.69 64.63 48.32 45.79

AVOD 64.58 40.41 39.86 44.51 29.94 26.89

SECOND 80.58 62.23 60.80 67.64 53.77 48.54

using the LiDAR information in its raw format. Regarding the 3D
pedestrian detection, both AVOD and Frustum experience a signifi-
cant drop in precision when synthetic LiDAR is used at the training
stage. Conversely, SECOND shows similar results for both models
as the voxelization of the cloud makes the framework less sensitive
to small changes in the input point cloud. In the BEV projection, the
performance gap between the models is dramatically lower. For the
cyclist class, the same trend is observed for all three approaches when
trained using clouds from virtual devices: the metrics are lower than
when using the original data. However, it is noteworthy to mention
that the results for the cyclist class are also the worst among models
trained using real LiDAR scans. The results for both pedestrian and
cyclists categories can be explained by the higher variance in their
point cloud representation, mainly due to their different appearance
over time, as the multi-frame alignment stage does not take into ac-
count the movements of the person nor the variations in the bicycle
shape caused by the turns of the handlebars or changes in the posi-
tion of the pedals.

Although the accuracy naturally drops when using simulated laser
scans for training, some of the analyzed models still offer satisfactory
object detection results, especially in the BEV projection. In fact, the
quality of the generated point clouds allows achieving alike perfor-
mance in object classes with fewer variations in their geometry, such
as vehicles. Moreover, the results obtained using SECOND prove the
utility of the approach for the creation of LiDAR datasets to success-
fully train precise voxel-based 3D networks for the detection of differ-
ent categories of road participants.
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Table 5.2: KITTI 3D object detection results on the validation set for models
trained with real and synthetic inputs [10] © IEEE 2019

Class Method AP 3D (real) AP 3D (synthetic)

Easy Moder. Hard Easy Moder. Hard

Car
Frustum 81.96 68.76 60.84 69.39 49.99 42.57

AVOD 77.17 68.20 67.73 75.36 64.99 63.68

SECOND 87.66 77.57 75.61 84.95 67.14 60.02

Ped.
Frustum 63.07 54.59 47.41 52.46 44.69 39.25

AVOD 44.99 44.73 39.26 32.24 29.08 26.96

SECOND 60.01 52.72 50.20 61.87 53.67 46.76

Cyc.
Frustum 74.98 54.19 49.84 57.98 42.43 40.34

AVOD 63.00 39.57 38.72 40.57 28.67 25.93

SECOND 79.01 60.29 55.11 65.99 52.10 46.94

5.1.4.3 Evaluation of the cross-domain performance

To further investigate the adequacy of the proposed method, experi-
ments have been conducted to provide a quantitative analysis of the
domain adaptation capabilities provided by the generated training
datasets. To this end, the data from KITTI [61] is used at the training
stage, while the nuScenes 3D object detection benchmark [26] is set
as the target domain, and therefore employed for the evaluation. As
nuScenes’ annotations are available, a fair comparison can be made
between models trained with different LiDAR inputs. It is notewor-
thy to mention that the specification of the LiDARs from KITTI and
nuScenes domains differ significantly, as they were recorded using a
64-layer Velodyne HDL64E and 32-layer Velodyne HDL32E, respec-
tively. Furthermore, the position of the sensors in the car, as well as
the location of the scenes, also vary from one to another, increasing
the training-testing gap even more.

The assessment is performed through the Frustum PointNet v1

framework [141], as it has shown to be the most sensitive against
changes in the input LiDAR data. Two models have been trained
using distinct training datasets. For the first one, KITTI raw clouds
are used. For the second model, virtual scans as measured from a
Velodyne HDL32E are generated using the reconstruction of KITTI
scenes. In the latter case, the original position of the LiDAR in KITTI
is modified to match the exact sensor configuration in nuScenes. Ad-
ditionally, a third model is trained using the train split from nuScenes
dataset so that it can be used as a reference.
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The official nuScenes evaluation metrics are used to measure the
accuracy of the models for the task of 3D object detection. On the one
hand, the AP is computed for all classes using the distance between
the centers of the detection and ground truth objects as the associa-
tion condition, instead of the traditional IoU. The AP is calculated by
integrating the precision vs. recall curve for values greater than 0.1.
The per-class final value is the result of averaging over four different
distance thresholds {0.5, 1, 2, 4}. On the other hand, a set of metrics
are evaluated for the True Positive (TP) detections:

• Average Translation Error (ATE): Euclidean distance between
centers in the XY plane, in meters.

• Average Scale Error (ASE): calculated as 1− IoU after aligning
centers and orientation.

• Average Orientation Error (AOE): smallest yaw angle difference
between prediction and ground-truth boxes, in radians.

Although the benchmark includes two other metrics for the TP

boxes, i. e., Average Velocity Error (AVE) and Average Attribute Er-
ror (AAE), we have disregarded them in our experiments since they
are not applicable to the task under evaluation.

