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“Imagination is more important than knowledge. Knowledge is
limited. Imagination encircles the world. ” (Albert Einstein)

“Try again, fail again. Fail better. ” (Samuel Beckett)

“Sometimes it is the people no one can imagine anything of who
do the things no one can imagine. ” (Alan Turing)



Abstract

The inspection and maintenance of energy transmission networks are demanding and

crucial tasks for any transmission system operator. They rely on a combination of on-the-

ground staff and costly low-flying helicopters to visually inspect the power grid structure.

Recently, LiDAR-based inspections have shown the potential to accelerate and increase

inspection precision. These high-resolution sensors allow one to scan an environment and

store it in a 3D point cloud format for further processing and analysis by maintenance

specialists to prevent fires and damage to the electrical system. However, this task is

especially demanding to handle on time when we consider the extensive area that the

transmission network covers. Nonetheless, the transition to point cloud data allows us to

take advantage of Deep Learning to automate these inspections, by detecting collisions

between the grid and the revolving scene.

Deep Learning is a recent and powerful tool that has been successfully applied to a

myriad of real-life problems, such as image recognition and speech generation. With the

introduction of affordable LiDAR sensors, the application of Deep Learning on 3D data

emerged, with numerous methods being proposed every day to address difficult problems,

from 3D object detection to 3D point cloud segmentation. Alas, state-of-the-art methods

are remarkably complex, composed of millions of trainable parameters, and take several

weeks, if not months, to train on specific hardware, which makes it difficult for traditional

companies, like utilities, to employ them.

Therefore, we explore a novel mathematical framework that allows us to define tai-

lored operators that incorporate prior knowledge regarding our problem. These operators

are then integrated into a learning agent, called SCENE-Net, that detects power line sup-

porting towers in 3D point clouds. SCENE-Net allows for the interpretability of its results,

which is not possible in conventional models, it shows an efficient training and inference

time of 85 mn and 20 ms on a regular laptop. Our model is composed of 11 trainable

geometrical parameters, like the height of a cylinder, and has a Precision gain of 24%

against a comparable CNN with 2190 parameters.

Keywords: Deep Learning, GENEO, LiDAR point clouds, 3D semantic segmentation
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Resumo

A inspeção e manutenção de redes de transmissão de energia são tarefas cruciais para

operadores de rede. Recentemente, foram adotadas inspeções utilizando sensores LiDAR

de forma a acelerar este processo e aumentar a sua precisão. Estes sensores são objetos de

alta precisão que conseguem inspecionar ambientes e guarda-los no formato de nuvens

de pontos 3D, para serem posteriormente analisadas por specialistas que procuram pre-

venir fogos florestais e danos à estruta eléctrica. No entanto, esta tarefa torna-se bastante

difícil de concluir em tempo útil pois a rede de transmissão é bastasnte vasta. Por isso,

podemos tirar partido da transição para dados LiDAR e utilizar aprendizagem profunda

para automatizar as inspeções à rede.

Aprendizagem profunda é um campo recente e em grande desenvolvimento, sendo

aplicado a vários problemas do nosso quotidiano e facilmente atinge um desempenho

superior ao do ser humano, como em reconhecimento de imagens, geração de voz, entre

outros. Com o desenvolvimento de sensores LiDAR acessíveis, o uso de aprendizagem

profunda em dados 3D rapidamente se desenvolveu, apresentando várias metodologias

novas todos os dias que respondem a problemas complexos, como deteção de objetos

3D. No entanto, modelos do estado da arte são incrivelmente complexos e compostos

por milhões de parâmetros e demoram várias semanas, senão meses, a treinar em GPU

potentes, o que dificulta a sua utilização em empresas tradicionais, como a EDP.

Portanto, nós exploramos uma nova teoria matemática que nos permite definir ope-

radores específicos que incorporaram conhecimento sobre o nosso problema. Estes ope-

radores são integrados num modelo de aprendizagem prounda, designado SCENE-Net,

que deteta torres de suporte de linhas de transmissão em nuvens de pontos. SCENE-Net

permite a interpretação dos seus resultados, aspeto que não é possível com modelos con-

vencionais, demonstra um treino eficiente de 85 minutos e tempo de inferência de 20

milissegundos num computador tradicional. O nosso modelo contém apenas 11 parâme-

tros geométricos, como a altura de um cilindro, e demonstra um ganho de Precisão de

24% quando comparado com uma CNN com 2190 parâmetros.
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1

Introduction

1.1 Problem Description and Motivation

Nowadays, the world is embracing data-driven approaches to most real-life problems,

information is collected in large quantities on a variety of subjects, from shopping habits

to head CT scans, in order to unravel hidden patterns using statistical methods and gain

valuable insight into a group of interest. For example, by examining the shopping habits

of a large demographic, they can be correlated to other characteristics, such as age and

gender, to improve the recommendation of items for people in similar social groups.

Alternatively, numerous labeled head CT scans can power a statistical model to find a

set of characteristics that describe the existence of tumors. The majority of traditional

Machine Learning (ML) methods are black boxes. That is, they cannot provide human-

understandable reasoning for their predictions. However, the widespread application

of Machine Learning to real-world problems, such as the ones above described, entails

responsible and comprehensible decision-making so that practitioners in other disciplines

can clearly understand these models and safely apply them to their data. For example,

doctors require a trustworthy explanation as to why an ML model detects a tumor in a CT

scan, otherwise these statistical methods cannot be safely employed in critical situations.

In general, state-of-the-art Deep Learning (DL) models are problem-specific and have

particular hardware requirements to deploy them. The computing power and hardware

available in traditional companies, like utilities, are not designed for large Deep Learning

pipelines. That is, a resource-efficient application of DL models in traditional companies

is limited because of low expertise in Machine Learning and computational availability,

despite the deep in-house knowledge in their specific fields.

Transmission System Operators (TSOs) guarantee the transportation of electrical en-

ergy from generating sites, such as power plants, to electrical substations, which are

in charge of transforming between voltage levels to then supply energy to the end-

customer [1]. TSOs facilitate and maintain an electrical grid in order to interconnect

both ends of the transmission system. The main purpose of the grid is to efficiently trans-

mit large amounts of energy through long distances by the means of overhead power lines,
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CHAPTER 1. INTRODUCTION

which consist of electrical cables suspended by towers or poles. TSOs have the mission

to inspect and maintain the electrical grid for security purposes, namely, they need to

assess the risk of contact between the power grid and the environment in order to prevent

defects, power outages, and even forest fires. Electrical grids spread over countries and

even continents, thus making careful inspection an important and challenging problem.

In Portugal, such tasks are carried out by EDP partnered with Labelec. They heavily

rely on a combination of on-the-ground staff and manned low-flying helicopters that

examine the power grid with hand-ported devices or the naked eye. These methods are

expensive, inefficient, and demanding for the staff. Recently, they adopted inspections

based on Light Detection And Ranging (LiDAR) to expedite this process and increase its

precision [2]. Specifically, LiDAR sensors are equipped on Unmanned Aerial Vehicles

(UAVs) to scan the power grid from a Bird’s-eye view (BEV) perspective and capture a 3D

point cloud representation of the environment. Even though this approach is faster and

cheaper since it offers a higher degree of automation and less frequent on-site surveys, the

captured point clouds are quite extensive and mostly composed of arboreal areas, with

the electrical grid making up a small percentage of the overall data. As a result, the point

cloud data must be carefully processed and analyzed by maintenance personnel. First,

the 3D environments are sectioned into strips of land that encompass the electrical grid.

Then, the resulting 3D scenes are manually labeled to distinguish relevant elements, such

as the ground, trees, power lines, and towers, from those that are not, i.e., noise, water,

dust particles, among others. This is an extremely repetitive task with low added-value

from the specialists that must perform it.

Conveniently, the transition to high-precision point cloud data using LiDAR allows

us to take advantage of DL methods to assist power grid inspections. In this work, we

propose a novel Deep Learning framework that transparently detects power line support-

ing towers. These metal structures sustain the energy distribution system and serve as

a point of reference for the location of power lines. This way, the electrical grid can be

automatically extracted from large-scale 3D point clouds, which considerably speeds us

the inspection time for TSOs. In addition, our proposal allows us to measure the risk

of contact between towers and the revolving environment, setting up a strong basis for

trustworthy ML-based power grid inspections. To bootstrap this work, EDP New and

Labelec provided us with a labeled dataset of 40 000 Km of rural and forest terrain, and

the Transmission System, named TS40K.

1.2 Deep Learning on 3D Point Clouds

With the rapid growth in precision and affordability of 3D mapping technologies, 3D data

can be easily produced with great detail using 3D sensors, such as LiDAR [3] and RGB-D

cameras [4, 5]. By representing data in three dimensions, environments scanned by these

sensors are more accurate than 2D images in terms of geometry, scale, and shape [6, 7].

The addition of the third dimension allows us to fully represent objects as they exist in

2



1.2. DEEP LEARNING ON 3D POINT CLOUDS

real life, that is, in terms of width, height, and depth, whereas 2D representations render

objects to flat figures without depth perception. The loss of information between the true

form of an object and its 2D projection makes it challenging to measure relations with

the environment, such as the distance to other objects and their true sizes. In 3D space,

these relations occur naturally since objects are represented with their original dimen-

sions. Point clouds are the preferred medium to represent 3D environments for most

applications, such as autonomous driving and robotics. They are sets of data points in

space, each defined by at least a set of Cartesian coordinates (x,y,z). This way, they offer

a compact and fine-detailed depiction of 3D data. The affordable access to high-precision

3D sensors fuelled the rise of Deep Learning applications to 3D point clouds. By inte-

grating these sensors into day-to-day devices, such as vehicles, high-quality datasets were

quickly developed and made available to the public, such as ScanObjectNN [8], Seman-

tic3D [9] and the KITTI Vision Benchmark Suite [10, 11]. Consequently, the research

on Deep Learning for 3D point clouds expanded into a diverse field, having numerous

proposals addressing different problems involving 3D data.

A plausible approach to detecting supporting towers is the use of 3D semantic seg-

mentation or 3D object detection methodologies. State-of-the-art literature for both alter-

natives can be divided into three groups: multi-view-based, voxel-based, and point-based

methods.

Multi-view-based methods project point clouds onto 2D planes [12, 13] in order to

employ classic Deep Learning strategies for 2D data, such as 2D convolutions. These

approaches usually introduce information loss and decrease in accuracy in tasks such as

segmentation, because of botched reconstructions of 3D data from 2D maps.

Voxel-based methods [14–16] endow point clouds with structure in order to use global

feature descriptors, such as 3D convolutions. That is, certain operations widely used in

Deep Learning, like the convolution operator, requires structure from the input data to

be applied. Since the lack of structure of raw point clouds impedes these operators, a

grid of voxels is used to discretize point clouds. A voxel grid can be thought of as a 3D

image frame and a voxel is analogous to a 3D pixel that contains and represents a subset

of points from the input point cloud. However, these methods are restricted in resolution

due to the cubic growth of computational complexity and memory footprint. In other

words, higher resolution voxel grids (i.e., the number of voxels used to discretize the

point cloud) provide a more fine-grained representation of 3D scenes, which ultimately

leads to more accurate results in real-life scenarios. But it also causes a cubic increase

in memory consumption and computational overhead. Conversely, low-resolution voxel

grids entail a loss of information when discretizing scene elements, their form is disrupted

and heavily pixelized.

Point-based methods take raw point clouds directly as input [17–24]. These strategies

have to resort to costly neighbor searching techniques to extract local information, which

sometimes leads to global information loss. Moreover, these methods have progressively

increased their complexity to a remarkable degree in order to, simultaneously, address
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the challenges incurred from the use of raw point clouds (e.g., permutation invariance

and heterogeneous density) and yield good performance in real-life scenarios, such as

autonomous driving.

In general, state-of-the-art methods for 3D semantic segmentation and object detec-

tion are black-box models with millions of trainable parameters, non-trivial amounts of

training times, and specific hardware requirements. Additionally, most proposals are

tailored to boost performance in urban settings, such as Semantic3D [9] and the KITTI

dataset [11], where data are sparse, objects are often occluded and may demonstrate

anisotropy w.r.t. density.

1.3 Deep Learning on Power Grid Inspections

State-of-the-art methods for power grid inspection automation usually focus on high-

voltage power line segmentation. That is, most proposals center their approach in detect-

ing power lines of a transmission grid and extracting them from the 3D environment [25–

27]. Additionally, these methods try to circumvent the difficulties of working with 3D

data by using 2D projections, which are known to introduce information loss and de-

crease accuracy. Instead of detecting power lines, our proposal focuses on the towers

that support them. These structures are also subject to careful inspections and provide a

reliable reference location for the power lines they support. It is arguably more difficult

to derive an accurate segmentation of supporting towers from the location of power lines.

In addition, we take into account raw 3D scenes without the need for 2D projections, this

allows us to accurately detect supporting towers without information loss.

1.4 SCENE-Net: Signature geometriC Equivariant

Non-Expansive operator Network

Our approach to supporting tower detection is built upon a novel Machine Learning

paradigm based on group equivariant non-expansive operators (GENEO) [28, 29]. These

operators provide us a measure of the world, just as Convolutional Neural Network

(CNN) kernels learn essential features to, for instance, recognize objects. With GENEO,

ML agents are formally described as a set of operators acting on the input data, we can

think of them as observers that analyze data. They transform it into higher-level represen-

tations while respecting some set of properties. An appropriate observer transforms data

while preserving a pre-defined set of meaningful features. For instance, the geometry of

supporting towers can be fully described as a set of properties. This technique effectively

let us define prior knowledge and embed it into a machine learning model as, for example,

convolutional kernels.

In this work, we introduce SCENE-Net, an intrinsically interpretable 3D point cloud

semantic segmentation framework identifying signature shapes with GENEOs that allow
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1.4. SCENE-NET: SIGNATURE GEOMETRIC EQUIVARIANT NON-EXPANSIVE

OPERATOR NETWORK

(a) TS40K Sample (b) SCENE-Net (c) Baseline CNN

Figure 1.1: Learning signature shapes for power line supporting tower detection. For
the TS40K sample shown in (a), SCENE-Net accurately detects the body of the power
grid tower (b), while a comparable CNN has a large false positive area in the vegetation
(c). Our model is interpretable with 11 trainable geometric parameters whereas the CNN
has a total of 2190 parameters. The ground around the towers and the lines above are
mislabeled as towers.

for fast training even with small data, and robustness to labeling noise and strong im-

balance. GENEOs act as meaningful observers of properties of the semantic classes we

aim to identify in the data. Here, we identify geometric properties of electric grid sup-

porting towers, such as verticality. Our model is a sweet spot between fully data-driven

(CNNs) and fully model-driven (e.g., template matching) solutions. To summarize, our

contributions are:

• We present TS40K, a new 3D point cloud dataset covering 40 000 Km of non-urban

terrain, with more than 9000 million 3D points (Section 5.1);

• SCENE-Net is the first intrinsically interpretable model for 3D semantic segmenta-

tion on large-scale landscapes, including non-urban environments (Section 4.3);

• SCENE-Net is intrinsically interpretable and robust under noisy labels (Section 5.2.2);

• The architecture of SCENE-Net has less trainable parameters than traditional meth-

ods, and, thus, fast training times while achieving effective results (Section 5.2.6);

• As GENEOs are continuous observer functions, SCENE-Net is independent of input

and kernel voxelized shapes. I.e., it can change the kernel shape after training. The

kernel size used in SCENE-Net is fine-tuned after training to boost its performance

(Section 5.2.7).
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1.5 Document Structure

First, we present the related work to our dissertation in Chapter 2, including an in-

depth explanation of 3D data representation techniques and existing DL models, we

also discuss existing power grid inspection strategies, the concept of explainability and

interpretability, and how our proposal goes a step beyond these notions. In Chapter 3,

we introduce group equivariant non-expansive operators along with the published work

around it. In Chapter 4, we describe in detail our proposed power line supporting tower

detection framework. Then, we detail the TS40K dataset used in our experiments, from its

properties to its pre-processing stage in Section 5.1. Chapter 5 discusses all the performed

experiments during this dissertation along with key decision-making that culminated in

our final proposal. Lastly, we present the conclusions of our work in Chapter 6, with an

objective discussion and interesting ideas for future work in this field.
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2

Related Work

In this chapter, we examine literature pertinent to our dissertation. First, we examine

research work regarding Deep Learning models on 3D point clouds, from the properties

of 3D data to state-of-the-art methods in 3D semantic segmentation and 3D object detec-

tion. We present a detailed analysis of these methodologies concerning the detection of

supporting towers. Then, we describe the current techniques for power grid inspections

and compare them to our proposal. Lastly, we introduce the concepts of explainability

and interpretability, along with state-of-the-art models that follow these notions, and

compare them to our proposed SCENE-Net.

