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Abstract

James Patrick Underwood Doctor of Philosophy
The University of Sydney December 2008

Reliable and Safe Autonomy for
Ground Vehicles in Unstructured

Environments

This thesis is concerned with the algorithms and systems that are required to enable
safe autonomous operation of an unmanned ground vehicle (UGV) in an unstructured
and unknown environment; one in which there is no specific infrastructure to assist
the vehicle autonomy and complete a priori information is not available.

Under these conditions it is necessary for an autonomous system to perceive the
surrounding environment, in order to perform safe and reliable control actions with
respect to the context of the vehicle, its task and the world. Specifically, exteroceptive
sensors measure physical properties of the world. This information is interpreted to
extract a higher level perception, then mapped to provide a consistent spatial context.
This map of perceived information forms an integral part of the autonomous UGV
(AUGV) control system architecture, therefore any perception or mapping errors
reduce the reliability and safety of the system.

Currently, commercially viable autonomous systems achieve the requisite level of
reliability and safety by using strong structure within their operational environment.
This permits the use of powerful assumptions about the world, which greatly simplify
the perception requirements. For example, in an urban context, things that look
approximately like roads are roads. In an indoor environment, vertical structure
must be avoided and everything else is traversable. By contrast, when this structure
is not available, little can be assumed and the burden on perception is very large. In
these cases, reliability and safety must currently be provided by a tightly integrated
human supervisor.

The major contribution of this thesis is to provide a holistic approach to identify and
mitigate the primary sources of error in typical AUGV sensor feedback systems (com-
prising perception and mapping), to promote reliability and safety. This includes an
analysis of the geometric and temporal errors that occur in the coordinate transfor-
mations that are required for mapping and methods to minimise these errors in real
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systems. Interpretive errors are also studied and methods to mitigate them are pre-
sented. These methods combine information theoretic measures with multiple sensor
modalities, to improve perceptive classification and provide sensor redundancy.

The work in this thesis is implemented and tested on a real AUGV system, but the
methods do not rely on any particular aspects of this vehicle. They are all generally
and widely applicable. This thesis provides a firm base at a low level, from which
continued research in autonomous reliability and safety at ever higher levels can be
performed.
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FIRE & ICE

Some say the world will end in fire,
Some say in ice.

From what I’ve tasted of desire
I hold with those who favor fire.

But if it had to perish twice,
I think I know enough of hate
To say that for destruction ice

Is also great
And would suffice.

Robert Frost

AND STEEL

...Others say that robots will
Rise up and all the humans kill.

From what I’ve tasted of cold steel,
To all researchers I appeal:

When you build robots, roll no dice.
You’d better bloody make them nice,

Or Robert Frost
Will have to perish thrice.

James Patrick Underwood
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Chapter 1

Introduction

This thesis is concerned with the algorithms and systems required to enable safe

autonomous operation of an unmanned ground vehicle (UGV) in an unstructured and

unknown environment; one in which there is no specific infrastructure to assist the

vehicle autonomy and complete a priori information is not available. This is achieved

by identifying and addressing the primary sources of error in the system. Autonomous

operation is defined in this thesis as the process of navigating from one location to

another with no intervention from an operator, other than to specify the goal location

that the vehicle must reach. Automation is achieved with a feedback control system

that makes use of onboard exteroceptive and proprioceptive sensors to guide the

vehicle through the environment to the destination. The principle contribution of

this thesis is the improvement of exteroceptive sensor feedback processes for AUGVs

by addressing three primary sources of error:

• Systematic errors due to sensor misalignment and synchronisation,

• Stochastic uncertainty due to sensor measurement errors,

• Sensor interpretation errors due to unmodeled environmental conditions.

By holistically addressing the primary sources of error in the exteroceptive sensor

feedback processes, this thesis achieves an increase in overall reliability and safety of

AUGV systems.

1
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1.1 Background

Any ground based mobile autonomous system that is operating in an unknown area

must use exteroceptive sensors to perceive the world, thus forming and maintaining a

map of the environment, in order to safely navigate through it. There are many dif-

ferent approaches to perception and mapping and the type of map employed depends

on the nature of the vehicle and the environment.

For some classes of environment, structure simplifies the perception and mapping

requirements. In indoor spaces for example, perception can be simplified to a binary

classification of space as either obstacles or free space, because obstacles are salient

vertical structures and everything else is flat. A two dimensional world can also be

assumed, which simplifies mapping. Similarly in urban environments, tarmac roads

can be assumed to be flat and deviations from this assumption are treated as specific

obstacles. Such assumptions are commonly used because they reduce the complexity

of many of the components of the autonomous system. Systems that leverage the

specific structure of the environment are successful when the true environment con-

forms, although they can fail completely when nuances in the environment violate

the basic structural assumptions. Autonomous reliability and safety is often achieved

by employing appropriate assumptions about the available structure.

For outdoor scenarios where these assumptions are less valid than in other environ-

ments, a more general model of the interaction between the vehicle and the ground

support surface is useful. This is usually done by constructing a three dimensional

model of the geometry of the environment using exteroceptive sensors, then trans-

forming this to a traversability space by considering the ability of the vehicle to drive

over a particular geometry. Modeling the geometry of the environment alone is often

insufficient to accurately determine the likely vehicle interaction, thus higher lev-

els of reasoning are also required. For example, rocks and shrubs may have similar

geometry, but the contact between the them and a vehicle will differ substantially.

Perception algorithms that interpret sensor data for high level reasoning, are prone to

reliability problems as it can be difficult to estimate when they are likely to succeed
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or fail. Tracking their performance in real-time is a challenging unsolved problem.

When building large maps that cover the entire area of interest, it is rarely possible to

sense the whole region from one vantage point. Sensors provide information in a sub-

region only, so ego-motion must be used to form a more complete picture. The mobile

platform on which the sensors are mounted is effectively used as a scanner and the

sensory information is fused over time to form the larger map. To achieve autonomy

in unstructured environments, the map of the surrounding environment is used in a

control system to allow the vehicle to navigate. The map is therefore part of a control

feedback loop, so mapping errors (geometric or from sensor interpretation) translate

directly to potential safety breaches in the system, where the severity depends on the

particular application.

1.2 Problem Statement

All mapping algorithms use at least one sensor, which interacts actively or passively

with the environment. The first potential source of error arises in the interpretation of

this sensory information. A model must be used to relate the sensor information to the

underlying state of the environment and errors or omissions in this model will cause

an error in the map. Secondly, the information must be interpreted in a geometric

context. From precisely where in the world was the measurement made? For a mobile

robot, this information is typically provided by the combination of the non-constant

vehicle localisation and the constant offset from this location to the position of the

sensor. Stochastic measurement errors are always present in the former and constant

biases arise from imperfect measurement or calibration of the latter.

Regardless of the choice of sensor and the choice of mapping algorithm, any unac-

counted source of error in the sensing and mapping process will result in a difference

between the internal map of the environment and the ground truth. If this informa-

tion is then used for the task of navigation, the system will be unsafe.

In this thesis, a holistic approach is taken to identify and address the primary sources
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of error in the perception and mapping process for AUGV feedback control systems.

1.3 Principal Contributions

This thesis identifies common sources of error in the exteroceptive sensor perception

and mapping process, that is used for AUGV feedback control. The error identifi-

cation and analysis provide a method for quantifying geometric mapping errors, so

that they can be calculated in the system design phase and importantly, so that these

errors can be estimated at run-time. This also provides an intuition about the nature

of errors that will occur and how they will affect the map. The error identification

process serves as a mathematical framework for solutions in this thesis to minimise

sources of error and to mitigate against their effect. An emphasis is placed on pro-

viding techniques that do not rely on the specific structure of one particular AUGV.

Many of the solutions are generally applicable to robotic systems with exteroceptive

sensors, including other non ground based systems, although the scope of the thesis

permits testing only on an AUGV.

Specifically, this thesis contributes:

• An analysis of the sensitivity of mapped data to the primary sources of mea-

surable error, both stochastic in the form of localisation errors and sensor noise

and systematic in the form of spatial sensor misalignment and sensor timing

synchronisation errors.

• An analysis and development of an error model to calculate the combined ge-

ometric map uncertainty, given the joint effect of localisation, noise, misalign-

ment, and time synchronisation.

• A calibration method to learn the optimal sensor alignment parameters with a

full six degrees of freedom and a method to calculate the precision of the learnt

parameters.



CHAPTER 1. INTRODUCTION 5

• An extension of this method to learn the joint alignment parameters of multiple

sensors, so that their information can reliably be fused into one consistent map.

• The rigorous testing of the calibration procedure for a single sensor, multiple

homogenous sensors and multiple heterogenous sensors. This demonstrates the

minimisation of systematic errors, the minimisation of systematic contradictions

between sensors to allow data fusion and the leveraging of a high precision sensor

to assist the calibration of a lower precision sensor.

• Examples of calculating and meeting system design requirements that are driven

by a desired mapping accuracy.

• An analysis and discussion of multi-modal sensor fusion to reduce interpretive

errors in perception algorithms and an analysis of multi-modal hardware re-

dundancy as a model-free method of fault detection for arbitrary exteroceptive

sensors.

• A specific multi-modal sensor fusion algorithm that uses a laser and a radar to

detect when airborne dust particles are impeding the use of the laser.

• An evaluation of a navigation system architecture for mapping, that is designed

to reduce the effect of stochastic global positioning errors.

1.4 Thesis Structure

Chapter 2 presents an overview of typical AUGV control system architectures and

describes how exteroceptive feedback is used by them for navigation. Two specific

AUGV systems from the literature are discussed with particular reference to how

they achieve robustness and safety. The discussion in this chapter provides the overall

motivation for the rest of this thesis.

Chapter 3 presents an analysis of the effect of the three main sources of error in

exteroceptive feedback systems. Experimental validation of the analysis is provided.
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Reliability is promoted by the highly accurate error model that is developed in this

chapter, as it provides a tool to estimate mapping uncertainty both at design-time and

run-time. This analysis also provides the background and mathematical framework

behind the solutions and techniques that are presented in Chapters 4 and 5.

Chapter 4 addresses the geometric and temporal sources of error that were identified

in Chapter 3. This is achieved by providing methods to minimise the errors, to detect

when such errors will have an effect on the integrity of the system and to manage

them. These techniques are validated experimentally on a real AUGV system.

Chapter 5 addresses the interpretive errors that were described at the end of Chapter

3 by providing improved perception and redundancy models. Generally applicable

techniques are described, with experimental validation for specific examples on a real

AUGV.

Chapter 6 presents conclusions and discusses the future work in this field.



Chapter 2

Background

The purpose of this chapter is to provide general background information about the

methods that are used to achieve ground vehicle autonomy. It also provides the

motivation for the discussion and analysis of and solutions to common problems that

are presented in the subsequent chapters. More detailed background information and

references to the literature are presented in-situ in Chapters 3, 4 and 5. This is done

to focus the discussion of directly related prior work to the relevant sections within

this thesis.

Any ground based mobile autonomous system that is operating in an unknown envi-

ronment must use exteroceptive sensors to form and maintain a map of the surround-

ings, in order to safely navigate through the environment. This chapter describes the

use of exteroceptive sensor information in typical AUGV systems and some specific

examples from the literature are discussed. These approaches are all subject to the

systematic, stochastic and modeling errors that arise when using exteroceptive sen-

sors on a mobile platform. In discussing these systems, emphasis is placed on how

they achieve reliability and safety, in order to motivate the analyses and solutions

that are presented in this thesis. The effects of these errors are analysed in Chapter

3, in order to motivate the solutions in Chapters 4 and 5.

7
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2.1 General AUGV Control Systems

This section describes the general form of control system that is used to achieve

AUGV autonomy. The basic form of the control system that enables the autonomous

following of a trajectory is presented in Section 2.1.1 and in Section 2.1.2 this is

extended to describe perception and path planning algorithms as a predictive com-

ponent of the controller. Although there are many different perception and path

planning algorithms in the literature, they can be seen as functionally equivalent in

this control theoretic framework. Together, perception and planning systems either

implicitly or explicitly make use of a vehicle model to predict future interactions be-

tween the vehicle and the environment, in order to choose an optimal control strategy.

The perception system transforms the raw sensor information into a context that is

relevant to the vehicle model. For example, laser range measurements are converted

to the ‘roughness’ of the terrain. This information is mapped to provide a consistent

spatial context that allows the association of the vehicle’s current or future location

with the representation of the environment. The planning system can then apply the

vehicle model to that information, to achieve an optimal control strategy.

By considering the different ground vehicle automation methods from a simple control

theoretic perspective, the wide variety of techniques can be unified for the purpose of

this thesis. The aim is not to describe any one specific control strategy, but rather

to argue that perception, mapping and planning systems provide the same function

in most if not all AUGV systems. This thesis addresses the most common types of

errors that occur in general perception and mapping systems, so this should have

wide application regardless of the specific algorithms that are chosen.

2.1.1 Feed-Back Control

The basic form of all feedback control systems is shown in Figure 2.1. A controller

is designed to minimise the error between the desired output and the measured out-

put, by applying an appropriate control input to the plant. Disturbances that are
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Figure 2.1: The basic feedback control loop [1, p12].

Figure 2.2: A basic feedback control loop applied to the velocity control of a vehicle. In
this case, a PID controller has been chosen for the control block and a wheel encoder is
selected for sensing. This is just one of many possible combinations that can be used to
achieve basic velocity control for a vehicle.

often difficult or impossible to model are present at multiple locations within the

control loop. The feedback component allows the controller to compensate for this

by measuring the instantaneous error between the desired and current output of the

system. A successful control system must meet a variety of constraints, the main

ones including stability, bandwidth or responsiveness and the steady state response

(how small can the error eventually be made). Another objective is the robustness of

the controller to unmodeled variations of the system parameters, which requires the

controller to be as insensitive to these as possible [1].

The basic control system shown in Figure 2.1 can be directly applied to some aspects

of autonomy for unmanned ground vehicles (UGVs). For example, Figure 2.2 illus-
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Figure 2.3: An example of a vehicle trajectory controller, using multiple control layers
to provide modularity. The trajectory control strategy outputs the desired turn rate and
velocity, yet leaves the specific method of realisation to the rate controller. Similarly, the
rate controller makes requests to the actuators, but defers the lowest level control to the
actuator controllers. Despite the additional complexity, the system is a closed loop feedback
control strategy, similar to Figure 2.1. Note that this is a ‘blind’ trajectory controller; it
does not have any perception of the surroundings and no concept of obstacle avoidance.

trates a typical velocity controller of exactly this form. However, to achieve higher

levels of autonomy such as the ability to follow a particular trajectory, more compli-

cated control strategies are usually required. The trajectory control system for the

Centre for Autonomous Systems (CAS) Outdoor Research Demonstrator (CORD)

AUGV is shown in Figure 2.3. The system comprises three cascading control layers

made up of separable trajectory, rate and actuation controllers. Although the system

could potentially have one controller with trajectory errors as the input and actua-

tion commands as the output, splitting the system into three separable components

improves the modularity. Were the controller to be applied to a completely different

vehicle, the actuation and rate controllers would need to be modified, but the higher

level trajectory control component could likely remain unchanged. Although the sys-

tem is more complicated than the simple velocity controller in Figure 2.2, by grouping

functionally similar components together, it can be considered to be in exactly the

same feedback control form as shown in Figure 2.1. This is illustrated by grouping

together the control and sensing components, as shown in Figure 2.4.

By designing a control system architecture that employs standard control theoretic

methods, many proven guarantees of robustness, bandwidth, stability and steady

state response can be applied to the autonomous system. Generic feedback control

methods (PID control for example) are a valuable tool for AUGV control systems
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Figure 2.4: The trajectory controller shown in Figure 2.3 is grouped into functionally similar
units, to illustrate that it is a basic feedback controller as in Figure 2.1.

where they can be applied. As typified by the CORD trajectory controller in Figure

2.3, AUGV control architectures often have modules ranging from the very low level

such as actuator controllers, to higher levels such as trajectory control. Even higher

levels of control are then required to achieve mission level planning, such as what path

the vehicle should take, rather than how to achieve the path. The lower levels can

often be achieved with simple control theoretic methods, complete with guarantees

on system performance. However, the complexity of the highest level mission control

and planning systems often requires a more ad hoc approach, which cannot leverage

any proven performance guarantees.

2.1.2 Predictive Control

The type of trajectory controller that was considered in Section 2.1.1 is ‘blind’ in

the sense that it minimises the error between the estimated vehicle location and the

desired trajectory, without any consideration of the interaction between the vehicle

and the environment. The input to such systems is the fully specified desired trajec-

tory, so this form of controller is only sufficient for safe vehicle autonomy when safe

trajectories (within the operational constraints of the particular vehicle, including en-

vironmental interactions) are provided. For AUGV systems where an operator is able

to provide this input directly, no additional control framework is required. When this

is not possible, the system must also include the ability to represent the environment

around the vehicle and to convolve this with the vehicle model to calculate safe con-



CHAPTER 2. BACKGROUND 12

Figure 2.5: A predictive controller makes use of a vehicle model and a representation of
the environment to plan appropriate and safe control actions to achieve a specified goal.
The predictive block incorporates the processes that are typically referred to as perception,
mapping and planning.

trol actions. This component encompasses the processes that are typically referred

to as perception, mapping and planning, in which the future interaction between the

vehicle and the ground is simulated ahead of time with a model. This is shown for the

most general case in Figure 2.5. This general structure broadly defines the inputs and

outputs of this component in general, but does not specify any particular methodol-

ogy (such as control theory) for the implementation. Thus some of the guarantees

provided by control theory for the lower level controllers could be lost. The complex-

ity of this block varies significantly and it depends strongly on the application. For

well structured environments, assumptions can often be made to simplify or remove

this block entirely. For complex, unstructured environments, this block is usually

the most difficult to implement and it often forms a bottleneck on overall system

performance. A combination of feedback control and predictive control can be used

to promote modularity and to maintain a rigorous control theoretic approach for the

design of the lower level components. For example, the ‘blind’ trajectory controller

from Figure 2.4 can be extended with a predictive component, as shown in Figure

2.6. In [2], the long term benefit of using simple “proven” control strategies over

potentially better short term performance is cited as a worthy trade-off.

The predictive control system has a similar appearance to the feedback controller

in Figure 2.1. The perception of the environment is continuously fed back to the

controller, so that adjustments can be made to the control action that is sent to the
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Figure 2.6: The trajectory controller from Figure 2.4 is extended to including a predictive
block, to optimise the vehicle trajectory given the perception of the environment and the
vehicle model.

vehicle. However, the framework differs from the basic feedback controller because

instead of making instantaneous decisions based on the current local information,

the predictive controller calculates an optimal set of actions by considering the effect

of those actions into the future, similar to the model predictive controller (MPC)

architecture [3], but without any restriction on the mathematical structure.

Although there are many different approaches to the implementation of the predictive

control block in the literature, all systems that employ some form of perception,

mapping and path planning for navigation purposes can be thought of as predictive

controllers of this form. As the predictive component does not strictly conform to

any one particular design theory, the potential for design errors is unbounded. This

thesis analyses the most common types of systematic, stochastic and modeling errors

that occur in the perception and mapping systems that form the feedback path and

predictive control in typical AUGV system architectures. Although the flexibility of

the highest level control systems makes it difficult to bound the type of errors that can

be incurred, this thesis identifies common mapping and perception errors in Chapter

3, and minimises or mitigates their effects in Chapters 4 and 5.

2.1.3 Approaches to Perception, Mapping and Planning

Given infinite sensing and model fidelity and infinite computational resources, an

optimal implementation of the predictive controller shown in Section 2.1.2 would
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consist of building a precise representation of the world, over which a dynamic vehicle

simulation could be run. The simulated control inputs that yield the best simulated

result would then be passed to the vehicle for faithful execution (in a world with

perfect models and perfect sensing, no feedback would be required because the true

output would be equal to the simulated output). In reality this is not possible and

tractable suboptimal implementations always require a compromise. The particular

nature of the compromise depends on the specific application, which has led to a large

variety of mapping and planning solutions.

The different algorithms exist to leverage the available structure in the environment,

in order to achieve the best compromise between high fidelity sensing and modeling,

and computational feasibility. In a completely unstructured setting, sensing and

representing the world accurately is difficult due to the high complexity and variability

of the environment. This complexity also results in highly non-linear dynamic vehicle

interactions. Furthermore, even if sensing and modeling were perfect, the complexity

requires too much computation to simulate all of the interactions in real time. When

structure is added to the operating environment of the robot, the complexity of the

sensing, representation, modeling and simulation tasks is reduced, often resulting in

an increase in reliability and safety. For example, consider a wheeled robot operating

in an unstructured natural environment. To accurately forward predict its motion

requires a model of the interaction between the tyres and ground, including the soil

mechanics, which is prone to error. On the other hand, if the robot was in a structured

urban environment with tarmac roads, then this interaction could possibly be assumed

constant. An overview of the development of ground vehicle robotics is presented in

[4], which notes the relationship between increases in achievable autonomous vehicle

speeds and the assumptions of structure within the environment. In the following

section, two different AUGV control systems from the literature are presented. Each

relies on different assumptions about the structure of the environment and therefore

makes different compromises to achieve computational tractability. The different

amounts of environmental structure in these two examples relates directly to the

reliability that the systems achieve.
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Arguably the most structured environment in which AUGVs operate is indoors in an

office-like space. Here it is reasonable to assume that the ground surface is uniformly

flat, that the interaction between the vehicle and this uniform surface is constant

everywhere and that the only other category of space is non-traversable regions cate-

gorised by salient non flat objects. Representations such as Occupancy Grids [5] per-

form a binary classification of the environment into traversable and non-traversable

regions. In most cases, these systems are using an implicit (yet reasonably high fi-

delity) vehicle/world interaction model. For example, occupancy grid representations

of laser range sensor data imply a model where tall things that reflect laser energy are

non-traversable and things that permit laser energy are traversable. The traversable

regions are assumed uniformly flat with no direct sensor information required. In

most indoor environments this is reasonable, so the simple binary classification ap-

proach used by occupancy grids is made possible by the well defined structure of the

environment. It is worth noting that the implicit model is easily violated by trans-

parent hard surfaces such as glass and this type of perception problem is discussed in

detail in Chapters 3 and 5.

By contrast, outdoor unstructured environments cannot be easily represented by a bi-

nary classification of traversability. Many different facets of the environment must be

considered, including the geometry and nature of the ground (flat, rough, grass, tar-

mac) and the presence of objects on that surface that may or may not be traversable

by the UGV (rocks or shrubs). To accurately simulate the effect of driving over such

terrain would require not only the ability to sense the specific properties of the ground

and the objects that lay upon it, but also to simulate the dynamic effects of the vehicle

under different control actions. Solutions to forward prediction in unstructured envi-

ronments typically fall into two categories; (i) simplified dynamic simulation over a

purely geometric terrain representation and (ii) cost mapping, which performs a spa-

tial classification/transformation of the world into a continuous traversability space.

The former is suboptimal because simplifications must be made in the vehicle and

environment models to ensure computational tractability. The latter is suboptimal

because the spatial classification neglects the additional dimensionality provided by
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the control space; an area that is non-traversable under one control action may be

traversable under another.

There also exist many environments between the two extremes above. An outdoor

urban environment contains less structure than an indoor office, yet the presence of

relatively flat tarmac roads provides some valuable assumptive power. Soil mechanics

can now be disregarded and the purely geometric world model is now likely to be

accurate.

2.2 Real World AUGV Systems

In Section 2.1, the control system architectures that are frequently used for AUGVs

were discussed in general terms. There are too many different implementations of

AUGV autonomy in the literature to list them all, particularly in the areas of per-

ception, mapping and planning, and the main reasons for this were given in Section

2.1.3. In this section, two specific AUGV systems are discussed, with emphasis on

how they achieve robustness and reliability. This serves to instantiate the abstract

examples in Section 2.1 and to motivate the work in this thesis.

2.2.1 An Autonomous Vehicle for Cargo Handling

Some of the most significant AUGV developments of the past decade have been in

the area of port cargo handling. In [6], an AUGV system for carrying shipping

containers at a port is described in detail. The work is of particular significance

because the system is commercially viable and has been successfully integrated into

port operations. This is of interest because of the high safety requirements imposed

by any commercial operation, and the high reliability and robustness requirements

that are imposed by commercial viability. In this section, the methods of [6] that

were used to achieve the high reliability requirements are discussed.

The commercial viability of the system comes from three main advantages of auton-

omy. Firstly, the ability to control the traffic flow within the port allows for a higher
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level logistical control element that increases efficiency. Similarly, the logistics of in-

ventory management can be streamlined. Thirdly the running costs of the vehicles

are reduced by the consistency of autonomous control. Due to the need to operate

within the existing port infrastructure, many constraints are imposed on the system

from the beginning. These include factors such as size, operation time, cost, safety

and reliability. Of all of these constraints, reliability is cited as the most difficult issue

to resolve. Operator interventions may only occur at a rate of fewer than one per

one hundred hours of autonomous operation. “System faults particularly in sensing,

navigation, and control systems must be minimised, and those that do occur must be

identified” [6]. It is this requirement in particular that differentiates this system from

many experimental (non-commercial) AUGVs, which often struggle with reliability.

The highly structured operating environment of this vehicle is the key factor in permit-

ting the requisite level of reliability. Considering the diagram in Figure 2.5, in many

systems (including the PerceptOR program discussed in Section 2.2.2) the optimisa-

tion strategy, which includes perception, mapping and planning is the most difficult

component to implement, and can be a bottleneck for the reliability of the whole sys-

tem. However, the structure in the port environment allows some safe assumptions to

be made that reduce the demand on the perception, mapping and planning systems.

In particular, the structure of the environment is two dimensional, static and known

a-priori. This avoids the need to perceive, map and represent complex unstructured

terrains. The complete prior knowledge also bounds and simplifies the planning task

considerably. The interaction between the ground and the vehicle can be assumed to

be constant everywhere, meaning that the vehicle model is independent of feedback

about the perceived nature of the ground at a given location. Largely due to these

assumptions, the final software implementation was done in 12 ‘man-months’ and

consisted of 4000 lines of code. By contrast, the PerceptOR program [4] (which is

discussed further in Section 2.2.2) developed an AUGV to operate in unstructured

environments and was not able to rely upon any of these assumptions. This program

took 500,000 lines of code and 30 ‘man-years’ to develop. Both systems employed a

rigorous program of testing and evaluation, yet the reliability of the cargo vehicle is
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superior.

Although the structure made reliability possible in [6], much effort was still required

to achieve it, particularly for the navigation (localisation) and control of the vehicle.

Differential Global Positioning System (DGPS) based navigation systems were too

unreliable and inaccurate, due to occlusions from overhanging structures in the port

such as cranes. Instead, further structure was added to the environment in the form

of precisely surveyed, static radar beacons, which could be detected by a custom

developed scanning radar sensor. The range and bearing information provided by the

sensor is used together with a model of the vehicle motion to provide pose estimates

of the vehicle. This is done with a Kalman filter [7] based method, which is equal to

the localisation half of the popular Simultaneous Localisation and Mapping (SLAM)

technique, (an overview of which can be found in [8, §37]). By fixing the beacons in

known locations, the process of associating radar observations with particular beacons

is constrained, thus increasing the robustness.

To minimise systematic errors, a calibration procedure was performed to estimate the

parameters of the radar sensor. The radar calibration procedure was also leveraged

from environmental structure; a straight section of rail was available, so the sensor

was mounted on a buggy to constrain the motion to lie along the track. Beacon

observations could then be corrected by refining the estimates of the radar parameters.

In Chapter 3, the effect of sensor misalignment is analysed in detail and in Chapter

4, a generic calibration procedure is given to provide optimal estimates (including the

uncertainty) of the geometric parameters for range based sensors.

The system calculates the uncertainty of the 2D vehicle pose, which is then propagated

through the coordinate transformations to provide consistent estimates of overall

uncertainty for the data association. These types of coordinate transformations are

common in vehicles with exteroceptive sensors. Similar calculations are analysed and

extended in Chapters 3 and 4, to a full three dimensions, and to include additional

sources of uncertainty such as timing offset errors between sensors.

More recently, Global Positioning System (GPS) technology has developed further,

but the problem of reliability and accuracy is still present, particularly in environ-
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ments which partially occlude the satellite signal reception, or where the environment

reflects the signal, causing multipath [9]. The automation of another port cargo han-

dling vehicle is described in [10], where reliability is achieved by employing a ‘high

integrity’ navigation system, that is guaranteed to know when it is unable to provide

a reasonable pose estimate. The reasoning behind such navigation systems is that

complete reliability of the estimated vehicle pose cannot be achieved all the time. By

explicitly allowing for the possibility of failure and focusing effort to detect when this

occurs, the system as a whole can be relied upon, although sometimes pose estimates

will not be available [11]. In [10], high integrity navigation is achieved by using dual

pose estimators, one using a similar radar/beacon method as described by [6], and

the other based on modern commercial DGPS technology. The pose estimates from

both are compared to check for possible errors in either, as a form of multi-modal

hardware redundancy. An undetected failure can therefore only occur if both systems

fail simultaneously, but this is unlikely due to the different physical processes involved

[10]. Notably, [10] states that “After many years of operation, we have concluded that

the physics of GPS precludes it ever being made sufficiently reliable to be used as a

stand-alone autonomous navigation system. This is clearly contrary to the received

wisdom in the autonomous vehicle area”. Indeed the use of GPS based systems has

been one of the most commonly cited reliability problems for modern experimental

AUGV systems, such as several of the finalists in the 2007 DARPA Urban Chal-

lenge [12, 13, 14, 2, 15] and the PerceptOR program [4], which is discussed further

in Section 2.2.2. An open challenge faced by the navigation community is to provide

high reliability, high integrity systems that do not rely on strong structure within the

environment.

2.2.2 The DARPA PerceptOR Program

The DARPA PerceptOR program was undertaken by Carnegie Mellon University

(CMU) over a three year period, with the aim of developing perception systems

for AUGVs in completely unstructured and partially structured environments. A

description of the program and the system architecture that was developed for it can
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be found in [4]. In this section the system is summarised and discussed with particular

emphasis on the main sources of error that impact on the overall robustness and safety.

The system consisted of an AUGV that was developed for the program and an un-

manned helicopter, that was previously developed at CMU. The scope of the program

was large, including developments in the areas of planning, perception, navigation (lo-

calisation) and control. Perception was identified as the primary bottleneck of the

whole system, so the focus was placed in that area. An outstanding element of the

program was the testing procedure, in which the system was run in many different en-

vironments across several states of North America throughout the three year period.

The goal during testing was for the vehicle to autonomously reach sparse globally

positioned waypoints, under the supervision of an operator. The operator was given

information about the test site immediately before the test began, and had no direct

interaction with the site other than through the system, by visualising a-priori data,

telemetry and sensor data from the AUGV and the unmanned aerial vehicle (UAV).

A separate team followed the AUGV in the field, to directly monitor and record its

performance and to issue emergency stop commands if necessary. This team did not

communicate directly with the operator.

To build maps of the environment, the AUGV employed ranging laser scanners, colour

cameras and stereo camera pairs. The UAV had ranging lasers that were synchronised

with colour sensors to provide ‘coloured’ three dimensional data. The UAV system

was effectively used by the AUGV as a remote sensor, providing an advantageous

viewpoint from above, that was capable of perceiving features of the terrain that

would not be possible from the perspective of the AUGV, such as negative obstacles

(ditches or other features of the terrain that are lower than the surrounding ground).

In addition to the onboard sensors, a-priori information in the form of high resolution

digital elevation maps was used to provide the global planning layers with initial

information to guide the vehicle towards the goals.

One of the most interesting aspects of this work is the detailed discussion of the

evolution of the system. Testing was performed throughout the three year program

and [4] summarised the flaws in the system at the time of testing. The solutions
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that were engineered to overcome these challenges were then presented including

their degree of success in the subsequent tests. Of the issues that resulted in poor

performance, particularly in the earlier tests, the vast majority could be described as

sensor interpretation errors due to unmodeled environmental conditions. This occurs

when there are errors in the explicit translation between sensor information and the

perception of the environment, or due to violated assumptions about the environment

that were relied upon for this translation.

Navigation (Localisation) Difficulties

One of the largest problems cited by the PerceptOR program was the inability of

GPS based navigation equipment to provide reasonable estimates of the vehicle pose

when under tree canopies, due to occlusions and multipath of the requisite satellite

signals. This is the same problem that was cited in [6], due to overhead cranes.

As mentioned at the beginning of this chapter, exteroceptive information must be

mapped to provide the vehicle with a perception of the environment through which

it must navigate. The importance of precise localisation for this task is paramount,

as recognised by [4] and discussed in detail in Chapter 3. Despite using very high

quality commercial navigation equipment, the PerceptOR team reported that under

certain environmental conditions, the navigation equipment was not only providing

imprecise, inaccurate information, but that it was not able to reliably estimate the

quality of its own output; it was a low integrity system. A significant requirement

for robustness is the ability to recognise the limitations of the system. This includes

constant limitations that are imposed by static design constraints, but also dynamic

limitations imposed by fluctuations in the quality of sensor information and the pro-

cessing algorithms that use this. In Chapters 3 and 4, algorithms are developed to

calculate both design-time and run-time constraints of exteroceptive sensor mapping

algorithms.

To overcome this problem, the PerceptOR system maintained two separate estimates

of the vehicle pose. A global estimate was provided by the standard fusion of GPS and

an inertial navigation system (INS) and a local estimate was maintained without the
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use of any global information, such that it would be immune to GPS problems under

canopies or in other problematic environments. Since then, the use of dual global and

local frames has become more popular for AUGVs. At least three of the six teams

[13, 14, 2] that completed the 2007 DARPA Urban Challenge [12] made explicit use

of separate navigation frames in this way, due to the inadequacies of commercial

GPS/INS. The latter team provide a detailed description of a method of managing

the uncertainty of the two frames in [15]. They conclude with the hope that INS

manufacturers will develop products that provide better functionality to assist the

implementation of a local and global frame of reference. The “All Source Navigation

Filter” (ASNF) project [16, 17] being undertaken at the Australian Centre for Field

Robotics (ACFR) at the University of Sydney has this as one of it’s primary aims. The

project has the ambitious goal of fusing all available relevant sources of information

into one consistent, tightly coupled structure, while providing the flexibility to easily

add new information sources or to change which sources are in use. The core filter is

designed to be a black box solution, by providing pose estimates in local and global

frames, without requiring a vehicle model. Currently the system fuses GPS, INS,

range sensor data in a simultaneous localisation and mapping (SLAM) framework [18]

and time-differenced carrier phase (TDCP) information [19]. This navigation system

is ideal for robotic applications in general, but particularly for vehicles operating

in complex unstructured environments such as PerceptOR. The problems caused by

overhanging structures such as canopies that occlude satellites, or other geometric

structures that can cause GPS multipath are lessened or avoided by the reduced

requirement for GPS information. Highly accurate absolute velocity measurements

can be derived using TDCP with observations from only one satellite. This has the

additional benefit of bounding absolute angular pose errors. Also, the complexity of

the interactions between the vehicle and the terrain makes it difficult to specify an

accurate vehicle model, so ‘black-box’ navigation systems that do not require such

models are ideal. Furthermore, if a particular aspect of the environment can be

leveraged by a well matched sensor, this can be easily added to the filter. The ASNF

is evaluated for an AUGV in Chapter 4, in similar environmental conditions to the

PerceptOR program, to test its ability to mitigate against the combined localisation-
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perception problems encountered by the current state-of-the-art AUGVs.

Nuances of the Environment

A secondary problem encountered by the PerceptOR program is one relating to the

qualitative interpretation of sensor information, given the presence of complicated

nuances in the environment. Initially the system mapped exteroceptive sensor in-

formation from laser range scanners and stereo camera pairs to a purely geometric

representation of the environment. This implicit perceptive layer assumes that the

opacity of objects to visible light (in the case of stereo cameras) and near infra-red

light (in the case of laser scanners) has a direct relationship to the way the geometry

will support the mass of the vehicle. In other words, concrete objects are perceived

as identical to foliage, despite the fact that the vehicle can safely traverse the latter,

but must avoid the former. This causes the system to be overly cautious at best, and

prevents it from reaching destinations at worst. The perceptive model was improved

to include the nuance of density. A three dimensional density model was employed to

record the differences between completely opaque surfaces and ones that are partially

penetrable to light. The model still relies directly on the opacity of objects, but now

considers that some objects are more permissible to light than others, which in many

cases (although not all) is related to the object’s hardness. The improved model

was successful at allowing the vehicle to drive through soft structures while avoiding

most hard obstacles, yet it had the unwanted effect of also permitting the vehicle

to collide with thin hard structures such as fence posts, wires and cables. These

objects are problematic because they have a similar appearance to foliage according

to the chosen density based classifier. When perceptive models require adaptation to

allow for discrimination of ever more specific objects or nuances of the environment,

a classification of sensory information is needed. Classification metrics (such as false

negative and false positive rates) are insufficient for detecting the robustness of the

classification output, because the system may only fail when a particular aspect of

the environment is observed. The error rates in the results may reflect the frequency

of the phenomena in the environment, rather than the actual success rate of the
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classifier. Specifying robust classification methods remains an open and challenging

problem and this is discussed in more detail in Chapters 3 and 5. In the Percep-

tOR program, very good results were achieved by their classification method, but

at the highest level the robustness was provided by operator supervision. Although

many hours of continuous autonomy were achieved, this was surely due to a lack of

fence posts, wires and cables in the operating environment, rather than an inherent

robustness of the automation.

