
University of Pennsylvania
ScholarlyCommons

Publicly Accessible Penn Dissertations

1-1-2014

Registration and Recognition in 3D
Alexander Evans Patterson IV
University of Pennsylvania, xandey@gmail.com

Follow this and additional works at: http://repository.upenn.edu/edissertations

Part of the Computer Sciences Commons

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/edissertations/1401
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Patterson IV, Alexander Evans, "Registration and Recognition in 3D" (2014). Publicly Accessible Penn Dissertations. 1401.
http://repository.upenn.edu/edissertations/1401

http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fedissertations%2F1401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations?utm_source=repository.upenn.edu%2Fedissertations%2F1401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=repository.upenn.edu%2Fedissertations%2F1401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1401?utm_source=repository.upenn.edu%2Fedissertations%2F1401&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/edissertations/1401
mailto:libraryrepository@pobox.upenn.edu

Registration and Recognition in 3D

Abstract
The simplest Computer Vision algorithm can tell you what color it sees when you point it at an object, but
asking that computer what it is looking at is a much harder problem. Camera and LiDAR (Light Detection
And Ranging) sensors generally provide streams pixel of values and sophisticated algorithms must be
engineered to recognize objects or the environment. There has been significant effort expended by the
computer vision community on recognizing objects in color images; however, LiDAR sensors, which sense
depth values for pixels instead of color, have been studied less. Recently we have seen a renewed interest in
depth data with the democratization provided by consumer depth cameras. Detecting objects in depth data is
more challenging in some ways because of the lack of texture and increased complexity of processing
unordered point sets. We present three systems that contribute to solving the object recognition problem
from the LiDAR perspective. They are: calibration, registration, and object recognition systems. We propose a
novel calibration system that works with both line and raster based LiDAR sensors, and calibrates them with
respect to image cameras. Our system can be extended to calibrate LiDAR sensors that do not give intensity
information. We demonstrate a novel system that produces registrations between different LiDAR scans by
transforming the input point cloud into a Constellation Extended Gaussian Image (CEGI) and then uses this
CEGI to estimate the rotational alignment of the scans independently. Finally we present a method for object
recognition which uses local (Spin Images) and global (CEGI) information to recognize cars in a large urban
dataset. We present real world results from these three systems. Compelling experiments show that object
recognition systems can gain much information using only 3D geometry. There are many object recognition
and navigation algorithms that work on images; the work we propose in this thesis is more complimentary to
those image based methods than competitive. This is an important step along the way to more intelligent
robots.

Degree Type
Dissertation

Degree Name
Doctor of Philosophy (PhD)

Graduate Group
Computer and Information Science

First Advisor
Kostas Daniilidis

Keywords
calibration, depth image, object detection, point cloud, registration

Subject Categories
Computer Sciences

This dissertation is available at ScholarlyCommons: http://repository.upenn.edu/edissertations/1401

http://repository.upenn.edu/edissertations/1401?utm_source=repository.upenn.edu%2Fedissertations%2F1401&utm_medium=PDF&utm_campaign=PDFCoverPages

REGISTRATION AND RECOGNITION IN 3D

Alexander Patterson IV

A DISSERTATION

in

Computer and Information Science

Presented to the Faculties of the University of Pennsylvania

in

Partial Fulfillment of the Requirements for the

Doctor of Philosophy

2014

Supervisor of Dissertation

Kostas Daniilidis, Professor of Computer and Information Science

Graduate Group Chairperson

Val Tannen, Professor of Computer and Information Science

Dissertation Committee

Camillo J. Taylor, Professor of Computer and Information Science

Jianbo Shi, Professor of Computer and Information Science

Jean Gallier, Professor of Computer and Information Science

Philippos Mordohai, Assistant Professor of Computer Science

REGISTRATION AND RECOGNITION IN 3D

c© COPYRIGHT

2014

Alexander Evans Patterson IV

This work is licensed under the

Creative Commons Attribution

NonCommercial-ShareAlike 3.0

License

To view a copy of this license, visit

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

http://creativecommons.org/licenses/by-nc-sa/3.0/us/

ACKNOWLEDGMENT

First I would like to thank my advisor Prof. Kostas Daniilidis for his continued support,

encouragement, knowledge, and all of his contributions, this thesis would not have been

possible without him. I would like to thank the members of my Dissertation Committee

Prof. C.J. Taylor, Prof. Jianbo Shi, and Prof. Jean Gallier for serving on my dissertation

committee. I also acknowledge Prof. Philippos Mordohai who generously agreed to serve

on my committee and with whom I shared many great conversations over the course of

our collaboration. I would also like to thank the late Prof. Ben Taskar; I learned much

about machine learning and point cloud processing from our collaboration on the URGENT

project.

I would like to thank my co-authors Ameesh Makadia, Xenophon Zabulis, and Oleg

Naroditsky who significantly contributed to both my research and my understanding. I

would also like to thank Jean-Philippe Tardif, Yanis Pavlidis, Alexander Toshev, and Kosta

Derpanis for the many fruitful research discussions.

The GRASP lab has been a source of inspiration, and I would be lucky to stay in contact

with the many friends I’ve made there. Goran Lynch, Mike Zargham, Ankita Kumar, Roy

Anati, Matthieu Lecce, Menlong Zhu, Jason Owens, Cody Phillips, Rodrigo Carceroni,

Nikhil Kelshikar, João Barreto, Timothee Cour, Mirko Visionati, Katerina Fraghiadaki,

Weiyu Zhang, Gang Song, Jeff Byrne, Anthony Cowley, Babak Shirmohammadi, and Elena

Bernardis I want to thank you for your friendship and inspiration.

I would also like to thank my parents Alex and Carol, my brother Daniel, and Katie

Williams for their unwavering support and love throughout my graduate studies.

iii

ABSTRACT

REGISTRATION AND RECOGNITION IN 3D

Alexander Patterson IV

Kostas Daniilidis

The simplest Computer Vision algorithm can tell you what color it sees when you point it

at an object, but asking that computer what it is looking at is a much harder problem. Cam-

era and LiDAR (Light Detection And Ranging) sensors generally provide streams pixel of

values and sophisticated algorithms must be engineered to recognize objects or the envi-

ronment. There has been significant effort expended by the computer vision community on

recognizing objects in color images; however, LiDAR sensors, which sense depth values

for pixels instead of color, have been studied less. Recently we have seen a renewed inter-

est in depth data with the democratization provided by consumer depth cameras. Detecting

objects in depth data is more challenging in some ways because of the lack of texture and

increased complexity of processing unordered point sets. We present three systems that

contribute to solving the object recognition problem from the LiDAR perspective. They

are: calibration, registration, and object recognition systems. We propose a novel cali-

bration system that works with both line and raster based LiDAR sensors, and calibrates

them with respect to image cameras. Our system can be extended to calibrate LiDAR sen-

sors that do not give intensity information. We demonstrate a novel system that produces

registrations between different LiDAR scans by transforming the input point cloud into a

Constellation Extended Gaussian Image (CEGI) and then uses this CEGI to estimate the

rotational alignment of the scans independently. Finally we present a method for object

recognition which uses local (Spin Images) and global (CEGI) information to recognize

cars in a large urban dataset. We present real world results from these three systems. Com-

pelling experiments show that object recognition systems can gain much information using

iv

only 3D geometry. There are many object recognition and navigation algorithms that work

on images; the work we propose in this thesis is more complimentary to those image based

methods than competitive. This is an important step along the way to more intelligent

robots.

v

Contents

Acknowedgment iii

Abstract iv

1 Introduction 1

1.1 3D Sensors . 2

1.1.1 Time of Flight Sensors . 3

1.1.2 Triangulation Sensors . 4

1.2 Iterative Closest Point . 7

1.3 3D Descriptors . 9

1.3.1 Local Descriptors . 11

Fast Point Feature Histogram (FPFH) 12

Spin Images . 13

Signature of Histograms of OrienTations (SHOT) 14

3D Shape Contexts . 15

1.3.2 Global Descriptors . 15

Point Feature Histogram (PFH) 16

Viewpoint Feature Histogram (VFH) 16

Clustered Viewpoint Feature Histogram (CVFH) 18

1.4 Background . 18

vi

1.4.1 Registration Methods in 3D . 19

1.4.2 3D Object Detection . 21

1.5 Contributions . 25

1.5.1 3D-Camera Calibration . 25

1.5.2 3D Range Alignment . 25

1.5.3 Bottom Up Top Down Object Recognition 26

1.6 Outline . 26

2 Automatic Alignment of a Camera with a Line Scan LiDAR System 28

2.1 Introduction . 28

2.2 Related Work . 29

2.3 Problem Description . 30

2.4 Optimization over SO(3) . 32

2.4.1 Removing the translation (t) from the constraints 33

2.4.2 Solving for R using the Gauss-Newton algorithm 34

2.4.3 Using Lie Algebra to find R . 37

2.5 Results . 39

2.5.1 Simulations . 40

2.5.2 A Fully Automatic Real Calibration 42

2.6 A User Driven Calibration System . 46

2.7 Conclusion . 47

3 Global Representation for Registration 52

3.1 Introduction . 52

3.2 EGI and Orientation Histograms . 53

3.3 Constellation EGI . 56

3.4 Estimating the translation . 60

vii

3.5 Verification . 61

3.6 Experimental results . 64

3.7 Conclusion . 65

4 Object Detection from Large-Scale 3D Datasets using Bottom-up and Top-

down Descriptors 68

4.1 Introduction . 68

4.2 Algorithm Overview . 71

4.3 Bottom-Up Detection . 72

4.4 Top-Down Alignment and Verification . 75

4.4.1 Computing EGIs . 76

4.4.2 Constellation EGIs . 76

4.4.3 Hypothesis Verification . 78

4.4.4 Alignment and Distance Computation 79

4.5 Experimental Results . 80

4.6 Conclusion . 82

5 Conclusions 84

Bibliography 87

viii

List of Figures

1.1 Three laser scanners are shown. Clockwise from top left: the 3rdTech

Deltasphere, the Hokuyo UTM-30LX, and the Microsoft Kinect sensor. . . 2

1.2 An illustration showing the scan lines produced by the Hokuyo 2D Line

scanner. At each time step the internal mirror moves 0.25◦ and scans an-

other ray. Notice the density is higher closer to the scanner, and the occlu-

sion pattern that is produced. 4

1.3 The left image is an illustration of how the laser scans for line scan LiDAR

scanners, a mirror deflects the laser beam in the desired direction. The cen-

tral image shows an actual sick scanner which works the same way as the

illustration. And the right image shows the Velodyne Laser scanner which

rotates the entire laser assembly and sweeps a number of laser scanning

lines across the image. 5

1.4 Structured light scanners . 6

ix

1.5 The top row shows the Microsoft Kinect structured light pattern and the

resulting depthmap, and the bottom image shows the sensor itself. The

random dot pattern is projected from the leftmost position while the right-

most is the IR camera which views the dot pattern. The center camera

captures an accompanying visible image. 7

1.6 Point cloud registration is the process of aligning two scans so that they

line up. The left image shows to unaligned scans (red and blue) and the

right image shows the aligned version. 8

1.7 The left image shows an illustration of the influence region for a feature

point in red and its k-neighbor support region in blue. The fully connected

graph is shown. The right image shows the uvw reference frame for points

ps and pt with normals ns and nt. [Rusu et al., 2009] 12

1.8 The left image shows the quantities α and β and the right image shows

examples of spin images computed for a duck mesh. 14

1.9 The VFHs viewpoint component consists of computing the angle α be-

tween the vector connecting the camera and the object centroid (vp − pi)

and the normal for the given support point ni. Note that the centroid is used

for computing the the view vector but the individual normal is used for the

support point. 16

1.10 Two examples of clustered smooth regions for computing the CVFH. 18

x

2.1 A capture rig incorporating four cameras and a Hokuyo LiDAR. Our algo-

rithm automatically calibrates such systems. 30

2.2 A single camera frame from the calibration data set showing the calibration

object. The object consists of a black line on a white sheet of paper. We

detect the white-to-black transition looking from the top of the image. . . . 31

2.3 A portion of a LiDAR scan showing a person holding the calibration target.

The points are colored by their intensity returns. The LiDAR’s scan plane

is close to vertical, and its origin is marked by a circle. 32

2.4 The histogram of numerical errors for 105 random, noise-free instances of

the problem. The error is defined as the log10 e, where e of the Frobenius

norm of the difference between the ground truth and the computed matrices

(see (2.17)). Since the points were not checked for degeneracy (such as

collinearity), some failures are observed. If we consider a failure to be

log10 e > −1 which corresponds to an error of about 0.5◦ or 1cm, then the

method fails 1.97% of the time. 40

2.5 Errors in rotation and translation estimation for a simulated rig with 100mm

of distance between the camera and LiDAR. Each point shows median er-

ror for 200 random configurations of LiDAR-image correspondences. Each

sequence corresponds to different levels of image noise plotted against Li-

DAR noise. The noise values are the standard deviations. The image errors

are line translation error (pix) for the baseline camera described in Sec-

tion 2.5.1. 42

xi

2.6 A sample LiDAR scan acquired by the mobile robot colored by height. This

shows that the cameras visual odometry plus LiDAR-camera calibration is

good enough to produce a visually appealling pointcloud. 45

2.7 A LiDAR scan colored using camera pixels. 46

2.8 An overview of the calibration software system. Counterclockwise from

top: a) An overview of 25 frames with x’s showing projected LiDAR points

in the images. The manually selected points have been circled. b) A top

view of the LiDAR showing intensity and automatically detected dark light

transitions. c) The camera image with automatically detected lines super-

imposed upon it. d) The camera image with the LiDAR points projected

into it using the cameras intrinsic parameters and the current best estimate

of LiDAR-Camera calibration. 49

2.9 Error plots of how this calibration fits the underlying model. Clockwise

from top left: a) All of the selected LiDAR points projected into an image

plane and colored with their distance from the plane. b) All of the selected

LiDAR points in their own plane colored with their distance from the plane.

c) The distribution of LiDAR points within their plane. d) A histogram of

total error in LiDAR points. 50

xii

2.10 Error plots of how this calibration fits the underlying model. Clockwise

from top left: a) All of the selected LiDAR points projected into an image

plane and colored with their pixel error. b) All of the selected LiDAR

points in their own plane colored with their pixel error. c) The distribution

of LiDAR points vs pixel error. d) A histogram of total error in LiDAR

points measured in pixel reprojection error. 51

3.1 On the left (A) is a representation of an orientation histogram with 256

bins. The sphere S2 is sampled uniformly in spherical coordinates, creating

a square grid. (B) depicts the corresponding bin sizes and shapes on the

sphere. The highlighted bins correspond to the highlighted row in (A). (C)

displays the bin centers when the longitudinal samples do not include the

poles. 55

3.2 This cartoon illustration shows two input voxelized pointclouds on the left,

and the combined image on the right. The left circle indicates a location

where normals will disagree and the right circle shows a location where

normals agree. 62

3.3 This cartoon illustration shows two input voxelized pointclouds on the left,

and the combined image on the right. The line of sight violation is shown

as a black line. Note that the red scan should have occluded the green scan

from hte green sensor’s point of view. 63

3.4 An outline of the automated point-cloud registration algorithm. 63

xiii

3.5 Registration of the Happy Buddha. (A) shows a the initial positions of

some representative scans. (B) shows the rough alignment of ten point

sets. (C) shows the final alignment for all scans after ICP is run after the

crude registration. (D) shows a pair of EGIs from two of the scans, and (E)

shows a slice of the correlation grid G(R) at the location of the estimated

rotation. 66

3.6 Registration of scans of a lion statue. (A) is a representative scan depicting

the structure of the statue. (B) shows 6 scans in their initial positions. (C)

shows the failure of running ICP directly on the input scans. (D) depicts the

rough alignment. (E) shows one view of the successful final registration of

all 15 scans. 66

3.7 (A) shows a representative room scan. (B) shows the poor alignment ob-

tained by running ICP on the input. (C, D) show a side and overhead view

of the rough alignment. (E, F) show a full and partial view of the final

alignment. 67

4.1 Cars detection results from real LiDAR data. Cars have been colored ran-

domly. 69

xiv

4.2 Left: spin image computation on real data. The blue circles are the bases

of the cylindrical support region and the red vector is the normal at the

reference point. Middle: illustration of spin image computation. O is the

reference point and ~n its normal. A spin image is a histogram of points that

fall into radial (α) and elevation (β) bins. Right: the spin image computed

for the point on the car. 73

4.3 Left: input point cloud. Middle: Classification of spin images as tar-

get (blue) and background (cyan). (Only the reference points are shown.)

Right: target spin image centers clustered into object hypotheses. Isolated

target spin images are rejected.Best viewed in color 74

4.4 Left: a database model of a car. Middle: illustration of an EGI in which

points are color-coded according to their density. Right: the corresponding

constellation EGI. 77

4.5 Alignment of a database model (left car and left EGI) and a query (right car

and right EGI) that have been aligned. The car models are shown separately

for clarity of the visualization. Notice the accuracy of the rotation estima-

tion. The query has been segmented by the positive spin image clustering

algorithm and the model by removing the ground after the user specified

one point. 81

xv

4.6 Left: The precision-recall curve for car detection on 200 million points

containing 1221 cars. (Precision is the x-axis and recall the y-axis.) Right:

Screenshot of detected cars. Cars are in random colors and the background

in original colors. 82

4.7 Screenshots of detected cars, including views from above. (There is false

negative at the bottom of the left image.) 83

xvi

Chapter 1

Introduction

Object recognition is one of the most basic problems in computer vision. In this thesis

we will explore some topics with the ultimate goal of how to recognize objects within the

range image sensing modality. LIght Detection And Ranging (LiDAR) is a type of sensing

which senses pixels much like a camera, but unlike a camera it also measures the range to

the object being imaged. There are three main methods for sensing depth: measuring the

time of flight that light travels before returning to the sensor, projecting a structured pattern

onto the scene and measuring the deformation of that pattern relative to an offset camera,

and using two camera imagers and measurnig the deformation of the image, which is also

known as stereo vision.