All models are trained for 80 epochs with a batch size of 32 objects.
Adam [92] optimizer is used, and the rest of the hyperparameters
are set as follows: a learning rate of 0.001, a momentum of 0.9, and
a decay rate of 0.5 with a step of 15 epochs. Frustum candidates are
generated using detections from a Mask R-CNN model pre-trained
on ImageNet and COCO, and finetuned on Cityscapes.

To be able to train and validate a model using different datasets,
an agreement between the labeled categories is required. In our par-
ticular case, only the KITTI classes Car, Pedestrian and Cyclist (Bicycle
in nuScenes) have been considered, since there are no straight corre-
spondences among the rest of annotated types in the two benchmarks.
Their respective results in the nuScenes validation set are shown in Ta-
ble 5.3, Table 5.4, and Table 5.5.

Table 5.3: F-PointNet [141] 3D Car detection results in the nuScenes bench-
mark [26] using different training datasets

Training dataset AP ATE ASE AOE

Original nuScenes 0.507 0.358 0.172 0.462

Original KITTI 0.341 0.498 0.316 0.756

KITTI Virtual HDL32E 0.419 0.473 0.329 0.809

As can be observed, there is a large gap between the performance
of models trained using raw KITTI and nuScenes clouds, which con-
firms the magnitude of the domain adaptation problem. On the other
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Table 5.4: F-PointNet [141] 3D Pedestrian detection results in the nuScenes
benchmark [26] using different training datasets

Training dataset AP ATE ASE AOE

Original nuScenes 0.574 0.265 0.291 1.031

Original KITTI 0.425 0.347 0.334 1.296

KITTI Virtual HDL32E 0.502 0.352 0.320 1.302

Table 5.5: F-PointNet [141] 3D Cyclist detection results in the nuScenes
benchmark [26] using different training datasets

Training dataset AP ATE ASE AOE

Original nuScenes 0.200 0.413 0.507 1.630

Original KITTI 0.048 0.513 0.456 1.299

KITTI Virtual HDL32E 0.107 0.516 0.451 1.455

hand, the AP of the network trained using the simulated point clouds
consistently exceeds the one of the KITTI baseline in all evaluated cat-
egories. Concretely, the use of our proposed training dataset leads to
improvements of around 23%, 18% and 123% in the 3D detection of
Car, Pedestrian and Cyclist objects, respectively. Here we can see that
despite the difficulties to accumulate clouds from subsequent frames
for non-rigid objects noticed in the previous experiments, the model
trained using data from the virtual LiDAR device clearly outperforms
its original counterpart.

Differences in the TP metrics are not significant, with slight changes
in the average translation, size, and orientation errors. This suggests
that there is an underlying limitation in the method performance that
can be explained by the variations in the geometry, poses, and quan-
tity of the annotated objects among datasets. The results provided by
the model trained on nuScenes also support this hypothesis.

Although the selected 3D detection framework is heavily affected
by minor alterations of the input, since it processes LiDAR data in
its raw format, the conducted experiments demonstrate that the pre-
sented pipeline for laser scans simulation is an effective approach
for reducing the gap when there exist major differences between the
training and deployment domains.

5.2 multi-modal 3d detection in open traffic

In order to obtain on-field insights about the suitability of the syn-
thetic LiDAR datasets created through the method introduced in the
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previous section, a 3D object detection network has been trained to
serve as the main perception stack of a self-driving car prototype.

The vehicle used in the tests is a Renault ZOE owned by the Re-
nault SAS Research Department, and has been instrumented with a
custom sensor configuration to navigate autonomously in slow and
medium-speed roads. Concretely, the ODD involves daylight open traf-
fic driving under good weather conditions in periurban areas around
Guyancourt, Île-de-France, a commune located in the south-western
suburbs of Paris, France. Moreover, the driving maneuvers are lim-
ited to those required for path following, e. g., turns, roundabouts,
or yields, with the exception of overpassing. Traffic regulations are
obeyed with the help of an HD annotated map. Thus, the operational
domain is geographically restricted by map availability.

Henceforward, the details of the sensor setup, the processing units,
and the complete object detection and tracking pipeline are presented.
Different experiments in both benchmarks and open traffic validate
the proposed solution.

5.2.1 Sensor configuration

Even though the requirements of the use cases may allow for simpler
configurations, the selected sensors aim to provide enough flexibility
so that the perception system of the research platform can be scaled
to solve even more challenging tasks to widen the scope of the ODD

in the near future. Namely, it is composed of a set of cameras and a
laser scanner.

To be able to perform the necessary maneuvers in a safe manner,
the proposed sensor setup covers the 360° with both modalities. All
the sensors are mounted on a rack on the roof of the vehicle. The
LiDAR scanner stands in a central position, while five cameras are
evenly distributed around it to cover the full Horizontal Field of
View (HFOV) around the vehicle with some overlap between images,
as shown in Figure 5.8. In particular, the following sensors are em-
ployed:

• Five CMOS cameras equipped with an 85°-HFOV lens (FLIR
Blackfly S 31S4C-C9).