Other environmental conditions such as airborne dust and rain also had an adverse

effect on the perception of terrain and obstacles surrounding the vehicle, because these

phenomena violated some of the assumptions of the initial environment model. It was

initially assumed that the range information from sensors such as laser scanners or

stereo cameras would relate directly to a geometric model of the terrain surrounding

the vehicle. The presence of airborne particles due to dust or rain strongly violates

this assumption, because the particles are often detected in mid-air by the sensor.

This was mitigated by the PerceptOR system by using the same density metric that

was constructed to detect soft vegetative structures. Airborne dust has been noted

as an unsolved problem for other systems in the literature [2, 20, 21, 22], which is

especially noteworthy because they were nominally fielded in paved environments

during the 2007 Urban Challenge [12], where significant volumes of dust might not

be expected. The detection of airborne dust particles is used as a recurring theme

in Chapter 5 to illustrate the potential for multi-modal sensor fusion to increase

classification robustness. A specific solution that fuses millimetre wave radar and

laser sensors is also developed and implemented on an AUGV.

Robustness

The PerceptOR system is arguably one of the most complete, most robust implemen-

tations of outdoor ground vehicle autonomy for operations in unstructured environ-

ments. By performing a rigorous iterative testing regime, followed by a development

cycle to address problems with reliability and missing functionality, the final system

is capable of completely autonomous driving for long periods of time (multiple hours)
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and over large distances (multiple kilometres). However, it is notable that the oper-

ator provides much of the overall reliability and safety of the system. Although the

system worked most of the time, the operator was solely responsible for identifying

malfunctions at the highest level. Initially the operator did not have enough feedback

to perform this function, so additional sensors (video cameras) were added specifically

for this purpose.

In the near future of ground vehicle robotics, commercial viability will require the

development of safe, robust systems that employ ever fewer operators controlling ever

more autonomous vehicles. The current state-of-the-art AUGV systems operating in

completely unstructured environments require operator supervision and intervention

at some level. This is unlikely to change in the near future, due to the complexity of

the environment, and the current inadequacy of perception systems to deal with this.

It is the ratio of time invested by an operator to monitor or manually control one

robot, compared to the amount of time that the robot can spend completely free from

supervision that dictates how many robots a single operator could feasibly control.

If multiple robots are to be controlled by a single operator, then an absolute require-

ment will be the reduction in operator supervision. This does not necessarily require

completely persistent autonomy, where sensors and algorithms never fail, rather it

requires a more broad definition of persistent autonomy, where the failure state of a

whole system is persistently known. This is identical to the concept of ‘high integrity’

in the navigation community [11].

Provided that autonomous systems can calculate when perception algorithms are not

adequately spanning the tasks (for whatever reason, including sensor failure), operator

intervention is required, but constant supervision is not. This increases the robots per

operator to a number potentially greater than one. Autonomous systems can safely

and reliably be deployed as soon as this is achieved, even if intervention is required

quite frequently in the short term. The commercial viability of these systems will

depend on the specific application and the costs involved. Ultimately the autonomous

durations will increase as the model fidelity is improved incrementally over time. In

Chapters 3, 4 and 5, algorithms and methods are developed to promote robustness and
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safety by providing design-time and run-time estimations of uncertainty due to some

of the most common sources of error that are found in typical perception algorithms.



Chapter 3

Identification of Mapping Errors

In Chapter 2 the three primary sources of error for mapping were identified as:

• Systematic errors due to sensor misalignment and synchronisation,

• Stochastic uncertainty due to sensor measurement errors,

• Sensor interpretation errors due to unmodeled environmental conditions.

In this chapter, the effect of these errors on the mapping process will be analysed in

detail. When mapping is used as part of the exteroceptive sensor feedback process in

an autonomous unmanned ground vehicle (AUGV) control system, the safety of the

chosen actions relates directly to the accuracy of the map. Therefore an understanding

of the sources of error and the magnitude of their effect on mapping is critical for

robust and safe implementations of AUGV systems.

This chapter is divided into four sections. Firstly, Section 3.1 introduces the coordi-

nate frames and transformations that are required regardless of the choice of map-

ping algorithm or representation. In Section 3.2 a sensitivity analysis is presented

to quantify the magnitude of error in the map, due to varying sensor and platform

configurations, localisation systems and timing considerations. This allows mapping

errors to be considered at design-time and monitored actively at run-time. Section

27
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3.3 presents experimental data that validate the mathematics and provide greater

understanding of the empirical nature of the mapping errors. Finally, Section 3.4

discusses the potential for an interpretive perception component to add unobservable

errors to the system. The analysis in this chapter provides a basis for Chapter 4, in

which solutions are presented to mitigate and manage mapping errors, and Chapter

5, in which solutions to reduce perceptual misinterpretation are given. The approach

taken in Section 3.1 and 3.2 is similar to the analysis done in the first half of [23]

and is mentioned in [24]. This thesis provides a complete model of the errors and a

rigorous evaluation of their effect.

3.1 Coordinate Frames and Transformations

In almost all non-trivial mapping scenarios, the sensors can only sample from a small

region of the larger area to be mapped. The complete map is built by physically

moving the sensors (by moving the entire platform, or by moving the sensors in-

dependently from the platform, or both) and fusing the information into a single

representation. Regardless of the choice of mapping algorithm, the use of a sin-

gle representation usually necessitates the use of several coordinate frames. In this

section, the three coordinate frames that will be used are described, as are the trans-

formations between them. In Section 3.2, a sensitivity analysis is done to determine

the error in the final map due to these transformations.

3.1.1 Sensor, Body and Navigation Coordinate Frames

The three main coordinate frames used in this chapter are the sensor, body and

navigation frames, shown in Figure 3.1 for a typical UGV platform configuration,

although they apply equally well to any type of mobile platform with one or more

exteroceptive sensors. The choice of these three frames arises from the utility of

having a frame attached to each of the components of the system: the sensor, the

vehicle and the operating environment, each of which is discussed in detail below. In
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Figure 3.1: An example configuration of the sensor, body and navigation frames superim-
posed on the CAS Outdoor Research Demonstrator platform. The sensor frame, denoted s,
is fixed to the scanning axis of a 2D laser range scanning sensor. The body frame b is fixed
to the centre of gravity of the vehicle (although it can be fixed to any point on the vehicle
that is rigidly connected). The navigation frame n is fixed to some stationary point in the
world.

this thesis, all of the mathematics used to describe the frames are explicitly formed

in three dimensions, even though some UGV implementations operate with a strictly

two dimensional representation (such as building a two dimensional map of the walls

of an indoor office space). All of the three dimensional equations can be used to solve

two dimensional problems by setting one of the axes to a constant (in this case Z = 0

is the most natural choice). Although the two dimensional equations are simpler

to analyse, the physical implementations of all UGV systems are intrinsically three

dimensional anyway, so the full three dimensional analyses allow the assumptions of

a two dimensional world to be tested.
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Figure 3.2: The sensor frame for a 2D scanning laser (SICK-LMS291). The vectors Xs,
Y s and r are coplanar. θ is the positive angle around the Zs axis, with an angle of 0
corresponding to a point on the Xs axis.

Sensor Frame

The sensor frame si is defined by its alignment to the ith sensor, so if multiple sensors

are available, then each has a unique sensor frame. If only one sensor is present, then

its frame is denoted simply by s. In this chapter, no assumption is made about the

type of sensor information, but it is assumed that the sensor is capable of providing

a three dimensional spatial location ps ≡ [psx, p
s
y, p

s
z]
T in s, corresponding to the

measurement. For example, a laser range scanner, a radar range scanner and a

stereo camera pair provide different types of information (near infra-red reflectivity,

radar reflectivity and colour respectively), but they all provide this information with

associated three dimensional coordinates in the sensor frame. A particular sensor may

natively provide information in polar coordinates, but the three Cartesian coordinates

are directly observable from this. This chapter does not apply to sensors where the

full three dimensions are not directly observable, such as a single camera.

As an example, Figure 3.2 illustrates the sensor frame for a SICK-LMS291 2D range

scanning laser. The laser returns the range r and the bearing θ to an area of the

environment that reflects enough of the transmitted laser energy to exceed an internal

threshold. This sensor provides the full three dimensional spatial information as given
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by the polar to Cartesian conversion:

ps =


r cos(θ)

r sin(θ)

0

 (3.1)

Body Frame

The body (or platform) coordinate frame b is fixed at some point on the mobile

platform. For this thesis, the frame is positioned so that the Xb axis points forward,

the Y b axis points to the right and the Zb axis points down, as illustrated in Figure

3.1. The mathematics in this thesis requires a right handed frame, fixed to a point

that is rigidly connected to the vehicle, but other choices that satisfy this requirement

are possible. Sensors are located with respect to b, by the constant offset denoted rbs,

which is defined as:

rbs ≡


rbs,x

rbs,y

rbs,z

 (3.2)

For clarity, this vector is denoted r to emphasise that it is a constant. It describes

the translational position of the sensor frame origin, in the body frame. The rotation

of the sensor is described by the three constant Euler angles (yaw about Zb, pitch

about Y b and roll about Xb) needed to rotate frame b to align with frame s. For

convenience, these parameters are grouped into a single vector, denoted Φb
s, given by:

Φb
s ≡


φbs,z

φbs,y

φbs,x

 (3.3)

It is important to note that this vector is defined for convenience only. It is used to

group the Euler angles that describe a rotation and it has no direct application in
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linear algebra in this thesis. The ordering of the vector is used to represent the order

in which the axial rotations are concatenated. This will be discussed in more detail

below.

If multiple sensors are mounted on the one vehicle, then each has a unique frame si

with a unique rbsi and Φb
si to describe the mounting location on the platform. In this

way, the body frame provides a convenient point of reference with which to describe

the constant position of each sensor. Together, the grouped term {rbsi,Φb
si} describes

the six degree of freedom (6DOF) constant sensor pose.

Navigation Frame

The navigation coordinate frame n is fixed to an arbitrary point on the Earth and is

used to represent the stationary environment in which the vehicle operates. In this

thesis, the frame is chosen such that the Xn axis is metres north of the origin, the Y n

axis is metres to the east and the Zn axis is metres below the origin. The dynamic

pose of the body frame within the navigation frame is defined in a similar way to

the constant location of the sensors within b, defined above. Because the vehicle is

mobile, the translation and rotation of the vehicle within n is non-constant. The

translational position of the vehicle is denoted by pnb , and is defined as:

pnb ≡


pnb,x

pnb,y

pnb,z

 (3.4)

The rotation Euler angles of the vehicle are denoted by Ψn
b and are given by:

Ψn
b ≡


ψnb,z

ψnb,y

ψnb,x

 (3.5)

The terms {pnb ,Ψn
b } together describe the 6DOF location of the vehicle in the world,

and together they are referred to as the navigation solution, or vehicle pose. These
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terms are estimated by the navigation (or localisation) system. The body frame

provides a convenient reference to allow the specification of the sensor locations with

respect to the platform only, which allows the navigation system to be completely

independent of the sensor frame. Without the body frame, the navigation system

would have to provide an estimate of the pose of every sensor in n.

Global positioning systems (GPS) commonly provide position estimates in an ellip-

soidal coordinate system, as latitude, longitude and altitude above the mean sea level

(MSL). In this thesis, the navigation frame is strictly Cartesian, so a transforma-

tion from ellipsoidal to Cartesian coordinates is required. Redfearn’s formulae [25]

are used to perform the Transverse Mercator projection using the Mapping Grid of

Australia (MGA). This projection has better than millimetre accuracy everywhere in

Australia, so uncertainty due to this transformation is disregarded [26].

Choice of Frame for Mapping

In Chapter 2, it was argued that a generic all-purpose perception system would

be computationally intractable. To achieve computational tractability, assumptions

about the structure of the environment must be leveraged, to allow for simplifica-

tions in the complexity of the perceptive algorithms and a reduction in the sensing

requirements. The large variety of application domains has led to a large variety of

algorithms. Similarly, the available assumptions in the application-specific domain,

impact on the choice of frame in which to maintain mapped perceptive information,

or indeed whether a map is even required. In Section 2.2.1, a cargo handling system

was discussed in which a perceptive map was not actually required at all. This was

because the environment was highly structured, static, and known in advance, reduc-

ing the need to perceive it. By contrast, in Section 2.2.2, the system was designed for

operation in an unknown (or partially known) unstructured environment, requiring

large amounts of perceptive reasoning and the mapping of this information. When

a map is required, it can theoretically be maintained in s, b or n; the mathematics

required to do so can be specified, but the implementation may be significantly more

or less practical. The optimal choice of mapping frame depends heavily on the type of
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sensor, the type of platform, and the nature of the environment in which the vehicle

operates.

This thesis is concerned with the sub-set of sensing and mapping systems where the

sensor cannot perceive the entire environment at one time or from one perspective,

requiring the mobile platform to be used as a scanner to successively build the map

over time. In this scenario, the sensor information could theoretically be maintained

in any of the three frames s, b or n, but if either s or b were used, the static contents of

the map would have to be shifted as the frame moves. Mathematically this is possible,

but any practical implementation would be inefficient [8, §4.4]. For this reason, all of

the successive map building examples in Chapter 2 use n for the mapping frame and

this is common in the literature generally.

The origin of n can be chosen to align to a standard global coordinate system (such

as MGA) or it can be set to an arbitrary fixed point on the ground. Both are

equivalent in terms of the mathematics that describes the frames. However, the choice

between the two depends on many factors and has some significant impacts on the

system. If there is no source of global information in the entire system, then it is not

possible to estimate the vehicle position with a standard origin for n. In this case, the

localisation must be done with respect to some convenient arbitrary origin. This thesis

refers to arbitrary choices for n as local navigation frames (convenient choices for the

origin are often found within the operational environment of the vehicle, although not

necessarily), and standard choices for n are referred to as global navigation frames.

If there is a source of global information, then the choice to use a global frame will de-

pend on the quality and availability of this information. In Section 3.2, the sensitivity

of the transformation from s to n with respect to the navigation solution is calculated.

This in turn enables the system designer to specify how accurate the navigation sys-

tem must be, in order to keep the mapping accuracy above a chosen threshold. If

the quality and availability of navigation information is high enough that the global

uncertainty is always below the desired threshold (such as from a DGPS), then it

may be possible to permanently use a standard global frame for n. If the quality or

the availability of the global component of the navigation system is insufficient, then
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a locally fixed frame may be preferable. For example, it may be possible to calculate

the vehicle trajectory from one point to another with much higher accuracy than the

entire trajectory can be located in global coordinates. There are several key advan-

tages to using a standard global frame. Maps made from different platforms can be

easily shared without the need to correlate map features for alignment and they can

also be easily stored in a database and re-used at a later time. Places of interest such

as waypoints or targets can be specified more easily with global coordinates. On the

other hand, sudden rifts due to fluctuations in the GPS signal, or due to loop closures

in SLAM are common and often difficult to manage, particularly in terrain mapping

contexts.

3.1.2 Coordinate Transformations

The coordinate transformation of a point pi in frame i to a point pj in frame j is

parameterised by the offset and rotation between the two frames. Specifically, the

offset pji = [pji,x, p
j
i,y, p

j
i,z]

T is the location of frame i in frame j, and Φj
i = [φji,z, φ

j
i,y, φ

j
i,x]

denotes the ordered Euler rotation angles about the axes of j required to rotate frame

j to align with frame i.

The notation used here is similar to [27] and [28]. Each Euler angle specifies a rotation

of the frame about an orthogonal axis, while the point remains fixed in space. This is

known as a passive rotation [29]. Other equivalent parameterisations are commonly

used for rotations, such as quaternions [30, p373], Cayley-Klein parameters [31, p154],

4× 4 rotation and translation matrices [29][23], and active Euler angle rotations (in

which the point is considered to rotate instead of the frame) [29]. For Euler angle

rotations there are twelve possible conventions for the ordering of the angles [31, p154].

The ‘xyz convention’ Euler angle parameterisation is used in this thesis to allow for

‘human interpretable’ parameters, although any of the alternatives could be used

instead. This convention is commonly used in engineering applications, particularly

when used to express vehicular motion [31, p154].

The three passive rotations are combined by first rotating the frame about its Z axis.
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Figure 3.3: Positive Roll (φx), Pitch (φy) and Yaw (φz) angles shown about the positive
axes of the vehicle body frame.

The frame is then rotated about its Y axis, which may have moved as a result of

the Z rotation, then finally about its X axis, which may have moved due to either

of the previous actions. This parameterisation and ordering is well suited to vehicle

based coordinate frames, because it yields familiar ‘human readable’ descriptions of

the Euler angles; φz corresponds to yaw, φy corresponds to pitch and φx corresponds

to roll as shown in Figure 3.3. If another ordering were chosen, such as rotating

about Z, X then Z again, an equivalent but numerically different set of three angles

could be chosen to parameterise a rotation, but they would not have understandable

descriptors such as yaw, pitch and roll.

Each orthogonal rotation is specified by a 3× 3 rotation matrix C, annotated with a
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single subscript (x,y or z) indicating the orthogonal axis of rotation:

Cz =


cos(φjz) sin(φjz) 0

− sin(φjz) cos(φjz) 0

0 0 1



Cy =


cos(φjy) 0 − sin(φjy)

0 1 0

sin(φjy) 0 cos(φjy)



Cx =


1 0 0

0 cos(φjx) sin(φjx)

0 − sin(φjx) cos(φjx)

 (3.6)

With sin() and cos() replaced with s() and c() respectively, the orthogonal Euler angle

rotations combine to produce the 3× 3 Direction Cosine Matrix (DCM), denoted Cj
i ,

indicating a rotation from frame i to frame j [27, p22]:

Cj
i = [CxCyCz]

T (3.7)

Cj
i =


c(φz)c(φy) c(φz)s(φy)s(φx)− s(φz)c(φx) c(φz)s(φy)c(φx) + s(φz)s(φx)

s(φz)c(φy) s(φz)s(φy)s(φx) + c(φz)c(φx) s(φz)s(φy)c(φx)− c(φz)s(φx)
−s(φy) c(φy)s(φx) c(φy)c(φx)


(3.8)

The coordinate transformation from i to j is given by this rotation and the addition

of the translational offset:

pj = Cj
ip

i + pji (3.9)
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Two coordinate transformations are combined to transfer the sensor information in

s, via the body frame b to the navigation frame n. A spatially located sensor sample

ps in the sensor frame can be transformed into the vehicle body frame:

pb = Cb
sp

s + rbs (3.10)

where rbs and Cb
s are determined from the mounted sensor location (offset and rotation

respectively) in the body frame. This transformation must be done whenever the

sensor information is to be interpreted with respect to the vehicle.

Given the vehicle body pose pnb and Cn
b in n from the navigation system, a point pb

in the body frame can be transformed into the navigation frame:

pn = Cn
bp

b + pnb (3.11)

By combining Equations 3.10 and 3.11 the sensor information can be mapped ; a point

in s can be transformed to n:

pn = Cn
b (Cb

sp
s + rbs) + pnb (3.12)

This equation is required whenever sensory information from a mobile platform is

placed in an earth fixed frame such as n, and will be used regardless of the choice of

mapping algorithm or representation. Any errors in the input parameters of Equation

3.12 will result in corresponding errors in the output pn and hence in the map. This

equation depends on:

• The spatial sensor measurements ps, subject to sensor noise.

• The sensor position and alignment to the body frame rbs and Φb
s, subject to

measurement or calibration error.

• The navigation system estimate of the vehicle pose pnb and Ψn
b , subject to

estimation uncertainty.
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To minimise errors in the map, the errors in the quantities above must be minimised.

The relative importance of the different sources of error and the level to which they

must be reduced depends on the accuracy requirements of the map and on the sensi-

tivity of Equation 3.12 to these parameters. The sensitivity of pn to errors in each of

the input parameters will be analysed in Section 3.2.

3.2 Sensitivity Analysis

Section 3.1 introduced the coordinate frames and transformations required for mo-

bile exteroceptive sensor mapping applications. It was shown that Equation 3.12 is

required in all cases where the sensor information is to be mapped in the navigation

frame, regardless of the particular choice of mapping algorithm. In Section 3.2.1 the

sensitivity of the output of Equation 3.12 with respect to errors in the input is quan-

tified. This is extended in Section 3.2.2 to consider the timing implications that arise

from any practical implementation of the system. This analysis enables the system

designer to know how accurate the sensor, calibration, localisation and timing must

be, in order to achieve a desired mapping accuracy.

3.2.1 Coordinate Transformation Sensitivity

In this Section, a sensitivity analysis is done with respect to the coordinate transfor-

mation from the sensor to navigation frame, Equation 3.12. The sensitivity of the

spatial location of points in the navigation frame pn with respect to errors in the

input of this equation is determined. As shown in Section 3.1.2, errors in the input

of this equation arise from:

• Sensor measurement noise or sensor measurement errors,

• Measurement or calibration errors of the mounted sensor position,

• Localisation estimation errors.
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Consequently, the effects on the map due to the sensor, calibration and the navigation

system can be determined from this analysis.

Calculating the sensitivity of the transformation equation yields two distinct and

important benefits. Firstly, if the uncertainty of the input parameters is known,

then the uncertainty of the output (in this case the map) can be estimated online

(during real-time operation). This enables a basic form of fault detection by ensuring

that the uncertainty in the map remains below a pre-defined threshold. Secondly,

the sensitivity functions can be analysed off-line, in order to highlight likely sources

of mapping error due to the geometry of the sensor and platform. This enables the

designer to make reasonable decisions about where to focus effort or money to achieve

a required accuracy in the navigation frame. For example, the designer can determine

whether money should be spent on higher accuracy navigation or sensing equipment,

or whether time and effort should be spent on accurately mounting and calibrating

the sensing equipment.

Sensitivity

The sensitivity of an equation to variation in the input parameters is given by the

partial derivatives of the outputs with respect to the individual input parameters.

When calculated analytically, this is the ‘direct differentiation method’ described in

[32]. For a given function y = f(ρ), the sensitivity is given by:

Syiρj(ρ) =
∂yi
∂ρj

, yi ∈ y, ρj ∈ ρ (3.13)

where Syiρj(ρ) is the sensitivity of the output yi with respect to the input parameter

ρj, and is potentially a function of all of the input parameters. This represents the

effect on the output due to an infinitesimal variation in the chosen input parameter.

The meaning of the partial derivatives of the single transformation in Equation 3.9

becomes clearer when the definition of the derivative is considered [33, p100]. With

Equation 3.9 represented by f(), its derivatives ∂pj

∂ρ
, ρ ∈ {Φj

i ,p
j
i ,p

i} are defined as:
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∂pj

∂ρ
= lim

ρerror→0

f(ρ+ ρerror)− f(ρ)

ρerror

∂pj

∂ρ
= lim

ρerror→0

p̂j − pj

ρerror
(3.14)

In this notation, the hat above a quantity indicates that it is an estimate of the true

quantity, subject to error. The estimate p̂j differs from the true point pj due to an

error in the parameter ρ of size ρerror. So the partial derivatives form an infinitesi-

mal vector, as illustrated in Figure 3.4 for the 2D case. The partial derivatives are

the gradients of the multidimensional transformation function. The transformation

Equations 3.9, 3.10, 3.11 and 3.12 are non-linear, but for a small ρerror,
∂pj

∂ρ
can be

thought of as the amplification of the output error due to the input error, or the sen-

sitivity. If ρerror is sufficiently small, linearisation is acceptable, and the error vector

can be approximated by:

p̂j − pj ≈ ∂pj

∂ρ
× ρerror (3.15)

Figure 3.4: The error after transforming a point pi from frame i to frame j, shown for the
2D case for simplicity. The vector p̂j is the result of an error in one of the parameters that
describes the position and rotation of frame i in frame j. The vector interpretation of ∂pj

∂ρ
is shown in red.
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Online Estimation of Mapping Error

In this Section, the sensitivity of the spatial location of points in the navigation frame

pn with respect to all of the input parameters to Equation 3.12 is quantified. If the

uncertainty of the input parameters is known while the system is running, then the

uncertainty in the navigation frame at any instant can be calculated. The calculation

of a mean estimate p̂n and covariance Σpn of the true location pn is derived below.

By maintaining the uncertainty of the estimated points in the navigation frame, the

accuracy of the map is known at all times. In some applications the estimation of

instantaneous uncertainty is sufficient for robustness and unrelated to safety. For

example, if the task is to sample and map data from the environment at whatever

accuracy is available, then recording the accuracy is useful, so that the quality of

the information can be assessed, but not necessarily critical to mission success. In

other applications where the mapped information is to be used online to determine

appropriate control actions, such as the predictive control architecture seen in Chapter

2, then estimating the instantaneous uncertainty is critical for robustness and safety.

Recall from Chapter 2 that predictive controllers predict the future state of the vehicle

by simulating possible control actions over the perceived environment and this may

not be capable of handling arbitrarily large uncertainty in the map. In this case,

calculation of Σpn enables fault detection in a basic form, where a fault is defined

as the instantaneous uncertainty of p̂n exceeding some predefined threshold. It also

enables the use of policies for handling varying degrees of mapping accuracy, or for

manipulating the vehicle position or sensor configuration to improve the accuracy.

The input parameters of Equation 3.12 consist of the spatial sensor data ps, the loca-

tion of the sensor in the body frame {rbs,Φb
s}, and the navigation solution {pnb ,Ψn

b }.
This is a total of 5 input vectors, each containing 3 components (either spatial dis-

tances {px, py, pz} or rotation angles {φx, φy, φz}), yielding a total of 15 scalar inputs.

The single output vector pn has three spatial components {pnx, pny , pnz}. Consequently

there are a total of 3 × 15 = 45 sensitivity functions, one for every combination of

input to output. These are given by each of the individual terms of the Jacobian ma-

trix for Equation 3.12, shown with sub-matrices for visual separation of the 5 input
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vectors:

J=


∣∣∣∣∣∣∣∣∣
∂pnx
∂psx

∂pnx
∂psy

∂pnx
∂psz

∂pny
∂psx

∂pny
∂psy

∂pny
∂psz

∂pnz
∂psx

∂pnz
∂psy

∂pnz
∂psz

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂pnx
∂rbs,x

∂pnx
∂rbs,y

∂pnx
∂rbs,z

∂pny
∂rbs,x

∂pny
∂rbs,y

∂pny
∂rbs,z

∂pnz
∂rbs,x

∂pnz
∂rbs,y

∂pnz
∂rbs,z

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂pnx
∂φbs,x

∂pnx
∂φbs,y

∂pnx
∂φbs,z

∂pny
∂φbs,x

∂pny
∂φbs,y

∂pny
∂φbs,z

∂pnz
∂φbs,x

∂pnz
∂φbs,y

∂pnz
∂φbs,z

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂pnx
∂pnb,x

∂pnx
∂pnb,y

∂pnx
∂pnb,z

∂pny
∂pnb,x

∂pny
∂pnb,y

∂pny
∂pnb,z

∂pnz
∂pnb,x

∂pnz
∂pnb,y

∂pnz
∂pnb,z

∣∣∣∣∣∣∣∣∣

∣∣∣∣∣∣∣∣∣
∂pnx
∂ψnb,x

∂pnx
∂ψnb,y

∂pnx
∂ψnb,z

∂pny
∂ψnb,x

∂pny
∂ψnb,y

∂pny
∂ψnb,z

∂pnz
∂ψnb,x

∂pnz
∂ψnb,y

∂pnz
∂ψnb,z

∣∣∣∣∣∣∣∣∣


(3.16)

The Jacobian matrix can be expressed in vector form, yielding:

J =
[
∂pn

∂ps
∂pn

∂rb
∂pn

∂Φb
s

∂pn

∂pnb

∂pn

∂Ψn
b

]
(3.17)

Each of the 45 individual functions in the Jacobian matrix can be evaluated by the

numerical approximation of the derivative in Equation 3.14, with Equation 3.12 for

f():

∂pn

∂ρ
≈ p̂n − pn

ρerror
, ρerror ≈ 0 (3.18)

If the sensitivity calculations are done with the numerical derivative of Equation

3.18, then this corresponds to the ‘brute force method’ in [32]. The problem with this

approach is that it is difficult to know what value to choose for ρerror to guarantee the

accuracy of the calculation. The analytical derivation of all of the partial derivatives

in the Jacobian matrix of Equation 3.17 is presented in Appendix A, and should be

used in preference to Equation 3.18 for greater accuracy.

The uncertainty of all of the input parameters can be represented by a 15 × 15
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covariance matrix Q. An example of the structure of Q is given by:

Q =



σ2
ps 0 0 0 0

0 σ2
rbsr

b
s

σ2
rbsΦ

b
s

0 0

0 σ2
Φb
sr
b
s

σ2
Φb
sΦ

b
s

0 0

0 0 0 σ2
pnb pnb

σ2
pnbΨn

b

0 0 0 σ2
Ψn
b pnb

σ2
Ψn
bΨn

b


(3.19)

where the off block-diagonal elements are all zero and each bold term represents a

3× 3 sub-matrix. For example:

σ2
rbsΦ

b
s

=


σ2
rbs,xφ

b
s,x

σ2
rbs,xφ

b
s,y

σ2
rbs,xφ

b
s,z

σ2
rbs,yφ

b
s,x

σ2
rbs,yφ

b
s,y

σ2
rbs,yφ

b
s,z

σ2
rbs,zφ

b
s,x

σ2
rbs,zφ

b
s,y

σ2
rbs,zφ

b
s,z

 (3.20)

The matrix Q describes the variance of all of the individual parameters on the diag-

onal, and the cross-correlation between all of the permutations of parameter pairs on

the off-diagonals. In the example above, it is assumed that the sensor information is

not affected by the location of the sensor on the platform, nor by the location of the

platform in the environment. The mounted sensor location is also uncorrelated to the

platform location. However, the translation and rotation errors of the sensor location

may be correlated, depending on how they are calculated, and the translation and

rotation errors of the vehicle position are usually correlated. The independence as-

sumptions are expressed mathematically by the zero cross-correlation terms between

the uncorrelated parameters in Q. This version of Q is written as an example, and

the independence assumptions may be relaxed or tightened further. For example, an

auto-calibration method might be used to refine the estimate of the sensor location

on the platform, by first allowing the location to be non-constant, then accepting a

non-zero cross-correlation between it, the sensor data and the vehicle location. In

other words, sensor observations about the world may lead to an improved estimate

of the sensor location. If simultaneous localisation and mapping (SLAM) is used ([8,

§37] for an overview), then the correlations between the sensor data and the platform
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pose will likely be non-zero. Both of these examples require some understanding of

the structure in the operating environment of the vehicle. In the most general case,

where no structural assumptions are made, these correlations are virtually impossible

to model due to the complexity of the world. The mathematics in this thesis does not

rely on any of the assumptions relating to the structure of Q. It is merely assumed

that appropriate values for Q, for a given application, can be determined.

If the uncertainty of all of the inputs is available in the form of Q, then the linearised

uncertainty of p̂n can be calculated:

Σpn = JQJT (3.21)

This yields a linearised three dimensional Gaussian uncertainty ellipse for the estimate

of pn:

p̂n ∼ N (pn,Σpn) (3.22)

Equation 3.22 can be used to quantify the mapping accuracy of a system, given all

of the sources of uncertainty, which are normally available.

• The uncertainty due to the sensor σ2
ps is typically supplied by the sensor model.

• The uncertainty due to sensor misalignment σ2
rbsr

b
s
, σ2

rbsΦ
b
s

and σ2
Φb
sΦ

b
s

are given by

the results of calibration (as will be shown in Section 4.1.2), or manual estimates

of measurement error.

• The navigation uncertainty σ2
pnb pnb

, σ2
pnbΨn

b
and σ2

Ψn
bΨn

b
is provided by the navi-

gation system.

This can be used to track the mapping accuracy at run-time, to dynamically detect

when certain elements of the system are not accurate enough to meet the mapping

requirements. For systems that use the map as an integral part of the control loop,

a minimum requirement for a robust and safe system, is that this equation be used
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for comparison with some predefined threshold of mapping accuracy and a policy

must be enacted whenever the accuracy drops below this threshold. In its simplest

form the policy can call for a system halt and possibly user intervention. More com-

plex, autonomous approaches may be used to alter the control methodology to cope

with the increase in perception uncertainty. In some cases it may be possible to plan

the vehicle trajectory or sensor configuration by explicitly considering uncertainty, in

order to maintain the requisite level of accuracy. This is the approach taken by Par-

tially Observable Markov Decision Processes (POMDPs) [34], or ad-hoc yet tractable

equivalents such as [35] in which the expected future uncertainty is considered as part

of the planning process. For perception systems in general, observing and managing

uncertainty is a core requirement for robustness and safety. For perception systems

that use a mobile platform and an exteroceptive sensor capable of providing complete

spatial information, Equation 3.22 is a core component for robustness and safety when

coupled with an appropriate policy.

Offline Estimation of Mapping Error

In this section, the coordinate transformation of Equation 3.12 is analysed in order to

generalise about where the majority of error in p̂n is likely to come from. It will be

shown that angular errors due to sensor misalignment and navigation uncertainty, are

multiplied by a maximum of the distance to the sensor information in the sensor and

body frames respectively. The translational errors due to misalignment and naviga-

tion uncertainty contribute directly to the final error magnitude with no amplification

and are independent of the sensor range.

In the previous Section, the sensitivity of the sensor to navigation transformation of

Equation 3.12 was calculated, and each specific sensitivity function can be seen in

Appendix A. These functions are useful for computing the uncertainty of the estimate

p̂n at runtime when all of the input parameters are numerically quantified. For general

analytical purposes, however, where no particular vehicle and sensor geometry is

assumed, they are too highly coupled. Most of the partial derivatives are a function
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of most of the input parameters:

∂pn

∂ρ
= f(ps, rbs,Φ

b
s,p

n
b ,Ψ

n
b ), ρ ∈ {ps, rbs,Φb

s,p
n
b ,Ψ

n
b } (3.23)

so it is difficult to generalise about the effect of ρ. Appendix A provides the exact

parameter lists for every partial derivative term.

Several things are done in this Section for simplification. Firstly, the focus is placed

on the magnitude of error sensitivity rather than the direction, and the maximum

sensitivity to error is calculated as a ‘worst case scenario’. In other words, how

much can the output be affected, regardless of the direction of the error. Secondly,

the error sensitivity of the double transformation of Equation 3.12 is determined

by expanding the equation, then considering the rotations by separation into the

orthogonal components of Equation 3.6.

The partial derivative terms for the orthogonal rotations in Equation 3.6, when ap-

plied to a point p are given by:

∂Cφzp

∂φjz
=


sin(φjz)px − cos(φjz)py

cos(φjz)px + sin(φjz)py

0


∂Cφyp

∂φjy
=


sin(φjy)px + cos(φjy)pz

0

− cos(φjy)px + sin(φjy)pz


∂Cφxp

∂φjx
=


0

sin(φjx)py − cos(φjx)pz

cos(φjx)py + sin(φjx)pz

 (3.24)

These terms describe the infinitesimal error vector due to errors in the rotation angle

when a point is rotated about a single orthogonal axis. The magnitude of the vectors

is given by:
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∣∣∣∂Cφzp

∂φjz

∣∣∣ =

√
(sin(φjz)px − cos(φjz)py)2 + (cos(φjz)px + sin(φjz)py)2

=
√
p2
x + p2

y∣∣∣∂Cφyp

∂φjy

∣∣∣ =

√
(sin(φjy)px + cos(φjy)pz)2 + (− cos(φjy)px + sin(φjy)pz)2

=
√
p2
x + p2

z∣∣∣∂Cφxp

∂φjx

∣∣∣ =

√
(sin(φjx)py − cos(φjx)pz)2 + (cos(φjx)py + sin(φjx)pz)2

=
√
p2
y + p2

z (3.25)

so a single orthogonal rotation has a sensitivity equal to the distance to the point in

the plane of rotation. The magnitude of a vector remains unchanged after rotation

[31, p156], so if two points in frame i are rotated to frame j, the magnitude of the

vector between those points is also not altered:

Figure 3.5: This figure illustrates a transformation of a point from the body frame to the
navigation frame. An error is already present in the body frame due to the transformation
from the sensor frame. This is represented by p̂b. The magnitude of this error is maintained
through the next transform from b to n, whether this transform introduces an additional
error or not. (The pipe symbol ‘given’ is borrowed from the probabilistic community)



CHAPTER 3. IDENTIFICATION OF MAPPING ERRORS 49

pj2 − pj1 = (Cj
ip

i
2 + pji )− (Cj

ip
i
1 + pji )

= Cj
i (p

i
2 − pi1)

|pj2 − pj1| = |pi2 − pi1|

(3.26)

Therefore, when multiple rotations are combined as in Equation 3.7, the subsequent

rotations do not alter the magnitude of the partial derivative vectors. This is illus-

trated in Figure 3.5. Recall from Equation 3.7 that the direction cosine matrix Cj
i

is formed by combining the three orthogonal rotations in turn. The input point for

each orthogonal rotation is the output of the previous rotation. Therefore all that

can be said for a general geometric configuration is that the sensitivity of the com-

plete rotation Cj
i to errors in each of the Euler angles, varies from a maximum of the

distance to the original point pi to a minimum of complete insensitivity:

min(Spj

φ ) = 0

max(Spj

φ ) = |pi| (3.27)

This depends entirely on the specific geometry of the point, the coordinate frames

and the set of Euler angles. For a particular orthogonal rotation, if the result of the

previous rotation leaves the point directly on the current axis of rotation, then no

amount of rotation will alter the coordinate of that point. In this case the sensitivity

with respect to the current Euler angle is zero. The sensitivity reaches a maximum

when the previous rotation leaves the point such that the vector from the origin to

the point is perpendicular to the current axis of rotation.
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Equation 3.12 can be expanded:

pn = Cn
bC

b
sp

s + Cn
b r

b
s + pnb (3.28)

From this equation and the logic above, it can be seen that the Euler angles of

rotation from the body to sensor frame Φb
s, have a maximum sensitivity equal to the

sensor range |ps|. The navigation Euler angles Ψn
b have a maximum sensitivity of the

addition of the sensor range and the sensor offset |ps|+ |rbs|.

min(Spn

Φ ) = 0

max(Spn

Φ ) = |ps|

min(Spn

Ψ ) = 0

max(Spn

Ψ ) = |ps|+ |rbs| (3.29)

If a translational error vector e is added to ps, rbs or pnb , then by Euler’s theorem

it is clear that |e| will propagate without change through the transformation (as in

Figure 3.5), resulting in an error vector of the same size in pn, so the sensitivity of

these terms is 1. This result is also verified analytically by calculating the magnitude

of the derivatives for Equation 3.12 directly:

∣∣∣∂pn

∂psx

∣∣∣ =
∣∣∣∂pn

∂psy

∣∣∣ =
∣∣∣∂pn

∂psz

∣∣∣ =
∣∣∣ ∂pn

∂rbs,x

∣∣∣ =
∣∣∣ ∂pn

∂rbs,y

∣∣∣ =
∣∣∣ ∂pn

∂rbs,z

∣∣∣ =
∣∣∣ ∂pn

∂pnb,x

∣∣∣ =
∣∣∣ ∂pn

∂pnb,y

∣∣∣ =
∣∣∣ ∂pn

∂pnb,z

∣∣∣ = 1

(3.30)

Spn

ps = Spn

rbs
= Spn

pnb
= 1 (3.31)

The derivation of this result is straightforward, but excessively large to print. It can be

obtained by performing the matrix multiplication in Equation 3.28. The magnitude is
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determined as
∣∣∣∂pn

∂ρ

∣∣∣ =
√

(∂pnx
∂ρ

)2 + (
∂pny
∂ρ

)2 + (∂pnz
∂ρ

)2. This can then be simplified with

the identity: cos2 + sin2 = 1.

