31 research outputs found

    Variation of the Heartbeat and Activity as an Indicator of Drowsiness at the Wheel Using a Smartwatch

    Get PDF
    Sleepiness is one of the first causal factors of accidents. An estimated 10-30% of road deaths are related to fatigue driving. A large number of research studies have been conducted to reduce the risk of accidents while driving. Many of these studies are based on the detection of biological signals by drowsiness/sleepiness. The activity of the autonomic nervous system (ANS) presented alterations during different physical states such as stress or sleepiness. This activity is measured by ECG (electroencephalogram) and, in different studies, it can be measured with the variation of the heart beat (HRV-Heart Rate Variability) in order to analyze it and then detect drowsiness/sleepiness in drivers. The main advantage is that HRV can be performed using non invasive and uncomfortable means compared to EEG sensors. New Wearables technologies are capable of measuring the heart beat and, further, using other sensors like Accelerometer and Gyroscope, embedded on a simple clock allow us to monitor the physical activity of the user. Our main goal is to use the pulsations measurements in conjunction with the physical activity for the detection of driver drowsiness/sleepiness in advance in order to prevent accidents derived from fatigue

    Driver drowsiness detection using different classification algorithms

    Get PDF
    Capability of electrocardiogram (ECG) signal in contributing to the daily application keeps developing days by days. As technology advances, ECG marks the possibility as a potential mechanism towards the drowsiness detection system. Driver drowsiness is a state between sleeping and being awake due to body fatigue while driving. This condition has become a common issue that leads to road accidents and death. It is proven in previous studies that biological signals are closely related to a person's reaction. Electrocardiogram (ECG) is an electrical indicator of the heart, provides such criteria as it reflects the heart activity that can detect changes in human response which relates to our emotions and reactions. Thus, this study proposed a non-intrusive detector to detect driver drowsiness by using the ECG. This study obtained ECG data from the ULg multimodality drowsiness database to simulate the different stages of sleep, which are PVT1 as early sleep while PVT2 as deep sleep. The signals are later processed in MATLAB using Savitzky-Golay filter to remove artifacts in the signal. Then, QRS complexes are extracted from the acquired ECG signal. The process was followed by classifying the ECG signal using Machine Learning (ML) tools. The classification techniques that include Multilayer Perceptron (MLP), k-Nearest Neighbour (IBk) and Bayes Network (BN) algorithms proved to support the argument made in both PVT1 and PVT2 to measure the accuracy of the data acquired. As a result, PVT1 and PVT2 are correctly classified as the result shown with higher percentage accuracy on each PVTs. Hence, this paper present and prove the reliability of ECG signal for drowsiness detection in classifying high accuracy ECG data using different classification algorithms

    A review of technologies for heart attack monitoring systems

    Get PDF
    Every year, approximately 1.35 million people die in car accidents. One of the causes of traffic accidents is a heart attack while driving. Common heart attack warning signs are pain or discomfort in the chest or one or both arms or shoulders, light-headedness, faintness, cold sweat, and shortness of breath. When having a heart attack, a car driver has strong pain in the centre or left side of the chest. Current technology for heart attack detection is based on sensory signal properties such as the electrocardiogram (ECG), heart rate and oxygen saturation (SpO2). This paper is intended to give the readers an overview of technologies for heart attack monitoring system that has been used at the hospital, at the home and in the vehicle. The result shows that ECG, heart rate and SpO2 properties are mostly used by numerous researchers for heart attack monitoring systems at hospitals. Meanwhile, many researchers developed a system by using heart rate, ECG, SpO2 and images as properties for heart attack monitoring systems at home. Existing technologies for heart attack monitoring systems in the vehicle used heart rate and ECG as properties in a system. However, there are no review papers yet on heart attack monitoring systems using image processing in vehicles. We believe that researchers and practitioners will embrace this technology by addressing image processing in the heart attack monitoring system in vehicles

    Detecting Driver Sleepiness Using Consumer Wearable Devices in Manual and Partial Automated Real-Road Driving

    Get PDF
    Driver sleepiness constitutes a well-known traffic safety risk. With the introduction of automated driving systems, the chance of getting sleepy and even falling asleep at wheel could increase further. Conventional sleepiness detection methods based on driving performance and behavior may not be available under automated driving. Methods based on physiological measurements such as heart rate variability (HRV) becomes a potential solution under automated driving. However, with reduced task load, HRV could potentially be affected by automated driving. Therefore, it is essential to investigate the influence of automated driving on the relation between HRV and sleepiness. Data from real-road driving experiments with 43 participants were used in this study. Each driver finished four trials with manual and partial automated driving under normal and sleep-deprived condition. Heart rate was monitored by consumer wearable chest bands. Subjective sleepiness based on Karolinska sleepiness scale was reported at five min interval as ground truth. Reduced heart rate and increased overall variability were found in association with severe sleepy episodes. A binary classifier based on the AdaBoost method was developed to classify alert and sleepy episodes. The results indicate that partial automated driving has small impact on the relationship between HRV and sleepiness. The classifier using HRV features reached area under curve (AUC) = 0.76 and it was improved to AUC = 0.88 when adding driving time and day/night information. The results show that commercial wearable heart rate monitor has the potential to become a useful tool to assess driver sleepiness under manual and partial automated driving

    Machine Learning in Driver Drowsiness Detection: A Focus on HRV, EDA, and Eye Tracking