2.1 Deep Learning on 3D Point Clouds

In this section, we examine the state-of-the-art literature regarding 3D point cloud learn-

ing. First, we introduce the characteristics and challenges of working with 3D data. Next,

we examine several state-of-the-art methods that respond to 3D segmentation and 3D

object detection. Seeing as traditional companies, such as EDP, do not have the resources

to employ these methods, we do not benchmark our proposal against them. Then, we

present useful datasets used as benchmarks by researchers, pertinent evaluation metrics,

and show the performance of the introduced models on these benchmarks. Lastly, we

discuss the benefits and drawbacks of 3D semantic segmentation and 3D object detection

with respect to the detection of supporting towers.

2.1.1 Working with 3D Point Clouds

Points clouds are data structures used to represent 3D spaces, they are sets of 3D points

represented by (x,y,z) coordinates and may include additional information in their def-

inition, such as RGB values, normal vectors, among others. Thus, 3D point clouds are

generally denoted as P ∈ RN×(3+d), where N is the number of points and 3 + d is the

cardinality of spatial coordinates plus any point-wise features, such as color.

High-precision sensors capable of scanning environments and storing them in a point

cloud format, such as LiDAR and mobile phones with depth cameras [4, 5], became more
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affordable, available, and easily integrated into day-to-day devices, such as vehicles [3].

This allowed for the quick acquisition of 3D data from different environments, fueling

the development of several publicly available datasets that today are used as important

benchmarks in the area, namely ScanObjectNN [8], SensatUrban [30], the KITTI Vision

Benchmark Suite [10, 11], among others. These are composed of numerous point clouds

with millions of points that represent 3D scenes where urban objects of interest are la-

beled, such as cars and pedestrians. With well-founded datasets, industries such as

autonomous driving, robotics, and augmented reality, quickly began to investigate the

application of Deep Learning to 3D point clouds.

Although point clouds provide a compact and fine-detailed depiction of 3D data,

processing raw point clouds proved to be a challenging task for classic Machine Learning

strategies due to the properties of point sets in R3+d :

Heterogeneous Density: Point clouds may not be evenly sampled across different

regions of a scene, meaning that an object can have both dense and sparse point sec-

tions. Figure 2.1 (a) shows this property, the car is composed of both dense and sparse

regions. Such an effect is especially common in datasets captured from a vehicle point-of-

view. Deep Learning models based on neighbor searching techniques, such as k-Nearest

Neighbors, fail to accurately capture local features due to this trait.

Unstructured Nature: Contrary to images, where a 2D grid structure relates each

pixel to its neighbors, point clouds are not organized in a regular grid. Each point is

scanned independently of the other and there is no fixed distance between points as there

is for pixels. Adjacent to this, points are not isolated structures, they gain meaning in a 3D

scene when they are part of a subset of neighboring points. So, it is important to capture

nearby structures and their interactions. This property is illustrated in Figure 2.1 (b),

most mathematical operators used in Machine Learning require structured data, this

is the case for the convolution operator for example. Without structure, state-of-the-art

methods are forced to achieve a global feature descriptor by the means of local aggregation

techniques, which may lead to information loss due to heterogeneous density and object

occlusion.

Permutation Invariance: Point clouds are independent of the order in which 3D

points are stored, as it does not change the represented scene. In addition, point clouds

are invariant under certain planar transformations. For instance, rotating and translating

point clouds does not change the elements in 3D scenes. Figure 2.1 (c) explains this prop-

erty, the two presented orders are considered equivalent since they represent the same

points, and therefore, the same 3D setting. Deep Learning methods often correlate the

order of the input to the intended output. For example, the order in which image pixels

are presented to a CNN is essential for it to detect, for instance, the written digit in the

provided image due to the use of convolutions. However, the invariance to permutations

of 3D point clouds clashes with this behavior. Thus, state-of-the-art models often need to

employ additional strategies to mitigate this problem.
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2.1. DEEP LEARNING ON 3D POINT CLOUDS

Figure 2.1: Properties of 3D Point Clouds [31].

2.1.2 Structured-Based Learning

Early Deep Learning proposals try to overcome the challenges associated with 3D point

clouds by converting them into structured representations. These can be broadly divided

into two categories, voxel-based and multi-view-based approaches.

(a) Point cloud voxelized with a 323 voxel grid (b) Multi-view projection of a point cloud to 2D
images

Figure 2.2: Structured-based learning techniques. [31].

2.1.2.1 Multi-View Based Methods

Convolution is a well-studied operation in Machine Learning and signal processing. It

is the nucleus of numerous ML models, such as CNNs for image classification. With

the recent wide-spread use of 3D data in numerous fields, one of the first introduced

methodologies was projecting data into multiple two-dimensional views, as shown in

Figure 2.2b. This way, traditional 2D convolutions can be used to extract view-wise

features, which are then merged into a representation of the original 3D shape.

When compared to volumetric methods, multi-view approaches [12, 13, 32–34] achieve

dominating performance on shape classification and retrieval tasks. However, it is dif-

ficult to extend them to scene understanding tasks, such as 3D semantic segmentation

and 3D object detection [35]. By disregarding the depth dimension, multi-view-based

methods cannot accurately reconstruct the original 3D space, which ultimately leads to a

poor performance in such tasks.
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2.1.2.2 Voxel-Based Methods

The convolution of 2D images is possible because they have structure, they are organized

in N ×M matrices, where N is the number of vertical pixels, and M is the count of

horizontal pixels, so the values inside each coordinate (xi , yj ) correspond to the intensity

of a pixel. Voxel-based strategies [14–16, 36, 37] encompass raw 3D point clouds with a

3D voxel grid with sizeN ×M×K , where K is the cardinality of the depth dimension. This

way, they endow structure to 3D data in order to obtain global feature descriptors, namely

by using 3D convolutions with learned kernels, while preserving the three dimensions of

the original data.

Figure 2.2a shows the voxelization of a 3D point cloud containing an airplane in a 323

voxel grid. This structure is a three-dimensional tensor where each voxel at coordinate

(xi , yj , zk) contains a subset of 3D points from the original 3D data. A representation

function is subsequently applied to show the presence or density of 3D points in each

voxel. This is analogous to assigning real values to pixels in a grayscale image, measuring

the whiteness of each pixel. In voxel grids, voxels are usually given a value of one if

they contain any 3D points, and zero otherwise. As depicted in the airplane voxelization,

this technique reduces the sharpness of the objects discretized, which ultimately leads

to information loss for low-resolution voxel grids. Thus, higher voxel grid resolutions

are preferred, similarly to how higher resolution images are preferred to obtain better

accuracy in, for instance, object classification. However, volumetric representations suffer

from high memory consumption due to voxel sparsity, which leads to great computation

overheads when performing convolutions of voxel grids [31]. Moreover, 3D convolutions

are generally more computationally expensive than 2D convolutions. In conclusion, voxel-

based methods have a clear trade-off between resolution and performance. Low resolution

shows efficient results but leads to information loss and a decrease in accuracy. In turn,

high resolution sharply discretize 3D objects but entail a large memory footprint and

slow training times [31, 35].

To overcome the challenges of voxelization, references [38–40] propose octree-based

representations in order to reduce the impact of unoccupied voxels and increase the

feasible resolution of the voxel grid (reaching 2563 voxels). Essentially, to construct an

octree representation of a point cloud, the 3D space is first partitioned into 8 voxels of

the same size, and then each non-empty voxel is recursively partitioned in the same way

until the maximum depth level is reached. This way, the voxel grid represents occupied

voxels in much more detail and minimizes the impact of processing empty voxels. Withal,

state-of-the-art point-based methods show better performance with more efficient use of

computational resources.

2.1.3 Learning from Raw Point Clouds: Point-Based Methods

Despite the challenges of working with raw point clouds, Deep Learning on 3D data began

to receive a lot of attention after the pioneering work of PointNet [17] and PointNet++ [18],
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which directly take point clouds as input and report state-of-the-art performance for 3D

classification and 3D segmentation tasks. Consequently, point-based methods became

increasingly popular as they do not introduce any information loss or additional over-

head in preprocessing point clouds, unlike volumetric and multi-view-based approaches.

Nowadays, these methods dominate the field of point cloud learning in terms of research

and achieved performance [35].

We can further divide these approaches according to the techniques they employ,

for our work we are mostly interested in pointwise MultiLayer Perceptron (MLP) meth-

ods and convolution-based methods. In this subsection, we will review state-of-the-art

techniques that laid the groundwork for the vanguard research being developed today.

2.1.3.1 PointNet

PointNet [17] is a deep learning framework that directly consumes unordered point sets

as input and performs 3D classification and 3D segmentation. For the former, the network

will output k scores for all k candidate classes, whereas, for the latter, it will output n×m
scores, for each of the n points and each of the m semantic sub-categories. Essentially,

this means that each point will have a score representing how much it belongs to each of

the m segments.

Figure 2.3: PointNet architecture [17].

Qi et al. [17] define three key modules that grant PointNet with its performance:

A symmetry function that aggregates information from all n points, a local and global

information combination structure, and two joint alignment networks that align the input

points with the point features.

Symmetry Function for Unordered Input: As previously discussed, point sets demon-

strate permutation invariance, meaning that they are independent of the order in which

the points are stored. However, neural networks naturally relate the order of the input

with its desired output, which poses a problem. To solve this, PointNet employs a series

of shared multilayer perceptrons (MLPs) to extract s features from the 3D cloud. It then

applies a symmetry function, specifically max pooling, to aggregate the results from all n
points. The output of this function is a new vector of size s ≤ n that serves as a global de-

scriptor of the input point cloud. This answers the permutation invariance issue because
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the global descriptor will be the same for any order in which the n points are organized.

Local and Global Information Aggregation: For 3D segmentation, PointNet concatenates

the result from an MLP layer (representing local information about each point) with the

result of the symmetric functions, that is, the global descriptor. The authors state that this

technique allows PointNet to predict per-point quantities that rely on both local geometry

and global semantics, which warrants its performance in shape part segmentation and

scene segmentation. However, by associating each individual point to the global geometry,

this technique fails to correlate local points with each other and, by extension, capture

local structure. This problem is addressed in the subsequent work of Qi et al. [18],

PointNet++.

Joint Alignment Network: Besides permutation, point clouds are also invariant to geo-

metric transformations, such as translations and rotations. This means that their intrinsic

meaning does not change if they were to undergo one of these transformations. Taking

this into account, PointNet employs T-Nets across its architecture, which is a simple

network that predicts an affine transformation matrix and directly applies it to the coor-

dinates of the input points. This causes the network to learn how to classify or segment

point clouds regardless of orientation or size, for instance.

2.1.3.2 PointNet++

Figure 2.4: Illustration of the architecture of PointNet++ [18].

PointNet++ [18] is a neural network based on PointNet [17] with the goal of answering

some of its demonstrated issues, such as the inability to capture local structure. Since

point clouds are defined in a Euclidean space, the distance metric induces local neigh-

borhoods in the point cloud that may exhibit different properties. For instance, density

may not be uniform across different subsections of the point cloud. The ability to exploit

the local structure has proven to be important for CNNs, these networks capture features

from the input at increasingly larger scales, so the deeper layers of a CNN have large

receptive fields with local patterns abstracted by previous layers. This allows for better

generalizability to unseen cases.
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To this end, PointNet++ processes a set of points in a hierarchical fashion: First, the

point set is sampled using iterative farthest point sampling algorithm in order to increase

the coverage of the entire point set (the sampled points define the centroids for the next

stage). Second, points are aggregated into groups around each centroid following the Ball

query algorithm, which finds all points within a certain radius of the centroid. Finally, a

mini-PointNet processes each group individually in order to learn the local patterns of

each group. This process, sampling, grouping, and PointNet, defines an abstraction set.

PointNet++ stacks multiple of these sets in order to increasingly augment its receptive

field and better extrapolate global features from the local patterns detected in previous

sets.

2.1.3.3 VoxelNet

(a) VoxelNet RPN architecture (b) VoxelNet Qualitative results
projected on RGB images

Figure 2.5: VoxelNet RPN Architecture and Qualitative Results [37].

VoxelNet [37] is an end-to-end trainable deep neural network for point cloud 3D

object detection that operates directly on the 3D input data. Its output corresponds to a

set of bounding boxes in the original point cloud that contain the requested objects.

The proposed architecture consists of three blocks: feature learning network, convo-

lution middle layers, and region proposal network.

Feature Learning Network: This first step transforms the point cloud into a volumetric

representation and computes a feature vector for each of the voxels in order to aggregate

their local information. This is performed over several stages, such as voxel partition

and random sampling inside each voxel to increase both generalization and efficiency.

However, one of the main contributions of this research is the design of a novel voxel

feature encoding (VFE) layer: it extracts both point-wise and local features from each

voxel, creating a high-level representation of the data. By chaining several VFE layers,

the feature learning network is able to extract more complex and useful features for the

following steps.

Convolutional Middle Layers: This block applies 3D convolutions on the produced

volume to further aggregate the voxel-wise features within a progressively expanding

receptive field, adding more context to the shape descriptor.

13



CHAPTER 2. RELATED WORK

Region Proposal Network (RPN): The last block takes the volume from the previous

step as input and produces several bounding boxes proposals that predict where objects

of interest are located in the original 3D scene. Specifically, the output of the RPN is a

probability score map and a regression map. Let us analyze the proposed loss function

to better understand these elements, it is composed of two terms: (1) the regression term

enables the network to learn the bounding boxes around the objects in space; (2) the

classification term tells the network if, in some space, there is or not an object.

The regression term approximates a residual vector that represents anchors (bounding

box candidates) and is composed of 7 regression targets (the center (3), its dimensions

(3) and rotation angle w.r.t. the x-axis (1)). We divide anchors as positive or negative

predictions, following that an anchor is positive if it has an Intersection over Union (IoU),

also known as the Jaccard Index, with the ground truth of at least 0.6 (i.e., IoU = |P∩GT ||P∪GT | ≥
0.6, where P is the anchor prediction, GT is the ground truth, and |A| the cardinality of

the set A). In other words, the model is adjusting the positive anchors to emulate the

structure of the ground truth bounding boxes.

Regarding the classification term, the network performs a standard binary cross en-

tropy throughout the 3D scene, representing where relevant objects are located. During

training, the authors employ a different model of this architecture for each class of inter-

est in the dataset. Therefore, in the RPN output layer, the probability score map indicates

where objects are located in the original 3D space and the regression map defines bound-

ing boxes encasing each of them.

2.1.4 3D Segmentation

The goal of 3D segmentation on point clouds is to separate the data into subsets accord-

ing to some relation of the points. This relation can be semantic, instance-based, or

part-whole. Semantic segmentation segregates the point cloud data according to the

contextual meaning of the points. In our problem, this type of segmentation would tell

us, for instance, which segments of the point cloud are part of the ground, the wires, and

towers, among others. Whereas instance segmentation discriminates each individual in-

stance of each class, following the example, the tower group would be further segmented

into various groups, each representing one tower. Part segmentation, on the other hand,

divides an object into its composing parts, for example, a chair into its arms, legs, and

back. Although interesting, part-whole segmentation is not relevant to our problem.

Taking this into account, instance segmentation seems to align best with the main

objective of this dissertation, segmenting each power line supporting tower in 3D point

clouds. However, this kind of segmentation is more challenging than semantic segmen-

tation since it requires more accurate inference over the points. Additionally, most pro-

posed methods are employed on indoor point clouds, such as classrooms. On the other

hand, semantic segmentation is widely used in outdoor datasets and is easier to compute.