In most cases, the translational offset between the sensor and body frame is small

when compared to the operational range of the sensor; the term multiplied by the

sensor range will typically dominate. For these applications, the general sensitivity

analysis can be summarised:

• The magnitude of angular errors is amplified by the sensor range.

• The magnitude of translational errors is propagated with no amplification.

For ground vehicle applications where the sensor range is significantly larger than the

translational navigation uncertainty, the sensor offsets, and the distance between the

body and sensor frames, the angular errors are dominant. As an example, for a sensor

measurement at 60m range and an angular error (in either the navigation solution or

the sensor alignment) of 1 degree, this will result in a ‘worst case’ error of 1.0m in

the map, using Equations 3.29 and 3.15.

3.2.2 Sensitivity to Timing Errors

The coordinate transformation in Equation 3.12 has been analysed to determine the

sensitivity to spatial measurement errors (errors in the measurement of the sensor

mount location and vehicle pose estimation errors from the navigation system). This

Equation combines {ps, rbs,Φb
s} from the sensor and {pnb ,Ψn

b } from the navigation

system. In almost all practical implementations of mapping with a sensor mounted

on a mobile platform, these two systems are physically separate. This usually means

the systems have separate timing sources, which creates a possible error in time that

does not feature in the basic transformation equations. This is not the case if the

only source of information to the navigation system is the sensor that is also used for
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Figure 3.6: The error in pn due to a timing error between the sensor and navigation infor-
mation sources. In this figure, the vehicle is represented by the rectangles, the blue circles
represent the true location of a feature in the environment and the red circle represents the
erroneous perceived location. Figure A shows the true geometry of the system at t1. Figure
B shows the true geometry at some later time t2, after the vehicle has moved. Figure C
shows the perceived geometry, when inaccurate estimates of time are used. In Figure C, the
navigation solution from A is combined with the sensor observation from B, because the
time-stamps on that pair of data are incorrectly measured as equal. t̂si and t̂ni denote the
estimated sensor and navigation time-stamps for measurements that were actually taken
at time ti. Between t1 and t2 the vehicle moves forward, so the sensor range to the fixed
target decreases. In this example, the mismatch in timing creates the false perception that
the object in the map is nearer than it really is.

mapping. For example, a SLAM navigation application that uses 2D scan matching

from the sensor and no other information will have completely simultaneous sensing,

navigation and mapping. If any source of information with a separate timing system

is used to aid in navigation, then errors in timing between the sensor used for mapping

and the sensor used for navigation can exist. This section analyses the sensitivity of

pn to timing errors, by first extending the transformation equations to include the

effect of the different time sources, then to analyse the partial derivatives with respect

to timing error.

Because we are interested in the effect of timing on the spatial component of the data,

a constant time offset of the whole system has no effect. For example, if all of the
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Figure 3.7: Timing sources for a typical implementation of a mapping system, using a 2D
range scanning laser and a GPS based navigation system. In this case, the laser information
is time-stamped by the sensor processor, whereas the GPS provides its own highly accurate
timing signal. The mapping system may be running with a third timing source, but it
uses the time-stamps provided by the other systems. Other configurations are also possible.
t̂si and t̂ni denote the estimated sensor and navigation time-stamps for measurements that
were actually taken at time ti.

system clocks are out by a week, then the whole map will have an error in time, but

the spatial integrity will be preserved. System timing errors only cause a spatial error

in the map when different sources of information required for the transformation in

Equation 3.12 are time-stamped with different errors with respect to the true time.

This is illustrated in Figure 3.6. Even if the whole system has a varying timing error,

it will not cause spatial errors if the offset is the same for all timing sources. If

the implementation separates the sensor and navigation sub-systems and each has

a separate time source, as shown in Figure 3.7, then a spatial error will be caused

whenever the sensor timing error differs from the navigation timing error. A sensor

measurement that was made at time ts has an estimated time-stamp denoted by t̂s.

Similarly, t̂n denotes the estimate of the true time tn, corresponding to the output of

the navigation system. If there is an error in the sensor timing system, then t̂s will

differ from ts and if there is an error in the navigation timing system, then t̂n will

differ from tn. This difference of timing errors is denoted te:
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te = (t̂s − ts)− (t̂n − tn)

te = (t̂s − t̂n)− (ts − tn) (3.32)

When using Equation 3.12 to combine the sensor and navigation information, the

matching synchronous data are paired together by selecting equal estimated time-

stamps. With t̂s = t̂n applied to Equation 3.32:

te = tn − ts (3.33)

The timing difference error te is the difference between the true sample times of sensor

and navigation information when the data are transformed to the map. This quantity

is not measurable in typical real-world systems, however the sensitivity of the map

with respect to te is analytically calculable. Calculation of this sensitivity allows

the designer to specify bounds on the timing sub-systems, given a desired mapping

accuracy.

For a particular timing error, the faster the vehicle is moving (translational and

rotational), the worse the spatial error will be, as can be seen in Figure 3.6. The

dependence of the mapping error on the vehicle velocity is therefore intuitively clear.

In fact, the effect of timing errors can be thought of in terms of the sensitivity due

to navigation errors. The amount that the vehicle moves during the time difference

corresponds directly to a spatial error in the vehicle pose pnb and Ψn
b with respect to

the sensor data. This in turn can be added to any errors already present in these

navigation estimates p̂nb and Ψ̂n
b , and the conclusions about the sensitivity of pn from

Section 3.2.1 can be applied.

This is shown analytically by applying the chain rule [33, p794] to Equation 3.12,

reproduced below and substituted by f():
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pn = Cn
b (Cb

sp
s + rbs) + pnb

pn = f(ps, rbs,Φ
b
s,p

n
b ,Ψ

n
b ) (3.34)

Considering the practical implementation of this equation to process sensor data for a

single chosen time-stamp, pnb and Ψn
b become a function of the time synchronisation

error te:

pn = f(ps, rbs,Φ
b
s,p

n
b (te),Ψ

n
b (te)) (3.35)

and from the chain rule for partial differential equations, this yields:

∂pn

∂te
=

∂pn

∂pnb

∂pnb
∂te

+
∂pn

∂Ψn
b

∂Ψn
b

∂te

∂pn

∂te
=

∂pn

∂pnb
ṗnb +

∂pn

∂Ψn
b

Ψ̇n
b (3.36)

The timing error causes an absolute rotation and translation error, due to the motion

of the vehicle during the erroneous period of time. The sensitivity of the map with

respect to these absolute errors was calculated in Section 3.2.1, so the conclusions

about the worst case sensitivity from Equations 3.29 and 3.30 can be used to provide

bounds for the timing error sensitivity. Combining these equations with Equation

3.36, the minimum and maximum sensitivities with respect to te are given by:

min(Spn

te ) = |ṗnb |

max(Spn

te ) = |ṗnb |+ |Ψ̇n
b | × (|ps|+ |rbs|) (3.37)

The timing difference error can be incorporated into the real-time calculation of map-
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ping uncertainty by extending the Jacobian matrix of Equation 3.17 to include the

partial derivatives with respect to te:

J =
[
∂pn

∂ps
∂pn

∂rb
∂pn

∂Φb
s

∂pn

∂pnb

∂pn

∂Ψn
b

∂pn

∂te

]
(3.38)

This represents a 3 × 16 matrix. The uncertainty of te is then added to the system

uncertainty matrix Q (now a 16× 16 matrix):

Q =



σ2
ps 0 0 0 0 0

0 σ2
rbsr

b
s

σ2
rbsΦ

b
s

0 0 0

0 σ2
Φb
sr
b
s

σ2
Φb
sΦ

b
s

0 0 0

0 0 0 σ2
pnb pnb

σ2
pnbΨn

b
0

0 0 0 σ2
Ψn
b pnb

σ2
Ψn
bΨn

b
0

0 0 0 0 0 σ2
te


(3.39)

With J and Q taken from Equation 3.38 and 3.39 respectively, Equation 3.21 now

provides the uncertainty of a point in n, including the effect of the timing difference

error te. The individual partial derivative terms are shown in Appendix A.

When the translational offset between the sensor and body frame is small in compar-

ison to the operational range of the sensor, the temporal sensitivity analysis can be

summarised:

The magnitude of timing error is amplified by the vehicle’s translational velocity

plus the rotational velocity multiplied by the sensor range.

As an example, for a sensor measurement at 60m range an angular velocity of 10

degrees per second and a 10ms timing error, this will result in a ‘worst case’ error of

0.10m in the map, using Equations 3.37 and 3.15.
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3.3 Empirical Error Analysis

In Section 3.1 the requisite coordinate transformations for exteroceptive sensor map-

ping with a mobile platform were given and in Section 3.2 the sensitivity of these

transformations with respect to the inputs was determined. This enabled off-line cal-

culation of the expected mapping error for a given system configuration, and online

estimation of mapping uncertainty by using real-time estimates of the uncertainty

of the individual inputs. In this section, real data from a UGV system with an

exteroceptive sensor are used, and experiments are done to emphasise the effect of

individual sources of error. This serves to validate the analysis in previous sections,

and to illustrate the nature of the errors for a typical sensor configuration.

Recall that the only assumption made in this chapter is that the exteroceptive sensors

supply complete three dimensional spatial information. Provided this assumption is

met, the equations and analysis given so far are application independent; they are not

affected by the particular choice of sensor, mobile platform, environment or mapping

algorithm. In this section, real exteroceptive sensor data from a mobile platform

are used, so the figures and discussions here are specific to the configuration of this

platform. This section shows that the chosen configuration conforms to the ear-

lier mathematical predictions about error sensitivity, and additionally it provides a

qualitative insight into the nature of the errors that arise in a real system. Three

dimensional point cloud representations are used exclusively to visualise the mapped

sensor data. As a result, individual sensor samples remain separate after the trans-

formation to the navigation frame. Therefore, no assumptions are made about the

mapping algorithm or filtration method. For example, filtration methods such as ele-

vation maps or occupancy grids act to smooth the mapped data, potentially obscuring

the interpretation.

3.3.1 Experimental Configuration

The CAS Outdoor Research Demonstrator platform is used as the mobile data gath-

ering platform for the experiments in this section. As shown in Figure 3.8, data are
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Figure 3.8: The CAS outdoor research demonstrator platform, with multiple sensors at-
tached. The circled SICK LMS291 2D laser range scanner is used as the source of data for
the this section. As shown, the laser is mounted at the top centre of the platform, looking
forwards. The laser is pitched down 8 degrees from horizontal, and is mounted to align to
the frame with zero roll and yaw.

selected from a single two dimensional laser range scanner (SICK-LMS291), mounted

at the top centre position of the sensor frame. The laser is positioned with close to

zero yaw and roll angle with respect to the frame, and has approximately 8 degrees of

pitch down from horizontal. As the vehicle moves through the environment, it acts as

a ‘push broom’ scanner, successively building up the profile of the terrain in front of

the vehicle. This is illustrated in Figure 3.9. The sensor, body and navigation frames

s, b and n are positioned as shown earlier in Figures 3.1 and 3.3.
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Figure 3.9: Building a terrain map with a single SICK LMS-291 laser. The laser is mounted
at the top centre section of the sensor frame, and is angled down by 8 degrees from horizon-
tal. In this ‘push-broom’ configuration, the vehicle scans the terrain as it moves, successively
building the terrain map.

The sources of information are as follows:

• The SICK-LMS291 laser scanner provides range and bearing information, which

is converted from polar coordinates to the cartesian values of ps as per Equation

3.1 and Figure 3.2.

• The pose of the laser in the body frame {rbs,Φb
s} is calculated by the extrinsic

calibration method, that is presented later in Chapter 4.

• The navigation solution {p̂nb , Ψ̂n
b } is provided by a Novatel DGPS/GPS/INS

system, employing a Novatel ProPak-G2plus GPS receiver and a Honeywell

HG1700 AG17 inertial measurement unit (IMU).

• Timing is provided by computers that are synchronised using the Network Time

Protocol (NTP) [36, 37], which is described in more detail in Chapter 4.
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To examine the effect of individual errors in isolation, it is necessary to minimise all

errors, so that they can be re-introduced independently. In this section, the naviga-

tion system errors are minimised by adding DGPS infrastructure in the region of the

experiment. With the differential corrections, the navigation solution error is signifi-

cantly smaller than the individual errors being tested. The experiments that require

DGPS are over a smaller time-scale and distance than typical outdoor autonomous

operations. For large scale operations, this solution is not always applicable due to

the infrastructure requirements. In Chapter 4 methods to manage the errors when

DGPS is not permanently available are discussed and the techniques that are required

here to minimise sensor misalignment and the timing difference te are presented. For

this section, it will suffice to say that these errors have been reduced by enough, so

that mapping errors seen in the visualisations are almost entirely due to the particular

input error under examination. The purpose of this section is to illustrate the effect

of the individual errors, and information about the error minimisation methods can

be found in the following chapters.

3.3.2 Sensor Misalignment

To show the effect of sensor misalignment, an artificial environment is constructed by

placing a single vertical pole on a relatively flat surface. The vehicle gathers sensor

and navigation information from two straight passes through the environment, and

the sensor information is transformed into the navigation frame using Equation 3.12.

Only one set of sensor and navigation data is acquired, but the transformation is

performed twice: once using the ‘correct’ sensor pose {rbs,Φb
s}, and a second time

using an incorrect sensor pose, obtained by adding a two degree error to the yaw

angle φbs,z. The effect of the yaw angle error is illustrated in Figure 3.10 and Figure

3.11 shows this effect with respect to the two pass trajectory used in this experiment.

The point cloud produced by the ‘correct’ transformation is shown in Figure 3.12.

The pole appears vertical as in the real environment. With two degrees of error

added to φbs,z, the data are processed again. Figure 3.13 shows the point cloud after
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Figure 3.10: An illustration of the effect of an error in the yaw angle of the laser with
respect to the platform φbs,z. The blue circle represents a vertical pole at a fixed location.
The red circles represent the apparent position of the pole in the body frame due to the
error. The vectors pb and p̂b are separated by the yaw angle error, so the effect on the map
is reduced as the vehicle approaches the pole.

Figure 3.11: The effect of an error in the yaw angle of the laser with respect to the platform
φbs,z. The trajectory of the vehicle around the pole is shown in black. The resulting set of
errors in the navigation frame is shown (exaggerated) in red. Refer to Figure 3.10 for more
detail.

the vehicle has passed the pole once (the first half of the data-set is processed only),

and now the pole appears to be leaning. The complete data-set in which the vehicle

passes the pole twice is shown in Figure 3.14. Two separate poles are visible and

each one is angled to join at the top. This is precisely the phenomenon described

by the two dimensional illustrations in Figures 3.10 and 3.11. Recall from Section

3.2 that in general, angular errors such as φbs,z are magnified by a maximum of the



CHAPTER 3. IDENTIFICATION OF MAPPING ERRORS 62

Figure 3.12: A three dimensional point cloud visualisation of laser data, coloured by ele-
vation, taken from an environment with a vertical pole on flat ground. The laser data are
transformed to the navigation frame (seen here) by using Equation 3.12, with optimised
values for the sensor pose {rbs,Φb

s}.

sensor range. Due to the ‘push-broom’ scanning configuration, the bottom of the

pole is scanned from a longer range then the top of the pole, so the error decreases

from a maximum at the base to a minimum at the top. As the sensor misalignment

error is constant and the data were obtained with a relatively smooth trajectory, the

mapping error also appears non-random in nature. Although the pole is leaning, it

still contains significant structure. This structure will be used in Chapter 4 to reduce

the systematic alignment error.
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Figure 3.13: A three dimensional point cloud visualisation of laser data, coloured by eleva-
tion, taken from the same environment as Figure 3.12. An error of two degrees is added to
the laser yaw φbs,z. The vehicle passes the pole once, causing the incorrect appearance of a
single leaning pole.

Figure 3.14: A three dimensional point cloud visualisation of laser data, coloured by eleva-
tion, taken from the same environment as Figure 3.12. An error of two degrees is added to
the laser yaw φbs,z. The vehicle passes the pole twice from opposite directions, causing the
incorrect appearance of two separate leaning poles.
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3.3.3 Navigation Errors

This section shows the effect of typical navigation solution errors on the mapping of

sensor data. The type of errors that can be expected depends on the type of navigation

system that is employed. It is assumed that the navigation system employs some form

of Kalman filter [7], [38] to fuse multiple sources of data, to provide the minimum

mean squared error (MMSE) estimate of the vehicle pose. The MMSE estimate can

then be incorporated directly into the linearised error model that was presented in

Section 3.2. In the Kalman filtration framework, a process model is available to

predict how the vehicle will move in the absence of any sensory information, and

an observation model is used to apply relevant sources of sensor information to the

filter. The uncertainty increases each time a prediction is made, and is reduced with

each observation. The amount by which the uncertainty is reduced depends on the

certainty of the observation with respect to the certainty of the current pose estimate.

In navigation systems, the observations are not necessarily made at regular intervals,

and they often vary in certainty over time. In GPS based systems, environmental

factors (such as occlusion, multipath and atmospheric interactions [9, §5]) affect both

the availability and quality of information. In SLAM based systems (with or without

GPS), the availability and quality of information depends on the location of the

vehicle within the environment, because of the need to observe features. Navigation

errors have an impact over a wide range of time scales from variations that occur in

the order of seconds, to errors that are correlated in the short term and can only be

detected over longer durations, in the order of tens of minutes to hours. For example,

GPS multipath errors are caused when the environment adjacent to the GPS receiver

reflects the signal, causing an ambiguity in the range estimate to the satellite [9].

This source of error can vary rapidly (in the order of seconds) as the vehicle moves

past reflective structures or surfaces. Longer term errors (in the order of tens of

minutes) are typified by GPS satellite observations, which have a source of error due

to the interaction of the atmosphere with the signal propagation speed [9]. This error

depends on the constellation of satellites in view of the vehicle and on the atmospheric

conditions between the vehicle and these satellites.
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Due to the fluctuating quality of the sources of navigation information, the uncertainty

of the filtered navigation solution changes over time, resulting in a non-constant

impact on the integrity of the map. This section is divided into short term effects due

to rapid fluctuations of the navigation uncertainty with respect to the time taken to

map a region of the environment, and long term effects that are only detectable over

longer mapping durations.

Long Term Navigation Errors

Global positioning systems are often used as one of the sensors in outdoor ground

vehicle navigation systems. [8, §20.5]. The GPS error due to environmental conditions

varies over a time scale in the order of tens of minutes, so the effect on the map

can only be seen over an equivalent amount of time. This error can be reduced

significantly when differential corrections are applied (particularly when the vehicle

is near the base station), because this enables the effects of atmospheric conditions and

constellation geometry to be compensated for [9, §9.1]. However, this is not practical

for arbitrarily large-scale outdoor autonomy, due to the infrastructure requirements.

Differential corrections are not used for the navigation solutions for the data in this

section.

To show the long term effects of navigation bias, a data-set is gathered by driving the

platform one way along a road for approximately half an hour. It is then driven back

along the same road to the starting position. Figures 3.15 and 3.16 show two clipped

sections of the whole map. The lower half of the figure shows a section of road that

was recorded on the outward journey, and the upper half shows the adjacent section of

road recorded about one hour later on the return trip. If any section of the map from

a brief temporal window is viewed (such as either the top or bottom half of Figure

3.15), the road appears to be mapped smoothly, due to the short term correlation of

the error. However, the effect of the navigation bias is eventually revealed, because

position estimates are uncorrelated when separated by enough time. Once the vehicle

has driven back along the road, the two co-located sections of the map are separated

by a large enough amount of time to reveal the navigation error.
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Figure 3.15: A three dimensional laser point cloud, viewed from above. (For human in-
terpretation, colour is added by fusing local colour camera information at run-time using
[39]). Data was collected as the robotic platform traveled approximately 2km along a road
and then returned along the same route. The section ABCD marks one continuous section
of road. Because the vehicle traveled in both directions, data pertaining to ABCD are
gathered twice. In this figure, DC is produced from the data obtained on the way out. AB
is produced from the data obtained on the return journey, one hour later. Although the
map appears locally consistent in the short term, the long term error is seen clearly as the
two maps do not meet precisely. This error is due to GPS bias in the navigation system.
Figure 3.16 shows the same data from a low altitude perspective.
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Figure 3.16: A three dimensional laser point cloud, viewed from a low altitude perspective.
Figure 3.15 shows the same data, viewed from above.

Short Term Navigation Errors and Corrections

The fluctuation of navigation uncertainty can be rapid in comparison to the time

taken for a mobile platform to pass through the environment. If highly certain sensor

information suddenly becomes available to the navigation system (when a DGPS base

station suddenly comes into transmission range, or a new SLAM feature is observed),

then the optimal estimate of the vehicle pose may have a sudden correctional jump.

This will cause a corresponding rift of a similar magnitude in the mapped data.

Alternatively, if reliable navigation sensor information is unavailable for a period

of time, the uncertainty can grow rapidly, as the system relies on the process model

rather than the sensors. Both of these scenarios cause a rapid change in the navigation

uncertainty, which may cause a reduction of integrity in the corresponding section of

the map. As described in Section 3.2.1, the uncertainty of the map can be calculated

at run-time, provided the navigation system calculates the uncertainty of the pose

estimates.

To illustrate the effect of a fluctuating navigation uncertainty on mapped data, the

vehicle is driven repeatedly through the artificial environment with a single vertical

pole. This is repeated until the navigation system reports a significant fluctuation of

uncertainty over a short time scale; the uncertainty must fluctuate during the time
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Figure 3.17: A map of the environment and the trajectory of the vehicle that produced
it. The navigation system reports a variable uncertainty during the time taken to scan
the environment. This causes a variation in the uncertainty of the mapped data. The
figure illustrates that most of the erroneous points are known at run-time to have a higher
uncertainty. The uncertainty in this figure does not take the timing error into consideration.
This is done to prove that the uncertainty in this point cloud is almost entirely due to
variations in the navigation uncertainty.

taken to pass through the environment once. The navigation data and the laser data

are then extracted from this single pass and the laser data are transformed to the

navigation frame. The resulting three dimensional point cloud and the estimated

trajectory of the platform that produced it can be seen in Figure 3.17. The changes

in navigation uncertainty have a direct impact on the uncertainty of points within the

point cloud. The figure clearly shows that the erroneous points have a significantly

higher uncertainty on average than the valid ones. The uncertainty of the points

in this figure were produced explicitly without consideration of the effect of timing

errors; Equations 3.17 and 3.19 were used for J and Q respectively. This is done to

prove that for this point cloud, the navigation uncertainty alone is the cause of the

highly uncertain erroneous points. If the timing uncertainty were to be included by

using Equations 3.38 and 3.39 for J and Q, it would not be possible to distinguish

the source of the final point cloud uncertainty.
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3.3.4 Timing Errors

To show the effect of the timing difference error te, the data-set containing the pole

is used again. In this section, the data are processed twice: once with the complete

transformation error model from Equations 3.38 and 3.39 for J and Q respectively,

and a second time with the error model that omits the partial derivatives with respect

to te. Because the same raw data are used in each case, the mean locations of the

points in the point cloud is identical when processed with either of the error models.

However, the uncertainty in the latter case is altered because it includes the additional

uncertainty caused by te.

The entire data-set is viewed from above in Figure 3.18, without consideration of

te, and with te incorporated in Figure 3.19. From this view-point, the most salient

features that can be seen are the surrounding buildings and fence-lines. The entire

scene occupies a square of approximately 100m sides. Figure 3.18 shows that the

uncertainty increases with range, as expected from Section 3.2.1. The vehicle moved

through the centre region of the data, so all of the outer points were observed at a

longer sensor range. The solid walls and thin fence-lines appear over 2m thick in the

data-set, despite an apparent uncertainty of only 19cm (largest orthogonal standard

deviation). If there were no error, they should appear collinear, so this indicates

that the sources of error are not modeled completely. With the additional effect of

te included, Figure 3.19 shows a clear improvement in the calculation of uncertainty.

Now that all of the sources of error have been included in the model, the thin walls

and fence-lines can be seen amongst the noise. On average, the points that are

further away from the line have a higher calculated uncertainty. Furthermore, the 1m

standard deviation of the erroneous points is a reasonable reflection of the magnitude

of the errors. The difference in these two figures clearly illustrates the effect that the

timing error has on this data-set.
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Figure 3.18: A three dimensional point cloud viewed from above. The points are coloured by
their positional uncertainty (largest orthogonal standard deviation), but this is calculated
without any consideration of the timing difference error te between the navigation and laser
sensor information. The outer points have higher uncertainty due to the larger sensor range.
The points that represent the walls form a thick cloud, which is not consistent with their
relatively small uncertainty.
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Figure 3.19: A three dimensional point cloud viewed from above. Points are coloured by
the largest orthogonal standard deviation of uncertainty. The timing error te between the
navigation and laser sensor information is included in the error model used to calculate
the uncertainty of the points. The points that represent walls form a thick cloud, but the
uncertainty of these points is consistent with their distance to the centre of the line.

Figures 3.20 and 3.21 show the same comparison between the error models, this

time focussing on the vertical pole. In Figure 3.20, the effect of te has been ignored

and there are many erroneous points that have an inconsistently small uncertainty.

Figure 3.21 illustrates that the inclusion of te has corrected this. The uncertainty of

the erroneous points now has a strong correlation with their distance to the pole, just

as the points representing the walls and fence-lines above.
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Figure 3.20: A 3D point cloud illustrating the uncertainty of points with respect to a vertical
pole. The points are coloured by their uncertainty, but the error model ignores the effect
of te. Some of the erroneous points are clearly inconsistent, because they are much further
from the pole than is indicated by their calculated uncertainty.

Figure 3.21: A 3D point cloud illustrating the uncertainty of points with respect to a vertical
pole. The points are coloured by their uncertainty, including the effect of te. Due to the
completeness of the error model, all of the points are consistent; their distance to the pole
is within two standard deviations of their calculated uncertainty.
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Figure 3.22: A threshold is applied to disregard points with a standard deviation of uncer-
tainty larger than 7cm. The complete error model is used to calculate the uncertainty, so
the remaining point cloud is much more accurate.

As the model now includes all of the sources of error, a simple threshold on uncertainty

can be applied to extract a higher quality data-set. A threshold of 7cm for the

largest orthogonal standard deviation is shown in Figure 3.22. Almost all of the

erroneous points have now been removed. The accuracy of the error model is high

enough to extract the accurate sections of data from the inaccurate samples, yielding

a high quality map despite the errors. The minimisation of the sources of error that

is presented in Chapter 4 will increase the percentage of high quality data points,

allowing more of the data to be mapped for a given threshold on accuracy.

3.4 Model Failure

In this Chapter, the process of exteroceptive sensor mapping has been analysed from

a geometric perspective. Section 3.1 presented the mathematics required to trans-

form spatial information from the original sensor frame, via the vehicle body frame to

which the sensor is attached, to the navigation frame in which the information is fi-

nally mapped. In Section 3.2, the sensitivity of these transformations was determined
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with respect to the geometric variables involved, including the sensor position and

the vehicle position. This enabled off-line calculation of the expected mapping error

for a given system configuration, and online estimation of mapping uncertainty by

using real-time estimates of the uncertainty of the individual inputs. This means that

regardless of the choice of environment, sensor and mapping representation, the un-

certainty of that representation should in theory be calculable, because the geometric

errors are observable. However, if an additional implicit or explicit interpretive layer

is added to the representation, arbitrarily large unobservable errors may be added.

Recall the example from Chapter 2 of a laser sensor being used to build an occupancy

grid representation of an indoor environment. Without any interpretation, the occu-

pancy map stores a summary of the laser reflectivity in the environment. However,

when the map is used as part of a model predictive controller to allow the vehicle

to steer around obstacles or occupied regions, an implicit interpretive layer has been

added to the map. In this case, no explicit processing is required to transform the

reflectivity grid into an occupancy grid, but the interpretive layer is implied by the

naming of the structure and its usage. The implicit interpretive layer in this case is

the assumption that there is a one-to-one mapping between non-traversable areas of

the environment and areas that reflect laser energy. This is violated by the presence

of hard surfaces that are transparent at the particular laser wavelength such as glass.

(Note that not all types of glass will be transparent to all types of laser, as it depends

on the properties of both). Although the analysis in this chapter can be used to

provide the spatial uncertainty of the map, theoretically allowing the vehicle to safely

and robustly traverse the environment, the reality may not be so reliable, due to

the potential inaccuracy of the interpretive assumptions. The implicit interpretation

in this case can induce arbitrarily large unobservable errors in the map, despite the

efforts of tracking the uncertainty through the transformations. Such an interpretive

violation is considered to be a failure of the environment model.

For any perceptive system that couples some form of sensor with some form of inter-

pretation, sensor failures (where there is a physical fault in the sensor hardware) and

model failures (where the interpretation of the sensor information does not match
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the true environment due to a violated assumption) have very similar effects. Sensor

failures can be caused by a physical failure of the hardware, such that the sensor

reports spurious values or ceases to function altogether, or it can occur due to envi-

ronmental effects such as a strong light source reducing the contrast of a camera, or

dust affecting the performance of a laser range scanner. In this sense, the distinction

between sensor and model failure is blurred. Both types of failure are considered by

this thesis as a failure of the model to use sensor information to provide an internal

representation that matches the external truth.

The nature and extent of model failures depends completely on the chosen model

and how well it summarises the relationship between the sensor and the environment.

Because of this, little can be identified in general about the effect of such errors on the

mapping process, suffice to say that the possibility for such errors present an enormous

caveat to the uncertainty calculations of this chapter. Unless careful consideration

is given to potential failure modes of the chosen environment model, the reported

uncertainty of a map cannot be trusted. In Chapter 5, some general design methods

will be discussed in order to mitigate against model failure (including various types

of sensor hardware failure), and some specific examples of failure mitigation will be

given.



Chapter 4

Mitigation & Management of

Mapping Errors

In Chapter 2 the three dominant sources of error for mapping were identified as:

• Systematic errors due to sensor misalignment and synchronisation,

• Stochastic uncertainty due to sensor measurement errors,

• Sensor interpretation errors due to unmodeled environmental conditions.

The effect and nature of these errors was analysed in detail in Chapter 3. In this chap-

ter, solutions are presented to minimise and manage the first two primary sources of

mapping error. The third error source (interpretation) will be discussed in Chapter

5. This chapter is divided into four sections. The systematic errors due to sensor

misalignment are minimised in Section 4.1 by a new calibration methodology. This

technique calculates the sensor alignment by comparing a known environment to the

map. Section 4.2 discusses methods for reducing the timing synchronisation errors.

In Section 4.3, an overview of current methods for managing terrain uncertainty is

given and discussed. Finally, in Section 4.4, a local frame navigation filter is used to

evaluate its potential for producing consistent, smooth and sharply focussed maps.

76



CHAPTER 4. MITIGATION & MANAGEMENT OF MAPPING ERRORS 77

When used together, the solutions presented in this chapter provide increased accu-

racy and robustness to the most common forms of exteroceptive sensor and mapping

algorithms, allowing them to be used safely for feedback control of AUGV systems.

4.1 Minimisation of Sensor Misalignment

The effect of the sensor alignment errors on mapping was analysed in detail in Chapter

3. It was shown that translational errors are propagated directly, and that rotational

errors are maximally amplified by the sensor range. This enabled the mapping accu-

racy to be improved by discarding data with an unacceptably high uncertainty. In

this section, the uncertainty of all of the mapped data is reduced, by refining the

sensor alignment. The data that remains highly uncertain can still be removed, but

the reduction in error allows a higher proportion of the data to be kept.

It can be difficult to precisely mount sensor equipment on a mobile platform. Once

a sensor is mounted, accurately measuring its location in the vehicle body frame

b in six degrees of freedom is also a challenge. In addition, when equipment must

repeatedly be dismantled and reassembled, or when different mounting configurations

are possible (such as a range scanner that can be mounted at any pitch angle) the

sensor position must be accurately recalculated each time. It is assumed that the

sensor is physically fixed at some imprecisely known location in b. Actuated sensors

(ones that can be moved or directed in some way, with respect to b) are also considered

to be mounted at a constant location, by treating the entire actuated assembly as the

sensor.

There are various approaches to this problem in the literature. Some application-

specific solutions use features of the particular robot to constrain the problem. The

mounting position of a laser is determined for a legged robot in [40]. The robots own

leg is measured by the laser and compared to the kinematic calculation of the leg

position. This solution requires a part of the platform to be visible to the sensor,

which is not always possible (or desirable). In [41] a laser is mounted on a movable

arm. The position of the laser relative to the arm is found by observing a fixed
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plane in the environment, while undergoing precisely controlled motions through six

degrees of freedom. This is not generally applicable to mobile platforms, because

manoeuvrability in all degrees of freedom is not guaranteed. In particular, UGVs

are typically constrained to the ground support surface. The approach taken here is

similar to that method, but it allows for incomplete manoeuvrability and imperfect

localisation. The technique of using a sensor to observe a geometric object such as a

planar surface, in order to perform data-centric calibration, is also common for other

types of sensor. For example, colour cameras can be calibrated with a fixed camera

making observations of a plane that is free to move in six degrees of freedom [42],

or the Kalman filtration method of [43] in which the plane is fixed and the robot

provides the requisite motion.

In this section, an optimal sensor calibration method is described that measures the

six degree of freedom alignment {rbs,Φb
s} of the sensor in the body frame, and provides

a covariance matrix for the confidence of the estimate. An artificial environment is

created, and mapped by the mobile platform, so that a comparison can be made

between the map and the known ground truth. An optimisation is then performed to

minimise the difference between the two, by refining the alignment parameters. The

calibration procedure is described in Section 4.1.1 and then analysed for an example

sensor application in Section 4.1.3. A complete worked example of calibrating a single

sensor is given in Section 4.1.4 and multiple sensors in 4.1.5.

4.1.1 The Sensor Calibration Procedure

An artificial environment must be constructed so that a comparison can be made

between this ground truth and the map produced by the mobile platform. This

environment can have any form, subject to two requirements:

• A scalar cost function must be available to compare the mapped sensor data

with the known ground truth. The cost function should return higher costs for

maps that are not well matched to the environment, and the lowest cost for the

nominal ‘best’ match.
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• The cost function must be sensitive to changes in each of the parameters of

{rbs,Φb
s} that are to be optimised.

Implicit in these two requirements is the need for appropriate physical structure, such

that the perception of the environment will not be invariant to any of the parameters.

The mobile platform is driven through the known environment E, while recording the

exteroceptive sensor data, the corresponding navigation solutions and the acquisition

times. This forms a calibration data-set denoted DE, defined by:

DE ≡ {pst , p̂
n
b,t, Ψ̂

n
b,t}, t ∈ {t1, t2, ..., tN} (4.1)

for a set of N discrete sample times. If an estimate of the sensor location {r̂bs, Φ̂b
s} can

be provided (by manual measurement for example), then a map ME can be produced

from DE by applying the transformation Equation 3.12. Additional application-

specific processing can also be applied and there is no restriction imposed on the type

of algorithm. For example, lines, planes or other primitive geometric structures may

be fitted to the data as part of the mapping process. For generality and simplicity,

the implementations in this chapter use the transformation from s to n to produce

point clouds, and no further processing is done. The mapping function that combines

Equation 3.12 and any additional application-specific processing is denoted map(),

and the cost function that provides the comparison cost CE is denoted cost():

ME ≡ map(DE, {r̂bs, Φ̂b
s})

CE ≡ cost(E,ME) (4.2)

The process of calibration is to calculate an optimal estimate {∗rbs,
∗
Φb
s} of the sensor

location in b. This can be expressed mathematically by:
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{∗rbs,
∗
Φb
s} ≡ arg min

{r̂bs,Φ̂b
s}

cost(E,ME)

= arg min
{r̂bs,Φ̂b

s}
cost(E,map(DE, {r̂bs, Φ̂b

s}) (4.3)

where DE and E are constant, and the sensor location estimate is altered to achieve

a minimum value for CE. The values {∗rbs,
∗
Φb
s} that yield the minimum cost are

considered optimal with respect to the calibration data-set.