With the decreasing cost and increasing availability of LiDAR scanners and commercial

depth cameras, the Microsoft Kinect cost $150 at its debut in 2010, there will be a greater

need for powerful algorithms that can use this richer data source. Because of modern

graphics cards, improvements in Stereo Vision [Scharstein and Szeliski, 2002], and cheaper

and better LiDAR sensors, 3D data is becoming easier and faster to acquire. It behooves the

vision community to use this extra information to move beyond the simple camera. With

these new data sources comes the problem of how to use geometry in the most effective

1

Figure 1.1: Three laser scanners are shown. Clockwise from top left: the 3rdTech Deltas-
phere, the Hokuyo UTM-30LX, and the Microsoft Kinect sensor.

way possible. Range alignment may not outperform state of the art bundle adjustment

[Lourakis and Argyros, 2009] (a particularly effective pose esimation algorithm for use on

camera imagry) in a head to head competition, but it provides a different source of pose

estimation that can augment estimates from other sensors. Object detection using geometry

is not solved with cameras either, but at the very least range information will allow objects

with different textures to be classified independently of those textures. This is why we feel

that these algorithms will help robots and systems to understand the world around them

and make better and more complicated tasks available to automation in the future.

1.1 3D Sensors

For this thesis we will focus on data acquired by 3D depth sensors. The most basic unit

of measurement will therefore be a range point. These points can be sensed using a few

different methods. In this section we will explain those methods and what strengths and

challenges are present for each.

2

1.1.1 Time of Flight Sensors

The most direct form of depth sensors is one that uses the time of flight method. These

sensors emit light in one direction at a time and measure the distance that light has traveled

before returning. The distance can be measured either by starting a clock when the light

pulse is emitted and counting the elapsed time down to sub-nanosecond until it returns, or

by modulating the light at a known frequency and measuring the interference in the returned

and emitted light. Both of these methods produce a reliable direct depth measurement using

a laser beam.

Once a reliable depth measurement is produced the sensor proceeds to sweep the mea-

suring beam over the scene. The sweeping usually happens either by mounting the sensor

on a spinning module like the Velodyne sensor, or by rotating a mirror to sweep the beam

over the scene like a SICK sensor (an illustration of 2D line scan LiDAR’s are shown for

the Hokuyo and SICK sensors in figures 1.3 and 1.2).

The Deltasphere scanner pictured in figure 1.1 combines these two methods to capture

a spherical scan by having both a rotating mirror and a rotation stage that moves the entire

scanner perpendicular to the mirror.

One problem that frequently crops up with line scan LiDAR scanners is that the laser

line may not be very narrow so it will actually capture the closest point to the scanner within

the enlarged cone shaped region of influence. Another problem is that the measurement

may contain depth bias. For instance, we noticed that dark regions with the Hokuyo UTM-

30LX tended to have a different depth bias from light regions. In images, this concept is

not important because all of the measurements happen on an imaging plane and the fact

that the pixels don’t overlap is enough to guarantee they won’t affect each other. The effect

of having too wide a beam angle can be compared to an out of focus camera, but instead

of linearly mixing the intensity values from neighboring pixels, there is a winner take all

condition where the closest point is the one that gets returned. With LiDAR this effect will

3

Figure 1.2: An illustration showing the scan lines produced by the Hokuyo 2D Line scan-
ner. At each time step the internal mirror moves 0.25◦ and scans another ray. Notice the
density is higher closer to the scanner, and the occlusion pattern that is produced.

make things more difficult because, firstly a surface is often scanned from two locations

which means that the surface will have different spatial sampling rates depending on the

angle of incidence of the scan and the distance to the scanner. Secondly, some scanners

have a 2D line scanner that is moved throughout the scene, so in this case the scanner

has one point density in the direction of the scan plane and a different point density when

measured perpendicular to the scan plane. This scanning method is known as push-broom

because the scanner covers an area somewhat like a push-broom sweeping a floor. These

features of LiDAR scans serve to confound many range scan algorithms, and usually must

be accounted for in the data processing somewhere.

1.1.2 Triangulation Sensors

The triangulation method of scanning uses two known imaging locations. That is to say

two locations where we know the distance between them and the relative orientations of

the sensors. The distance between the sensors is known as the baseline. The combined

4

Figure 1.3: The left image is an illustration of how the laser scans for line scan LiDAR
scanners, a mirror deflects the laser beam in the desired direction. The central image shows
an actual sick scanner which works the same way as the illustration. And the right image
shows the Velodyne Laser scanner which rotates the entire laser assembly and sweeps a
number of laser scanning lines across the image.

sensor must determine correspondences between the two images produced and then from

the correspondence it uses triangulation to compute the full 3D point location.

In general, the problem of determining depth from two imaging locations can be com-

puted from the well known equations for depth estimation from calibrated cameras:

z =
bf

xl − xr
, x =

xlz

f
, y =

ylz

f
.

Here the vector [x, y, z]> is the estimated 3D point, xl and xr are the x location of the

point in the left and right images respectively, f is the focal length of the camera, and b

is the baseline. More details on stereo geometry can be found in standard machine vision

reference books such as [Hartley and Zisserman, 2000].

The main challenge for the capturing device is how to best determine the correspon-

dence between sensed points. We break up the scanners into two groups based on the

method used. The first is structured light scanners which project a known pattern from the

first location, and then measure this pattern’s deformation from the second location. The

second method is to use passive stereo cameras which use image properties such as color

and intensity to determine the correspondence in the absence of any scanner based illumi-

5

Figure 1.4: Structured light scanners

nation. The most obvious difference is that structured light is mostly applicable to indoor

sensing as the projected pattern is usually washed out in sunlight.

For structured light scanners, a projector is used to shine a known imaging pattern

onto the scene. This pattern is distinct in some way so that the correspondence is easy to

determine. For instance, the Cyberware 3030 PS scanning system (shown in figure 1.4)

uses a projected laser line and camera pair to scan depth for a single 2D slice of the object.

The scan-head is moved in a circle around the object to produce a cylindrical scan. The

Microsoft Kinect sensor on the other hand, projects a fixed known random dot pattern onto

the scene and uses constrained search combined with the knowledge of the dot pattern’s

makeup to determine the correspondence. Figure 1.5 shows the Kinect dot pattern and

imaging hardware.

The depth measurements produced from stereo and structured light have some intrica-

cies. They generally tend to be more uniform when viewed from the scanner location than

those scans produced from sweeping 2D line scanners. They also tend to have missing

pixels near occlusion borders because the object will frequently occlude one camera from

the other causing the halo effect seen in figure 1.5.

These scanners produce a different sort of data from image cameras that are so prevalent

6

Figure 1.5: The top row shows the Microsoft Kinect structured light pattern and the result-
ing depthmap, and the bottom image shows the sensor itself. The random dot pattern is
projected from the leftmost position while the rightmost is the IR camera which views the
dot pattern. The center camera captures an accompanying visible image.

in computer vision. Like all sensors there are advantages and disadvantages, and we hope

to show in this thesis that the advantages gained from using depth sensors are significant.

1.2 Iterative Closest Point

Registration is defined as the process of aligning two scans so that they are lined up with

one another. The Iterative Closest Point (ICP) algorithm [Besl and McKay, 1992] and its

variants [Rusinkiewicz and Levoy, 2001] are considered the gold standard for point cloud

registration. We will frequently refer to ICP throughout this thesis, and it is necessary to

explain the algorithm. Figure 1.6 illustrated the process of registration.

In order to define registration more concretely we use the partial Procrustes superimpo-

7

Figure 1.6: Point cloud registration is the process of aligning two scans so that they line
up. The left image shows to unaligned scans (red and blue) and the right image shows the
aligned version.

sition. We define two point sets X and Y , and write the error

error = min
R,t

∑
(i,j)∈C

||xi − (Ryi + t)||.

xi ∈ X and yj ∈ Y , (R, t) defines a rigid transformation, and C is the correspondence

set. The correspondence set is a mapping from points in X to points in Y such that each

point maps to its nearest neighbor in the truly aligned coordinate system. ThisC is the main

challenge for ICP because generally it is unknown and therefor is part of the solution for the

minimization process. ICP chooses an initial alignment from the user interaction or some

other method, proceeds to iterate between choosing C based on nearest neighbors in the

current alignment, and solves for R, t given C. There are many nearest neighbor libraries

[Arya et al., 1998; Muja and Lowe, 2009] that efficiently compute the nearest neighbors

using one of a number of methods of which the KD-tree is the best known.

ICP has an few extensions that differ in how they compute the motion (R, r). A recent

example is that of Generalized-ICP [Segal et al., 2009] where the local shape is computed

via the point density (plane, line, point) and then those ellipsoids are used in the motion

estimation process. Another extension is where the motion is computed differently by first

8

computing normals for one set of points and then minimizing the point to plane distance,

error = min
R,t

∑
(i,j)∈C

ni(xi − (Ryi + t)),

to perform the transformation step.

1.3 3D Descriptors

A sub-task of 3D data processing is that of matching regions or sections of scans. The

matching process generally happens between two point sets X and Y . These two sets can

come from the same scan or different scans, but they are sets of points that we would like

to find matching regions in. The matching could also be exact as the case for doing scan

registration, or it could be a fuzzy matching if we are looking to recognize objects.

A descriptor is a method for computing some statistics of a region of a scan so that

the region may be more easily compared to other regions. A naive descriptor would be

to use the set of points themselves and then compare them using ICP described in sec-

tion 1.2. However, this tends to be a long process and prone to errors since ICP requires

accurate initialization and requires mostly overlapping scans. Instead descriptors can be

used where a set of statistics are computed about each scan before the comparison step

and then those statistics are then compared directly. This is ideally a simple comparison

although sometimes it is more involved. Ideally the statistics will lie in a vector space and

can be compared using any number of machine learning techniques.

The other advantage of using descriptors is that the statistics may actually describe the

shape better in some desirable metric. For instance, if a robot were to look for tennis balls,

then precomputing statistics related to roundness of points or curvature would transform

the search for tennis balls into a search for a region with uniform nonzero curvature.

9

We now break descriptors into two distinct categories. In one group are so called global

descriptors which are computed on some large scale selection of points. They might be

computed on the output of a segmentation algorithm or maybe an entire range scan. Global

descriptors are generally not centered around a specific point but instead describe an entire

object. Local descriptors on the other hand are centered on a specific point, and they contain

information from a neighborhood which is usually determined by selecting points within

a radius of the center point. Local descriptors usually contain background information as

well which will sometimes help in identifying points of interest. For instance, in order to

recognize cars, which are usually located on roads near curbs, descriptors containing the

ground are helpful in detecting cars.

We will describe some available descriptors; however, it will help to keep in mind the

following general aspects of feature descriptors:

• Descriptor invariance - If the object is rotated or moved in some way relative to the

scanner or pertinent reference frame, does the descriptor also change?

• Comparability - How easy is it to compare two descriptors or a number of descrip-

tors? Ideally the descriptors will lie in a high dimensional space and we can compare

them using tools, but sometimes we only have a method for computing distance be-

tween descriptors in which case comparison becomes much harder.

• Discriminability - How much does the descriptor help with the task at hand? If we

compute the descriptor for a bunch of examples inside and outside of our chosen

class does it produce examples that are easily separated?

We will describe some of the descriptors that are available in the Point Cloud Library

software package [Aldoma et al., 2012].

10

1.3.1 Local Descriptors

Generally local descriptors will have a feature point about which the descriptor is calcu-

lated, and a region of influence defining a neighborhood. The radius may be defined in

terms of units of length or it may be defined as a number of neighbors. The choice is a

trade-off since a fixed number of neighbors means that histograms will have the same total

magnitude but will also be more susceptible to differences in point density.

Another aspect of local features is how they are invariant or variant to rigid transfor-

mations. Some feature descriptors are invariant to object transformations. For instance, if

an object is rotated and transformed in space the descriptors will maintain their value and

continue to match. This is not the same as being able to compute a fully defined transforma-

tion between the descriptors however. For example, Spin Images produce a transformation

invariant description, but there is still an ambiguity about the normal when aligning the

points. Other descriptors such as the 3D Shape Context are not invariant to rotations and

must be computed at a number of fixed rotations in order to match an object with an un-

known rotation.

There are methods for aligning descriptors. The first is to use the normal and possibly

principle curvature of the center point. The normal will give a frame of reference up to

a rotation about that normal which will be enough for a rotationally invariant descriptor

like Spin Images. But for a rotationally variant descriptor the full transformation must be

matched. The options here are to either compute the descriptor at a number of rotations,

choose another reference direction such as the world up vector, or use something like the

principle curvature which is the direction that the normal is changing the most as one tra-

verses the surface.

Local feature descriptors contain a radius parameter. While this parameter is somewhat

robust, the size does need to be tuned for the specific class of object that is being recognized.

If the size is too small, the descriptor will describe basic features like planes and corners

11

Figure 1.7: The left image shows an illustration of the influence region for a feature point
in red and its k-neighbor support region in blue. The fully connected graph is shown. The
right image shows the uvw reference frame for points ps and pt with normals ns and nt.
[Rusu et al., 2009]

and will lose its discriminability. On the other hand, if the radius is so large it will contain

information from much of the background and it will not match to anything.

Fast Point Feature Histogram (FPFH)

The FPFH feature descriptor of [Rusu et al., 2009] relies on the center point having a well

defined normal, and possibly well defined principle curvature. Principle curvature may not

be defined in the case of planes or bowl shapes where the curvature is similar in all direc-

tions; however, in many cases there are plenty of features with well defined surfaces and

principle curvature directions. Moreover the FPFH only uses principle curvature to register

feature keypoints instead of using it in matching the descriptors themselves. Therefore,

lack of principle curvature would mean that matching descriptors do not produce a rigid

transformation between them.

To define the FPFH descriptor, figure 1.7 shows a center point pq and includes the k

nearest neighbors as support. The fully connected graph is then computed and for each

edge i, j such that i 6= j, and the angle between ni (the normal at point i) and the line

connecting the points is smaller than nj and that line. First, we define the “Darboux” uvw

12

reference frame using the normal and connecting line between the pair of points:

u = ni,

v =
(pj−pi)×u
||pj−pi|| ,

w = u × v.

(1.1)

Then we define three angles α, φ, θ:

α = v>nj,

φ =
u>(pj−pi)

||pj−pi|| ,

θ = arctan(w>nj,u
>nj).

(1.2)

Finally, these angles are used to compute a histogram. The bins however are computed by

doing independent histograms of each of the angles with 11 bins, and then concatenating

the result for a 33 value histogram.

This feature descriptor has the property of being invariant to rigid transformation, and

even if the principle curvature direction is not well defined, the descriptor can still be com-

puted and becomes invariant to rotation about the normal of the anchor point. This means

that two of these degenerate features can still be matched using descriptors and can be

aligned to each other up to an unknown rotation about their normals.

Spin Images

Spin images are discussed in greater detail in section 4.3, but here we will run through their

properties. The center point and normal associated with that point (o n) are used to orient

the spin image. Then, for every point within the region of influence pi we compute the

distance to the normal and the distance to the tangent plane. The distance to the normal

following two quantities are calculated using every point within the region of influence. We

13

Figure 1.8: The left image shows the quantities α and β and the right image shows examples
of spin images computed for a duck mesh.

call these quantities α and β:

αi = ||(pi − o)× n||,

βi = n>(pi − o).
(1.3)

The algorithm then computes a histogram usually with binning of ten bins in each direction,

and in this case the binning is the full 2D histogram of 100 bins. The name “Spin Image”

comes from a description of the binning process whereby a sheet of paper is attached to the

normal at one end and it is spun around the normal vector splatting all of the support points

onto the sheet creating an image.

Signature of Histograms of OrienTations (SHOT)

The SHOT descriptor [Tombari et al., 2010a] attempts to mimic the SIFT descriptor but for

the 3D case. First, a local repeatable reference frame is produced using the support points.

The method is similar to the Singular Value Decomposition, but it is changed to produce

repeatable signs and a more robust reference frame in the presence of noise. Next, the

support points are placed into a set of subdivided spherical bins. Finally, for each bin we

14

take the histogram of orientations. There is also a step of quadrilinear interpolation when

placing points into bins because the descriptor tends to change markedly as the points move

from bin to bin.

3D Shape Contexts

The 3D Shape Context descriptor [Frome et al., 2004] is similar to the SHOT descriptor

above, but it ignores the normals within each bin. It also does not have such a sophisticated

method for computing a local reference frame as Tombari et al. [2010a]. Instead it merely

uses the normal to align the north pole of the binning scheme, and produces a number of

descriptors equal to the number of bins around the equator. There is an extension in which

Tombari et al. [2010b] computes a local reference frame using the principle components

of the local point distribution to decrease the memory footprint required by replicating the

descriptor along the equatorial binning direction.

1.3.2 Global Descriptors

Unlike local descriptors, global descriptors have the support region defined as the input.

This may help things if the segmentation is easy, but it also may hurt since segmentation

is not generally an easy problem. Regardless, given a selection of points, the task of the

descriptor is to compute a high dimensional representation of the set of points. Ideally

this representation is robust to occlusions (missing points) and changes in density from

scanning patterns and point of view. One aspect which is frequently glossed over in most

descriptor papers is any mention of whether or not point densities are computed or even

used. For the most part, performance is improved by including the density of points which

serves to help match patches that were scanned from near vs. far sensors. Some experi-

ments may scan objects in a turntable or from the same distance, but our experiments with

city scale data indicate that differences in density can be significant.