Moreover, we can take advantage of the disposition of towers in the point cloud: they do
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not intersect and are relatively far from each other. Consequently, we can use a clustering

algorithm, such as DBSCAN [41], to group the different towers together. This hypothesis

has been tested during the exploratory data analysis stage of our work in the TS40K data,

and demonstrated good results. The towers were perfectly segmented after tuning the

parameters of the clustering algorithm (further details are available in Section 5.1.2).

Therefore, we believe that 3D semantic segmentation is the most suitable methodology

to explore out of the three possibilities.

2.1.4.1 KPConv

Figure 2.6: KPConv illustrated on 2D points. Input points with a constant scalar feature
(in grey) are convolved through a KPConv that is defined by a set of kernel points (in
black) with filter weights on each point [20].

KPConv [20] is a continuous point convolution-based architecture that is mainly used

for classification or segmentation problems. It introduces a novel point convolution oper-

ator, named Kernel Point Convolution (KPConv), illustrated in Figure 2.6. This operator

is defined by a set of kernel points, each containing a kernel weight, that define both a

3D filter and an area of application in the 3D space where the convolution operation will

take place. Specifically, KPConv is formulated as a point convolution inspired by image

convolution. In images, the indices of pixels define their location and the associated RGB

values are considered the features where the kernel will be applied. In 3 dimensions, we

can see the point coordinates (x,y,z) as their location and any additional features F, such

as color, to be the information considered by the kernel points. The convolution of F by

the kernel g at a cloud point p is defined as a sphere with radius r and center c where g

is applied to the points that fall under the scope of said sphere. The function g defines

the relation between the cloud points and kernel points through a correlation function h,

which outputs a higher result the closer to points are.

Taking this into account, the positions of the kernel points are crucial for the perfor-

mance of this architecture. Thomas et al. [20] present two ways of defining their position:

through a rigid or deformable perspective. In the former, the disposition of the points is
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solved by an optimization problem where points are constrained to stay away from each

other, but to stay within the bounds of the sphere and one of them is forced to be at the

center. The latter however is not as straightforward, the deformable KPConv architec-

ture is more flexible than its rigid counterpart because it learns the best disposition of

the kernel points. Specifically, it learns a set of shifts for every convolution location by

introducing fitting and repulsive regularization terms in the loss function used to train the

model.

2.1.4.2 RandLA-Net

RandLA-Net [21] introduces a computationally and memory-efficient network for large-

scale point cloud segmentation.

Although state-of-the-art methods present remarkable all-around results in this field,

they are often limited by computationally expensive operations, verbose pre-processing

or are only able to work with small subsets of points from the point cloud, forcing the

data to be divided into segments which might cause discrepancies in the final semantic

segmentation of the point cloud.

Figure 2.7: Modules used in RandLA-Net [21].

In order to overcome these challenges, the key approach of Hu et al. [21] is to use

random point sampling instead of more complex point selection heuristics. However,

random sampling might discard important features of the point cloud. To answer this

problem, the authors introduce a novel local feature aggregation module to preserve the

geometric details for each 3D point.

Local Feature Aggregator (LFA) takes advantage of 3 modules:

1. Local Spatial Encoding (LocSE) takes the k-nearest neighbors (k-NNs) of each point

x in the provided point cloud and concatenates its features with an encoding of

its relative position on the point cloud. This allows for the definition of the local

geometric structure of the neighboring points around x.
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2. Attentive Pooling: this neural unit is used to aggregate the set of neighboring features.

The use of max or mean pooling results in information loss, so it is discouraged.

Therefore, the authors take advantage of attentive pooling in order to automati-

cally learn the important local features. This is performed by computing attention

scores through a shared MLP for each feature of each neighboring point. Then the

most important features are selected by a weighted summation, culminating in an

informative vector that describes the geometric patterns and features where x is

located.

3. Dilated Residual Block is a stack of multiple LocSE and Attentive Pooling units with

skip connections. A LocSE/Attentive Pooling operation results in x observing K

neighboring points, then, by repeating this operation, its neighborhood increases

to K2 points. Consequently, the receptive field of each point is significantly dilated,

which helps to preserve most of the geometric details of the 3D scene, compensating

for the information loss during the random sampling stage.

The architecture of RandLa-Net follows a 3D encoder-decoder style with skip connec-

tions. The encoding is performed by LFA layers followed by random sampling, while the

decoder is done by up-sampling the data through shared MLPs.

RandLA-Net was applied to the main benchmarks in point cloud learning, achieving

performance that surpasses the state-of-the-art approaches. In terms of efficiency, the

network can process 1 million points in 185 seconds with 1.24 million parameters. For

comparison, KPConv [20] takes almost 4 times the time that RandLA-Net does to pro-

cess 0.5 million points with 14.9 million parameters. When compared to SPG [42], this

approach is 200x faster. Further details on this are available in Section 2.1.8.

2.1.5 3D Object Detection

3D object detection is quickly growing as an important field of study with numerous

real-life applications, such as autonomous navigation and virtual reality. These methods

take a 3D scene as input and output 3D bounding boxes encasing objects of interest.

A bounding box, as the name suggests, delineates the limits of the space occupied by

an object as illustrated in Figure 2.5b. Traditionally, they are defined by a center and a

minimum and maximum 3D point that define, respectively, the lowest and highest corner

of the box. For instance, 3D object detection is useful in autonomous driving scenarios.

By enclosing scene elements of interest, such as pedestrians and cars, in bounding boxes,

the vehicle can better assert the risk of collision with these objects and avoid accidents.

Objects are more accurately described in three dimensions than with images, where

they are subject to perspectives, occlusion, color, and lighting. However, unlike images,

LiDAR point clouds are usually sparse, lack structure, and point density can vary de-

pending on the range and relative position of the 3D sensors. In order to address these

challenges, existing 3D detection methods can be classified into two categories in terms of
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point cloud representation: grid-based and point-based methods. The former gives struc-

ture to point clouds in order to take advantage of 2D/3D convolutions, while the latter

directly extracts discriminative features from the raw point cloud. Generally, the dis-

cretization step of grid-based methods entails information loss that inevitably degrades

their accuracy. Point-based methods, on the other hand, achieve more precise object lo-

calization, but their complex architecture usually implies higher inference and training

times.

In the following subsections, we present two proposals that lead the 3D object detec-

tion vanguard for point clouds along with their results on important datasets, such as the

KITTI 3D detection benchmark [11].

2.1.5.1 PointRCNN

PointRCNN [19] is a neural network for 3D object detection from raw point clouds. The

proposed architecture is divided into two stages:

Figure 2.8: PointRCNN architecture [19].

The first stage is dedicated to generating 3D bounding boxes proposals in a bottom-

up scheme. It starts by taking the raw point cloud and learning a point-wise feature

vector by the means of a backbone network: PointNet++ [18]. Then, the network learns

a foreground point segmentation of the point cloud and, at the same time, generates 3D

region proposals for each of the foreground points.

In the second stage, the proposals from stage-1 are combined with point cloud data in

order to refine the proposed 3D bounding boxes. Specifically, the raw data points are used

to compute local spatial feature vectors, which then suffer a canonical transformation and

are combined with the semantic features and foreground masks computed in stage-1.

This allows the network to build a robust representation of the point cloud to then refine

the 3D bounding boxes from stage-1.
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PointRCNN achieves state-of-the-art performance on 3D object detection on the KITTI

dataset, one of the main benchmarks of the area. Surpassing VoxelNet [37] on detecting

cars and cyclists, whereas the latter still maintains the best performance in detecting

pedestrians. From ablation tests, the authors confirmed that the performance of the

model increases when using data augmentation. This implies scaling and rotating the

point cloud (around the z-axis) by some factor. They also augmented the data set by

randomly selecting non-overlapping ground truth boxes and insert them on the training

scenes.

2.1.5.2 PV-RCNN

Shi et al. [43] present a novel 3D object detection framework named PointVoxel-RCNN

(PV-RCNN) for accurate object detection from point clouds. Their proposal integrates

both 3D voxel-based convolutions to efficiently summarize the 3D scene and PointNet-

based abstraction sets to learn more discriminative point cloud features in order to refine

the region proposals. Therefore, we can divide the architecture of PV-RCNN in two main

stages:

Figure 2.9: PV-RCNN architecture [43].

Voxel-to-keypoint Scene Encoding via Voxel Set Abstraction: The point cloud is first

divided into small voxels in order to utilize a series of 3D sparse convolutions to gradually

convert the point clouds into feature volumes. Then, such volumes are converted into 2D

bird-view feature maps in order to generate the first 3D box proposals.

As it is, the second stage of the network cannot take place because the PointNet-based

abstraction sets expect the 3D input data to have the structure of a point cloud. To solve

this, PV-RCNN represents the entire 3D scene in a small number of keypoints, which

serve as a bridge between the 3D voxel CNN feature encoder and the proposal refinement

network. Then, the previously learned voxel-wise features volumes and the BEV feature

maps are summarized and embedded into such keypoints. This way, the produced 3D

scene preserves its structural information and is enriched by the features extracted from

3D CNNs.
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Keypoint-to-grid RoI Feature Abstraction for Proposal Refinement:

In this stage, the 3D proposals are refined by the means of RoI-grid pooling via set

abstraction. Essentially, the 3D proposals previously computed may have very different

shapes, but these need to be presented with a standard form in order to feed them to the

last section of the network (a set of fully connected layers followed by the output layers).

To this end, object detection algorithms use RoI (region of interest) pooling to trans-

form the region proposals to a standard shape. Many state-of-art methods simply average

all point-wise features within the region proposal. Shi et al. [43] on the other hand,

employ a novel method that captures much richer contextual information with flexible

receptive fields for each proposed region. Specifically, they first sample a number of grid

points within each 3D proposal and identify the neighboring keypoints for each of them.

Then, a PointNet block [17] is adopted to obtain a feature vector for each grid point by

aggregating the features of their respective keypoints neighbors.

Finally, all grid-point features from the same region are transformed into a fixed-size

vector using a two-layer MLP, resulting in a representation of the overall region proposal.

PV-RCNN performed very well when tested in the KITTI dataset for object detection

[11], outperforming all previous state-of-the-art methods with remarkable margins. The

network is further tested on the Waymo Open Dataset [44], achieving once again excellent

results and outperforming previous methods.

2.1.6 Benchmark Datasets

In this section, we present a number of popular benchmark datasets. They provide a

means to fairly compare diverse approaches to 3D learning tasks, such as 3D object

detection and 3D semantic segmentation.

• ScanNet [45]: is an indoor dataset developed by Stanford University. It contains

1513 scanned scenes, including 2.5 million RGB-D images from diverse indoor

environments. In the semantic segmentation task, the dataset provides ground

truth segments with 20 categories.

• Waymo Open Dataset [44]: contains high-resolution sensor data in a variety of con-

ditions. It focuses on 4 object classes: vehicles, pedestrians, cyclists and signs. It

contains almost 400 000 frames of high-quality LiDAR data and over 12 million 3D

bounding boxes for 3D object detection.

• KITTI [11]: is one of the most popular and regarded datasets for use in robotics

and autonomous navigation. It consists of numerous traffic scenarios recorded with

a variety of sensors, such as high-resolution cameras and 3D laser scanners. For

3D object detection, the dataset is usually divided according to object category and

difficulty of identifying it. The most used categories are cars, pedestrians and, cy-

clists, each with easy, moderate, and hard difficulty subsets. In total, it contains

20



2.1. DEEP LEARNING ON 3D POINT CLOUDS

7481 training and 7518 testing point clouds. When it comes to semantic segmenta-

tion, the SemanticKITTI [10] dataset is based on the object detection dataset with

semantic labeling included. It provides 23201 point clouds for training and 20351

for testing, with a total of 28 categories.

• Semantic3D [9] is a point cloud dataset of outdoor scenes with over 3 billion points.

It contains 15 training and 15 test scenes annotated with 8 class labels. This dataset

includes numerous and diverse urban scenes, such as churches, streets, railroad

tracks, villages, soccer fields,and castles. The provided point clouds are scanned

statically with state-of-the-art equipment and contain very fine details.

• SensatUrban [30] consists of large areas from three UK cities, covering more than

7km2 of landscape, in the form of 3D point clouds. It is composed of 2847 million

3D points, each one labeled with one out of 13 classes, such as ground, vegetation,

building, parking, car, and water, among others.

2.1.7 Evaluation metrics

Depending on the point cloud tasks at hand, different evaluation metrics have been

proposed to evaluate and compare proposed methods.

For 3D point cloud segmentation, Overall Accuracy (OA) and mean Intersection over
Union (mIoU) are the most used criterion for performance evaluation [9, 10]. OA is sim-

ply the average of correctly segmented objects; IoU (intersection over union) represents

how much the predicted segmentation intersects with the ground truth, mIoU is an av-

erage over the classes in the dataset. IoU may also be employed in some approaches to

distinguish the performance of the model in the different classes of the dataset.

For 3D object detection, Average Precision (AP) is the most frequently used criterion

along with mIoU. AP is defined as the area between the precision-recall curve, which

translates to the number of correctly identified objects, averaged across the classes in the

dataset.
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2.1.8 Results

Method
Speed
(fps)

Cars Pedestrians Cyclists
E M H E M H E M H

PointRCNN [19] 10.0 86.96 75.64 70.70 47.98 39.37 36.01 74.96 58.82 52.53
PV-RCNN [43] 12.5 90.25 81.43 76.82 - - - 78.60 63.71 57.65

Voxel R-CNN [46] - 90.9 81.62 77.06 - - - - - -
STRL + PV-RCNN [47] - 91.08 81.63 79.39 - - - - - -

SE-SSD [48] 25.0 91.49 82.54 77.15 - - - - - -
VoxelNet [37] 2.0 77.47 65.11 57.73 39.48 33.69 31.51 61.22 48.36 44.37

Table 2.1: Comparative 3D Object Detection Results on the KITTI Test 3D Detection
Benchmark. 3D bounding box IoU threshold is 0.7 for cars and 0.5 for pedestrians and cyclists.
The presented results refer to AP, with % omitted for simplicity. ‘E’, ‘M’, and ‘H’ represent
easy, moderate and hard classes of objects, respectively. The symbol ‘-’ means the results are
unavailable. Values compiled from papers [31, 35]

Method
Semantic3D ScanNet SensatUrban SemanticKITTI
OA mIoU mIoU OA mIoU mIoU

(AF)2-S3Net [49] - - - - - 70.8
Cylinder3D [22] - - - - - 68.9

KPConv[20] 74.6 - 68.6 93.20 64.5 58.8
RandLA-Net [21] 77.4 94.8 - 89.78 62.8 53.9
PointNet++ [18] - - 33.9 80.78 58.13 20.1

PointNet [17] - - - 84.30 52.53 14.6
O-CNN [40] - - 76.2 - - -
Mix3D [50] - - 78.1 - - -
FG-Net [51] 78.2 93.6 69.0 - - 63.1

Table 2.2: Comparative Semantic Segmentation Results on the Semantic3D [9], Scan-
Net [45], SensatUrban [30] and SemanticKITTI [10] datasets. The presented results refer to
OA and mIoU, with % omitted for simplicity. The symbol ‘-’ means the results are unavailable.
Values compiled from papers [31, 35]

2.1.9 3D Semantic Segmentation vs. 3D Object Detection

The goal of this dissertation is two-fold. First, we want to determine the coordinate

location of power line supporting towers in a given point cloud. This way, the extensive

3D scenes retrieved by the utilities company can be automatically sectioned, and the

maintenance personnel can focus on inspecting the power grid and other tasks with

higher added-value than manually sectioning point clouds. On a second note, we wish to

take the first step towards automatic risk assessment of collisions between a transmission

grid and its environment by detecting power line supporting towers. Thereafter, other

3D scene elements can be detected and, therefore, the distance between different objects

can be calculated.

Upon analyzing the state-of-the-art methodologies for learning from 3D point clouds,

3D object detection is the most direct approach. Methods receive a 3D scene as input and

produce multiple 3D bounding boxes that estimate where pertinent objects are located
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(a) 3D semantic segmentation. (b) 3D object detection.

Figure 2.10: Intended output of both Deep Learning methodologies on the TS40K dataset.

within the scene. In our case, this translates to developing a Deep Learning model that

predicts 3D bounding boxes encasing the numerous towers in the 3D input as illustrated

in Figure 2.10b.