Extension to Multiple Sensors

The calibration procedure is described above for a single sensor, and the same proce-

dure can be extended for use with multiple sensors. The simplest option is to repeat

the entire process for each sensor, yielding the optimal pose for each ({∗rbsi,
∗
Φb
si} for

sensor i), with respect to the data-set obtained by that sensor DEsi. However, when

fusing information from multiple sensors, errors in the sensor alignment values cause

not only a systematic error for each sensor, but a systematic contradiction between

sensors. The errors for each sensor may differ such that the combined information is

permanently contradictory. A better solution is to optimise all of the sensors together,

which is possible if the sensors view the same environment (or at least overlapping

sections). If optimised in unison, the final solution for each sensor is optimal with re-

spect to all of the data from all of the sensors. This not only minimises the systematic

errors for each sensor, but it also explicitly minimises the systematic contradiction.

In addition, the individual sensor calibration should be improved because of the in-

creased total amount of data available. In situations where the physics or geometry of

a particular sensor makes it difficult to obtain enough data to perform the calibration

accurately, a second sensor with a different modality may be used to calibrate both

accurately. In Section 4.1.6, it is shown that a particular radar sensor is difficult

to calibrate independently, but that the joint calibration with a laser makes precise

calibration possible.
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In this framework, the data from all of the sensors are mapped together:

ME =
∑
i

map(DEsi, {r̂bsi, Φ̂b
si})

CE = cost(E,ME) (4.4)

where the sum operator refers to the combination of maps as appropriate.

The combined calibration is performed by minimising CE by varying the offsets of all

of the sensors:

{∗rbsi,
∗
Φb
si} ≡ arg min

{r̂bsi,Φ̂b
si}

cost(E,ME)

= arg min
{r̂bsi,Φ̂b

si}
cost(E,

∑
i

map(DE, {r̂bsi, Φ̂b
si}) (4.5)

For k sensors, the optimisation has a total of 6× k free parameters, so it is likely to

take significantly longer to process this way. The multi-sensor variant of the procedure

is validated experimentally, by comparing the calibration results of a single sensor in

Section 4.1.4 and for four sensors in Section 4.1.5.

4.1.2 Calculation of Parameter Uncertainty

Once the optimal sensor location {∗rbs,
∗
Φb
s} has been determined from Equation 4.3, it

is desirable to calculate the uncertainty of the six optimal parameters, in the form of

a 6× 6 sensor pose covariance matrix Q{rbs,Φbs}. This can then be used as part of the

system covariance matrix Q in Equation 3.19 or 3.39. There are several techniques

that can be used to approximate the sensor pose covariance matrix. The Laplace

approximation [44, §27], [45, §4.4] has been proposed to calculate the covariance ma-

trix for scan matching algorithms [46, 47, 48], which are similar to this calibration
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technique because they estimate a coordinate transformation given a data-set. In [48]

it is argued that the Laplace method can be sensitive to the numerical calculation of

the Hessian matrix, so an alternative Monte Carlo importance sampling technique is

proposed instead. Furthermore, it states that the importance sampling technique can

be arbitrarily accurate at the cost of computation time, which is not necessarily pro-

hibitive for this application. Appendix C demonstrates the application of the Laplace

approximation for the individual parameters in isolation (to estimate the diagonals

of the covariance matrix), but this relies on large sample numbers for each parame-

ter. It is computationally intractable to extend this to the full six dimensional joint

probability due to the ‘curse of dimensionality’, and more efficient Hessian calculation

methods are not used due to the potential sensitivity to the data.

Monte Carlo Importance Sampling

This section describes the application of importance sampling to calculate the co-

variance matrix for the six sensor location parameters. For notational simplicity and

similarity to [48], a vector x is formed with the unification of the six parameters of

{rbs,Φb
s}:

x = [rbs,x, r
b
s,y, r

b
s,z, φ

b
s,x, φ

b
s,y, φ

b
s,z]

T (4.6)

With the optimal sensor location calculated, N sample locations xi are drawn at

random from a Gaussian distribution, centred at xmax = {∗rbs,
∗
Φb
s}, with sufficient

variance to cover the actual distribution to be determined. A likelihood function Λ(x)

is calculated by considering the error model for this problem P (pn|x), which expresses

the probability of a particular observation (one of the samples in the calibration data-

set) given an assumed value for the sensor location x. This function will depend on

the choice of artificial environment, and should be related to the cost function from

Equation 4.2. In some cases, the relation may be direct, where the cost function

can be specified as −Λ(x), but this is not strictly necessary. A specific example of a

likelihood function Λ(x) is given in Section 4.1.4.
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The N random sample locations are drawn from a Gaussian distribution xi ∼ N (xmax,Σ),

where Σ is chosen to span the likely distribution of the parameters. This distribution

focuses the samples in the region of interest, allowing greater accuracy with fewer

samples, as long as the sample distribution approximately covers the true distribu-

tion. Practically, this may have to be done more than once if the initial estimate of

Σ is small with respect to the outcome of the importance sampling technique. Initial

values for Σ can be produced from the uncertainty associated with the hand measure-

ments of the sensor pose, as the calibration reduces the uncertainty from this starting

point. Weights wi are produced by the likelihood function divided by the likelihood

of the sample location (which in this case is an unnormalised Gaussian probability

density function (PDF)), and then normalised:

wi =
Λ(xi)

N (xi − xmax,Σ)

=
Λ(xi)

exp(−1
2
(xi − xmax)TΣ−1(xi − xmax))

w∗i = wi/
N∑
j=1

wj (4.7)

The weighted mean x̂ and covariance Q{rbs,Φbs} can then be calculated:

x̂ =
N∑
i=1

w∗i xi

Q{rbs,Φbs} =
N∑
i=1

(w∗i xix
T
i )− x̂x̂T (4.8)

This provides a measure of the uncertainty of the sensor location parameters and can

be incorporated directly into the system covariance matrix Q, in Equation 3.19 or

3.39. Q{rbs,Φbs} is an approximation that depends on the particular data-set DE that

is used for the calibration, and will only be a true reflection of the accuracy of the
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solution if enough data have been collected, as discussed further in Section 4.1.4.

4.1.3 Application to UGVs and 2D Scanning Range Sensors

In Section 4.1.1, the calibration method was described in general terms, but in order

to implement the procedure, several specific choices must be made:

• An artificial environment E must be designed, to meet the functional require-

ments for calibration.

• An appropriate mapping algorithm ME = map(DE, {r̂bs, Φ̂b
s}) must be chosen.

• A cost function CE = cost(E,ME) must be specified to compare the environ-

ment to the map.

The choice of these items depends largely on the sensor to be calibrated, so this

section presents a specific example, together with the corresponding choice of the

environment and the mapping and cost functions. The sensor to be calibrated is a

SICK LMS-291 2D laser range scanner, mounted at some arbitrary location on an

outdoor UGV. Appropriate choices for E, map() and cost() are now specified for

this sensor, and an analysis is done to ensure that these choices meet the functional

requirements specified in Section 4.1.1.

The Artificial Environment

The two functional requirements that the artificial environment must meet are that

a cost function can be specified to compare E to ME, and that this function is

sensitive to each of the six parameters of {rbs,Φb
s}. The calibration procedure must

be performed each time the sensor configuration is altered due to remounting or

repositioning, so an important non-functional requirement is that the environment

be simple to prepare, and relatively quick to map.
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Figure 4.1: An artificial environment is constructed by placing a vertical pole on a section
of relatively flat ground.

The environment used for calibration in this thesis consists of a single vertical pole,

placed on a relatively flat section of ground. The base of the pole is perpendicular,

and no special equipment is used for placement. In addition, an adjacent section of

rough terrain is desirable, as it will be shown that some aspects of the calibration

are not solvable unless the vehicle can have non-zero roll or pitch while acquiring the

data. A photograph of the environment is given in Figure 4.1. The same environment

was used in Chapter 3 as an illustration of the effect of misalignment on the map.

From the earlier analysis, it should be intuitively clear that a function can be specified

to quantify the extent of deviation between E and ME. The former is known to be

a single straight pole on a flat surface, whereas the map will have duplicated poles

and a blurred support surface due to the alignment error. The process in Chapter 3

of inducing an alignment error and visualising the result is driven in reverse in this

chapter to reduce the misalignment.

The pole and the ground are treated as two separate components. In fact, the ground

and the pole can be scanned in completely different locations if necessary, provided

that the platform and sensor geometry remains constant. The complete data-set DE
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is split into the subset of data corresponding to the pole Dpole and to the ground

Dground. One way to segment the data is to map the whole set (i.e. to produce ME

using map(E,DE)), with an approximate measurement of the sensor location. If the

errors are sufficiently small that the pole and the ground can be visualised, then the

points corresponding to each can be manually segregated into Mpole and Mground. The

correspondence between DE and ME is kept, so that the segmentation of the map

can be back-propagated to produce Dpole and Dground.

Automatic segmentation is also possible in many circumstances. In this example, the

pole is covered in a retro reflective material that the SICK LMS-291 laser scanner

measures as highly reflective. Figure 4.2 illustrates the extraction of the reflective

pole from the low reflectivity of the ground. Some of the points that belong to

the pole have a low reflectivity and are not selected, but all of the highly reflective

points belong to the pole, so there are no false positives. This technique depends

on the specific physical properties and features of the sensor, so it may not always

be applicable. If there is no clutter in the environment, then segmentation may be

based on the geometric relationship of the sensor to the environment alone. Figure

4.3 shows a calibration map ME from a ground based perspective. For this example

environment, the pole is scanned at a shorter range than is possible for anything else.

Therefore it can be easily segmented by proximity in the sensor frame, or even by

uncertainty, given the correlation between scan range and uncertainty that was shown

in Chapter 3.

The Corresponding Cost Function

With the calibration data segmented into two subsets Dpole and Dground, it is possible

to specify a separate cost function for each. The pole cost Cpole is defined to be the

average squared perpendicular distance of each point in ME to the pole. The pole

is assumed to be vertical so the equation is the average squared 2D distance of each
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Figure 4.2: The automatic segmentation of the map, to separate the pole and the ground.
Prior to calibration, a calibration data-set DE is produced, and mapped as a point cloud
ME , shown here. The pole is covered with a retro-reflective material that is detectable by
the SICK LMS-291 laser range scanner. The inset shows the points that exceed a reflectivity
threshold. There are no false positives (ground points seen as part of the pole) because the
reflectivity signal to noise ratio for this sensor is extremely high.

pole point to the mean of the pole data. Given a map in point cloud form:

Mpole = {pnpole,i, ...,pnpole,Np} (4.9)

the pole cost function is given by:

Cpole =

∑
i

(pnpole,x,i − pnpole,x)2

Np

+

∑
i

(pnpole,y,i − pnpole,y)2

Np

Cpole = σ2
pole,x + σ2

pole,y (4.10)

where Np is the sample size of Mpole and pnpole,x is the average X coordinate of these

points. This is the sum of the variances of the two non vertical dimensions of the

pole data Mpole.
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Figure 4.3: The automatic segmentation of the pole and ground can be done based on the
geometry of the system and the environment. The map ME is coloured by uncertainty,
which is significantly lower for the pole due to the close proximity of the sensor during the
scan. Alternatively, a threshold can be set on the range in the sensor frame to achieve the
same result.

The function for the ground cost Cground is similarly defined as the average squared

distance of the points in Mground to the ground plane. The plane is assumed to be

horizontal, so the equation is the average squared 1D distance of each point to the

mean of the ground data. Relying on a point cloud form:

Mground = {pnground,i, ...,pnground,Ng} (4.11)

the cost function for the ground is given by:

Cground =

∑
i

(pnground,z,i − pnground,z)2

Ng

Cground = σ2
ground,z (4.12)
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where Ng is the sample size of Mground and pnground,z is the average Z coordinate of

these points. This is the variance of the vertical dimension of the ground data.

The two cost functions are summed to give the overall cost function for this example

environment.

CE = cost(E,ME)

= Cpole + Cground

= σ2
pole,x + σ2

pole,y + σ2
ground,z (4.13)

Satisfaction of Functional Requirements

In this section, a sensitivity analysis is performed to determine how successful the

optimisation is likely to be for the six parameters, if the example environment and cost

function specified above is used. The specific case that the platform is constrained to

the ground plane (as is the case for most ground vehicles) is considered. This restricts

the roll and pitch of the vehicle to zero:

ψnb,x = ψnb,y = 0 (4.14)

For this environment to yield a successful calibration of all of the parameters of

{rbs,Φb
s}, the cost function must be sensitive to each of them. This can be expressed

mathematically as:

∂CE
∂ρ
6= 0,∀ρ ∈ {rbs,Φb

s} (4.15)

However, the cost function depends on the particular data in DE, so it is difficult

to calculate a-priori. When gathering the calibration data-set, the sensor location

is fixed. The remaining free parameters are the spatial sensor data ps (or for this

example {r, θ}), and the vehicle pose {pnb ,Ψn
b }. This section will determine the
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necessary configurations of the free parameters for a data-set DE to yield a successful

calibration. For a single point in ME, consider the sensitivity ∂pn

∂ρ
with respect to

the parameters of {rbs,Φb
s}. If the sensitivity is zero for all variations in the free

parameters, then changing ρ will not affect the point cloud for any DE. Furthermore,

if ∂pn

∂ρ
is constant for all variations of the free parameters, then variations in ρ will

cause the entire point cloud to move together with constant variance, which will not

affect CE in Equation 4.13. For the optimisation to perform as desired for parameter

ρ, a vehicle pose and sensor return is required that yields a non zero and non-constant

sensitivity:

∂pn

∂ρ
6= c, ∃{pnb ,Ψn

b ,p
s}, ∀ρ ∈ {rbs,Φb

s} (4.16)

For this sensor configuration, the laser sensor geometry from Equation 3.1 is substi-

tuted into the partial derivatives of the s to n transformation (Equation 3.12), listed

in Appendix A. The partial derivatives for rbs are then given by:
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∂pnx
∂rbs,x

= cos(Ψn
b,z) cos(Ψn

b,y)

∂pny
∂rbs,x

= sin(Ψn
b,z) cos(Ψn

b,y)

∂pnz
∂rbs,x

= − sin(Ψn
b,y)

∂pnx
∂rbs,y

= − sin(Ψn
b,z) cos(Ψn

b,x) + cos(Ψn
b,z) sin(Ψn

b,y) sin(Ψn
b,x)

∂pny
∂rbs,y

= cos(Ψn
b,z) cos(Ψn

b,x) + sin(Ψn
b,z) sin(Ψn

b,y) sin(Ψn
b,x)

∂pnz
∂rbs,y

= cos(Ψn
b,y) sin(Ψn

b,x)

∂pnx
∂rbs,z

= sin(Ψn
b,z) sin(Ψn

b,x) + cos(Ψn
b,z) sin(Ψn

b,y) cos(Ψn
b,x)

∂pny
∂rbs,z

= − cos(Ψn
b,z) sin(Ψn

b,x) + sin(Ψn
b,z) sin(Ψn

b,y) cos(Ψn
b,x)

∂pnz
∂rbs,z

= cos(Ψn
b,y) cos(Ψn

b,x) (4.17)

With the inclusion of the ground plane constraint in Equation 4.14, this reduces to:

∂pn

∂rbs,x
= [cos(Ψn

b,z), sin(Ψn
b,z), 0]

∂pn

∂rbs,y
= [− sin(Ψn

b,z), cos(Ψn
b,z), 0]

∂pn

∂rbs,z
= [0, 0, 1] (4.18)

For all variations of the free parameters, ∂pn

∂rbs,z
= [0, 0, 1] is constant, so rbs,z fails the

requirements in Equation 4.16. Therefore, rbs,z can only be determined if the vehicle

undergoes some roll or pitch. This makes intuitive sense; if the vehicle is limited to

a planar surface, changing the Z offset of the sensor location will move the entire

point cloud up or down, which will not affect σ2
ground,z in Equation 4.13. Also of
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interest is that the partial derivatives of pnz with respect to rbs,x and rbs,y are zero for

this environment, so the calibration of these offsets is achieved using the pole data

alone, and not the ground data. If the vehicle does undergo non-zero roll and pitch,

then all of the terms of Equation 4.17 are dependent on Ψ. In this case, the pole and

ground data-sets (Dpole and Dground) will be useful for the calibration.

The same process is applied to the sensor rotation angles Φb
s. The laser sensor geom-

etry of Equation 3.1 and the ground plane constraint of Equation 4.14 is substituted

into the partial derivatives with respect to the sensor rotation angles ∂pn

∂Φb
s
. This is

evaluated for all of the sensor rotation angles in Appendix B, but for brevity, only

the analysis of sensor pitch is shown here. The sensitivity of the mapped points to

the sensor pitch angle for this environment is given by:

∂pnx
∂φbs,y

=

− cos(ψnb,z) cos(φbs,z) sin(φbs,y)r cos(θ)

+ cos(ψnb,z) cos(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ)

+ sin(ψnb,z) sin(φbs,z) sin(φbs,y)r cos(θ)

− sin(ψnb,z) sin(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ) (4.19)

∂pny
∂φbs,y

=

− sin(ψnb,z) cos(φbs,z) sin(φbs,y)r cos(θ)

+ sin(ψnb,z) cos(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ)

− cos(ψnb,z) sin(φbs,z) sin(φbs,y)r cos(θ)

+ cos(ψnb,z) sin(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ) (4.20)
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∂pnz
∂φbs,y

= − cos(φbs,y)r cos(θ)

− sin(φbs,y) sin(φbs,x)r sin(θ) (4.21)

The dependence of ∂pn

∂φbs,y
on the vehicle heading ψnb,z and the scan angle θ means

that viewing the environment from different headings and different scan angles will

provide non-constant partial derivatives as required by Equation 4.16, as long as

the derivatives are not equal to zero. Assuming that the data are collected from

all permutations of vehicle heading and scan angle, then by analysing Equations

4.19, 4.20 and 4.21, the set of sensor rotation angles that result in non-zero partial

derivative term can be determined. This will indicate the sensor configurations that

permit calibration of the sensor pitch angle with this technique. A similar process is

then done for the sensor roll and yaw, shown in Appendix B.

Equations 4.19 and 4.20 are analysed first, to discover how the pole data-set will

perform, and the results are shown in Tables 4.1 and 4.2. Table 4.1 is constructed by

considering each term in Equations 4.19 and 4.20. For each term, the conditions for

Φb
s that ensure a non-zero value are added as a row in the table. The rows are then

logically compressed to form Table 4.2, where the first row is formed by combining

rows 1 & 3 from Table 4.2 and the second row is formed from rows 2 & 4. If the sensor

angles conform to the conditions in any row, then φbs,y can be calibrated successfully

with Dpole. Conversely, Table 4.3 shows the only configuration that cannot yield

successful calibration of φbs,y with Dpole. If the sensor has zero roll and pitch with

respect to the body frame, then the pole will not be sufficient for calibration.

In Appendix B, the same process applied to ∂pn

∂φbs,x
shows that roll calibration fails

under the same unique condition as pitch and analysis of ∂pn

∂φbs,z
shows that there is no

failing configuration for yaw. With zero sensor roll and pitch, the partial derivatives

of pnz in Equation 4.21 are non-zero, but it is impossible to obtain ground data with

a sensor mounted parallel to the ground plane.

It has been shown that subject to the ground plane constraint, the pole section of
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Table 4.1: Sensor configuration required for calibration of sensor pitch

φbs,x φbs,y φbs,z
any 6= 0 6= ±90
6= 0 6= ±90 6= ±90
any 6= 0 6= 0
6= 0 6= ±90 6= 0

Table 4.2: Condensed requirement for calibration of sensor pitch

φbs,x φbs,y φbs,z
any 6= 0 any
6= 0 6= ±90 any

Table 4.3: Unique failing configuration for calibration of sensor pitch

φbs,x φbs,y φbs,z
= 0 = 0 any

this artificial environment will suffice for calibration of all parameters, other than rbs,z,

provided that the sensor has a non-zero roll or pitch angle with respect to the vehicle

body frame. Furthermore, Dground cannot be used to fix the failing configurations.

To allow for all parameters to be calculated, the platform must undergo non-zero roll

or pitch manoeuvres while observing the environment. To achieve this, a section of

non-flat terrain adjacent to the environment can be used, so that the vehicle roll or

pitch can be varied. In this case, the ground plane constraint can be ignored, and

the calibration becomes sensitive to both the pole and ground data-sets. Although

Dground is not strictly required, the larger surface area allows for more data to be

obtained in practice, so it is recommended to incorporate both data-sets. Section

4.1.4 will experimentally confirm that the calibration provides reasonable values for

the sensor location with just the pole data, but that the results are improved with

the pole and ground used together.

This analysis relies on the constraints imposed by the geometry of the example envi-

ronment, so the conclusions cannot be extrapolated to any arbitrary sensor or plat-

form configuration. It is likely that different robotic applications will have different

constraints and that in turn, they may require a different type of structure in the

artificial calibration environment. However, the same form of analysis shown in this
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section can be used to calculate requirements for any such configurations and the

overall calibration method can still be applied.

4.1.4 Calibration Results for a Single Sensor

The general calibration procedure described in Section 4.1.1 was then analysed fur-

ther in Section 4.1.3 for the application to a UGV with a 2D laser range scanner. This

section presents the results of calibration for a single sensor. The configuration that

was used in Chapter 3, as described in Section 3.3.1, and illustrated in Figures 3.8 and

3.9, is used again here. The SICK LMS-291 laser scanner is configured with a range

of 80m and ±90◦, with a resolution of 1cm and 0.25◦. A sequential quadratic pro-

gramming (SQP) method implemented in [49] is used for the numerical optimisation

of Equation 4.3.

In addition to the basic calibration, three other experiments are performed in this

section:

• The performance of the pole and ground data is compared to the results ob-

tained with the pole only. This confirms that the ground data are not strictly

required, but that better calibration results are obtained when they are used,

as predicted in Section 4.1.3.

• Data-sets of different sizes are used to show the quantity of data that is required

for calibration.

• The effect of the uncertainty of the points in the calibration data-set is deter-

mined, by comparing the results of calibration with a highly certain sub-set of

the data, to the results when all of the data are used.

The Calibration Data-Set

The success of the calibration procedure depends on the particular data-set DE that is

used. The analysis in Section 4.1.3 found that the calibration would be successful for
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Figure 4.4: A three dimensional point cloud visualisation ME of the calibration data-set
DE , coloured by elevation. The sensor location estimate {r̂bs, Φ̂b

s} that was used to generate
ME has been measured as precisely as possible by hand, but there is clearly an error in
the map. Despite this, it is still possible to manually segment the pole from the ground by
elevation.

most of the parameters, as long as the environment was viewed with varying vehicle

yaw angles. In addition, varying vehicle roll and pitch is required to determine the

vertical sensor offset. This section checks that DE conforms to these requirements.

The data-set must first be split into Dpole and Dground. DE is converted to a point

cloud ME with Equation 3.12, with initial hand-measured values for {rbs,Φb
s}. Al-

though the measurement is done as precisely as possible, a considerable amount of

error can be seen in ME, shown in Figure 4.4. Despite the error, the figure shows

that it is still possible to manually segment the pole points from the ground points by

using the elevation. Alternatively, the automatic segmentation techniques discussed

in Section 4.1.3 can be used.

A histogram of the vehicle pose at the time of acquisition of each point is presented

for Dpole in Figure 4.5, and for Dground in Figure 4.6. These figures illustrate that a

spread of vehicle angles Ψn
b has been achieved, including a wide distribution of vehicle

heading ψnb,z, and vehicle roll and pitch angles of up to eight degrees. This violates

the ground plane constraint, although some parameter insensitivity may remain due

to the small maximum roll and pitch angles. From the histograms, DE is likely to
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Figure 4.5: The vehicle poses at which the samples in the calibration data-set Dpole were
obtained. A reasonable spread of vehicle positions, and angles has been achieved.

yield a successful calibration, because the constraints and assumptions Section 4.1.3

are satisfied.

The Calibration Results

The calibration procedure provides the optimal estimate of the sensor location {∗rbs,
∗
Φb
s}

after approximately two hundred seconds. The first two rows of Table 4.4 show the

hand-measured offset and the optimal estimate. The hand measured offsets are used

as the initial values for the numerical optimisation and bounds of ±5◦ and ±0.1m are

specified, for the elements of
∗
rbs and

∗
Φb
s respectively. For comparison, the optimisation

cost metric from Equation 4.13 is calculated for the hand-measured sensor pose as



CHAPTER 4. MITIGATION & MANAGEMENT OF MAPPING ERRORS 98

Figure 4.6: The vehicle poses at which the samples in the calibration data-set Dground were
obtained. A reasonable spread of vehicle positions, and angles has been achieved.

well as the optimal pose from calibration. The cost has been lowered by an order of

magnitude. The point cloud map is reproduced from DE with the optimal values,

and is shown in Figure 4.7. It is clear from inspection that the optimal values are

much more accurate than the measured ones, because the pole now appears to be

singular and vertical, and the ground plane appears to be thin.

To test the contribution of the pole in isolation, the calibration is repeated, this time

using Dpole on its own, and the results are listed on the third row of Table 4.4. Similar

estimates for the sensor location are produced (in 14 seconds due to the decreased

sample size) and the point cloud is shown in Figure 4.8. The pole appears very similar

to the one that was produced using the pole and ground data for calibration, yet

interestingly, the ground plane is visibly less accurate. This is because the individual
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Table 4.4: Measured and Optimised Sensor Pose

N CE rb
s,x(m) rb

s,y(m) rb
s,z(m) φb

s,z(◦) φb
s,y(◦) φb

s,x(◦)
Measured 296096 0.06094 0 0 -1 0 -8 0

Dpole +Dground 296096 0.00982 0.053 -0.004 -0.998 -1.741 -7.066 -0.072
Dpole 37010 0.01086 0.061 -0.004 -0.997 -1.720 -7.822 -0.395

Dlow uncertainty 136832 0.00739 0.057 -0.004 -0.999 -1.742 -7.054 -0.059

N is the total number of samples in the data-set. The cost metric CE is calculated
from Equation 4.13, using the sensor pose shown in the table.

features within DE yield calibration results that are optimal with respect to those

features. By removing the ground plane data from the calibration, the mapped ground

plane becomes less accurate. Both calibration results yield a much more accurate

sensor pose than can be measured by hand, but for the maximum accuracy, the pole

and ground data-sets should both be used.

To test the effect of uncertainty in the calibration data-set, the calibration is per-

formed with a sub-set of Dpole and Dground. The data in DE are ranked by the

corresponding uncertainty in ME, and the more highly uncertain half of the data-set

is discarded. The results of calibration with this set are shown on the fourth row of

Table 4.4. This method produces a reduction in the final cost metric, because the

points with the largest error magnitude have been removed. However, the calibration

result is almost identical to the result produced from all of the data. Because the

data are gathered from a wide range of vehicle poses, the discarded data are approx-

imately zero-mean about the true geometry, so it has little effect on the results. This

technique can be used to reduce the quantity of data to speed up the calibration

procedure (28 seconds, down from 200), but is unlikely to have a significant effect on

the actual calibration result.
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Figure 4.7: The three dimensional point cloud, produced using the optimal sensor pose
provided by calibration with Dpole and Dground. The pole appears singular and vertical and
the ground surface appears to be thin and focussed. The points are coloured by the largest
orthogonal standard deviation of uncertainty. The contoured road edge that was used to
achieve non-zero vehicle roll and pitch can be seen to the right of the pole.

Figure 4.8: The three dimensional point cloud, produced using the optimal sensor pose
provided by calibration with Dpole only. The pole appears singular and vertical, but the
ground surface appears less accurate than in Figure 4.7. The contoured road edge that was
used to achieve non-zero vehicle roll and pitch can be seen on the right.
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Quantity of Data Required for Calibration

The calibration was done with all of the data in DE, which contains a total of 296,096

samples, comprised of 37,010 samples in Dpole and 259,086 samples in Dground. This

section determines if this was enough data to produce globally optimal calibration

results, or whether more data are needed. Global optimality is achieved when the

values of {∗rbs,
∗
Φb
s} are found, such that CE could not possibly be minimised further.

It is important to note that this cost is still dependant on the calibration data-set

DE. Correct values for {∗rbs,
∗
Φb
s} can only be determined if DE is an appropriate data-

set (conforming to all constraints and assumptions in Section 4.1.3) and a globally

optimal solution is found. It is shown here that better calibration results could not

be expected with additional data and that only approximately 10,000 samples within

DE are absolutely required.

The calibration was performed repeatedly on progressively smaller random sub-sections

of DE. When sub-sampling, if the discarded data contain redundant information that

Figure 4.9: The calibration is performed using varying sized sub-sets of the data DE . The
calibration results are then evaluated by calculating the cost metric in Equation 4.13 with
respect to the complete data-set. For each sample size, ten random sub-sets of that size are
selected from DE . The minimum, maximum and average cost are shown plotted against
the sample size.
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is replicated in the remaining sub-set, then the calibration will not be significantly

affected. On the other hand, if the discarded samples contain unique information this

will have a larger effect. Due to the random selection process, a smaller sub-set may

perform better than a larger set. To avoid skewing the results, the calibration was

run ten times for each sample size, with a different random set discarded each time.

The resulting sensor pose from each of the ten calibrations was then used to map the

entire set, and the cost function was calculated for that. The calibration was run

on the sub-set, but evaluated on all of the available data, to determine whether the

sub-set spanned the complete range of free parameters. Figure 4.9 shows the evalu-

ated cost metric for each sample size. For each of the ten runs, the average, largest

and smallest cost is plotted against the sample size. The cost asymptotes, indicating

that after approximately ten thousand samples, little improvement in calibration can

be obtained. This suggests that the calibrated solution has converged to the correct

global minima. If the solution settled on a local minima with respect to one of the

sub-sets, a higher cost would be expected when additional data (in this case the data

from DE that were discarded) were added. This effect can also be seen in Figure

4.10, which shows the optimal values for each of the six parameters of the sensor lo-

cation {rbs,Φb
s}, as provided by calibration with the varying sized sub-sets. After ten

thousand samples, the fluctuation of the values has settled, indicating a steady state

has been reached. The objective function of Equation 4.3 is certainly non-convex for

small sample sizes, as seen by the convergence to local minima, yet as the sample size

increases, the function is smoothed until convergence to a consistent global minima

is possible.

The fact that this particular calibration data-set requires ten thousand samples cannot

be generalised to all data-sets from all artificial environments. For example, a similar

method was used in [50] to determine that a larger sample size of approximately sixty

thousand was required for calibration. However, the sub-sampling methodology that

is used here is generally applicable, and is a necessary step to ensure that the globally

optimal sensor location has been determined.
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Figure 4.10: The calibration is performed using varying sized sub-sets of the data DE . The
six calibrated parameters of {rbs,Φb

s} are plotted against the sample size (the X axis for all
figures), illustrating the convergence to the final solution that occurs once enough data are
obtained.

Processing Time

The processing time required for the calibration as a function of sample size is shown

in Figure 4.11. The time taken to process one iteration of the numerical minimisation

is linear with respect to the sample size, however the number of iterations can vary

significantly due to the random sampling process. To process the entire data-set takes

fewer than four minutes on a 2GHz personal computer, so it is not recommended to use

the sub-sampling technique to reduce the processing time. If sub-sampling is required

to reduce processing time, enough data must remain to create the asymptote seen in

Figure 4.9.
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Figure 4.11: The calibration processing time for varying sample sizes. For each sample size,
ten random sub-sets of that size are selected from DE , and the calibration procedure is
timed for all ten. The minimum, maximum and average times are shown. The processing
time for one iteration of the numerical minimisation is linear with respect to sample size,
but the number of iterations required can change as a result of the random selection process.

Calculation of Parameter Uncertainty

The optimal solution was given in Table 4.4, and it was established with reference

to Figures 4.9 and 4.10 that enough data were available in the calibration data-set

to consider the solution valid. It is therefore appropriate to use the same data-set

to determine the uncertainty of the solution given the data, using the Monte Carlo

importance sampling technique that was discussed in Section 4.1.2.

The importance sampling technique requires a likelihood function Λ(x) to be speci-

fied. This must be performed for each application because of the dependance on the

particular choice of the artificial environment and on the corresponding cost function.

For this application, the likelihood of a single point in the calibration data-set DE is

given with respect to the Euclidean distance of the point to its corresponding feature,

and the uncertainty of the point due to all sources other than the sensor pose loca-

tion itself. To achieve this, the uncertainty due to the sensor location is temporarily

ignored by setting the corresponding variance terms for Q in Equation 3.39 to zero
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sub-matrices:

σ2
rbsr

b
s

= σ2
rbsΦ

b
s

= σ2
Φb
sr
b
s

= σ2
Φb
sΦ

b
s

=


0 0 0

0 0 0

0 0 0

 (4.22)

Equation 3.21 provides the covariance matrix for each point. To simplify the im-

plementation of the importance sampling technique, the uncertainty Σpn of all N

points in DE is calculated by Equation 3.21, without consideration of the sensor pose

uncertainty, and then averaged according to:

σDE =

N∑
i=1

√
max(eigenvalue(Σpn,i))

N
(4.23)

where for each point, the maximum eigenvalue is taken as a worst case variance. The

root of these values are averaged over the entire calibration data-set to provide an

approximate average standard deviation, which is conservative because the maximum

variance for each point is considered.

The likelihood function is then specified by the combined probability of each point

being located at the Euclidean distance d from its corresponding feature, given the

average uncertainty due to all other sources of error:

Λ(x) =
N∏
i=1

N (di, 2σ
2
DE

)

log Λ(x) = −
N∑
i=1

d2
i /σ

2
DE

(4.24)

The variance of the Gaussian in this equation is given as twice the average that was

determined above, because the location of the environment is determined from the

data, not from absolute coordinates. It is therefore plausible that the distance d is
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due to the sum of an error in the point location and the location of the feature itself.

The variance is doubled to account for the convolution of these two errors, each with

a variance of σ2
DE

. Log probabilities are required for large sample sizes, because the

product of N probabilities becomes numerically unstable for large N.

The complete covariance matrix is calculated using importance sampling with 100,000

samples yielding:

Q{rbs,Φbs} = 10−3 ×

0.00946 −0.00137 −0.04024 0.00017 −0.00012 0.00004

−0.00137 0.01464 0.02519 −0.00134 −0.00009 0.00001

−0.04024 0.02519 4.53530 −0.00188 −0.00014 −0.00011

0.00017 −0.00134 −0.00188 0.00038 −0.00001 0.00001

−0.00012 −0.00009 −0.00014 −0.00001 0.00016 −0.00003

0.00004 0.00001 −0.00011 0.00001 −0.00003 0.00002


(4.25)

This can be provided as part of the whole system uncertainty Q in Equation 3.19 or

3.39, with:

Q{rbs,Φbs} =

σ2
rbsr

b
s

σ2
rbsΦ

b
s

σ2
Φb
sr
b
s

σ2
Φb
sΦ

b
s

 (4.26)

The orthogonal standard deviations are calculated as
√
diag(Q{rbs,Φbs}), and then con-

verted from radians to degrees. Table 4.5 shows the weighted average pose and

standard deviations, with the optimal pose repeated for comparison. The mean value

is very close to optimal location, indicating that the distribution is close to zero mean

about this region. The standard deviations are all in the order of millimetres and

hundredths of a degree, other than the vertical offset which has a standard deviation

of 6.7cm. This result confirms the lower sensitivity of the calibration to this param-

eter that was determined in Section 4.1.3. The Laplace method was also performed
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for each of the six parameters in isolation in Appendix C, using the same likelihood

function. As expected, the resulting standard deviations seen in Table 4.5 are very

similar to the diagonals of the MC covariance matrix.

Table 4.5: Sensor Pose: Optimised and Monte Carlo Mean and Standard Deviation

rbs,x(m) rbs,y(m) rbs,z(m) φbs,z(
◦) φbs,y(

◦) φbs,x(
◦)

Dpole + Dground 0.053 -0.004 -0.998 -1.741 -7.066 -0.072
x̂ (MC) 0.054 -0.003 -0.990 -1.742 -7.063 -0.071
σ (MC) 0.0031 0.0038 0.0673 0.0353 0.0232 0.0085

σ (Laplace) 0.0029 0.0030 0.0673 0.0258 0.0202 0.0062

The weighted mean sensor location x̂ and standard deviations σ from the Monte
Carlo (MC) sampling process in Equation 4.8 and the standard deviations from the
Laplace method in Appendix C. The optimal pose from Table 4.4 is repeated here

for comparison.

Several assumptions are made in this section to simplify the calculation of the covari-

ance matrix:

• The maximum eigenvalue is taken as an upper estimate for the global spatial

uncertainty of each point.