• A 32-layer LiDAR scanner featuring a minimum vertical resolu-
tion of 0.33° and a range of 200m (Velodyne VLP32C).

Sensors have been selected to ensure optimal performance in the
short-to-medium range. The image resolution provided by the cam-
eras’ sensors is high enough to enable the use of pixel binning (by a
factor of 2× in both directions) to increase the sensitivity to light. Be-
sides, a GPS/INS receiver with RTK corrections is equipped to have
accurate positioning and heading information of the ego-vehicle.
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Figure 5.8: Top-view of the sensor setup of the vehicle [121] © IEEE 2021

The selected configuration has been chosen to take advantage of
both the representation capabilities of the cameras, which provide
appearance information, and the geometrical accuracy of the LiDAR
scanner, which delivers range and intensity measurements, through
a sensor fusion approach that exploits the correspondences between
modalities. To do so, an accurate synchronization and calibration be-
tween sensors are required. Otherwise, the data captured by each of
them would describe different moments in time, making it impossible
to compute a faithful estimation of the current environment state.

For that purpose, two separate requirements have to be fulfilled.
On the one hand, all the sensors have to be fired at the same instant.
In this regard, an ad-hoc device has been created to emit a signal
that triggers all cameras at once. The LiDAR unit is not included
as it captures information in a continuous way due to its rotating
mechanical design. On the other hand, all sensors need to share a
common clock, so when they gather new data, their timestamp can be
used to easily associate the five images and the laser scan belonging
to the same frame. To this end, the IEEE-1588 Precision Time Protocol
(PTP) is used, where the GPS is set as the master clock and the rest of
the sensors and the computer act as slave devices.

At the calibration stage, the intrinsic parameters of the cameras are
computed using the popular checkerboard-based approach in [207].
In order to estimate the relative position between the sensors, the au-
tomatic extrinsic calibration method introduced in Chapter 3 is used
in a pairwise fashion between the LiDAR and each of the surround-
ing cameras.

Regarding the rest of the hardware configuration, data processing
is carried out on a unit with four NVIDIA Tesla V100 GPUs, with
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Figure 5.9: Overview of the proposed perception stack [11] © IEEE 2020

32GB VRAM and 15.67 TFLOPS FP32 each. Additionally, the com-
puter features 40 CPUs, 256 GB RAM, and several SSD disks for stor-
age.

5.2.2 Perception pipeline

The proposed perception stack is composed of three separate stages:
2D detection, 3D estimation, and tracking. Since the inference of the fi-
nal 3D boxes relies on the well-known Frustum-PointNet framework
[141], a previous step is required to feed the network with the nec-
essary image object detections. Once the object instances have been
properly located and classified, the tracking module provides consis-
tency over time. By tracking the dynamic agents across frames, the im-
pact of instant misdetections in the preceding stage can be mitigated.
The combination of these three components enables accurate and ro-
bust identification of the different road participants surrounding the
vehicle. An overview of the whole pipeline is shown in Figure 5.9.

To control the correct funcioning of the system, a supervisor pro-
gram monitors the status of every module to detect critical failures
while in operation so that the safety driver can be notified to switch to
manual driving. The different software components have been imple-
mented using the Robot Operating System (ROS)1 libraries, which pro-
vides an off-the-shelf inter-process communication protocol, among
other convenient features for the development of real-time robot ap-
plications. A detailed description of each of the three aforementioned
stages is provided in the following sections.

5.2.2.1 Image-based object detection

Since the dense and rich appearance information provided by cam-
era sensors generally offers superior performance over other sensor
modalities for object detection purposes, the proposed solution is
built upon a robust 2D detection network. Namely, Mask R-CNN [72]
is responsible for the first stage of the pipeline. This two-stage method
is an evolution of the well-known Faster R-CNN meta-architecture de-
scribed in Section 2.4.3, where an additional inference branch has

1 https://www.ros.org/

https://www.ros.org/
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been added for estimating a per-object instance segmentation mask.
Figure 5.10 shows an overview of the selected 2D detector.

Figure 5.10: Mask R-CNN detection framework [72] © IEEE 2017

The choice for a 2D detector based on Faster R-CNN relies on the
higher capabilities of two-stage frameworks for the detection of small
objects over existing single-stage approaches [79], which is a key re-
quirement of driving applications in order to be able to perform ma-
neuvers well in advance. Despite the greater processing times asso-
ciated with the usage of the RPN, modern GPUs such as the ones
equipped in the on-board computer are able to provide throughputs
suitable for online operation.

The improvement of Mask R-CNN over Faster R-CNN is twofold. On
the one hand, the model is able to estimate a semantic mask for each
of the detected objects. On the other hand, the joint multi-task train-
ing not only does not negatively hamper the original object detection
branches but benefits its performance instead while providing an ex-
tra pixel-wise classification. From the computational point of view,
endowing Faster R-CNN with the mask estimation head does not have
a significant impact on the overall processing time, as features are
shared among all branches.