15

Figure 1.9: The VFHs viewpoint component consists of computing the angle α between
the vector connecting the camera and the object centroid (vp − pi) and the normal for the
given support point ni. Note that the centroid is used for computing the the view vector but
the individual normal is used for the support point.

The object support region will generally be determined by a segmentation algorithm or

by using an entire scan depending on the problem. A simple segmentation would be the

tabletop segmentation algorithm from the Point Cloud Library (PCL).

Point Feature Histogram (PFH)

The PFH [Rusu et al., 2008] is global analog to the FPFH described in section 1.3.1. The

same quantities α, φ, θ are computed over the fully connected graph on the entire segment

or object which does limit the size of data this feature can handle. Instead of concatenating

distinct histograms for each of the three dimensions, they are treated as a vector space. The

fact that more points are used in the global version allows for the extra number of bins to

be useful. The authors did some extra analysis of a distance value as well and determined

that the distance did not help discriminability so they removed it from the descriptor. The

PCL implementation of PFH leaves out the distance.

Viewpoint Feature Histogram (VFH)

The VFH expands upon the FPFH and PFH but with the goal of determining object class

as well as the full 6 degree-of-freedom pose. Rusu et al. [2010] computes a centroid and

16

average normal for the collection of points, computes the FPFH using the centroid and av-

erage normal as the anchor point, and then adds a viewpoint component. The viewpoint

component is the angle between the centroid of the object in the sensors coordinate frame

and the normal of the support point being added. This geometry is illustrated in figure 1.9.

It is then histogrammed more finely than the other angles. The vector between the point

associated with the normal can’t be used because it will change the feature descriptor de-

pending on the distance to the object. Finally, the descriptor computed from the viewpoint

component and the descriptor computed from the spatial component are concatenated into

a large histogram containing 250-300 which are then normalized.

VFH shows promise in detecting objects along with pose. But it has a few shortcom-

ings. The use of the viewing angle causes the descriptor to be invariant to rotations about

the viewing angle which could be problematic if the goal is to pick up an object. Also, the

normalization step causes scale invariance which is generally thought of as bad in 3D data

where scale is always available. This is in contrast to camera images where scale invariance

is usually thought of positively since the same object farther from the camera will have a

different apparent scale. Also the VFH is particularly sensitive to occlusion as missing

points will change some number of bins in the descriptor which will then be normalized

without them.

As with many descriptors there is a trade-off between discriminability and training size.

A descriptor that has strong discriminability will need much more training that one with a

lower discriminability. In the case of the VFH, one needs to train using examples from all

poses of the objects in question that are to be recognized. These extra poses must be placed

into a large classifier which will take up a lot of memory. On the other hand, smaller sized

features with more generalizability may make more classification mistakes.

17

Figure 1.10: Two examples of clustered smooth regions for computing the CVFH.

Clustered Viewpoint Feature Histogram (CVFH)

The last feature we describe had the best performance in the work of Aldoma et al. [2012].

The CVFH expands on the VFH with another segmentation step that splits the object into

K locally smooth regions and then computes K VFH’s. Figure 1.10 shows some of the

segmentations of this algorithm. The missing points problem is addressed by breaking

the VFH’s apart so that occlusions will only affect some of the clusters. Additionally, the

feature is again augmented with a measure of the distance between points normalized by the

maximum distance to all support points. This distance does not require setting any global

scale and produces an estimate of the elongatedness of the segment, which is helpful since

separating out locally smooth regions will decrease discriminability of descriptors.

1.4 Background

We start with the background for 3D Registration and Object Detection. There has been

significant work both before and after our contributions to this field. We break up the work

between registration and object recognition, but much of the work in the field blurs the line

18

between the two topics.

1.4.1 Registration Methods in 3D

Many approaches dealing with scans with low overlap forgo global characteristics in favor

of the extraction of local invariant features [Huber and Hebert, 2003; Johnson and Hebert,

1997; Stamos and Leordeanu, 2003]. These features, if given in sufficient number, can

be matched to constrain the motion estimates. These feature matching approaches are

susceptible to outliers and common ambiguities in the matching (repeated textures).

The representation we explore in Chaper 3 is the Extended Gaussian Image (EGI),

which can effectively be approximated by a spherical histogram of surface orientations.

Since its introduction, a number of other translation invariant spherical representations

have been introduced, including extensions to the EGI to handle a wider range of input

scans. There are the weighted principal directions and canonical length used in Adan et al.

[2001], the directional histogram model [Liu et al., 2003] (and closely related thickness

histogram [Liu et al., 2004]), and the spherical attribute images [Delingette et al., 1993;

Hebert et al., 1995]. In Kang and Ikeuchi [1993] a complex EGI was proposed which ex-

tends the traditional EGI to distinguish between convex and nonconvex objects. Although

invariant spherical representations have been used to estimate relative orientation ([Brou,

Winter 1984; Hebert et al., 1995; Ikeuchi, 1983; Little, 1985]), these methods depend on

unreliable local features or brute force matching.

While our use of spherical harmonics to estimate rotation from EGIs is new, harmonic

invariants have been used extensively for object retrieval and recognition [Kazhdan et al.,

2003; Liu et al., 2003, 2004], and also at a smaller scale to generate invariant keypoints

[Frome et al., 2004]. A true Fourier-based method for range alignment is given in Luc-

chese et al. [2002]. Since this method estimates the parameters of motion directly from

the frequency domain, it requires knowledge of the overlapping regions between scans.

19

Close methods to ours may be found in the SLAM literature, where correlation alignment

is achieved by recovering the phase shift from two dimensional signals. For example, angle

histograms, which are roughly invariant to rotation and translation are aligned via cross-

correlation in Weiß et al. [1994].

In addition to aligning limited overlap point clouds, another objective of ours is to

seamlessly integrate a large number of scans. Related to this effort are a number of methods

which try to create object models from the combination of numerous laser scans [Beraldin

et al., 1997; Curless and Levoy, 1996; Saucy and Laurendau, 1995]. Curless and Levoy

[1996] combines range scans through an updated signed distance function, and in Saucy

and Laurendau [1995] the surfaces are integrated by minimizing the least-squares distance

between overlapping regions.

Since our work has been published [Makadia et al., 2006], the field has continued to

mature. Arguably the most talked about work was that of Newcombe et al. [2011]. They

perform real time object mapping and model building using the Kinect Sensor, and while

their work includes a method for fusing range images, it also must estimate sensor motion.

They do this using a signed distance function and assuming that motions will be small be-

tween successive frames (their algorithm runs at 30Hz on the GPU). They solve the same

problem of Chapter 2 but for Iterative Closest Point (ICP) in which motion is estimated

between each point and the zero crossing of the signed distance function. They use the

Euler Angle mapping to solve it which is acceptable because all motions are assumed to be

small. The work of Osteen et al. [2012] uses the EGI matching scheme as a pre-processing

step along with ICP in order to estimate robot ego-motion, and is robust to large motions

between frames allowing for more computationally expensive algorithms or slower com-

puters (It does not require an onboard GPU).

There has also been work which uses locally computed features along with RANSAC

or Generalized Hough Transform techniques in order to compute registrations. The work

20

of Glover et al. [2011] computes local features on candidate objects and then uses the

matching feature center points along with principle curvature direction in order to produce

alignments which are then clustered using a Generalized Hough Transform. Papazov and

Burschka [2011] uses semi-local features in which pairs of normals are combined into a

feature, but the pair can be distant. Then these pairs are used to hypothesize correspon-

dences which are verified similarly to our verification step in Section 3.5.

There is also work in performing registrations as optimizations over the space of corre-

spondences. The work of Maciel and Costeira [2003] performs registration, but allows for

general affine transformations when solving for 3D-3D registrations.

There are other methods for registration using local features. A good survey is pre-

sented in Aldoma et al. [2012] which includes most currently available local features that

are used in registration including the Fast Point Feature Histogram (FPFH), Signature of

Histograms of Orientations (SHOT), 3D Shape Context, Unique Shape Context, Spin Im-

ages, and the Radius-Based Surface Descriptor. Another local feature used for registration

is Scale-Dependent/Invariant Features [Novatnack and Nishino, 2008].

1.4.2 3D Object Detection

In this section, we briefly overview related work on local and global 3D shape descrip-

tors and 3D object recognition, focusing only on shape-based descriptors. Research on

appearance-based recognition has arguably been more active recently, but is not directly

applicable in our experimental setup.

Global shape descriptors include EGIs [Horn, 1984], superquadrics [Solina and Bajcsy,

1990], complex EGIs [Kang and Ikeuchi, 1993], spherical attribute images [Hebert et al.,

1995], and the COSMOS [Dorai and Jain, 1997]. Global descriptors are more discrimina-

tive since they encapsulate all available information. On the other hand, they are applicable

to single segmented objects and they are sensitive to clutter and occlusion. A global repre-

21

sentation in which occlusion is explicitly handled is the spherical attribute image proposed

by Hebert et al. [1995].

A method to obtain invariance to rigid transformations was presented by Osada et al.

[2002] who computed shape signatures for 3D objects in the form of shape statistics, such

as the distance between randomly sampled pairs of points. Liu et al. [2003] introduced

the directional histogram model as a shape descriptor and achieved orientation invariance

by computing the spherical harmonic transform. Kazhdan et al. [2003] proposed a method

to make several types of shape descriptors rotationally invariant, via the use of spherical

harmonics.

Descriptors with local support are more effective than global descriptors for partial data

corrupted by clutter. Stein and Medioni [1992] combined surface and contour descriptors,

in the form of surface splashes and super-segments, respectively. Spin images were intro-

duced by Johnson and Hebert [1999] and are among the most popular such descriptors. See

Section 4.3 for more details. Ashbrook et al. [1998] took a similar approach based on the

pairwise relationships between triangles of the input mesh. Frome et al. [2004] extended

the concept of shape contexts to 3D. Their experiments show that 3D shape contexts are

more robust to occlusion and surface deformation than spin images, but incur significantly

higher computational cost. Huber et al. [2004] propose a technique to divide range scans

of vehicles into parts and perform recognition under large occlusions using spin images as

local shape signatures.

Local shape descriptors have been used for larger scale object recognition. Johnson

et al. [1998] use PCA-compressed spin images and nearest neighbor search to find the

most similar spin images to the query. Alignment hypotheses are estimated using these

correspondences and a variant of the ICP algorithm from Besl and McKay [1992] is used

for verification. Shan et al. [2006] proposed the shapeme histogram projection algorithm

which can match partial objects by projecting the descriptor of the query onto the sub-

22

space of the model database. Matei et al. [2006] find potential matches for spin images

using locality sensitive hashing. Geometric constraints are then used to verify the match.

Ruiz Correa et al. [2006] addressed deformable shape recognition via a two-stage approach

that computes numeric signatures (spin images) to label components of the data and then

computes symbolic signatures on the labels. This scheme is very effective, but requires

extensive manual labeling of the training data. Funkhouser and Shilane [2006] presented

a shape matching system that uses multi-scale, local descriptors and a priority queue that

generates the most likely hypotheses first.

In most of the above methods, processing is mostly bottom-up, followed in some cases

by a geometric verification step. A top-down approach was proposed by Mian et al. [2006]

who represent objects by 3D occupancy grids which can be matched using a 4D hash table.

The algorithm removes recognized objects from the scene and attempts to recognize the

remaining data until no additional library object can be found.

Our method can detect cars in real scenes in the presence of clutter and sensor noise.

Very few of the papers mentioned above ([Carmichael et al., 1999; Johnson et al., 1998;

Matei et al., 2006; Mian et al., 2006; Ruiz Correa et al., 2006]) present results on real

data. Among the ones that do, Matei et al. [2006] classified cars that had been previously

segmented. Johnson et al. [1998], Carmichael et al. [1999] and Mian et al. [2006] show

object detection from real scenes containing multiple objects. It should be noted, however,

that the number of objects in the scene is small and that all objects were presented to the

algorithm during training. Ruiz Correa et al. [2006] are able to handle intra-class variation,

at the cost of large manual labeling effort. The goal of our work is more ambitious than

[Carmichael et al., 1999; Frome et al., 2004; Johnson et al., 1998; Matei et al., 2006; Mian

et al., 2006; Shan et al., 2006] in order to make more practical applications possible. Our

algorithm is not trained on exemplars identical to the queries, but on other instances from

the same class. This enables us to deploy the system on very large-scale datasets with mod-

23

erate training efforts, since we only have to label a few instances from the object categories

we are interested in.

Since publication, the field has continued to mature. One example is an implementation

of the Implicit Shape Model (ISM) for LiDAR [Velizhev et al., 2012]. ISM uses local

features to vote for object detection’s in a bottom up way just as our work does, but is

more complex in that it uses a codebook to classify specific part types which can cast more

informative votes than simple car/not-car features.

There is some work from Halma et al. [2010] and Yang et al. [2011] which detects cars

in aerial LiDAR. Halma et al. [2010] uses the gravity vector to orient single spin images,

and then uses moments to initialize ICP around car detections.

Somewhat related is the work of Moosmann and Sauerland [2011] which attempts to

cluster object types in urban scenes. They also use the fact that many objects are easily

segmented out from their support surfaces.

Behley et al. [2012] compare a number of histogram based local object descriptors in-

cluding Spin Images used by us, and find that histograms with 3D support regions perform

best.

There is a work that quickly classifies each LiDAR point into categories such as ground,

vegetation, wall, etc.; some examples are Xiong et al. [2011], Behley et al. [2010]. Also

Stamos et al. [2012], relies on specific heuristics in order to recognize certain types of

objects such as curbs and cars, and allows for fast online processing as the data is acquired

from a scanner such as a Velodyne.

There are some voxel based approaches such as Aijazi et al. [2013] who uses super-

voxels and local features made up of statistics about each super-voxel including normal

directions or RGB statistics in order to classify urban range data into five categories: build-

ings, cars, roads, poles, and trees.

24

1.5 Contributions

For this thesis we have produced a series of systems and algorithms which allow for object

detection in large scale scans. Many of the algorithms will be useful for other tasks. The

specific contributions are as follows:

1.5.1 3D-Camera Calibration

In Naroditsky et al. [2011] we present a method for calibrating a camera with a 2D range

scanner. Our contributions are as follows.

• We have found the minimal solution for aligning 3D-point to 3D-plane using six

correspondences.

• We demonstrate how to solve the minimal problem for the overdetermined system.

• We have produced a fully automatic calibration system for unattended use.

• We have also produced a user annotated system where accuracy is absolutely critical.

We also demonstrate that our solutions are correct for synthetic data and multiple real world

calibrations.

1.5.2 3D Range Alignment

In our work [Makadia et al., 2006] we address the problem of automatically aligning Li-

DAR scans. We produced a robust system suitable for automatic alignment. The contribu-

tions are as follows.

• We introduce the novel Constellation Extended Gaussian Image descriptor.

• We show how to align Constellation EGIs using both the rotation fourier transform

and hough voting.

25

• We demonstrate the ability to decouple estimation of rotation and translation for

significantly reduced CEGI comparison complexity.

• We show that alignment between scans with minimal overlap is achievable.

We later demonstrate that the alignment and verification error metric are useful for object

recognition in large scale datasets.

1.5.3 Bottom Up Top Down Object Recognition

We show in Patterson et al. [2008] a method that recognizes cars in a citywide terrestrial

LiDAR dataset. Our contributions to the field are:

• the combination of bottom-up and top-down processing to detect potential targets

efficiently and verify them accurately,

• the capability of performing training on instances that come from the same object

category as the queries, but are not necessarily identical to the queries,

• minimal user efforts during training,

• object detection for large-scale datasets captured in uncontrolled environments,

• and accurate segmentation of target objects from the background.

This all runs accurately and runs in less than a day, which is faster than real time when

compared to the weeks of scanning.

1.6 Outline

This thesis is organized as follows:

26

• Chapter 2: We begin by describing a camera to LiDAR calibration scheme which

uses point to plane correspondences. In particular, we solve the minimal problem

involving six correspondences, and we solve the overconstrained system. Finally, we

demonstrate stability of the minimal solution on synthetic calibration data, and we

demonstrate a calibration tool with real world examples.

• Chapter 3: We describe our method for aligning pointclouds using the Constella-

tion Extended Gaussian Image (CEGI). We start with background on the Extended

Gaussian Image. Then the creation and matching of the CEGI is described. Finally,

we describe our verification scheme and demonstrate on numerous real world scan

alignments.

• Chapter 4: Finally, we show our method for detecting objects in large scale scans.

The bottom up descriptor (Spin Images) are reviewed, then we show that the CEGI

can be used to recognize objects using the overlap percentage. We demonstrate robust

performance on a very large dataset.

27

Chapter 2

Automatic Alignment of a Camera with

a Line Scan LiDAR System

2.1 Introduction

The problem of calibrating a LiDAR-camera sensor rig is important in robotics applica-

tions. A camera provides a dense, color image of the environment, and LiDAR gives a

sparse, but accurate, collection of line scans. Fusion of visual and distance information is

challenging when there is parallax between the two sensors and when distance consists of a

single line scan. Unlike in structured light techniques, the laser is not visible in the image,

hence we have to invent a way to associate features on the line scan with features in the

image if we want to eliminate a manual selection of the features.

This chapter outlines both a complete solution involving RANSAC, and a more interac-

tive, robust, and simple solution for surveying. The minimal solution for use with RANSAC

[Fischler and Bolles, 1981] is presented in detail in Naroditsky et al. [2011]. The algorithm

only assumes that the LiDAR and camera contain overlapping fields of view. However,

for the purposes of this thesis, we only use the stability tests from Naroditsky et al. [2011]

28

and otherwise perform the linearized solution which is used for the final results there as

well. Synthetic results are presented to show stability of the solutions, and a real calibra-

tion is performed and evaluated. A system for inputting correspondences was build and

error results are show for a dataset captured in Cyprus.