    Get PDF
    Drowsy driving continues to be a significant cause of road traffic accidents, necessi- tating the development of robust drowsiness detection systems. This research enhances our understanding of driver drowsiness by analyzing physiological indicators – heart rate variability (HRV), the percentage of eyelid closure over the pupil over time (PERCLOS), blink rate, blink percentage, and electrodermal activity (EDA) signals. Data was collected from 40 participants in a controlled scenario, with half of the group driving in a non- monotonous scenario and the other half in a monotonous scenario. Participant fatigue was assessed twice using the Fatigue Assessment Scale (FAS). The research developed three machine learning models: HRV-Based Model, EDA- Based Model, and Eye-Based Model, achieving accuracy rates of 98.28%, 96.32%, and 90% respectively. These models were trained on the aforementioned physiological data, and their effectiveness was evaluated against a range of advanced machine learning models including GRU, Transformers, Mogrifier LSTM, Momentum LSTM, Difference Target Propagation, and Decoupled Neural Interfaces Using Synthetic Gradients. The HRV-Based Model and EDA-Based Model demonstrated robust performance in classifying driver drowsiness. However, the Eye-Based Model had some difficulty accurately identifying instances of drowsiness, likely due to the imbalanced dataset and underrepre- sentation of certain fatigue states. The study duration, which was confined to 45 minutes, could have contributed to this imbalance, suggesting that longer data collection periods might yield more balanced datasets. The average fatigue scores obtained from the FAS before and after the experiment showed a relatively consistent level of reported fatigue among participants, highlighting the potential impact of external factors on fatigue levels. By integrating the outcomes of these individual models, each demonstrating strong performance, this research establishes a comprehensive and robust drowsiness detection system. The HRV-Based Model displayed remarkable accuracy, while the EDA-Based Model and the Eye-Based Model contributed valuable insights despite some limitations. The research highlights the necessity of further optimization, including more balanced data collection and investigation of individual and external factors impacting drowsiness. Despite the challenges, this work significantly contributes to the ongoing efforts to improve road safety by laying the foundation for effective real-time drowsiness detection systems and intervention methods

    Physiological Approach To Characterize Drowsiness In Simulated Flight Operations During Window Of Circadian Low

    Get PDF
    Drowsiness is a psycho-physiological transition from awake towards falling sleep and its detection is crucial in aviation industries. It is a common cause for pilot’s error due to unpredictable work hours, longer flight periods, circadian disruption, and insufficient sleep. The pilots’ are prone towards higher level of drowsiness during window of circadian low (2:00 am- 6:00 am). Airplanes require complex operations and lack of alertness increases accidents. Aviation accidents are much disastrous and early drowsiness detection helps to reduce such accidents. This thesis studied physiological signals during drowsiness from 18 commercially-rated pilots in flight simulator. The major aim of the study was to observe the feasibility of physiological signals to predict drowsiness. In chapter 3, the spectral behavior of electroencephalogram (EEG) was studied via power spectral density and coherence. The delta power reduced and alpha power increased significantly (

    Accurate and Robust Heart Rate Sensor Calibration on Smartwatches using Deep Learning

    Get PDF
    Heart rate (HR) monitoring has been the foundation of many researches and applications in the field of health care, sports and fitness, and physiology. With the development of affordable non- invasive optical heart rate monitoring technology, continuous monitoring of heart rate and related physiological parameters is increasingly possible. While this allows continuous access to heart rate information, its potential is severely constrained by the inaccuracy of the optical sensor that provides the signal for deriving heart rate information. Among all the factors influencing the sensor performance, hand motion is a particularly significant source of error. In this thesis, we first quantify the robustness and accuracy of the wearable heart rate monitor under everyday scenario, demonstrating its vulnerability to different kinds of motions. Consequently, we developed DeepHR, a deep learning based calibration technique, to improve the quality of heart rate measurements on smart wearables. DeepHR associates the motion features captured by accelerometer and gyroscope on the wearable with a reference sensor, such as a chest-worn HR monitor. Once pre-trained, DeepHR can be deployed on smart wearables to correct the errors caused by motion. Through rigorous and extensive benchmarks, we demonstrate that DeepHR significantly improves the accuracy and robustness of HR measurements on smart wearables, being superior to standard fully connected deep neural network models. In our evaluation, DeepHR is capable of generalizing across different activities and users, demonstrating that having a general pre-trained and pre-deployed model for various individual users is possible

    Smartphone and Surgery, Reality or Gadget?

    Get PDF
    Surgical care is an essential component of health care. This basic universal right is not available to everyone. Indeed, countries with low economic resources suffer from a lack of access to surgical care and the most developed countries will have to reduce the cost of health care to ensure the sustainability of provided care quality. New communication technologies have invaded the field of health and have led to the development of a new concept of mobile health. The purpose of this paper is to answer the following question: Can these new tools, and in particular the Smartphone, remedy, even partially, the lack of health care in poor countries and reduce the cost of health care in rich countries? New communication tools, led by the Smartphone, have the capacity to capture, store, retrieve and transmit data to provide instant and personalized information to individuals. This information could be a key element in health systems and can contribute to monitoring health status and improving patient safety and care quality. Mobile telephony via applications and connected objects can facilitate the pre-, intra- and post-operative management of patients. These mobile systems also facilitate the collection and transmission of data. This will allow better analysis of this data and will greatly pave the way to the introduction of artificial intelligence in medicine and surgery. The Smartphone can be used as an important tool for both, diagnosis care and surgical training. Surgeons must adapt their equipment to local resources while respecting safety standards. Covid-19 has put health systems around the world under severe strain. Decision-makers are being forced to make adjustments. The long-vaunted digital health is becoming a reality and a necessity. Healthcare authorities and strategy specialists face challenges in terms of disease prevention and therapy, as well as in terms of health economics and management
    corecore