Alternatively, 3D semantic segmentation models provide a different solution: they di-

vide the input data points into a number of groups according to their contextual meaning

within the 3D scene. For instance, all power line supporting towers in the point cloud

may form a single group representing tall vertical objects with several lines orthogonal

to them (i.e., the power lines). This idea can then be extended to other concepts in the

3D scene such as the ground, the power lines, the vegetation, and even noise can be

aggregated into their own semantic groups as shown in Figure 2.10a.

Taking this into account, semantic segmentation models offer two advantages when

compared to object detection:

First, they allow us to embed meaning into 3D scenes because, during training, models

learn how to aggregate points according to the defining attributes of each semantic group.

Following the previous example, points that compose a tower are segmented into a group

consisting of tall vertical objects, whereas ground points are aggregated in a different

semantic group seeing as they are not tall nor vertical. In contrast, object detection models

do not add any interpretation to the point cloud, they solely adjust their bounding box

predictions to the ground truth during training.

Secondly, segmentation methodologies are better suited for the following stages of

the project. Although object detection can precisely determine the coordinate location of

the supporting towers, it is more challenging to build a DL model that detects multiple

objects, such as power lines and the revolving flora. Additionally, the predicted bounding

boxes normally encase plenty of unoccupied space, which would hinder the distance

estimation between relevant objects. Conversely, 3D semantic segmentation methods

divide point clouds into several semantic groups by definition. Estimating the distance

between 3D scene elements is more accurate because segmentation models effectively

classify every single 3D point in a scene. Thus, this approach precisely outlines the
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structure of objects, instead of computing bounding boxes containing unoccupied space,

which leads to a better distance estimation between relevant objects.

Therefore, our model follows a 3D semantic segmentation framework, as well as the

state-of-the-art methods we focused on.

2.1.10 Analysis of SCENE-Net against State-of-the-Art Methods

State-of-the-art methods [18, 20, 22, 23, 42, 49] have progressively increased their com-

plexity to a remarkable degree in order to yield good performance in real-life scenarios,

such as autonomous driving [35]. These models have millions of trainable parameters,

a non-trivial amount of training time on powerful GPUs, and specific hardware require-

ments [21, 35, 42]. This is a consequence of having to fine-tune so many parameters

combined with the massive amounts of data that describe 3D point clouds, which need

to be sectioned, sampled, or even preprocessed by voxelization or multi-view methods.

Additionally, most proposals are tailored to boost performance in urban settings (e.g., Se-

mantic3D [9], SensatUrban [30] and SemanticKITTI [10]), where data are sparse, objects

are often occluded and may demonstrate anisotropy w.r.t. density.

Despite their deep in-house knowledge in their specific fields, traditional companies,

such as utilities, are limited when applying ML models to real-world point clouds because

of low expertise in data science, and low data and computational availability to deploy

state-of-the-art models.

With this in mind, we propose a novel DL method that is specifically designed to de-

tect supporting towers in 3D point clouds. SCENE-Net achieves effective results with fast

training times (85 minutes) on a regular laptop and shows an inference time of 20ms. To

do this, we take advantage of group equivariant non-expansive operators (GENEOs) [28],

a mathematical theory that allows us to greatly decrease the number of trainable param-

eters, as well as reduce the complexity of a DL model by embedding it with interesting

prior knowledge. Furthermore, GENEOs allow for the interpretability of the model, in the

sense that the contributions of the different parameters are comprehensible to the human

mind. Following the definition of interpretable ML provided by Lipton [52] described

in 2.3.2, our model is simulatable (i.e., understandable in a reasonable amount of time),

decomposable (i.e., the input, parameters, and calculations of SCENE-Net provide an

understanding of its inner workings), and its learning process is transparent (explained

in detail in Section 4.5).

Typical DL models tune their trainable parameters in order to recognize patterns and

extract them from the input data. Conversely, we define tailor-made kernels that encode

the relevant patterns that characterize objects of interest for the problem. For example,

let us consider that a conventional CNN is employed to detect towers in the point cloud

data. The CNN would be composed of multiple 3D convolutional layers that could ideally

learn to extract patterns such as verticality, invariance in regard to rotations along the

z-axis, cylindrical patterns, and orthogonal segments on higher z coordinates, among
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others. Alternatively, by devising a model that focuses purely on detecting towers, we

can encode the mentioned patterns as kernels directly into the model, instead of having

the network learn them. Additionally, it is not the kernel weights that are trained in

our model, since this would disrupt the prior knowledge they define, instead, the error is

backpropagated to the shape parameters of each operator, and the kernels are recomputed

after each forward pass. This results in a drastic decrease in trainable parameters when

compared to conventional DL models. In our case, SCENE-net exhibits a total of 11

trainable parameters, whereas a CNN with an identical design has 2190 parameters

(more details on this in Section 5.2.2).

Since there is no free lunch, the applicability of our model is restrained to a smaller

subset of problems (i.e., ones that imply detecting pole-like structures in 3D point clouds)

than traditional DL models. Nonetheless, the development of state-of-the-art methods

nowadays is mostly problem-oriented. For example, most advancements in 3D semantic

segmentation were tailored for autonomous navigation [21, 24, 35, 49]. On the other

hand, our approach guarantees the interpretability of its decisions, whereas conventional

methods do not. That is, the results given by SCENE-Net can be understood by humans

since we are the ones providing the patterns for the network to extract from the data.

This contrasts with the behavior of conventional models, which are often regarded as

black boxes because their decisions cannot be interpreted or explained. However, the

interpretability of SCENE-Net entails a knowledge engineering phase to develop the

necessary GENEO-kernels that describe properties of interest. In addition, the alteration

of the problem statement is not solved by simply retraining the model, GENEO-based

models may require more operators to describe different properties in the new problem.

For example, imagine that SCENE-Net also needed to detect the power lines, this requires

the development of more GENEO-kernels to encode the properties of these elements.

Contrastingly, black box models would only have to be retrained with a dataset that

encompasses the detection of power lines in the ground truth.

2.2 Power Line Segmentation from 3D Point Clouds

Generally, transmission line inspection is performed by on-site maintenance personnel

and manned helicopters that examine the power grid with portable devices or the naked

eye. These methods are very expensive, inefficient, extremely demanding and with poor

working conditions for the staff. Often, power grids are built on highly irregular terrains

in order to avoid urban areas, this handicaps on-site inspections, even with land vehicles.

Therefore, advancing to safe and efficient inspections is crucial for transmission system

operators. To this end, UAVs carrying high-precision LiDAR sensors are deployed to scan

the power grid and capture a 3D point cloud representation of the environment.

In this section, we will present three state-of-the-art methods that take advantage

of Machine Learning strategies to aid power line inspection, and compare them to our

proposal.
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2.2.1 Electric power line patrol operation based on vision and laser SLAM
fusion perception

With affordable high-level sensors, such as depth cameras and laser range finders, simul-

taneous localization and mapping (SLAM) is now used in multiple practical applications

in various fields. For example, SLAM is integrated in home robot vacuums so that they

can understand the layout of a room and clean it efficiently.

The work of Ding, Wang, and Wu [27] proposes the fusion of vision and laser SLAM

strategies in order to extract a semantic segmentation of power lines. A UAV is equipped

with a semantic SLAM algorithm that allows it to track the power line and avoid obstacles

while scanning the area. During this process, the UAV captures a large-scale LiDAR point

cloud of the scene (laser SLAM) and image data collected by a camera (vision SLAM).

The camera images are fed to a deep neural network, Deeplabv3+ [53], for 2D semantic

segmentation. Then, the point cloud data is projected to the image, so that the semantic

information can be transferred to the 3D scene.

The main goal of this pipeline is to improve the flight control design of UAVs. The

images with the power line semantic segmentation information are still subject to manual

inspection by the staff. Since the 2D point clouds are projected into two dimensions,

this method can be considered a multi-view-based approach to 3D semantic segmenta-

tion. However, the authors do not reconstruct the 3D scene from the 2D raster maps,

which means that distance estimation is performed with two-dimensional data. There-

fore, the accuracy of this prediction may be hindered by the loss of depth information

when compared to other methods.

Our proposal differs from this model, we do not focus on the automation of the flight

control of UAVs, instead, our goal is to provide a trustworthy semantic segmentation

framework of supporting towers to power grid inspectors. In addition, we do not use

2D projections, so our distance estimations are based on 3D data and, therefore, more

accurate.

2.2.2 Research on Point Cloud Power Line Segmentation and fitting
algorithm

Guo et al. [26] propose an algorithm for power line segmentation by combining xy-plane

projections and clustering algorithms on power grid point clouds. A power grid point

cloud only contains points pertaining to the transmission system. The authors first project

the data onto xy-plane with two models, one that assumes that power lines coincide

in the projection (i.e., power lines organized in a vertical arrangement), and another

that does not work on this assumption. The k-means clustering algorithm is applied to

determine the number of power lines and segment them. This power line segmentation

is then completed by following a straight line algorithm that fills the missing spots in

the power line 3D representation. Then, the model that assumes a coincident power line

projection on the xy-plane is used to determine the segmentation of power lines in a
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vertical arrangement. This is achieved by measuring the relationship of the z coordinate

values of each cluster.

The accuracy of this model is measured according to the number of power line 3D

points correctly extracted from the power grid point clouds. Our model measures its

performance according to Precision and Recall (see Section 5.2.4.1 for more details). In

comparison, our proposal works with complete 3D scenes, seeing as this is the type of

data that transmission system operators usually retrieve from LiDAR scans. Point clouds

containing just the power grid are not as useful for utility companies, since this type of

data does not allow them to assess the risk of contact with other scene elements. So, the

scope of application of this model is very limited.

2.2.3 Study on segmentation algorithm with missing point cloud in power
line

The work of Tao et al. [25] proposes a power line reconstruction algorithm that also

achieves power line point cloud segmentation. First, it performs a rough classification of

an input point cloud by creating a voxel grid representation of the 3D data and then uses

reasonable elevation thresholds to quickly segment non-power line points. From this step,

the ground and vegetation are practically segmented from the power line, intersection

line, and part of the supporting towers. Secondly, the resulting point cloud containing

the power grid is projected into the xy-plane. The power lines and cross line points are

then extracted using the random sampling consistency algorithm (RANSAC) [54], which

calculates the mathematical model parameters of these two scene elements in order to

segment them. Lastly, the authors reconstruct power lines with missing sections using

polynomial equations projected in xz-plane or yz-plane, which are transformed into an

extreme value problem.

Similar Guo et al. [26], Tao et al. measure the accuracy of their model according to

the number of power line 3D points correctly extracted from the total number of power

line points. Seeing as the main focus of our dissertation differs from this paper, their

performances are not comparable.

Nonetheless, the rough classification stage of this strategy does not take into account

irregular terrains that may not be subject to the same reasonable height thresholds used

in this model. So, this approach is only effective with somewhat flat terrains. For instance,

the developed TS40K dataset contains sections with very irregular terrains where height

thresholds would not produce an accurate rough classification.

Additionally, this work was tested exclusively with high-voltage power grid 3D data,

where the height thresholds are more applicable due to the height difference between high

voltage towers and the rest of the environment. This difference is not as prominent with

other voltage power grid areas, where the vegetation may easily exceed the transmission

system in terms of height.
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2.3 Interpretability and Explainability of ML Methods

In this Section, we discuss the importance of intrinsically interpretable Machine Learning

strategies. First, we explain why black box models are not suitable for high-risk domains,

such as healthcare or power grid maintenance. Then, we introduce the notion of explain-

able and interpretable ML, along with their advantages and drawbacks. Lastly, we justify

why the transparency provided by interpretable ML trumps the reasoning of explainable

methods for high-stakes scenarios and traditional companies, like utilities.

2.3.1 Why are black box Models Not Enough?

The widespread application of ML models to real-world problems with high-risk decision-

making, such as healthcare [55], autonomous navigation, or power grid maintenance,

has the potential to greatly affect human lives. As such, interpretable and explainable

Machine Learning strategies stem from the need for trustworthy and intelligible ML

models. That is, models whose inner workings are comprehensible by humans, and

techniques that can explain the predictions of black box models. Essentially, a black box

model is too complicated for a human to understand, so they are usually described by

their input and output. For example, traditional neural networks are notably opaque,

because they do not provide any reasoning behind their predictions. A network may

classify images of dogs and cats with extreme accuracy, but does not inherently explain

why or how it does so.

This need for an explanation or an understandable causal relation between the input

and output is not only present in high-risk scenarios, but also in traditional companies,

where practitioners of other disciplines need to clearly understand and apply trustworthy

models to their own data. For instance, maintenance personnel of a utility company may

want to understand why an ML model detects certain objects in 3D point clouds. This

not only provides transparency but also enables better troubleshooting strategies.

2.3.2 Interpretability and Explainability

The concept of interpretability and explainability are closely related, and often literature

does not differentiate the two, seeing as there is no generally agreed definition. Therefore,

in this dissertation we adhere to the distinction between interpretable and explainable

ML provided by Rudin [56]. Specifically, Rudin defines interpretable ML as models whose

design is intrinsically interpretable. That is, the parameters of the model should be mean-

ingful and inherently explain its predictions. For example, linear regression with a small

number of parameters is interpretable, each model coefficient represents the importance

of the respective input feature to the predictions of the model. In turn, explainable ML

tries to provide post hoc explanations for existing black box models. That is, given an

opaque model, explanation techniques try to find reasons behind its predictions. For
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example, attention methods can pinpoint what parts of an image are relevant or omitted

by a classifier.

Explanations can take numerous forms: logic, visual, symbolic, textual, and input

data points, among others. In recent literature, neuro-symbolic explanation systems [57]

and entropy-based networks [58] have been proposed to relate concepts onto target classes

and provide logic explanations of the decision process. However, these techniques depend

on symbolic input and output spaces. In real-world problems, such as computer vision,

it is difficult to define a consistent ontology for concept representation. In addition, [52,

56] argue that explanations do not have perfect fidelity with respect to the original model.

If that were the case, the explanation would be equal to the model itself, so the model

would be considered interpretable. In other words, explanations provided by post hoc
techniques cannot perfectly decipher the reasoning of a black box, instead they provide

possible reasons for its predictions, which might not be faithful to what the original model

is actually computing.

Contrary to opaque methods, interpretable models provide an inherent understand-

ing of their predictions through their parameters. They are also known as white-box

models, since their transparency contrasts with the opaqueness of black boxes. In general,

this intrinsic interpretability is achieved by imposing constraints that reflect some do-

main knowledge in the model definition. For instance, one can impose sparsity, causality,

or physical constraints in order to uphold desirable properties [56, 59].

Lipton [52] defines transparency in white-box models through three properties: (i)

simulatability indicates that a model should be comprehensible to a human, taking into

account both the input and model parameters, in a reasonable amount of time; (ii) de-
composability states that every part of a transparent model, its input, parameters, and

calculations should provide an intuitive explanation; (iii) Algorithmic transparency al-

ludes that transparency should not only be endowed to the model, but also to its learning

process.

This definition suggests that, in order to achieve transparency, a model should be

simple [52]. Moreover, by enforcing domain constraints on the model, it may miss some

hidden patterns that black box models could uncover [56]. This leads to a belief that it

exists a trade-off between accuracy and interpretability. I.e., transparent models cannot

achieve the same performance as black box models because they are subject to both con-

straints and simple designs. However, the introduction of novel methods, such as concept

whitening [60], refutes this thesis. The work of Chen, Bei, and Rudin [60] proposes a

white-box model for image recognition that forces the latent space of a convolution to

be aligned along the axis of concepts. Specifically, concept whitening decorrelates the

post-convolution latent space so that the covariance matrix between channels is the iden-

tity. That is, it disentangles the latent space so that it aligns with given concepts. They

experiment with this idea in several case studies and conclude that concept whitening

can be added to CNNs without loss in performance using black box models as a baseline.
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Even though adding problem-specific constraints to a model does not necessarily hin-

der its performance when compared to traditional unconstrained methods, they make

white-box models significantly harder to construct and compute [56]. Not only do inter-

pretability constraints, such as causality, require domain and mathematical expertise, but

they also lead to computationally hard optimization problems. In contrast, it is much

easier to employ a black box ML method than to define, troubleshoot and solve problems

with interpretability constraints. However, high-risk scenarios and the general applica-

tion of ML models in vital companies, such as utilities, often justify the extra effort of

designing interpretable ML.
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Group Equivariant Non-Expansive

Operators (GENEOs)

3.1 Introduction

Machine Learning-based strategies have an essential role in numerous real-world appli-

cations nowadays, from autonomous driving to medical imaging and diagnosing. Their

wide use variety stems from the fact that raw data is sufficient to train a model, and

achieve a performance higher than when the task is performed by humans. However,

most Machine Learning methods employed in critical fields, such as healthcare, are con-

sidered black boxes, i.e., models whose results cannot be explained or interpreted with

certitude by humans. This raises urgency for the development of theories that formally

describe the development of interpretable Deep Learning models.