2.2 Related Work

The closest and most cited work to ours is by Zhang and Pless [2004] who matches a

scanline to a checkerboard. When moving a checkerboard, traditional camera calibration

[Bouguet, 2006] can extract the normal to the checkerboard with respect to a global camera

reference, while detection of a line in the laser profile enables association of 3D-points with

the calibration plane. The algorithm starts with a linear initialization, suffering under the

well known effects of linearization like finding 3x3 matrices satisfying the data equation

and then finding the closest special orthogonal matrix. Mei and Rives [2006] have applied

the same principle to catadioptric images but they exploit the association of a 3D-line (in

terms of direction and an offset) to a calibration plane. It is worth noticing that the equation

associating the plane normal to the 3D-line direction is of the form n>Rd = 0, is alge-

braically the same as ours after eliminating the translation. However, the authors use the

association of points similarl to Zhang and Pless [2004].

When a laser system produces a full depth map at once, the only challenge is associ-

ating features. In Unnikrishnan and Hebert [2005], which is similar to Zhang and Pless

[2004], the association of 3D points to planes extracted from images are used. In Nunez

et al. [2009] an IMU enables the registration of line scans into a 3D LiDAR and the relative

transformation is found via hand-eye calibration [Horaud and Dornaika, 1995]. Scara-

muzza et al. [2007] uses the association of hand-clicked points in a full 3D map with points

in catadioptric images.

29

Figure 2.1: A capture rig incorporating four cameras and a Hokuyo LiDAR. Our algorithm
automatically calibrates such systems.

2.3 Problem Description

Let us formally define the problem of camera-to-LiDAR calibration. We are given a sensor

structure consisting of a calibrated camera (intrinsic parameters are known) and scan line

LiDAR that are rigidly mounted with respect to each other. Our goal is to find the rigid

transformation [R|t], where R is a rotation matrix and t is a translation vector, such that

given a 3D point x = [x1, x2, x3]
> obtained by the LiDAR, we can compute the corre-

sponding point y = [y1, y2, y3]
> in the camera’s coordinate system (and then in the image

via the intrinsic calibration) as

y = Rx + t.

A single LiDAR datum consists of a depth and angle at which the depth was sensed.

We define the coordinate system for the LiDAR as follows. The origin is the center of

laser sensor rotation, and the plane of laser rotation is the Y-Z plane. Consequently, we can

always express a 3D LiDAR point as x = [0, x2, x3]
>.

As with any calibration problem from sensor data, we must collect correspondences

between the readings of different sensors. In this case, we construct a calibration target

containing a single black to white transition (see Figure 2.2), which we detect as a line

30

Figure 2.2: A single camera frame from the calibration data set showing the calibration
object. The object consists of a black line on a white sheet of paper. We detect the white-
to-black transition looking from the top of the image.

segment in the image and a point in the LiDAR’s luminance output for a single line scan

(see Figure 2.3). We discuss feature detection in detail in Section 2.5.2. A line in the image

corresponds to a plane in the world containing the line and the center of projection of the

camera. We now have a correspondence between a 3D point in the LiDAR coordinate

system and a plane in the camera’s coordinate system. Thus our constraint is that the

LiDAR point, taken into the camera’s coordinate system, must lie on the corresponding

plane. We express this constraint as

n>i (Rxi + t) = 0, ||ni|| = 1, (2.1)

where ni is the normal to the plane in the camera coordinate system and xi is the Li-

DAR point for correspondence i. The most accurate calibration is attained when there are

many data points, so the solution is computed as an overdetermined set of equations in

Section 2.4.

31

−3500 −3000 −2500 −2000 −1500 −1000 −500 0 500

−1000

−500

0

500

1000

1500

2000

Z (mm)

Y
(m

m
)

Ceiling

Person
Target

Wall

LIDAR

Figure 2.3: A portion of a LiDAR scan showing a person holding the calibration target. The
points are colored by their intensity returns. The LiDAR’s scan plane is close to vertical,
and its origin is marked by a circle.

2.4 Optimization over SO(3)

In order to solve the problem of determining the best rigid transformation for aligning

points with planes in 3D we turn to a method which uses the Lie Algebra. Taylor and

Kriegman [1994] show how to do this when the optimization variable lies in SO(3). We

will follow this method, but it must be adapted to our specific problem. This is the general

outline of our solution:

1. Remove translation t analytically from the constraints,

2. Solve for R using the Gauss-Newton algorithm similar to Taylor and Kriegman

[1994],

3. Compute t from the value of R via back-substitution.

32

2.4.1 Removing the translation (t) from the constraints

Recall the equation to solve for m correspondences:

n>i (Rxi + t) = 0, 1 ≤ i ≤ m. (2.2)

[R, t] are the variables over which we would like to optimize. Because there may be noise

in the system, the equality will likely not be exact, so instead we convert the problem into

an L2-minimization for the objective function F (R, t) defined:

F (R, t) =
∑
i

||n>i (Rxi + t)||2

=
∑
i

(n>i (Rxi + t))2.

(2.3)

The first step is to remove t from the optimization. Recall that the minimum value of a

convex quadratic function is attained at the point where the derivative of that function is

zero. We know the function is quadratic because we can rearrange the t’s in the equation

into the form t>(nini
>)t . And we know that it is convex because all the squared terms

are inside a positive sum. So we can take the derivative of F (R, t) with resepct to t, set

the result to zero, and use the chain rule:

∂F (R, t)

∂t
=

∂

∂t

∑
i

(n>i (Rxi + t))2 = 0

∑
i

2(n>i (Rxi + t))
∂

∂t
(n>i (Rxi + t)) = 0

2
∑
i

n>i (Rxi + t)n>i = 0.

33

Subtract 2
∑

i(n
>
i t)n

>
i from both sides and simplify:

2
∑
i

n>i (Rxi + t)n>i − 2
∑
i

(n>i t)n
>
i = − 2

∑
i

(n>i t)n
>
i

2
∑
i

(n>i Rxi)n
>
i =− 2

∑
i

(n>i t)n
>
i∑

i

(n>i Rxi)n
>
i =−

∑
i

(n>i t)n
>
i∑

i

nin
>
i Rxi =−

∑
i

nin
>
i t

∑
i

nin
>
i Rxi =−

(∑
i

nin
>
i

)
t.

Thus, t can be written in terms of correspondence data (ni and xi) and R.
∑

i nin
>
i is

invertible when the matrix is full rank. Full rank will be achieved when the data is well

conditioned; so, for the general case of many correspondences this won’t be a problem.

The solution for t is:

t = −

(∑
i

nin
>
i

)−1∑
i

nin
>
i Rxi.

And for simplicity we define N which depends on the data:

N =
∑
i

nin
>
i , t = −N−1

∑
i

nin
>
i Rxi. (2.4)

2.4.2 Solving for R using the Gauss-Newton algorithm

First, we will review the Gauss-Newton algorithm. This algorithm is a method that can be

used in solving a minimization problem and is a special case of the Newton method for

gradient descent. In general Gauss-Newton can be used when the function S(β) can be

34

written as a sum of squared function values:

S(β) =
m∑
i=1

r2i (β). (2.5)

The Gauss-Newton algorithm defines the gradient descent update step:

β(s+1) = β(s) − (J>r Jr)
−1J>r r(β

(s)), (2.6)

where Jr is the Jacobian matrix of the function r at β(s).

We will now show how we convert our problem into appropriate form for the Gauss-

Newton algorithm. First, define vec(R) as the stacked version of R such that the columns

are stacked in order making vec(R) ∈ R9:

R =

[
r1 r2 r3

]
, vec(R) =

r1

r2

r3

 .

This identity follows from matrix multiplication, the definition of vec(R), and the definition

of the Kronecker Product:

nkRxk = (x>k ⊗ n>k)vec(R). (2.7)

We can now rewrite Equation 2.4 using the identity 2.7:

N =
∑
i

nin
>
i , t = −N−1

∑
i

ni(x
>
i ⊗ n>i)vec(R). (2.8)

Recall the objective function F (R, t) (2.3). We can now substitute equation 2.8 into

35

the objective. We rename the objective F (R) since it no longer depends on t:

F (R, t) =
∑
i

(n>i (Rxi + t))2,

F (R) =
∑
i

(
n>i

[
Rxi −N−1

∑
j

nj(x
>
j ⊗ n>j)vec(R)

])2

=
∑
i

(
n>i Rxi − n>i N

−1
∑
j

nj(x
>
j ⊗ n>j)vec(R)

)2

.

Apply the identity 2.7 one more time and pull out vec(R):

F (R) =
∑
i

([
(x>i ⊗ n>i)− n>i N

−1
∑
j

nj(x
>
j ⊗ n>j)

]
vec(R)

)2

. (2.9)

Define a data matrix A which is 9xm and contains all of the data dependent terms from

Equation 2.9:

A =

[
a1 . . . am

]
, ai = (x>i ⊗ n>i)− n>i N

−1
∑
j

nj(x
>
j ⊗ n>j). (2.10)

Now the objective function can be written compactly:

F (R) =
∑
i

(aivec(R))2

=
[
A>vec(R)

]2
=
[
A>vec(R)

]> [
A>vec(R)

]
=
[
vec(R)>AA>vec(R)

]
.

(2.11)

For simplicity, we also define the functions f(R) and fi(R) as

fi(R) = aivec(R), f(R) = A>vec(R),

36

which allows the objective to be written as

F (R) =
∑
i

f 2
i (R) = f(R)>f(R). (2.12)

Here, we apply the Gauss-Newton method to get the update rule for the parameter space

R. In our case, the function ri(β) from Equation 2.5 is fi(R). We can now write the update

rule from Equation 2.6:

R(s+1) = R(s) − (J>f Jf)
−1J>f f(R

(s)),

where Jf is the Jacobian of f(R(s)).

We would normally just compute the answer, but this is hard because the Jacobian

expressions are to be computed in the non-euclidean SO(3) group of rotation matrices. To

solve this we follow Taylor and Kriegman [1994] who use the Lie Algebra so(3) to compute

the updates and then transforms those updates back into SO(3) using the mapping between

the Lie Algebra and Lie Group.

To summarize, we have an expression for the translation in terms of the rotation and

data, and an objective function for the rotation solely in terms of the data. At this point we

can’t use the same method to solve forR as we did for t because, unlike t, the constraints on

R itself are nonlinear. Instead, we compute the instantaneous derivatives of the objective

F (R) in a linear tangent space known as the Lie Algebra (so(3)) and thus we can use a

gradient descent optimization, specifically the Gauss-Newton algorithm.

2.4.3 Using Lie Algebra to find R

Now we show how to update the rotation matrix. They proceed by defining a Lie Algebra

(so(3)) which lies in a Euclidian space and is thus easy to compute Jacobians. This Lie

37

Algebra also has a simple mapping which can be applied to go from the rotation group

(SO(3)) to the algebra and back. Thus using the approximation to the function in the so(3)

we can compute an optimization estimate for the optimal value and then map that value

back into SO(3).

This parametrization can be written down as the current rotation matrix plus the map-

ping from parameters to rotation matrices, we start with some notation:

ω =

[
ωx ωy ωz

]T
, θ = ||ω||, ω̃ =

ω

||ω||
, ω̂ =

0 −wz wy

wz 0 −wx

−wy wx 0

 . (2.13)

Then we write the parametrization centered at a rotation Rk:

Rk(ω) = Rk exp{ω̂}, ω ∈ R3,
√
ωTω < π.

The exp is the exponential map and is is defined:

Rk(ω) = Rk exp{ω̂} = Rk

∞∑
n=0

{ 1
n!
ω̂n},

and ω is restricted to the open ball of radius π. This is not a big restriction in our context

as we can always decrease our step size into the unit ball and simply perform another step.

The proof that this map is surjective is shown in theorem 1.6 from Gallier [2011]. This can

be rewritten using the well known Rodrigues Rotation Formula:

Rk(ω) = Rk(I + sin(θ)ω̂) + (1− cos(θ))ω̂2). (2.14)

We will need to differentiate this with respect to ω. The derivative with respect to the

38

first parameter ωx is:

∂

∂ωx
Rk(ω)

∣∣∣∣
ω=0

=
∂

∂ωx
(Rk exp{ω̂})

∣∣∣∣
ω=0

=
∂

∂ωx
(Rk

∞∑
n=0

{ 1
n!
ω̂n})

∣∣∣∣
ω=0

= R0x̂,

where x̂ is the hat operator defined in Equation 2.13 applied to the x-axis unit vector.

We can proceed following the Gauss-Newton method in order to optimize the objective

from Equation 2.12:

δk+1 ← −(JTJ)−1JTf(Rk), (2.15)

where J is the Jacobian of f(Rk(ω))

J = A

[
vec(∂

∂ωx
) vec(∂

∂ωy
) vec(∂

∂ωz
)

]
= A

[
vec(Rkx̂) vec(Rkŷ) vec(Rkẑ)

]
.

(2.16)

Using Equations 2.15 and 2.16 we can compute δ directly. It must be projected onto the

SO(3) manifold in order to be composed with Rk to compute Rk+1 which is done using

Rodrigues Rotation Formula Equation 2.14.

2.5 Results

In this section we will first establish the correctness of our algorithm and explore its sensi-

tivity to noise using simulated data, and then perform a real calibration of a LiDAR-camera

rig mounted on a mobile robot for the purpose of coloring the 3D LiDAR points with pix-

els from the camera and show the results. This section uses the results of Naroditsky et al.

[2011] in order to show that the proposed method for calibrating LiDAR-Camera is stable

39

in the minimal case, so it is likely stable for the linearized case too.

−14 −12 −10 −8 −6 −4 −2 0 2 4
0

100

200

300

400

500

600

700

log10 of overall pose error

C
ou

nt

Figure 2.4: The histogram of numerical errors for 105 random, noise-free instances of the
problem. The error is defined as the log10 e, where e of the Frobenius norm of the difference
between the ground truth and the computed matrices (see (2.17)). Since the points were not
checked for degeneracy (such as collinearity), some failures are observed. If we consider
a failure to be log10 e > −1 which corresponds to an error of about 0.5◦ or 1cm, then the
method fails 1.97% of the time.

2.5.1 Simulations

Our first experiment establishes the correctness and numerical stability of our symbolic

template. We generate, uniformly at random, roll, pitch, and yaw of the LiDAR with

respect to the camera in the range of ±30◦, and translation vectors with uniformly random

components from 0 to 30cm. For each of these ground truth calibrations, we generate six

40

noise-free correspondences.

We generate these correspondences by simulating a camera looking at a target. Specif-

ically, we choose two random points in sampling volumes in front of the camera, one on

the left and one on the right. This closely models what happens in the real system where

the 3D line must intersect the LiDAR scan plane which is close to the vertical plane sepa-

rating the left and right halves of the image. These two points define a line which is then

intersected with the LiDAR plane to obtain the point x. The points, along with the camera

center, define the plane and its normal n.

The histogram of errors for 105 such configurations is shown in Figure 2.4. The error

metric is the following:

e = min
i
(‖[Rgt | tgt]− [Ri | ti]‖F), (2.17)

for i from 1 to the number of solutions, Rgt and tgt comprise the ground truth calibration

and ‖�‖F is the Frobenius norm. The figure demonstrates that our solution correctly solves

the calibration problem. The accuracy varies due to the random nature of correspondences

and lack of degeneracy checking during sampling.

We choose the Frobenius norm because we need a metric with which to combine both

the translational and rotational error into one number. Choice of error metric is a difficult

problem to solve since the rotational error and translational error both have different units

(meters and degrees). Since in the simulations we are only interested in the case where the

errors approach zero we can put both of these units together for the ‖·‖F . But this does

not work when attempting to quantify a real world calibration, and in that case we estimate

rotation and translational error separately.

We now profile the algorithm with respect to noise in sensor data. We consider three

sources of error: depth uncertainty in the LiDAR points, misestimation of position, and

41

0 5 10 15 20 25 30
0

2

4

6

8

10

M
ed

. r
ot

at
io

n
er

ro
r (

de
g)

LIDAR depth noise std. dev. (mm)

0 5 10 15 20 25 30
0

10

20

30

40

50

60

LIDAR depth noise std. dev. (mm)

M
ed

. t
ra

ns
la

tio
n

er
ro

r (
m

m
)

0 pix
1 pix
2 pix
3 pix
4 pix

0 pix
1 pix
2 pix
3 pix
4 pix

Figure 2.5: Errors in rotation and translation estimation for a simulated rig with 100mm of
distance between the camera and LiDAR. Each point shows median error for 200 random
configurations of LiDAR-image correspondences. Each sequence corresponds to different
levels of image noise plotted against LiDAR noise. The noise values are the standard devi-
ations. The image errors are line translation error (pix) for the baseline camera described
in Section 2.5.1.

rotation of the corresponding lines in the image. These all lead to the 3D point being some

distance off the plane through the line and center of the camera. For the LiDAR depth

error, the Hokuyo UTM-30LX specifies the standard deviation of 30mm for ranges less

than 1m. We will study the accuracy for noise standard deviations of 0 to 30mm. The

image processing accuracy will be in pixels with respect to a baseline calibrated camera,

which we define as a 640× 480 pixel sensor with a 60◦ field of view. While in the real data

the errors in line extraction will depend on the length of the edge segments extracted, we

will use the range of 0 to 4 pixel standard deviations in the simulated results. The results

for different error levels are shown in Figure 2.5, and demonstrate a greater sensitivity to

image noise than depth noise.

