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Abstract 

Drowsiness is a psycho-physiological transition from awake towards falling sleep and its detection 

is crucial in aviation industries. It is a common cause for pilot’s error due to unpredictable work 

hours, longer flight periods, circadian disruption, and insufficient sleep. The pilots’ are prone 

towards higher level of drowsiness during window of circadian low (2:00 am- 6:00 am). Airplanes 

require complex operations and lack of alertness increases accidents. Aviation accidents are much 

disastrous and early drowsiness detection helps to reduce such accidents. This thesis studied 

physiological signals during drowsiness from 18 commercially-rated pilots in flight simulator. The 

major aim of the study was to observe the feasibility of physiological signals to predict drowsiness. 

In chapter 3, the spectral behavior of electroencephalogram (EEG) was studied via power spectral 

density and coherence. The delta power reduced and alpha power increased significantly (p<0.05) 

during microsleep (MS) whereas, alpha coherence was significantly high (p<0.05) during MS 

compared to alert state at many electrode interactions with the aviation headset. In chapter 4, heart 

rate variability was analyzed from electrocardiogram (ECG) signals and observed significant 

changes in both time and frequency domains during drowsiness. Moreover, photoplethysmogram 

(PPG) signal was found to be surrogate of ECG and suggested simplistic way to monitor pilot’s 

physiological state via PPG sensor embedded within the aviation headset. Further, in chapter 5, 

the classification performance of MS was obtained as 86.23% in terms of F1 score with Quadratic 

Discriminant classifier and the performance for predicting drowsiness 4 sec before eye-closure 

was 83.80% using Random Forest classifier from electrodes within the aviation headset. In chapter 

6, the overall performance in terms of unweighted mean of F1 score was 83.70% among four 

classes of drowsiness providing approach for early prediction. These results strongly corroborated 

the plausibility of automatic drowsiness detection in aviation from physiological signals. 
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Chapter 1. 

Introduction 

1.1. Motivation 

Every individual requires sleep and it’s a daily routine. Sleep is a transitional process with changes 

in psycho-physiological behavior. Failure to maintain proper sleep makes an individual drowsy 

and fatigued. Drowsiness is common during monotonous task and is identified as a contributing 

factor for both road and airline accidents. The 4-7% of civil aviation mishaps are caused due to 

drowsy pilots and the cost of a single major civil aviation accident exceeds $500 million financial 

losses, while costs in terms of personal sufferings are inestimable [1]. Aviation accidents are 

disastrous and early identification of drowsiness will reduce such accidents. 

Drowsiness is characterized by behavioral signs such as nodding head, facial expression, and 

yawning [2].  From such behaviors, drowsiness can be predicted only after falling towards sleep 

which is too late to prevent an accident. However, physiological signals change at the earlier stage 

of drowsiness [3], [4]. Therefore, an efficient reliable system to characterize drowsiness based on 

physiological changes among pilots is essential. To address this concern, this thesis proposes to 

study drowsiness based on the analysis of three physiological signals: electroencephalogram 

(EEG), electrocardiogram (ECG), and photoplethysmogram (PPG) during the window of circadian 

low (WOCL). During this time of 2:00 am- 6: 00 am, the participants are highly prone towards 

sleep [5]. Upon quantification of above-mentioned three signals, drowsiness can be predicted 

before eye-closure that highlights the potential of automatic drowsiness detection system. 
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1.2. Literature Review 

1.2.1. Need for Identifying Drowsiness in Aviation  

Airplanes require complex human interactions, complete attention, and proficient skills to fly. The 

professional pilots performing such critical functions are impaired by drowsiness or fatigue during 

long-haul flights due to circadian disruption [6]. Drowsiness is a propensity to fall asleep. It is a 

transition from awake to onset of sleep [7]. It is a leading cause of aviation accidents mainly due 

to unpredictable work hours, long duty periods, circadian disruption, and insufficient sleep [8]. For 

example, the scheduled flight time of the longest non-stop flight from Singapore to New York is 

approximately 17 hours. Such long-haul flights are painful and pilots in the cockpit may suffer 

from fatigue due to disruption in circadian rhythm due to which they may undergo multiple drowsy 

states. Flying in a drowsy state can lead to substandard performance, spatial disorientation, and 

even serious aircraft accidents [9]. Aviation accidents are disastrous and early identification of 

drowsiness will reduce such accidents.  

Drowsiness is marked by several factors such as increase in reaction time, reduction in 

performance, changes in brain rhythm, frequency of eye blinking, changes in respiration and heart 

rate [10]. Federal Aviation Administration (FAA) classified pilot fatigue or drowsiness as one of 

the four common aviation hazards [11]. National Aeronautics and Space Administration (NASA) 

flight controller fatigue assessment report showed that 70% of survey respondents working 

midnight shifts caught themselves “about to doze off” while working actively, and 18% reported 

being involved in an operational error among which about 56% cited fatigue as a contributing 

factor [12]. Another report by National Transportation Safety Board (NTSB) investigated from 

January 1, 2001 to December 31, 2012 identified fatigue as a contributing factor of accidents. In 
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2013, a business plane crashed short of runway at Birmingham, Alabama, and the captain and the 

first officer were fatally injured. The findings indicated they were fatigued due to improper off-

duty time management [6]. According to the National Sleep Foundation, about 20% of U.S. adult 

drivers admit to fall sleep behind the wheel during driving [13]. Further, the 20% of medium-haul 

and 40% of long-haul flights are affected by drowsiness [14]. Drowsiness is involved in 4-7% of 

civil aviation mishaps and the cost of a single major civil aviation accident can be millions, while 

costs in terms of personal sufferings are inestimable [1]. Flight operations require constant 

vigilance and even a minor mistake due to drowsiness can cause high devastation, thereby 

requiring a need for early detection. Therefore, the development of supplemental technology to 

accurately identify transitional state from alertness towards drowsiness can be of great importance 

in the aviation industry. 

1.2.2. Approaches for Drowsiness Detection 

There are mainly three approaches for drowsiness detection: vehicular, behavioral, and 

physiological [15]–[17]. The vehicular approach detects drowsiness based on the vehicle speed 

and position. Whereas, the behavioral approach monitors various signs such as eye and head 

movements, facial expressions, eye closure, and yawning based on vision [2]. This approach has 

been commonly used for the development of drowsiness detection technologies in the market to 

alert operators. Some of the vision based technologies are CoPilot® (Attention Technologies, 

Pittsburgh, PA), Optalert® (Optalert Pty Ltd, Australia), and Driver State Monitor® (Delphi 

Electronics & Safety, Inc., Kokomo, IN) that provide drowsiness feedback based on percentage of 

eyelid closure (PERCLOS). They use infrared illumination to identify PERCLOS [18]–[20]. Both 

these approaches are system-dependent that have different evaluation criteria and restricted to 

certain environmental conditions such as proper lighting and inclusion of objects within their 
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focus. They detect only after falling towards sleep which is too late to prevent an accident. 

However, physiological signals change at the earlier stage of drowsiness [3], [4]. Thus, there needs 

an efficient reliable technology to characterize drowsiness in real time, before falling sleep, based 

on physiological performance of the pilots. 

1.2.3. Subjective Measures for Analyzing Drowsiness 

Along with the physiological performances as a primary measure to analyze drowsiness, subjective 

measures such as Karolinska Sleepiness Scale (KSS) and Psychomotor Vigilance Task (PVT) 

based on participant’s feelings before and after the experiment are also used to assess drowsiness 

levels [21]–[23]. KSS is a subjective measure of sleepiness that indicates level of psychological 

state experienced by a participant in last 10 min. It helps to assess changes in the state due to 

environmental factors, circadian rhythm, and effect of drugs. This is a self-report measure based 

on 9-point scale (1=extremely alert, 3=alert, 5=neither alert nor sleepy, 7=sleepy, and 9=extremely 

sleepy) [24]. PVT is a measure of behavioral alertness where sustained or vigilant attention is 

obtained by recording response times to visual stimuli at random inter-stimulus intervals. The most 

reliable effect of sleep deprivation is degradation of attention, especially vigilant attention which 

is measured by 10 min PVT quantifying the number of lapses in attention of the tested participant 

[25]. However, these methods have limited usability to quantify drowsiness. They are not suitable 

for continuous sleepiness evaluation and self-assessment of drowsiness is often wrong [2], [26]–

[29]. Further, drowsiness is a transitional recurring state and its estimation from the subjective 

analysis is not applicable in the instrumentation design for real time detection purpose [30]–[32]. 

To address this limitation, there is a need of physiological approach for drowsiness analysis.  

1.2.4. Physiological Approach for Drowsiness Detection 
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Various physiological signals such as electroencephalogram (EEG), electrocardiogram (ECG), 

electrooculogram (EOG), and photoplethysmogram (PPG) have been studied for drowsiness 

detection. The changes during drowsiness are directly reflected in these physiological signals that 

are used to estimate drowsiness.  

EEG is a record of electrical signals generated by brain cells and physiological changes in the brain 

due to drowsiness are directly reflected from EEG due to which it is commonly considered as  a 

drowsiness marker [2], [17], [33], [34]. EEG is non-invasive, easy to acquire from limited 

electrodes and drowsiness effects are vividly reflected in the spectral behavior [4], [35], [36]. The 

following rhythms have been identified in EEG: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), 

beta (13-30 Hz), and gamma (above 30 Hz) [37]. The slow waves (delta and theta) increases during 

transition from awake to drowsiness and deep sleep. The alpha rhythm is a marker of relaxed 

wakefulness and increases when a participant prolongs towards drowsiness, whereas decreases 

during deep sleep. The beta rhythm is associated with alertness, arousal, and excitement [17]. 

Hence, EEG behavior has been extensively studied during simulated and real driving scenarios to 

gain inference pertaining to drowsiness [38]–[40].  

ECG is a record of electrical activity of heart and can be a potential marker to predict drowsiness 

or fatigue based on heart rate variability (HRV) [41]–[45]. HRV is a marker of autonomic nervous 

system (ANS) that influences modulations of cardiac activities such that homeostasis of 

cardiovascular system is properly maintained [46]. ANS activity changes during stressed, fatigued, 

and drowsy periods. Wakefulness is marked by increase in sympathetic activity (SN) and/or 

decrease in parasympathetic activity (PSN), whereas drowsiness or fatigue is marked by increase 

in PSN or decrease in SN [44], [47], [48]. Thus, ECG can be utilized to detect drowsiness or fatigue 

in pilots. ANS can be measured noninvasively by HRV from surface ECG. Various time and 
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frequency domain methods have been applied to analyze HRV from RR intervals (RRI) which is 

the duration of two adjacent R peaks in QRS complexes of ECG [49]. The insight towards 

drowsiness can be obtained from the changes in these time and frequency domain features from 

ECG. 

PPG is another noninvasive signal obtained via optical technique containing an infrared emitter 

and a detector inside a probe that reflects beat to beat relative blood volume changes in peripheral 

tissues usually on the forefinger or earlobe [50]. The amount of infrared light reflected back to the 

detector determines the amount of blood flowing to the tissue at any time. So, the pulsating PPG 

signal depicts blood volume fluctuations observed from a finger or earlobe. The mean time delay 

between ECG R-wave and PPG foot at rest typically ranges from 180 to 260 ms (finger), 125 to 

155 ms (ear), and 180 to 330 ms (toe) [51]. However, the median time delay between ECG peak 

and PPG peak, that is, pulse arrival time (PAT) peak at rest is about 436 ms (thumb), 397 ms (ear), 

and 515 ms (toe) [52]. In literature, HRV features obtained from ECG and PPG are found to have 

high correlation [50], [53]–[55]. Thus, PPG may be used as a substitute of ECG for HRV analysis. 

EOG is a corneo-retinal standing potential between front and back of the eye which measures eye 

movements to detect drowsiness. The blink rate is slower as well as eye closure duration is longer 

during drowsiness [56]–[58]. The two main features extracted from EOG are blink duration and 

PERCLOS. The blink duration is the time duration between two eye blinks and PERCLOS is the 

percentage of time that the eyelids are closed more than 80% [59]. These features of ocular 

behavior can be used to analyze drowsiness.  

This thesis investigates the potential of three physiological signals: EEG, ECG, and PPG to 

characterize drowsiness. The major portion of the work is carried on analyzing EEG and EOG is 

used to further validate the eye closure events during drowsy state of pilots in a flying simulator 
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during window of circadian low (WOCL). This thesis underscores the potential of non-invasive 

approach for drowsiness detection from physiological signals and also proposes the idea of 

modifying the signal acquisition system to the region of aviation headset. 

1.3. Thesis Outline 

This thesis is outlined as follows. Chapter 2 describes the methods used for data analysis. Chapter 

3 illustrates the spectral behavior of EEG to analyze drowsiness. This chapter also discusses the 

interactions of different EEG electrodes within the region of aviation headset to characterize 

drowsiness. Chapter 4 discusses the approach of heart rate variability to estimate drowsiness and 

fatigue. This chapter also compares ECG and PPG and demonstrates the feasibility of estimating 

drowsiness from PPG alone using aviation headset. Chapter 5 explains the classification and 

prediction model designed for drowsiness analysis. The issues and challenges of automatic 

drowsiness detection using standalone EEG signal is also discussed in this chapter. Chapter 6 

further extends to four-way classification of drowsiness and proposes an idea for early drowsiness 

prediction. Chapter 7 concludes the paper identifying limitations and proposing future work to 

address the limitations. 