• The uncertainty of the Euclidean distance of each point to the matching envi-

ronment feature is averaged over the calibration data-set, rather than using the

specific uncertainty of each point.

• The distance uncertainty is doubled because it is comprised of the unknown

location of the feature to the unknown location of the point.

The importance sampling technique fits a multivariate Gaussian distribution to the

data, which is only an approximation of the true distribution. Although each of the

assumptions above further reduces the accuracy of the final covariance matrix, they

do so in a way that overestimates the amount of error, thus providing a conservative

estimate. The true variances are smaller than the ones provided by this method. The

assumptions above can be reduced at the cost of implementation and processing time,
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but this is unlikely to provide a significantly more accurate covariance matrix, given

that the Gaussian distribution only approximately represents the true distribution.

4.1.5 Calibration Results for Multiple Sensors

The single and multiple sensor calibration procedures were described in Section 4.1.1

and the single calibration was experimentally validated in Section 4.1.4. This section

presents the calibration results for four sensors, confirming that the process improves

the estimate of the sensor locations. It is shown that in addition to minimising the

systematic errors for each sensor, the systematic contradiction between all of the

sensors is also reduced, improving the results of any sensor fusion technique.

The configuration that was used for the single sensor calibration is extended, with the

addition of three more SICK LMS laser range scanners, as shown in Figure 4.12. The

multi-sensor calibration data-set {DEs1, DEs2, DEs3, DEs4} includes the same data for

the first sensor that was used in Section 4.1.4. The calibration is implemented by

numerically optimising Equation 4.5 with the same SQP method [49] used previously.

The Calibration Results

The multi-sensor calibration procedure provides the optimal estimate of all four sensor

locations {∗rbsi,
∗
Φb
si}, i ∈ {1, 2, 3, 4} after 27 iterations and approximately 48 minutes.

This is much longer than the 200 seconds taken to calibrate a single sensor, due

to the increase in the dimensionality of the optimisation from 6 to 24 parameters.

Table 4.6 shows the initial hand-measured sensor locations, and Table 4.7 presents

the optimally calibrated results. Recall that the combined multi-sensor optimisation

technique uses Equation 4.5, in which the data from all sensors are fused into a single

map ME. The cost to be minimised is calculated on this fused map, so there is one

cost for the set of sensors. The cost metric in each row of the tables is calculated

from Equation 4.13. This is the cost of the map produced from the individual sensor’s

data, not the complete cost metric for the whole calibration. This cost value can be
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Figure 4.12: The CAS Outdoor Research Demonstrator platform with four enumerated
SICK LMS 2D laser range scanners. The numbers are coloured to allow point clouds in
subsequent figures to be coloured according to the sensor from which they originate. Sensor 1
was calibrated independently in Section 4.1.4. In this section, the four sensors are calibrated
jointly and independently for comparison. Refer to Table 4.6 for the approximate positions
of the sensors with respect to the vehicle body frame.

compared directly with the results from the single sensor calibration. The cost metric

of all of the sensors has been reduced by an order of magnitude with respect to the

initial hand measured values.

Figure 4.13 shows a comparison of the mapped data, before and after calibration,

with the points coloured according to the sensor that produced them. These colours

match the enumeration in Figure 4.12. It can clearly be seen that the calibration

has improved the point cloud, and that after calibration, all four sensors produce a

consistent picture of the pole. A similar comparison can be made in Figure 4.14, with

the point cloud seen from the top. This figure shows that after calibration, the points

from the sensors are mapped to the same consistent ground plane. Before calibration,

this is not the case, as the occlusion of the blue points shows that they are consistently

mapped beneath the data from the other sensors. Figures 4.13 and 4.14 illustrate a

reduction in both systematic error (as the pole is singular and vertical and the ground

plane is flat) and systematic contradiction between sensors, because they all map to
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Table 4.6: Measured Sensor Poses

N CE rbs,x(m) rbs,y(m) rbs,z(m) φbs,z(
◦) φbs,y(

◦) φbs,x(
◦)

Sensor 1 296096 0.06094 0 0 -1 0 -8 0
Sensor 2 93684 0.02408 0 0 -1.15 0 0 90
Sensor 3 39598 0.03434 0.12 -0.55 -0.68 0 5 0
Sensor 4 87555 0.14058 0.12 0.55 -0.75 0 -5 0

Table 4.7: Calibrated Sensor Poses (Combined Calibration)
N CE rbs,x(m) rbs,y(m) rbs,z(m) φbs,z(

◦) φbs,y(
◦) φbs,x(

◦)

Sensor 1 296096 0.00987 0.054 -0.002 -0.900 -1.741 -7.175 -0.029
Sensor 2 93684 0.00823 0.092 0.003 -1.219 -1.174 -0.270 88.469
Sensor 3 39598 0.00612 0.148 -0.554 -0.78 -1.761 4.726 0.288
Sensor 4 87555 0.01058 0.170 0.546 -0.823 -2.259 -4.722 0.135

Table 4.8: Individually Calibrated Sensor Poses (Single Sensor Calibration)
N CE rbs,x(m) rbs,y(m) rbs,z(m) φbs,z(

◦) φbs,y(
◦) φbs,x(

◦)

Sensor 1 296096 0.00982 0.053 -0.004 -0.998 -1.741 -7.066 -0.072
Sensor 2 93684 0.00782 0.060 0.006 -1.148 -1.184 -0.284 88.999
Sensor 3 39598 0.00574 0.149 -0.551 -0.682 -1.776 4.423 0.344
Sensor 4 87555 0.01038 0.165 0.550 -0.749 -2.280 -4.784 0.211

N is the total number of samples in the data-set DEsi. The cost metric CE is
calculated from Equation 4.13, using the sensor pose shown in the table.

the same geometric representation of the world after calibration.
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Figure 4.13: A side view of the point cloud produced by four laser range sensors before
calibration (top) and after calibration (bottom). The points are coloured according to the
sensor that produced them: Red 1, Green 2, Yellow 3, Blue 4. Refer to Table 4.6 for the
approximate locations of the sensors on the mobile platform. After calibration, all sensors
map data to a single, consistent, vertical pole.

Figure 4.14: A top down view of the point cloud produced by four laser range sensors
before calibration (left) and after calibration (right). The points are coloured according to
the sensor that produced them: Red 1, Green 2, Yellow 3, Blue 4. Refer to Table 4.6 for
the approximate locations of the sensors on the mobile platform. Before calibration, the
‘blue’ sensor data are mapped to a plane that is beneath the others, as the blue points are
occluded. After calibration, all of the sensor data map to the same plane, as seen by the
interwoven red, green and blue points. The ‘yellow’ sensor is angled up by five degrees, and
does not produce data at the base of the pole.
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Figure 4.15: The combined multi-sensor cost metric from Equation 4.4, calculated for vari-
ous sizes of subset of the calibration data.

To confirm that enough data are available for the calibration, the technique of sub-

sampling from Section 4.1.4 is performed. Recall that this technique calibrates the

sensor pose with varying sized subsets of the calibration data. These results are

then used to produce the fused map and combined cost metric according to Equation

4.4. Although the calibration is performed with a subset of data, the cost metric is

evaluated with the whole data-set to determine if the subset was able to span the

necessary input space. Figure 4.15 shows the combined multi-sensor cost metric for

different quantities of data. An asymptote has been reached at approximately ten

thousand samples, which suggests that there are enough data for the multi-sensor

calibration.
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Benefit of Joint Sensor Calibration

In Section 4.1.1, the general calibration procedure for multiple sensors was described.

The sensors can either be calibrated individually using the single sensor technique,

or all of the sensors can be calibrated together using the multi-sensor calibration

procedure. The joint calibration procedure of minimising the error in the fused map

with Equation 4.5 is recommended, in order to reduce the systematic contradiction

between sensors. This section compares the results of using the single sensor cali-

bration multiple times, to using the combined multiple sensor calibration technique

once. It will be seen that both techniques reduce the systematic error of each sensor,

but that the combined technique is required to minimise the contradiction between

the sensors, allowing for reliable multi-sensor fusion algorithms.

The single sensor calibration was performed for each of the four sensors and the

results are shown in Table 4.8. Note that the results for the first sensor in this table

are identical to the second row of Table 4.4, because the same data and process

were used in both cases. The results of the individual calibrations are similar to the

sensor locations provided by the multi-sensor calibration. The individual costs are

lower for the single calibrations because the objective function is chosen to minimise

the individual cost metric, whereas the multi-calibration is designed to minimise

the error in the fused map. In other words, the multi-sensor calibration achieves

a reduction in error in the fused map, at a slight cost to the individual optimality.

This is best illustrated by visualising the fused point cloud map. Figure 4.16 shows

the combined map from the four sensors, coloured according to the source of the

points, according to the enumeration in Figure 4.12. The single sensor calibration

results are used to produce the map seen on top, and the joint calibration produces

the map on the bottom. In both cases, if the data from a single sensor (a single

colour) are considered, then the pole appears singular and vertical, and the ground

plane is thin and flat, indicating that the calibration has succeeded in reducing the

systematic error of each sensor. However, when the data from all of the sensors

are considered together, the joint calibration yields more consistent results. The

data from all of the sensors produce a consistent and aligned map, which shows that
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Figure 4.16: A side view of the point cloud produced by four laser range sensors, after cali-
brating each one individually (top) and after calibrating all of them together (bottom). The
points are coloured according to the sensor that produced them, referring to the enumera-
tion in Figure 4.12. Both figures illustrate that the individual sensor data are mapped well,
because the pole is singular and vertical, and the ground plane is thin and flat. However,
the combined calibration (bottom) provides a more consistent map when all of the data are
fused together.

the systematic contradiction has been minimised. Whenever data fusion is to be

performed, the results will be greatly improved by performing the joint calibration

technique described in this chapter.

The calibration procedure in this section allows the data from multiple sensors to be

reliably fused, despite the sensors having potentially very different geometric config-

urations on the mobile platform. The procedure minimises the systematic error by

accurately calculating the sensor positions and allows for any remaining error to be

tracked. These sensor pose parameters can now be used to map all of the data from

all of the sensors in a single consistent fused map. This is illustrated in Figures 4.17,

4.18 and 4.19, in which the mapped point clouds from the four laser sensors show the
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Figure 4.17: The combined mapped point clouds from the four laser range scanners, showing
the wider scene around the calibration pole. All of the data are shown, with no threshold
on uncertainty.

Figure 4.18: The combined mapped point clouds from the four laser range scanners, showing
the wider scene around the calibration pole. A threshold of 20cm is applied to the largest
orthogonal standard deviation of spatial uncertainty. Compared to Figure 4.17, this map
appears to be more focussed.

wider calibration scene. In Figure 4.17, all of the data can be seen, whereas in Figures

4.18 and 4.19, a threshold of 20cm is applied to the standard spatial deviation of the

points. With the threshold applied, the maps are visibly more focussed and accurate,

illustrating the importance of rigorously calculating the mapped uncertainty.
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Figure 4.19: The combined mapped point clouds from the four laser range scanners, showing
the wider scene around the calibration pole, seen from above. A threshold of 20cm is applied,
as in Figure 4.18. The thin, focussed edges of walls and fence lines reveal the accuracy of
the mapped data.
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4.1.6 Calibration Results for Heterogenous Sensors

The single and multiple sensor calibration procedures were described in Section 4.1.1

and experimentally evaluated in Sections 4.1.4 and 4.1.5. In the latter, four homoge-

nous sensors were calibrated independently and jointly and the calibration results

were compared. It was shown that the independent calibrations are capable of min-

imising the systematic errors in each sensor, but that the joint calibration is required

to minimise the systematic contradictions between sensors, to enable precise data

fusion. In this section two heterogenous sensors (a radar and a laser scanner) are

calibrated. The physical properties of the radar create difficulties in observing some

of the features in the environment, resulting in a poor independent calibration result

for that sensor. It is shown that by jointly calibrating the laser and the radar, the

additional laser information allows both sensors to be calibrated more precisely. This

is analogous to using the laser to survey the environment to construct the ‘known’ cal-

ibration features for the radar, but this is optimally achieved by the joint calibration

procedure without any modification to the algorithm. Neither sensor is calibrated

before the algorithm is run, both are calibrated together by the procedure.

Figure 4.20 shows the location of the scanning radar and scanning laser that are used

in this section. The radar is a custom built 94GHz frequency modulated carrier wave

(FMCW) 2D range scanner. It provides intensity of the reflected radar energy from

the environment along the radar beam axis, in approximately 25cm bins. This can be

used to generate a range estimate similar to the laser scanner, by extracting the range

of the highest intensity peak. This range estimate is refined to a higher precision than

the 25cm bin spacing by fitting a quadratic about the peak. In this configuration,

the radar data are similar to the laser scanner data, although the range and angular

precision is lower for the radar due to the wider beam width.

The laser is in approximately the same position as the one used in Section 4.1.4,

however the equipment was remounted between the two experiments, causing a small

change in the sensor pose. The radar is mounted in a similar way to the laser, looking

forward and down from the horizon at approximately ten degrees. The radar scanner

rotates in the opposite direction to the laser, so a right handed frame is constructed
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Figure 4.20: The CAS Outdoor Research Demonstrator platform. The location of the
scanning radar and 2D laser range scanner are shown.

with the positive Z axis pointing upwards, the X axis pointing to the rear of the

vehicle and the Y axis pointing to the right when facing forwards. The vertical pole

features that were used to calibrate the laser are specular reflectors for the radar

beam, so they return insufficient information for calibration. The vertical metal wall

of a nearby shed was found to be a better feature, so the perpendicular wall and

ground planes were used as calibration features. The location and orientation of

the wall had been surveyed previously, so the average squared Euclidean distance of

points to the wall was used for the cost function. The sensor calibration routine was

applied to the radar independently as per Section 4.1.4 and the result is shown in

Table 4.9. The measured pitch angle of 190 degrees corresponds to the 10 degrees of

declination, but is added to 180 degrees due to the inverted scan axis.
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Table 4.9: Measured and Independently Calibrated Radar Pose

rb
s,x(m) rb

s,y(m) rb
s,z(m) φb

s,z(◦) φb
s,y(◦) φb

s,x(◦)
Measured 0 0 -1.5 180 188 0
Optimised 0.1151 0.0438 -1.3002 177.2977 183.1803 -0.1550

Figure 4.21: The mapped radar data coloured by elevation, using the results from the
independent calibration procedure (see Table 4.9). The radar produces more sensor noise
than the laser, but this figure indicates blurring to a greater extent than should be expected
from the error analysis in Chapter 3.

The calibrated offsets are close to their measured value, but the pitch of 183 corre-

sponds to a declination of only 3 degrees which is measurably incorrect. The radar

data were mapped using the independent sensor calibration result from Table 4.9 and

the point cloud map is displayed in Figure 4.21. The radar has a lower range and

bearing accuracy than the laser, which can be modeled by larger values for σ2
ps in

Equations 3.19 and 3.39. However, the point cloud is blurred to a greater extent than

should be expected from the error analysis in Chapter 3.

The calibration was redone jointly with the laser and the radar, using the multi-sensor

calibration method from Section 4.1.5. The laser and radar are jointly optimised
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Table 4.10: Jointly Calibrated Radar and Laser Pose

rb
s,x(m) rb

s,y(m) rb
s,z(m) φb

s,z(◦) φb
s,y(◦) φb

s,x(◦)
Measured Radar 0 0 -1.5 180 188 0
Optimised Radar -0.0121 -0.0203 -1.4975 173.7784 189.8864 0.2369
Measured Laser 0 0 -0.9 -1.7 -8 0
Optimised Laser -0.0077 -0.0334 -0.8996 -2.4567 -8.0178 -0.6420

Figure 4.22: The mapped radar data coloured by elevation, using the results from the joint
calibration procedure (see Table 4.10). This point cloud is more sharply focussed than
the one in Figure 4.21, which was produced by calibrating the radar independently. Many
features in the scene are now clearly identifiable.

against the metal shed wall and the ground plane. The resulting offsets for the laser

and radar are shown in Table 4.10. Other than the yaw angle, the radar offsets and

angles are closer to the measured values than the independent results in Table 4.9.

The yaw angle differs from the measured value by more than was initially expected,

but this is likely due to a known time synchronisation issue between the custom built

radar scanner encoder and the radar range unit, that causes a constant angular offset

about the rotation axis. The calibration routine has in effect compensated for this

offset. The radar point cloud is mapped with these results and shown in Figure 4.22.

The point cloud is now much more focussed, to the extent that many of the features

in the scene are now clearly identifiable.
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Figure 4.23: The mapped radar and laser data coloured by elevation, using the results from
the joint calibration procedure (see Table 4.10). With the sensors calibrated jointly, the
systematic errors and contradictions are minimised, so the data can be fused reliably.

As discussed in Section 4.1.1, because the sensors have been jointly calibrated, the

systematic errors in each has been minimised and the radar sensor in particular has

benefited from the quality of the laser data. The systematic contradiction has also

been minimised so that all of the data from both sensors can be fused together reliably.

The mapped laser and radar data are produced from the joint calibration results and

displayed in Figure 4.23. All of the features can be seen without any significant

blurring due to misalignment.

In situations where multiple sensors are to be used (whether different modalities or

not) the joint calibration technique allows reliable sensor fusion. In addition, joint

calibration provides a method of leveraging the precision of one sensor to assist the

calibration of another. This allows the data from both to be fused, or the more precise

sensor can be used temporarily for calibration and removed afterwards.
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4.2 Minimisation of Timing Errors

It was shown in Chapter 3 that synchronisation is required whenever separate sens-

ing and navigation systems are combined for mapping applications. The mapping

error due to the timing synchronisation was modeled, allowing the quality of the map

to be improved by discarding data with unacceptably high uncertainty. In this sec-

tion methods of reducing the timing synchronisation error to acceptable levels are

discussed, in order to lower the uncertainty for all of the data.

4.2.1 Calculation of Timing Accuracy Requirements

The sensitivity analysis in Section 3.2.2 determined the impact of the timing error on

the map. Therefore, for a given mapping accuracy requirement, the analysis can be

driven in reverse to determine the timing synchronisation accuracy that is required

to meet the specification. The maximum sensitivity of a mapped point to the timing

error te is given by Equation 3.37, so this is used as a ‘worst case scenario’. For small

values of te, this can be used in conjunction with Equation 3.15 to approximate the

maximum magnitude of error in the map e for a given te:

e = max(Spn

te )× te (4.27)

A threshold can be specified for the maximum allowable error in the map, denoted

emax, which yields a maximum allowable timing error:

e ≤ emax

max(Spn

te )× te ≤ emax

te ≤
emax

max(Spn

te )

te ≤
emax

|ṗnb |+ |Ψ̇n
b | × (|ps|+ |rbs|)

(4.28)
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The sensitivity Spn

te depends on the sensor range, the location of the sensor on the

mobile platform, and on the vehicle velocity at the time of acquiring the sensor data.

The ‘worst case’ timing requirement can be calculated by specifying the bounds on all

of these terms. It is important to note that Equation 4.28 provides a maximum te to

constrain the mapping error due to timing. The total mapping error is the sum of all

of the separate error sources, so te may need to be reduced further to compensate for

these. For a particular vehicle, the maximum rotational and translational velocities

can be determined experimentally, as can the operational range of the sensor. The

location of the sensor in the vehicle body frame is constant and known a-priori. If the

worst case timing requirement can be met, then data should never have to be discarded

due to te. If it is not possible to meet the requirement, then it can be relaxed, causing

some proportion of the mapped data to exceed the uncertainty threshold. This might

still be acceptable, because the real-time calculation of uncertainty allows for a policy

to manage the variable quality of the data. In the simplest case, data that exceed some

uncertainty threshold can be discarded. The appropriateness of relaxing the timing

requirement depends on the particular application. In many cases where accurately

mapped data are needed during high speed manoeuvres, this requirement should be

strictly met for safety and reliability.

The following worked example illustrates the calculation of the maximum allowable

timing error te to for a particular application.

Example 4.1. In this example, an appropriate specification for the maximum al-

lowable timing error is chosen for the CAS Outdoor Research Demonstrator vehicle,

given a design requirement for a maximum mapping error of ten centimetres:

emax = 0.1m (4.29)

The upper limit for the timing error depends on the vehicle velocity and rotation

rates. For a typical autonomous run of the AUGV under consideration, the navigation

solutions are recorded. A histogram of the magnitude of velocity |ṗnb | can be seen in

Figure 4.24 and a histogram of the vehicle yaw rate ψ̇nb,z (which has a much wider
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Figure 4.24: A histogram of the absolute translational vehicle velocity for a typical au-
tonomous run of the CAS Outdoor Research Demonstrator platform.

range and large bounds than the roll and pitch rates) can be seen in Figure 4.25.

The maximum velocity that this vehicle achieved is 3.5m/s (12.6km/h), which is

relatively slow for ground vehicles in general, but the maximum yaw rate is 1.5rad/s

(86◦/s), which is relatively rapid. The AUGV is a skid steer vehicle, which frequently

undergoes small rapid turns to steer. A histogram of the sensor range data |ps| that

was observed during the autonomous run is shown in Figure 4.26. The SICK LMS-

291 sensor is physically capable of providing range returns of up to 80m according to

its specification [51], but for this particular sensor configuration in a typical outdoor

environment, 98% of the data have a range of less than 30m. The sensor is mounted

approximately 1m from the origin of the vehicle body frame.

The recorded vehicle performance for a typical run provide bounds for the maximum

velocities and turn rates, and the sensor range:

max(|ṗnb |) = 3.5m/s

max(|Ψ̇n
b |) = 1.5rad/s

max(|ps|) = 30m

|rbs| = 1m (4.30)
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Figure 4.25: A histogram of the vehicle yaw rate for a typical autonomous run of the CAS
Outdoor Research Demonstrator platform.

Figure 4.26: A histogram of the range of sensor data obtained during a typical autonomous
run of the CAS Outdoor Research Demonstrator platform.

With the mapping error constraint from Equation 4.29 and the vehicle specific bounds

in Equation 4.30 applied to the timing error inequality in Equation 4.28, the maximum

acceptable timing error te can be calculated:
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te ≤
emax

|ṗnb |+ |Ψ̇n
b | × (|ps|+ |rbs|)

te ≤
0.1

3.5 + 1.5× (30 + 1)

te ≤ 0.002s (4.31)

If the timing error is kept at or below 2ms, then for a typical run, almost all of the data

(98%) will satisfy the requirement of having less than 10cm error in the navigation

frame. The remaining data may fail to meet this requirement, but this will be known

at run-time and can be discarded if necessary.

4.2.2 Achieving Timing Accuracy Requirements

The previous section described how the required timing accuracy can be specified,

given a desired mapping accuracy. This section discusses methods for reducing the

timing error to meet this requirement. Recall from Section 3.2.2 that practical im-

plementations of mobile sensing platforms frequently have separate sub-systems for

navigation and exteroceptive sensing, each with their own time source. Mapping

combines information from both sources, therefore synchronisation is required.

Because GPS receivers fuse time-of-flight measurements from multiple satellites, they

require a very precise, synchronised timing system to maximise the accuracy of the

range estimates. The satellites have highly stable atomic clocks, which are further

corrected via communication with fixed ground stations. The corrections are then

transmitted from the satellites to the ground based receivers. When a receiver ob-

serves the signals from four or more satellites, they are able to estimate local timing

errors in addition to the global position. This enables receivers with relatively inex-

pensive timing equipment to achieve an accuracy in the order of a few nanoseconds,

that would otherwise not be possible [9, §5.8,5.9]. GPS receivers typically provide a

synchronised one pulse per second (PPS) hardware signal, that can be used as a base

line for other equipment. This signal is accurate and globally referenced, meaning
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that even physically separated systems can be synchronised, although that is not an

intrinsic requirement for a single mobile mapping platform. This section considers

the synchronisation between navigation and other sensor systems, so GPS will often

be available. Otherwise, inexpensive GPS units can be useful as a time base, even

if the positioning information is not required. Other time sources are available, and

an overview of synchronisation methods is given in [52], which points out that the

use of GPS for timing has limitations because it can only be used outdoors, and can

be problematic due to variations in signal quality due to environmental occlusions

such as tree canopies. However, this only affects the synchronisation to the global

time reference, and not the synchronisation between local sensors on a single mobile

platform.

The optimal methodology for synchronising sensors to the navigation system uses

a hardware timing reference signal to synchronise the data acquisition time of the

mapping sensor with the navigation system. Although the navigation and sensor

sub-systems remain separate modules, they are united by the hardware interface.

This technology is available in ‘high end’ commercial laser systems such as the Riegl

LMS-Q240 2D laser scanner [53], which has a PPS interface specifically to support

mapping applications. This type of technology is required if the analysis in Section

4.2.1 concludes that sub-millisecond accuracy is needed, as is the case for systems

with very fast dynamics, or long range sensing applications. If a particular mapping

sensor does not have the requisite hardware timing interface, it may be possible to

engineer an equivalent ‘after-market’ solution. For example, the most commonly used

‘low end’ laser scanning equipment is probably the SICK LMS-291 or similar variants,

which do not include hardware for time synchronisation. However, it does include

a feature to allow two adjacent sensors to be synchronised with each other, so that

they sample out of phase to minimise interference [51]. It may be possible to use this

hardware interface to synchronise a SICK laser to a PPS signal, but this is out of the

scope of this thesis. In general, the best accuracy will be achieved if the navigation

and sensor systems are designed with in-built synchronisation systems.

If direct hardware synchronisation is not possible, millisecond accuracy can still be
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achieved for the mapping sensor with standard computer hardware. Assuming that a

PPS signal is available, then multiple computers can be synchronised to this reference

using the Network Time Protocol (NTP) [36], to an accuracy in the order of microsec-

onds [37]. The synchronised computer is then used to record the acquisition time of

other sensors. The navigation information should have an accuracy in the order of

nanoseconds as mentioned above, so the total timing error te is effectively determined

by the ability of the computer software to correctly time-stamp the sensor data. This

architecture was discussed in Chapter 3, and is illustrated in Figure 3.7. The software

depends entirely on the specific features of the sensor. Example 4.1 showed how the

timing requirement could be calculated for a mobile mapping system. The following

example will show how this requirement can be achieved.

Example 4.2. In Example 4.1, the timing requirement was calculated for the CAS

Outdoor Research Demonstrator vehicle, resulting in a maximum allowable timing

error of 2ms. In this example, data are acquired from a SICK LMS-291 2D laser

scanner with a timing difference error te of less than 2ms, with respect to the PPS

signal provided by the navigation system. This allows the laser and navigation infor-

mation to be mapped, with an error due to timing that is always less than 10cm in

the navigation frame, regardless of the motion of the vehicle.

The SICK LMS-291 laser sensor is connected to an x86 machine via an RS-422 in-

terface, at 500Kbaud. The system performs 181 scans over an angular range of 180

degrees at a scan rate of 75Hz. The unit can be configured to provide various angular

ranges at different scan rates, but the sensor achieves these by performing multiple

scans and combining the data in firmware. The data sheet for this sensor [54] pro-

vides timing information about the delays incurred for the different configurations,

which indicate that the minimum delay of information occurs when using the ‘partial

scan’ mode. In this mode, the sensor sends a maximum of one scan per transmission

at 75Hz, regardless of the configuration. The scan data are then transmitted to the

controlling computer via RS-422. The computer software then reacts to the recep-

tion of the data, and time-stamps it using its internal clock, that is synchronised to

the PPS signal using NTP. The complete range scan is available to the processing
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Figure 4.27: Time delays for the SICK LMS-291 laser scanner, between the start of a scan
and the complete reception of the scan data.

software after a minimum scan and transmission delay of 14ms, assuming a constant

baud rate and scan frequency. This is illustrated in Figure 4.27.

The delay caused by the processing is implementation specific. It depends on the op-

erating system (OS) and its configuration, and the efficiency of the software. To min-

imise the processing lag, the acquisition software is written with a dedicated thread

for time-stamping, that runs at a higher priority than other competing processes.

The timing accuracy depends on the time-base of the OS kernel, and on its ability

to pre-empt lower priority threads. If pre-emption is available, then the accuracy of

the time-stamp is approximately equal to the time-base. It is difficult to measure

the absolute error of the software time-stamp, because the ground truth is hard to

obtain. However, the approximate error can be seen in terms of the observable tim-

ing jitter; the variation in the difference between successive time-stamps. The sensor

transmits scans at a constant 75Hz, so it would be expected that each time-stamp

is separated by 13.33ms (1/75s), subject to the resolution of the time-base. The

Microsoft Windows OS has a time-base of 10ms, and the minimum standard Linux

kernels have a minimum time-base of 1ms, restricting the maximum timing accuracy

on these systems. By contrast, the software is implemented on the QNX Neutrino

real-time operating system (RTOS) [55], which has a variable time-base that can be

set as low as 10 microseconds. The jitter is recorded for a time-base of 0.2ms, and a

histogram of the time difference error is shown in Figure 4.28.

QNX is a hard real-time operating system, so the timing shown in Figure 4.28 can

be guaranteed, provided the balance of high priority threads on the system remains

the same. The required maximum timing error of 2ms has been exceeded by a factor
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Figure 4.28: Jitter in sensor time-stamps, produced by software running on QNX RTOS,
connected to a SICK LMS-291 laser scanner. On average, the scans are separated by a
mean ∆t of 13.333ms (75Hz). The OS time-base of 0.2ms results in jitter errors of a similar
size.

of ten, with max(te) = 0.0002s, assuming the constancy of the transmission and scan

rates.

4.3 Terrain Estimation with Uncertainty

Robust exteroceptive sensor mapping is critical for reliable and safe autonomy in

AUGVs because it is a significant component in the model predictive control frame-

work. In Chapter 3, a thorough analysis was performed to determine the effect of the

primary sources of measurement error on typical mapping tasks. This established the

sensitivity of the map to these sources of error, and provided the equations necessary

to calculate the uncertainty in the map in real-time. Three dimensional point cloud

representations were used as the most generic ‘map’ to avoid over-constraining the

analysis. This form of representation is essentially a store of raw sensor information

in a world fixed reference frame, and can be difficult to use in real-time for appli-

cations such as path planning and obstacle avoidance. To use the map in an MPC

system, a more compressed representation of the environment is desirable, to allow

for the vehicle model and forward predictions to be done in real-time. As discussed in

Chapter 2, the chosen representation will depend on the specific application. In par-

ticular, structure in the environment may be leveraged to achieve the highest amount
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of compression and simplification. In all cases however, reliability and safety of the

whole system can only be guaranteed if the measurement uncertainty given by Equa-

tion 3.22 is explicitly handled by the representation. It will not suffice to calculate

the uncertainty of individual samples if it is ignored by the map. The uncertainty of

the representation itself must explicitly reflect the uncertainty of the measurements

that produced it. In this section, terrain representations that are useful for AUGV

MPC are discussed, in particular with reference to their treatment of measurement

uncertainty.

4.3.1 Grid Based Height Maps

Grid based height maps are commonly used in mobile robotic applications due to

the simplicity of their implementation and their effectiveness. In this framework, the

elevation of the terrain is assumed to be a function of the location, specified by two

discretised spatial coordinates [8, §36.3]. An exteroceptive sensor mounted on the

vehicle is used to gather data, which is then transformed into the reference frame

of the grid map using the transformation of Equation 3.12. An example grid map

showing a section of unsealed road is shown in Figure 4.29, with the average height

at each cell drawn as a single point above the cell centre.

There are several significant problems with the typical grid based height map ap-

proach:

• The functional height map assumption means that complicated non-functional

structures within the environment such as vertical surfaces and overhangs are

not well represented.

• When updating the map with sensor data, the mapped spatial uncertainty (as

described in Chapter 3) is often ignored, allowing data to be associated with

incorrect cells. The mean location produced from Equation 3.12 is often used,

without considering the associated uncertainty given by Equation 3.22.
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Figure 4.29: A grid based height map representing the surface of a section of unsealed road.
The average height of each cell is drawn as a single point, located above the cell centre. The
heights were produced by transforming the data from a SICK LMS-291 2D laser scanner
into a global frame using Equation 3.12. The average height of all of the data in each cell
is represented without consideration of the uncertainty from Equation 3.22. The colour of
the dots represents the statistical standard deviation of the height of points in each cell,
again without consideration of the measurement uncertainty of the individual points. As a
result it is an over-confident measure of the true uncertainty. The resolution of the grid is
0.3m× 0.3m. This section of the environment is mapped well by this technique, because it
conforms to the height function assumption.

• The inherent correlation between adjacent or nearby cells is typically not mod-

eled, meaning that new information pertaining to one region has no effect on

height estimates at any other location in the map, even if the environment is

actually spatially correlated.

• The rigid structure of the cells is inflexible. Subsequent information may alter

the validity of information that has already been included in the map, but the

rigid structure does not easily allow large scale modifications.

Despite all of the problems with grid based height maps, they have been successfully

employed in autonomous mobile robots in many cases, where the environment does

not strongly violate the constraints and assumptions above [8, §36.3].
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Extensions have been made to the basic representation in an attempt to address

many of these issues. In [56], each grid cell maintains the probable height with a

one dimensional Gaussian distribution, using one Kalman filter per cell. Although

an ad-hoc method is used to calculate the uncertainty of the sensor measurements,

rather than the complete error model presented in Chapter 3, the extension of the

grid map to represent uncertainty is significant. However, when considering the mea-

surement errors, a complete approach should not only explicitly deal with the height

distribution, but also the uncertainty in the two dimensional spatial domain. Because

each measurement has a potential error in three dimensions, choosing the correct cell

to update is not trivial. This is the data association problem for cell based terrain

estimation. Furthermore, navigation errors that are correlated in the short term (as

discussed in Section 3.3.3) will lead to overly confident estimates of the terrain height.

This is because successive correlated measurements will cause the Kalman filter to

converge rapidly to a solution that is only falsifiable over larger time scales.

A more significant contribution of [56] is the extension of the basic grid height map

representation to allow for some common non-functional features of the environment.

By explicitly classifying regions of the environment as horizontal, vertical or over-

hanging structures, the technique greatly increases the scenarios in which the repre-

sentation can be used reliably.

In [57], the world is discretised into ‘box shaped regions’, but unlike the standard

height map approach in which each region is assumed independent of all others, the

correlation between neighbouring regions of space is explicitly modeled. This allows

the ground support surface to be estimated, despite occlusions due to vegetation

above it. This leverages the structure in the particular operating environment of the

vehicle to allow the uncertain sensor information to be filtered. The data association

problem is avoided in this case by using highly accurate navigation equipment.
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4.3.2 Gaussian Process Height Maps

To remove some of the constraints imposed by discretisation, and to incorporate ex-

plicit treatment of measurement uncertainty, Gaussian Process (GP) regression [44,

§45] [45, §6.4] [58, 59] has been proposed for terrain representations [60]. GP models

allow the terrain surface function to be regressed from exteroceptive sensor data (after

being transformed to an Earth fixed frame), allowing interpolation and extrapolation

of the surface. GPs explicitly handle measurement uncertainty and spatial correla-

tions within the environment. Given a set of uncertain data points, the maximum

likelihood terrain surface can be estimated, effectively learning the spatial correlations

within the environment from the available data. An important characteristic of such

models is that in addition to estimating the mean height of the surface with explicit

consideration of measurement errors, they also provide the uncertainty of the height

estimation. The uncertainty is higher in regions with less data, or where there is

little correlation with well known areas. Sophisticated treatment of a non-stationary

GP covariance function in [60] allows spatial correlation trends in the environment to

be incorporated, enabling some areas to exhibit high spatial correlation in particular

directions, and for other sections to remain uncorrelated, which greatly improves the

extrapolation ability of the model.

The estimation of uncertainty in the maximum likelihood surface is arguably the most

important feature of this technique. However, given the high computational cost for

large data-sets (O(N3) for the exact method, although less for approximate methods

[58, 59]), the lack of a real-time incremental method to incorporate new data points to

an existing model, and the high implementation complexity compared to height grids,

it is worth considering what value is added over the grid based methods. Of particular

interest is the comparison of GP surface models with grid maps that incorporate

extensions to consider uncertainty such as [56], but that ignore the potential for

spatial correlations under the assumption that they cannot generally be relied upon.

Figure 4.30 shows a section of terrain modeled with GP regression, using the sta-

tionary squared exponential covariance function. The model is learnt from the data,

then evaluated over a fine regular grid. A Delaunay triangulation [61] is then per-
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Figure 4.30: A Gaussian Process regression terrain model of a section of dirt road, learnt
from laser data from a SICK LMS-291 2D laser scanner mounted on a UGV. A Delaunay
triangulation is performed on the data to visualise the surface. At the left of the figure, the
vehicle moves slowly (10km/h) achieving a high sample density, then speeds up (30km/h)
on the right side of the figure, lowering the sample density. Due to the undulations of the
terrain (in particular the ridges at the edges of the road) the model can only allow a small
amount of spatial correlation. When the samples become less dense there is not enough
predictive power in the model to interpolate between them and the terrain surface has a
high amount of uncertainty.

formed over the evaluated points to form the surface visualisation seen in the figure.

The surface is coloured by the uncertainty reported by the GP model. The data

were obtained by a ground vehicle driving along a section of dirt road, first slowly

(10km/h), then more rapidly (30km/h), in order to vary the density of the data. As

expected, the uncertainty is lower where the data are more dense. In order to capture

the undulations of the road (particularly at the edge where there is a large ridge),

the GP model must allow for a relatively low spatial correlation. Because of this, the

regions of lower data density do not have enough coverage to allow smooth interpola-

tion between them, and the surface becomes very uncertain over a small spatial scale.