Group equivariant non-expansive operators (GENEOs) are the building-blocks of a

novel mathematical framework [28, 29] that formally describes ML agents as a set of

operators acting on the input data. These operators provide a measure of the world, just

as CNN kernels learn essential features to, for instance, recognize objects. Thus, such ML

agents can be thought as observers that analyze data. They transform it into higher-level

representations while respecting some set of properties (i.e., group of transformations).

An appropriate observer transforms data in such a way that respects the right group of

transformations, that is, it commutes with these transformations. Formally, we say that

the observer is equivariant with respect to a group of transformations. This way, prior

knowledge is effectively encoded into an ML agent, we determine the transformations

preserved by our observer, which ideally describe some features of interest in the original

data.

Equivariance can be seen as a form of symmetry between two function spaces with

respect to an action group, meaning that a function space is transformed into another

function space while preserving a group of symmetries. In practical terms, let us consider

a function f and a symmetry group S, f : X→ Y is considered equivariant with respect

to S if: f (g · x) = g · f (x)∀g ∈ S,x ∈ X. Moreover, the concept of equivariance generalizes
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invariance, in the sense that a function is deemed invariant w.r.t. a symmetry transforma-

tion if its values remain unchanged after said symmetry is applied. For example, the area

of a triangle is invariant to Euclidean transformations (e.g., translations and rotations),

since rotating a triangle does not modify its area. On the other hand, a centroid does not

demonstrate this property, since moving the triangle will also cause its centroid to move.

Instead, the centroid is equivariant to Euclidean transformations, meaning that applying

the transformation and then computing the centroid produces the same result as first

computing the centroid, and then applying the same transformation.

Interestingly, some Deep Learning techniques are already adept of this concept. Con-

volutional neural networks learn different kernels that transform the input image into a

new one that, for example, is more easily classified as training progresses. The learned

convolutional kernels are GENEOs, since convolutions are operators that transform the

input into a new function space and that, by definition, are equivariant with respect to

translations. Bergomi et al. [28] believe that the restriction to a specific family of opera-

tors and the equivariance with respect to interpretable transformations are key aspects

for the success of this architecture.

3.2 Data Representation

The GENEO framework takes advantage of topological data analysis (TDA) to describe

the input data as topological spaces. These spaces are sets endowed with structure (i.e.,

a topology) where the properties of geometric objects are preserved under continuous

deformations, such as stretching. For example, Euclidean spaces are topological spaces,

seeing as their metric defines a topology.

A crucial concept in topology is homeomorphism, a continuous function between

topological spaces that has a continuous inverse function. Thus, it preserves all topologi-

cal properties of a given space when transforming it. Two spaces are topologically equal

(i.e., homeomorphic) if they present a homeomorphism between them. For instance, a

coffee mug and a donut are homeomorphic to each other, since we can deform one under

some continuous function that would result in the other, and vice-versa.

The main objective of employing TDA is to represent data as a continuous real-valued

function space, since GENEOs are only applicable under such conditions. The authors

take advantage of persistent homology, a branch of topology that captures topological

information at multiple scales. By representing input data as topological spaces, patterns

can be recognized with greater ease and transformed into more useful representations,

which improves the effectiveness of the chosen operators.

Specifically, a set of data X is represented by a topological space Φ with admissible

functions ϕ : X→ R3. Φ can be thought of as a set of admissible measurements that we

can perform on the measurement space X. For example, images can be seen as functions

assigning RGB values to pixels. This not only provides uniformity to the framework, but
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also allows us to shift our attention from raw data to the space of measurements that

characterizes it.

Formally, Bergomi et al. [28] quantify the distance between x1,x2 ∈ X by comparing

the values of x1 and x2 in the set of admissible functions Φ with a pseudo-metric

DX(x1,x2) = sup
ϕ∈Φ
|ϕ(x1)−ϕ(x2)|.

A pseudo-metric is a distance d without the property that d(a,b) = 0 =⇒ a = b. In

particular, DX defines that two points are distinguishable if and only if they assume

different values for some admissible function ϕ. By endowing the space X with the

topology induced by the pseudo-metric DX , we formalize the attention shift from X to Φ .

3.3 Transforming Data

Now that we have established how to represent the input data, let us introduce how

the framework defines prior knowledge. Topological spaces X are transformed by the

means of maps g : X→ X that are Φ-preserving homeomorphisms w.r.t. DX . This means

that the set of admissible measurements Φ on X remains topologically the same when

transformed. Thus, the setHomeoΦ (X) denotes the set of Φ-preserving homeomorphisms.

Let us consider a group G ⊆HomeoΦ (X) that represents the set of transformations on

data for which we require equivariance to be respected. We can define a pseudo-distance

DG that models the distance between two homeomorphisms on G as the difference of

their actions on Φ :

DG : G ×G→ R

DG(g1, g2) = sup
ϕ∈Φ

DΦ (ϕ ◦ g1,ϕ ◦ g2)

with DΦ (ϕ1,ϕ2) = ||ϕ1 −ϕ2||∞

That is, DG provides a way to compare two transformations by analyzing the effects of

their actions on the set Φ of possible measurements.

Lastly, Bergomi et al. [28] define the natural pseudo-distance dG on the space Φ .

Definition 1. The natural pseudo-distance dG : Φ×Φ→ R associated with the group G acting
on Φ is defined by the setting:

dG(ϕ1,ϕ2) = inf
g∈G

DΦ (ϕ1,ϕ2 ◦ g)

dG represents the ground truth in the model, it compares functions and vanishes for

pairs of functions that are equivalent w.r.t. the action of our group of homeomorphism

G, which expresses the equivalences between data. In other words, dG compares the

admissible functions in Φ by providing a measure of how topologically similar a pair

of functions are with respect to the action group of G. For instance, let us take into
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account two possible measurements ϕ1,ϕ2 ∈ Φ of our data, if they are supposed to be

equivalent when acted on by transformations in G, meaning that such measures are

equivariant with respect to G, then dG(ϕ1,ϕ2) = 0. Alas, dG is very difficult to compute,

so the authors approximate this pseudo-distance using group equivariant non-expansive

operators (GENEOs) and persistent homology.

3.4 Group Equivariant Non-Expansive Operators (GENEOs)

Following the results of the previous sections, we now formally define the concept of

GENEOs. First, let us consider the notion of a perception pair (Φ ,G): it is composed of

all admissible measurements from our data to real values Φ and a set of transformations

G that preserve homeomorphism on Φ .

Assuming that (Φ ,G), (Ψ ,H) are perception pairs and that T : G → H is a homo-

morphism, that is, a map between two structures of the same type that preserves their

operations. Formally, f : A → B preserves the operation µ defined on both A and B if

f (µA(a1, . . . , ak)) = µB(f (a1), . . . , f (ak)) ∀a1, . . . , ak ∈ A. This means that T allows us to con-

vert the set of transformations G into H , while preserving the effects of their operations

on the respective sets of measurements. For instance, imagine that a transformation g ∈ G
on ϕ ∈ Φ causes a simple translation. A homomorphism T : G → H let us achieve an

equivalent transformation to g for a topological space Ψ . Thus, the transformation T (g)

applied to ψ ∈ Ψ produces a corresponding translation.

Definition 2 (Group Equivariant Non-Expansive Operator (GENEO)). Consider two per-
ception pairs (Φ ,G) and (Ψ ,H) and a homomorphism T : G→H . A map F : Φ→ Ψ is a group
equivariant non-expansive operator if it exhibits equivariance

∀ϕ ∈ Φ ,∀g ∈ G,F(ϕ ◦ g) = F(ϕ) ◦ T (g), (3.1)

and is non-expansive

∀ϕ1,ϕ2 ∈ Φ ,DΨ (F(ϕ1),F(ϕ2)) ≤DΦ (ϕ1,ϕ2). (3.2)

Bergomi et al. [28] add to this result with Proposition 1, which explains how the

ground truth dG is approximated using GENEOs. The interested reader can find the

proof of this proposition in [28].

Proposition 1. If F is a GENEO from (Φ ,G) to (Ψ ,H) associated with T : G→H , then it is a
contraction with respect to the natural pseudo-distances dG,dH .

To put it differently, a GENEO can transform data into higher-level representations

while preserving its structure, and, by extension, its properties and relations. The homo-

morphism T between the sets of homeomorphic transformations guarantees that equiv-

ariance is maintained when transforming Φ into Ψ . For example, by defining a GENEO

that is equivariant with respect to planar translations, which is a property present in the
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TS40K dataset (a tower is still a tower no matter its coordinates), we can create a higher

representation of the data that is still equivariant to said transformations.

Non-expansivity and convexity are essential properties for the applicability of GE-

NEOs in a Machine Learning setting. When the spaces Φ and Ψ are compact, non-

expansivity guarantees that the space of all GENEOs F is compact as well. Compactness

ensures that any operator can be approximated by a finite set of operators sampled in

the same space. Moreover, by assuming that Ψ is convex, Bergomi et al. prove that F is

also convex. Convexity guarantees that new GENEOs can be obtained through the convex

combination of preexisting GENEOs. Therefore, these results prove that any GENEO can

be efficiently approximated by a certain number of other GENEOs in the same space.

3.5 Overview and MNIST Case Study

To summarize, Bergomi et al. [28] and Cascarano et al. [29] contribute with a formal

mathematical framework for Machine Learning, based on the study of metric and topolog-

ical properties of operators acting on function spaces, which allow us to formally define

an agent (e.g., a neural network) as a collection of operators.

Instead of focusing on raw data, their approach works with a set of admissible mea-

surements that can describe data through function spaces. Then, they search for suitable

operators that show equivariance w.r.t. specific transformations, in order to embed an

agent with background knowledge. Let us consider an example in a Deep Learning

context, imagine that we wish to classify images of different flowers. This problem is

equivariant to rotations and reflections for example, i.e., such transformations do not

alter the contextual meaning of a flower image. Therefore, we can take advantage of this

by embedding a neural network with GENEOs equivariant w.r.t rotations and reflections,

meaning that higher representations of the initial images in the network will maintain

these properties.

In order to assess their contributions, the authors developed a CNN embedded with

GENEO-kernels in the convolutional layers, to be compared against a conventional CNN

with identical structure in the MNIST, fashion-MNIST, and CIFAR10 datasets. The devel-

oped GENEOs presented equivariance w.r.t. isometries, such as rotations. The original

data was augmented with translations, reflections and rotations to properly study the

impact of adding the mentioned GENEOs when compared to a random kernel initial-

ization in the traditional CNN. Contrarily to the typical kernels, GENEO-kernels are

not tuned during training, since that would disrupt the sought-out equivariance. Note

that the compared networks have identical structures, the only aspect that differs is the

kernel initialization and training, which is the intended subject of study in the experi-

ment. Results show that the GENEO-model outperforms the conventional CNN in all

datasets, consistently demonstrating high accuracy and low loss, whereas the latter shows

an irregular performance, with average accuracies and high losses.

35



CHAPTER 3. GROUP EQUIVARIANT NON-EXPANSIVE OPERATORS (GENEOS)

A crucial step of this experiment is the selection and sampling of operators that will

be employed in the model. To this end, Bergomi et al. [28] developed an algorithm that,

first, elects a subset of operators in a certain GENEOs space, capable of giving meaningful

representations of the data with respect to their labeling. Following the described experi-

ments, they choose to work with a parametric family of GENEOs composed of Gaussian

mixtures, seeing as they provide equivariance w.r.t. isometries. From this family, an

operator is elected if it is capable of discriminating elements with the same label under

a certain threshold, which ensures that the chosen GENEOs provide relevant representa-

tions of the input data according to their classes. Secondly, they take advantage of defined

pseudo-distances to compare the space of two GENEOs, allowing them to eliminate re-

dundant operators if their spaces are too closely related. With such a system in place, the

authors guarantee maximal diversity of the sampled operators when evaluated within

and in between classes.

This approach to operator selection and sampling resembles Machine Learning strate-

gies, in a sense that requires human evaluation of certain parameters in order to elect

the thought to be the most adequate GENEOs in the current context. However, like most

ML models, there is no guarantee that the chosen collection of GENEOs is better than

all other combinations. Therefore, Cascarano et al. [29] contribute to this framework

by providing a way to endow a GENEOs space F with the structure of a Riemannian

manifold, making available the use of gradient descent methods for the minimization of

a cost function on F [29]. In practical terms, this implies that it is possible to develop a

neural network that learns the best type of operators to employ in order to minimize its

loss while preserving the equivariance w.r.t. the pertinent transformations.

3.6 GENEOnet: an Application of GENEOs to Protein Pocket

Detection

Bocchi et al. [61] innovatively inject knowledge into a learning model using GENEOs

to detect protein pockets. Drug design and development are now taking advantage of

computational approaches to increase the speed of drug discovery. Specifically, structure-

based drug design technologies can predict the binding affinity of novel compounds,

which allows for rapid and effective simulation of protein interaction at an atomic level.

In order to evaluate the drug binding sites, algorithms analyze the geometrical structure

of proteins to detect empty regions (i.e., pockets) and perform a physicochemical analysis

to rank the found pockets in terms of their binding affinity.

In their work, Bocchi et al. [61] demonstrate how to take advantage of the GENEO-

framework to develop an interpretable learning agent. First, they represent the original

data, i.e., 3D point clouds of the atomic structure of proteins, by the means of admissible

measurements based on the geometrical, physical, and chemical properties of proteins.

Next, they process these input channels with a GENEO-layer, where each channel ϕi is
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Figure 3.1: GENEOnet model workflow [61]. The input channels ϕ1, . . . ,ϕ8 are fed to
the respective GENEOs F1, . . . ,F8 defined by parameters σ1, . . . ,σ8. The observation of the
GENEO-layer results in the outputs ψ1, . . . ,ψ8, which are then combined through convex
combination with weights α1, . . . ,α8 into an overall analysis ψ. Lastly, a threshold θ is
applied, resulting in the classification ψ̂, which is compared to the ground truth τ .

processed by a respective GENEO Fi defined by a single shape parameter σi . The resulting

observations ψi are combined through convex combination with weights α1, . . . ,αn into an

overall analysis ψ of the properties embedded in the defined GENEOs. Then, they define

a thresholding operation to classify the predicted protein pockets and reach a binding

score, which is then compared with the ground truth during training.

Experimental results show that this approach surpasses state-of-the-art methods for

pocket detection. The weights α1, . . . ,αn represent how important each of the input chan-

nels and respective GENEO is to protein pocket binding evaluation. The shape param-

eters σ1, . . . ,σn define an instance of each GENEO Fi . These operators encode the back-

ground knowledge that experts deem useful to detect pockets. During training, it is these

parameters along with the convex weights that are fine-tuned with backpropagation.

In comparison, our model performs 3D semantic segmentation instead of an overall

evaluation of 3D point clouds. We developed GENEOs that are composed of more than

one shape parameter, which corroborates the general application of GENEO-based mod-

els. Bocchi et al. [61] take advantage of several measurements on protein structure in

their proposal, we show that even with a single measurement available, GENEO-based

models are able to achieve good performance. Lastly, we demonstrate that GENEO-

powered models cope with a severely imbalanced dataset and, contrary to classical mod-

els, are not affected by noisy labeling.
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Proposed Method: SCENE-Net for

Interpretable Scene Understanding

In this chapter, we introduce the overall architecture of SCENE-Net. First, we discuss

the basis for the development of GENEO-kernels. Secondly, we explain the measurement

function used to describe 3D point clouds. Then, we describe in detail the workflow of

SCENE-Net as well as its components. Lastly, we detail the loss function used to train the

observer.