1.4. Thesis Contribution 

This thesis illustrated the potential of non-invasive physiological signals to characterize 

drowsiness in aviation operations. The key contributions are as follows. 

i. Depicted the spectral changes in different brain regions during drowsiness (Chapter 3). 

ii. Illustrated the significant interactions between different EEG electrodes within the region 

of aviation headset (chapter 3). 
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iii. Calculated HRV to estimate drowsiness and fatigue (chapter 4). 

iv. Demonstrated the plausibility of estimating drowsiness using PPG obtaining its surrogacy 

with ECG (chapter 4). 

v. Designed a machine learning model to classify drowsiness from alert state using EEG 

features (chapter 5).   

vi. Discussed the potential of automatic drowsiness annotation using standalone EEG signal 

(chapter 5). 

vii. Classified drowsiness among four classes and depicted the plausibility for early drowsiness 

prediction (chapter 6). 

viii. Discussed spectral behavior among four drowsiness classes (chapter 6). 

ix. Highlighted the limitations of the work proposing ideas to address the limitations (chapter 

7). 

1.5. Publications 

Some of the publications of this work along with the related other works are as follows.  

Journal Articles: 

1) Chunwu Wang*, Bijay Guragain*, Ajay K. Verma, Lewis Archer, Shubha Majumder, 

Abdiaziz   Mohamud, Emily Flasherty-Woods, Geoffrey Shapiro, Mahathir Almashor, 

Mike Lenne, Rama   Myers, Jonny Kuo, Shiyan Yang, Nicholas Wilson†, and Kouhyar 

Tavakolian†, “Spectral Analysis   of EEG during Microsleep Events Annotated via Driver 

Monitoring System to Characterize  Drowsiness”, IEEE Transactions on Aerospace and 

Electronic Systems, 2019 (* and † contributed equally). 
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2) Nicholas D. Wilson, Bijay Guragain, Ajay Verma, Lewis Archer, and Kouhyar 

Tavakolian, “Blending Human and Machine: Feasibility of Measuring Fatigue through the 

Aviation Headset”, The Journal of Human Factors and Ergonomics Society, 2019. 

3) Bijay Guragain, Ali Haider, and Reza Fazel-Rezai, “Hybrid Brain-Computer Interface 

Systems: Approaches, Features, and Trends”, Evolving BCI Therapy- Engaging Brain 

State Dynamics, IntechOpen, 2018.  

 

Conference Proceedings: 

1) Bijay Guragain, Ali Bahrami Rad, Chunwu Wang, Ajay K. Verma, Lewis Archer, 

Nicholas Wilson, and Kouhyar Tavakolian, “EEG-based Classification of Microsleep by 

Means of Feature Selection: An Application in Aviation”, Engineering in Medicine and 

Biology Conference (EMBC), Berlin, 2019. 

2) Bijay Guragain, Ali Haider, and Reza Fazel-Rezai, “A New Region Based SSVEP BCI 

Speller”, Seventh International BCI Meeting, May 21-25, Pacific Grove, California, 2018. 
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Chapter 2. 

Methodology 

2.1. Power Spectral Analysis of EEG 

EEG has been considered as a fundamental tool in neurophysiology for humans since its discovery 

in 1924 by German Psychiatrist Hans Berger. The changes in neural activities can be used to study 

physiology of humans via analysis of EEG rhythms [60], [61]. The common four EEG rhythms 

used for analysis are: delta (0.5- 4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). The 

characteristics of EEG depends on demographics, behavioral, and psychophysiological state of a 

person. The EEG pattern is influenced by neuro-pathological conditions, metabolic disorders, and 

drug actions [62].  

EEG is generally recorded non-invasively from scalp electrodes using common International 10-

20 system. This is a standard testing method for EEG based on the relationship between location 

of an electrode and underlying area of cerebral cortex. The 10 and 20 refers the actual distance 

between adjacent electrodes are either 10% or 20% of the total front-back or right-left distance of 

the skull. This protocol standardized physical placements and designations of 21 electrodes on the 

scalp. The name of each electrode has a letter and a number. The letter refers to brain region (F: 

frontal, C: central, T: temporal, P: parietal, and O: occipital), and the number is related to cerebral 

hemisphere (even in right and odd in left hemisphere) [63]. The EEG montage for recording is 

depicted in Figure 2.1. EEG can be used for various physiological monitoring. 
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Figure 2.1. The 10-20 International electroencephalogram (EEG) electrode placement system 

along with EEG montage [37]. 

The power spectral density (PSD) is a measure of signal’s power with respect to frequency. The 

PSD from EEG is usually calculated within the frequency range of 0.5- 30 Hz that contains useful 

information. The major four frequency bands in EEG as mentioned before are: delta (0.5- 4 Hz), 

theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). The four EEG rhythms are briefly described 

here [37]. 

1) Delta activity:  A low frequency and high amplitude slow delta waves are characteristic 

EEG feature recorded during deep sleep. 

2) Theta activity: The theta wave is active during emotional or some cognitive states. 

3) Alpha activity: The alpha wave is predominant during wakefulness and mostly observed 

during eyes closed and relaxation state. 

4) Beta activity: This wave is a characteristic EEG for the states of increased alertness and 

focused attention. 

EEGLAB toolbox (Ver. 14.1.1b) is used to process the raw EEG signals [64]. The EEG signals of 

500 Hz sampling frequency from all 13 channels are resampled to 125 Hz. Then, high amplitude 
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artifacts due to body movements or muscle activities are removed through visual inspection and 

confirmed by two researchers, and 0.5-30 Hz band pass FIR filter (BPF) is used to remove potential 

high or low frequency artifacts. After that, INFOMAX algorithm for Independent Component 

Analysis (ICA) is applied to decompose the filtered data, and ADJUST algorithm is used to 

automatically detect and remove ocular artifacts [39], [65]. Next, PSD is calculated using Welch’s 

power spectral density estimate having Hamming window size of 128 samples with 50% overlap 

and 256 discrete Fourier transform (DFT) points. This is obtained using command ‘pwelch’ in 

MATLAB (Version R2017A, Mathworks Inc., MA, USA) with appropriate parameters. After 

finding the absolute power at respective frequency bands, the relative power is obtained by 

dividing each band’s absolute power with the total power. The processing steps for calculation of 

EEG relative PSD is shown in Figure 2.2.  

Figure 2.2. Step-by-step signal processing block diagram to compute relative spectral power 

distributed in the respective EEG frequency bands [66]. 

The median frequency (MDF) is defined as a frequency at which the EEG power spectrum is 

divided into two regions of equal power. MDF is also defined as the half of the total power and is 

given as follows [67], [68]. 

                                  ∑ 𝑃𝑗 =𝑀𝐷𝐹
𝑗=1 ∑ 𝑃𝑗 =𝑀

𝑗=𝑀𝐷𝐹
1

2
∑ 𝑃𝑗

𝑀
𝑗=1                                                             (2.1) 

where, 𝑀𝐷𝐹 is the median frequency, 𝑀 is the total frequency and 𝑃𝑗 is the 𝑗𝑡ℎ power that sums 

to total power over entire 𝑀.  

2.2. Magnitude Squared and Wavelet Transform Coherence of EEG 

Raw 

EEG 

Data

Resample 

to 

125Hz

Remove 

Bigger 

Artifacts

BPF 

(0.5-30Hz)
ICA ADJUST PWELCH

Relative 

Band 

Power  

Fig. 3. Step-by-step signal processing block diagram to compute relative spectral power distributed in the respective EEG frequency bands. 
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EEG coherence is a measure of functional connectivity between brain regions recorded from 

spatially separated scalp electrodes to estimate the similarity of waveform components generated 

by the mass action of neurons in underlying cortical regions  [69], [70]. Functional connectivity is 

an undirected relationship and a measure of correlations between two or more nodes in frequency 

domain can be quantified through coherence [71]. The two coherence methods are briefly 

described. Magnitude Squared Coherence (MSC) is used to obtain correlations between two 

different signals 𝑥 and 𝑦 in frequency domain. It is the ratio of cross-spectrum of 𝑥 and 𝑦 to the 

product of auto-spectrum of 𝑥 and 𝑦 and is calculated from the expression as follows [70].  

                                            𝐶𝑥𝑦(𝑓) =
|𝑃𝑥𝑦(𝑓)|2

|𝑃𝑥𝑥(𝑓)|.|𝑃𝑦𝑦(𝑓)|
                                                                                       (2.2)                                                    

where,  𝐶𝑥𝑦(𝑓) is MSC, 𝑃𝑥𝑦(𝑓) is cross-spectral power of 𝑥 and 𝑦, 𝑃𝑥𝑥(𝑓) is auto-spectral power 

of 𝑥, and 𝑃𝑦𝑦(𝑓) is auto-spectral power of 𝑦. MSC is computed with a Hamming window size of 

256 samples at 50% overlap having 256 DFT points.  

Neural signals are non-linear and non-stationary. Wavelet Transform Coherence (WTC) can detect 

short episodes of coupling between neural signals measuring coherence as a function of time and 

frequency [72]. The time-frequency coherence analysis from WTC solves the problem of non-

stationarity than the classical Fourier based MSC which is only a function of frequency [73]. In 

WTC, 𝑥 and 𝑦 signals are correlated with Morlet wavelet function. The function consists of product 

of a sinusoidal wave at frequency 𝑓 and a Gaussian function centered at time τ with standard 

deviation σ and is given as [74]: 

                                             ψτ,𝑓(𝑢) = √𝑓𝑒𝑖2𝛱𝑓(𝑢−τ)𝑒
−(𝑢−τ)2

σ2                                                       (2.3) 
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WTC is computed using the Morlet wavelt with 12 equal number of voices per octave and scales 

to smooth. MSC and WTC are compared in four frequency spectra: delta (δ, 0.5-4Hz), theta (θ, 4-

8Hz), alpha (α, 8-13Hz), and beta (β, 13-30Hz) and the mean coherence is used for statistical 

comparison. 

2.3. Heart and Pulse Rate Variability 

HRV is a measure of time variation between each heartbeat in ECG signal. The changes in 

heartbeats are controlled by ANS. HRV is a marker of homeostasis and analyzed in time and 

frequency domains [75]. The results from the various studies depicted that PPG is a surrogate of 

ECG and an analogous approach of HRV in PPG signal is Pulse Rate Variability (PRV) [76]–[79]. 

HRV from ECG or PRV from PPG first relies on detection of the ‘R’ peaks in ‘QRS’ complex of 

ECG. That means the PPG analysis is referenced on ECG. The normal ECG waveform is shown 

in Figure 2.3.  

 

Figure 2.3. The normal electrocardiogram (ECG) signal depicting P, Q, R, S, and T (source: EKG 

Academy). 

The ECG ‘R’ peaks are generally detected from widely used Pan-Tompkins algorithm [49]. After 

detecting ‘R’ peaks, the locations of ‘R’ peaks are obtained and successive RR intervals (RRI) are 
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calculated. Heart rate (HR) can be calculated from RRI, and mean HR is obtained as the reciprocal 

of mean RRI within a certain duration and gives as follows. 

                             𝐴𝑣𝑔.𝐻𝑅 =
60

𝐴𝑣𝑔.𝑅𝑅𝐼 (𝑠𝑒𝑐)
 𝑏𝑒𝑎𝑡𝑠/ 𝑚𝑖𝑛                                                            (2.4) 

Similar to ECG, PPG has also ‘P’ peaks after a duration of PAT and HR can also be calculated 

from pulse-to-pulse intervals (PPI). The detection of ‘R’ and ‘P’ peaks in ECG and PPG as well 

as RRI and PPI waveforms is illustrated in Figure 2.4. 

 

Figure 2.4. R-to-R interval (RRI), pulse-to-pulse interval (PPI), and pulse arrival time (PAT) peak 

from simultaneously recorded electrocardiogram (ECG) and photoplethysmogram (PPG) for three 

heart beats from a representative participant [80]. The different time and frequency domain 

features extracted from ECG/PPG are described in appendix A. 

2.4. Machine Learning 
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Machine learning is one of the most useful statistical method to perform a specific task when the 

structure of the task is not well understood but can be characterized by dataset with strong 

statistical regularity. It has numerous applications such as search and recommendation, automatic 

speaker identification, face identification, objects tracking, medical diagnosis, and drug delivery. 

It is divided into supervised and unsupervised learning. In supervised learning, the data has labels 

whereas the data has no labels in unsupervised learning. The problem of predicting a discrete 

random variable y from another random variable x is called classification. Consider data 

(𝑥1, 𝑦1), (𝑥2, 𝑦2)……… . (𝑥𝑛, 𝑦𝑛) where  

𝑥𝑖 =

[
 
 
 
 
𝑥𝑖1

.

.

.
𝑥𝑖𝑑]

 
 
 
 

 ϵ   𝑋  ϲ  ℝ𝑑 

is a d-dimensional vector and 𝑦𝑖 takes values in some finite set 𝑌. A classification rule is a function 

ℎ: 𝑋 → 𝑌 and 𝑦 is predicted as ℎ(𝑥) from a new 𝑥 [81].   

2.4.1. Linear and Quadratic Discriminant Analysis 

The Bayes classifier is based on the conditional probability rule to perform classification. The 

conditional probability of an event B is the probability that the event will occur given the 

knowledge that an event A has already occurred. This probability is written as P(B|A). Bayes 

classifier is a fundamental statistical approach towards the problem of classification. Let us 

consider two classes y={0, 1}. Then, the probability distribution of an unknown quantity in class 

1 can be obtained as: 

                                        P(𝑦 = 1|𝑥 = 𝑥0)=    
𝑃(𝑥 = 𝑥0|𝑦 = 1) 𝑃(𝑦=1)

𝑃(𝑥=𝑥0)
                                     (2.5) 
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where, P(𝑦 = 1|𝑥 = 𝑥0) is called posterior probability distribution of an unknown quantity 𝑥0, 

𝑃(𝑥 = 𝑥0|𝑦 = 1) is called class conditional density or likelihood, and 𝑃(𝑥 = 𝑥0) is called 

marginal. The decision boundary is a set of points such that the probability of being in class 1 is 

same as the probability of being in class 0. These points are used to set a boundary such that any 

test points can be classified. If a test point lies to one specific side of a boundary, then it belongs 

to that class. The linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) 

are two classifiers based on Bayes approach. 