2.5.2 A Fully Automatic Real Calibration

The sensor rig for the real-world calibration experiment consists of a calibrated 640× 480

Flea2 camera with a 77◦ field of view and a Hokuyo UTM-30LX line scanner, with angular

resolution of 0.25 deg (see Figure 2.1).

42

Images of the calibration target (see Figures 2.2 and 2.3) are captured synchronously

by the two sensors at various positions. We detect the target as follows. For the LiDAR

calibration target detection we use the line scan, including intensity, returned from the

device in the region of interest for calibration. First, the derivatives of the intensity vector

of the line scan are computed using a difference of gaussians filter. The peaks of this

derivative signal are detected by non-maximal suppression. This detects both rising and

falling edges in the intensity signal. We then improve the estimate of the edges by fitting a

line to all the neighboring 3D points and projecting the intensity edge sample point onto that

line to give us the final LiDAR feature point xi. The discrete sampling of the angle could

cause an angular error, but since we can control the target’s location during calibration, this

error can be controlled. Even if the LiDAR and camera are further apart as on a larger

robot, a long target can be used which could keep the target close to both sensors.

The first two steps in image line extraction are radial distortion removal and edge de-

tection [Canny, 1986]. The edgels are then combined using the Hough transform to output

line segments. We define “linescore” as a measure of how well the gradient information

in the image fits with the proposed line. We compute this on the line segments to orient

them and prune out ones with poor support. In order to define linescore, first define Qj as

the set of pixels which lie within 1 pixel of the line segment j to score, and define gi to be

the gradient at pixel i, and mj to be the normal to the line segment j which we are scoring.

linescorej =
∑

i∈Qj
g>i mj measures the support in the gradient image for each line.

Next, the candidate edges are pruned more using the following heuristics, which use the

fact that our target contains a single black stripe on a white background. The heuristics look

for pairs of line segments which contain a white to black transition followed by a black to

white transition. To find these transitions, we look at the normal direction combined with

the linescore to propose candidate pairings respecting this constraint. For each candidate

pairing we perform a number of tests:

43

1. Check that the candidate pair’s normals are close to parallel while accounting for

possible perspective distortions.

2. The lines are required to be close together because the target never fills up too much

of the field of view.

3. Check that the ratio of width to height of the rectangle created by the pair of line

segments is appropriate. This is a check that the target has the correct aspect ratio.

4. Overlap is computed and thresholded to rule out line segments which don’t occur

next to each other.

Once these criteria are passed we take the two endpoints of each line, and record the

normal to the plane ni passing through these points and the camera center. Thus the vector

ni corresponding to the LiDAR point xi becomes the input for RANSAC process. We then

compute a robust calibration solution using around 400 correspondences in the RANSAC

framework. The process chooses the best calibration hypothesis based on six correspon-

dences which we then iteratively refine using all of the inliers.

Next we tested the quality of our calibration. Our rig is equipped with stereo cameras

that we calibrated using the Camera Calibration Toolbox [Bouguet, 2006]. We computed

the error in the LiDAR-camera calibration by observing that we can compute the left-to-

right camera calibration by combining the left camera and right camera to LiDAR cali-

brations. We define an error metric as follows. Let us denote a calibration transformation

Pq =
[
Rq tq
0 0 0 1

]
. We can define the error matrix

Perr = PlrPrhP
−1
lh ,

where Plr is the left-to-right calibration computed using the calibration toolbox, and Prh

and Plh are the left camera and right camera to Hokuyo calibrations, respectively, computed

44

Figure 2.6: A sample LiDAR scan acquired by the mobile robot colored by height. This
shows that the cameras visual odometry plus LiDAR-camera calibration is good enough to
produce a visually appealling pointcloud.

with our method. If both of our calibrations were accurate, Rerr would be close to identity

and ‖terr‖2 would be close to 0. The real rotation error was 0.26◦, and the translation

error was 1.9mm (the distance between the LiDAR and each camera was approximately

140mm).

This calibration was used to color the LiDAR points with the corresponding pixels

from the camera. Our system automatically acquired the images and registered LiDAR

scans using visual odometry. The registered LiDAR point cloud is shown in Figure 2.6.

The same point cloud colored by the camera image pixels is shown in Figure 2.7.

45

Figure 2.7: A LiDAR scan colored using camera pixels.

2.6 A User Driven Calibration System

We also present a robust application of our system of calibration which was used to ac-

curately scan roughly 500km of the Cypriot highway system. We chose to sidestep issues

with RANSAC and thresholding in order to simplify the process of getting a robust cali-

bration. Automatic calibration is frequently toted as a better solution in the literature; how-

ever, sometimes the most important deliverable is the integrity of the calibration in which

case user interaction is more important than automation. This system was built using six

1.4 megapixel Point Grey Flea2 cameras and two Hokuyo UTM-30LX scanners. It was

mounted on top of a car for highway driving. For calibration purposes the cameras were

set to capture an image every one second, but because the LiDAR captures images contin-

uously at a frequency of 40 lines per second, any given LiDAR measurement could be out

of sync by up to 12.5ms. This will cause errors in measurements, but because enough data

46

is captured with random movement, the error is assumed to be uniform in all directions.

There will be non-uniformity in distance to the camera in terms of pixels, but there is also

higher edge detection errors for both the LiDAR and Camera detection algorithms, so these

errors are assumed to be small.

In order to calibrate, a user proceeds as follows. First, collect a sequence of a line

pattern as described in Section 2.3. Second, process all of the LiDAR data in order to

extract all of the black-white transitions as described in Section 2.5. Finally, the user clicks

on the images in order to first select LiDAR points and then the detected edges (the same

system as Section 2.5 was used). The user clicks on ten or so edges and recomputes the

calibration in order to recompute the projection of the LiDAR points in the images. It

should be noted that this requires an initial calibration guess which was acquired by hand

measuring the LiDAR and camera locations and orientation. The system was quite robust

to errors in this calibration of up to 0.5m and 20◦.

Figure 2.9 shows the error plots of the final system for one calibration. Because the

error is evenly distributed across the image plane and the LiDAR plane it show that, for

most LiDAR points detected, they do in fact map to the correctly selected corresponding

point and therefore our final calibration is close. Figure 2.10 shows the same error plot, but

with respect to pixel error instead of LiDAR error.

2.7 Conclusion

In this chapter we overcome the difficulty of calibrating LiDAR-camera rigs by introduc-

ing a new algorithm based on the minimal solution to the calibration from line to 3D point

correspondences. We used this algorithm in a robust framework and without initialization.

Using the automatic feature detection described, the algorithm can be used to automati-

cally calibrate a variety of sensor platforms. Our experiments with simulated and real data

47

indicate that this method is both correct and practical. We also presented a method for

calibration which uses annotated correspondences that is practical and easy to use because

of visual feedback.

48

−4 −3 −2 −1 0 1 2 3 4

1

2

3

4

5

6

(m)

(m
)

1

2

3

4

5

6

7

8

9

10

11

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

200 400 600 800 1000 1200

100

200

300

400

500

600

700

800

900

Figure 2.8: An overview of the calibration software system. Counterclockwise from top:
a) An overview of 25 frames with x’s showing projected LiDAR points in the images. The
manually selected points have been circled. b) A top view of the LiDAR showing intensity
and automatically detected dark light transitions. c) The camera image with automatically
detected lines superimposed upon it. d) The camera image with the LiDAR points projected
into it using the cameras intrinsic parameters and the current best estimate of LiDAR-
Camera calibration.

49

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

900

Hokuyo projected into image colored with distance from plane (m)

(px)

(p
x
)

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

3.5

4

Hokuyo points in hokuyo plane colored by error (m)

(m)

(m
)

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

2

4

6

8

10

12

14
Histogram of disance from plane

(m)

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

0.5

1

1.5

2

2.5

3

3.5
Distance from hokuyo vs distance from plane

(m)

(m
)

Figure 2.9: Error plots of how this calibration fits the underlying model. Clockwise from
top left: a) All of the selected LiDAR points projected into an image plane and colored
with their distance from the plane. b) All of the selected LiDAR points in their own plane
colored with their distance from the plane. c) The distribution of LiDAR points within their
plane. d) A histogram of total error in LiDAR points.

50

0 200 400 600 800 1000 1200

0

100

200

300

400

500

600

700

800

900

hokuyo projected into image colored with pixel error (px)

(px)

(p
x
)

1

2

3

4

5

6

7

8

9

10

11

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

2

2.5

3

3.5

4

hokuyo points in hokuyo plane colored by pixel error (px)

(m)

(m
)

1

2

3

4

5

6

7

8

9

10

11

0 2 4 6 8 10 12
0

2

4

6

8

10

12
histogram of pixel error (m)

(px)

0 2 4 6 8 10 12
2

2.5

3

3.5
distance from hokuyo (m) vs pixel error (px)

(m)

(p
x
)

Figure 2.10: Error plots of how this calibration fits the underlying model. Clockwise from
top left: a) All of the selected LiDAR points projected into an image plane and colored
with their pixel error. b) All of the selected LiDAR points in their own plane colored with
their pixel error. c) The distribution of LiDAR points vs pixel error. d) A histogram of total
error in LiDAR points measured in pixel reprojection error.

51

Chapter 3

Global Representation for Registration

3.1 Introduction

In the past decade there has been an explosion of consumer depth and range sensors in-

troduced into the market. The prices have fallen well into the consumer range which has

necessitated algorithms for tasks like registration without expensive IMU’s. In the same

way that automatic image stitching is now a widely used tool, we expect that there will be

a need for a fast and fully automatic solution for the range registration problem.

As with any registration problem, range registration consists of matching and estimating

the rigid transformation. Because of the Iterative Closest Point Algorithm (ICP) section 1.2

we draw a distinction between rough and fine alignment. ICP is generally accepted as the

gold standard for rigid fine alignment. Our algorithm thus solves the rough alignment prob-

lem. The rough alignment is difficult beacuse we must first determine the correspondence

with no prior notion of how the pieces fit together.

In commercial products, initial alignment is achieved manually or by the use of char-

acteristic markers in the scene. They further rely on a significant percentage of overlap

between the two point sets. Another group of techniques depend on the extraction of local

52

features with such distinguishable attributes that correspondence becomes a non-iterative

task. Robust variations like RANSAC reject outliers and improve the estimation of the

rigid transformation.

In this chapter, the emphasis is put on the crude alignment step, which presents the real

challenge for practical applications. We pose the following requirements for a registration

algorithm: Fully automatic without artificial landmarks, partial overlap of point sets, inde-

pendence of sensors and their sampling density as well as the size of the environment, and

real-time, meaning no dependence on convergence speed.

Our algorithm is global and does not necessitate any feature detection. Its novel con-

tribution is the reliable estimation of orientation between two Extended Gaussian Images

(EGI) [Horn, 1984]. Our rotation estimate is obtained by exhaustively traversing the space

of rotations to find the one which maximizes the correlation between EGIs. Such a com-

putation would seem grueling, but we show how such a correlation can be computed ef-

ficiently using the spherical harmonics of the EGI and the rotational Fourier transform.

To rotationally align point clouds with low overlap, we introduce a new representation of

the EGI which we call the constellation image. This image captures the critical orienta-

tion distributions of a point cloud and can be correlated to obtain alignment without being

adversely affected by outlying normal densities. We use a correlation-based formulation

to subsequently estimate the translation. Our experiments show that our algorithm aligns

point clouds arising from small objects or indoor scenes with as low as 45% overlap.

3.2 EGI and Orientation Histograms

Global representations of range scans are desirable because they capture characteristics

which encode invariance and allow for direct comparisons for alignment and recognition

tasks. Surface orientation histograms are effective approximations to the EGI representa-

53

tion, and throughout this text we will refer to the EGI and the orientation histogram inter-

changeably. Although it may seem like a simple accumulation of surface normals, the EGI

provides a very powerful representation that allows for the direct recovery of orientation

independent of any translational shift present.

Let us begin by defining precisely what an Extended Gaussian Image is. First, consider

an object and a small region on that object which we will call δO. We consider the normal

to this patch as a smoothly varying function where each point on the surface of the object

maps to a point on the unit sphere, so for any region δO we can define a corresponding

region δS on the sphere made up of the normals present in the δO region. For planes, this

will map to a point on the sphere, but for smooth regions they will map to another region

on the sphere. Now define the Gaussian Curvature

K = lim
δO→0

δS

δO
=
dS

dO

as the ratio of the size of the region on the gaussian sphere to the size of the corresponding

region on the object. Now we can look at the following two integrals:

∫∫
O

KdO =

∫∫
S

dS = S,∫∫
S

1

K
dS =

∫∫
O

dO = O,

which necessitates using the inverse Gaussian Curvature in defining the EGI, and explains

why we use the mass of each point in computing the orientation histogram.

Estimating attitude via EGI alignment has been discussed as early as Brou [Winter

1984]. These methods usually involve identifying and matching local features. Since there

is a unique EGI representation for any convex object [Smith, 1979], this may be sufficient

when registering orientation histograms of convex objects with much overlap. However,

when dealing with range scans with low overlap, noisy measurements, or multiple discon-

54

A B C

Figure 3.1: On the left (A) is a representation of an orientation histogram with 256 bins.
The sphere S2 is sampled uniformly in spherical coordinates, creating a square grid. (B)
depicts the corresponding bin sizes and shapes on the sphere. The highlighted bins cor-
respond to the highlighted row in (A). (C) displays the bin centers when the longitudinal
samples do not include the poles.

nected, nonconvex objects, it is unlikely that local feature generation and matching will be

sufficient.

It has been shown in Makadia et al. [2004] that signal correlation provides a reliable

measure for the rotational alignment of hemispherical images with little overlap. While

such an evaluation would appear to require an expensive search, a fast correlation can be

estimated using spherical Fourier analysis, with the requirement that our histogram bins be

uniformly (in angular coordinates) spaced on the sphere.

Ideally, an orientation histogram would be comprised of bins which all have the same

surface area and shape. One way to achieve this goal is by projecting regular polyhedra

onto the sphere, but the regular polyhedron with the most sides is the icosahedron (twenty).

At this scale, the histogram will not retain much distinguishing information. For finer

sampling, approximations can be achieved easily by further subdividing the faces of the

polyhedra. One purpose of retaining a constant bin shape and size is to provide a consis-

tency for matching local features generated directly from the bin values. The cell shape

and distribution we will use depends on the alternate criteria of a fast correlation. This will

require uniform sampling in the spherical longitudinal and azimuthal coordinates. Figure

3.1 shows the effects of this choice on cell shapes and sizes on the sphere. As is clear from

55

the images, the bin sizes closest to the equator have the largest surface areas, and the bins

closest to the north and south poles are the smallest. In fact, for a histogram with 256 bins

(as pictured), the spherical surface area of the largest bin is roughly 10 times the surface

area captured by the smallest bin.

3.3 Constellation EGI

One method for estimating rotations between EGI images is spherical correlation. Given

two EGI images, we compute the rotation that maximizes the correlation between them

(Details are shown in Makadia et al. [2006]). However, sometimes the non-overlapping

region will have significant normals, in this case the higher peaks will correlate more and

overpower the finer detail present in the EGI.

In order to get around this problem we propose extracting local maxima from the EGI

and using them as feature points. The EGIs can then be aligned by finding the rotation that

matches the most number of peaks. Originally this was done by constructing a binary EGI

image and using spherical correlation, but later we found that it is simpler to extract the

peaks directly from the data and align them using a Hough Tansform.

We define notation: a set of points xi ∈ FX , normals ni ∈ FN , and point denstities

di ∈ FD. Point densities can be easily computed by assuming locally uniform sampling

and using a nearest neighbor library to efficiently find the nearest few neighors. If the

function p = KNN(xi, k) is the function returning the kth nearest neighbor to xi, p. Then

we can compute the density at xi, to be

di =
k

π||xi − p||2
.

56

We also define the normal density as

vi =
∑
j

max(0, τ1 − arccos(nTi nj)dj)

where τ1 is a threshold which controls the amount of smoothing in the EGI for determining

local maxima.

We define the set of peak indices C such that

C = {i|vi ≥ vj ∀ nj ∈ Nτ2(ni)}

where Nτ2(ni) is the neighborhood around ni in the normal space of radius τ2 (the neigh-

borhood size for determining local maxima). This allows for multiple maxima right next to

each other, but it is easy to remove these as the distance between maxima is easily checked.

To match these images we then enumerate all possible correspondences consisting of

two peaks from each constellation set:

A(Ca, Cb) = {(i, j, k, l)|i ∈ Ca, j ∈ Ca, i 6= j,

k ∈ Cb, l ∈ Cb, k 6= l,

| arccos(nTi nj)− arccos(nTk nl)| < τ3,

τ3 < | arccos(nTi nj)| < π − τ4,

τ3 < | arccos(nTk nl)| < π − τ4},

which says that we choose two points from each set, they can’t be the same point, the

angles between the pair must be similar in each set, and the angle between the pairs must

not be close to zero or π. τ3 and τ4 are used to set the acceptable range between peaks. If

the peaks are too close they won’t give a reliable estimate. If the peaks are too close to one

another ot too close to antipodal there will be an ambiguity in the estimated rotation. Then

57

we compute a rotation from each element of the enumeration by constructing a rotation

matrix directly from the star locations. We define a reference frame via a rotation matrix

for each pair of points:

Rij =

aT

bT

cT

 , a =
ni + nj
||ni + nj||

, c =
(ni − nj)× a
||(ni − nj)× a||

, b = c× a.

We can align these reference frames to get the rotation matrix Rijkl of the correspondence

that rotates nk,nl to align best with ni,nj

Rijkl = RijR
T
kl.

Now that we have all of the votes for rotations, we must accumulate the votes in order to

get a short list of possible rotations that is ready for translation estimation and verification.