Following the Faster R-CNN paradigm, the inference of the network
is divided into two different stages. First, a feature encoder or back-
bone made of convolutional layers is used. The outcome of the encoder
is then fed to the RPN, which generates a set of candidate regions
where an object is likely to be found. These ROIs are then used to
pool the previously extracted feature map so that potential objects
are fed into the network heads. In the second stage, the three differ-
ent branches process the instance crops to infer an estimate of the
class, final bounding box, and semantic mask. The model is trained
using a multi-task loss that takes into account the contribution of the
different outputs of the RPN and the three per-object heads.

In the proposed on-board solution, an instance of Mask R-CNN is
run to process the data captured by each of the five surrounding cam-
eras. Before inference is performed, original images are cropped so
that uninteresting areas belonging to the sky or the ego-vehicle are
removed. Thus, the input size is reduced, and so it does the required
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execution time. The selected backbone network is the ResNet-50 [73],
due to its excellent accuracy-speed tradeoff. Moreover, to further in-
crease the performance of the detection of small objects, the informa-
tion from feature maps at different scale levels is combined at both
the region proposal branch and the final estimation heads following
a FPNs approach [109].

Regarding the training, multiple datasets are employed. The model
is pre-trained in a two-step fashion using ImageNet [94] and COCO
[111], images, one after another. The use of large-scale vision bench-
marks enhances the learned convolutional kernels and provides greater
generalization. Later, the model is fine-tuned to perform well on the
desired tasks of object detection and instance segmentation. For this
purpose, the Cityscapes dataset [33] is used.

Since the output of the Mask R-CNN network is geared towards
the estimation of candidate regions for the subsequent 3D object de-
tector, which is trained using KITTI benchmark [61], the categories
from Cityscapes are adapted to match those in the next stage. To this
end, instances of bicycle are combined to their closer rider to compose
a KITTI-like Cyclist label. Thus, the model is trained to detect Car,
Pedestrian, and Cyclist objects.

5.2.2.2 LiDAR-based 3D box estimation

To fill the gap between the detecions in the image plane provided
by Mask R-CNN and the desired 3D bounding boxes, the spatial in-
formation from the LiDAR modality is employed through the use of
the Frustrum PointNet framework [141]. This model aims to lever-
age the use of both visual and LiDAR data in a sequential fusion
approach. On the one hand, the whole 3D detection process is based
on the result of the image inference, which offers excellent perfor-
mance in detecting road users. On the other hand, it also exploits the
highly accurate and precise geometric information provided by laser
scanners in those tasks in which it is most appropriate. Besides, the
method achieves outstanding results, among the best in renowned
benchmarks such as KITTI, while using very lightweight models for
inference. In the proposed perception stack, the F-PointNet v1 model
is used, as the improvements introduced by the second version were
proved not significant in this context.

The outcome of the 2D object detector is used to create regions of
interest in the laser point cloud, which are then processed to estimate
the final cuboids. In this regard, the association between LiDAR and
camera data is computed by projecting the laser points onto the image
plane of the corresponding surrounding camera. For this purpose, the
relative pose between the sensors is considered. Afterward, the region
of the cloud whose projection falls inside the 2D coordinates of each
object candidate, known as frustum, is extracted. Although the search
space of these frustums is limited, the estimation of the accurate 3D
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box parameters is far from being a trivial task since the LiDAR cloud
only represents the visible geometry of the object and may include
outlier points belonging to other elements of the scene.

Afterward, the isolated point cloud of every object is used as input
of the F-PointNet model. The network is responsible for providing an
accurate estimate of the location, size, and orientation of obstacles. To
do so, this architecture is made of three successive stages, as seen in
Figure 5.11. First, a PointNet module tailored to perform 3D a point-
wise binary segmentation of the frustum cloud is used to filter out
points not belonging to the object (i.e., outliers). This way, the noise
is removed, and the next parts of the pipeline are fed solely with
points of interest. The second stage, known as T-Net is in charge of
providing an initial estimate of the center of the object so that points
can be transformed to this new axis before the final box inference.
In doing so, the variance between the signals of different objects is
reduced, facilitating the learning process of the 3D cuboid parameters.
Finally, an amodal PointNet is used to infer the 3D object size and
coordinates.

Figure 5.11: Frustum PointNet v1 pipeline [141] © IEEE 2018

To train the model, the KITTI 3D Object Benchmark [61] is used.
Due to the significant differences between the layer distributions of
the LiDAR device in the instrumented vehicle and the sensor in KITTI,
a derived ad-hoc dataset generated through the method proposed in
Section 5.1 is used. Therefore, the F-PointNet framework is trained
with synthetic clouds simulated with a virtual device sharing the con-
figuration of both the intrinsic parameters and the relative pose with
the one in the sensor setup of our vehicle, using the reconstructed
scenes from the german benchmark.