In LDA, we assume class conditional as a multivariate Gaussian distribution and both the classes 

share the same co-variance matrix. The decision boundary is linear and any point in this line has 

an equal probability of lying in class 0 or 1. In real, the distribution of data and co-variance matrix 

of each class may be different, however, we assume to have Gaussian distribution and same class 

co-variance in case of LDA. If we relax on the second assumption of LDA and consider the co-

variance matrix of both classes to be different, then shape of the decision boundary will change to 

quadratic that makes QDA classifier. That means, in QDA, we assume multivariate Gaussian 

distribution with unequal class co-variance matrices [81].  

 2.4.2. Random Forest Classifier 

A random forest (RF) classifier is an ensemble of decision trees. An ensemble is a group or 

combination of multiple machine learning algorithms to obtain better predictive performance than 

any of the individual decision trees. During training, multiple decision trees are constructed. These 

individual decision trees turn out to be different because only a subset of features are given to each 

of them, using a technique called bagging. During prediction, mode of the classes of individual 

decision trees constitute the output of the forest. Bootstrap aggregation or bagging averages 
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prediction over a collection of bootstrap samples, thereby reducing its variance. Each bootstrap 

tree will involve different features than the original and might have different number of terminal 

nodes.  Thus, the problem of low bias and high variance causing instability of decision trees is 

reduced due to bagging. The bagged estimate is the modal prediction from these trees. The random 

forest is a substantial modification of bagging that builds a large collection of de-correlated trees. 

The depth of tree i.e. leaf node size and feature subset size are the two important parameters for 

tuning the RF classifier. For classification tasks using RF classifier, the default feature subset size 

is the square root of total feature size and minimum leaf size is 1. The binary splitting is preferred 

in RF classifier at each node because the problem with multiway split is that it fragments the data 

too quickly, leaving insufficient data at the next level down [81].  

2.5. Nested Cross-Validation 

Cross-validation (CV) is a model validation technique to assess the results of a statistical model to 

an independent dataset. It is a popular strategy for model selection. The idea behind CV is to split 

the data into training and test sets. The training dataset is used to design a predictive machine 

learning model and the designed model is validated on the test datasets, also called validation 

datasets. CV helps to select the algorithm with the smallest error avoiding over and under fitting 

[82]. The CV are beneficial in use of all available data considering less availability of medical 

data, reliable performance with random data selection for validation and parameters tuning to 

select the best parameters. In this work, a nested CV is used for features selection as well as model 

assessment. The word nesting simply means placing one inside the other. That means, inner CV is 

used for feature selection and the outer CV is used for model evaluation. The architecture of nested 

CV is depicted in Figure 2.5. 
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Figure 2.5. Nested cross-validation (CV) architecture for feature selection and model assessment 

[83]. The features are selected using feature selection (FS) classifier in the inner loop and the 

classifier model is evaluated in the outer loop. 

In the first step, the whole dataset is divided into training and testing using leave-one-participant-

out CV. That means the entire samples from a particular participant is left for testing in the outer 

loop. Then, the training samples are again divided randomly into further training and test samples 

using 5-fold CV in the inner loop. After that, feature subsets are generated from feature selection 

classifier in the inner loop using a feature selection procedure. The minimal error can be used as a 

feature selection criterion. Finally, the selected features are used to assess the performance of the 

classifier at the outer loop in leave-one-participant-out procedure. Nested CV ensures that the 

parameter selection and model validation are independent, thus preventing the over fit of tuning 

the parameters to the train set [84]. 

2.6. Data Acquisition and Processing 

2.6.1. Experimental Protocol 
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The simulated flight scenario and data collection took place in a Piper Seminole fixed-base 

aviation training simulator at John D. Odegard School of Aerospace Sciences, University of North 

Dakota (UND). FAA certified commercially rated pilots participated in data acquisition. 

Participants were asked to report for a routine flight scenario which would take place during the 

window of circadian low (2:00 am- 6:00 am) defined by the FAA. Each participants were requested 

to avoid naps, sleep, and caffeine or similar energy beverages from the time they woke up the 

previous day in advance of showing for the study. All participants were requested to remain awake 

for 18-20 hours before starting the experiment. 

Each participant’s data acquisition process was divided into two phases: a takeoff phase of 

approximately six minutes and a cruise phase using autopilot of about 2 hours. From the design of 

two phases of flight, no participants reached their destination that facilitated consistent low-

workload cruise conditions for data acquisition. This was done so to maintain constant/ 

monotonous work environment during the second phase of flight to observe drowsiness. If 

participants had to fly till destination by modifying the experimental protocol, then they would 

have different workload during landing phase near to the destination. The data recording sessions 

were concluded upon meeting one of the three conditions: (1) the session reached 2.5 hours of 

flight time, (2) the participant had been awoken twice from a period of sleep more than five minutes 

or (3) the participant elected to discontinue the session. This experiment was approved by the 

Institutional Review Board at UND. 

2.6.2. Data Recording 

The four major recorded signals are EEG, ECG, PPG, and EOG. EEG was recorded using 13 

electrodes from five brain regions: frontal (F3, Fz, F4), central (C3, Cz, C4), parietal (P3, Pz, P4), 
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temporal (T7, T8), and occipital (O1, O2) using international 10-20 EEG electrode placement 

system, and the unilateral ear of the participant was used as a reference in that hemisphere. ECG 

was recorded from a single channel using Lead II Einthoven’s Triangle and PPG was recorded 

from the earlobe. All the signals were recorded at a sampling rate of 500Hz using BIOPAC data 

acquisition system (MP160, BIOPAC Systems, CA). The facial information were simultaneously 

acquired from the DMS camera sensor, which included an infrared light and an infrared camera. 

The camera was glare shield-mounted and rearward facing towards the participant. Vertical EOG 

signal was also recorded to verify the DMS MS events. In addition, the drowsiness level through 

the KSS was also self-reported by each participant before and after the experiment. The overall 

experimental setup for data recording is shown in Figure 2.6.   
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Figure 2.6. The experimental setup for data acquisition using Piper Seminole fixed-base aviation 

training simulator is shown on the top (a) and a pilot participating in the experiment with embedded 

electrodes is shown on the bottom (b). The acquisition of four physiological signals: 

electroencephalogram (EEG), electrocardiogram (ECG), photoplethysmogram (PPG), and 

electrooculogram (EOG) are depicted in the figure [66]. 

Among 18 pilots recruited for data collection, one participants recording was interrupted due to 

technical problems and other participant had no MS data, hence these two participants were 

discarded from data analysis. Therefore, signals acquired from the remaining 16 participants (age: 

21.5±2.4 year, 2 females) were used for further analysis. All participants had previous mean flight 

time experience of 282 hours, and had mean simulated flight time of about two hours between 

takeoff and end time during the experimental session. The participants were also requested to self-

report KSS scale before and after experiment and a significant difference (p<0.05) was observed 

between them using t-test as shown in Table 2.1. 

Table 2.1. The basic information of valid participants. A significant difference was observed in 

the KSS value at the end of the experiment compared to the beginning. ‘*’ represents alpha level 

at 0.05.   

Participant  

ID 

Age 

(years) 

Gender 

Flight  

Time 

(hours) 

Takeoff  

time 

(am) 

End  

Time 

 (am) 

KSS 

(start) 

KSS  

(end) 

105 20 Male 250 2:04 4:26 6.0  9.0  

122 27 Male 400 2:14 4:21 6.0  8.0  

126 21 Male 280 2:11 4:11 7.0  8.0  
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133 21 Male 315 2:11 4:18 4.0  9.0  

135 28 Male 419 1:57 4:04 6.0  9.0  

136 21 Female 185 2:08 4:08 7.0  9.0  

140 21 Male 200 2:06 3:25 7.0  9.0  

143 20 Male 400 2:06 4:18 7.0  9.0  

145 20 Male 430 2:10 4:15 6.0  8.0  

149 21 Male 200 2:09 4:23 3.0  8.0  

165 21 Male 215 2:00 4:26 3.0  9.0  

172 20 Male 280 2:05 4:20 7.0  9.0  

179 21 Male 250 2:09 4:33 4.0  8.0  

183 21 Male 300 2:13 3:42 7.0  9.0  

198 21 Female 195 2:20 4:06 5.0  9.0  

199 20 Male 200 2:08 4:15 1.0 9.0 

mean 21.5±2.4 14 / 2 282±87 2:08 4:11 5.4±1.9 8.7±0.5* 

 

2.6.3. Data Preparation 

Seeing Machines DMS was used to detect MS from long eyelid closure (LEC) events by non-

invasively measuring eyelid behavior. Once LEC events had been identified by the DMS, a manual 

HACM review process was followed to determine if an instance was indeed a microsleep. HACM 

identified MS by classifying these LEC events, specifically the events between 1.5s and 15s 

duration were classified as MS, and greater than 15s as long-sleep (LS). MS and LS classifications 
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were used to investigate potential differences between shorter and longer drowsy periods. A 

detailed description is provided in Appendix B. 

Once LEC events were identified by DMS, manual HACM was used to determine if the LEC were 

indeed MS events (MS and LS periods) via three strict rules: (1) During the eye closure, the pilot 

was not engaged in any secondary behavior. (2) During the eye closure, the pilot appeared to 

exhibit signs of drowsiness or reduced cognitive capacity (e.g. slumping head position/ posture). 

(3) The eye closure event exhibited reduced velocity of eyelid closure and opening [85]. Finally, 

the MS events annotated via DMS technology were further confirmed using EOG signal by manual 

verification that no blinks were observed during those periods. These steps were followed to ensure 

the reliability of annotated drowsy periods. A flowchart for the annotation process is illustrated in 

Figure 2.7. 
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Figure 2.7. The flowchart for annotation of drowsy periods. The Seeing Machines Driver 

Monitoring System (DMS) was used to detect long eyelid closure (LEC) events and a manual 

Human Annotation Classification Method (HACM) is followed to ensure the microsleep candidate 

(microsleep (MS) and longsleep (LS)). Finally, all candidate MS events were further verified by 

electrooculogram (EOG) [66]. 

2.6.4. EEG Data Processing 

For PSD and coherence analysis, we compared spectral power from three physiological states: BS, 

MS, and LS periods. EEG signals from 13 channels were resampled to 125 Hz. Then, high 

amplitude artifacts were removed and band pass filtered to 0.5-30 Hz and then ICA and ADJUST 

algorithm were used as mentioned in power spectral analysis section above.  

PSD was calculated using Welch’s power spectral density estimate having Hamming window size 

of 128 samples with 50% overlap and 256 discrete Fourier transform (DFT) points. Finally, the 

relative spectral power including delta (δ, 0.5-4Hz), theta (θ, 4-8Hz), alpha (α, 8-13Hz), and beta 

(β, 13-30Hz) were calculated [86]. Furthermore, four indices (i) (θ+α)/β, (ii) α/β, (iii) (θ+α)/(α+β), 

and (iv) θ/β were computed as the additional indicators of drowsiness [87]. The mean of each 

indicator (four frequency band indicators and four derived indices) during different psychological 

states (BS, MS, and LS) from the channels corresponding to the same region of brain was 

calculated, then all those mean values of each indicator from the five regions were used for 

statistical analysis. For example, the mean of O1 and O2 was considered as the occipital signal. 

For coherence analysis, the resampled and filtered signals from five EEG electrodes: T7, C3, Cz, 

C4, and T8 within the aviation headset region are used for analysis. The coherence from each 

channel is obtained using a 4 sec window. This particular window length is selected at which the 
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coherence value is found to be higher than the other lengths. Non-drowsy EEG is obtained from 

the baseline starting from 2 min and the signal is cut with a 4 sec segment sliding with 3 sec overlap 

for 20 iterations in each subjects. For MS EEG, MS events greater than 5 sec is chosen and cut 

with 4 sec length from the onset of MS. Similarly for LS EEG, LS events greater than 20 sec is 

chosen and cut with 4 sec length after 15 sec of LS. This is done because LEC events up to 15 sec 

constitute MS. Then, the mean of MSC and WTC on the three physiological states: BS, MS, and 

LS are computed and used for statistical analysis. A simple aviation headset with the electrodes 

location within the headset region is depicted in Figure 2.8. 

                                       

Figure 2.8. A sample of aviation headset [88] and the electrodes location within the headset region 

from left to right respectively. 

2.6.5. ECG Data Processing 

The acquired ECG signal from a single channel using Lead II Einthoven’s Triangle is segmented 

into four experimental time periods (T1, T2, T3, and T4) as shown in Figure 2.9.  
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Figure 2.9. The experimental protocol illustrating four time periods (T1, T2, T3, and T4). The 

three time periods are pre-defined as: baseline (T1, 0-5 min), relax (T2, 10-15 min), and fatigued 

(T3, 70-75 min), whereas drowsy period (T4) is obtained from longest eye-closure based on 

vertical electrooculogram (EOG) and vary with participants [80]. 

During the baseline period (T1, 0-5 min), the pilots were busy conducting flight takeoff and climb 

operations and can be considered as an alert time. During relax period (T2, 10-15 min), the flight 

is in autopilot mode and assumed that the pilots are in relaxation state. The third period (T3, 70-

75 min) is hypothesized as fatigued period assuming that the pilots are stressed and fatigued due 

to longer flight duration and sleep deprivation from the previous day. The final 5 min period (T4) 

is calculated as a drowsy period where pilots are falling asleep and the period is obtained from 

long sleep events based on the analysis of EOG or eye blink periods selecting the periods of no 

eye blink. The complete segment of T4 is obtained from additional recorded data prior to the long 

sleep event to make the periods of 5 min for each participant.   