4.1 The Convolution Operation

We decided to use the convolution operation as the basis for our GENEO operators. Not

only is this operation widely studied in Machine Learning and signal processing, but all

previous work on GENEOs [28, 29, 61] uses this operation as a foundation for GENEO-

kernels. Simply put, convolution is an operation between two functions (f and ψ) that

outputs a third one (f ∗ ψ) expressing how the shape of f reacts to ψ, formally, in a

one-dimensional setting,

(f ∗ψ)(t) =
∫ ∞
−∞
f (τ)ψ(t − τ)dτ.

In other words, the output of a convolution is a function analogous to f that expresses

how the space of ψ is present within f . Therefore, by definition, convolution provides

equivariance with respect to planar translations, meaning that patterns in f can be de-

tected regardless of their location. This result grants CNNs great performance in areas

such as image classification and speech recognition, leading to a wide variety of research

around this operator. In our context, we wish to endow the convolution operation with

additional equivariance w.r.t. specific groups of transformations G that express some

property of the input data, such as equivariance w.r.t. rotations around the z-axis.

Cohen and Welling [62] follow this objective when introducing group equivariant

convolutional networks (G-CNNs) [62], a generalization of conventional CNNs that ex-

tend their equivariance to G-transformations. G-CNNs employ G-convolutions, a new
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layer type that presents a higher degree of weight sharing and significantly increases the

expressive power of networks. The authors also propose an implementation of pooling

and non-linear transformations that preserve the equivariance of previous operations,

this way, several layers can be freely stacked into deep neural networks. This architecture

was tested with two different groups of transformations, p4 and p4m, against conven-

tional CNNs (denominated Z2-convolutions) on the MNIST and CIFAR10 datasets. The

p4 group consists of all compositions of translations and rotations by 90 degrees in any ro-

tation center in a square grid, whereas p4m generalizes the p4 group by also considering

reflections in the compositions. The obtained results show that p4 and p4m models out-

perform the Z2-CNN without increasing the number of parameters, and the p4m-CNN

outperformed all published results on the CIFAR10 dataset at the time.

The work of Cohen and Welling [62] provides us essential insight: First, they rein-

force that convolution is the operator of choice when seeking equivariance w.r.t. specific

G-transformations in a Deep Learning context. Second, crucial operations in convo-

lutional networks, such as pooling, can be computed in such a way that preserve the

equivariance achieved in previous layers. Third, their results demonstrate the efficacy

of group-equivariance when applied to popular datasets in the field, which is further

consolidated by the GENEO framework [28].

4.2 TS40K Data Representation

4.2.1 Voxelization

Even though the convolution operation provides many advantages in our context, it also

requires some compromises for its application on 3D point clouds. Standard convolution

operators need structured 3D data in order to apply kernel functions with the same num-

ber of dimensions, this entails that raw point clouds are unfit to be convolved due to their

lack of structure. As discussed in Section 2.1.2, state-of-the-art methods employ voxel-

based or multi-view-based techniques, transforming the point cloud into a voxel grid or

a series of 2D representations, respectively. For 3D semantic segmentation, voxelization

is the method of choice, since it preserves the three dimensions of the original data and

mitigates the information loss from the data discretization better than multi-view ap-

proaches (this is explained in detail in Section 2.1.2.2). Moreover, it is paramount that we

preserve the geometrical properties and relations of the 3D scene in order to maintain the

symmetries of the original space and, this way, take full advantage of the GENEO theory.

Therefore, TS40K point clouds presented in Section 5.1 will be subject to voxeliza-

tion at the beginning of our framework, which makes SCENE-Net a voxel-based method.

The biggest limitation of voxel-based approaches is their high computational cost and

memory footprint, which bounds the resolution of voxel grids to usually 643. This is

in consequence of state-of-the-art methods being complex and composed of numerous

layers, which leads to an exponential increase in training time with higher resolutions.
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Since SCENE-Net has a simple architecture, we can effectively employ higher resolutions.

In fact, SCENE-Net can be trained with lower resolutions, such as 643, and be applied to

higher resolution voxel grids, with shapes of 1283 and 2563 (this is further explained in

Section 5.2.7).

4.2.2 Measurement Function

In order to utilize GENEOs on voxelized point clouds, we require a function ϕ that oper-

ates on the voxel grid space and provides a real-valued measurement of the 3D data (as

introduced in Section 3.2). An appropriate measurement should preserve the geometry

of the 3D scene and facilitate the detection of patterns of interest when convolving the

voxel grid. Thus, ϕ will assign to each voxel a real value that offers an appropriate repre-

sentation of their respective subset of points from the original point cloud. Specifically,

we define ϕ : R3→ {0,1} as a geometrical function that signals the presence of 3D points

in a voxel. That is, if a voxel contains any 3D point, ϕ outputs one, otherwise, the result

is zero to represent empty voxels. Seeing as there are few points classified as a tower, this

measurement takes full advantage of the raw data to emphasize the geometry of support-

ing towers. This representation also helps to mitigate the data imbalance in TS40K, since

the number of points of each class is not relevant to the definition of ϕ. What matters is

the space that tower points occupy in a voxel grid.

4.3 Overview

Figure 4.1: Pipeline of SCENE-Net: an input point cloud P is measured according to
function ϕ and voxelized. This representation then is fed to a GENEO-layer, where each
operator Γ ϑi separately convolve the input. A GENEO observer H is then achieved by
convex combination of the operators in the GENEO-layer. M transforms the analysis of
the observer into a probability of belonging to a tower. Lastly, a threshold operation is
applied to classify the voxels. Note that this final step occurs after training is completed.
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3D Point clouds are generally denoted as P ∈ RN×(3+d), where N is the number of

points and 3+d is the cardinality of spatial coordinates plus any point-wise features, such

as colors or normal vectors. The input point cloud is first transformed in accordance to a

measurement function ϕ that signals the presence of 3D points in a voxel discretization.

Next, the transformed input is fed to a layer of multiple GENEOs (GENEO-layer), each

chosen randomly from a parametric family of operators, and defined by a set of train-

able shape parameters ϑi (Figure 4.1). Such GENEOs are in the form of convolutional

operators with carefully designed kernels as described later. During training, it is not

the kernels themselves that are fine-tuned with backpropagation, since this would not

preserve equivariance at each optimization step. Instead the error is propagated to the

shape parameters ϑi of each operator and their convex coefficients λi . Following the

GENEO-layer, the set of operators Γ = {Γ ϑ}, with shape parameters ϑ = ϑ1, . . . ,ϑn, are

combined through convex combination with weights λ = (λ1, . . . ,λn)T as follows:

H
λ,ϑ

: P→P

H
λ,ϑ

(x) = λT Γ ϑ(ϕ)(x).
(4.1)

Since the convex combination of GENEOs is also a GENEO [28], Hpreserves the equivari-

ance of each operator Γ ϑ ∈ Γ . In fact, Hdefines a GENEO observer that analyzes the 3D

input scenes looking for the geometrical properties encoded in Γ . The convex coefficients

λ represent the overall contribution of each operator Γ ϑi to H to the analysis. The geo-

metrical parameters λ,ϑ grant our model its intrinsic interpretability. They are learned

during training and represent geometric properties and the importance of each Γ ϑ in

modeling the ground truth.

Next, we transform the analysis of the observer into a probability of each 3D voxel

belonging to a supporting tower as a model

M
λ,ϑ

: P→ [0,1]N

M
λ,ϑ

(x) =
(

tanh
(
H
λ,ϑ

(x)
))

+
,

where (t)+ = max{0, t} is the rectified linear unit (ReLU). Negative signals in H(x) rep-

resent patterns that do not exhibit the sought-out geometrical properties. Conversely,

positive values quantify their presence. Therefore, tanh compresses the value distribu-

tion of the observer into [-1, 1], and the ReLU is then applied to enforce a zero probability

to negative signals. Lastly, a probability threshold τ ∈ [0,1] is defined through hyperpa-

rameter fine-tuning and applied to M resulting in a map

M̃
λ,ϑ

: P×R→ {0,1}N

M̃
λ,ϑ

(x,τ) =
{
M
λ,ϑ

(x)
}
≥ τ,

where M̃ represents the complete definition of SCENE-Net.
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4.4 Knowledge Engineering via GENEOs

In this section, we formally define the knowledge embedded in the observer H. The

following GENEOs describe power line supporting towers in order to fully discriminate

them from their environment.

4.4.1 Cylinder GENEO.

The most striking characteristic of supporting towers against the rural environment is

their long, vertical and narrow structure. As such, their identification is equivariant

w.r.t. rotations along the z-axis and translations in the xy plane, which we encode by the

means of a cylinder

fCy : R3→ {0,1}

fCy(x) =

 1 if ‖π−3(x)−π−3(c)‖2 = r2

0 if otherwise
,

where π−3(x) = [π1(x),π2(x),0] nullifies the third coordinate of a three-element vector

and πi defines a projection function of the ith element of the input vector. However, in

data patterns show smoothing, so we relax this condition by defining

gCy : R3→ [0,1]

gCy(x) = e
−1

2σ2 (‖π−3(x)−π−3(c)‖2−r2)2
.

Function gCy defines a hollow cylinder centered in c by the means of a Gaussian function,

with the distance between x and the cylinder radius (r) as its mean. The shape parameters

of the Cylinder are the standard deviation of the Gaussian and radius r and are defined

by ϑCy = [r,σ ].

GENEOs act on functions, transforming them in a way that remain equivariant to

a specific group of transformations. Our GENEOs act upon Φ , the topological space

representing P with admissible functions ϕ : R3 → {0,1}. Specifically, we work with

appropriate ϕ ∈ Φ functions that represent point clouds and preserve their geometry.

For instance, ϕ can be a function that signals the presence of 3D points in a voxel grid.

Therefore, the cylinder GENEO ΓCy transforms ϕ into a new function that detects sections

in the input point cloud that demonstrate the properties of gCy and, simultaneously,

preserves the geometry of the 3D scene

Γ ϑCy : Φ→ Ψ , ψCy = Γ ϑCy(ϕ)

ψCy(x) =
∫
R3
g̃Cy(y)ϕ(x − y)dy

where Ψ is a new topological space that represents Pwith functions ψ : R3→ [0,1] and

g̃Cy defines a normalized Cylinder. The kernel gCy is normalized to have a zero-sum
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in order to promote stability of the observer. This way, we encourage the geometrical

properties that exhibit the sought-out group of transformations and punish those which

do not. Thus, ψCy(x) assumes positive values for 3D points near the radius, whereas

negative values discourage shapes that do not fall under the gCy definition. This leads to

a more precise detection of the encoded group of transformations. The cylinder kernel

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 4.2: Cylinder kernel discretized in a voxel grid and colored according to weight
distribution.

discretized in a voxel grid can be seen in Figure 4.2.

4.4.2 Arrow GENEO.

Towers are not the only element in rural environments characterized by a vertical narrow

structure. The identification of trees also shows equivariance w.r.t. rotations along the

z-axis. Therefore, it is not enough to detect the body of towers, we also require the power

lines that they support. To this end, we define a cylinder following the rationale behind

the Cylinder GENEO with a cone on top of it. This arrow defines equivariance w.r.t. the

different angles that power lines may find their supporting tower. Formally, the Arrow

function can be defined as

fAr : R3→ {0,1}

fAr(x) =



1 if ‖π−3(x)−π−3(c)‖2 = r2

∧π3(x) < h

1 if ‖π−3(x)−π−3(c)‖2 = r2
c sinθ

∧π3(x) ≥ h
0 if otherwise

,
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Figure 4.3: Arrow kernel discretized in a voxel grid and colored according to weight
distribution.

with θ = β π
2+π3(x)−h and β ∈ [0,1] defining the inclination of the cone. The radii of the

cylinder and the cone are defined by r and rc, respectively, with c as their center. Lastly, h

defines the height at which the arrow is placed on top of the cylinder. This definition is

too strict to yield any feasible results in real-world scenarios, so we smooth the conditions

as follows

gAr : R3→ [0,1]

gAr(x) =

 e
−1

2σ2 (‖π−3(x)−π−3(c)‖2−r2)2
if π3(x) < h

e
−1

2σ2 (‖π−3(x)−π−3(c)‖2−r2
c sinθ)2

if otherwise
.

Thus, the shape parameters of the Arrow are defined by the vector ϑAr = [r,σ ,h, rc,β]. We

are also interested that this kernel sums to zero, so we define the GENEO ΓAr as

Γ ϑAr : Φ→ Ψ , ψAr = Γ ϑAr(ϕ)

ψAr(x) =
∫
R3
g̃Ar(y)ϕ(x − y)dy,

where g̃Ar(y) represents a normalized Arrow kernel. Its discretization is depicted in

Figure 4.3.

4.4.3 Negative Sphere GENEO.

Detecting power lines does not exclude the remaining objects in the scene whose identifi-

cation also demonstrates equivariance w.r.t. rotations along the z-axis. Arboreal elements,

such as bushes, are especially frequent in the TS40K dataset. Thus, we designed a neg-

ative sphere to diminish their detection and, simultaneously, punish the geometry of

trees:
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Figure 4.4: Negative sphere kernel discretized in a voxel grid and colored according to
weight distribution.

fNS : R3→ {−ω,1}

fNS(x) =

 1 if ‖x − c‖2 = r2

−ω if otherwise
,

where ω ∈]0,1] defined a small negative weight that punishes the spherical shape. Next,

we proceed with the relaxation of the sphere definition with function gNS as

gNS : R3→ [−ω,1[

gNS(x) = e
−1

2σ2 (‖x−c‖2−r2)2
−ω,

with shape parameters defined as ϑNS = [r,σ ,ω].

Since we wish to discourage spherical patterns following the definition of gNS , we do

not enforce that its space sums to zero, obtaining

Γ ϑNS : Φ→ ΨNS , ψNS = Γ ϑNS(ϕ)

ψNS(x) =
∫
R3
gNS(y)ϕ(x − y)dy,

where ΨNS is a topological space containing functions ψ : R3→ [−ω,1[. Figure 4.4 depicts

the computation of this kernel in a voxel grid.

4.5 GENEO Loss

The use of GENEOs in knowledge embedding forces our model to uphold convexity of the

observer during training. Thus, our problem statement is represented by the following
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optimization problem

minimize
λ,ϑ

E
X,y,α,ε

{
Lseg(λ,ϑ)

}
s.t. ϑ ≥ 0,

λT 1 = 1,

λ ≥ 0,

where the segmentation loss Lseg is defined as

Lseg(λ,ϑ) =
1
‖X‖

∑
fw(α,ε,y)

(
M
λ,ϑ

(X)− y
)2
.

Here ‖X‖ denotes the number of samples in X and M(X) is the likelihood predicted by

SCENE-Net that voxels in X are towers. The loss uses a weighted squared error following

the weighting scheme fw proposed in [63] to mitigate data imbalance. The hyperpa-

rameter α emphasizes the weighting scheme, whereas ε is a small positive number that

ensures positive weights. Thus, E represents the expectation of the segmentation loss

over the data distribution. The above constraints ensure that our model M maintains

convexity throughout training, with 1 denoting a vector of ones. Next, we performed a

simple redefinition of the variables λ to obtain an equivalent optimization problem, as

λn = 1−
∑N−1
i=1 λi , thus obtaining Problem (4.2),

minimize
λ,ϑ

E
X,y,α,ε

{
Lseg(λ,ϑ)

}
s.t. ϑ ≥ 0

λ ≥ 0

. (4.2)

Then, we ensure non-negativity of the trainable parameters λ,ϑ by relaxing Problem (4.2)

and introducing a penalty in the optimization cost definition as

minimize
λ,ϑ

E
X,y,α,ε

{
Lseg(λ,ϑ)

}
+ ρl

( N∑
i

h(λi)
)

+ ρt

( N∑
i

h(ϑi)
)
, (4.3)

where h(x) =
(
− x

)
+

, ρl and ρt are scaling factors of the negativity penalty h illustrated

in 4.5. GENEO final loss optimization is formalized in Problem (4.3). It consists of a data

fidelity component (i.e., Lseg ), and two penalties to ensure non-negative parameters.