In other words, although the model has allowed for spatial correlation, which can be
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Figure 4.31: A height grid terrain model of a section of dirt road, produced from laser data
from a SICK LMS-291 2D laser scanner mounted on a UGV. A Delaunay triangulation
is performed on the data to visualise the surface. At the left of the figure, the vehicle
moves slowly (10km/h) achieving a high sample density, then speeds up (30km/h) on the
right side of the figure, lowering the sample density. Where there are fewer samples, the
variance of the height estimates is less certain. Spatial correlation is not modeled by this
representation, so adjacent cells could have vastly different heights. Each location of this
surface exists as a result of direct observation by the sensor.

difficult to achieve in grid based structures, the allowable correlation is so small as

to provide no real benefit in this case. The non-stationary covariance function of [60]

would certainly help in this situation, but the fact remains that whenever the model

of the environment incorporates the possibility of sudden local phenomena, there can

be almost no predictive power. Just because a planar section of terrain extends for

kilometers in every direction, there is no guarantee whatsoever that there will not be

a tree, cliff or building in the next millimeter. The potential of such models is strictly

limited due to the inherent complexity in natural environments, and the covariance

estimates cannot be trusted for terrain applications in general.

For comparison, Figure 4.31 shows a Delaunay triangulation of the height grid data

from Figure 4.29. The raw data for this figure are identical to the data that were

used to produce the GP terrain surface in Figure 4.30, but this time a height grid is

used instead. Although the grid completely ignores any potential spatial correlation

in the environment, the resulting surface is very similar, both in terms of the surface
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heights and the uncertainty measures. In both cases, the uncertainty is known to be

lower where there is less data, and although the GP model can account for spatial

correlation, there is not enough correlation in the environment for this to be useful.

In certain situations where there is reliable structure in the environment and the

complexity is reduced, models that allow a large amount of spatial correlation are

more important. This is precisely the phenomenon used in [57] to predict the ground

surface beneath occluding vegetation. The issue of uncertainty was avoided by that

technique by using precise navigation equipment, so perhaps GP models would be a

powerful alternative without the assumption of certain localisation. In the general

case of a complex, unpredictable natural environment, it is likely that grid base

representation will perform at least as well as Gaussian Process models of the terrain,

but at a significantly lower computational and implementation cost.

4.3.3 Probabilistic Data Association Height Maps

One of the significant issues with using discrete grids to represent terrain given mea-

surement uncertainty is the data association problem. When a sensor measurement

is made by mobile platform and transformed to an Earth fixed frame with Equation

3.12, the spatial uncertainty given by Equation 3.22 is in three dimensions. This

can be thought of as comprising a separable two dimensional domain uncertainty,

reflecting the uncertainty about which region of the map the measurement belongs

to, and a value uncertainty, reflecting the uncertainty in the measurement of height

to attribute to that location. The height uncertainty can be filtered, such as in [56],

but the choice of which cell to update given the domain uncertainty is not trivial.

The problem of data association is well known for applications such as simultaneous

localisation and mapping (SLAM), where potentially ambiguous detections of discrete

features must be clarified prior to applying the data in the update step of the filter [8,

§37]. Typically a discrete set of hypotheses is formed as to the possible association of

sensor information with features, including the possibility that the sensor information

is associated with none of the features. The data association problem can then be
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viewed as the ranking of these hypotheses according their probability given the data

[62] [44, §28].

In some applications this is done in a purely spatial context [63, 62, 8], whereby the

association is accepted if it is statistically likely, given the current belief (posterior

distribution) of the location of all features and the probability distribution of the

location of observation. The ambiguity may also be reduced with a richer source

of information, such as the unique visual appearance of specific features [64, 8]. In

the context of terrain representations, these techniques are often not possible, due

to the compact spatial arrangement of the features or cells. Spatial association via

statistical significance tests requires very high certainty because the features are all

in close proximity. If a terrain observation has a domain uncertainty that is larger

than a single cell, it is not possible to determine precisely which cell it belongs to.

Clarification with richer feature descriptors is difficult because proximal sections of

terrain usually look very similar, regardless of the choice of sensor. This is due to the

‘first law of geography’, which states that “everything is related to everything else,

but near things are more related than distant things” [65].

A similar problem exists in target tracking applications, where the target can be

difficult to separate from ‘clutter’ of a similar appearance to the tracking sensor. The

discrete hypotheses for whether observation data belong to the target or to clutter are

analogous to the set of possible cell locations to which a spatially uncertain terrain

observation belongs. Rather than accepting the most likely hypothesis, or rejecting

the data altogether if they are unlikely, it is also possible to marginalise over the set

of possible hypotheses. Such a technique is applied to the target tracking problem

as a Probabilistic Data Association Filter (PDAF) in [66]. Each observation may be

due to the true target, or to clutter and although the association cannot be clarified

completely, probabilities are assigned to each hypothesis, and all hypotheses are used

in the update step. For a system with a single Gaussian probability distribution

for the state, and a Gaussian observation model, the marginalisation step generates

a mixture of Gaussian posterior distribution, with a new mode created after each

observation. This is intractable in most situations, so the PDAF method fits a single
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mode to represent the mixture after each update. This may be a poor approximation

in applications which exhibit strong multi-modal behaviour, due to vastly different

possible hypothesis.

In [23], PDAF is applied to a terrain representation that is similar to the Kalman

filter (KF) per cell described in [56]. This technique calculates the measurement un-

certainty according to Equation 3.22, then uses the PDAF mechanism from [66] to

update the mean height and variance of each cell with non-zero association probabil-

ity. This is one of the most complete treatments of uncertainty in an unstructured

outdoor terrain representation to date. Figure 4.32 shows a comparison of the KF and

PDAF representations for a simulated environment. In the 1D simulation, a UAV is

flown over the environment, while making range measurements to the surface. Sensor

measurements are generated by adding normally distributed random noise to the true

position of the platform and to the range and bearing of the sensor. This information

is then filtered with a KF and PDAF representation. The two plots are identical,

but with emphasis given to the PDAF on top, and the KF terrain on the bottom, to

declutter the figure. The solid lines represent the mean of the filter and the dotted

lines show the two standard deviations (2σ) of uncertainty. Because the KF does not

consider domain uncertainty (it assumes certain knowledge of the correspondence of

measurements to cells) the 2σ bounds are over confident. By contrast, the uncer-

tainty bounds in the PDAF filter are wider, to reflect the additional uncertainty due

to the uncertain data association. The PDAF estimate is much smoother, because

the model incorporates the possibility of any of the measurements actually belonging

to the neighbouring cells due to the spatial domain uncertainty.

The PDAF map has a more consistent uncertainty than the KF map, because the

model explicitly considers the location and height uncertainty resulting from the

measurement process. The PDAF terrain estimate is effectively blurred to match

the uncertainty in the measurements, to consistently ensure the estimate is not over-

confident. However, the utility of the estimate is potentially reduced because of this.

Also, the Gaussian approximation to the mixture of Gaussian distribution after each

update step can induce a sampling order bias into the system. Unlike traditional
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Figure 4.32: A 1D simulated terrain (in grey), modeled with a Probabilistic Data Asso-
ciation Filter (PDAF) method (emphasised on top) and a Kalman filter (KF) approach
(emphasised on the bottom). A simulated UAV flies over the environment, taking range
measurements of the terrain. Uncertainty in the UAV position and the range and bearing of
the sensor measurements is modeled by normally distributed random noise. The two graphs
are identical, but with different emphasis to declutter the figure. The solid lines show the
mean terrain estimate, and the dotted lines illustrate two standard deviations (2σ) of un-
certainty. Due to the measurement errors, the data association between observation and
grid cell is not known with certainty. The KF assumes certain association, leading to overly
confident 2σ bounds. The PDAF approach models the uncertain association, yielding larger
2σ bounds and a smoother, ‘blurred’ estimate of the ground.

Bayes updates, which are invariant to the order with which a set of information is

applied (as shown in Appendix D), PDAFs with the single Gaussian approximation

from [66] are not independent of the order of information. This effect can be seen in

Figure 4.33. In the first figure, the terrain information is gathered from left to right,

first ascending the hill, then descending. The resulting bias can clearly be seen. The

opposite bias is seen when the samples are applied in reverse order (from right to

left). Finally, the last graph shows that if a random order is used, the bias is reduced,

but it is not practical to implement this in a real-time system, where measurements



CHAPTER 4. MITIGATION & MANAGEMENT OF MAPPING ERRORS 141

become available as the mobile platform progresses through the environment.

Although the consistency of the terrain uncertainty can be improved with techniques

such as PDAF, the blurring of the information reduces its utility. An alternate ap-

proach to this problem is to use two different navigation frames, as was discussed in

Chapter 2. A global frame provides global spatial consistency for high level concepts

such as destinations or waypoints. A local frame uses only smooth sources of relative

pose information such as accelerations from an IMU or velocities from TDCP, which

can then be integrated to provide a smooth estimate of relative position. Although it

drifts from the global truth over time, it does not incur sudden corrective jumps as

global information sources such as GPS are incorporated. The local frame can then

be used as the navigation frame for mapping to provide relatively smooth, consistent

maps. In Section 4.4, the terrain modeling capabilities of a navigation system of this

type is evaluated.
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Figure 4.33: A 1D simulated terrain (shown in grey), modeled with a KF and PDAF
method. The observations are made by a virtual UAV that flies over the environment,
looking down. Random noise is added to the position estimates and to the range, bearing
observations, to simulate the effect of an uncertain measurement process. The first graph
shows the representation when the samples are applied from the left of the scene to the
right, in the middle they are applied in reverse order, and a random order is used for the
lower graph. The application of a single Gaussian to approximate the mixture after each
update step has introduced a sampling order bias. Although the KF method has an overly
confident estimation of uncertainty (the variance is smaller than it should be), it does not
exhibit a sampling order bias.
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4.4 Management of Navigation Uncertainty

In Chapter 3, the coordinate frames that are relevant to typical mapping applications

were specified, and in Section 3.1.1, the navigation frame was chosen as the most

appropriate and commonly used frame in which to store mapped data. The navigation

frame could be aligned to a standard global reference (such as latitude and longitude)

in which case it is termed a ‘global frame’, or it could have an arbitrary origin, termed

a ‘local frame’ (as it is often aligned to a local feature such as a tree or building, or

to the vehicle position at the time of the frame’s creation). As discussed in Section

3.1.1, the decision to use a global or local frame depends on many factors. The

benefits of using a global navigation frame are significant, yet the errors due to GPS

based navigation systems were seen in Section 3.3.3 to have a significant detrimental

impact on the map. Chapter 3 provides the capability to quantify these errors, so

that although the map is adversely affected, the magnitude of the effect is known

at run-time. However, this is often insufficient in practical applications due to the

frequency with which navigation errors can occur. In [10] it is stated that the physics

of GPS prevents it being reliable enough for a stand-alone navigation system, and

many recent efforts to build fully autonomous AUGVs have cited difficulties with the

use of GPS based navigation systems for mapping [4, 12, 13, 14, 2, 15].

Two main approaches to this problem have emerged in the literature. Firstly, the

accumulation of sensor information from multiple measurements at different vehicle

poses should be minimised, because of the detrimental blurring effect of imprecise

navigation during the data gathering process [4]. Of course this is only possible

when sensors have a sufficiently large field of view with respect to the perception

requirements. This is often not the case, particularly when using 2D range scanners

such as the popular SICK LMS laser sensor. Secondly, improvements can be made to

the navigation system, to increase the duration over which data can be accumulated

and mapped without significant error. Navigation systems are typically configured

to provide the optimal pose estimate in the global frame, where the optimal pose

is the most likely, given all available information. However, this is not necessarily

an optimal estimate with respect to mapping, in which smooth pose estimates are
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often more valuable than absolute global accuracy. For this reason, many AUGV

implementations use a local frame for mapping tasks, and a global frame to provide

the absolute spatial context of landmarks or waypoints [4, 13, 14, 2, 15]. If an optimal

global frame estimator is used for mapping sensor data, then the location of each

individual mapped sensor datum can also be considered optimal, in the sense that

the mean mapped position is the most likely in the global frame. However, if data

are gathered over time (however brief) and fused together to achieve a bigger picture,

a locally smooth navigation estimate may be optimal because it provides the most

likely relative mapped positions. With a smooth navigation solution in a local frame,

the overall shape and structure of clusters of data are preserved optimally, rather than

the absolute position of each datum under the assumption that they are unrelated. It

was concluded in Section 3.2, that in general, angular errors (including those in the

navigation solution) are amplified by the sensor range when transformed to the map

and that translational errors (including the navigation position error) are propagated

directly. If the relative uncertainty of a local navigation solution and the absolute

uncertainty of a global one can be estimated at design-time, then this general error

sensitivity can be used as a ‘rule-of-thumb’ to determine the effect of the choice on

the map.

In this section, four navigation systems are compared with respect to their appro-

priateness for perceptual mapping tasks, when sensor accumulation and mapping is

required. A comparison is made between commercial off-the-shelf (COTS) DGPS/INS

and GPS/INS ‘global’ navigation systems and the smoother output obtained from ‘lo-

cal’ navigation systems using stand-alone INS and the ASNF [16, 17] configured for

TDCP/INS. As discussed in Chapter 2, predicting the motion of a vehicle is particu-

larly difficult in unstructured environments due to the complexity of the interactions

between the vehicle and the ground. Therefore, the navigation systems considered

in this section do not use a vehicle model ; they are black box solutions that operate

equally well regardless of the type of vehicle to which they are attached. In contrast,

the AUGV systems cited above that use local and global frames all rely on vehicle

models to improve the navigation filter output. This is typically achieved by assum-
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Figure 4.34: The vehicle follows a simple trajectory, passing two poles and a tree, then
returning. If the navigation solution drifts in X or Y, the poles or tree will be mapped to
a different place on the return journey. Similarly, if the Z position drifts, there will be an
apparent separation of the ground surface.

ing there is no wheel slippage, which is an appropriate assumption when driving on

tarmac roads at relatively low speeds, where the vehicle ground interaction is rela-

tively simple. This is not generally extensible to unstructured environments where

such assumptions are invalid. Wheel slippage is cited as a problem for navigation in

[4], which is operating in an unstructured environment.

It is shown here that for mapping applications, although GPS position information

cannot be reliably used in a global navigation frame due to the frequent jumps in

position, GPS information in the form of TDCP velocity observations can be used

in a local frame to provide a smooth relative pose estimate with a reduced drift rate

when compared to stand-alone INS integration. This forms a smooth ‘black box’ local

frame navigation solution that does not require a vehicle model and is appropriate

for exteroceptive sensor mapping in unstructured environments.

The CORD platform is used again in this section, with a single downward looking

SICK laser range scanner, as seen in Figure 3.8. The laser is in the same push-broom

configuration that was illustrated in Figure 3.9. Data from this sensor is collected

while the vehicle is driven autonomously along the trajectory shown in Figure 4.34.

The ‘blind’ trajectory controller that was seen in Figure 2.3 is used so that the test

can be repeated with different navigation systems under similar conditions.

The experiment is repeated four times, once for each configuration:

1. Novatel DGPS/INS (RTK corrections).

2. Novatel GPS/INS (no RTK corrections).
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3. INS integration.

4. All Source Navigation Filter (ASNF) [16], configured for TDCP/INS.

All configurations use the same hardware, consisting of a Novatel ProPak-G2plus GPS

receiver and a Honeywell HG1700 AG17 inertial measurement unit. The trajectory is

approximately 300 metres in total length. The vehicle maintains a velocity of 1m/s

and it completes each of the four runs in 305 seconds, ±5 seconds.

4.4.1 Commercial Off-the-Shelf DGPS/INS

For this experiment it would be useful to compare the output of the navigation systems

to a ground truth that is known to be accurate, such as a geological survey of the

site. In this case no such information was available, so the DGPS/INS solution was

used as the reference against which the other systems were compared. At this test

location, the DGPS/INS system reported an accuracy of greater than 5cm for the

entire trajectory. The integrity of this result was empirically verified by mapping

the data and observing that the features (the tree and the two poles) were aligned

properly for all of the data from both the outward and returning parts of the path.

The mapped data can be seen in Figure 4.35 and the alignment is visibly precise,

with singular, vertical features.

The Z position (‘down’ or negative altitude) of the DGPS/INS navigation solution is

shown in Figure 4.36. This single dimension is displayed as it is typically the least

accurate in GPS based navigation systems and it is often considered the most impor-

tant dimension when estimating the roughness of the terrain. The shape of this plot

corresponds to the altitude of the ground surface beneath the vehicle trajectory. The

graph is approximately symmetric, because the vehicle drives out and back along a

similar path (a few metres adjacent, not identical). The largest jump or rift in altitude

is approximately 1cm, and the final altitude is equal to the initial altitude, indicating

the high accuracy and precision of the solution and its validity as a reference.
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Figure 4.35: Mapped laser range scanner data using a commercial DGPS/INS navigation
system. The CORD platform drove autonomously over the trajectory shown in Figure 4.34
and the exact trajectory that was driven is also seen in this image. The tree and the two
poles have been mapped consistently during both the outward and return passes of the
vehicle, indicating the high accuracy and precision of the DGPS based navigation solution.

Figure 4.36: The Z position reported by the Novatel COTS DGPS/INS navigation solution,
while autonomously driving the trajectory seen in Figure 4.34. The shape of this graph
corresponds to the altitude of the ground beneath the vehicle trajectory. The graph is
approximately symmetric, because the vehicle drives out and back along a similar path
(although not identical).

4.4.2 Commercial Off-the-Shelf GPS/INS

The trajectory was repeated by the vehicle, without using the RTK differential cor-

rections. The reported Z positions of the trajectory are shown in Figure 4.37. The

altitude profile is substantially different from the profile that was produced by the

DGPS/INS system, seen in Figure 4.36. The profile is asymmetric and the final alti-

tude differs from the initial by approximately 50cm. Near the tree, between 140 and
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Figure 4.37: The Z position reported by the Novatel COTS GPS/INS navigation solution,
while autonomously driving the trajectory seen in Figure 4.34. The shape of this graph dif-
fers from the DGPS estimates in Figure 4.36 and are clearly incorrect due to the asymmetry
and the differing end points. It is likely that the large tree causes multipath effects on the
GPS signal, as a sudden erroneous change in altitude is observed as the vehicle drives under
the tree canopy at approximately 140 seconds.

150 seconds, an error of approximately 80cm is introduced, which causes an error of

a similar order of magnitude in the map, by Equation 3.30. This sudden and unpre-

dictable shift in the pose estimate is typical of navigation systems that operate in a

global frame. Recall from Section 3.3.3 that global navigation systems report sudden

jumps in position due to phenomena such as multipath with GPS or loop-closures

in SLAM based systems. This results in substantial difficulties when attempting to

accumulate and map data, even over relatively short time scales.

The mapped data can be seen in Figure 4.38. The consistency of the vertical features

is poor (they appear to be leaning), when compared to the mapped data (DGPS/INS)

in Figure 4.35. Furthermore, the estimated altitude has drifted by enough that the

ground surface on the return journey is perceived as higher than the initial navigation

solution located at the centre of the vehicle. This is clearly incorrect. The apparent

difference in height of the ground surface can be measured at any location, by com-

paring the height from outgoing measurements to the height of measurements on the

return journey. Figure 4.39 shows a top down view of the mapped data, located at

the tree trunk. The sensor shadow from the tree visibly separates the two surfaces.

In this case, the apparent ground height has deviated by approximately 50cm, in

the 20 seconds taken for the vehicle to pass the tree and turn. It is clear that the

GPS/INS solution is not appropriate for mapping due the occurrence of sudden and

unpredictable shifts in the estimated pose of the vehicle.
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Figure 4.38: Mapped laser range scanner data using a commercial GPS/INS navigation
system. The reported trajectory can also be seen in this image. Noticeable rifts are visible
in the trajectory and the navigation solution deviates so far that the sensor data on the
return journey is mapped above the initial vehicle trajectory. A shadow can be seen behind
the tree trunk (the nearest feature), which is due to the drift in height of the mapped ground
surface in the time taken to pass the tree and turn. This is shown in more detail in Figure
4.39.

Figure 4.39: A top down view of the mapped data, using the commercial GPS/INS navi-
gation system. A difference of 50cm in the mapped height of the ground surface appears in
the 20 seconds taken for the vehicle to pass the tree and turn back.
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4.4.3 All Source Navigation Filter TDCP/INS

The inclusion of TDCP measurements in the filter provides multiple benefits over

stand-alone INS integration. The additional information reduces the rate at which

the pose estimate drifts from the true location of the vehicle. Furthermore, the

use of global information increases the observability of the attitude during vehicle

motion (depending on the specific manoeuvres of the vehicle), such that the attitude

estimate no longer drifts unbounded [67]. Unlike global position observations, the

TDCP velocity observations must still be integrated once to obtain positions, so

the pose estimates are less prone to sudden rifts. Like all GPS information, TDCP

observations are affected by multipath, but the resulting errors are two orders of

magnitude smaller than for global position observations [19]. In short, although the

TDCP/INS pose estimate still drifts, the drift rate is reduced and the attitude is

observable. The unpredictability due to characteristic GPS ‘jumps’ is also almost

entirely avoided. The All Source Navigation Filter [16] can be used to fuse a variety

of information sources with the INS, such as GPS, TDCP and feature tracking with

SLAM according to the structure shown in Figure 4.40. In this section, only the

TDCP component was used [19].

Figure 4.40: The All Source Navigation Filter [16] architecture that fuses INS, GPS position
and TDCP information, and laser based feature detections, into a single tightly coupled
structure. For the experiments in this section, the system is configured to provide smooth
pose estimates in a local frame, using only the INS and TDCP.
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Figure 4.41: The position estimates produced by INS integration and by the ASNF
TDCP/INS system. After only eight seconds and before the vehicle has moved, the stand-
alone INS solution has drifted by a metre. After 5 minutes (not shown here) the INS Z
position has drifted by more than 500 metres.

Figure 4.42: A comparison of the Z position estimates produced by the Novatel GPS/INS
system, the ASNF TDCP/INS system and the raw GPS observations. The TDCP/INS
solution has drifted by only 1 metre after more than 5 minutes.

In Figure 4.41, the Z position estimates from the stand-alone INS system are compared

to the estimates produced by the ASNF TDCP/INS system. The data are shown for

the initial ten second period during which the vehicle remained stationary. After

only eight seconds, the INS solution has drifted by a metre and after the five minute

trajectory is completed, the solution has drifted by more than 500 metres. The entire

TDCP/INS Z position estimate of the trajectory is shown in Figure 4.42 and by

contrast, the solution has drifted by only one metre after five minutes. Although the

INS system provides smooth pose estimates, the drift occurs too rapidly for most

mapping applications, allowing only one or two seconds of data accumulation before

the error would corrupt the structure of the map. It is worth noting that higher grade

IMUs are available at significant expense, which would buy more accumulation time,

but TDCP provides a lower cost alternative.
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Figure 4.43: Mapped laser range scanner data using the ASNF. The reported trajectory
can also be seen in this image. Compared to the commercial GPS/INS (see Figure 4.38),
the ASNF has produced a much smoother estimate of the trajectory and the mapped data
appear more consistent. The ground surface has separated less, although the drift can still
be seen, particularly in the form of a sensor shadow at the tree.

For technical reasons it was not possible to run all of the navigation systems simultane-

ously, but it was possible to produce the COTS GPS/INS and the ASNF TDCP/INS

solutions from identical data, during one run. A comparison between the two can

be seen in Figure 4.42. This experiment was repeated several times and the results

displayed are typical. In all cases, the GPS/INS estimates drifted suddenly when the

vehicle passed near the tree, suggesting multipath errors. This is also suggested by

the increased noise of the raw GPS observations in this region. The GPS/INS system

produces a smoother result than the raw GPS observations due to the influence of the

INS, but this appears to cause a drift from the ground truth. Both filtered solutions

drift by approximately one metre over the entire trajectory, yet the TDCP/INS does

not contain sudden rifts in the pose estimate that are a characteristic of GPS based

systems. The TDCP/INS solution was used to map the laser data, and the resulting

point cloud is shown in Figure 4.43. Unlike the mapped data from the GPS/INS

solution in Figure 4.38, the vertical features appear to be vertical in the data and the

ground planes are separated by less as the navigation solution is no longer occluded.

Figure 4.44 shows a top down view of the data surrounding the tree trunk. With

the TDCP/INS navigation solution, the apparent ground height has deviated by
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Figure 4.44: A top down view of the mapped data, using the ASNF TDCP/INS navigation
system. A difference of 25cm in the mapped height of the ground surface appears in the 20
seconds taken for the vehicle to pass the tree and turn back, compared to the 50cm drift
from the GPS/INS solution, seen in Figure 4.39.

approximately 25cm, compared with the 50cm drift using GPS/INS, seen in Figure

4.39. The TDCP/INS system uses no direct observations of the pose of the vehicle.

The position estimate is produced by integration, after observing absolute velocities

from TDCP and accelerations from the INS. Because the observations are imperfect,

the position estimate will certainly drift. However, unlike the GPS/INS solution,

the drift occurs in a predictable way and the solution is immune to the sudden rifts

caused by global position updates.

Clearly the TDCP/INS local frame navigation solution cannot be used to accumulate

and map data indefinitely, because of the drift in the position estimate. It does pro-

vide a significant decrease in drift rates compared with stand-alone INS integration,

making it appropriate for the local frame solution in dual navigation frame systems,

such as those described by [4, 13, 14, 2, 15]. The ASNF TDCP/INS system is capable

of providing low drift rates without requiring a vehicle model, which makes it ideal

for vehicles operating in unstructured environments, where the ground interaction is

difficult to predict.



Chapter 5

Mitigation & Management of

Interpretive Errors

Although Chapter 3 provided a geometry based sensitivity analysis, allowing mobile

mapping systems to be designed to meet mapping accuracy requirements and track

the uncertainty of the map in real-time, the significant issue of model failure was

raised in Section 3.4, because such failures can cause arbitrarily large, unobservable

errors to exists in the map.

The environment model is the interpretive layer added to the sensor information, that

is used to perceive or infer some higher level information about the world from the

sensor data, in order to facilitate some application-specific task. The words perception

and interpretation are used to describe “task-oriented interpretation of sensor data”

as in [8, §4]. This layer is almost always present (implicitly or explicitly) in AUGV

systems (and autonomous systems in general), because it enables the relevant phe-

nomena in the environment to be inferred from the sensor information, allowing the

vehicle to achieve some form of control loop around its task. In the case of AUGVs,

the loop can be considered as a model predictive controller, where the perception

of the environment is used to predict the interactions of the vehicle and the terrain

ahead of time, allowing appropriate control actions to be issued by the vehicle to

maximise safety and reliability.

154
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The mitigation of sensor and model failure cannot easily be solved for the general

case, because the failure modes are likely to be dependent on the type of environment

and sensor, and the specification of the model. In this section, some general design

principles that are likely to be useful for a variety of applications are discussed.

Although Chapters 3 and 4 have largely focused on spatially aware exteroceptive

sensors such as laser range scanners and radars, this chapter pertains to exteroceptive

sensors in general.

Some specific examples are given in this chapter:

• Improving a camera perception model to detect potential failure due to poor

contrast in the image, caused by environmental effects including lighting con-

ditions, occlusions, or atmospheric conditions such as fog or particulate dust.

• Developing and applying a generic form of fault detection for an thermal infrared

camera and a colour camera, to detect unspecified faults.

• Combining laser and radar information to increase the robustness of the laser

in poor atmospheric conditions including fog, rain and particulate dust.

Empirically, wind swept dust in the air has been one of the principle causes of failure

for the CAS Outdoor Research Demonstrator platforms (seen in Figure 3.8) when

relying on sensors in the visible and near infra-red spectrum (cameras and lasers).

This has also been noted as a concern in other systems [4, 20, 21]. For this reason,

the mitigation of errors in the interpretation of sensor data due to particulate dust

in the atmosphere is used as a recurring example in this chapter.

5.1 Improvements to the Perception Model

Failure due to errors in the perception model can be avoided or reduced in severity

by increasing the fidelity of the model. Improvements can be made by accounting for

nuances of the environment and by including specific failure modes of the sensor. By
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conceiving of possible model deficiencies prior to deployment, or by rigorous testing to

determine the causes of failure after they occur, additional complexity can potentially

be incorporated into the model so that it better represents the true environment. With

the inclusion of the fault models, the perception model failures are avoided and the

sensor failures are detected (whether it is a hardware failure or a failure to produce

useful information in the environmental context). This is similar to the ‘Multiple

Hypothesis Filters’ approach to Fault Detection and Identification (FDI), where one

filter is used for each pre-conceived fault, under the hypothesis that the particular

fault has occurred. If the information matches the filter, the fault is detected and

identified [11, §3.3].

As an example, consider a video camera operating in the visible spectrum. There

are many phenomena in natural environments that cause a reduction in the utility

of the sensor. These include low (or no) light conditions, near-field occlusions, or

atmospheric effects such as dust or fog, all of which reduce the contrast in the images.

If the perception model assumes that the images have usable information in each

frame, relating to the surroundings, then the presence of these environmental effects

may reduce the robustness of the interpretation of the sensor data. The fidelity of the

model can be increased by explicitly incorporating the possibility of such conditions.

Information theoretic measures such as Shannon information or entropy (average

Shannon information) [44, §2.4] of the raw sensor data can be used to determine when

there is not enough information in the sensor stream to be useful for processing, with

some independence from the algorithm that uses the data. Sensor performance met-

rics can be difficult to specify for complicated algorithms, whereas the information

theoretic approach provides a general purpose measure of the utility of raw sensor

information. Although this is generally true, the appropriateness of such metrics de-

pends on the type of sensor and processing method, and it is certainly not guaranteed.

For example, if an image processing algorithm is specifically designed to determine

whether the images were taken at night or day, then an image with almost no Shan-

non information (all black) actually contains a large amount of useful information to

that algorithm. In general, however, streams of raw sensor data that contain little
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Figure 5.1: A vehicle is driven on a dirt road past the colour camera. The dust stirred
behind the vehicle lingers in the atmosphere for several seconds, during which time the
colour camera images appear washed out.

or no Shannon information are likely to be of little use to processing algorithms, and

may even indicate a sensor fault.

5.1.1 Detecting Poor Contrast in Colour Video

In this section, Shannon information is used as a general performance metric for a

colour video information stream. This will be used to detect the presence of envi-

ronmental effects such as particulate airborne dust, that reduce the contrast of the

images.

Colour video was recorded while a UGV was manually driven in a well lit area, free

of dust and fog. A second video was recorded of a car driving along a dirt road,

trailing a cloud of dust behind. Figure 5.1 shows two frames from the camera, with

the vehicle and the resulting washed out image due to the airborne dust.

Given a discrete set of possible pixel values AX , the average Shannon information

H(X) is given by:

H(X) =
∑
x∈AX

P (x) log2

1

P (x)
(5.1)
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where log2 is used to obtain information in units of bits [44, §4, p73]. If the natural

log is used, the units are termed ‘nats’. When using bits as the unit of information,

the quantities can be interpreted in natural terms as “the size of a file that encodes

the outcomes of a random experiment” [44, §4].

For this example, the colour image was converted to an 8 bit integer grey scale

(using the Matlab rgb2gray function), yielding AX ≡ [0, 255] and a maximum possible

information content of 8 bits per pixel. The probabilities P (x) were calculated by

using a histogram. Given a single image, for each possible integer pixel value x ∈ AX ,

P (x) was calculated by counting the number of pixels in that image with the value

x, and dividing by the total number of pixels. Equation 5.1 can then be used to

calculate the average Shannon information in the image.

The entropy calculations are shown in Figure 5.2, for the data-set in which a car

passed the sensor viewpoint at a progressively faster velocity on a dirt road. This

resulted in an increasing amount of airborne dust trailing behind the vehicle. The

figure shows that as the vehicle enters the scene, the amount of information increases.

Once the vehicle leaves the frame, the information content is significantly lowered to

less than 4 bits per pixel, due to the cloud of dust causing a drop in contrast in the

image. Interestingly, the drop in information content appears to be correlated to the

speed of the passing vehicle, due to the correlation of the velocity and the volume

of dust that is stirred into the atmosphere. In Figure 5.3, the information content is

shown for the manual run, with no airborne dust. At no point does the information

content drop below 4 bits per pixel, so this value can be used as a minimum nominal

information content. The contrast is even more significant for comparing day and

night driving, for detecting when an object is placed directly over the camera lens,

or when the camera is pointing at the sun, because there is an even lower amount of

Shannon information content than for the dusty images. By incorporating this infor-

mation theoretic measure to model several common causes of sensor failure in natural

environments, the robustness of the model is increased. This is potentially a useful

addition to any perceptive process involving colour cameras in natural environments.

Achieving reliability, safety and robustness by improving the perception model relies
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Figure 5.2: The entropy or average Shannon information of images in a colour video se-
quence, in which a vehicle repeatedly drives across the camera viewpoint along a dirt road.
The appearance of the vehicle is relatively informative, whereas the dust cloud that follows
is very uninformative. The vehicle drives faster by approximately 10km/h each time, creat-
ing a larger dust cloud and a corresponding decrease in information content. The first two
passes at 40 and 59 seconds generate so little dust that the camera entropy is unaffected.

Figure 5.3: The entropy or average Shannon information of images in a colour video se-
quence, taken while driving manually through a natural environment. Care is taken to
avoid any dusty areas. The images always have more than 4 bits per pixel of information.
This is significantly higher than the information content of images with airborne dust, seen
in Figure 5.2 to be below 4 bits per pixel.
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on the ability to pre-conceive all possible faults, or to be willing to accept that faults

must occur to be identified. Furthermore, this method requires that identified failure

modes can indeed be modeled, which is not guaranteed. If the available sensor infor-

mation does not span the decision boundary [68] for a particular fault, it cannot be

modeled robustly. In other words, there may be no way to use information from a

failing sensor to detect that this sensor has failed. If other sensors are available to the

system, they may not provide relevant information either. In this case, some form of

redundancy is required to address the failure mode.

5.2 Multi-Modal Hardware Redundancy

In many cases, improvements to the perception model will allow potential causes

of sensor failure to be detected, thereby reducing the likelihood of model failure.

However, in the common case that the system designer is not aware of all possible

modes of failure in the system, or if known failure modes are unobservable, then

additional hardware redundancy must be added.

Physical hardware redundancy can theoretically be created for any sensor based sys-

tem by using duplicate sensors to measure the same quantity. If two identical sensors

are used, then faults are detected when the measurements differ by more than an

expected quantity of sensor noise. Two sensors yield robustness in the form of fault

detection, but it is not necessarily possible to tell which sensor is at fault. Therefore

continued operation after a fault may not be feasible. With three or more sensors,

‘voting’ can be used to additionally determine which sensor has failed [69], unless

there are multiple simultaneous failures [11, §3.3]. Unlike the model improvement

approach, where specific faults have to be modeled, or where faults are considered to

be deviations from a highly accurate process model, hardware redundancy allows for

a potentially simpler algorithm to be used, at the expense of the additional hardware.

Because the direct comparison of identical sensors does not require explicit knowledge

of all the ways in which the sensor can fail, the risk of failure in complicated systems

due to unforeseen events is substantially reduced. However, any environmental phe-
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nomenon that covers the physical separation of all of the redundant sensors will have

the same potentially hazardous impact, completely circumventing the redundancy.

The benefit of using identical sensors to allow for simple comparison algorithms is

likely to be outweighed by the prevalence of simultaneous model failure for all of the

supposedly redundant sensors. Some local phenomena may still be detectable, such

as an occlusion that covers one sensor only, however many environmental effects such

as rain or fog will impact all sensors alike.

Rather than using identical sensors, a more robust approach to hardware redundancy

can be achieved by using different sensors. In particular, sensors that use a completely

different underlying physical process. This can be seen as an ‘analytical redundancy’

approach to FDI [70, 69]. In this framework, a mathematical model exists to relate

the different sensors to some common underlying property. If inconsistencies arise

in the estimation of that property, then a sensor may be at fault. For example, the

surface temperature of an object could be sensed by a contact thermometer that con-

verts temperature to voltage, and by a thermal infra-red camera, that measures the

intensity of infra-red emissions from the object. A model exists to map the different

types of sensor data (voltage and infra-red intensity) to the underlying estimate of

surface temperature, which can then be compared directly. If there is a discrepancy,

this indicates a fault in either one of the sensors, or the models used to translate the

sensor data to the common property. This form of multi-modal redundancy is likely

to be more robust than simple hardware redundancy, because the different physical

processes used by the sensor are less likely to fail simultaneously due to unforseen

environmental phenomena. Such phenomena may influence all of the sensors simul-

taneously, but the impact on the sensors is likely to differ as a result of their different

physical properties. The practical implementation of analytical redundancy is usually

more difficult than the simple comparison method of hardware redundancy, due to

the need for accurate sensor models. This also creates additional scope for errors,

because modeling inaccuracies may lead to incorrect conclusions about sensor faults.

A hybrid approach between hardware redundancy and analytical redundancy is pos-

sible. The different forms of sensor data can be directly compared, without the need
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for the underlying state to be modeled or estimated at all. Provided that there exists

an underlying phenomenon in the environment that gives rise to the various forms

of sensor information, this causal relationship should correlate the streams of data.

This is represented by the simple graphical model in Figure 5.4.

Figure 5.4: If there is an underlying phenomenon in the environment e that gives rise to
all of the sensor measurements {s1, s2, ..., sn}, then the sensor data are correlated by the
environment.