The R peaks are detected from the segmented data in each experimental time periods using Pan-

Tompkins method [49] and RR intervals are calculated. Ten time domain features: heart rate (HR), 

standard deviation (SD), standard deviation of successive difference (SDSSD), root mean square 

of successive difference (RMSSSD), triangular index (TI), sample entropy (SA), NN20, PNN20, 
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NN50, and PNN50 based on HRV were calculated from RR intervals. To find frequency domain 

features, RR intervals are interpolated using spline interpolation with 500 sample points. This 

maintains the continuity of RR intervals. Then, the interpolated RR interval is resampled to 1 Hz 

since the frequency spectrum of HRV lies from 0 to 0.5 Hz. Finally, power is calculated using 

Welch’s power spectral density method having Hamming window size of 64 samples with 50% 

overlap. Power in three frequency bands were obtained: very low frequency (VLF, 0-0.04 Hz), 

low frequency (LF, 0.04-0.15 Hz), and high frequency (HF, 0.15- 0.5 Hz). LF represents both 

sympathetic and parasympathetic modulations of heart, whereas HF represents mainly 

parasympathetic influences and LF/HF ratio represents symapthovagal balance. LF and HF were 

measured in absolute values of power (ms^2) as well as in normalized units (n.u.), which represent 

relative value of each power component in proportion to the total power minus the VLF component 

[75]. The description of time and frequency domain features are provided in appendix A. The 

mean±SE from each features (ten time domain and six frequency domain) during four 

psychophysiological states (T1, T2, T3, and T4) were calculated and the mean values of each states 

were used for statistical analysis. The steps for calculation of time and frequency domain features 

are depicted in Figure 2.10. 

 

Figure 2.10. Steps for calculation of time and frequency domain features from electrocardiogram 

(ECG). Time domain features are obtained from RR intervals and frequency domain features from 

Pwelch spectrum. 

2.6.6. Statistical Analysis 

ECG 
Signal

RR Intervals Interpolation Resampling Pwelch
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The normality test using Shapiro-Wilk method among three physiological states (BS, MS, and LS) 

of EEG spectrum showed mixed behavior due to limited sample size and uneven distribution in 

three states. Therefore, Kruskal-Wallis test followed by Bonferroni correction was used to 

calculate the significant difference at α=0.05 between the three states in the four EEG spectrum. 

Similarly for ECG analysis, a Shapiro-Wilk test is used to examine the normality of data among 

four defined periods (T1, T2, T3, and T4) to determine the use of a parametric or nonparametric 

method based on the data distribution. The normality test shows mixed behavior in case of ECG 

analysis too due to limited sample size; therefore, a Kruskal-Wallis test followed by a Bonferroni 

correction as a post hoc analysis is used to test the significant difference at α=0.05 between the 

four periods. All the tests are conducted using a statistical toolbox of MATLAB (The MathWorks, 

Inc., Natick, MA, USA). All the graphs and tables are presented as mean±SE and mean±SD 

respectively.  
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Chapter 3.  

Spectral Analysis of Electroencephalogram during Drowsiness  

3.1. Summary 

Background: Detecting drowsiness plays an important role in aviation industry. The use of 

feasible approach to quantify drowsiness gives an added advantage. EEG is non-invasive and 

simpler to acquire so, it is widely used to characterize drowsiness. However, its behavior at the 

exactly annotated drowsiness periods remains to be investigated. The subjective measures such as 

KSS and PVT are often used references to analyze drowsiness that has high inter participant’s 

variability and numerous limitations. Methods: To address the limitations, Seeing Machines (SM) 

Driver Monitoring System (DMS) is used to annotate microsleep (MS) events which are further 

verified using vertical EOG. EEG, EOG, and facial behavior data are recorded simultaneously 

from sixteen commercially-rated pilots in simulated flights during WOCL. The PSD within the 

five brain regions: frontal, central, parietal, occipital, and temporal and coherences (MSC and 

WTC) from EEG electrodes within the region of aviation headset: T7, C3, Cz, C4, and T8 using 

10-20 international system are computed. The analysis is performed within the four EEG spectra: 

delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-13 Hz), and beta (13-30 Hz). Results: On analyzing PSD, 

delta power reduces during MS (p<0.05 in all regions), alpha power increases during MS (p<0.01 

in all regions), while theta and beta powers did not change (p>0.05). The coherence analysis among 

aviation headset depicts that WTC provides more profound results than MSC with significant 

synchronization (p<0.05) among most of the electrodes at alpha band which is the main indicator 

for drowsiness. Conclusion: The PSD analysis highlights the capability of EEG delta and alpha 

spectrum towards characterizing MS events. Further, the coherence results illustrate functional 
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neural connectivity highlighting the effectiveness of WTC to detect drowsiness using EEG from 

suitable electrodes placement within the aviation headset. The results depict the potential of EEG 

spectra to characterize drowsiness and the plausibility for detection from the typical aviation 

headset. 

3.2. Background 

Polysomnography (PSG), also known as sleep study, involves the monitoring of various aspects 

of body activity during sleep. It records brain waves, oxygen level in blood, heart rate, breathing 

rate, and eye as well as leg movements during the study to diagnose sleep disorders [89]. Sleep 

cycle is broadly divided into five stages: rapid eye movement (REM), non-REM1 (NREM-1), 

NREM-2, NREM-3, and NREM-4 where REM sleep and NREM sleep alternate across the night 

in a 90 min cycle. The description of various sleep stages are given in Table 3.1 [90]. The table 

includes all the five sleep stages, patterns of EEG during each stages, and the response of 

participants. 

Table 3.1. Description of five sleep stages (awake, NREM-1, NREM-2, NREM-3, NREM-4, and 

REM) in correspondence to EEG patterns and human physiological states. 

Sleep Stage Status EEG Patterns Comments 

Zero Awake Rapid varying, low voltage EEG 

and prominent beta waves 

Patient’s eyes open 

Stage 1 NREM-1, 

drowsiness 

Alpha waves predominant and 

EEG frequency around 6-8 Hz 

Very slow eye movements 
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Stage 2 NREM-2, 

light sleep 

K-complexes and sleep spindles 

begin to appear, EEG medium 

amplitude with frequency 4-7 Hz 

Eye movements stop with 

slower brain waves 

Stage 3 NREM-3, 

deep sleep 

Delta waves begin to appear, EEG 

high amplitude with frequency 

around 1-3 Hz  

Awakening is rare 

Stage 4 NREM-4, 

deeper 

sleep 

Slow delta waves prominent, Very 

high EEG amplitude with 

frequency less than 2 Hz 

Very difficult to awake 

person 

Stage 5 REM, 

dreaming 

Brain waves more active than 

stage 3 and 4, theta wave is more 

predominant 

Rapid eye movements with 

occasional muscular 

twitches, arousal is easy 

 

Drowsiness is defined as the propensity to fall asleep. It is NREM-1 sleep stage, a transition from 

awake to onset of sleep. Driver drowsiness has been considered as one of the major causes of road 

accidents [7]. A report of US National Highway Traffic Safety Administration found that drivers’ 

drowsiness results in 1,550 deaths, 71,000 injuries, and $ 12.5 billion losses in revenue every year 

[7], [91]. According to the National Sleep Foundation, about half of U.S. adult drivers admit to 

consistently getting behind the wheel while feeling drowsy. The drivers may not realize how much 

drowsy driving puts themselves and others at risk. The Governors Highway Safety Association 

report states that an estimated 5,000 people died in 2015 due to crashes involving drowsy driving. 

Driving after going more than 20 hours without sleep is equivalent to driving with a blood-alcohol 

concentration of 0.08%, the US legal limit. When a driver experiences 4 to 5 seconds of MS, then 
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the vehicle will travel the length of a football field [92]. Drowsiness has also detrimental effects 

in pilots during flight operations. The long and monotonous flights make pilots in the cockpit 

drowsy and fatigue. FAA maintains a strict protocol of pilot’s fitness for flight. The standards for 

medical certification are contained in 14 CFR part 67. These medical conditions also include 

drowsiness and fatigue [11]. Self-assessment of drowsiness and fatigue state by pilots may not be 

the effective approach to evaluate their psycho-physiological conditions that may result aviation 

hazards. There are various aviation accidents due to drowsiness and fatigue and the accidents occur 

in space, the loss is tremendously high [6]. Thus, there is a requirement of efficient and reliable 

drowsiness detection system in aviation to mitigate such life-taking hazards. 

There are various approaches for drowsiness detection. Among them, the three main approaches 

are: vehicular, behavioral, and physiological as mentioned earlier [15]–[17]. The first two 

approaches are system dependent and affected by external environmental conditions. They detect 

drowsiness only after eye-closure which is too late to prevent an accident. The changes in 

physiological signals due to drowsiness occur before eye-closure and the analysis of these signals 

can characterize drowsiness before falling sleep that is practical in real time to detect drowsiness 

[3], [4].  

Among various physiological signals such as EEG, ECG, EOG, and PPG; EEG is a commonly 

used drowsiness indicator [2], [17], [33], [34]. EEG is a reflectance of brain dynamics and 

drowsiness effects are vivid in the brain, it is an effective indicator. EEG is non-invasive, easy to 

acquire from limited electrodes, and drowsiness effects are clearly reflected in the spectral 

behavior [4], [36], [93]. To study the EEG behavior, various features are extracted in time, 

frequency, and non-linear domains. Time domain features include statistical (mean, standard 

deviation, root mean square, skewness, and kurtosis) and Hjorth parameters (activity, mobility, 
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and complexity) [94], whereas frequency domain features include power spectral analysis, median 

frequency, and wavelet transform. The commonly used non-linear features are entropies, largest 

Lyapunov exponent, and Hurst exponent [95]. Out of these, spectral power changes in EEG 

frequency bands: delta, theta, alpha, and beta are common in literature to estimate shift of 

psychological state from alertness towards drowsiness [86], [96]. The alpha has been observed as 

the most relevant drowsiness indicator within the spectrum [65], [97], [98]. However, there are 

contradicting views regarding the spectral changes in different brain regions due to traditional 

approaches for drowsiness annotations [65], [97]–[100].  

Apart from PSD, coherence analysis is also common in literature to estimate the interactions 

between different electrode pairs. EEG coherence is a measure of functional connectivity between 

brain regions recorded from spatially separated scalp electrodes to estimate the similarity of 

waveform components generated by the mass action of neurons in underlying cortical regions [69], 

[70]. Estimating coherence across the physiological states help to understand the neural 

mechanisms towards drowsiness and may provide early assessment to prevent aviation accidents. 

In this chapter, the MSC and WTC are also compared to illustrate significant interactions among 

five EEG electrodes: T7, C3, Cz, C4, and T8 within the headset region.  

The alterations in electrophysiological organization between brain regions were first observed by 

[69] through inter and intra-hemispheric MSC during light drowsiness. In contrast to the MSC 

based on Fourier transform, WTC was first used in neural signals by [72] to estimate coherence in 

course of time between single trial brain signals. Neural signals are non-linear and non-stationary. 

WTC can detect short episodes of coupling between neural signals measuring time- frequency 

coherence [72]. This coherence analysis from WTC solves the problem of non-stationarity than 

the classical Fourier based coherence which is a only a function of frequency [73]. 
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A number of EEG electrodes have been used for drowsiness estimation ranging from 64 to 1 [101]–

[105]. Even, drowsiness has been detected from non-hair bearing areas using six electrodes to 

avoid interference of hair and the skin [106]. Embedding EEG electrode cap with even a single 

sensor at unfeasible brain region may be cumbersome to pilots during flight operations. Therefore, 

we propose a novel idea to place electrodes along an aviation headset around the central sulcus of 

the hemisphere. Embedding electrodes through the headset will eliminate the extra sensor 

placement due to which drowsiness can be estimated from the coherence analysis among the 

electrode pairs. 

As stated earlier, there are varying results in literature due to different approaches adopted for 

drowsiness annotation. Annotating drowsy EEG periods is critical to evaluate the spectral behavior 

and failure to do so produces misleading results. Manual scanning and interpretation by highly 

trained experts is time consuming and expensive [107]. Currently, the subjective measures such as 

KSS and PVT based on participants’ feelings are used to assess drowsiness levels [21]–[23] and 

these measures have limitations. To overcome the limitation of annotating drowsy EEG periods, 

we integrated Seeing Machines DMS in our experiment that performed computer vision analysis 

of facial behavior i.e. face, eye, and eyelid tracking. Then, eyelid closure data was used to obtain 

PERCLOS value and candidate sleep events. Finally, Human Annotation Classification Method 

(HACM) was used to obtain microsleep (MS) events [85] and simultaneously recorded EOG signal 

was used to verify the annotated MS events to make sure no eye blink exists in them. The existence 

of no eye blink was essential for long eyelid closure, eye closure greater than 0.5s [85], to annotate 

MS events to ensure that the participant was in drowsy state. In this research, we comprehensively 

investigated the characteristics of EEG during SM annotated drowsy periods via DMS technology. 

The brain region suitable for drowsiness detection was also explored. 
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In this chapter, we combine two approaches: PSD and coherence to characterize drowsiness. The 

PSD analysis in EEG spectra among the different physiological states helps to understand the 

significant changes in EEG power that exist in specific brain regions during drowsiness. The 

coherence analysis provides the significant interactions within a particular EEG spectra at specific 

interactions within the region of aviation headset. The both approaches aid in characterizing 

drowsiness using EEG spectral changes. 