We select these in the same manner that we selected peaks in the EGI, by computing density

in the voting (rotation) space and extracting the local maxima. However, SO(3) is not a

euclidean space, so to get around this we use the same exponential map as described in

Section 2.4. Recall that R(ω) = exp{ω̂} maps ω to the open π ball, and the distances are

more meaningful the closer to the center of approximation.

For rotations, we compute the local maxima slightly different:

ai =
∑
j

max(0, τ5 − ||ωj − ωi||),

where ai represents the vote density at vote location ωi. ωi and ωj are two vote locations in

the current tangent space, and τ5 is a voting size. Then we extract the set of indices that are

58

local maxima:

B = {i|ai ≥ aj ∀ ωj ∈ Nτ5(ωi)}.

Finally, for each element in B we recompute all ω(i)
j in the local tangent space to Ri and

compute B(i):

a
(i)
i =

∑
j

max(0, τ5 − ||ω(i)
j − ω

(i)
i ||),

B(i) = {i|ω(i)
i < τ5, ai ≥ aj ∀ ω(i)

j ∈ Nτ5(ω
(i)
i)}.

We next return all rotation matrices:

Bfinal = {Ri|i ∈
⋃
i

B(i)}.

This method is an exhaustive search over the space of corresponding peaks. It performs

well if the number of peaks is kept small on the order of ten or twenty, but it does not

scale to large numbers of peaks. We chose to carefully tune the τ smoothing parameters so

that the number of peaks was kept resonable and larger features were used, but this could

also be addressed instead by utilizing other methods of correspondence detection such as

RANSAC or Geometric Hashing. Geometric Hashing may be especially interesting since

it would allow for the hash to be simply the distance between points, and for each distance

bin a pattern of peaks could be recorded. This would improve the scaling properties of the

algorithm in the number of models being matched, it may improve the matching accuracy

but that would depend on how well smaller support peaks perform in terms of repeatability

when scanned from different perspectives.

59

3.4 Estimating the translation

Our use of the shift-invariant orientation histograms allowed us to decouple our alignment

problem into consecutive searches for the rotational and translational components. We can

formulate an estimate of the 3D translation which relies on the assumption that correct

alignment is achieved at the locations of greatest overlap or correlation between range

scans. We will define our range scans as a 3D histogram defined on a discrete set of

bin locations in R3. First we define a set of centers C distributed over the pointcloud on a

regular grid. Then we define the function F (ci) to be the number of points in the pointcloud

which are closest to this bin center ci:

F (ci) =
∑

xj∈FX

1(||xj − ci|| < ||xj − ck|| ∀ ck ∈ {C/ci}).

This can be efficiently computed using nearest neighbor libraries.

Applying our principles of correlation, we claim that the correct translational shift τ ∈

R3 maximizes the following correlation function:

G(τ) =

∫
x∈R3

F1(x)F2(x− τ)dx. (3.1)

Since (3.1) is a convolution integral, we know that the Fourier transform of G(τ) is given

simply as

Ĝ(k) = F̂1(k)F̂2(k).

The Fourier coefficients F̂{1,2}(k) of the occupancy functions F{1,2}(x) can be recovered

from the traditional R3 Fourier transform. In order for the correlation (3.1) to succeed, we

must ensure overlap by generating a voxel space representation of R3 where each voxel

covers a much larger area than the fine resolution of a range scanner.

60

Now that we have described the registration estimation, we will present the details of

the verification step and recap the full algorithm.

3.5 Verification

In order to validate a hypothesized range alignment, we employ two different criteria. The

first is based on the consistency of surface orientations in the overlapping regions of the

aligned scans (the assumption is that normals should be the same for the points which

overlap). If we voxelize the space after alignment, we can generate a global consistency

measure by accumulating the difference in mean normal orientations for all overlapping

voxels weighted by the mass of points present in each voxel:

Vnorm =
∑
ci∈C

F1(ci) + F2(ci)

2
||N1(ci)×N2(ci)||,

where F1(ci), F2(ci) are the number of points in bin ci in each input pointcloud, and

N1(ci), N2(ci) represent the average normal bin ci for each pointcloud. Figure 3.2 demon-

strates how this test would be violated.

The second verification criteria we consider is visibility information. Intuitively, we

would like to discard any alignment that would interfere with the line-of-sight of a range

scanner. This method is similar to the visibility constraints explored in King et al. [2005],

and figure 3.3 illustrates this test. Consider a point cloud F2 being mapped into the ref-

erence frame of a point cloud F1. If, after a hypothesized alignment, the surface in F2

occupies the open space between the scanner viewpoint and surface of F1, we claim that

visibility of F1 has been occluded and such an alignment is improbable.

More concretely, if xi is a point in scan 1, and xj is a point in scan 2. Next we define

the point x̂i to be the point that scan 2 saw where it would have seen xi. We can get the

distance to this point and the original point relative to scanner 2 which are defined d2(x̂i)

61

Figure 3.2: This cartoon illustration shows two input voxelized pointclouds on the left, and
the combined image on the right. The left circle indicates a location where normals will
disagree and the right circle shows a location where normals agree.

and d2(xi) respectively. The line-of-sight test is thus defined:

VLOS1 =
∑

xi∈{F1∩F2}

H(d2(x̂i)− d2(xi)− γ),

where γ is a parameter set to a value similar to the scanner noise, and xi ∈ {F1 ∩ F2}

means that the point xi which normally belongs to the pointcloud F1 is only selected if

the pointclouds 1 and 2 overlap at its position. Finally, H(a) is the heaviside step function

whos definition is reproduced here:

H(a) =

 1 a ≥ 0

0 a < 0.

We can now reject any scan whos Vnorm is below a threshold, and VLOS1 or VLOS2 are

above a threshold.

62

Figure 3.3: This cartoon illustration shows two input voxelized pointclouds on the left,
and the combined image on the right. The line of sight violation is shown as a black line.
Note that the red scan should have occluded the green scan from hte green sensor’s point
of view.

INPUT

1. Point Clouds FX1 , FX2 , . . . , FXn .

ONLINE

1. Compute surface normal fields FN{1,2,...,n} for point clouds FX{1,2,...,n}.

2. Compute point densities FD{1,2,...,n} for point clouds FX{1,2,...,n}.

3. Generate Constellation EGI’s C{1,2,...,n} from normal fields and densities
FN{1,2,...,n} , FD{1,2,...,n} (section 3.3).

4. To estimate alignment between any two point sets FXi , FXj :

(a) Compute set of rotation candidates Bfinalij (section 3.3).
(b) For each candidate rotation, estimate the translation by correlating the rota-

tionally aligned scans (section 3.4).
(c) Accept all aligned scans that pass the verification step (section 3.5)

5. Repeat until a cycle is found through all scans FX{1,2,...,n} .

6. Obtain fine registration with pairwise ICP.

Figure 3.4: An outline of the automated point-cloud registration algorithm.

63

3.6 Experimental results

We now present the experimental results of our fully automated alignment algorithm as

described in figure 3.4. The first step is to estimate surface normals, which can be ob-

tained by computing the spherical gradient directly on a spherical depth-map. If such

a representation is not available, then a simple local plane fitting approach can be used.

To estimate the translational component of alignment, our correlation-based approach re-

quires a voxelization of the point space. We chose our voxel size to roughly generate a

voxel space of no more than 100 bins in any dimension. A fine registration from the es-

timated crude alignment is obtained with the Scanalyze ICP software freely available at

http://graphics.stanford.edu/software/scanalyze/.

For many of our experiments we used spherical harmonics directly instead of the more

accurate constellation exhaustive search. For these results we generated EGIs by choosing

a signal bandwidth of L = 128, corresponding to a spherical histogram with 256 × 256

bins. We begin our evaluation with scans of the Happy Buddha provided by Curless and

Levoy [1996]. Figure 3.5 shows the results of our estimation algorithm for a total of ten

scans. Since this data was originally captured to test with ICP, the initial displacements

are not very large. To test our approach, we applied random transformations to the starting

point sets to create a scenario where a direct ICP would fail. The crude alignment is quite

sufficient to initialize the fine estimation.

The second set of scans tested were of a statue of a lion. The scale is a bit larger than the

Buddha model, nearing nine feet in height. The scans were captured using the DeltaSphere-

3000 laser scanner. Fifteen scans circling the lion were taken. In Figure 3.6, some overall

drift is apparent in the crude alignment. However, the quality of the pairwise matching is

sufficient for ICP to converge correctly.

Our final evaluation deals with scans at yet another scale. Figure 3.7 depicts four scans

64

of a room taken with the DeltaSphereTM-3000. The room was over 170 ft2 in area (the

volume was 1600 ft3). A fifth scan capturing the entire room was also taken, allowing us to

compare our rough alignment to a ground truth measurement. The crude alignment works

well for each scan and a subsequent fine registration yields a very tight solution. One pair

of successfully matched scans had only a 45% content overlap. Due to the dominant planes

present in each scan, constellation images were needed before the correct alignment could

be found and verified. Fewer than ten hypotheses were tested before a valid alignment was

recovered in each case. We estimated a median error of 1.2 inches (computed as the min

distance from every point in the rough aligned scan to the full scan). We also recorded the

motion estimates for each pairwise ICP in the final alignment. The mean rotation angle

was 2.0◦ (with a max of 2.1◦) and the mean translation was 3.8 inches (with a max of 5.0

inches).

3.7 Conclusion

We have presented a comprehensive algorithm for the automatic alignment of 3D point

clouds designed specifically for multiple scans with little overlap. The correlation align-

ment of orientation histograms and constellation images is performed efficiently by ex-

tending the convolution theorem to spherical correlation. These methods, along with a

reliable verification scheme, provide a crude alignment that yields a quality initialization

for fine alignment. The crude alignment performs equally well without modification on

small scale scans of models as well as large scale point clouds obtained with room scan-

ners. The authors of Osteen et al. [2012] produced an implementation of our algorithm for

use on a mobile robot with a Microsoft Kinect Sensor which shows that this method is still

applicable to modern scanners.

65

A B C D E

Figure 3.5: Registration of the Happy Buddha. (A) shows a the initial positions of some
representative scans. (B) shows the rough alignment of ten point sets. (C) shows the final
alignment for all scans after ICP is run after the crude registration. (D) shows a pair of EGIs
from two of the scans, and (E) shows a slice of the correlation grid G(R) at the location of
the estimated rotation.

A B C D E

Figure 3.6: Registration of scans of a lion statue. (A) is a representative scan depicting the
structure of the statue. (B) shows 6 scans in their initial positions. (C) shows the failure of
running ICP directly on the input scans. (D) depicts the rough alignment. (E) shows one
view of the successful final registration of all 15 scans.

66

A B C

D E F

Figure 3.7: (A) shows a representative room scan. (B) shows the poor alignment obtained
by running ICP on the input. (C, D) show a side and overhead view of the rough alignment.
(E, F) show a full and partial view of the final alignment.

67

Chapter 4

Object Detection from Large-Scale 3D

Datasets using Bottom-up and Top-down

Descriptors

4.1 Introduction

Object detection and recognition in images or videos is typically done based on color and

texture properties. This paradigm is very effective for objects with characteristic appear-

ance, such as a stop sign or the wheel of a car. There are, however, classes of objects for

which 3D shape and not appearance is the most salient feature. Cars are an object category,

whose appearance varies a lot within the class, as well as with viewpoint and illumina-

tion changes. Instead of representing these objects with a collection of appearance models,

specific to each viewpoint, several researchers have used range scanners and addressed ob-

ject recognition in 3D. Range as an input modality offers the advantages of not losing a

dimension or scale due to projection. In addition, figure-ground segmentation is easier in

3D than in 2D images since separation in depth provides powerful additional cues. On the

68

Figure 4.1: Cars detection results from real LiDAR data. Cars have been colored randomly.

other hand, range sensors have significantly lower resolution compared to modern cameras

and alignment between the query and the database models still has to be estimated. The

challenges associated with object detection in 3D are due to intra-class shape variations;

different sampling patterns due to different sensors or a different distance and angle be-

tween the sensor and the object; targets that are almost always partial due to self-occlusion

and occlusion; clutter; and computational efficiency.

In this chapter, we present an approach for detecting and recognizing objects character-

ized by 3D shape from large-scale datasets. The input is a point cloud acquired by range

sensors mounted on moving vehicles. A part of the input is used as training data to provide

manually labeled exemplars of the objects of interest, as well as negative exemplars where

objects of interest are not present. Our algorithm automatically detects potential locations

for the target objects in a bottom-up fashion. These locations are then processed by the

top-down module that verifies the hypothesized objects by aligning them with models from

the training dataset. We show results on a very large-scale dataset which consists of hun-

dreds of millions of points. To the best of our knowledge, no results have been published

for datasets of this size. State-of-the-art 3D recognition systems on real data [Carmichael

69

et al., 1999; Johnson et al., 1998; Matei et al., 2006; Mian et al., 2006; Ruiz Correa et al.,

2006] have shown very high recognition rates, but on high-resolution scenes containing a

few small objects captured in controlled environments.

We believe that our research is a first step towards fully automatic annotation of large

scenes. Recent advances in sensor technology have made acquisition and geo-registration

of data possible. Detailed 3D models can be generated very efficiently to provide high-

quality visualization [Frueh et al., 2005], but their usefulness for everyday applications is

limited due to the absence of semantic annotation. Much like image-based visualizations,

such as the Google Street View, these representations cannot answer practical questions,

such as “where is the nearest gas station, mailbox or phonebooth”. Automatic methods for

scene annotation would dramatically increase the benefits users can derive from these large

collections of data. While our methods are not currently capable of addressing the problem

in its full extent, this paper introduces a framework for object detection from range data

that makes a step towards automatic scene annotation. Some results on car detection can

be seen in Fig. 4.1.

The main technical contribution of our work is the combination of a bottom-up and a

top-down process to efficiently detect and verify the objects of interest. We use spin images

[Johnson and Hebert, 1999] as local descriptors to differentiate between the target objects

and clutter and Extended Gaussian Images (EGIs) [Horn, 1984] to ascertain the presence

of a target at the hypothesized locations. This scheme enables us to process very large

datasets with high precision and recall. Training requires little effort, since the user has to

click one point in each target object, which is then automatically segmented from the scene.

The remaining points are used as negative examples. Spin images are computed on both

positive and negative examples. EGIs only need to be computed for the positive exemplars

of the training set, since we never need to align a candidate object with clutter. Accurate

alignment estimates between similar but not identical objects enable us to segment the

70

target objects from the clutter.

4.2 Algorithm Overview

Our algorithm operates on 3D point clouds and entails a bottom-up and a top-down module.

The steps for annotation and training are the following:

1. Selects one point on each target object.

2. Extract selected target objects automatically from the background.

3. Compute surface normals for all points1 in both objects and background.

4. Compute spin images on a subset of the points for both objects and background and

insert into spin image database DBSI (Section 4.3).

5. Compute an EGI for each object (not for the background). Compute constellation

EGI and density approximation. Insert into EGI database DBEGI (Section 4.4).

Processing on test data is performed as follows:

1. Compute normals for all points and spin images on a subset of the points.

2. Classify spin images as positive (object) or negative (background) according to their

nearest neighbors in DBSI .

3. Extract connected components of neighboring positive spin images. Each connected

component is a query (object hypothesis).

4. Compute an EGI and the corresponding constellation EGI for each query.

5. For each query and model in DBEGI (Section 4.4):
1During normal computation, we also estimate the reliability of the normals, which is used to select

reference points for the spin images

71

(a) Compute rotation hypothesis using constellation EGIs.

(b) For each rotation hypothesis with low distance according to Section (4.4.3),

compute translation in frequency domain.

(c) Calculate the overlap between query and model.

6. If the overlap is above the threshold, declare positive detection (Section 4.4).

7. Label all points that overlap with all the models of DBEGI after alignment as object

points to obtain segmentation.

4.3 Bottom-Up Detection

The goal of the bottom-up module is to detect potential target locations in the point cloud

with a bias towards high recall to minimize false negatives (missed detections). Since

detection has to be performed on very large point clouds, we need a representation that

can be computed and compared efficiently. To this end we use spin images [Johnson and

Hebert, 1999], which arguably are the most popular local 3D shape descriptors. A spin

image is computed in a cylindrical coordinate system, defined by a reference point and

its normal, by calculating the histogram of radial and elevation distances of the point’s

neighbors. The resulting histogram is 2D, and can be viewed as an image which spins

around the normal of the reference point to accumulate points in its bins; hence the name

spin image. An example of spin image computation can be seen in figure 4.2. Due to

integration around the normal of the reference point, spin images are invariant to rigid

transformations and can be matched by comparing corresponding bins. This is not the

case with 3D shape contexts [Frome et al., 2004] or EGIs (Section 4.4) for which several

rotation hypotheses have to be evaluated to determine a match. The computational cost

of computing several rotation hypotheses per comparison is prohibitive for us. Therefore,

72

2 4 6 8 10 12 14

2

4

6

8

10

12

14

Figure 4.2: Left: spin image computation on real data. The blue circles are the bases of the
cylindrical support region and the red vector is the normal at the reference point. Middle:
illustration of spin image computation. O is the reference point and ~n its normal. A spin
image is a histogram of points that fall into radial (α) and elevation (β) bins. Right: the
spin image computed for the point on the car.

we use spin images, which are less discriminative but computationally cheaper, to detect

targets.

Johnson and Hebert [1999] computed spin images on meshes. This can compensate for

undesired effects due to varying sample density, since triangles contribute to each bin of

the histogram with their area. Triangulating the point cloud to obtain a mesh is not trivial

in our case, not only because of the computational cost, but also due to noise, sparsity and

sampling patterns of the data. Similarly to Frome et al. [2004], we compute spin images

directly from the point clouds and weigh the contribution of each point by its inverse density

to account for sampling differences. Local density is computed in balls centered at every

point. Isolated points are removed. Accounting for variations in point density is important

for point clouds captured by range sensors since the density of samples on a surface is a

function of sensor type, as well as distance and angle to the sensor.