4.5.1 Density Based Weighting Scheme for Data Imbalance in Regression

The voxelization of point clouds worsens the data imbalance already present in the TS40K

dataset. Since 3D scenes are now organized in a voxel grid, the ground truth encompasses

more volume than the original raw data, which leads to a lot of empty voxels (i.e., with

probability zero) and only a fair few voxels with tower points. In regression problems,

46



4.5. GENEO LOSS

4 2 0 2 4
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Figure 4.5: Graphic representation of the negative penalty h.

the standard loss metric is Mean Squared Error (MSE), transmitting how far, on average,

each prediction ŷi is from its target value yi

MSE(ŷ, y) =
1
N

N∑
i=1

(ŷi − yi)2

where N is the number of samples. In order to mitigate this data imbalance, we incorpo-

rate a weighting function fw on the MSE that weights data points according to the density

of their target values. That is, each sample will be assigned an importance measure that

is inversely proportional to the probability of the occurrence of its target value. This way,

a voxel with a target value of zero will be assigned a small weight since the density of the

value zero dominates the target values. Conversely, a voxel with a target value of one will

have a bigger weight because there are very few voxels with such a target.

This idea follows the work of Steininger et al. [63], they define a weighting scheme w

and a function fw to enforce it. Specifically, the squared error between the prediction of

the model and the ground truth y is weighted inversely to the value density of y:

L
α,ε

(ŷ, y) =
1
N

∑
fw(α,ε,y)MSE(ŷ, y)

fw(α,ε,y) =
f ′′w (α,ε,y)

1
N

∑
f ′′w (α,ε,y)

with, f ′′w (α,ε,y) = max(1−αp(y),ε),

where α ∈ [0,∞[ emphasizes the weighing scheme w, ε is a small positive number that

ensures positivity for all weights, and p is a normalized density estimator of the target

values y. As such, fw offers the following properties:

• Samples with common target values are assigned smaller weights than rarer sam-

ples;

• fw yields uniform weights for α = 0;
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• Data points are never weighted negatively (seeing as models would try to maximize

the difference between the prediction and their true value during training);

• No weight should be 0 to avoid models ignoring parts of the dataset;

• The mean weight over all data points is 1; Since α scales all gradients without

normalization, it directly scales the learning rate of the model. By ensuring a mean

weight of 1, different α values do not change the average magnitude of the gradient.

Steininger et al. [63] employ kernel density estimation (KDE) to approximate the

density of target values (function p). In our case, seeing as we assume a probability of one

for tower voxels and zero for empty voxels, we simply calculate the density distribution

of both values in the voxelized data.
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Experiments

In this chapter, we introduce the TS40K dataset used in our experiments. Next, we assess

the properties of our model SCENE-Net that help electrical companies in the inspection of

power lines: (1) interpretability of the model, (2) accuracy, (3) robustness to noisy labels,

(4) training and inference time, and (5) inference performance with high resolution, when

trained with low-resolution voxel grids. We benchmark our model with a traditional

CNN with similar architecture. Then, we detail several performed experiments that were

paramount for us to reach the final definition of SCENE-Net.

5.1 TS40K Dataset

5.1.1 Data Description

Figure 5.1: Visualization of TS40K raw point cloud with colored labels.

Electrical companies are responsible for the maintenance and inspection of the trans-

mission system. They deploy low-flying helicopters to scan rural environments, from a

BEV perspective, where the electrical grid is located. The produced point clouds exhibit

different data properties when compared to 3D scenes captured from other viewpoints,

such as from a vehicle. Namely, they show high point density and no object occlusion,

scene elements present homogeneous density and no sparsity.

49



CHAPTER 5. EXPERIMENTS

• No Occlusion: Most of the available datasets in 3D point clouds are built from sen-

sors integrated into day-to-day devices in order to emulate real-life conditions. For

instance, the majority of benchmark datasets [8, 10, 11, 44] are acquired from vehi-

cles to simulate an autonomous driving environment. Consequently, the equipped

3D sensor cannot capture the entire 3D scene around it since objects may occlude

others, which hinders the performance of employed Deep Learning methods. Fortu-

nately, EDP point clouds do not present any object occlusion since they are captured

from a BEV perspective;

• Homogeneous Object Density: The density of each element in the point cloud does

not fluctuate, meaning that the number of points that compose a particular object

is consistent throughout its entire structure. Still, different elements of a scene

present different densities, for instance, the ground has a higher density of points

than the power lines;

• High Point Density: In addition to density homogeneity, elements in the 3D environ-

ment generally encase a high density of points describing its structure.

Then, the acquired 3D data is processed by maintenance personnel. Specifically, see-

ing as the raw point clouds are quite verbose and mainly encompass campestral areas,

data is sectioned into strips of land focused on the transmission system as shown in

Figure 5.1. The raw data is composed of several LiDAR files containing roughly 40 000

kilometers of the above land strips. 3D points therein are labeled with one out of 22 possi-

ble classes, such as power lines and their supporting towers, low and medium vegetation,

rivers, railroads, human-made structures that do not belong to the transmission network,

the ground, optic cables, among others. Table 5.1 depicts these classes and their density

in the dataset. Rail lines and road surfaces constitute the majority of the dataset (63%),

whereas classes of interest, such as power lines, make up less than 5% of the overall data.

In particular, less than 1% of 3D points belong to supporting towers, and among these

roughly 50% are mislabeled patches of ground. The maintenance personnel normally la-

bels all 3D points near supporting towers as so to optimize inspection time and guarantee

that any high-risk situations are detected. In a Machine Learning context, this implies a

dataset that is not only severely imbalanced but also exhibits noisy labeling.

5.1.2 Exploratory Data Analysis

The knowledge engineering phase described in Section 4.4 required a thorough study of

the properties of power line supporting towers, their relation with the environment and

the analysis of other scene elements that may exhibit similar features to the ones defined.

To this end, we performed an exploratory data analysis of the raw point clouds provided

by EDP. Specifically, we took advantage of DBSCAN [41], a density clustering algorithm,

to aggregate the points of each tower instance into individual groups. Essentially, DB-

SCAN clusters points into different neighborhoods according to a minimum number of

50



5.1. TS40K DATASET

Label Class Density(%) Label Class Density(%)
0 Created 0 11 Road surface 18.758
1 Unclassified 0.571 12 Overlap points 23.403
2 Ground 0.529 13 Medium Reliability 0
3 Low vegetation 0.681 14 Low Reliability 0
4 Medium vegetation 0.241 15 Power line support tower 0.519
5 Natural obstacle 1.069 16 Main power line 0.907
6 Human structures 0 17 Other power line 0.002
7 Low point 0.362 18 Fiber optic cable 0
8 Model keypoints 0 19 Not rated object to be consider 8.205
9 Water 0 20 Not rated object to be ignored 0
10 Rail 44.752 21 Incidents 0

Table 5.1: Available classes in the TS40K dataset and their distribution. Rail lines and
road surface constitute the majority of the dataset (63%). Whereas our class of interest,
power line support tower, only makes up 0.52%. Moreover, around 40% of tower points
are mislabeled.

neighbors n at distance ε or less, if any point does not meet this criterion, it is considered

noise.

(a) 3D points labeled as supporting towers. (b) DBSCAN output

Figure 5.2: Application of DBSCAN on 3D points of power line supporting towers.

The parameters n and ε were fine-tuned to form neighborhoods where each cluster

represents a tower. Figure 5.2 illustrates this process, Figure 5.2a shows a point cloud

where only the points labeled as power-line supporting towers were selected (which can

be directly obtained from the original point cloud), and Figure 5.2b presents the output

of the DBSCAN algorithm. By examining the latter, we note that each tower is perfectly

segmented, allowing us to further analyze and compute their attributes.

Power line supporting towers exhibit the following geometrical properties:

• The number of points that constitute a tower ranges between 334 and 5860;

• The base of the tower is squared shaped, with average dimensions of 4.15 width

and 4.2 length;

• Their height is on average 34.74 and can vary between 18 and 40 meters;

• The distance between towers is between 245 and 500 but averages at 300 meters;

• There are no towers without power lines;
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• Their shape can be described as a square pyramid.

Lastly, the results obtained from applying the DBSCAN algorithm on the tower point

cloud serve as empirical proof that employing this algorithm as a post-processing step

on the output of a 3D semantic segmentation model yields adequate results for the tower

coordinate resolution problem. Therefore, focusing our study and development on 3D

semantic segmentation is justified.

5.1.3 Ancillary Dataset

(a) Radius sectioning. (b) Tower to tower sectioning.

Figure 5.3: Point cloud segments sectioned for better evaluation of proposed methods.

To mitigate the severe data imbalance on the TS40K dataset that is further aggravated

by voxelization, we create an ancillary dataset focused on power line supporting towers

with 2823 samples. For each tower in the 3D data, we crop the surrounding ground

with a radius equal to its height as shown in Figure 5.3a. This process introduces bias in

classical Machine Learning agents, such as CNNs, since we are presenting them with an

unrealistic density of supporting towers to the model. This leads to overfitting and higher

predicted likelihoods for the overall 3D scene. Contrastingly, SCENE-Net is optimized,

after incorporating the appropriate prior knowledge, to detect the chosen features that

describe the ground truth. A biased training dataset results in an agent tailored to detect

the geometry of supporting towers. Elements in the 3D scene that do not align with these

properties are not signaled by SCENE-Net.

5.1.4 Voxelization Results

In order to endow TS40K point clouds with structure, we developed a function that

receives a point set P and a voxel grid dimension s, and produces a 3D array describing

the voxelization of P with shape s. Specifically, we first represent P as a voxel grid, its

space is divided into K voxels that contain a subset of points Pi ⊆ P , 1 ≤ i ≤ K of the

original point cloud. This way, the input point set is endowed with structure, each voxel

is neighbor to other voxels in predefined directions, analogous to pixels in an image.
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Then, the structured point cloud and ground truth are subject to a measurement ϕ. This

function distinguishes between occupied and empty voxels, assigning them a value of one

and zero, respectively. Formally, ϕ acts upon 3D points in order to provide an appropriate

measure according to the GENEO framework. In practice, we apply it directly to the 3D

voxels for easier computation:

ϕ′(PK ) =

 1 if PK , ∅
0 if otherwise

.

(a) Voxelization with shape 323 (b) Voxelization with shape 643

(c) Voxelization with shape 1283

Figure 5.4: Voxelization of the point cloud in Figure 5.3a. Figure 5.4a shows that, although
the tower and power lines are present in the voxel grid, their resolution compromises the
geometrical properties of the scene. In Figure 5.4b, we can clearly visualize the elements
in the 3D point cloud. The 1283 resolution in Figure 5.4c produces sharper results, but
does not seem to add crucial details to the structure of the power-grid. The point clouds
are colored in order to discriminate the captured details in each voxel-resolution.

Voxelization techniques introduce a bottleneck in performance due to their compu-

tational cost. In our case, voxelization with resolutions of 323, 643 and 1283 averaged,

respectively, a processing time of 0.16 s, 0.45 s and 1.18 s on an Intel CPU of 8th gener-

ation without parallelization. Nevertheless, the high quality of the TS40K point clouds

allow us to voxelize the data with lower resolutions and still maintain a good level of

detail. This representation and measurement function emphasize the geometry of sup-

porting towers, while preserving the geometric properties of 3D scenes. Even though

voxelization worsens the data imbalance in the TS40K dataset, the cropped sampling

mitigates this issue.
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5.2 Results

5.2.1 Training Protocol.

During the end-to-end training process of SCENE-Net, we adopt the following settings:

batch size is 8 for a total of 50 epochs. We employ the Root Mean Squared Propagation

(RMSProp) optimizer, with a learning rate of 0.001. The weighting scheme parameters

α and ε are set to 5 and 0.1, respectively. While both scaling factors of the non-positive

penalty ρl and ρt are set to 5. The kernel size used to discretize the GENEO operators is 93.

The GENEOs parameters ϑ are randomly initialized under suitable and positive ranges.

While the convex coefficients λ0, . . . ,λn−1 are randomly initialized in the range [0, 2
N−1 ]

to promote a valid convex space for H. To demonstrate that SCENE-Net achieves good

results even with less data, we use 20% of the dataset for training, 10% for validation and

70% for testing. All experiments were conducted on an NVIDIA GeForce RTX 3070 GPU.

5.2.2 Interpretability of the trained SCENE-Net. The meaning of the 11
learned parameters.

To understand if SCENE-Net is interpretable, we inspect its 11 trainable parameters ϑ

and λ after training. Each ϑi ∈ ϑ holds the learned shape parameters of a geometrical

operator Γi , such as their height or radius. The convex coefficients λ weigh each operator

Γi in the analysis of our model. For example, we can conclude that the instance ϑNS of

the Negative Sphere GENEO (ΓNS ) holds a weight of 76.34% on the output of SCENE-Net

(Figure 5.5). The geometric nature of the observer and combination parameters endow

intrinsic interpretability to SCENE-Net.

5.2.3 Post hoc interpretation for specific predictions.

The geometric operators in SCENE-Net also enable a post hoc interpretation of its predic-

tions. Specifically, we can correlate the detection of scene elements, such as vegetation,

to the contributions of each GENEO. This provides an extra layer of transparency to

our model. For instance, Figure 5.6 illustrates the convolution of each GENEO-kernel

with a TS40K scene. The Arrow kernel is responsible for the detection of towers, the

Cylinder aids this process and diminishes the detection of vegetation and the Negative

Sphere stabilizes the model by balancing the contributions of the previous kernels. By

dissecting the analysis of the observer, we can fast-track the knowledge engineering phase

of GENEO-based models. Interpretable models are defined as constrained problems in

order to ensure human understanding. Such constraints are hard to formulate and en-

sure that they fully describe our problem. In our case, these constraints are present in

the form of GENEO-kernels and are ensured by the devised GENEO loss. However, it is

difficult and ambiguous to assert if the defined prior knowledge is sufficient to model the

problem. A post hoc interpretation of the predictions of SCENE-Net allows us to analyze
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Figure 5.5: The trainable parameters of SCENE-Net ϑ and λ in an interpretable visualiza-
tion. Parameter h∗ is not trainable, and λ∗NS is defined as a function of the other mixing
weights λ∗NS = 1−λAr −λCy .

how the different GENEO-kernels behave and what properties are not being captured,

which leads to a faster and more complete definition of our model.

(a) TS40K scene (b) Cylinder (c) Arrow (d) Negative Sphere

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00

Figure 5.6: Post hoc analysis of SCENE-Net. We can examine the activation of each
geometric operator and correlate it to the detection of certain elements in the scene. We
see that the Arrow is responsible for the most activation, while the Negative Sphere has
smaller absolute value.
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5.2.4 Qualitative accuracy and quantitative metrics: SCENE-Net more
precise in detecting towers than the baseline CNN.

5.2.4.1 Useful Metrics.

Actual Value

Positive Negative

Predicted
value

Positive True Positive (TN) False Negative (FN)

Negative False Positive (FP) True Negative (TN)

Table 5.2: Confusion Matrix

During training, SCENE-Net regresses the probability of each voxel belonging to a

supporting tower. Afterward, a threshold probability τ is fine-tuned in order to discern

between non-tower and tower voxels and, this way, optimize the detection of support-

ing towers. This binary segmentation of 3D point clouds can be used to draw useful

evaluation metrics, namely Precision, Recall, IoU, and Fβscore. Table 5.2 illustrates a

conventional confusion matrix in ML applications. A voxel is correctly segmented if it is

either a True Positive or True Negative, meaning that our prediction coincides with the

actual value. False Positives represent voxels incorrectly classified as a tower, and False

Negatives, on the contrary, denote tower voxels misclassified as non-tower.

Supporting towers normally make up a small volume of the entire 3D scene, and the

empty space captured during voxelization leads to a greater discrepancy between tower

and non-tower voxels. Consequently, the number of True Negatives overshadows the

other cases, which makes Accuracy = T P+TN
T P+TN+FP+FN unfit to assess both SCENE-Net and

the CNN baseline. Therefore, we resort to Precision and Recall. P recision = T P
T P+FP tells

us from all voxels predicted positively, what percentage did the model classify correctly.

This metric provides insight with regard to the impact of false positive predictions, a low

Precision means that our model is overconfident in its predictions and classifies most

scene elements as a tower. In turn, Recall = T P
T P+FN measures how many tower voxels

were correctly classified, which essentially lets us evaluate how our agent is modeling

supporting towers when compared to the ground truth. A low Recall entails that very few

tower voxels were classified as such by our model. However, the noisy labeling present in

the TS40K dataset affects the true meaning of this metric in our context. A higher Recall

does not necessarily imply a better model.