3.3. Results 

The relative PSD changes (mean±SD) in the δ, θ, α, and β and indices (i) (θ+α)/β, (ii) α/β, (iii) 

(θ+α)/(α+β), and (iv) θ/β in BS, MS, and LS states for five specific brain regions are listed in 

Tables 3.2 and 3.3. In addition, their trends (mean±SE) are further illustrated in Figures 3.1 and 

3.2 respectively. The post hoc p-value for significant difference between each two states are listed 

in Table 3.4. The analyzed regions include frontal (F3, Fz, F4), central (C3, Cz, C4), parietal (P3, 

Pz, P4), temporal (T7, T8), and occipital (O1, O2). Statistical analysis on comparing MS and 

baseline showed that delta power had significant decrease (p<0.05 for temporal, and p<0.001 for 

others), while alpha had significant increase (p<0.001) in all regions. Index (i) had significant 

increase (p<0.05 for frontal and central, and p<0.001 for parietal and occipital) in all regions except 

temporal. For index (ii), significant increase (p<0.05 for temporal, and p<0.001 for others) was 

found in all regions. In addition, comparison of LS with baseline showed that delta power had 

significant decrease in parietal whereas, alpha had significant increase in all regions except 

temporal (p<0.05). Furthermore, index (i) had significant increase (p<0.05) in central and parietal, 

and index (ii) had significant increase (p<0.05 for central and occipital, and p<0.001 for parietal) 

in all regions except frontal and temporal. However, there were no significant (p>0.05) changes 

in all the indicators between MS and LS. 
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Table 3.2. Relative spectral power distribution (mean±SD) for four frequency bands in five brain 

regions ((Frontal, F), (Central, C), (Parietal, P), (Temporal, T), and (Occipital, O)) under three 

conditions. ‘*’ and ‘†’ represent the alpha level: p=0.05, and p=0.001 respectively for significant 

difference. 

Indicator Region BS (%) MS (%) LS (%) 

δ 

F 68.08±10.91 49.24±12.57† 57.10±9.56 

C 64.92±9.87 42.83±12.23† 52.24±11.03 

P 63.28±11.72 36.33±13.43† 47.25±14.85* 

T 66.15±11.89 50.30±11.99* 56.97±11.49 

O 60.43±13.33 38.59±12.79† 47.19±14.16 

 

θ 

 

F 13.58±4.21 15.78±3.43 16.18±2.45 

C 13.41±3.31 15.81±5.49 15.69±2.90 

P 13.75±3.70 13.03±4.65 15.27±3.41 

T 9.83±3.18 12.50±3.96 12.40±2.39 

O 11.71±3.44 12.60±6.59 13.99±3.32 

α 

F 8.06±3.80 23.65±12.83† 15.86±9.20* 

C 9.56±3.55 28.68±14.00† 20.28±11.70* 

P 10.52±3.92 39.58±16.34† 27.01±17.05* 

T 8.04±3.89 20.57±11.34† 14.42±8.43 

O 10.44±3.54 33.71±16.61† 22.19±13.37* 

β 

F 10.28±4.57 11.32±3.44 10.86±5.13 

C 12.10±4.91 12.68±4.77 11.80±6.40 
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P 12.44±5.54 11.06±3.72 10.48±5.16 

T 15.98±8.73 16.63±6.84 16.20±7.67 

O 17.42±9.32 15.10±6.17 16.63±8.12 

 

 

Figure 3.1. Relative spectral power distributed (mean±SE) in four EEG frequency bands: δ, θ, α, 

and β under three psychological states (BS, MS, and LS) in five brain regions ((Frontal, F), 

(Central, C), (Parietal, P), (Temporal, T), and (Occipital, O)). The x-axis represents three 

psychological states and y-axis represents relative power spectral density (PSD). The ‘*’ and ‘†’ 

represent significant difference at p = 0.05 and p = 0.001 respectively in MS and LS compared to 

BS. BS=Baseline, MS=Microsleep, LS=Long sleep [66]. 

 

Table 3.3. Value (mean±SD) for four indices in five brain regions ((Frontal, F), (Central, C), 

(Parietal, P), (Temporal, T), and (Occipital, O)) under three conditions. ‘*’ and ‘†’ represent the 

alpha level: p=0.05, and p=0.001 respectively for significant difference. 
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Indicator Region BS (%) MS (%) LS (%) 

(i) 

(θ+α)/β 

F 2.43±0.89 3.92±2.20* 3.49±1.63 

C 2.20±0.86 4.09±2.25* 3.98±2.81* 

P 2.22±0.69 5.49±2.86† 5.12±3.66* 

T 1.64±0.87 2.49±1.33 2.19±1.29 

O 1.57±0.62 3.85±2.45† 2.70±1.41 

(ii) 

α/β 

F 0.82±0.20 2.41±1.76* 1.78±1.35 

C 0.84±0.22 2.72±2.04† 2.35±2.51* 

P 0.89±0.23 4.25±2.79† 3.44±3.54† 

T 0.63±0.23 1.59±1.13* 1.21±1.08 

O 0.69±0.22 2.93±2.34† 1.67±1.28* 

(iii) 

(θ+α)/(α+β) 

F 1.32±0.41 1.14±0.14 1.25±0.22 

C 1.17±0.40 1.10±0.18 1.18±0.23 

P 1.16±0.33 1.05±0.10 1.18±0.18 

T 0.96±0.46 0.91±0.17 0.93±0.17 

O 0.90±0.27 0.97±0.18 0.98±0.20 

(iv) 

θ/β 

F 1.61±0.79 1.51±0.57 1.70±0.51 

C 1.36±0.76 1.37±0.47 1.63±0.63 

P 1.33±0.61 1.24±0.38 1.68±0.53 

T 1.01±0.74 0.90±0.34 0.98±0.31 

O 0.88±0.43 0.92±0.39 1.02±0.37 
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Figure 3.2. The behavior (mean±SE) of indices (i)–(iv) under three psychological states (BS, MS, 

and LS) in five brain regions ((Frontal, F), (Central, C), (Parietal, P), (Temporal, T), and (Occipital, 

O)). The x-axis represents three psychological states and y-axis represents relative PSD. The ‘*’ 

and ‘†’ represent significant difference at p = 0.05 and p = 0.001 respectively in MS and LS 

compared to baseline. BS=Baseline, MS=Microsleep, LS=Long sleep [66]. 

 

Table 3.4. The table lists multiple comparison p-values for five brain regions under three 

psychological states (BS, MS, and LS). ‘*’ and ‘†’ represent the alpha level: p=0.05, and p=0.001 

respectively for significant difference. 

Indicators 
Conditions to 

Compare 
Frontal Central Parietal Temporal Occipital 

δ MS BS <0.001†  <0.001† <0.001† 0.003*  <0.001† 



41 
 

LS BS 0.092  0.068  0.046*  0.251  0.134  

LS MS 0.614  0.276  0.343  0.599  0.432  

θ 

MS BS 0.235  0.429  0.816  0.178  1.000  

LS BS 0.149  0.214  0.889  0.075  0.625  

LS MS 1.000  1.000  0.125  1.000  0.421  

α 

MS BS <0.001† <0.001† <0.001† <0.001† <0.001† 

LS BS 0.042*  0.006*  0.005*  0.092  0.007*  

LS MS 0.290  0.317  0.243  0.259  0.237  

β 

MS BS 1.000  1.000  1.000  1.000  1.000  

LS BS 1.000  1.000  0.346  1.000  1.000  

LS MS 1.000  1.000  1.000  1.000  1.000  

(i) 

 (θ+α)/β 

MS BS 0.037*  0.002*  <0.001† 0.124  0.001†  

LS BS 0.145  0.017*  0.006*  0.697  0.058  

LS MS 1.000  1.000  1.000  1.000  0.951  

(ii) 

α/β 

MS BS 0.001†  <0.001† <0.001† 0.005*  <0.001† 

LS BS 0.086  0.005*  0.001†  0.184  0.018*  

LS MS 0.823  1.000  0.795  0.987  0.440  

(iii) 

(θ+α)/(α+β) 

MS BS 0.854  1.000  0.912  1.000  1.000  

LS BS 1.000  0.811  1.000  1.000  0.834  

LS MS 0.658  0.501  0.202  1.000  1.000  

(iv) 

θ/β 

MS BS 1.000  1.000  1.000  1.000  1.000  

LS BS 1.000  0.267  0.125  1.000  0.685  

LS MS 0.733  0.656  0.098  1.000  0.715  
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During coherence analysis, ten interactions are possible from five electrodes and the possible 

interactions include: T7-C3, T7-Cz, T7-C4, T7-T8, C3-Cz, C3-C4, C3-T8, Cz-C4, Cz-T8, and C4-

T8. The trends of MSC and WTC in terms of mean±SE in four frequency bands: δ, θ, α, and β in 

ten interactions among five electrodes in three psychological states: BS, MS, and LS within the 

EEG spectrum (0.5-30 Hz) are depicted in Figures 3.3 and 3.4.  

The results illustrated increase in coherence in most of the EEG spectra during MS from WTC 

method, in addition to this, four interactions: T7-Cz, T7-C4, T7-T8, and C3-T8 exhibited a 

significant increase (p<0.05) in alpha band illustrated in Figure 3.5. The WTC in alpha interaction 

T7-C3 is just near to significant p-value (p=0.06). However, alpha coherence from WTC decreased 

significantly at C3-T8 during LS compared to MS. Apart from these, there are no significant 

changes at all in any frequency bands from the both methods. WTC is only significant (p<0.05) at 

alpha interactions which is well recognized indicator of drowsiness and fatigue [108]. The highest 

coherence is observed at C3-Cz, and Cz-C4 interactions at all the three physiological states from 

both the coherence methods. This implies high waveform similarity around the central brain 

region.  
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 Figure 3.3. The trend (mean±SE) of Magnitude Squared Coherence (MSC) of five EEG 

electrodes within headset region in four EEG spectra. Black, blue, and red lines represent baseline 

(BS), microsleep (MS), and longsleep (LS) respectively. The x-axis represents ten interactions 

among five electrodes and y-axis represents mean MSC in four frequency spectra. There exists no 

significant difference at all. 
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Figure 3.4. The trend (mean±SE) of Wavelet Transform Coherence (WTC) of five EEG electrodes 

within headset region in four EEG spectra. Black, blue, and red lines represent baseline (BS), 

microsleep (MS), and longsleep (LS) respectively. The x-axis represents ten interactions among 

five electrodes and y-axis represents mean WTC in four frequency spectra. ‘*’ and ‘+’ represent 

significant difference (p=0.05) between BS and MS, and MS and LS respectively. 
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Figure 3.5. The significant alpha interactions from Wavelet Transform Coherence (WTC) during 

baseline (BS) and microsleep (MS). These significant interactions can be a marker for drowsiness 

detection using aviation headset. 

3.4. Discussion 

In this chapter, we comprehensively investigate the potential changes in relative spectral powers 

and coherences in respective EEG frequency bands as an indicator of transition to drowsiness 

during WOCL. We performed a study during simulated flight of the FAA certified commercially 

rated pilots. In order to accurately obtain the characteristics of EEG, we utilized Seeing Machines 

DMS technology along with EOG, for the first time, to annotate MS events.  

During PSD analysis, the relative power spectra of the four typical bands and their four derived 

indices were calculated, and all the indicators in the BS, MS, and LS states were statistically 

analyzed. In addition, we also examined drowsiness self-reported (KSS) by each participant before 

and after the experiment. Our observation of statistically significant (p=0.05) differences in the 

EEG spectral power during MS events compared to baseline underscored the feasibility of early 

stage drowsiness detection via EEG (Table 3.2). The major novelty of this study was in the 

experimental protocol, where multimodal data, including EEG, EOG, and DMS, were acquired 
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during the window of circadian low which is known to disrupt the circadian activity [5]. Therefore, 

data acquisition at this period of circadian low could offer a good potential for observing 

drowsiness within a typical 24 hours window. In addition, the simulated physiological conditions 

in our experiment are similar to the extended flight time in some flight operations scenarios. 

Referring to KSS scale [109], the statistical result indicated that the degree of drowsiness was 

significantly increased (p<0.05) during the course of the experiment (Table 2.1). Thus, spectral 

characteristics obtained from EEG during the window of circadian low was beneficial to assess 

drowsiness for pilots. 

The subjective analysis via self-assessments such as KSS and PVT have limited usability to 

quantify drowsiness and implementation of such methods always exhibits a challenge. Compared 

with these methods, DMS is used to perform visual analysis of facial expression and acquire 

drowsiness information based on PERCLOS. To assist DMS, manual evaluation process by 

HACM is further carried out and EOG is used to double check the annotated drowsy periods, due 

to which the reliability of annotation for drowsy periods is enhanced. The reliable annotation 

approach and data recording during the window of circadian low from the professional participants 

justify the effectiveness of our experiment. Therefore, our experimental results characterizing 

spectral behavior provide evidence towards the development of future technology for monitoring 

psychological states and warn pilots based on different degrees of drowsiness. 

In the existing literature, some researchers have found a significant change in delta and theta 

power, more specifically in theta during drowsy state [86], [96], [110]. In a study of simulated 

driving, it was found that theta power increased significantly during night time compared to 

baseline taken during daytime [111]. Another study on prolonged awakening revealed that theta 

power showed significant increase only at 9th, 21th and 24th hours [112]. For the study of brain 
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regions, EEG from the first and last 20 minutes of driving sessions were analyzed and found lower 

alpha power in frontal and higher in parieto-occipital regions [108]. However, the initial study by 

[17] had shown increase in alpha towards frontal and decrease towards occipital regions. Another 

experiment on simulated driving had shown higher alpha power in parietal and lower in frontal 

regions. Also, the beta power had shown dramatic decrease towards frontal site [34]. The low 

performance driving due to drowsiness was evaluated by [113] and observed to have delta, theta, 

and alpha spectral powers dominance in parietal and occipital regions. The trend of EEG spectrum 

within brain regions was varied due to difference in experimental protocols. As most of these 

experiments were carried on simulated driving, there still lags the characterization of EEG 

spectrum within the brain regions in aviation using a favorable experimental protocol 

incorporating efficient drowsiness annotations. Our experimental analysis accomplished to fulfill 

this gap in the literature. 