Given a point cloud, regardless of whether it contains training or test data, normals for

all points are computed using tensor voting [Medioni et al., 2000]. We then need to select

reference points for the spin images. Our experiments have shown that spin images vary

smoothly as long as the reference point is on the same surface and the normal is accurate.

73

Figure 4.3: Left: input point cloud. Middle: Classification of spin images as target (blue)
and background (cyan). (Only the reference points are shown.) Right: target spin im-
age centers clustered into object hypotheses. Isolated target spin images are rejected.Best
viewed in color

Therefore, reference points need to be dense enough to capture all surfaces of the object,

but higher density is redundant. For cars, a distance of 0.4m was found to offer a good

trade-off between coverage and computational efficiency. We obtain such a sampling by

placing a 3D grid of the desired resolution in the dataset and dropping vertices that have

no scanned points in their voxel. Since the reference points need to be among the points

sampled by the scanner, the retained vertices are moved to the median of the nearest points.

The grid can be seen in the two rightmost images of figure 4.3. A spin image is computed

for each of these points unless the eigenvalues of the tensor after tensor voting indicate that

the estimated normal is unreliable [Medioni et al., 2000]. Our spin images have 15 radial

and 15 elevation bins resulting in a 225-D descriptor.

For the training data, the user has to specify the targets, which are assumed to be com-

pact objects lying on the ground, by clicking one point on each. Then, an automatic al-

gorithm segments the object as a connected component protruding from the ground. The

ground can be reliably estimated in a small neighborhood around the selected point as the

lowest smooth surface that bounds the data. Spin images computed for points on the tar-

gets are inserted into the spin image database DBSI as positive exemplars, while spins

images from the background are inserted as negative exemplars. We have implemented the

database using the Approximate Nearest Neighbor (ANN) k-d tree [Arya et al., 1998].

74

During testing, query spin images are computed at reference points on a grid placed

on the test data as above. Each query spin image is classified according to the nearest

neighbor retrieved fromDBSI . Some results on real data can be seen in figure 4.3. Potential

locations of the target objects can be hypothesized in areas of high density of positive

detections, while isolated false positives can be easily pruned from the set of detections.

Object hypotheses (queries) are triggered by spin images that have been classified as

positive (target). Target spin images are grouped into clusters by a simple region growing

algorithm that starts from a spin image reference point and connects it to all neighboring

target spin images within a small radius. When the current cluster cannot be extended any

further, the algorithm initializes a new cluster. Raw points that are within a small distance

from a cluster of spin images are also added to it to form a query. Since neighboring spin

images overlap, our algorithm is robust to some miss-classifications.

4.4 Top-Down Alignment and Verification

The second stage of processing operates on the queries (clustered points with normals)

proposed by the bottom-up stage and verifies whether targets exist at those locations. Spin

images without geometric constraints are not discriminative enough to determine the pres-

ence of a target with high confidence. Spin image classification is very efficient, but only

provides local evidence for the presence of a potential part of a target and not for a configu-

ration of parts consistent with a target. For instance a row of newspaper boxes can give rise

to a number of spin images that are also found in cars, but cannot support a configuration

of those spin images that is consistent with a car. The top-down stage enforces these global

configuration constraints by computing an alignment between the query and the database

models using EGI descriptors.

Early research has shown that there is a unique EGI representation for any convex object

75

[Smith, 1979], which can be obtained by representing the surface normals of all points

as unit vectors on a sphere. If the object is not convex, its shape cannot be completely

recovered from the EGI, but the latter is still a powerful shape descriptor. The EGI does

not require a reference point since the relative positions of the points are not captured in

the representation. This property makes EGIs effective descriptors for our data in which a

reference point cannot be selected with guaranteed repeatability due to occlusion, but the

distribution of normals is fairly stable for a class of objects.

4.4.1 Computing EGIs

EGIs are computed for the positive object examples in the training set. Objects are seg-

mented with assistance from the user, as described in Section 4.3. For the test data, an EGI

is computed for each object hypothesis extracted according to the last paragraph of Section

4.3. Each EGI contains the normals of all input points of the cluster, oriented so that they

point outwards, towards the scanner. These orientations can be computed since the trajec-

tory of the sensor is available to us. The majority of objects are scanned only from one

side and, as a result, the normals typically occupy at most a hemisphere of the EGI. This

viewpoint dependance, however, occurs for both the queries and database objects and thus

requires no special treatment. If necessary, database models can be mirrored to increase the

size of the database without additional manual labeling since model symmetry is modeled

by the EGI.

4.4.2 Constellation EGIs

Unlike spin images, comparing two EGIs requires estimating a rotation that aligns them

before a distance can be computed. One can compute the rotational Fourier transform

[Driscoll and Healy, 1994] to efficiently compute all correlations between EGIs [Maka-

76

Figure 4.4: Left: a database model of a car. Middle: illustration of an EGI in which points
are color-coded according to their density. Right: the corresponding constellation EGI.

dia et al., 2006]. This technique is efficient if all rotations need to be computed, but it is

sensitive to clutter, missing parts and quantization. Our experiments have shown that quan-

tization can have adverse effects on rotation and distance computations using EGIs. We can

use the constellation EGI to cue a more efficient distance computation. Therefore, we avoid

quantizing the orientations of the normals in an EGI and do not treat it as an orientation

histogram.

Instead of an exhaustive search using either spatial or Fourier methods, we use a tech-

nique that generates discrete alignment hypotheses originally proposed in Makadia et al.

[2006]. A constellation EGI records the locations of local maxima in the distribution of

normals in the EGI. We call these maxima stars, since they resemble stars in the sky. An

EGI and the corresponding constellation EGI for an object can be seen in Fig. 4.4. Two

constellation EGIs can be matched by sampling pairs of stars that subtend the same angle

on the sphere. Each sample generates matching hypotheses with two stars of the other EGI.

If the angles between each pair are large enough and similar, a rotation hypothesis for the

entire descriptor is generated. Note that a correspondence between two pairs of stars pro-

duces two possible rotations. Similar rotations can be clustered to reduce the number of

hypotheses that need to be tested. The resulting set of rotations are evaluated based on the

distance between the entire EGIs and not just the stars.

77

4.4.3 Hypothesis Verification

Conceptually, the rotation hypothesis that achieves the best alignment of the descriptors is

the one that maximizes the cross-correlation between all normal vectors of the first and the

second EGI. This computation is exact, but computationally expensive since models and

queries consist of thousands of points each. To reduce the computational complexity, we

select a smaller set of normals and compute the weights of kernels which are centered on

this set, thus closely approximating the original EGI via interpolation. This computation is

performed once per EGI and significantly reduces the cost of distance computation. Specif-

ically, to create an approximation of the EGI for a set of input normals, we compute the

density at all input normals on the sphere. We then select a subset of samples by greedily

choosing a predetermined number of points. Each choice is made by computing the current

interpolation via nearest neighbor, and then adding the normal with the largest deviation

between approximated and actual values. Our method is similar to Carr et al. [2001], but

operates on the sphere. Once we have a set of kernel centers Ns which is a subset of all

normals N , the weights of the kernels are computed as follows:

vij =
max(dmax − arccos(n̂Ti n̂j), 0)∑
j(max(dmax − arccos(n̂Ti n̂j), 0))

, i ∈ N, j ∈ Ns

Dj = V †Di, (4.1)

where Dj are the coefficients at the sparse set of normals Ns, and dmax is the range of the

kernel function. Using this new representation, we can compute the distance between two

EGIs, using a sparse set of samples, after applying a rotation hypothesis. If the two shapes

are identical, the density values should be equal over the entire sphere. We measure the

deviation from an ideal match by predicting the density on the samples of one EGI using

the interpolation function of the other EGI and comparing them with the original density

78

values. Specifically we use the l1 distance computed at the query points which we can now

interpolate once the normals Ns are rotated according to each hypothesized rotation.

Let d1(·) denote the interpolated density estimate on the first EGI and let n̂i be the

sparse set of normals of the first EGI. Let Rj be the rotation matrices corresponding to

the set of hypotheses and d2(·) be the interpolated density estimate on the second EGI. We

want to select the rotation that minimizes the following distance function:

Dj =
∑
i

|d1(n̂i)− d2(Rjn̂i)|. (4.2)

The minimum distance provides an estimate of the best rotation to align the two objects,

but no estimate of translation and most importantly no indication of whether the objects

actually match. For instance the “best” rotation between a building and a car could be

one that aligns a wall with the side of the car. The final distance metric which allows us

to make judgments on the similarity of two objects is presented in the next subsection.

Typically, 1-5 rotations are close enough to the minimum distance. For these, we estimate

the translation and compute the final distance in the following section.

4.4.4 Alignment and Distance Computation

Given the few best rotation hypotheses based in section 4.4.3, we compute the translation

that best aligns the two models in the frequency domain. We adopt the translation esti-

mation method of Makadia et al. [2006] in which translation is estimated using a Fourier

transform in R3. This is less sensitive to noise in the form of missing parts or clutter

than global alignment methods that estimate complete rigid transformations in the Fourier

domain. We begin by voxelizing the model and the query to obtain binary occupancy func-

tions in 3D. F1(x) and F2(x) are the voxel occupancy indicator functions for the model and

the query, respectively. The optimal translation τ is the one that maximizes the following

79

function:

G(τ) =

∫
x∈R3

F1(x)F2(x− τ)dx. (4.3)

The convolution can be re-written as multiplication in the frequency domain:

Ĝ(k) = F̂1(k)F̂2(k), (4.4)

where F̂{1,2}(k) are the Fourier coefficients of the occupancy indicator functions F{1,2}(x).

Finally, we need a measure of distance to characterize the quality of the alignment

that is flexible enough to allow for deformation between the query and the model. We

experimented with the ICP distance [Besl and McKay, 1992], without performing ICP

iterations, but found the overlap between the query and model to be more effective because

the quantization in the translation estimation caused large ICP distance errors even though

the models were similar. The overlap is computed as the inlier ratio over all points of

the model and query, where an inlier is a point with a neighboring point from the other

model that is closer than a distance threshold and whose normal is similar to that of the

point under consideration. Figure 4.5 shows an alignment between a query and a database

object and their corresponding EGIs. Selecting the inliers after alignment results in precise

segmentation of the object from the background.

4.5 Experimental Results

We processed very large-scale point clouds captured by a moving vehicle equipped with

four range scanners and navigation sensors. The dataset consists of about 200 million

points, 2.2 million of which were used for training. The training set included 17 cars which

were selected as target objects. We compute 81,172 spin images for the training set (of

80

Figure 4.5: Alignment of a database model (left car and left EGI) and a query (right car
and right EGI) that have been aligned. The car models are shown separately for clarity
of the visualization. Notice the accuracy of the rotation estimation. The query has been
segmented by the positive spin image clustering algorithm and the model by removing the
ground after the user specified one point.

which 2657 are parts of cars) and 6.1 million for the test set. Each spin image has a 15×15

resolution computed in a cylindrical support region with height and radius both set to 2m.

Reference points for the spin images are selected as in Section 4.3 with an average distance

between vertices of 0.4m. The spin images of the training set are then inserted into DBSI .

EGIs are computed for each target object in the training set, approximated by picking

a smaller set of 200 normals, that minimize the interpolation error on all samples. The

approximated EGIs are inserted into DBEGI , which is a simple list with 17 entries. Since

our method only requires very few representatives from each class, we were able to perform

the experiments using a few sedans, SUVs and vans as models.

Spin images are computed for the test data and they are classified as positive or negative

using a nearest neighbor classifier. Queries are generated by extracting connected compo-

nents of positive spin images whose centers are within 1m of each other. This groups

points roughly up to two grid positions away. EGIs are computed for the query objects and

compared against model EGIs to compute the best alignment using the constellation model

(Section 4.4.2). A hypothesis is generated by two pairs of stars, one from each EGI. Each

pair must subtend an angle of at least 30◦ and the two angles must not differ by more than

5◦. Rotations that meet these requirements are evaluated according to Section 4.4.3. For

the best rotation hypotheses, the metric used to make the final decision is computed: the

81

0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 4.6: Left: The precision-recall curve for car detection on 200 million points contain-
ing 1221 cars. (Precision is the x-axis and recall the y-axis.) Right: Screenshot of detected
cars. Cars are in random colors and the background in original colors.

percentage of inliers on both models after alignment. For a point to be an inlier there has

to be at least one other point from the other model that is within 30cm and whose normal

deviates by at most 35◦ from the normal of the current point. We have found the inlier

fraction to be more useful than the sum of squared distances.

Results on an test area comprising 220 million points and 1221 cars are shown in Figs.

4.6 and 4.7. The precision-recall curve as the inlier threshold varies is also shown in Fig.

4.6. For the point marked with a star, there are 905 true positives, 74 false positives and

316 false negatives (missed detections) for a precision of 92.4% and a recall of 74.1%.

4.6 Conclusion

We have presented an approach for object detection from 3D point clouds that is applicable

to very large datasets and requires limited training efforts. Its effectiveness is due to the

combination of bottom-up and top-down mechanisms to hypothesize and test locations of

potential target objects. An application of our method on car detection has achieved very

satisfactory precision and recall on an area far larger than the test area of any previously

published method. Moreover, besides a high detection rate, we are able to accurately seg-

ment the objects of interest from the background. We are not aware of any other method-

82

Figure 4.7: Screenshots of detected cars, including views from above. (There is false
negative at the bottom of the left image.)

ology that obtains comparable segmentation accuracy without being trained on the same

instances that are being segmented.

A limitation of our approach is that search is linear in the number of objects in the EGI

database. We are able to achieve satisfactory results with a small database, but sublinear

search is a necessary enhancement to our algorithm.

83

Chapter 5

Conclusions

We have presented a cohesive set of novel algorithms that are able to calibrate, align, and

recognize objects in challenging 3D datasets. The LiDAR calibration and the CEGI align-

ment work are stable and polished enough that example code has been released.

For the calibration work presented in chapter 2, we demonstrated a fully automatic

RANSAC system based on the minimal solution to calibrate a 2D line scan LiDAR system

with a camera. The minimal solution could also be applicable to an online form of the

algorithm where features in the environment could be detected and outliers rejected. The

features used show that calibration can be done very close to the underlying points and that

complicated and user intensive features such as chessboards are not required.

We also explained the intricacies of solving the least squares problem using Lie Al-

gebra. Finally, we implemented a user interaction based calibration tool that can reliably

produce accurate calibrations when employed by non-expert users and demonstrates the

feasibility of using the point to line correspondences.

Accurate calibrations allow for the better fusing of LiDAR depth data with texture data

from standard images, thus allowing more data sharing between modalities. Furthermore,

calibration allows the use of other sensors to drive a motion based scanning system, such as

84

the Hokuyo camera system described, because the motion estimates could not be computed

from the 2D LiDAR alone.

The range registration work presented in chapter 3 demonstrates, when combined with

ICP for fine alignment and a reliable verification scheme, a robust method for aligning

range scans. We demonstrated how to compute a representation of the Extended Gaussian

Image, how to convert that image into our novel Constellation EGI, and how to align the

CEGI images to produce rotational hypotheses. By decoupling the rotation and translation

estimation steps we have greatly improved the running time of scan alignment. We demon-

strated the effectiveness of our algorithm on a number of small scale scans and larger scans

captured with a room scanner. Moreover, we demonstrated the usefulness of the CEGI as

a descriptor by choosing it as our top down global descriptor for the recognition method of

chapter 4. Other researchers are applying our method for rough registration using consumer

depth cameras and other sensors, and we are routinely cited when a new range registration

or 3D model estimation algorithm is proposed.

The city scale work of chapter 4 demonstrates an approach to object recognition which

is applicable to very large datasets with minimal training effort. The effectiveness is due to

the use of bottom-up features to drive attention, and top-down verification of detections. We

learned what sorts of features perform well with the scanning parameters of the URGENT

project. For example we learned what size of support is needed for spin images to be

informative, and we explored some of the verification methods for confirming that an object

matches a model. One limitation is that the search through the models is linear in the size

of the database. We overcame this limitation by using a small database that generalized

well, but in order to scale to larger databases a sublinear search would be necessary.

We believe that as robots and sensors try to perform more tasks they will need compli-

cated algorithms and sensing modalities to gain the most understanding of their surround-

ings. Our experiences with building systems has taught us that many LiDAR tasks are

85

currently within the reach of engineering.

86

Bibliography

A. Adan, C. Cerrada, and V. Feliu. Global shape invariants: a solution for 3D free-form

object discrimination/identification problem. Pattern Recognition, 34:1331–1348, 2001.

A. K. Aijazi, P. Checchin, and L. Trassoudaine. Segmentation based classification of 3d

urban point clouds: A super-voxel based approach with evaluation. Remote Sensing, 5

(4):1624–1650, 2013.

A. Aldoma, Z.-C. Marton, F. Tombari, W. Wohlkinger, C. Potthast, B. Zeisl, R. Rusu,

S. Gedikli, and M. Vincze. Tutorial: Point cloud library: Three-dimensional object

recognition and 6 dof pose estimation. Robotics Automation Magazine, IEEE, 19(3):

80–91, 2012.

S. Arya, D. Mount, N. Netanyahu, R. Silverman, and A. Wu. An optimal algorithm for

approximate nearest neighbor searching. Journ. of the ACM, 45:891–923, 1998.

A. Ashbrook, R. Fisher, C. Robertson, and N. Werghi. Finding surface correspondence for

object recognition and registration using pairwise geometric histograms. In European

Conf. on Computer Vision, pages II: 674–686, 1998.