This correlation can be measured by the amount of mutual information (MI) [44, §8]

in any two sensor streams. The MI between two pieces of information X and Y is

denoted I(X;Y ) and is given by:

I(X;Y ) = H(X) +H(Y )−H(X, Y )

I(X;Y ) = I(Y ;X) ≥ 0 (5.2)

where H(X) and H(Y ) are the individual entropies of X and Y given by Equation

5.1 (in units of bits), and H(X, Y ) is the joint entropy.

MI is suggested in preference to the direct calculation of correlation, which assumes

that the two sources of information are jointly Gaussian, because this is not necessarily

a good approximation for all multi-modal sensor combinations. For example, consider

the comparison of a colour camera and a thermal infra-red camera in an outdoor

environment on a sunny day. Objects that appear dark to the colour camera are

either hotter than the surroundings due to their absorbtion of solar energy (E.g.
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tarmac roads in direct sunlight), or are significantly colder than the surroundings if

the dark appearance is due to a lack of direct sunlight (E.g. sun shadows). There is

still a large amount of mutual information in this relationship, but the joint Gaussian

assumption is strongly violated.

The fact that some underlying property of the environment gives rise to the different

sensor information streams can be used without ever having a model between the

sensor data and the property. Anomalies in the mutual information between sensors

can be used to indicate a fault in the same way that comparisons of identical sen-

sors provide hardware redundancy. This form of multi-modal redundancy is better

than the duplicate sensor approach, because the sensors are likely to have different

failure modes. Furthermore, the extra modalities of sensor information are useful

for discrimination or classification of the environment even before a sensor fails. In

contrast, identical sensors provide no additional useful information until one of them

fails. The reduction in common failure modes and the discrimination power are both

due to exactly the same thing: the different physical properties of the sensors.

The benefit of multi-modal sensors can be seen in an information theoretic context.

Two identical sensors with the same viewpoint will provide almost identical data,

subject to the sensor noise. Although the sum of Shannon information from both

sensors H(X) + H(Y ) will be twice the size of the Shannon information from either

one on its own, the joint information H(X, Y ) will reveal that there is not actually any

additional information from the second sensor due to the redundancy. The Equation

for the joint entropy can be expressed as:

H(X, Y ) = H(X) +H(Y |X)

= H(Y ) +H(X|Y ) (5.3)

This shows that when the sensors are not assumed to be independent, the total

amount of Shannon information H(X, Y ) is equal to the amount provided by the

first sensor, plus the additional amount provided by the second sensor, given that we
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already know something from the first. If the two sensors are identical, nothing is

learnt from the second sensor: H(Y |X) = H(X|Y ) = 0. Additional information is

only given after a failure creates a difference between the sensors. Multi-modal sensor

combinations are correlated by the environment, but they typically measure different

properties, such that H(X|Y ) 6= 0 and H(Y |X) 6= 0. If the sensors measure unrelated

properties, then the two sources of sensor information are independent, such that:

H(X, Y ) = H(X) +H(Y )

H(X|Y ) = H(X)

H(Y |X) = H(Y ) (5.4)

so the total amount of information H(X, Y ) is indeed the sum of contributions from

each sensor. This is the best possible case for classification purposes, because we have

the largest amount of information available for discrimination. It is also likely to be

the most robust scenario to prevent simultaneous sensor failure due to environmental

effects. However, this is useless for redundancy based fault detection because there is

no redundancy. The optimal configuration lies in between the two extremes. There

should be enough correlation between the sensors to allow redundancy to be useful for

fault detection, but there should be enough independence to prevent shared failure

modes and to provide discriminative capabilities.

As an example of the discriminative power that two different sensor modes provide,

consider a laser range scanner that is used to estimate the nearby terrain. The

laser returns are typically interpreted as hard surfaces (ground or trees), and regions

that the laser penetrates are considered free space. Figure 5.5 shows that certain

phenomena in the environment (such as fog or glass) violate this assumption. There

are in fact occupied (O+) and unoccupied (O−) regions that provide laser returns,

and O± regions that allow laser penetration. This degrades the ability of the sensor

to distinguish between O+ and O−, which is a core reliability and safety requirement

if this information is used for MPC.
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Figure 5.5: When using a laser range sensor, discrimination comes from the different re-
sponse of the laser to the environment. The environment causes laser returns or allows
laser penetration, and this difference forms the axis of discrimination or separability. The
figure illustrates that certain phenomena in the environment degrade the ability to classify
occupied (O+) regions and unoccupied (O−) regions.

By augmenting the system with an additional sensor mode in the form of a radar,

the discrimination ability can be greatly improved. Figure 5.6 shows the separability

matrix for the multi-modal sensor system. Particulate matter such as dust and fog,

and items that are transparent to the laser and reflective to the radar such as glass

and chain fences, can now be explicitly detected. The system is almost capable

of detecting the difference between occupied and free space, but water still poses

a problem. This could be addressed by the incorporation of a third sensor with a

modality that is useful for discriminating the particular properties of water, such as

the polarisation of light [71]. Note that the detectability of features such as glass and

fence wire depends completely on the specific physical properties and geometry of the

feature, and the specification of the sensor. Not all radars will detect reflected energy

from all types of glass. Similarly not all lasers will penetrate all types of glass.

In addition to providing a much more accurate internal representation of the world,

mutual information between the laser and radar systems can be used as a form of

redundancy to detect some types of sensor and model failure. Multi-modal sensor

combinations are a very powerful tool for perception, because they can provide a
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Figure 5.6: When using a laser and a radar, the discrimination ability is much improved
over the use of either in isolation. It is possible to explicitly classify the labeled phenomena
in separate boxes (although it is not possible to discriminate between items within a box).
It is now only water that prevents discrimination between O+ and O- space. To detect
water, a different combination of sensors is required, or perhaps the inclusion of a third. In
addition to the gain in classification ability, the correlation between the sensors can be used
as a form of redundancy to detect sensor and model failures.

richer understanding of the world due to the differences between the sensors, and

they provide increased robustness and reliability due their similarities.

5.2.1 Mutual Information Redundancy for an IR and Colour

Camera

In this section an example of mutual information redundancy is given for a thermal

infrared camera and a colour video camera. Firstly, the MI between the two sensors

is directly calculated to see whether this could provide enough redundancy to detect

when one sensor ceases to function correctly. Secondly, a more robust approach is

taken by calculating the MI as a function of the time difference between the sensors

and comparing the results with the known time offset. This is a useful method to

calculate the time synchronisation if it is not otherwise known, but more importantly,

if the time synchronisation is known via methods discussed in Section 4.2, then the

two estimates of the same quantity (time) are analytically redundant, and can be
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used for fault detection. This method assumes only that the time difference is known

to the system, and that the redundant sensors are correlated by their view of the

environment. This model can then be applied to any pair of sensors that satisfies

these assumptions.

The sensors were mounted on the CAS Outdoor Research Demonstrator platform as

shown in Figure 5.7. The cameras observed an overlapping region of the environ-

ment, so the information they provide is correlated, due to the common viewpoint,

as illustrated by the graphical model in Figure 5.4. The magnitude of the correlation

depends on the extent of the actual correlation of the underlying properties being

measured by the sensor, which in this case are the colour and temperature of the

terrain. Note that no explicit model of these relationships will be developed.

Figure 5.7: The CAS Outdoor Research Demonstrator platform. The location of the colour
camera and thermal infrared camera are shown.
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Figure 5.8: Two synchronised pairs of colour and thermal infrared camera images, shown
after coarse alignment has been performed. Visibly the car is in the same place in both
images, but because no intrinsic or extrinsic calibration has been done, the alignment quality
may vary with the geometry of the environment. In the top image pair, a car can be seen
driving across the scene. Moments later, the bottom pair shows the trail of dust behind the
vehicle. The colour camera image appears to be more affected than the thermal image.

Mutual information is sensitive to the spatial alignment of the sensors. If the two

sources of information are improperly aligned, then the correspondences between the

data are blurred, causing a reduction in the correlation. However, in this section, a

minimal effort was made to align the two cameras, to show the ease of implementation

of this technique. Neither camera was calibrated for its intrinsic or extrinsic proper-

ties, the cameras were only approximately aligned to have the same field of view, and

they had different lens and zoom settings. To align the information, accurate time

synchronisation was provided as discussed in Section 4.2. Two synchronised pairs of

IR and colour images were manually chosen from the data-sets and corresponding
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pixels within each were manually labeled. The IR camera was more highly zoomed

than the colour camera, so the IR images correspond to a sub region of the colour

images. The manually selected corresponding region was cropped from the colour

images and the resolution was resampled using linear interpolation so that both sets

of images are the same size. Because the pixel correspondence is done in only two

images and no intrinsic or extrinsic camera parameters are used, this is likely to be a

relatively poor alignment. As the geometry of the environment changes, so will the

matching region. The alignment can be seen in Figure 5.8, in which two matching

pairs of colour and infrared images are shown. Although a better alignment could be

performed by calibrating the two cameras, the coarse alignment is sufficient for this

application.

The colour images were transformed to an 8 bit grey scale as in Section 5.1.1. This

forms a library of possible colour camera pixel values AC ≡ [0, 255]. The thermal

infrared camera provides 8 bit thermal readings, represented by AI ≡ [0, 255]. The

maximum possible individual entropies for either sensor is 8 bits per pixel. Jointly,

the sensors provide grey and infrared pixel pairs, in the two dimensional space AI,C ≡
[(0, 0), (255, 255)], with a maximum entropy of 16 bits per pixel. The entropy of the

individual sensors and the joint entropy are all calculated by forming histograms of

the data, to provide frequentist probabilities.

The same data-sets that were used to show the effect of particulate dust in the

atmosphere in Section 5.1.1 are used again here. The individual entropies H(X) and

H(Y ) are calculated, as is the joint information H(X, Y ) and the mutual information

I(X;Y ) from Equation 5.2. This is plotted in Figure 5.9 for a typical run along a

dirt road, and in Figure 5.10 for the view of the passing car and trailing dust.

On average, there are 0.5 bits per pixel of MI between these two sensors in a typical

outdoor environment, although prominent features within the environment act to

correlate the sensors, increasing the MI to over 1 bit per pixel. Large faults where

one of the sensors is no longer measuring a valid property of the environment could

be detected in this way, because the MI would be reduced. More subtle faults where

the sensor performance is reduced but still reactive to the environment in some way



CHAPTER 5. MITIGATION & MANAGEMENT OF INTERPRETIVE ERRORS170

Figure 5.9: The average Shannon information (entropy) of colour and thermal IR images in a
synchronised video sequence, taken while driving manually through a natural environment.
Also shown are the joint entropy and MI of the two sensors. The correlation of the sensors
depends on the variable nature of the environment, so the MI fluctuates throughout the
run. The average MI over the run is quite low, at 0.42 bits per pixel.

may not be detectable, because the nominal amount of MI is quite low. This could

be improved to some extent by carefully aligning the cameras, and by performing

the intrinsic and extrinsic calibration, so if sensor degradation is possible, this would

probably be necessary with the direct MI approach.
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Figure 5.10: The average Shannon information of colour and thermal IR images in a syn-
chronised video sequence, in which a vehicle repeatedly drives across the camera viewpoint
along a dirt road. Also shown are the joint entropy and MI of the two sensors. The ap-
pearance of the vehicle is informative to the colour camera, but not to the IR camera. The
MI is increased when the vehicle is in view, because the images of the passing car correlate
the two sensors more effectively than the images of the road. The dust cloud that follows
the vehicle is very uninformative to the colour camera, and only slightly uninformative to
the IR camera. This may be due to the difference in the wavelength of visible and infrared
light, with respect to the particle size of the dust. In Figure 5.8, the dust cloud appears to
obscure the IR camera less than the colour camera.
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5.2.2 Analytical MI Redundancy with Time Synchronisation

Rather than performing the time-consuming sensor alignment process, a form of an-

alytical redundancy can be introduced to effectively raise the noise floor. In this

section, the mutual information between the two sensors is calculated as a function of

the time difference between the sensors. In theory, the MI should be highest when the

two sensors are synchronised, because the source of correlation is the environment. If

the sensor data acquisition time of the two sensors is offset, then as the vehicle moves

through the environment (or the environment changes dynamically in view of the

vehicle) the sensors are comparing different elements of the environment. In general,

nearer things tend to be more highly correlated [65], so the MI is expected to reduce

as the time error grows.

This technique can be used to calculate the time offset if it is not known. For the

application to analytical redundancy based fault detection, this method relies on the

assumption that the time offset is known independently of the MI calculations, and

that the environment correlates the sensor readings due to a common viewpoint of

some underlying property, as shown in Figure 5.4.

The MI between the colour and infrared camera is calculated for a sequence of 100

images for each sensor. At fifteen frames per second, the sequence covers about seven

seconds. The MI is then calculated on this entire pixel pair set, by Equation 5.2.

The sensors are synchronised to a temporal offset of approximately 0 seconds, ±10

milliseconds, using NTP without a hardware pulse [36]. The MI calculation is then

repeated, with a varying temporal offset of ±5 seconds between the two sensors.

Figures 5.11 and 5.12 (zoomed) show the resulting MI in bits as a function of the

time offset. There is a significant peak near the nominal offset of zero seconds, with

an error of only 13 milliseconds.

This result would be highly unlikely if the sensors were not correlated by the en-

vironment over the previous seven seconds. The calculation of MI has provided a

highly accurate estimate of the temporal offset between the two sensors, which can

be directly compared with the independently measured time estimate. Sensors by
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Figure 5.11: The mutual information between a colour camera and a thermal infrared
camera, calculated as a function of the time offset between the two sources of information.
The maximum correlation between the sensors occurs when the time stamps are correctly
matched. If the time offset is known independently, then this can be used to check that the
sensor is still correctly perceiving some aspect of the environment.

Figure 5.12: The mutual information between a colour camera and a thermal infrared
camera, calculated as a function of the time offset between the two sources of information.
This shows a magnified version of Figure 5.11. The MI peak occurs 13 milliseconds off the
nominal value of 0 ms.
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their very definition are used to sense some aspect of the environment. If a fault is

defined to be any scenario in which a sensor ceases to be affected by its surroundings,

then this technique can be used in real-time to detect sensor faults.

Furthermore, only three assumptions were made:

• The data from each sensor are related to some underlying property in the envi-

ronment when the sensor is functioning properly.

• The environmental properties that are measured by each sensor are correlated

(even if the relationship is not fully understood, modeled, or even able to be

explicitly modeled), and this causes the data to be correlated.

• When the sensor is faulty, it no longer senses the relevant underlying property,

thus removing the correlation between data from the two sensors.

This technique applies to any combination of sensors that meet these requirements.

It is likely that the correlation in some environments will depend on the particular

scene, and there may be situations where only a small sub-set of the sensor infor-

mation is related. Appendix E shows the potential for rapidly calculating maximally

informative joint sub-regions of the two data streams so that the technique shown

here can be applied to a targeted sub-section of the data.

5.2.3 Discrimination of Dust using Laser and Radar

This section demonstrates the improvement of a perception model by fusing infor-

mation from two sensors with different modalities. In section 5.1.1, the benefit of

increasing the model fidelity by including specific sensor failure modes and nuances

of the environment was discussed. Then in section 5.2, it was argued that incorpo-

rating different sensor modalities into a perception model provides two main benefits:

redundancy is achieved from the similarities between the sensors, and discrimination

or classification power is achieved from the differences. This section uses the discrim-

inative power obtained from the fusion of a laser range scanner and a scanning radar
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to model the effect of airborne dust, which is a nuance in the environment that can

cause significant misinterpretation of laser sensor data, when used in isolation.

The CAS Outdoor Research Demonstrator was used again for this experiment, with

a 2D range scanning laser (SICK LMS-291) and a custom built 94GHz frequency

modulated carrier wave (FMCW) 2D range scanning radar, as was shown in Figure

4.20. The radar provides intensity of the reflected radar energy from the environment

along the radar beam axis, in approximately 25cm bins. This can be used to extract

a range estimate similar to the laser scanner, by extracting the range of the highest

intensity peak. This range estimate is refined to a higher accuracy than the 25cm

bin spacing by fitting a quadratic about the peak. In this configuration, the radar

data are similar to the laser scanner, but the transmitted radar energy is able to

penetrate particulate matter in the atmosphere much better than the laser due to the

different transmission wavelength. The attenuation of millimetre wave radar through

air-borne dust is several orders of magnitude lower than that of 1 to 10µm wavelength

infra-red laser, so “in contrast to the poor transmission through dust at the shorter

wavelength, the attenuation in the millimetre wave band is fairly insignificant” [72].

The sensors are mounted near each other, and both point to the front of the mobile

platform at a similar angle of declination from the horizon (8◦).

To observe the effect of dust on the sensors in a controlled environment, data were

gathered from the radar and laser during the same experiment that was described

in Section 5.1.1. A car was driven at varying speeds along a dirt road in front of

the sensors, while the sensor data were recorded. Although not used in this section,

colour and infrared photos from the same experiment can be seen in Figure 5.8 for

reference. To illustrate the effect of airborne dust on the laser scanner, the data

are graphed as a time sequence of scans. Figure 5.13 shows the scans during a slow

pass of the car, with no trailing dust, and Figure 5.14 shows the sequence for a

pass at approximately 70km/h with a large trailing dust cloud. The graphs show

individual 2D laser scans along the horizontal axis. The first scan is at the bottom

of the figures, with increasing time up the vertical axis. The range is represented by

the colour, and undetected sensor returns are represented coloured by the maximum
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Figure 5.13: A vehicle drives slowly along a dirt road, passing in front of the laser scanner.
The time sequence of range scans is shown. The range scans of ±50◦ are shown along the
horizontal axis. The first scan is at the bottom of the figure, with time increasing in the
vertical axis. Initially the wheels of the car can be seen, then the body. As the specular car
body reaches a shallow angle with respect to the laser beams, some returns are lost, shown
as the maximum range in red. The vehicle does not stir any dust on the road at this speed.
For comparison, the effect of this pass on information content of the colour camera can be
seen at 59 seconds in Figure 5.2.

range in red. Figure 5.13 shows the appearance to the laser of the slowly passing car,

with no trailing dust. This can be used to identify the portion of Figure 5.14 that

corresponds to the car, and it is labeled by hand accordingly. The difference between

the two figures is due to the airborne dust that is stirred up when the car travels

more quickly. As seen in Figure 5.14, the initial range measurements immediately

behind the car are almost constant for about two seconds, indicating a strong signal

return from the front of the dust cloud during this time. As the wind disperses the

dust, the cloud becomes thinner and the laser is able to penetrate further. After

approximately four seconds the laser is able to correctly perceive the ground behind

the cloud. Because the dust is capable of returning such consistent range values, it

would be difficult to discriminate between this and a fixed hard surface such as a wall.

This is an example of the ambiguity represented in Figure 5.5, that prevents the laser

from being a reliable discriminator between occupied and free space, as required for

safe ground vehicle autonomy.
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Figure 5.14: A vehicle drives at approximately 70km/h along a dirt road, passing in front
of the laser scanner. The time sequence of range scans is shown as in Figure 5.13. The car
appears identical in the range sequence as in Figure 5.13 (although compressed in the time
axis due to the increased speed). A large cloud of dust follows immediately behind the car,
and the ‘front’ of the cloud is sensed at an almost constant range. The wind disperses the
dust, and as it thins, the laser penetrates past the front, through the body of the cloud,
and eventually back to the ground behind. For comparison, Figure 5.2 shows the effect of
the airborne dust on the information content of the colour camera. A reduction in entropy
can be seen at 160 seconds, which is restored at 163 seconds once the cloud dissipates.

As shown in Figure 5.6, the discrimination can be improved by using both a laser

and a radar sensor. Figure 5.15 shows a synchronised pair of 2D scans from both of

these sensors, when the car is in view during the slow pass. The car and the ground

reflect the transmitted radar and laser energy similarly, so the sensor profiles are well

matched. This corresponds to the scenario in the top left quadrant of Figure 5.6. In

Figures 5.16 and 5.17, the passing car traveled faster, leaving a cloud of dust above

the dirt road, and this is sensed differently by the laser and radar. The front of the

dust cloud returns laser energy, hence it is visible in the laser scan profile. The radar
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Figure 5.15: A synchronised 2D laser and radar scan, showing the ground intersection profile
and the profile of a slowly passing car. Both scans appear similar, although not identical
as the sensors are not perfectly co-located; they have a small vertical offset between them.

energy penetrates the dust, so the ground profile behind the cloud is visible in the

radar scan. Figure 5.16 shows that the dust can appear similar to a consistent hard

object, and Figure 5.17 shows the magnitude by which the laser scans can be affected.

In either case, the radar scans are unaffected. The scans differ due to the effect of

the environment on the different sensing modalities, corresponding to the bottom left

quadrant of Figure 5.6. These two quadrants are separable, so it should be possible

to classify scans that are affected by airborne dust, and scans that are due to surfaces

that are diffusely reflective to the laser and radar.
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Figure 5.16: A synchronised 2D laser and radar scan, showing the ground intersection
profile. The front of a cloud of airborne dust is profiled by the laser scanner, but the radar
energy penetrates the cloud and reflects from the ground behind. The sensor data differ
significantly due to the effect of the environment on the different sensing modalities.

Figure 5.17: Similar to Figure 5.16, this figure shows a large amount of airborne dust. The
laser profiles the front of the dust cloud, but the radar still has a clear view of the ground
profile behind.
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To classify laser returns that are affected by dust, a metric erl is formed for each

matching laser and radar point within a scan pair. This metric is defined to be the

squared error between the laser and radar range. When the environment affects the

sensors differently, erl is large, and when the sensors agree, erl is small. Due to the

difference in the angular sensor resolution, the radar scans are resampled using linear

interpolation to match the laser bearings, resulting in both sensors having the same

number of points per scan, at matching scan angles. The error introduced by this is

small because the angular sampling resolution of both sensor is similar. For a laser

range rl, a radar range rr, both at bearing θ, the error value is given by:

erl = (rl − rr)2 (5.5)

The radar laser metric is shown in Figure 5.18, corresponding to the data-set with

repeated passes of a car at increasing velocity. For the first two passes of the car,

little dust was stirred into the air. As a result, the laser and radar range profiles

are similar and the error metric erl remains below the noise floor. Importantly, this

shows that the movement of the car through the laser and radar viewpoint does not

induce a significant error between the two sensors. This is because they are almost

co-located and they are accurately time synchronised. Figure 5.15 also shows that

the car can be seen by both sensors, and that the information from both is aligned.

When the car passes more rapidly, stirring more dust into the air behind it, the

presence of airborne dust in the viewpoint of the sensors causes a discrepancy, and

a corresponding increase in erl. For all instances where there exists airborne dust,

erl is above the noise floor, clearly demonstrating the discrimination power of this

combination of sensors for this phenomenon.

A classification data-set of approximately 55, 000 laser and radar range pairs was

gathered from a more typical operating environment of the vehicle. The vehicle was

driven aggressively (with sharp turns), causing dust to be stirred into the atmosphere.

This reduced the possibility of learning specific features of the controlled experiment

above. Figure 4.20 illustrates that the sensors are not perfectly co-located, rather
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Figure 5.18: The squared range error between a 2D laser range scanner and a 2D radar
scanner. A car is driven on a dirt road through the viewpoint of the sensors, at increasing
velocities. The first two passes at 40 and 59 seconds do not create a large volume of
airborne dust, and there is no corresponding increase in the error metric. This means that
the presence of the car in the laser and radar data does not cause a discrepancy, because
the sensors are synchronised and almost co-located. This was expected, as Figure 5.15
illustrated the similarity of the car in the data. As the car passes more rapidly, dust affects
the laser range profile, but not the radar range, thus causing an error between the sensors.
This diagram can be compared to Figure 5.2, which shows the effect of the dust on the
colour camera. The first two passes do not stir enough dust to affect the camera either.
The largest peak in this error plot corresponds to the scan pair shown in Figure 5.17

they are positioned to yield similar range values to the ground plane directly in

front of the vehicle, when the vehicle is positioned on flat ground. Therefore, as the

sensor bearing deviates from 0◦ (pointing directly in front), the error between the

sensors increases. The error metric from Equation 5.5 was calculated for the entire

classification data-set, and plotted against the bearing at which the measurement was

made in Figure 5.19. The error due to the physical misalignment of the sensors can

be seen as a curved base line in the figure. In general, the errors are much larger

when the bearing deviates from zero degrees. However, the dust causes a significant

additional error, and can be seen as a separable region with bearings of ±50◦. For

this reason, the classification will be restricted to this bearing region. Figure 5.20

shows the error values erl within this bearing range, plotted against time for the same

data-set. When the laser is affected by airborne dust, the errors are significantly

higher than the noise floor.
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Figure 5.19: The squared range error erl between a 2D laser range scanner and a 2D radar
scanner, from Equation 5.5. The errors are plotted against the sensor bearing. As the
bearing deviates from 0◦, the error between the two sensors increases because the sensors
are not perfectly co-located. The region of dust affected scans can clearly be seen within
the ±50◦ range.

Figure 5.20: The squared range error erl between a 2D laser range scanner and a 2D radar
scanner, from Equation 5.5. The errors are calculated between sensor bearings of ±50◦.
The vehicle was driven manually with fast turns, causing dust to be stirred, which in turn
creates an error much higher than the noise floor.



CHAPTER 5. MITIGATION & MANAGEMENT OF INTERPRETIVE ERRORS183

Expectation maximisation (EM) [73, §20.3], [45, §9], [74] is used to learn a näıve Bayes

binary classification for when the sensors agree or disagree, in the latter case due to

airborne dust. From the classification data-set of 55, 000 samples, a training subset

of 2000 samples is used. The resulting Gaussian likelihood functions are difficult to

visualise on the same graph because they vary significantly in scale, instead they are

conveyed numerically:

Class = [clear, dust]

P (erl|clear) = N (erl − 0.2043, 0.0816)

P (erl|dust) = N (erl − 39.6013, 10970) (5.6)

The difference in scale is due to the fact that erl is close to zero when the environment

is clear, yet the dust induces a very large range of error values (with a standard

deviation of 100m2) depending on factors such as the distance between the dust

cloud and the ground behind.

Assuming a uniform prior, the probability of a sensor range being affected by dust is

given by Bayes rule:

P (Class|erl) =
P (erl|class)P (class)

P (erl)

P (dust|erl) =
P (erl|dust)

P (erl|dust) + P (erl|clear)

P (dust|erl) =
N (erl − 39.6013, 10970)

N (erl − 39.6013, 10970) +N (erl − 0.2043, 0.0816)

P (clear|erl) = 1− P (dust|erl) (5.7)

The probability of the sensors being affected by dust is shown for different values of
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Figure 5.21: The learnt probabilistic model, describing the probability that an error in
range between the laser and radar sensors is due to airborne dust, as opposed to noise.

erl in Figure 5.21. This figure illustrates the learnt laser radar dust model. The class

boundary point occurs at erl = 1.19m2, meaning that range errors smaller than this

are more likely to be due to noise than due to dust.

The model is then applied to the entire classification data-set to filter laser points that

have been affected by airborne dust. In Figure 5.22, the unfiltered laser data from the

entire classification set are mapped to a three dimensional point cloud. In Figure 5.23,

the laser points have been filtered using the classification model in Equation 5.7. The

figures are coloured by elevation, so that the area affected by dust can easily be seen.

The filter has succeeded in removing every sample that was affected by airborne dust,

while leaving the ground, and other objects in the scene. The object to the centre left

of both figures is a stationary car, and the linear objects are fence lines and building

walls. Some points corresponding to the wall have been classified as dust due to the

geometry of the sensors. When a vertical wall is viewed in close proximity by the laser

and radar, the imperfect collocation causes an increased range discrepancy. These

figures show that the model that was learnt from the training subset has successfully

captured the classification boundary, and is generally applicable to the wider data-set.
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Figure 5.22: A 3D point cloud of all of the laser points from the dust classification data-set,
within a bearing of ±50◦, coloured by elevation. The area that is affected by airborne dust
can be seen in the centre of the scene.

Figure 5.23: A 3D point cloud of all the laser points from the dust classification data-set
that are classified as clear, using the classification model of Equation 5.7. The dust is
completely removed, yet the vehicle to the left of the scene and most of the wall and fence
line remain.
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5.2.4 Real-time Implementation of Dust Filtration for an

AUGV

In Section 5.2.3, it was shown that airborne dust particles that are commonly stirred

from the wheels of an AUGV can have a detrimental impact on the ability to perceive

the surrounding terrain, when using a scanning laser sensor. To detect the presence

of airborne dust, a multi-modal sensor fusion algorithm was described, that combines

information from a scanning radar and laser, to detect when the laser is compromised.

In this section, a real-time implementation of the algorithm is tested on the CAS

Outdoor Research Demonstrator (CORD) platform, to show that it is successful at

allowing continued autonomous operation despite the presence of significant quantities

of airborne particulate dust. It is likely that the technique will work equally well for

other common similar atmospheric conditions such as rain and fog, but the method is

only experimentally evaluated on dust because unlike rain and fog, dusty conditions

are usually available.

In Chapter 2, general control strategies for AUGVs were discussed, and the specific

control system architecture for the CORD platform was shown in Figures 2.3 and

2.6. In this section the control system is modified to incorporate the binary Bayes

classification algorithm of Section 5.2.3 as a modular sensor filtration block, shown

in Figure 5.24. The classifier could have been implemented in many different ways,

but the filtration method was chosen for modularity, as it can be inserted into the

control structure with no further modifications to the architecture or the algorithms

within the blocks. As a result, the filter is independent of the specific algorithms

inside the predictive block, meaning that it should be applicable to any perception

system that relies on laser range scanner information. Although not strictly required,

a brief description of the contents of this predictive controller is now given.

The range scanner information is combined with the vehicle pose estimate according

to the transformation in Equation 3.12. This mapped information is then stored in a

height map, where the mean heights above discrete grid cells are stored. This infor-

mation is converted to a cost map (which maintains the predicted cost of traversing
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Figure 5.24: The dust model in Equation 5.7, that was learnt from the classification data
is used in real-time to filter the laser sensor measurements. Measurements that are more
likely to be affected by dust than not, are discarded to prevent them from being perceived as
an obstacle to the vehicle. This is implemented as an in-line filter, allowing the rest of the
control system to remain unmodified. This modularity means that the filter should work
with any perception, mapping and planning algorithms contained within the optimisation
block, that rely on laser information.

each discrete cell) by using a simple vehicle model, that considers the gradients of the

height map. There is a linear cost of traversal ranging from zero to one, where zero is

the cost of traversing completely flat terrain, and one is the cost of traversing terrain

that is ‘rougher’ than a vehicle specific threshold. This cost information is dilated

by the size of the vehicle to transform it to the configuration space of the vehicle

[73, §25.4]. Finally, a combination of the A* [73, §4] and D* [75] heuristic search

algorithms are used to plan trajectories over this space. A more detailed description

of the control strategy can be found in [76, 77].

To test the ability of the filter to allow autonomous operation in dusty environments

while using laser sensors, the vehicle is operated autonomously with and without the

filter in the system. For testing purposes, the radar data are only used in the filter,

and are not directly fed into the perception system. This is the only point of difference

from the control system architecture, shown in Figure 5.24.

A very eroded section of ground was chosen for the test site as a ‘worst case’ scenario.

Figure 5.25 shows the complete erosion of the ground at the site. This photo was

opportunistically taken during an unrelated experiment in the same region, to show

the ability of the wind to stir significant volumes of dust into the air, independent of
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Figure 5.25: This eroded section of ground is used as a ‘worst case’ test site for the real-time
performance of the dust filter. The figure shows the ability of the wind to raise significant
volumes of dust into the air, independently of the vehicle. The interaction between the
vehicle’s tyres and the ground also causes dust to be stirred in the vicinity of the vehicle
as can be seen in Figure 5.26. Airborne dust is the primary cause of sensor failure for the
laser range scanners in this type of outdoor environment.

the vehicle. Ten waypoints were placed across the test site, to form a single line of

approximately thirty metres length, requiring the vehicle to drive out and back for five

‘round trips’. Every time the vehicle turned, and sometimes as it drives in a straight

line, significant volumes of dust were stirred into the air due to the interaction of the

tyres and the ground. In Figure 5.26, two still frames are selected from video footage

of the experiment, to show the dust being stirred as the vehicle turns.
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Figure 5.26: The two images have been selected from video footage of the real-time dust
experiment, to illustrate the dust that is stirred into the air as the vehicle turns. This
volume of dust is enough to reduce the ranges that are reported by the laser range scanner,
causing the perception system to consider the region to be non-traversable. The dust model
in Equation 5.7 that was learnt from the classification data is used in real-time to filter the
laser sensor measurements. Measurements that are more likely to be affected by dust than
not, are discarded to prevent them from being perceived as an obstacle to the vehicle.

The experiment was repeated three times with the filter and three times without. In

all cases where the filter was used, the vehicle successfully reached the ten waypoints

without requiring operator intervention. In all cases where the filter was not used,

the vehicle failed to reach even the first waypoint. In these cases, as soon as the

vehicle turned, enough dust was stirred that the predictive control system consid-

ered the immediate region around the vehicle to be non-traversable, and canceled

the autonomous controller, requiring the human operator to intervene. Figure 5.27

illustrates representative cost maps from this region, superimposed with the waypoint

locations that were used for the experiment. This figure shows the effect of the dust

on the cost maps, but was produced by manually driving the vehicle over the same

region. This was required as autonomous operation was not possible without the

filter in place. The figure shows that the dust has been removed, although the car

and walls remain.

The experiments unambiguously show the success of the filtration method at allowing

continued autonomous operation in sporadically dusty environments using laser range

scanners. Although this is a highly successful first pass implementation, further work



CHAPTER 5. MITIGATION & MANAGEMENT OF INTERPRETIVE ERRORS190

Figure 5.27: The laser and navigation data are transformed using Equation 3.12 to produce
an estimate of the terrain surrounding the vehicle. This estimate is convolved with a
simple vehicle model to produce a cost map. The two images illustrate the predicted cost
of traversal, with completely flat terrain represented as black, and non-traversable terrain
shown as white. The image on the left shows the predicted costs when the filter is included
in the control loop (as shown in Figure 5.24). The figure on the right shows the prediction
when the filter is not used. As expected, the dust creates the perception of non-traversable
regions that prevent the waypoints from being reached, and the filter successfully prevents
this from happening.

is still required to determine what environmental conditions could cause the filter to

fail. The examples that were illustrated by the discrimination matrices in Figures

5.5 and 5.6 show that particular nuances of the environment may be responsible for

systematic failures. Testing such a classification based system can therefore only

be complete if it spans all such possible nuances. Rather than collecting further

statistics on the success and failure of this system to achieve waypoints, a more

thorough examination is required to find the types of environment that might cause

the system to fail.



Chapter 6

Conclusion

The purpose of this thesis is to promote the reliability and safety of autonomous

unmanned ground vehicles operating in unstructured environments. In this chapter,

a summary of the thesis is given, followed in Section 6.2 by a list of the specific

contributions that have been made. The thesis is concluded in Section 6.3, with a

discussion of future work in the field.

6.1 Summary

This thesis analysed the algorithms and systems that are required to enable au-

tonomous operation of an unmanned ground vehicle (UGV) in an unstructured and

unknown environment. The primary sources of error in these systems were identified

and new solutions to mitigate against their effect were developed. The scope of the

thesis was limited to experiments on an AUGV platform, although much of the analy-

sis and the development of algorithms and techniques are extensible to other forms of

autonomous system (such as non ground vehicles or stationary mapping platforms).

In Chapter 2, the general control system architecture that is used by almost all

AUGV systems was presented, with the argument that the robustness of the per-

ception and mapping components is critical to achieving reliability and safety in the

191



CHAPTER 6. CONCLUSION 192

whole autonomous system. Two specific systems from the literature were discussed,

with emphasis on how and to what extent they achieved reliability and safety. It

was argued that any structure within the environment provides significant leverage

for achieving robust algorithms, due to the assumptive power that the structure pro-

vides. As this thesis is focussed on reliability for systems that operate in unstructured

environments, this assumptive power is not generally available. This discussion under-

lines the need for general purpose algorithms or methods that can increase the system

reliability without making any assumptions about the nature of the environment.

In Chapter 3, an error analysis was performed to determine the primary sources of

error in typical perception and mapping systems. A detailed model of the geometric

and temporal sources of error was developed. This enables design-time decisions to

be made to maximise achievable map quality, and it provides the ability to estimate

the map quality at run-time. By providing a high fidelity error model, the quality

of mapped data can be improved and the integrity can be increased because the

quality is always known. Reliability is achieved not by requiring systems to have

perfect output always, but by knowing when the quality of the output is not high

enough. This enables some application-specific policy to be enacted (perhaps to halt,

or ask an operator for assistance), to preserve the overall reliability and safety of

the autonomous system. As a caveat to the fidelity of the geometric and temporal

error model, the interpretation of sensor information that is performed by perceptive

processes was identified in Chapter 3 as a potential source of unmodeled error, that

could decrease the overall system reliability.

With the high fidelity geometric and temporal model specified in Chapter 3, Chap-

ter 4 utilised this information by developing methods to minimise these sources of

error, in order to increase the quality of the map, thus increasing the quality of the

entire control system. The caveat imposed by perception was then explored in Chap-

ter 5. Although a general error model cannot be given due to the application-specific

nature of perception algorithms, some general principles were discussed. These were

then applied to specific sensors. Multi-modal sensor fusion and information theo-

retic measures were used to combine thermal infra-red and colour cameras for fault
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detection, while laser was fused with radar to classify perceptive nuances in the envi-

ronment. These algorithms were based on a general design principle and methodology

that is extensible to other application domains.