In our experiment of about two hours of simulated flight, delta power (p<0.05) had significant 

decrease in all regions during MS as well as in parietal region for LS, while theta and beta power 

had no significant change (p>0.05). Similar result for delta activity has been reported in a 

monotonous simulated driving where total driving time was segmented into 10 equal sections to 

identify changes in EEG spectra. Their results showed significant decrease in sections 6, 8, and 10 

compared to section 4 in terms of delta activity [40]. In the literature, alpha activity has been shown 

to be associated with microsleep [65], [97], [98]. Gharagozlou et al. found significant increase in 

absolute alpha power between first and the last 10 minutes of driving simulation [114]. Papadelis 

et al. found a significant increase in relative alpha power on-road experiment for assessment of 

drowsiness [96].  
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Additionally, other researchers revealed alpha burst can be related to drowsiness [97], [115]. These 

studies have comprehensively revealed that alpha is an important drowsiness indicator. In our 

current study, based on the DMS, we found that relative alpha power showed significant increase 

in MS (p<0.001, in all regions), and in LS (p<0.05, in all regions except temporal) compared to 

the BS. Furthermore, the alpha power has a decreasing but insignificant trend in LS compared to 

MS (Figure 3.1). Our results further state the significance of alpha in drowsiness assessment. In 

this study, the behavior of delta, theta, alpha, and beta power was primarily related to baseline 

selection, experimental protocol, and duration of MS event. To investigate the pilot's EEG 

behavior within the window of circadian low, our experiment was conducted in the early morning 

and the initial 3-5 minutes of simulated flight was chosen as baseline. The participants in our 

experiment had been continuously awake for 18-20 hours, therefore they were already prolonged 

into the early stage of drowsiness before starting the experiment. This is in a good agreement with 

the results of the KSS assessment (Table 2.1). The average pre-flight KSS value of 5.4 clearly 

corroborates our statement that the pilots seem to have some signs of sleepiness [109]. 

Additionally, in the literature, there is no set criteria for "microsleep" and the authors use a variety 

of definitions and measurements. Therefore, we set sleep duration from 1.5s-15s as MS and greater 

than 15s as LS in this experiment [85].   

The change in a single EEG indicator may not adequately indicate the participant's level of 

drowsiness. The combination of multiple indicators ensures the reliability to characterize 

drowsiness. Therefore, in this research we also discussed the behavior of four derived indices 

which showed the ratio of slow and fast waves [87]. In our study, the alpha power increased 

significantly during MS events, while theta and beta power had no significant changes, thus 
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resulting in a significant increase in indices (i) and (ii) (Tables 3.3 and 3.4). This observation 

corroborates with existing finding in the literature regarding such behavior [40], [116].  

To study the interactions between different brain regions, we analyzed coherence via MSC and 

WTC with the region of aviation headset. We illustrated the potential of neural interactions via 

WTC between five electrodes within the aviation headset to mark drowsiness from EEG signal. 

The mean coherences are computed from each electrode pairs during ten interactions in four 

frequency bands and found to have significant performances from WTC at alpha band. The 

significant four alpha interactions: T7-Cz, T7-C4, T7-T8, and C3-T8 can be used for drowsiness 

estimation since alpha is considered as a predictive marker of drowsiness [97]. There exist no 

significant interactions from MSC. The low frequency bands are more prone to skull muscle 

artifacts, and the reliability cannot be trusted from the significance of low frequency interactions. 

Therefore, WTC at alpha can be a suitable coherence estimate to detect drowsiness from the 

aviation headset.  

Changes in the inter-hemispheric coherence with the onset of drowsiness were first reported by 

[117] and further stated that inter-hemispheric coherence was significantly lower and intra-

hemispheric coherence was significantly higher at some frequency spectra during light drowsiness 

compared to wakefulness [69]. The effect of monotonous driving on inter-hemispheric coherence 

from five homologous EEG electrode pairs was investigated by [70] and found that frontal and 

occipital coherence were significantly higher than central, parietal, and temporal sites for all four 

frequency bands. Increase or decrease of coherence during drowsiness is still unclear. However, 

in our result, coherence increases mostly during MS with a more significant rise in alpha band 

from WTC. Alpha spindles are likely to relate attention tasks [108] whose coherence increases 

during MS state. Higher coherence might increase brain synchronization overloading the brain 
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structures involved in consciousness processing and preventing them from treating new incoming 

information [118] that may led to drowsiness. Thus, drowsiness can alter the cerebral functional 

connectivity between brain regions. However, change in coherence value is found to be bi-

directional during LS from the two methods. 

In summary, this study not only distinguished MS and LS from baseline, but also investigated the 

EEG’s ability to differentiate LS from MS. The results showed no significant change between LS 

and MS during both PSD and coherence analysis. A possible cause is that LS duration is not long 

enough to induce deep sleep. In our experimental protocol, participants will be woken up if they 

sleep more than 5 minutes and the experiment will be terminated if awakened twice. Due to the 

short LS duration (15s-300s) and limited sample size, we did not observe significant changes 

between MS and LS. Our result further showed significant changes between LS and baseline in 

some of the regions that were also varied significantly during MS compared to baseline.  

 3.5. Limitations and Future Work 

The characterization of EEG in terms of PSD and coherence have posed interesting results useful 

for drowsiness detection, however, this study has certain limitations which needs to be discussed. 

Whenever simulated events, machinery or scenarios are used to proxy a real-life scenario, there 

can be outcomes which are not exact replicas of the real-world. The pilots in this study may be 

less alert in the simulator than they would be in a real aircraft and may feel less stressed due to 

lack of life-threatening consequences that are naturally absent in a simulated environment 

compared to an actual flight. Conversely, the simulator experience and minor control differences 

between the real aircraft may cause some pilots to show an increase in anxiety, however, this was 

not measured as a part of this study. In addition, our sample size was limited to final 16 
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participants. A larger sample size with even demographic distribution would allow greater 

confidence in generalizing the results to a larger population of commercial pilots. The choice of 

baseline is also very crucial. In future experiments, baseline should be considered during day to 

further analyze the behavior of EEG in MS events. 

MS is a cognitive state and inferring such state is subjective. It can occur even when a participant’s 

eyes are fully opened [7], but the DMS technology only intends to identify those MS events during 

eye closure. Moreover, there is a limitation in tracking availability when a participant’s face moves 

outside the field-of-view of the single DMS camera sensor. In this study the mean eyelid tracking 

availability was 91.99% across the participant population, so it is plausible that any temporary loss 

of tracking could lead to some MS and LS events going undetected by DMS. To address this 

problem, the number of cameras can be increased in future experiments to increase the tracking 

availability further.  

In future research, other physiological parameters should be combined to extract additional 

drowsiness-related features and use effective machine learning methods to study the feasibility of 

real-time drowsiness monitoring systems during flight. The analysis of all brain regions is 

narrowed down to the region of central sulcus over the scalp, the region for embedding aviation 

headset and coherence is analyzed. Then, the feasibility of drowsiness detection and prediction 

from EEG within the headset region will be studied along with the instrumental design of the 

headset. The information on PSD analysis during drowsiness can also be found from [66]. The 

installment of EEG electrodes within the headset will prevent from unnecessary burden during 

EEG recording via montage. In future, we will expand the work towards directed interactions to 

estimate the flow of information around the electrode pairs within the aviation headset. 

Furthermore, the data acquisition will be made from the headset with the specified electrodes and 
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the feasibility of the method will be studied in real time. In addition to this, interactions of other 

physiological signals along with EEG will also be analyzed. 

3.6. Conclusion 

The incorporation of Seeing Machines DMS technology as a reference for drowsiness highlighted 

the efficacy of EEG spectral behavior in terms of PSD and coherence to characterize drowsiness. 

This technology overcomes the limitations of subjective drowsiness evaluation and thus, be able 

to reveal the detailed features of EEG spectral behavior during MS events. Our findings showed 

changes in EEG spectral behavior during drowsiness. Our proposed method is effective in 

identifying significant EEG spectra at specific brain regions to discern drowsiness that eventually 

reduces the number of embedded EEG electrodes. Further, this study also shows the potential use 

of conventional pilot headsets embedded with limited EEG electrodes pertaining to specific brain 

regions that can monitor drowsiness in aviation. This will reduce the extra burden of wearing EEG 

acquisition system by pilots reducing the system’s complexity and improving their comfort. Those 

significant spectra can also be used to develop a drowsiness prediction model.  
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Chapter 4. 

Estimation of Drowsiness and Fatigue Using Heart Rate Variability 

4.1. Summary 

Background: Drowsiness and fatigue are common workplace problems especially in aviation. 

Our aim is to determine their association with heart rate variability (HRV) features that can be 

used for early prediction in aviation pilots. The dynamics of HRV contains pertinent information 

regarding the sympathetic and parasympathetic arm of the autonomic nervous system (ANS). The 

psychological states of drowsiness and fatigue are shown to affect the balance of the ANS. Thus, 

quantification of the behavior of respective arm of ANS can assist early detection. Methods: HRV 

features are derived using electrocardiogram (ECG) recorded non-invasively from 16 

commercially rated pilots during a simulated flight. We have computed ten temporal and six 

frequency domain HRV features during four time periods: T1 (baseline), T2 (relax state), T3 

(fatigue state), and T4 (drowsy state) to assess drowsiness and fatigue. Results: Three time domain 

features: heart rate, NN50, and PNN50 exhibited significant changes (p<0.05) during drowsy state 

whereas, two frequency domain features had significant changes (p<0.05). Low frequency power 

increased significantly during fatigue state compared to relax state and total power increased 

significantly during drowsy state compared to baseline. However, LF/HF ratio, a marker of 

sympathovagal balance did not change significantly during drowsiness and fatigue. Conclusions: 

The results depict that drowsiness and fatigue can be estimated from the HRV features that vary 

significantly and further helps to prevent aviation accidents from changes in these cardiovascular 

parameters. The bigger sample size can aid higher confidence in justifying the results. 
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4.2. Background 

International Civil Aviation Organization (ICAO) defines fatigue as a physiological state of 

reduced mental or physical performance resulting from sleep loss or extended wakefulness, 

circadian phase disruption, or workload (mental and/or physical activity) that can impair a crew 

member’s alertness and ability to safely operate an aircraft or perform safety related duties [119], 

[120]. Pilot fatigue is a significant problem in modern aviation operations, largely because of the 

unpredictable work hours, long duty periods, circadian disruptions, and insufficient sleep that are 

commonplace in both civilian and military flight operations. Fatigued pilots think and move more 

slowly, and have memory difficulties which can lead to aviation errors and accidents [8]. FAA 

classifies pilot fatigue as one of the four common aviation hazards [11] and three out of four 

aviation accidents result from human errors [121]. Human poorly monitors own mental condition 

and level of drowsiness or fatigue, therefore often unidentified by pilots about their mental health 

condition that impairs judgement during flights causing accidents. FAA reported about 247 people 

died in 209 general aviation accidents from October 2016 through September 2017 and loss of 

control was one of the cause of these accidents [11].  

Drowsiness is a tendency to fall asleep affected by circadian rhythm, workload, monotonous work 

environment, and liquor or some medicine consumption [122]. Monotonous work environments 

rapidly induces drowsiness [123] and common in pilots during long duration flights. Drowsiness 

is different from fatigue. Drowsiness is a feeling of sleep requirement whereas fatigue is a feeling 

of tiredness or lack of energy. When a person becomes tired, they may prone towards falling sleep. 

Drowsiness and fatigue can cause many problems such as decreased short term memory, slowed 

reaction time, increased errors, worsened mood, difficulties in memory, making mistakes, health 

problems, impaired work performance, and decreased work-private life balance [124]. Drowsiness 
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or fatigue has been investigated from three approaches: vehicular approach measuring deviations 

from lane positions, movement of steering wheel, and pressure on the acceleration pedal; 

behavioral approach measuring driver’s behavior, eye closure, eye blinking, and head position; 

and physiological approach measuring physiological signals non-invasively [3]. Drowsiness and 

fatigue are closely associated with ANS that can be investigated using HRV. Drowsiness and 

fatigue can be predicted analyzing physiological signals such as ECG, EEG, EOG, and PPG [125], 

[126]. Among these, ECG can be a potential marker to predict drowsiness or fatigue based on 

HRV [3], [43].  

HRV is a marker of autonomic nervous system that influences modulations of cardiac activities 

such that homeostasis of cardiovascular system is properly maintained. Various time and 

frequency domain methods have been applied to analyze HRV from RR intervals [75]. A few time 

and frequency domain features have been analyzed for early detection of drowsiness or fatigue 

[44], [47]. Further, [127] extended time domain features and developed a model for prediction of 

drowsy accident using multivariate statistical process control.  

In this chapter, we analyzed time and frequency domain features in detail assessing fatigue and 

drowsy state useful for early prediction among aviation pilots from four psycho-physiological 

states (baseline, relax, fatigue, and drowsy states). The objective of this work is to early assess 

fatigue or drowsiness from HRV through statistical analysis that helps prevent aviation hazards 

based on physiological measurements.  

4.3. Results 

The data is recorded from eighteen commercially rated pilots during WOCL. One pilot’s data was 

interrupted due to technical problems and other three pilot’s ECG data suffered from high noise, 

so they are not considered for analysis. ECG data recorded from fourteen pilots (age: 22±2.77 
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years, 13 males, 1 female, previous flight experience: 293.14±88.26 hours) are used for our 

analysis.  Time and frequency domain features are assessed in terms of mean±SE in four 

psychophysiological states illustrated in Figures 4.1 and 4.2. 

 

Figure 4.1. The trend (mean±SE) of time domain features based on HRV in four experimental 

time periods: T1, T2, T3, and T4. The x-axis represents four experimental time periods and y-axis 

represents each time domain feature values. ‘*’ represents significant difference (p=0.05) from T1.  