For deployment, we mimic the approach followed for the image
modality, so the 3D detections are computed separately for each of the
cameras. Furthermore, the cloud projection required for the LiDAR-
camera association step is accelerated through a GPU-based imple-
mentation since the number of points of the captured laser scan is
bulky enough to compromise the real-time performance of the solu-
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tion. In the same way, a custom implementation based on NVIDIA
TensorRT2 is used for the five Frustum PointNet instances.

5.2.2.3 Object tracking

Once the object detection stage is finished, a set of 3D cuboids rep-
resenting the objects in each of the cameras’ Field of View (FOV) is
obtained. For the tracking module to properly estimate objects trajec-
tories in 360°, these detections have to be combined in a common co-
ordinate system. To this effect, the LiDAR axis is used. Although the
transformation from the camera to the laser coordinates is performed
through a simple matrix product using the calibrated extrinsic param-
eters, the process of fusing the detected objects is not straightforward.
Since images from consecutive cameras share an overlapping area to
prevent blind spots, multiple detections of the same object may be
estimated. To remove duplicate instances, a NMS procedure is applied
on the BEV (i.e., ignoring the height coordinate). For efficiency reasons,
a class-aware axis-aligned approach is followed.

After expressing all detected objects in the LiDAR frame, they can
be fed into the tracking stage. This module is responsible for provid-
ing consistency over time for the instant detections computed at each
frame in the previous stages of the pipeline. In particular, this task
is in charge of endowing every object with a unique identifier sta-
ble accross frames, as well as predicting the position of objects when
they are temporarily occluded. The selected tracking algorithm for
this perception solution is the square root version of the Unscented
Kalman Filter (UKF) [186]. The use of this variant of the UKF brings
extra stability to the filter since it always ensures a positive-definite
covariance matrix, avoiding numerical errors [179].

In order to adapt the prediction to the behavior of every kind of
agent, the different types of obstacles are modeled by per-category
cinematic equations. The state variables leverage the information esti-
mated at the object detection stage and include both the 3D position
and the orientation of the obstacles. Besides, the motion of the ego-
vehicle is compensated using the location and heading data of the
GPS/INS receiver so that the prediction of the previously tracked
agents and the new observations belong to the coordinate system of
the current timestep.

Finally, to deal with the association between detected objects over
time, the Hungarian algorithm is used. The cost matrix for the pair-
wise association of existing agents and input detections is computed
by means of the Mahalanobis distance, taking into account the uncer-
tainty estimated by the Kalman filter. When a tracking object cannot
be associated with any new detection at some timestep, it remains in
an invisible state and continues being tracked in the background. This

2 https://developer.nvidia.com/tensorrt

https://developer.nvidia.com/tensorrt
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provides temporary consistency in the event of misdetections. Con-
cretely, the tracking management system makes use of a per-agent
score, which increases every time the object is associated to a new
detection, and decreases otherwise. If the score falls below a certain
threshold, the agent is deleted.

5.2.3 Experimental results

To evaluate the performance of the proposed perception stack, the
solution has been deployed on the research vehicle so that it can be
validated in the traffic situations included in the ODD. Different tests
have been conducted, where the car has been driven on a manifold
of urban and peri-urban scenarios sharing the road with other traffic
participants. Despite the fact that all the stages of the pipeline rely on
well-proven approaches, a systematic analysis is required to assess
the suitability of the synthetic LiDAR dataset used for the training of
the models to reduce the domain gap between benchmarks and real
scenarios. Since there is no ground truth for the operational domain,
the results of the full system are validated through both controlled
experiments and qualitative observations.

On the one hand, the accuracy of the method is assessed by means
of an auxiliary vehicle driving in the surroundings. The car, which
features a GPS/INS unit with RTK corrections, identical to the one
mounted on the ego-vehicle sensor rack, is used to collect informa-
tion of its position, orientation and speed so that it can be used as
the reference signal for the evaluation of our approach. Hence, pro-
vided that the dimensions of the instrumented vehicle are known, an
automatic 3D label of the object can be obtained. Although the tests
are conducted in open traffic and thus involve other road agents, the
analysis is only presented for the reference vehicle, as the annotations
of other participants are not available. Figure 5.12 shows the results
of three typical use cases where a correct performance of the percep-
tion system is of paramount importance: an urban roundabout with
moving traffic, a lane change during a traffic jam, and a pedestrian
crossing.

As can be seen, the system is able to detect and track the reference
vehicle with high accuracy, providing minimal error in the distance
and heading estimation. Remarkably, the performance of the percep-
tion pipeline remains stable beyond 40m. Regarding the speed, al-
though the predicted output is generally noisier, the error in the es-
timation remains reasonably low. It is noteworthy that the filter is
robust against the inaccuracy of GPS measurements in urban areas,
which might affect the ego-vehicle movement compensation stage.