The F1Score is the harmonic mean between Precision and Recall, so it portrays the

balance between these metrics. Since we value Precision over Recall, we specifically work

with the FβScore where β = 0.5, meaning that we weigh Precision twice as much as we do

Recall.

Intersection over Union ( IoU) follows the definition presented in 2.1.7. With respect
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Figure 5.7: Precision-Recall curve for SCENE-Net and the CNN benchmark, with chang-
ing detection threshold. Although our model SCENE-Net has two orders of magnitude
fewer parameters than the CNN, it attains a comparable area under the P-R curve.

to the confusion matrix, IoU is defined as IoU = T P
T P+FN+FP , which essentially measures

the overlap between the prediction and the ground truth, over the total volume they

occupy.

5.2.4.2 Performance of SCENE-Net.

To evaluate if SCENE-Net can correctly identify towers in landscapes of the noisy TS40K

dataset, we chose the task of 3D semantic segmentation of supporting towers, and trained

SCENE-Net and a baseline CNN with similar architecture according to the protocol de-

scribed in Section 5.2.1. Domain experts are interested in detecting supporting towers as

well as computing their (x,y) center in geographical coordinates to integrate this model

in their inspection procedures. The application penalizes false positives more, thus we

emphasize Precision. Due to the imbalanced nature of the labels, we measured overall

Precision, Recall and IoU. Quantitatively, we observe a lift in Precision of 24%, and 5%

in IoU, and a drop of 10% in Recall (Table 5.3).

Method Precision Recall IoU
CNN 0.44 (± 0.07) 0.26 (± 0.02) 0.53
SCENE-Net 0.68 (± 0.08) 0.16 (± 0.05) 0.58

Table 5.3: Semantic segmentation metrics on TS40K.

The lower Recall of SCENE-Net is due to noisy labels in the ground truth. As shown

in Figures 1.1 and 5.9, the ground surrounding supporting towers as well as power lines

are often mislabeled as a tower.
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In Figure 5.8, we can analyze the qualitative results on the TS40K dataset (a) of SCENE-

Net (c) against a CNN is similar architecture as a baseline (b). Even though the CNN

achieves a higher Recall on the majority of the samples, it classifies most vertical scene

elements as a tower, which ultimately leads to a poor segmentation of supporting towers

and a less precise xy tower coordinate prediction. In contrast, SCENE-Net segments the

body of towers and rejects other vertical objects that do not exhibit the prior knowledge

encoded in the model.

5.2.5 SCENE-Net is robust to noisy labels.

It is important to assess the resilience to noisy labels in the ground truth (GT), since 3D

point clouds show more than 50% of mislabeled points. These examples are abundant

in the dataset and SCENE-Net is able to recover the body of the tower without detecting

ground and power line patches that are mislabeled as tower (Figure 5.9). The CNN

has, in general, the same behavior. Most noisy labels on this kind of dataset are due to

annotation excess around the object of interest, and they are not randomly distributed.

These consistently incorrect labels entail low Recall values (Table 5.3).

5.2.6 SCENE-Net has modest training and inference time in common
hardware.

To assess if the models can be used with the computational resources of a utility company,

we computed the average training and inference times of both the CNN and SCENE-Net

in an NVIDIA GeForce RTX 3070 GPU. Only one in five trained CNNs returns non-zero

predictions. Each training session (50 epochs) takes in average 85 mn for a trained SCENE-

Net and a CNN. In inference, SCENE-Net takes 20 ms while the CNN takes 43 ms, less

23 ms per inference. The CNN has 2190 trainable parameters, whereas SCENE-Net has 11.

The difference in trainable parameters grows exponentially with larger kernel sizes, since

SCENE-Net has 11 parameters regardless of kernel size. Running models for 3D point

cloud semantic segmentation [20, 22, 24, 49] was not done due to their computational

requirements. Training times allow SCENE-Net to be retrained from scratch in less than

90 mn. The CNN is also trainable, taking on average 8 h to obtain a useful model.

5.2.7 SCENE-Net inference in high resolution, when trained with
low-resolution kernel sizes.

One of the issues of voxel-based models is the computational cost of 3D convolutions

with large kernels and high-resolution voxel grids. Here, a CNN architecture leads to an

exponential increase in training time. SCENE-Net has a continuous functional observer

of the raw input providing an analysis of its components. Unlike traditional models, this

definition is independent of the input size as well as its own discretization (kernel size).

In this experiment, we trained SCENE-Net with voxel grids of 643 and then applied to
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higher resolutions, such as 1283, with good qualitative results (Figure 5.10). The kernel

size used to discretize the operators can be fine-tuned to enhance performance (Tab. 5.4).

Kernel-size Precision Recall IoU
9× 9× 9 0.37 (± 0.02) 0.22 (± 0.01) 0.58
9× 5× 5 0.68 (± 0.08) 0.16 (± 0.05) 0.58

Table 5.4: Performance of SCENE-Net with different kernel sizes on TS40K. SCENE-Net
is trained with a kernel size of 93, which is later fine-tuned to find the sweet spot between
Precision and Recall.

5.3 Experiments

5.3.1 Running State-of-the-Art Models

Even though utility companies, such as EDP, do not have the requirements to employ 3D

semantic segmentation state-of-the-art methods, we made an effort to train them with the

TS40K dataset in order to provide an additional benchmark to our research. The publicly

available repositories [17, 20–22, 49] are tailored to emulate the performed experiments

on autonomous driving datasets, such as SemanticKITTI [10]. Moreover, the available

code often lacks documentation and is written in old DL frameworks, like TensorFlow

1.0. Two high-level APIs for running state-of-the-art DL models [64, 65] were also tested.

However, [65] specialized to work with famous benchmark datasets and did not account

for custom datasets such as ours. We tried to perform transfer learning with the existing

models on the framework of Chaton et al. [64], seeing as we did not have the resources or

time to train them from scratch. Unfortunately, the API is not compatible with this sort

of operation.

5.3.2 Measurement Function

Choosing appropriate measurement functions is a crucial step when taking advantage

of the GENEO-framework. These functions allow us to shift our attention from the raw

data, to the possible measurements we can extract from it, which leads to a more diverse

definition of GENEO observers. Initially, we defined our measure ϕ as a density function,

that outputs a normalized count of the number of points in each voxel of a discretized

point cloud. This way, we hoped to stay true to the original data distribution and make

the model take advantage of the fact that objects of interest, such as supporting towers,

usually have less point density than non-relevant classes, such as the ground. However,

the achieved results were subpar to what we expected. By assessing the analysis of the

GENEO observer H, we noticed that, even though SCENE-Net was able to detect towers

accurately, it was not able to output a substantial activation for objects with lower point

density because it also had to diminish the importance of high point density elements,

59



CHAPTER 5. EXPERIMENTS

such as the ground. Therefore, we decided to employ a measurement that considers all

occupied voxels as equals. By providing a uniform distribution of values to different 3D

elements, GENEO-kernels were able to tailor their embedded knowledge to detecting

objects of interest. This decision produced a performance increase of 42% in terms of

loss.

5.3.3 GENEO Loss

One could argue that our input and output data define a traditional segmentation prob-

lem with only one class of interest, which usually takes advantage of binary cross entropy

to define the data fidelity component in loss functions. Cross entropy was developed as a

response to the vanishing gradient of squared errors, such as MSE, when the derivative

is close to zero for classification problems. However, both at a conceptual level and in

terms of performance, binary cross entropy is not suited for this problem. The values of

zero and one in the ground truth of the TS40K dataset do not represent classes (i.e., tower

or non-tower), they represent a level of confidence that a particular voxel contains any

points classified as a tower. Thus, at its core, we are approximating the probability of a

voxel containing tower points, and not classifying voxels. Nevertheless, we substituted

the squared error in the data fidelity component of Lseg with binary cross entropy and

assessed the performance of SCENE-Net. Training and testing demonstrated all-around

worse quantitative and qualitative results.

In addition, the initial definition of the penalty function h punished negative weights

quadratically. This would often result in small negative convex coefficients because of

low derivative values near zero, which violates the convex space of the GENEO observer.

Therefore, we changed it to a linear penalization as illustrated in Figure 4.5 to correct this

behavior.

The weighting scheme enforced by function fw proved essential for the performance of

SCENE-Net, without it the error measured by Lseg would always be insignificant and no

training would actually be done. The hyperparameters α and ε of fw were the most impor-

tant values to calibrate due to the severe data imbalance that was worsened by voxeliza-

tion, so we tested a total of 55 combinations, specifically α ∈ [0.001,0.1,1,2,3,5,8,10,20,

50,100] and ε ∈ [0.00001,0.0001,0.001,0.01,0.1]. α emphasizes the weighting scheme, it

essentially quantifies how much we prioritize regressing tower from non-tower voxels. A

high α leads to a high number of False Positives since the model only focuses on mod-

eling tower voxels, whereas a low α makes SCENE-Net obsolete because tower voxels

were a negligible component to the loss measure and therefore not detected. In turn, ε

defines the weight given to non-tower voxels, seeing as these are the grand majority in

the dataset. This parameter exhibits a symmetric behavior to α. High ε values result in a

model purely focused on not detecting non-tower voxels, and low values make SCENE-

Net assume that regressing non-tower voxels is not important, so most scene elements

are deemed as towers by our model.
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5.3.4 Training Protocol

The training protocol presented in 5.2.1 was subject to a lot of experimentation and

fine-tuning. Specifically, we tried the following settings:

• Given that SCENE-Net exhibits fast training, we tested a different combination of

epochs and batch size, with epochs ∈ [10,25,50,100,500,1000] and batch_size ∈
[2,4,8,16,24,32]. Bigger batch sizes lead to worse training times due to GPU paral-

lelization, and SCENE-Net yielded effective results with no more than 10 epochs,

but 50 epochs seemed to provide more consistency to the model across different

runs;

• We experimented with different learning rates lr and tried to impose a learning

rate decay lr_decay, specifically, lr ∈ [0.1,0.001,0.0001,0.00001] and a lr_decay ∈
[5%,10%,20%,25%] every 10, 20, or 25 epochs. Due to the empty volume in the

voxelization, the error provided by the loss function ranges between 0.0022 and

0.0006. As a result, any kind of learning rate decay strategy would immediately

halt training for the parameters of the network, so this technique is not employed;

• As detailed in Section 5.2.7, the kernel size employed during training greatly affects

the performance of SCENE-Net. So, we experimented with sizes (6, 5, 5), (6, 6, 6),

(9, 5, 5), (9, 6, 6), (8, 8, 8) and (9, 9, 9) in the form (height, width, length). We

concluded that bigger kernel sizes endow SCENE-Net with more freedom to ex-

plore the embedded prior knowledge, which results in a better and more consistent

performance;

• Random initialization is a crucial factor for the performance of traditional ML, such

as CNNs, and our model is no different. The trainable parameters of SCENE-Net

λ,ϑ are randomly initialized within suitable ranges to promote a stable convex

space for the network to navigate. Using other initialization strategies, such as not

enforcing ranges or using handcrafted values, resulted in a worse performance by

the model, or it would take longer to converge to an acceptable state;

• We examined the impact of using different optimizers, namely Stochastic Gradient

Descent (SGD), adaptive moment estimation (Adam) and RMSProp. There was no

noticeable difference in the performance of SCENE-Net, with RMSProp showing

slightly better results than the other two;

• The data split used in our experiments is unorthodox when compared to conven-

tional DL techniques. Usually, the biggest subset of data is reserved for training

the model because of the millions of parameters that require fine-tuning. Seeing

as SCENE-Net is composed of only 11 trainable parameters, training is effectively

performed with little more than 500 samples. This is paramount for traditional

companies, such as utilities, that do not have a lot of labeled data at their disposal.
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This way, they can achieve a straightforward and interpretable model with a lot less

data than state-of-the-art black-box methods.

5.3.5 Ablation Studies.

Model Cylinder Arrow Neg. Sphere Precision Recall IoU
A 1 0 0 0 0 0.50
B 0 1 0 0 0 0.50
C 1 0 1 0.34 0.01 0.52
D 0 1 1 0.13 0.01 0.50

E (Ours) 1 1 1 0.68 0.16 0.58
F 2 2 2 0.56 0.03 0.53
G 3 3 3 0.37 0.22 0.56

Table 5.5: Ablation Study of SCENE-Net on TS40K validation set.

We conducted ablation studies on the architecture of SCENE-Net, specifically on

the number of instances of each GENEO. All ablated models were tested on the TS40K

validation set. Table 5.5 shows the following results: Models A and B are each equipped

with a single GENEO, demonstrate an overall poor performance. The Negative Sphere

(NS) GENEO proved essential for our observer to disregard arboreal elements in the scene.

Models C and D study if employing the Cylinder or Arrow combined with NS is enough

to analyze the TS40K scenes. However, the architecture of SCENE-Net (model E) yields

better results. Lastly, models F and G test the use of multiple instances of each GENEO,

but this proved to decrease performance when compared to model E.

62



5.3. EXPERIMENTS

(a) TS40K Sample (b) CNN (c) SCENE-Net

Figure 5.8: Qualitative results of SCENE-Net on the testing set of TS40K, against a CNN
with similar architecture. Note that, in the last example, SCENE-Net clearly identifies
a second unlabeled tower. For the same sample the CNN identifies both the secondary
tower and vegetation as towers.
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(a) TS40K sample. (b) SCENE-Net prediction against
the GT.

Figure 5.9: SCENE-Net is robust against mislabeled data. Figure 5.9b compares the
prediction of SCENE-Net against the ground truth in Figure 5.9a. SCENE-Net detects the
body of the tower, ignoring the patch of ground mislabeled as tower.

(a) Sample discretized in a 1283 grid. (b) SCENE-Net prediction against the GT.

Figure 5.10: SCENE-Net is independent from the input and kernel size. Our model was
trained with voxel grids of shape 643 and kernel size 93. Figure 5.10b shows a SCENE-Net
prediction against the ground truth of the 1283 input grid in Figure 5.10a using a kernel
size of 12× 5× 5.
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Conclusion

With data becoming the new oil, Machine Learning strategies have taken a crucial role in

tackling real-world problems, such as in healthcare and power grid inspection. But tra-

ditional companies, like utilities, need ML to shed light on its opaqueness. They require

resource-efficient, straightforward, and trustworthy ML models in order to guarantee

their responsible application to real-life scenarios. For instance, utility companies, such

as EDP, would greatly benefit from an agent capable of segmenting real-world point

clouds while providing sound reasoning behind its decision-making, so that inspecting

thousands of kilometers of the power grid can be both fast and safe.

In this dissertation, we propose SCENE-Net, an intrinsically interpretable 3D point

cloud semantic segmentation model identifying signature shapes with GENEOs for power

line tower segmentation on 3D rural landscapes. By taking advantage of GENEOs, a

straightforward architecture, and an imbalanced-aware loss function, our model outper-

forms a benchmark CNN in Precision by 24% with only 11 trainable geometrical param-

eters, two orders of magnitude less than a Precision-comparable CNN. We focused on

simple signature shapes: the cylinder, arrow, and negative sphere. To improve on metrics

we could add complex invariant shapes finely describing properties of interest. Here we

would pay the price of eliciting detailed properties and narrowing the application field

of the model. This knowledge engineering stage, although necessary to guarantee inter-

pretability, requires both expertise and a laborious process to ensure a complete definition

of properties of interest. Thus, scenarios should be carefully evaluated to determine if

the additional workload of achieving transparency is outweighed by its benefits. From

our experience in developing and implementing SCENE-Net with a utility company,

such systems can critically help human decision-making—here, by facilitating fast

and careful inspection of power lines, with interpretable signals of observed geometrical

properties. With only three shape observers, and 11 physically meaningful parameters,

SCENE-Net can help diminish the risk of power outages and forest fires, by learning from

data.

This work opens the door for exciting new research. On an immediate note, we can de-

tect other relevant elements of the TS40K dataset, such as the power lines and vegetation,
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to automatically detect potential damages to the power grid. On the other hand, it would

be interesting to develop a high-level API to aid the development of GENEO observers in

an ML paradigm. This way, we can expedite the knowledge engineering phase in other

applications and encourage the wide use of GENEO-based models in Machine Learning.
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