The values of mean±SD during four experimental time periods are shown in Table 4.1. The results 

depicted that three time and two frequency domain features changed significantly (p=0.05) during 

fatigued and drowsy states as compared to baseline and relax states. More specifically, HR 

decreased significantly (p<0.05) at T4 compared to T1, NN50 and PNN50 increased significantly 

(p<0.05) during T4 compared to T1 in time domain. Other seven time domain features changes 

noticeably but are not found significant (p<0.05). In frequency domain, absolute LF and TP 

increased significantly at T3 and T4 compared to T2 and T1 respectively. Other frequency domain 
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features did not change significantly (p=0.05). The LF/HF ratio, a marker of sympathovagal 

balance corresponding to ANS, increases at T3 and T4 compared to T1 but not significant 

(p=0.05). 

 

Figure 4.2. The trend (mean±SE) of frequency domain features based on HRV in four 

experimental time periods: T1, T2, T3, and T4. The x-axis represents four experimental conditions 

and y-axis represents each frequency domain feature values. ‘*’ and ‘†’ represent significant 

difference (p=0.05) from T1 and T2 respectively.  

Table 4.1. Mean±SD values in four experimental time periods using HRV features. ‘*’ and ‘†’ 

represent significant difference (p=0.05) from T1 and T2 respectively.  

Experimental Time Periods 

Features T1 T2 T3 T4 

HR 80.7±9.64 75.71±8.1 71.85±9.43 62.26±11.28* 

SD 53.09±17.92 52.28±15.48 74.64±32.23 90.07±40.69 
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SDSSD 31.6±15.61 33.96±13.88 43.82±26.65 53.26±19.93 

RMSSSD 31.56±15.59 33.91±13.86 43.75±26.6 53.18±19.89 

TI 32.75±7.55 32.06±7.02 38.59±7.25 40.1±8.74 

SA 1.51±0.22 1.54±0.16 1.38±0.15 1.38±0.38 

NN20 73.71±37.26 76.07±28.15 78.43±25.27 89.17±18.4 

PNN20 19.21±10.6 20.85±8.88 22.75±9.2 29.49±7.42 

NN50 17.5±21.38 15.86±12.51 26.29±27.08 38.17±17.1* 

PNN50 4.72±5.97 4.42±3.62 8.12±9.05 12.97±7.23* 

LF (abs) 1223.39±810.21 945.15±720.22 2396.79±1874.14† 2786.28±2098.23 

LF (nu) 68.75±14.9 72.37±9.96 74.71±15.39 74.34±10.4 

HF (abs) 427.05±525.43 443.09±295.25 879.09±1157.9 771.6±722.14 

HF (nu) 31.25±14.9 27.63±9.96 25.29±15.39 25.66±10.4 

TP (abs) 2420.81±1677.17 2549.67±1493.33 5870.54±5151.46 5486.65±2182.86* 

LF/HF 2.9±1.73 3.09±1.51 4.26±2.95 3.51±1.84 

 

4.4. Discussion 

Drowsiness and fatigue are assessed among pilots from HRV based on the variation of time and 

frequency domain features obtained from RR intervals. The window of 5 minute duration was 

taken at each four time periods to obtain an appropriate HRV results [75]. The mean value of time 

and frequency domain features are compared statistically at four experimental conditions: T1, T2, 

T3, and T4. The significant changes in those features can be used as a marker for drowsiness or 

fatigue prediction.  
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Mental stress, fatigue, and drowsiness are closely associated with ANS and their relationship with 

HRV has been studied from the earlier date [128]. Changes in sympathetic and parasympathetic 

activity induces alternations in heart rate. The mean heart rate decreases during drowsiness or 

fatigue [47] due to longer intervals of heart beat which ultimately increases standard deviation 

among the RR intervals. Slower heart rate increases triangular index which is obtained from the 

total number of RR intervals with respect to the number of most frequently occurring RR intervals. 

Sample entropy is a measure of rate of new information production [129] and low entropy is 

observed at drowsy and fatigued states reflecting high degree of similarity among RR intervals 

due to slower heart rate causing longer RR intervals. 

Wakefulness is marked by an increase of sympathetic and/or a decrease of parasympathetic 

activity, while extreme relaxation is characterized by an increase of parasympathetic and/or 

decrease of sympathetic activity [44]. Drowsiness and fatigue levels are associated with 

sympathovagal balance corresponding to ANS, however, the relationship found so far is 

inconsistent. Some authors claimed that LF/HF ratio increases during drowsiness, however, others 

claimed that the ratio decreases [43]. In our result, increased LF (n.u.) relating mainly to 

sympathetic activity may be associated with stressed arousal as pilots are compelling themselves 

to stay awake that ultimately induces fatigue. As pilots are awake from the previous day of 

experiment, longer awake time may increase the level of fatigue due to which LF/HF ratio is 

increased at T3 though the change is insignificant. Then, the ratio decreases slightly during drowsy 

state. The reason might be the pilots fell less stressed during the drowsy state. The significance 

level might be increased using larger sample sizes. From the results, we observed that time and 

frequency domain indicators can be a reliable measure to assess drowsiness and fatigue from ECG. 
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The HRV features can also be acquired from PPG similar to ECG. More particularly, this 

phenomenon in PPG is called pulse rate variability (PRV). PPG is another non-invasive but optical 

technique containing an infrared emitter and a detector inside a probe that reflects beat to beat 

relative blood volume changes in peripheral tissues usually on the forefinger or earlobe [50]. The 

amount of infrared light reflected back to the detector determines the amount of blood flowing to 

the tissue at any time. So, the pulsating PPG signal depicts blood volume fluctuations observed 

from a finger or earlobe.  The literature shows that HRV features obtained from ECG and PPG are 

found to have high correlation [50], [53]–[55]. Thus, PPG can be a substitute of ECG for HRV 

analysis. In our result, we obtained significant decrease of heart rate during drowsy state compared 

to baseline. This motivated to calculate heart rate from PPG. The PPG was acquired from earlobe 

with the same experimental setting as ECG. The selection of earlobe for PPG data acquisition was 

to determine feasibility of sensor placement within the confines of aviation headset. Similar to RR 

intervals, PP intervals are also calculated and heart rate is also obtained from PPG. All the analysis 

of PPG are similar to ECG. The heart rate at all the four experimental time periods using ECG and 

PPG is found to have high correlation depicted in Figures 4.3 and 4.4. The results show high 

correlation between ECG and PPG and also heart rate show a consistent decline from T1 to T4 

with statistical significance. The results also show a collection of PPG data from earlobe may be a 

feasible alternative to other more complex forms of physiological signals. Thus, PPG is simpler to 

acquire and can be an alternative of ECG for HRV analysis. 
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Figure 4.3. Illustration of RR intervals (RRI) and pulse-to-pulse intervals (PPI) per beats for the 

duration of 5 min baseline period (T1) from a representative participant. Graphs are placed 

vertically for comparison depicting a high correlation between RRI and PPI [80]. 
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Figure 4.4. Pearson correlation coefficient of heart rate (HR) between electrocardiogram (ECG) 

and photoplethysmogram (PPG) for a representative participant [80].  

4.5. Limitations and Future Scope 

This research provides a basis to characterize drowsiness from cardiac signals and there are several 

limitations that need to be considered. The availability of higher sample size may provide greater 

confidence to validate the results. The results are based on flying simulator and greater 

practicability of the results could have been obtained if the data was acquired from the headset 

within the actual aircraft considering noises and other physical disturbances. HRV can vary on 

different environmental conditions apart from drowsiness and fatigue. Those conditions may 

include extensive exercise, stressful condition, sickness condition, and smoking or alcohol 
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consumption. Apart from these, age and gender differences, athletes and non-athletes, 

geographical locations, and personal temperament are some other factors that need to be 

considered on to estimate the results from these cardiovascular parameters over the wide range of 

populations. 

The use of physiological signals such as ECG and PPG are common in medical fields to monitor 

the physiological states of a patient. Despite their prevalence in medicine, there exists opportunity 

to expand their usage in aviation operations. More importantly, the use of ECG can be 

supplemented by a simpler PPG signal and the PPG sensor can be placed on either earlobe or 

similar soft tissue embedded within an aviation headset. In future, we will recruit more participants 

to acquire data in real time from the cockpit in real flights using the headset. The results obtained 

from so could strengthen the claim for feasibility to monitor drowsiness and fatigue based on 

changes in cardiovascular parameters.  

4.6. Conclusion 

HRV features in time and frequency domain show significant changes during drowsiness and 

fatigue. Our flight simulating experiment corroborates a possibility of non-invasive method in real 

time for early prediction of drowsiness and fatigue based on HRV. This further directs towards the 

development of smart technologies using sensors acquiring physiological signals to monitor 

drowsiness or fatigue so that aviation hazards resulting from drowsiness or fatigue can be 

mitigated. 
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Chapter 5. 

Drowsiness classification using Electroencephalogram: the feasibility 

within aviation headset 

5.1. Summary    

Background: Drowsiness is a psycho-physiological transition from awake towards sleep. During 

this transition, there are short episodes of eye-closure events called microsleeps (MS). The 

detection and early prediction of such MS events are crucial in aviation industry. This chapter 

presents a method for classification of MS from baseline utilizing linear and non-linear features 

derived from electroencephalography (EEG) and an approach towards early prediction. Methods: 

The EEG data is acquired from sixteen commercially-rated pilots during the window of circadian 

low (2:00 am- 6:00 am). MS events are annotated using Driver Monitoring System and further 

verified using vertical electrooculogram (EOG). A total of 55 features are extracted from EEG. A 

subset of these features is then selected using a wrapper-based method. The selected features are 

fed into a linear or quadratic discriminant analysis (LDA or QDA) classifier to classify baseline 

from MS states. Further, the signals from the region of aviation headset are used to predict 

drowsiness using Random Forest (RF) Classifier. In RF classifier, features are selected based on 

feature ranking procedure. Results: The overall classification performance of the best- proposed 

discriminant classifier is 86.23% in terms of F1 score and the prediction performance using RF 

classifier within headset electrodes is 83.80% in terms of F1 score. Conclusion: The results 

obtained highlight the potential of proposed method towards automatic drowsiness detection which 

could assist mitigating aviation accidents in future and also the plausibility of developing 

automatic prediction model within the region of aviation headset. 
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5.2. Background 

As stated in earlier chapters, drowsiness is a serious issue in airlines and requires early prediction. 

Among the three main approaches (vehicular, behavioral, and physiological) for drowsiness 

detection, physiological approach is only dependent on participants’ physiological condition [34]. 

The physiological signals used in drowsiness analysis are EEG, ECG, EOG, and PPG. Among 

them, EEG has been widely used due to easiness in signal recording and the brain dynamics during 

drowsiness can be revealed from EEG [33], [34]. Thus, EEG has been considered as the most 

effective predictive marker [17], [130].  

Efficient drowsiness detection and prediction has been a major goal in the transportation industry. 

Various drowsiness detection techniques have been developed based on driver’s behaviors and 

performances incorporating physiological signals as well. The use of Random Forest for detecting 

drowsiness related lane departures [131], deep learning for drowsiness detection from EEG [132], 

a long short-term memory (LSTM) recurrent neural networks using EEG [133], convolutional two-

stream network using multi-facial feature fusion [134], neural network classifier with discrete 

wavelet EEG features [135], and Fischer’s discriminant classifier coupling EEG and NIRs (near-

infrared spectroscopy) are a few machine learning techniques implemented for drowsiness 

analysis. Table 5.1 briefly lists the recent EEG based drowsiness detection systems. The 

drowsiness detection system has also been recorded from a single individual [136] although the 

reliability remains questionable. The observation from Table 5.1 depicts that drowsiness can be 

estimated from non-hair bearing areas [106], even from a single channel [137], [138] and PSD is 

found to be the most useful features with Support Vector Machine (SVM) classifier.  
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Table 5.1. The list of drowsiness detection systems with various classifiers varying different 

number of electrodes. 

Sub. # Electrodes Features Classifier Accuracy Ref. 

1 One channel 

(PO6) 

Signal peak and variance SVM 93.52% [136] 

10 Non-hair 

bearing areas 

(F7, F8, A1, 

& A2) 

Logarithmic band power SVM 80% [106] 

10 Two channels 

(O1 and C3) 

Power spectral density 

(PSD) 

ANN 89% [139] 

20 Seven 

channels (P1-

7) 

PSD Least-squares 

SVM 

84.1% [101] 

10 Eight 

channels 

(FP1-2, C3-4, 

P7-8, & O1-

2) 

PSD Multilayer 

Neural 

Network 

96.7% [140] 

23 Scalp-EEG 

(C3, C4) & 

Ear-EEG 

(Ch1, Ch2) 

Multi-scale fuzzy 

entropy 

SVM 88.8% (Scalp 

EEG), 82.9% 

(Ear-EEG) 

[141] 
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43 Thirty-two 

channels 

PSD Sparse-deep 

belief networks 

93.1% [142] 

25 Four 

channels (C3, 

C4 & O1, 

O2) 

Expert based (ratio, 

amplitude, symmetry, 

and extension) 

Bayesian-

copula 

discriminant 

classifier 

94.3% [143] 

22 One channel 

(TP7) 

Entropy Decision tree 94% [137] 

12 One channel 

(CP4) 

Entropy Random Forest 96.6% [138] 

20 Two channels 

(O1 and O2) 

EEG Power Percentage SVMPPM 91.92% [144] 

30 Eight 

channels 

PSD of DWT ANN 95% [135] 

Note: SVM=Support Vector Machine, ANN=Artificial Neural Network, SVMPPM=SVM 

Posterior Probabilistic Model 

Most of the drowsiness experiments are conducted using simulated cars [125], [145] and more 

opportunity exists to research drowsiness during flight operations. In this chapter, we implement 

two tasks: (i) algorithms based on Bayesian decision theory and feature selection methods for 

drowsiness classification approach using five brain regions, and (ii) algorithms based on Random 

Forest classifier and feature ranking procedure for drowsiness prediction within the region of 

aviation headset. For the first task, linear and non-linear features from EEG are extracted from five 

brain regions: frontal (F), central (C), parietal (P), occipital (O), and temporal (T) during baseline 



68 
 

(BS) and microsleep (MS) period. A set of high discriminative features are selected using different 

wrapper-based feature selection algorithms. The selected features are then fed into linear or 

quadratic discriminant analysis (LDA or QDA) classifiers. The Bayesian classifier with optimal 

performance is proposed. For the second task, the same linear and non-linear features from EEG 

as the first task are extracted from five EEG electrodes: T7, C3, Cz, C4, and T8 within the region 

of aviation headset during baseline (BS) and before microsleep (BMS) periods. The features are 

selected using Random Forest classifier in a feature ranking procedure. Then, the subset of highest 

significant features are used for prediction.   