Table 5.6 shows the average estimation errors of the pipeline on
the above sequences. The metrics include the mean distance (on the
ground plane), mean heading, and mean speed errors per sequence.
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Figure 5.12: Comparison between the predicted distance, heading and speed
of the instrumented vehicle (in blue), and the reference signal
(orange) on three testing sequences [11] © IEEE 2020

The results observed on the different tested scenarios prove the high
reliability and accuracy of the approach and demonstrate its profi-
ciency in consistently tracking agents over time.

Table 5.6: Error metrics for the test sequences in Figure 5.12 [11] © IEEE 2020

Seq. 1 Seq. 2 Seq. 3

Mean distance error (m) 0.48 0.71 0.30

Mean heading error (rad) 0.02 0.04 0.02

Mean speed error (m/s) 0.42 0.27 0.17

Figure 5.13 and Figure 5.14 depict some examples of the perfor-
mance of our detection solution in different traffic situations. As ev-
idenced by these results, the 360° capabilities of the system make
it suitable for the identification of dynamic obstacles even in chal-
lenging situations such as intersections and roundabouts. Most roads
users are correctly detected and provided with a representative 3D
box. Some difficulties are found at the overlapping areas between
consecutive cameras, where near objects appear truncated in both im-
ages leading to spurious 3D estimates.

On another note, whenever a software solution is deployed to solve
a problem with real-time requirements like perception tasks for auto-
mated driving, it is of paramount importance to measure both the
runtime and the frame rate of the system outputs to assess its suit-
ability to the specific application.

As mentioned before, due to the nature of the F-PointNet frame-
work, the 2D and 3D detection of the objects of each camera is com-
puted separately. This situation allows distributing the ROS processes
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(a) (b)

Figure 5.13: Qualitative results of the proposed system on some typical traf-
fic scenarios. From top to bottom: 3D detections in rear-left,
front-left, front, front-right, and rear-right cameras, and Bird’s
Eye View representation [11] © IEEE 2020

that compose the perception stack to maximize the usage of the pro-
cessing resources available in the on-board computer. In particular,
the five detection pipeline instances are scheduled to run in the dif-
ferent GPUs of the vehicle as detailed in Table 5.7. As the number of
CUDA devices is lower than the number of instances, the processing
of rear cameras is performed in the same GPU.

Taking into account the above distribution, the execution time for
each of the parallel object detection processes can be analyzed. Fig-
ure 5.15 shows the average runtime for each of the stages in the
pipeline during the tests. As can be observed, there exist uneven pro-
cessing times for the distinct devices. This may be caused by sev-
eral factors: the differences in the input resolution, whether a GPU is
shared or not, the existence of other processes running in the same
CPU, and the number of objects appearing in the camera FOV. The
latter variable has a direct impact in the whole perception stage, as
part of the execution times of both Mask R-CNN and Frustum Point-
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(a) (b)

(c) (d)

Figure 5.14: Qualitative results of the proposed system on some typical traf-
fic scenarios. From top to bottom: 3D detections in rear-left,
front-left, front, front-right, and rear-right cameras, and Bird’s
Eye View representation [11] © IEEE 2020

Net models depend on the scene’s object density. Because of that, this
factor may be the most decisive together with the sharing of GPU re-
sources.

Despite the runtime differences, the real per-frame delay corre-
sponds to the slowest detection instance, as 3D objects from all cam-
eras are synchronized before the NMS stage takes place. Although this
leads to some idle time in the fastest processes, it allows the tracking
module to receive the detection measurements of a certain frame at
once, achieving a consistent state over time.

Looking at Figure 5.15, one might argue that the proposed solution
does not meet the requisites of real-time operation, typically set at
10Hz, as the per-frame execution time lasts for around 150ms. How-
ever, thanks to the modular implementation of the proposed solution,
the different steps of the pipeline can be run in parallel so that the
image detection node can process the next frame while the rest of
the stages finish. Hence, the system frame rate is not bounded by the
perception software, but limited to the sensor acquisition frequency.

5.3 conclusion

This chapter has presented a detailed description and discussion of
this thesis’ proposal towards closing the domain gap of LiDAR-based
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Table 5.7: Perception pipeline processes distribution

ID Camera Resolution GPU

0 Front 1024x410 0

1 Left 1024x500 1

2 Right 1024x500 2

3 Rear-left 1024x520 3

4 Rear-right 1024x520 3

Figure 5.15: Processing times of the different stages in the pipeline, divided
by camera device

detection models when trained with information from public datasets
and deployed on vehicles mounting distinct sensor setups. Contrary
to existing DA works, our algorithm focuses on the creation of new
datasets as captured from any LiDAR device through a reconstruction
of the scene using information existing benchmarks.