The integrity of the perception and mapping components in control system architec-

tures is critical to achieving reliable and safe autonomous systems. By identifying the

primary sources of error in typical perception and mapping systems, and addressing

these with new methods to calculate and to minimise them, the methods presented in

this thesis work together to increase the reliability and safety of AUGVs that operate

in unstructured environments.

6.2 Contributions

The major contribution of this thesis is the holistic approach to identify and mitigate

the primary sources of error in typical AUGV sensor feedback systems, in order to

promote reliability and safety. More specifically, this thesis contributes:

• An analysis of the sensitivity of mapped data to the primary sources of mea-

surable error, both stochastic in the form of localisation errors and sensor noise

and systematic in the form of spatial sensor misalignment and sensor timing

synchronisation errors.

• An analysis and development of an error model to calculate the combined ge-

ometric map uncertainty, given the joint effect of localisation, noise, misalign-

ment, and time synchronisation.

• A calibration method to learn the optimal sensor alignment parameters with a

full six degrees of freedom and a method to calculate the precision of the learnt

parameters.

• An extension of this method to learn the joint alignment parameters of multiple

sensors, so that their information can reliably be fused into one consistent map.
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• The rigorous testing of the calibration procedure for a single sensor, multiple

homogenous sensors and multiple heterogenous sensors. This demonstrates the

minimisation of systematic errors, the minimisation of systematic contradictions

between sensors to allow data fusion and the leveraging of a high precision sensor

to assist the calibration of a lower precision sensor.

• Examples of calculating and meeting system design requirements that are driven

by a desired mapping accuracy.

• An analysis and discussion of multi-modal sensor fusion to reduce interpretive

errors in perception algorithms and an analysis of multi-modal hardware re-

dundancy as a model-free method of fault detection for arbitrary exteroceptive

sensors.

• A specific multi-modal sensor fusion algorithm that uses a laser and a radar to

detect when airborne dust particles are impeding the use of the laser.

• An evaluation of a navigation system architecture for mapping, that is designed

to reduce the effect of stochastic global positioning errors.

6.3 Future Work

Achieving autonomous reliability in unstructured environments is a challenging prob-

lem that remains largely unsolved. Although the task becomes more tractable each

year as computational power increases and researchers provide new algorithms, com-

mercial scale reliability still seems to be a long way off for systems that perform high

level perceptive tasks. Systems such as [4] that achieve long term mission success,

do so by incorporating a tightly integrated human supervisor. The fact that the

whole system, including the human, can be deemed reliable is an indication that the

sensing and actuation of such state-of-the-art systems are sufficient. The bottleneck

is the autonomous interpretation of sensor information, or perception. In the short

to medium term it seems likely that a tightly integrated human supervisor will be
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needed whenever the environment of an autonomous vehicle lacks sufficient structure.

The work in this thesis has been focussed at the lowest levels of sensor processing

(low level perception and mapping), to promote reliability from the ground up. The

algorithms and methods that have been presented, achieve an increased level of sys-

tem reliability and safety and are widely applicable. These form a strong basis for

further research into system reliability at ever higher levels, which is required for the

commercial viability of unmanned systems in unstructured environments.

The particular methods that were developed in this thesis also lead to some immediate

areas of future research and development:

• The extrinsic sensor calibration method from Chapter 4 can be extended to

additionally provide intrinsic sensor parameters for particular sensors, such as

scaling factors and offsets that are required for some radar systems, or possibly

intrinsic camera parameters for stereo camera pairs.

• The calibration method is extensible to multiple sensors on multiple platforms.

The use of a high precision laser to assist the calibration of a lower precision

radar was demonstrated in Chapter 4. This type of heterogenous calibration

could be spread across multiple platforms. For example, a laser on one vehicle

will assist with the calibration of a radar on a separate vehicle. This is analogous

to surveying features with one sensor platform, to provide the ‘known’ features

for the calibration for other sensor platforms. The entire joint system of M

vehicles with N sensors can be optimally jointly calibrated, with a minimal

extension to the calibration method of Chapter 4.

• The point above should be explored for multi-sensor/multi-vehicle systems where

the physics or geometry of a platform preclude it from seeing certain features

well. For example, an aerial vehicle may not be able to see the entire profile of

a vertical feature, yet calibration could be assisted by a ground vehicle that can

jointly observe the feature from the ground.

• The mutual information based analytical redundancy technique that was devel-

oped in Section 5.2.2 provides a general framework for analytical redundancy,
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without requiring a model of the interaction between the sensor and the envi-

ronment. Further experiments are required to validate this method for a wider

variety of sensors in different types of environment.

• In Chapter 3, the effect of navigation errors on mapping was shown, and in

Chapter 4, a reduction in this effect was shown to be possible using appropri-

ate ‘black box’ navigation solutions. Investigation of non black box solutions,

should be done, whereby a tight coupling between terrain perception and nav-

igation may lead to a navigation solution that is optimal with respect to the

perception task specifically. Navigation errors are apparent when building ter-

rain maps because they invoke unlikely rifts in the surface. These rifts contain

information that could potentially be fed back to the navigation system to refine

both the pose estimate and the integrity of the map.



Appendix A

Transformation Sensitivities

The transformation equation to transform a point in the sensor frame s via the

vehicle body frame b into the navigation frame n is given by Equation 3.12. The

Jacobian matrix for this equation, is given by Equation 3.16, and with the inclusion

of practical timing considerations in Equation 3.38. Each of the individual terms

of this Jacobian is listed here. Although Equation 3.18 allows for the ‘brute force’

calculation of these terms, the ‘direct differentiation method’ provides better accuracy

[32]. The partial derivative functions in this appendix should be used in preference

to numerical approximation of the Jacobian.

∂pnx
∂rbs,x

= cos(ψnb,z)cos(ψ
n
b,y)

∂pny
∂rbs,x

= sin(ψnb,z)cos(ψ
n
b,y)

∂pnz
∂rbs,x

= −sin(ψnb,y) (A.1)
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∂pnx
∂rbs,y

= −sin(ψnb,z)cos(ψ
n
b,x) + cos(ψnb,z)sin(ψnb,y)sin(ψnb,x)

∂pny
∂rbs,y

= cos(ψnb,z)cos(ψ
n
b,x) + sin(ψnb,z)sin(ψnb,y)sin(ψnb,x)

∂pnz
∂rbs,y

= cos(ψnb,y)sin(ψnb,x) (A.2)

∂pnx
∂rbs,z

= sin(ψnb,z)sin(ψnb,x) + cos(ψnb,z)sin(ψnb,y)cos(ψ
n
b,x)

∂pny
∂rbs,z

= −cos(ψnb,z)sin(ψnb,x) + sin(ψnb,z)sin(ψnb,y)cos(ψ
n
b,x)

∂pnz
∂rbs,z

= cos(ψnb,y)cos(ψ
n
b,x) (A.3)
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∂pnx
∂φbs,x

= f(ps,Φb
s,Ψ

n
b )

= +psy cos(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,x)

+psy cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

+psy sin(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

−psy sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+psy sin(ψnb,z) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

+psy cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

+psz cos(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,x)

−psz cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

+psz sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x) (A.4)
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∂pny
∂φbs,x

= f(ps,Φb
s,Ψ

n
b )

= +psy sin(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,x)

+psy sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

−psy cos(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

+psy cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−psy cos(ψnb,z) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

+psy sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

+psz sin(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,x)

−psz sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

−psz cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x) (A.5)
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∂pnz
∂φbs,x

= f(ps,Φb
s,Ψ

n
b )

= −psy sin(ψnb,y) sin(φbs,z) sin(φbs,x)

−psy sin(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

−psy cos(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+psy cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+psy cos(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

−psz sin(ψnb,y) sin(φbs,z) cos(φbs,x)

+psz sin(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

−psz cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x) (A.6)
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∂pnx
∂φbs,y

= f(ps,Φb
s,Ψ

n
b )

= −psx cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y)

+psx sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y)

−psx cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y)

−psx sin(ψnb,z) sin(ψnb,x) cos(φbs,y)

−psx cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y)

+psy cos(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y) sin(φbs,x)

−psy sin(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y) sin(φbs,x)

+psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y) sin(φbs,x)

−psy sin(ψnb,z) sin(ψnb,x) sin(φbs,y) sin(φbs,x)

−psy cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y) cos(φbs,x)

−psz sin(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y) cos(φbs,x)

+psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y) cos(φbs,x)

−psz sin(ψnb,z) sin(ψnb,x) sin(φbs,y) cos(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y) cos(φbs,x) (A.7)
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∂pny
∂φbs,y

= f(ps,Φb
s,Ψ

n
b )

= −psx sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y)

−psx cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y)

−psx sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y)

+psx cos(ψnb,z) sin(ψnb,x) cos(φbs,y)

−psx sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y)

+psy sin(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y) sin(φbs,x)

+psy cos(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y) sin(φbs,x)

+psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y) sin(φbs,x)

+psy cos(ψnb,z) sin(ψnb,x) sin(φbs,y) sin(φbs,x)

−psy sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y) cos(φbs,x)

+psz cos(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y) cos(φbs,x)

+psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y) cos(φbs,x)

+psz cos(ψnb,z) sin(ψnb,x) sin(φbs,y) cos(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y) cos(φbs,x) (A.8)
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∂pnz
∂φbs,y

= f(ps,Φb
s,Ψ

n
b )

= +psx sin(ψnb,y) cos(φbs,z) sin(φbs,y)

−psx cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y)

−psx cos(ψnb,y) cos(ψnb,x) cos(φbs,y)

−psy sin(ψnb,y) cos(φbs,z) cos(φbs,y) sin(φbs,x)

+psy cos(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y) sin(φbs,x)

−psy cos(ψnb,y) cos(ψnb,x) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,y) cos(φbs,z) cos(φbs,y) cos(φbs,x)

+psz cos(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y) cos(φbs,x)

−psz cos(ψnb,y) cos(ψnb,x) sin(φbs,y) cos(φbs,x) (A.9)
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∂pnx
∂φbs,z

= = f(ps,Φb
s,Ψ

n
b )

= −psx cos(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,y)

−psx sin(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,y)

+psx cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,y)

−psy cos(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,x)

−psy cos(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+psy sin(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,x)

−psy sin(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,x)

+psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,x)

−psz cos(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−psz sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,x)

−psz sin(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,y) cos(φbs,x)

+psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,x)

+psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,y) cos(φbs,x) (A.10)



APPENDIX A. TRANSFORMATION SENSITIVITIES 206

∂pny
∂φbs,z

= f(ps,Φb
s,Ψ

n
b )

= −psx sin(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,y)

+psx cos(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,y)

+psx sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,y)

−psy sin(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,x)

−psy sin(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psy cos(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,x)

+psy cos(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,x)

+psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,x)

−psz sin(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+psz cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,y) cos(φbs,x)

+psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,x)

+psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,y) cos(φbs,x) (A.11)
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∂pnz
∂φbs,z

= f(ps,Φb
s,Ψ

n
b )

= +psx sin(ψnb,y) sin(φbs,z) cos(φbs,y)

+psx cos(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,y)

+psy sin(ψnb,y) cos(φbs,z) cos(φbs,x)

+psy sin(ψnb,y) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psy cos(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,x)

+psy cos(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,y) cos(φbs,z) sin(φbs,x)

+psz sin(ψnb,y) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+psz cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,x)

+psz cos(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,y) cos(φbs,x) (A.12)

∂pnx
∂psx

= f(Φb
s,Ψ

n
b )

= + cos(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y)

− sin(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y)

+ cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

− sin(ψnb,x) sin(φbs,y) sin(ψnb,z)

− cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y) (A.13)
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∂pny
∂psx

= f(Φb
s,Ψ

n
b )

= + sin(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y)

+ cos(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y)

+ sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

+ sin(ψnb,x) sin(φbs,y) cos(ψnb,z)

− sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y) (A.14)

∂pnz
∂psx

= f(Φb
s,Ψ

n
b )

= − sin(ψnb,y) cos(φbs,z) cos(φbs,y)

+ cos(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

− cos(ψnb,y) cos(ψnb,x) sin(φbs,y) (A.15)

∂pnx
∂psy

= f(Φb
s,Ψ

n
b )

= − cos(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,x)

+ cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

− sin(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

− sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+ cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

+ cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+ sin(ψnb,z) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

+ cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

(A.16)
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∂pny
∂psy

= f(Φb
s,Ψ

n
b )

= − sin(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,x)

+ sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

+ cos(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

+ cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+ sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

+ sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

− cos(ψnb,z) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

+ sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x) (A.17)

∂pnz
∂psy

= f(Φb
s,Ψ

n
b )

= + sin(ψnb,y) sin(φbs,z) cos(φbs,x)

− sin(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

+ cos(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

+ cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+ cos(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x) (A.18)
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∂pnx
∂psz

= f(Φb
s,Ψ

n
b )

= + cos(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,x)

+ cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

+ sin(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

− sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

− cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+ cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+ sin(ψnb,z) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

+ cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x) (A.19)

∂pny
∂psz

= f(Φb
s,Ψ

n
b )

= + sin(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,x)

+ sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

− cos(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

+ cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

− sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+ sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

− cos(ψnb,z) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

+ sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x) (A.20)
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∂pnz
∂psz

= f(Φb
s,Ψ

n
b )

= − sin(ψnb,y) sin(φbs,z) sin(φbs,x)

− sin(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

− cos(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+ cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+ cos(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x) (A.21)

∂pn

∂pnb
=


1 0 0

0 1 0

0 0 1


(A.22)



APPENDIX A. TRANSFORMATION SENSITIVITIES 212

∂pnx
∂ψnb,x

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= +psx sin(ψnb,z) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

+psy sin(ψnb,z) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

+psy sin(ψnb,z) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+psz sin(ψnb,z) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+rbs,y sin(ψnb,z) sin(ψnb,x)

+psx cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,z) cos(φbs,y)

+psy cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

+psy cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

+psz cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+rbs,y cos(ψnb,z) sin(ψnb,y) cos(ψnb,x)

−psx sin(ψnb,z) cos(ψnb,x) sin(φbs,y)

+psy sin(ψnb,z) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

+rbs,z sin(ψnb,z) cos(ψnb,x)

+psx cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,y)

−psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

−rbs,z cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) (A.23)
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∂pny
∂ψnb,x

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= −psx cos(ψnb,z) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

−psy cos(ψnb,z) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

−psy cos(ψnb,z) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−rbs,y cos(ψnb,z) sin(ψnb,x)

+psx sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,z) cos(φbs,y)

+psy sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

+psy sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

+psz sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+rbs,y sin(ψnb,z) sin(ψnb,y) cos(ψnb,x)

+psx cos(ψnb,z) cos(ψnb,x) sin(φbs,y)

−psy cos(ψnb,z) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

−rbs,z cos(ψnb,z) cos(ψnb,x)

+psx sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,y)

−psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

−rbs,z sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) (A.24)
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∂pnz
∂ψnb,x

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= +psx cos(ψnb,y) cos(ψnb,x) sin(φbs,z) cos(φbs,y)

+psy cos(ψnb,y) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

+psy cos(ψnb,y) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,y) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

+psz cos(ψnb,y) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+rbs,y cos(ψnb,y) cos(ψnb,x)

+psx cos(ψnb,y) sin(ψnb,x) sin(φbs,y)

−psy cos(ψnb,y) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz cos(ψnb,y) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

−rbs,z cos(ψnb,y) sin(ψnb,x) (A.25)
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∂pnx
∂ψnb,y

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= −psx cos(ψnb,z) sin(ψnb,y) cos(φbs,z) cos(φbs,y)

+psy cos(ψnb,z) sin(ψnb,y) sin(φbs,z) cos(φbs,x)

−psy cos(ψnb,z) sin(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) sin(φbs,z) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

−rbs,x cos(ψnb,z) sin(ψnb,y)

+psx cos(ψnb,z) cos(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

+psy cos(ψnb,z) cos(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

+psy cos(ψnb,z) cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) cos(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+rbs,y cos(ψnb,z) cos(ψnb,y) sin(ψnb,x)

−psx cos(ψnb,z) cos(ψnb,y) cos(ψnb,x) sin(φbs,y)

+psy cos(ψnb,z) cos(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

+rbs,z cos(ψnb,z) cos(ψnb,y) cos(ψnb,x) (A.26)
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∂pny
∂ψnb,y

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= −psx sin(ψnb,z) sin(ψnb,y) cos(φbs,z) cos(φbs,y)

+psy sin(ψnb,z) sin(ψnb,y) sin(φbs,z) cos(φbs,x)

−psy sin(ψnb,z) sin(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) sin(φbs,z) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

−rbs,x sin(ψnb,z) sin(ψnb,y)

+psx sin(ψnb,z) cos(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

+psy sin(ψnb,z) cos(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

+psy sin(ψnb,z) cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) cos(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+psz sin(ψnb,z) cos(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+rbs,y sin(ψnb,z) cos(ψnb,y) sin(ψnb,x)

−psx sin(ψnb,z) cos(ψnb,y) cos(ψnb,x) sin(φbs,y)

+psy sin(ψnb,z) cos(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) cos(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

+rbs,z sin(ψnb,z) cos(ψnb,y) cos(ψnb,x) (A.27)
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∂pnz
∂ψnb,y

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= −psx cos(ψnb,y) cos(φbs,z) cos(φbs,y)

+psy cos(ψnb,y) sin(φbs,z) cos(φbs,x)

−psy cos(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,y) sin(φbs,z) sin(φbs,x)

−psz cos(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

−rbs,x cos(ψnb,y)

−psx sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

−psy sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

−psy sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+psz sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

−psz sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−rbs,y sin(ψnb,y) sin(ψnb,x)

+psx sin(ψnb,y) cos(ψnb,x) sin(φbs,y)

−psy sin(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz sin(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x)

−rbs,z sin(ψnb,y) cos(ψnb,x) (A.28)
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∂pnx
∂ψnb,z

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= −rbs,x sin(ψnb,z) cos(ψnb,y)

−rbs,y sin(ψnb,z) sin(ψnb,y) sin(ψnb,x)

−psx cos(ψnb,z) sin(ψnb,x) sin(φbs,y)

−rbs,z sin(ψnb,z) sin(ψnb,y) cos(ψnb,x)

−psx sin(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y)

+psy sin(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,x)

−psy sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,x)

−psz sin(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

−psx cos(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y)

−psy cos(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

−psy cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

−psz cos(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−rbs,y cos(ψnb,z) cos(ψnb,x)

+rbs,z cos(ψnb,z) sin(ψnb,x)

−psx sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

−psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

−psy sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+psy cos(ψnb,z) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

+psx sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y)

−psy sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

−psz sin(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x) (A.29)
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∂pny
∂ψnb,z

= f(ps, rbs,Φ
b
s,Ψ

n
b )

= −rbs,y sin(ψnb,z) cos(ψnb,x)

+psx cos(ψnb,z) cos(ψnb,y) cos(φbs,z) cos(φbs,y)

+rbs,x cos(ψnb,z) cos(ψnb,y)

−psy cos(ψnb,z) cos(ψnb,y) sin(φbs,z) cos(φbs,x)

+psy cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,y) sin(φbs,z) sin(φbs,x)

+psz cos(ψnb,z) cos(ψnb,y) cos(φbs,z) sin(φbs,y) cos(φbs,x)

+rbs,y cos(ψnb,z) sin(ψnb,y) sin(ψnb,x)

−psx sin(ψnb,z) cos(ψnb,x) sin(φbs,z) cos(φbs,y)

−psy sin(ψnb,z) cos(ψnb,x) cos(φbs,z) cos(φbs,x)

−psy sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) cos(ψnb,x) cos(φbs,z) sin(φbs,x)

−psz sin(ψnb,z) cos(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

+psx cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) cos(φbs,y)

+psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) cos(φbs,x)

+psy cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) sin(φbs,x)

−psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) cos(φbs,z) sin(φbs,x)

+psz cos(ψnb,z) sin(ψnb,y) sin(ψnb,x) sin(φbs,z) sin(φbs,y) cos(φbs,x)

−psx sin(ψnb,z) sin(ψnb,x) sin(φbs,y)

+rbs,z cos(ψnb,z) sin(ψnb,y) cos(ψnb,x)

+rbs,z sin(ψnb,z) sin(ψnb,x)

+psy sin(ψnb,z) sin(ψnb,x) cos(φbs,y) sin(φbs,x)

+psz sin(ψnb,z) sin(ψnb,x) cos(φbs,y) cos(φbs,x)

−psx cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) sin(φbs,y)

+psy cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) sin(φbs,x)

+psz cos(ψnb,z) sin(ψnb,y) cos(ψnb,x) cos(φbs,y) cos(φbs,x) (A.30)
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∂pnz
∂ψnb,z

= 0 (A.31)

∂pnx
∂te

= f(ps, rbs,Φ
b
s,Ψ

n
b , Ψ̇

n
b , ṗ

n
b )

=
∂pnx
∂pnb,x

∂pnb,x
∂te

+
∂pnx
∂pnb,y

∂pnb,y
∂te

+
∂pnx
∂pnb,z

∂pnb,z
∂te

+
∂pnx
∂ψnb,x

∂ψnb,x
∂te

+
∂pnx
∂ψnb,y

∂ψnb,y
∂te

+
∂pnx
∂ψnb,z

∂ψnb,z
∂te

= ṗnb,x +
∂pnx
∂ψnb,x

ψ̇nb,x +
∂pnx
∂ψnb,y

ψ̇nb,y +
∂pnx
∂ψnb,z

ψ̇nb,z (A.32)

∂pny
∂te

= f(ps, rbs,Φ
b
s,Ψ

n
b , Ψ̇

n
b , ṗ

n
b )

=
∂pny
∂pnb,x

∂pnb,x
∂te

+
∂pny
∂pnb,y

∂pnb,y
∂te

+
∂pny
∂pnb,z

∂pnb,z
∂te

+
∂pny
∂ψnb,x

∂ψnb,x
∂te

+
∂pny
∂ψnb,y

∂ψnb,y
∂te

+
∂pny
∂ψnb,z

∂ψnb,z
∂te

= ṗnb,y +
∂pny
∂ψnb,x

ψ̇nb,x +
∂pny
∂ψnb,y

ψ̇nb,y +
∂pny
∂ψnb,z

ψ̇nb,z (A.33)

∂pnz
∂te

= f(ps, rbs,Φ
b
s,Ψ

n
b , Ψ̇

n
b , ṗ

n
b )

=
∂pnz
∂pnb,x

∂pnb,x
∂te

+
∂pnz
∂pnb,y

∂pnb,y
∂te

+
∂pnz
∂pnb,z

∂pnb,z
∂te

+
∂pnz
∂ψnb,x

∂ψnb,x
∂te

+
∂pnz
∂ψnb,y

∂ψnb,y
∂te

+
∂pnz
∂ψnb,z

∂ψnb,z
∂te

= ṗnb,z +
∂pnz
∂ψnb,x

ψ̇nb,x +
∂pnz
∂ψnb,y

ψ̇nb,y (A.34)



Appendix B

Laser Calibration Rotation

Sensitivity Analysis

This appendix shows the analysis of the partial derivatives of pn with respect to the

rotation angles of the sensor position Φb
s, for the example configuration in Chapter

4. The laser sensor geometry of Equation 3.1 and the ground plane constraint of

Equation 4.14 are substituted into the partial derivatives from Appendix A:

∂pnx
∂φbs,x

= + cos(ψnb,z) sin(φbs,z) sin(φbs,x)r sin(θ)

+ cos(ψnb,z) cos(φbs,z) sin(φbs,y) cos(φbs,x)r sin(θ)

+ sin(ψnb,z) cos(φbs,z) sin(φbs,x)r sin(θ)

− sin(ψnb,z) sin(φbs,z) sin(φbs,y) cos(φbs,x)r sin(θ) (B.1)

221
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∂pny
∂φbs,x

= + sin(ψnb,z) sin(φbs,z) sin(φbs,x)r sin(θ)

+ sin(ψnb,z) cos(φbs,z) sin(φbs,y) cos(φbs,x)r sin(θ)

− cos(ψnb,z) cos(φbs,z) sin(φbs,x)r sin(θ)

+ cos(ψnb,z) sin(φbs,z) sin(φbs,y) cos(φbs,x)r sin(θ) (B.2)

∂pnz
∂φbs,x

= cos(φbs,y) cos(φbs,x)r sin(θ) (B.3)

∂pnx
∂φbs,y

= − cos(ψnb,z) cos(φbs,z) sin(φbs,y)r cos(θ)

+ cos(ψnb,z) cos(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ)

+ sin(ψnb,z) sin(φbs,z) sin(φbs,y)r cos(θ)

− sin(ψnb,z) sin(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ) (B.4)

∂pny
∂φbs,y

= − sin(ψnb,z) cos(φbs,z) sin(φbs,y)r cos(θ)

+ sin(ψnb,z) cos(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ)

− cos(ψnb,z) sin(φbs,z) sin(φbs,y)r cos(θ)

+ cos(ψnb,z) sin(φbs,z) cos(φbs,y) sin(φbs,x)r sin(θ) (B.5)

∂pnz
∂φbs,y

= − cos(φbs,y)r cos(θ)

− sin(φbs,y) sin(φbs,x)r sin(θ) (B.6)
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∂pnx
∂φbs,z

= − cos(ψnb,z) sin(φbs,z) cos(φbs,y)r cos(θ)

− cos(ψnb,z) cos(φbs,z) cos(φbs,x)r sin(θ)

− cos(ψnb,z) sin(φbs,z) sin(φbs,y) sin(φbs,x)r sin(θ)

− sin(ψnb,z) cos(φbs,z) cos(φbs,y)r cos(θ)

+ sin(ψnb,z) sin(φbs,z) cos(φbs,x)r sin(θ)

− sin(ψnb,z) cos(φbs,z) sin(φbs,y) sin(φbs,x)r sin(θ) (B.7)

∂pny
∂φbs,z

= − sin(ψnb,z) sin(φbs,z) cos(φbs,y)r cos(θ)

− sin(ψnb,z) cos(φbs,z) cos(φbs,x)r sin(θ)

− sin(ψnb,z) sin(φbs,z) sin(φbs,y) sin(φbs,x)r sin(θ)

+ cos(ψnb,z) cos(φbs,z) cos(φbs,y)r cos(θ)

− cos(ψnb,z) sin(φbs,z) cos(φbs,x)r sin(θ)

+ cos(ψnb,z) cos(φbs,z) sin(φbs,y) sin(φbs,x)r sin(θ) (B.8)

∂pnz
∂φbs,z

= 0 (B.9)

The partial derivatives for all of the sensor angles ∂pn

∂Φb
s

depend on ψnb,z and θ, so view-

ing the environment from different headings and different scan angles will provide

non-constant partial derivatives as required by Equation 4.16, as long as the deriva-

tives are not equal to zero. In this appendix, the specific configurations of Φb
s that

yield zero partial derivatives are tabulated, by the method used in Section 4.1. The

derivatives of pnx and pny are considered independently of pnz , to show that the only

failing configuration for these is when the sensor is parallel to the ground (with zero

roll and pitch angles). In this case, pnz is irrelevant, because no ground plane data
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can be gathered.

Equations B.1 and B.2 form the requirements shown in Tables B.1, B.2 and B.3.

Table B.1: Sensor configuration required for calibration of sensor roll

φbs,x φbs,y φbs,z
6= 0 any 6= 0
6= ±90 6= 0 6= ±90
6= 0 any 6= ±90
6= ±90 6= 0 6= 0

Table B.2: Condensed requirement for calibration of sensor roll

φbs,x φbs,y φbs,z
6= 0 any any
6= ±90 6= 0 any

Table B.3: Unique failing configuration for calibration of sensor roll

φbs,x φbs,y φbs,z
= 0 = 0 any

Equations B.4 and B.5 form the requirements shown in Tables B.4, B.5 and B.6, as

seen in Section 4.1.

Table B.4: Sensor configuration required for calibration of sensor pitch

φbs,x φbs,y φbs,z
6= 0 6= ±90 6= 0
6= 0 6= ±90 6= ±90
any 6= 0 6= ±90
any 6= 0 6= 0

Table B.5: Condensed requirement for calibration of sensor pitch

φbs,x φbs,y φbs,z
6= 0 6= ±90 any
any 6= 0 any

Table B.6: Unique failing configuration for calibration of sensor pitch

φbs,x φbs,y φbs,z
= 0 = 0 any

Finally, Equations B.7 and B.8 form the requirements in Tables B.7, B.8 and B.9.
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Table B.7: Sensor configuration required for calibration of sensor yaw

φbs,x φbs,y φbs,z
any 6= ±90 6= 0
6= ±90 any 6= ±90
6= 0 6= 0 6= 0
any 6= ±90 6= ±90
6= ±90 any 6= 0
6= 0 6= 0 6= ±90

Table B.8: Condensed requirement for calibration of sensor yaw

φbs,x φbs,y φbs,z
6= 0 6= 0 any
any 6= ±90 any
6= ±90 any any

Table B.9: Further condensing of requirement for calibration of sensor yaw

φbs,x φbs,y φbs,z
any any any



Appendix C

Laplace Approximation for

Covariance Estimation

In Section 4.1, a sensor calibration procedure was presented in order to determine the

most likely position of the sensor with respect to the vehicle body frame. Once the

position is determined, it is also desirable to calculate the uncertainty of the location

estimate, given the calibration data. Section 4.1.2 discussed a Monte Carlo (MC)

importance sampling technique and the Laplace approximation as potential methods

to calculate the covariance matrix of the sensor pose, but the MC method was chosen

due to the potential for numerical instability of the Laplace method. This section

shows the application of the Laplace approximation to the single sensor calibration

in Section 4.1.4.

The Laplace approximation fits a Gaussian about a local maximum of a function, by

fitting a quadratic to the log of the function. A general description of the technique

can be found in [44, §27], [45, §4.4]. However, problems can arise due to numerical

instability when calculating the required Hessian matrix [48]. In this appendix, the

Laplace approximation is calculated for the six sensor location parameters of {rbs,Φb
s}

individually, rather than producing the entire joint Gaussian estimate. As such,

numerical instability can be avoided by performing adequate sampling of the function

domain, yet the results are not as useful due to the invalid assumption that the six

226
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Figure C.1: The log likelihood for the Y sensor offset, for varying amounts of perturbation
in metres. The quadratic provides a good approximation to the data.

parameters are independent.

The optimal solution for the single sensor calibration is given from Section 4.1.4. For

each parameter in isolation, the solution is perturbed, and the likelihood function

Λ(x) is evaluated using Equation 4.24.

Figures C.1 and C.2 show the log-likelihood and likelihood for the Y offset of the

sensor rbs,y. In Figure C.1, a quadratic is fitted to the log-likelihood and differentiated

twice to yield the curvature. This greatly reduces the numerical instability of the

Laplace method, but is only possible for small dimensions (in this case one) due to

the large number of samples that it requires. In one dimension, the variance of the

Gaussian likelihood approximation is given by:

σ2 = −1/2a (C.1)
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Figure C.2: The likelihood for the Y sensor offset, for varying amounts of perturbation in
metres. The Gaussian is a good approximation to the data.

where a is the coefficient of x2 in the quadratic. As can be seen in Figure C.2 the

Gaussian is a reasonable estimate of the likelihood distribution. The same process

is applied to each of the six parameters, and the results are compared with the MC

method in Table C.1, reproduced below for convenience. The orthogonal standard

deviations are very similar to the values produced by the MC method. The Laplace

method used two hundred samples for each parameter. If the same sample density

was required to estimate the six dimensional joint Gaussian distribution, then 64

trillion samples would be required, which is intractable. There exist numerical Hessian

approximation techniques that require far fewer samples, however these can suffer

from numerical instability or over-sensitivity as discussed in [48].
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Table C.1: Sensor Pose: Optimised and Monte Carlo Mean and Standard Deviation

rbs,x(m) rbs,y(m) rbs,z(m) φbs,z(
◦) φbs,y(

◦) φbs,x(
◦)

Dpole + Dground 0.053 -0.004 -0.998 -1.741 -7.066 -0.072
x̂ (MC) 0.054 -0.003 -0.990 -1.742 -7.063 -0.071
σ (MC) 0.0031 0.0038 0.0673 0.0353 0.0232 0.0085

σ (Laplace) 0.0029 0.0030 0.0673 0.0258 0.0202 0.0062

The weighted mean sensor location x̂ and standard deviations σ from the Monte
Carlo (MC) sampling process in Equation 4.8 and the standard deviations from the
Laplace method in Appendix C. The optimal pose from Table 4.4 is repeated here

for comparison.



Appendix D

Sampling Order Invariance of

Bayes Updates

Theorem D.1. When sequentially applying Bayes rule to form a posterior state

distrubtion from a prior and multiple independent observations, the resulting posterior

is invariant to the order with which the samples are applied.

Proof. Let the state be x, the prior distribution P (x), and three independent obser-

vations be z1, z2 and z3.

The posterior after applying Bayes rule with z1 is given by:

P (x|z1) =
P (z1|x)P (x)

P (z1)
(D.1)

The posterior P (x|z1) is then considered to be the prior for the subsequent application

of Bayes rule with the observation z2, yielding the posterior:

P (x|z1, z2) =
P (z2|x)P (x|z1)

P (z2)

P (x|z1, z2) =
P (z2|x)P (z1|x)P (x)

P (z2)P (z1)
(D.2)
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by substitution of Equation D.1.

Similarly, the application of the third observation z3, yields the final posterior:

P (x|z1, z2, z3) =
P (z3|x)P (z2|x)P (z1|x)P (x)

P (z3)P (z2)P (z1)
(D.3)

It is clear from the commutativity of Equation D.3 that any permutation of z1, z2, z3

will result in the same posterior.

The same method was used to show order ambivalence for the specific case of Bayes

updates for binary states in [68, §E.5.1].



Appendix E

Finding Maximally Informative

Joint Sensor Subspaces

In Section 5.2.2, mutual information (MI) was shown to be a useful metric for fault

detection using analytical redundancy. The MI between data from a thermal infrared

camera and a colour video camera was calculated, and it was shown that although the

quantity of MI was low (largely due to imprecise sensor alignment and calibration) it

could still be used for fault detection. This was achieved by considering the strong

relationship between the temporal alignment of the sensors and the corresponding

amount of mutual information in the data. When the MI peak is found to align to

the known temporal offset, this shows that the data from both sensors are correlated

by the environment that they perceive, indicating that the sensors are functioning.

However, the assumption that the environment will correlate the sensor information

is not always valid. For example, if an IR and colour camera are viewing a plane

white surface, the MI in the data will be low. In this appendix, an efficient method of

calculating highly mutually informative sub-regions within multi-modal sensor infor-

mation streams is applied to thermal infrared and colour video camera data, to show

that this may be feasible for fault detection in scenarios where only a partial region

of the data streams is correlated by the environment.

An efficient method for “learning maximally informative joint subspaces to find cross-
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modal correspondences” is presented in [78], where the technique is applied to find

correlated sections of a video and an audio stream. The method is shown to be capable

of identifying the speaker’s lips in the video stream as the section most correlated to

the audio. In this appendix, the method is applied directly to the thermal IR and

colour video data that were seen in Section 5.2.1.

This method was used in [79] to identify correlated target tracks from two uncalibrated

sensors, so that the tracks can be used to estimate the offsets between the sensors.

They discuss the problem that [78] assumes that the features are seen in a constant

location within the sensor space; for example, that the features do not move across the

camera frame. However, for the application in this appendix, the spatial arrangement

of the two sensors is similar. When a target moves across the IR camera, it moves in

a similar way across the video frame, so this assumption can be relaxed. The images

are not perfectly aligned or calibrated, so the quality will degrade for larger time

sequences because the MI is ‘smeared’ spatially due to the motion.

A sequence of 30 frames is taken from the data that were used in Section 5.2.1. At

approximately 15 frames per second, this corresponds to 2 seconds of data. The colour

images are converted to grey scale. The first two rows of Figure E.1 show the initial

and final colour and IR frames from the time-synchronised video sequence. A car

drives along the road in front of the sensors, crossing the field of view of both. The

technique presented in [78] is applied to the data, and the result can be seen in the

bottom row of the figure. This row shows the maximally informative joint subspaces

of the two original data sources, where white pixels are more highly correlated than

dark pixels. It can be seen that the appearance and motion of the car provide the

highest source of mutual information in this sequence, so these sub-regions can then be

used to directly calculate the relationship of MI to the time offset for fault detection.

The results were produced in approximately 14 seconds using a 2GHz computer run-

ning Matlab. The processing time could be reduced by an order of magnitude with a

more efficient implementation. Given the resolution of the images, (210× 280), there

are approximately 3.5 billion permutations of pixels pairs, so to directly calculate the

MI between all of them to find the maximally informative joint space would require
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Figure E.1: Colour video and thermal infra-ref video of a car driving along a dirt road. A
2 second segment of the video is selected. The first frame is shown on the first row (colour
on the left and IR on the right) and the last frame is shown on the second row. The third
row shows the maximally informative joint subspace as calculated by the method in [78],
where white pixels are more highly correlated and dark pixels are less correlated.
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at least an order of magnitude more time. Furthermore, the dimensionality reduc-

tion in this technique means that the processing time increases with the number of

whole images in the video sequence, and not significantly with the resolution of each

image, so for higher resolution images, the saving in time can be several orders of

magnitudes.
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