J. Behley, K. Kersting, D. Schulz, V. Steinhage, and A. Cremers. Learning to hash logistic

regression for fast 3d scan point classification. In Intelligent Robots and Systems (IROS),

2010 IEEE/RSJ International Conference on, pages 5960–5965, 2010.

87

J. Behley, V. Steinhage, and A. Cremers. Performance of histogram descriptors for the

classification of 3d laser range data in urban environments. In Robotics and Automation

(ICRA), 2012 IEEE International Conference on, pages 4391–4398, 2012.

J. A. Beraldin, L. Cournoyer, M. Rioux, F. Blais, S. F. El-Hakim, and G. Godin. Object

model creation from multiple range images: acquisition, calibration, model building and

verification. In International Conference on Recent Advances in 3-D Digital Imaging

and Modeling, 1997.

P. J. Besl and N. D. McKay. A method for registration of 3-D shapes. IEEE Trans. Pattern

Analysis and Machine Intelligence, 14(2):239–256, 1992.

J.-Y. Bouguet. Camera calibration toolbox for matlab. www.vision.caltech.edu, 2006.

P. Brou. Using the gaussian image to find the orientation of objects. International Journal

of Robotics Research, 3(4):89–125, Winter 1984.

J. Canny. A computational approach to edge detection. IEEE PAMI, 8(6):679–698, 1986.

O. Carmichael, D. Huber, and M. Hebert. Large data sets and confusing scenes in 3-d

surface matching and recognition. In 3DIM, pages 358–367, 1999.

J. C. Carr, R. K. Beatson, J. B. Cherrie, T. J. Mitchell, W. R. Fright, B. C. McCallum, and

T. R. Evans. Reconstruction and representation of 3d objects with radial basis functions.

In SIGGRAPH, pages 67–76, New York, NY, USA, 2001. ACM.

B. Curless and M. Levoy. A volumetric method for building complex models from range

images. In Proceedings of the 23rd Annual Conference on Computer Graphics and

Interactive Techniques, SIGGRAPH ’96, pages 303–312, New York, NY, USA, 1996.

ACM.

88

H. Delingette, M. Hebert, and K. Ikeuchi. A spherical representation for the recognition of

curved objects. In International Conference on Computer Vision, Berlin, 1993.

C. Dorai and A. Jain. Cosmos: A representation scheme for 3d free-form objects. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 19(10):1115–1130, October 1997.

J. Driscoll and D. Healy. Computing fourier transforms and convolutions on the 2-sphere.

Advances in Applied Mathematics, 15:202–250, 1994.

M. Fischler and R. Bolles. Random sample consensus. Communications of the ACM, Jan

1981.

A. Frome, D. Huber, R. Kolluri, T. Bülow, and J. Malik. Recognizing objects in range

data using regional point descriptors. In Proc. Eigth European Conference on Computer

Vision, pages 224–237, 2004.

C. Frueh, S. Jain, and A. Zakhor. Data processing algorithms for generating textured 3d

building facade meshes from laser scans and camera images. International Journal of

Computer Vision, 61(2):159–184, February 2005.

T. Funkhouser and P. Shilane. Partial matching of 3d shapes with priority-driven search. In

Symposium on Geometry Processing, 2006.

J. Gallier. Notes on Differential Geometry and Lie Groups. 2011.

J. Glover, R. Rusu, and G. Bradski. Monte carlo pose estimation with quaternion kernels

and the bingham distribution. In Proceedings of Robotics: Science and Systems, Los

Angeles, CA, USA, June 2011.

A. Halma, F. ter Haar, E. Bovenkamp, P. Eendebak, and A. van Eekeren. Single spin image-

icp matching for efficient 3d object recognition. In Proceedings of the ACM workshop

on 3D object retrieval, 3DOR ’10, pages 21–26, New York, NY, USA, 2010. ACM.

89

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge

University Press, 2000.

M. Hebert, K. Ikeuchi, and H. Delingette. A spherical representation for recognition of

free-form surfaces. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(7):681–

690, 1995.

R. Horaud and F. Dornaika. Hand-eye calibration. Intl. J. Robot. Res., 1995.

B. Horn. Extended gaussian images. Proceedings of the IEEE, 72(12):1656–1678, Decem-

ber 1984.

D. Huber and M. Hebert. Fully automatic registration of multiple 3D data sets. Image and

Vision Computing, 21(7):637–650, 2003.

D. Huber, A. Kapuria, R. Donamukkala, and M. Hebert. Parts-based 3d object classifica-

tion. In Int. Conf on Computer Vision and Pattern Recognition, pages II: 82–89, 2004.

K. Ikeuchi. Determining attitude of object from needle map using extended gaussian image.

In AIM-714: Tech Report, MIT, 1983.

A. Johnson and M. Hebert. Using spin images for efficient object recognition in cluttered

3d scenes. IEEE Trans. on Pattern Analysis and Machine Intelligence, 21(5):433–449,

May 1999.

A. Johnson, O. Carmichael, D. Huber, and M. Hebert. Toward a general 3-d matching

engine: Multiple models, complex scenes, and efficient data filtering. In Image Under-

standing Workshop, pages 1097–1108, 1998.

A. E. Johnson and M. Hebert. Recognizing objects by matching oriented points. In IEEE

Conf. Computer Vision and Pattern Recognition, Puerto Rico, June 17-19, 1997.

90

S. Kang and K. Ikeuchi. The complex egi: A new representation for 3-d pose determination.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 15(7):707–721, July

1993.

M. Kazhdan, T. Funkhouser, and S. Rusinkiewicz. Rotation invariant spherical harmonic

representation of 3D shape descriptors. In Symposium on Geometry Processing, June

2003.

B. J. King, T. Malisiewicz, C. V. Stewart, and R. J. Radke. Registration of multiple range

scans as a location recognition problem: Hypothesis generation, refinement and verifi-

cation. In Proceedings of the Fifth Intl. Conf. on 3D Digital Imaging and Modeling,

2005.

J. J. Little. Determining object attitude from extended gaussian images. In Proc. of the 9th

International Joint Conference on Artificial Intelligence, August 1985.

X. Liu, R. Sun, S. B. Kang, and H. Y. Shum. Directional histogram model for three-

dimensional shape similarity. In IEEE Conf. Computer Vision and Pattern Recognition,

Wisconsin, June 16-22, 2003.

Y. Liu, J. Pu, H. Zha, W. Liu, and Y. Uehara. Thickness histogram and statistical harmonic

representation for 3D model retrieval. In 3DPVT, Thessaloniki, 2004.

M. I. A. Lourakis and A. A. Argyros. Sba: A software package for generic sparse bundle

adjustment. ACM Trans. Math. Softw., 36(1):2:1–2:30, Mar. 2009.

L. Lucchese, G. Doretto, and G. M. Cortelazzo. A frequency domain technique for range

data registration. IEEE Trans. Pattern Analysis and Machine Intelligence, 24(11):1468–

1484, 2002.

91

J. Maciel and J. Costeira. A global solution to sparse correspondence problems. Pattern

Analysis and Machine Intelligence, IEEE Transactions on, 25(2):187–199, 2003.

A. Makadia, L. Sorgi, and K. Daniilidis. Rotation estimation from spherical images. In

Proc. Int. Conf. on Pattern Recognition, Cambridge, UK, 2004.

A. Makadia, A. Patterson, IV, and K. Daniilidis. Fully automatic registration of 3d point

clouds. In Computer Vision and Pattern Recognition, 2006 IEEE Computer Society

Conference on, volume 1, pages 1297–1304, 2006.

B. Matei, Y. Shan, H. Sawhney, Y. Tan, R. Kumar, D. Huber, and M. Hebert. Rapid object

indexing using locality sensitive hashing and joint 3d-signature space estimation. IEEE

Trans. on Pattern Analysis and Machine Intelligence, 28(7):1111–1126, July 2006.

G. Medioni, M. Lee, and C. Tang. A Computational Framework for Segmentation and

Grouping. Elsevier, New York, NY, 2000.

C. Mei and P. Rives. Calibration between a central catadioptric camera and a laser range

finder for robotic applications. In ICRA, pages 532 –537, may. 2006.

A. Mian, M. Bennamoun, and R. Owens. Three-dimensional model-based object recogni-

tion and segmentation in cluttered scenes. IEEE Trans. Pattern Analysis and Machine

Intelligence, 28(10):1584–1601, October 2006.

F. Moosmann and M. Sauerland. Unsupervised discovery of object classes in 3d outdoor

scenarios. In Computer Vision Workshops (ICCV Workshops), 2011 IEEE International

Conference on, pages 1038–1044, 2011.

M. Muja and D. G. Lowe. Fast approximate nearest neighbors with automatic algorithm

configuration. In International Conference on Computer Vision Theory and Application

VISSAPP’09), pages 331–340. INSTICC Press, 2009.

92

O. Naroditsky, A. Patterson, IV, and K. Daniilidis. Automatic alignment of a camera with

a line scan lidar system. In Robotics and Automation (ICRA), 2011 IEEE International

Conference on, pages 3429–3434, 2011.

R. A. Newcombe, A. J. Davison, S. Izadi, P. Kohli, O. Hilliges, J. Shotton, D. Molyneaux,

S. Hodges, D. Kim, and A. Fitzgibbon. Kinectfusion: Real-time dense surface mapping

and tracking. In Mixed and Augmented Reality (ISMAR), 2011 10th IEEE International

Symposium on, pages 127–136, 2011.

J. Novatnack and K. Nishino. Scale-dependent/invariant local 3d shape descriptors for

fully automatic registration of multiple sets of range images. In D. Forsyth, P. Torr, and

A. Zisserman, editors, Computer Vision ECCV 2008, volume 5304 of Lecture Notes in

Computer Science, pages 440–453. Springer Berlin Heidelberg, 2008.

P. Nunez, P. Drews, R. Rocha, and J. Dias. Data fusion calibration for a 3d laser range

finder and a camera using inertial data. European Conference on Mobile Robots ’09,

page 9, 2009.

R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin. Shape distributions. ACM Transac-

tions on Graphics, 21(4), 2002.

P. Osteen, J. Owens, and C. Kessens. Online egomotion estimation of rgb-d sensors us-

ing spherical harmonics. In Robotics and Automation (ICRA), 2012 IEEE International

Conference on, pages 1679–1684, 2012.

C. Papazov and D. Burschka. An efficient ransac for 3d object recognition in noisy and

occluded scenes. In R. Kimmel, R. Klette, and A. Sugimoto, editors, Computer Vi-

sion ACCV 2010, volume 6492 of Lecture Notes in Computer Science, pages 135–148.

Springer Berlin Heidelberg, 2011.

93

A. Patterson, IV, P. Mordohai, and K. Daniilidis. Object detection from large-scale 3d

datasets using bottom-up and top-down descriptors. In D. Forsyth, P. Torr, and A. Zisser-

man, editors, Computer Vision ECCV 2008, volume 5305 of Lecture Notes in Computer

Science, pages 553–566. Springer Berlin Heidelberg, 2008.

S. Ruiz Correa, L. Shapiro, M. Meila, G. Berson, M. Cunningham, and R. Sze. Sym-

bolic signatures for deformable shapes. IEEE Trans. on Pattern Analysis and Machine

Intelligence, 28(1):75–90, January 2006.

S. Rusinkiewicz and M. Levoy. Efficient variants of the ICP algorithm. In Proceedings of

the Third Intl. Conf. on 3D Digital Imaging and Modeling, pages 145–152, 2001.

R. Rusu, N. Blodow, and M. Beetz. Fast point feature histograms (FPFH) for 3D regis-

tration. In International Conference on Robotics and Automation, pages 3212–3217,

2009.

R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz. Aligning point cloud views us-

ing persistent feature histograms. In Intelligent Robots and Systems, 2008. IROS 2008.

IEEE/RSJ International Conference on, pages 3384–3391. IEEE, 2008.

R. B. Rusu, G. Bradski, R. Thibaux, and J. Hsu. Fast 3d recognition and pose using the

viewpoint feature histogram. In Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ

International Conference on, pages 2155–2162. IEEE, 2010.

M. Saucy and D. Laurendau. a general surface approach to the integration of a set of range

views. IEEE Trans. Pattern Analysis and Machine Intelligence, 17(4):344–358, 1995.

D. Scaramuzza, A. Harati, and R. Siegwart. Extrinsic self calibration of a camera and a 3D

laser range finder from natural scenes. In IROS 2007, pages 4164–4169, 2007.

94

D. Scharstein and R. Szeliski. A taxonomy and evaluation of dense two-frame stereo cor-

respondence algorithms. International journal of computer vision, 47(1-3):7–42, 2002.

A. Segal, D. Haehnel, and S. Thrun. Generalized-icp. In Robotics: Science and Systems,

volume 2, page 4, 2009.

Y. Shan, H. Sawhney, B. Matei, and R. Kumar. Shapeme histogram projection and match-

ing for partial object recognition. IEEE Trans. on Pattern Analysis and Machine Intelli-

gence, 28(4):568–577, April 2006.

D. A. Smith. Using enhanced spherical images. In AIM-530: Tech Report, MIT, 1979.

F. Solina and R. Bajcsy. Recovery of parametric models from range images: The case

for superquadrics with global deformations. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 12(2):131–147, 1990.

I. Stamos and M. Leordeanu. Automated feature-based range registration of urban scenes

of large scale. In IEEE Conf. Computer Vision and Pattern Recognition, Wisconsin, June

16-22, 2003.

I. Stamos, O. Hadjiliadis, H. Zhang, and T. Flynn. Online algorithms for classification of

urban objects in 3d point clouds. In 3D Imaging, Modeling, Processing, Visualization

and Transmission (3DIMPVT), 2012 Second International Conference on, pages 332–

339, 2012.

F. Stein and G. Medioni. Structural hashing: Efficient three dimensional object recognition.

IEEE Trans. on Pattern Analysis and Machine Intelligence, 14(2):125–145, February

1992.

C. J. Taylor and D. J. Kriegman. Minimization on the lie group so(3) and related manifolds.

95

Technical Report 9405, Center for Systems Science, Dept. of Electrical Engineering,

Yale University, New Haven, CT, April 1994.

F. Tombari, S. Salti, and L. Di Stefano. Unique signatures of histograms for local surface

description. In Computer Vision–ECCV 2010, pages 356–369. Springer, 2010a.

F. Tombari, S. Salti, and L. Di Stefano. Unique shape context for 3d data description. In

Proceedings of the ACM workshop on 3D object retrieval, pages 57–62. ACM, 2010b.

R. Unnikrishnan and M. Hebert. Fast extrinsic calibration of a laser rangefinder to a camera.

Tech. Rep. CMU Robotics Institute, page 339, 2005.

A. Velizhev, R. Shapovalov, and K. Schindler. Implicit shape models for object detec-

tion in 3d point clouds. ISPRS Annals of Photogrammetry, Remote Sensing and Spatial

Information Sciences, I-3:179–184, 2012.

G. Weiß, C. Wetzler, and E. Puttkamer. Keeping track of position and orientation of moving

indoor systems by correlation of range-finder scans. In IROS, 1994.

X. Xiong, D. Munoz, J. Bagnell, and M. Hebert. 3-d scene analysis via sequenced predic-

tions over points and regions. In Robotics and Automation (ICRA), 2011 IEEE Interna-

tional Conference on, pages 2609–2616, 2011.

B. Yang, P. Sharma, and R. Nevatia. Vehicle detection from low quality aerial lidar data.

In Applications of Computer Vision (WACV), 2011 IEEE Workshop on, pages 541–548,

2011.

Q. Zhang and R. Pless. Extrinsic calibration of a camera and laser range finder. In IROS

2004, volume 3, pages 2301 – 2306 vol.3, sep. 2004.

96

	University of Pennsylvania
	ScholarlyCommons
	1-1-2014

	Registration and Recognition in 3D
	Alexander Evans Patterson IV
	Recommended Citation

	Registration and Recognition in 3D
	Abstract
	Degree Type
	Degree Name
	Graduate Group
	First Advisor
	Keywords
	Subject Categories

	Title Page
	Acknowedgment
	Abstract
	Contents
	Introduction
	3D Sensors
	Time of Flight Sensors
	Triangulation Sensors

	Iterative Closest Point
	3D Descriptors
	Local Descriptors
	Fast Point Feature Histogram (FPFH)
	Spin Images
	Signature of Histograms of OrienTations (SHOT)
	3D Shape Contexts

	Global Descriptors
	Point Feature Histogram (PFH)
	Viewpoint Feature Histogram (VFH)
	Clustered Viewpoint Feature Histogram (CVFH)

	Background
	Registration Methods in 3D
	3D Object Detection

	Contributions
	3D-Camera Calibration
	3D Range Alignment
	Bottom Up Top Down Object Recognition

	Outline

	Automatic Alignment of a Camera with a Line Scan LiDAR System
	Introduction
	Related Work
	Problem Description
	Optimization over SO(3)
	Removing the translation (t) from the constraints
	Solving for R using the Gauss-Newton algorithm
	Using Lie Algebra to find R

	Results
	Simulations
	A Fully Automatic Real Calibration

	A User Driven Calibration System
	Conclusion

	Global Representation for Registration
	Introduction
	EGI and Orientation Histograms
	Constellation EGI
	Estimating the translation
	Verification
	Experimental results
	Conclusion

	Object Detection from Large-Scale 3D Datasets using Bottom-up and Top-down Descriptors
	Introduction
	Algorithm Overview
	Bottom-Up Detection
	Top-Down Alignment and Verification
	Computing EGIs
	Constellation EGIs
	Hypothesis Verification
	Alignment and Distance Computation

	Experimental Results
	Conclusion

	Conclusions
	Bibliography