The experimental analysis of the proposed method for synthetic
point clouds generation proves the utility of the approach to reduce
the performance drop of 3D object detectors caused by the often sig-
nificant differences between the training and testing domains. Con-
ducted tests demonstrate that the solution is a leap forward on the
deployment of LiDAR-based perception networks into real vehicles
by allowing the usage of custom sensor configurations, which were
previously limited to those used in available datasets. Moreover, the
presented pipeline opens the door to the standardization of existing
3D detection benchmarks to any LiDAR sensor and may facilitate
the adoption of upcoming devices in the incipient and fast-changing
market of laser scanners.
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The field tests further assess the validity of the method, as the cur-
rent perception pipeline enables safe real-time navigation in open traf-
fic during almost the whole duration of the rides in the operational
design domain. However, from a safety perspective, a failback driver
is still required to deal with corner cases.

In order to remove the need of human supervision, two lines of
work have to be addressed. On the one hand, additional road partici-
pant categories should be considered while training, as certain objects
in the traffic scenarios, e. g., trucks or scooters, are still unhandled,
thus leading to risky situations where a switch to manual driving
is mandatory. On the other hand, redundant single-modality detec-
tion frameworks relying on LiDAR or camera information should be
embedded to improve the robustness of the system. Besides, to com-
ply with the goal of having low processing times without increasing
the hardware requirements, the software implementation of all stages,
and particularly those related to inference networks, should be opti-
mized.



Part III

C O N C L U D I N G R E M A R K S





6
C O N C L U S I O N A N D F U T U R E W O R K S

This chapter contains a summary of the contributions made in this
thesis. Besides, some lines of research are suggested to respond to the
challenges arising from the presented work.

6.1 conclusion

The widespread use of automated cars may become a reality when
their driving capabilities overtake those of human operators. For this
to happen, major advances are still required in localization, percep-
tion, or control technologies. Among all, scene understanding stands
out as the key player in the pipeline, since a proper awareness of the
traffic situation is essential for safe interactions with the road infras-
tructure and other participants.

In this thesis, we have focused our attention on the 3D object de-
tection problem, proposing innovative solutions to some of the chal-
lenges found at different stages of the perception process. A signifi-
cant amount of approaches has been presented to push forward the
state-of-the-art in a wide variety of tasks, including multi-modal data
association, object detection and classification, and deployment. The
main achievements are summarized below:

• An original extrinsic calibration method to automate the calcula-
tion of the relative pose of a pair of sensors made of monocular
cameras, stereo rigs, or LiDAR devices has been presented. Con-
trary to existing approaches, usually focused on high-resolution
scanners, our work supports very diverse sensor configurations,
including those mounting LiDAR units with a reduced number
of layers, as long as at least two rings intersect each of the tar-
get’s holes. Along the process, the human intervention is almost
limited to the positioning of the calibration target inside the
shared FOV of the sensors involved. The solution outperforms
all previous works using calibration markers and offers better
generalization capabilities than DNN-based alternatives, which
require annotated training samples for each specific setup.

• We have introduced an evaluation software for calibration algo-
rithms, which traditionally lack a formal validation procedure
due to the unavailability of ground-truth measurements. The
benchmark, based on a simulated environment, is able to ac-
curately recreate the signal of an unlimited number of sensor
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models and custom configurations, and provides the perfect rel-
ative transformation between them so that it can be used as a
reference.

• A novel encoding for the LiDAR’s BEV projection has been pro-
posed. This representation captures the key features of the orig-
inal point cloud despite its discretization into a 2D structure.
The image channels encode sparsity-invariant features, robust
against differences among scanner specifications, enabling pre-
cise object characterization regardless the device resolution and
operating range. Unlike other approaches in the literature, our
top-view representation contains sufficient information to esti-
mate 3D cuboids for objects of distinct categories.

• The adequacy of CNN architectures to exploit LiDAR features
for the task of 3D object detection have been demonstrated by
means of the BirdNet framework. This new pipeline leverages
the feature encoders and RPNs tailored for image detectors to
classify and estimate the bounding box of objects of multiple
categories using the BEV as input in a single forward pass. The
vanilla version, which requires a post-processing stage to com-
pute the height and z position of the objects, outperformed all
prior BEV-based approaches, although they were only focused
on the detection of vehicles. With the second iteration of the
method, the use of pyramid networks boosted the accuracy of
the identification of small objects leading to unprecedented re-
sults for works solely based on the LiDAR’s top-view projection.
Besides, the learned estimation of the box parameters in the ver-
tical axis has proven beneficial for the overall performance of
the network.

• A single-stage architecture able to provide multi-class 3D detec-
tion using the information from BEV images in an end-to-end
fashion has been presented. Despite the use of a light back-
bone and the removal of slow proposal generation branches, the
network outperforms other non-RPN approaches and yields re-
sults comparable or superior to some existing two-stage frame-
works. Moreover, its efficient design enables a throughput rate
of nearly 50Hz, making it an ideal solution for deployment in
resource-constrained embedded computers.

• We have proposed the first single-stage network that leverages
explicit LiDAR-image correspondences in the BEV space for
multi-class object detection. A manifold of multi-modal fusion
strategies has been evaluated, including early or sequential con-
figurations. Among the different alternatives, a novel scheme
has been introduced to exploit the joint use of both data modal-
ities at the feature-level. The new layer aims to mimic the
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functionality of the ROI pooling operation of RPN at a much
lower computational cost. Although the tested approaches have
delivered uneven results, the comprehensive experimentation
has laid a solid basis for further investigation.

• A method has been introduced to address the DA issues experi-
enced by LiDAR-based detectors when deployed on sensor con-
figurations significantly different from those in which they have
been trained. As opposed to the popular trend which focuses on
teaching the models to learn domain-invariant features, our pro-
posal is devoted to the adaptation of currently available datasets
to LiDAR units of different specifications. Through the use of
the newly generated point clouds, the detection frameworks
can be fine-tuned to exploit the features of any given device,
allowing the network to optimize its weights to the target sen-
sor. Besides, since the proposed solution produces a complete
3D point cloud, its usage can boost the performance of any
framework based on LiDAR information, including raw-based
pipelines, for which the DNN domain adaptation methods have
no applicability yet.

• The performance of some of the contributions of this thesis
has been assessed in complex real driving scenarios, where a
moving research platform endowed with a custom sensor multi-
modal configuration spanning the whole horizontal FOV has op-
erated autonomously in open traffic. The deployed perception
stack proved its suitability to infer accurate 3D positioning of
other road users to the control modules, enabling the naviga-
tion of the vehicle in a variety of traffic situations.

These contributions have made possible the accomplishment of the
objectives set for this thesis and have led to the publication of 3 jour-
nals and 5 conference articles. In addition, 9 other papers related to
complementary on-board perception tasks have been issued.

6.2 future work

Although the different works presented in this thesis have led to no-
table advances in the field of 3D object detection, results showed that
there is still room for improvement. In the following lines, some ideas
are drawn towards addressing some of the open questions and limi-
tations of the proposed approaches:

• Extending the extrinsic calibration software with an outlier re-
jection scheme might be useful to discard spurious samples
obtained in the reference point extraction procedure. At this
point, accurate modeling of the sensor noise could be conve-
nient, which will also enable adapting the parameter settings to
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each particular device. On the other hand, the proposed method
has been designed to determine a fixed set of extrinsic parame-
ters before the perception system is deployed; however, sensor
setups mounted in movable platforms, such as autonomous ve-
hicles, can suffer miscalibrations during regular operation. The
use of the proposed method would require the ability to detect
these situations early, prompting the user to perform a recali-
bration when necessary.

• To further enhance the representation capabilities of the pro-
posed BEV, the inclusion of additional channels that comple-
ment the current encoding may be studied, such as occupancy
information or context data that leverages the features of points
in the vicinities of the cell.

• The accuracy of BirdNet framework, like other BEV-based meth-
ods, still falls behind other approaches that make use of raw Li-
DAR information as input. To close the performance gap with
point cloud networks, the use of the original 3D points in the
box regression phase may be explored. For efficiency reasons,
the estimation of the object candidates should remain in the
top-view projection.

• The uneven performance among the different classes in the
single-stage detector may be addressed by means of appending
heads on top of feature maps of multiple resolutions. More-
over, different augmentation techniques could help reduce the
network bias, such as random shifts and rotations, noise addi-
tion, or artificially incrementing the number of instances of less
represented categories [194].

• Different alternatives may be explored to boost the effectiveness
of the evaluated fusion schemes. On the one hand, dividing the
cell pillars into a set of vertical slices may improve the accu-
racy of early and sequential strategies, as an increased resolu-
tion in the z axis will reduce the height of each cell, thus mit-
igating the inaccuracies caused by color blurring and mispro-
jections. On the other hand, the feature-level fusion operation
may take advantage of both a multi-scale indexing procedure
and an auxiliary loss to train the image stream as a 2d object
detector. Through the former, different receptive fields will pro-
vide flexibility to detect objects of distinct sizes, while the latter
will make all positions in the RGB stream contribute to the final
loss, forcing the image backbone to encode meaningful feature
maps.

• The high quality of the simulated LiDAR scans may be im-
proved by the incorporation of a reflectivity channel. To this end,
an interpolation of the intensity values of the nearest beams
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could be used. Additionally, an image-based pose estimation
network may be used to refine the accumulation of clouds be-
longing to deformable objects like pedestrians or cyclists. By
identifying the position of the body parts, the corresponding
LiDAR readings can be rearranged and aligned to the object
position in the target frame, eliminating the often noisy surface
modeling of the current approach. Besides, in view of the rapid
evolution of monocular depth prediction networks, the scene re-
construction stage might be fed with image-based point clouds
so the proposed solution can be used to add the LiDAR modal-
ity to RGB datasets.

In the next decades, scientific advances in the field of scene under-
standing will set the pace for the development of autonomous driving
systems, where research on artificial intelligence will play a crucial
role in achieving a beyond-human performance. We hope that this
thesis represents a step forward in the creation of future self-driving
cars perception technologies.
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