5.3. Feature Engineering and Model Assessment 

5.3.1. Evaluation Criteria 

The algorithm performance is assessed using the following metrics: sensitivity, specificity, 

positive predictive value, accuracy, and F1 score. Sensitivity (also called recall) measures the 

proportion of correctly classified positive samples from the true positive samples. Specificity 

measures the proportion of correctly classified negative samples from true negative samples. 

Positive predictive value (also known as precision) measures the proportion of correctly classified 

positive samples from positive classified samples. The accuracy measures the proportion of 

correctly classified samples from all samples. The F1 score is the harmonic mean of precision and 

recall and is a useful criterion in class imbalance problem. Thus, it is adopted as the overall 

performance criteria. These matrices are defined based on the contingency table shown in Table 

5.2. and derived from [83]. Here, Ni,j represents the total number of samples of class i (true label) 

classified as class j (predicted label). In this case 𝑖, 𝑗 ϵ {BS,MS} ≡ {1, 2}. The total number of true 

samples Ri in class i and the total number of predicted samples Cj in class j can be expressed as: 
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                                              𝑅𝑖 = ∑ 𝑁𝑖,𝑗
2
𝑗=1   and  𝐶𝑗 = ∑ 𝑁𝑖,𝑗

2
𝑖=1                                                   (5.1) 

The total number of samples is:   

                                                𝑁𝑡𝑜𝑡 = ∑ ∑ 𝑁𝑖,𝑗 = ∑ 𝑅𝑖 = ∑ 𝐶𝑗
2
𝑗=1

2
𝑖=1

2
𝑗=1

2
𝑖=1                                            (5.2) 

 

 

Table 5.2. The contingency table for two-way classification of drowsiness among baseline (BS) 

and microsleep (MS). 

 

 

 

 

 

Note: Numerical class equivalencies are: 1≡BS (baseline), 2≡MS (microsleep) 

The true positive (TP), false positive (FP), false negative (FN), and true negative (TN) for class i 

can be generalized as follows: 

                                                    𝑇𝑃𝑖 = 𝑁𝑖,𝑖 

                                                    𝐹𝑃𝑖 = 𝐶𝑖 − 𝑁𝑖,𝑖 

                                                   𝐹𝑁𝑖 = 𝑅𝑖 − 𝑁𝑖,𝑖 

                                 𝑇𝑁𝑖 = 𝑁𝑡𝑜𝑡 − 𝑇𝑃𝑖 − 𝐹𝑃𝑖 − 𝐹𝑁𝑖 = 𝑁𝑡𝑜𝑡 − 𝑅𝑖 − 𝐶𝑖 + 𝑁𝑖,𝑖                           (5.3) 

Thus, the performance metrics for class i are obtained as: 

                             𝑆𝑒𝑛𝑖 =
𝑇𝑃𝑖

𝑅𝑖
=

𝑁𝑖,𝑖

𝑅𝑖
  ,     𝑃𝑃𝑉𝑖 =

𝑇𝑃𝑖

𝐶𝑖
   and    𝐹1𝑖 =

2∗𝑆𝑒𝑛𝑖∗𝑃𝑃𝑉𝑖

𝑆𝑒𝑛𝑖+𝑃𝑃𝑉𝑖
                                     (5.4) 
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              Predicted Label  

   BS MS  

BS  N1,1 N1,2  R1 

MS  N2,1 N2,2  R2 

∑ C1 C2   Ntot 
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5.3.2. Feature Extraction 

For linear and non-linear analysis of EEG, features such as power spectral density (linear), 

Shannon entropy, sample entropy, and Renyi entropy (non-linear) are extracted from 13 channels 

and grouped into five brain regions as well into the region of aviation headset. All the features 

from each channel are obtained using a 4 sec window. Non-drowsy EEG is obtained from the 

baseline starting from 2 min and the signal is cut with a 4 sec segment sliding with 3 sec overlap 

for 20 iterations in each participant. The baseline of 3 min duration is not completely used to 

maintain the similar size of baseline and drowsy segments. For drowsy EEG segments, MS events 

greater than 5 sec is chosen and 4 sec signal is taken after 1 sec of MS onset. For the second task 

of prediction within the headset region, the 4 sec segments before every MS events are selected. 

The PSD is obtained from Welch’s method having a Hamming window size of 128 samples with 

50% overlap and 256 discrete Fourier transform points. Then, the relative spectral power in four 

bands is calculated, i.e., delta (δ, 0.5-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), and beta (β, 13-

30 Hz). The next set of features are the following indices derived from EEG spectra: (θ+α)/β, α/β, 

(θ+α)/(α+β), and θ/β. Shannon entropy is a measure of probability distribution reflecting the 

predictability of signal behavior. Sample entropy describes the rate of new information production 

and is used to quantify the complexity of EEG. Sample entropy can be represented as SampEn 

(s,m,r) where the symbols are represented as (s: input signal), (m: embedding dimension or 

maximum template length), and (r: tolerance window) [146], [147]. In our experiment, we choose 

m=2, and r=0.1 from the literature [148]. Renyi entropy is considered as a superclass of ShanEn 

and is given by RenEn (s, q) where the symbols are represented as (s: input signal), and (q: order 

of entropy). When q approaches 1, RenEn converges to ShanEn [146].   
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5.3.3. Feature Selection and Model Assessment 

We use two approaches for feature selection and model assessment with Bayesian classifiers LDA 

and QDA and with Random Forest (RF) classifier. A nested cross-validation (CV) is used for 

feature selection in Bayesian classifiers and in RF classifiers, features are selected based on the 

reduction of entropy.  

For Bayesian classifiers, a nested CV is used with leave-one-out participant-wise external CV for 

model assessment (i.e. estimation of the performance of the classification algorithms) and 5-fold 

internal CV for feature selection. The wrapper method is designed for feature selection based on 

the performance of an inner classifier. In this work, the inner classifier is the same type as the main 

classifier in the external CV loop. In the inner CV loop, a set of features with minimum 

misclassification rate (1-F1) is selected and pass to the external CV loop for model assessment. In 

addition, the sequential forward and backward selection (SFS and SBS) search algorithms are used 

to find the best features subset in the internal CV loop. SFS starts from an empty feature set and 

sequentially add features until the minimum criterion is met, whereas SBS starts from full features 

set deleting each feature sequentially [149].  

For prediction purpose within the aviation headset, a RF classifier is used to rank all the 

handcrafted 55 features based on the decreasing order of entropy. The out of bag (OOB) feature 

importance profile is depicted in Figure 5.1. The OOB error is a way of predicting error in RF 

utilizing bootstrap aggregation (bagging) to sub-sample the training data. The more description of 

the classifier is in classification section below. A subset of ranked features with varying sizes are 

selected to analyze the classifier performances. 
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Figure 5.1. Feature ranking based on the decreasing order of entropy from Random Forest 

classifier with 300 decision trees and unit leaf size using uniform prior. 

5.3.4. Classification 

For the purpose of Bayesian classification, we use the same type of classifier for both the inner 

and outer CV loops. In our work, we use LDA and QDA classifiers whose class conditional 

densities are modeled with multivariate normal distributions with equal covariance matrices in 

LDA and unequal covariance matrices in QDA. Moreover, we assume to have a uniform class 

prior. The combination of these two classifiers (LDA and QDA) and two feature selection methods 

(SFS and SBS) results in four algorithms: LDA+SFS, LDA+SBS, QDA+SFS, and QDA+SBS that 

we use to evaluate the performance. The method implemented here is obtained from [149].  
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For the purpose of prediction within the region of aviation headset, RF classifier is used to classify 

two psyho-physiological states: baseline (BS) and before-microsleep (BMS) from the selected top 

15 features in a feature selection procedure. A random forest is an ensemble of decision trees. An 

ensemble is a group or combination of multiple machine learning algorithms to obtain better 

predictive performance than any of the individual algorithms. During training, multiple decision 

trees are constructed. These individual decision trees turn out to be different because only a subset 

of features are given to each of them, using a technique called bootstrap aggregation or bagging. 

This is a technique for reducing variance of an estimated prediction function. During prediction, 

mode of the classes of individual decision trees constitute the output of the RF [81]. To obtain 

suitable number of trees and leaf size in RF, OOB error is computed with 500 trees and varying 

leaf sizes 1, 5, 10, 20, 50, and 100 that is shown in Figure 5.2.  

 

Figure 5.2. Out-of-bag (OOB) error with 500 decision trees and varying number of leaf sizes: 1, 

5, 10, 20, 30, and 55 in a Random Forest classifier. 
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From Figure 5.2, the error in the classifier is least with a unit leaf size and is consistent after 300 

number of trees. Thus, a RF classifier with 300 decision trees and 1 leaf size is selected. Each 

decision trees in the RF are trained with bootstrapped samples and 5 (square root of 15 and up 

rounding results 5) features are selected at random for each node. Then, the entropy measure 

decides the specific feature to split at each node. 

5.4. Results 

Data from sixteen participants (age: 21.5±2.4 year, 2 females, 14 males, previous average flight 

experience: 282 hours) were used for both classification within five brain regions and prediction 

from the region of aviation headset. Out of eighteen participants, two were not considered for data 

analysis because data recording was interrupted for one participant due to technical problems and 

no MS events in another. A total of 830 EEG segments (320 non-drowsy and 510 drowsy or before 

drowsy observations) are extracted from the aviation dataset for both classification and prediction 

purposes.  

The performances of four different algorithms for classification task using Bayesian approach are 

depicted in Table 5.3. The confusion matrix of the algorithm with the highest overall F1 score 

(QDA+SBS) is illustrated in Table 5.4 where rows represent the true class and columns represent 

the classifier prediction. The list of 13 selected features from the highest performance algorithm is 

provided in Table 5.5 which are annotated as ShanEn (brain region), RenEn (brain region), and 

PSD (EEG band or derived indices, brain region) to illustrate a feature from a specific brain region 

for ShanEn, RenEn and also at specific frequency band in case of PSD. 

Table 5.3. The performances of four algorithms (LDA+SFS), (LDA+SBS), (QDA+SFS), and 

(QDA+SBS) used for classification. 
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Used 

Algorithm 

Sen (%) Spe (%) PPV (%) Acc (%) F1 (%) 

 

# Features 

LDA+SFS 

75.50 

(25.16) 

88.43 

(27.24) 

89.61 

(23.41) 

81.25 

(20.27) 

77.05 

(22.99) 

10 

LDA+SBS 

76.49 

(21.43) 

82.18 

(28.28) 

84.86 

(24.62) 

76.62 

(14.26) 

74.88 

(16.65) 

10 

QDA+SFS 

83.62 

(18.04) 

86.56 

(27.36) 

89.20 

(18.93) 

84.63 

(15.02) 

83.62 

(14.95) 

12 

QDA+SBS 

81.54 

(16.49) 

92.81 

(15.80) 

94.58 

(9.52) 

87.22 

(12.16) 

86.23 

(9.84) 

13 

 

Note: Here, sensitivity (Sen), specificity (Spe), positive predictive value (PPV), accuracy (Acc), 

and F1 score (F1) are calculated from the selected number of features (# Features) in each 

algorithm. Two sequential feature selection methods: sequential forward selection (SFS), and 

sequential backward selection (SBS) are adopted. The numbers are the unweighted average of the 

results in the external CV loop together with their standard deviations in parentheses. 

 

Table 5.4. The confusion matrix of QDA+SBS classification algorithm. Here, ‘ND’ represents 

Non-drowsy and ‘D’ represents drowsy states. 
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  Predicted class 
 ND D 

ND 297 23 

D 95 415 
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Table 5.5. The list of 13 selected features from the algorithm (QDA+SBS).  

PSD (θ, C) PSD (α/β, C) PSD ((θ+α)/β, P) 

PSD ((θ+α)/(α+β), P) PSD (δ, O) PSD (θ, O) 

PSD (β, O) PSD ((θ+α)/(α+β), O) PSD (θ, T) 

PSD (α, T) ShanEn (F) ShanEn (C) 

RenEn (T) --- --- 

 

For prediction task, the classification performances of RF classifier with 300 decision trees and 1 

leaf size in leave-one-participant-out cross-validation architecture varying the number of selected 

features from 10 to 55 among two classes baseline (BS) and before-microsleep (BMS) is shown in 

Table 5.6. The average best performance in terms of F1 is 84.01% in classifying positive samples 

obtained from the top selected 15 features. Further, the classifier show the potential in detecting 

both positive (before- drowsiness) and negative (baseline) with 84.23% and 83.79% respectively 

which is fairly an equal performance. The top 15 selected features comprising the best performance 

results are listed in Table 5.7. The features in the table are illustrated in terms of feature name 

(brain region) or feature name (EEG spectra, brain region). 

Table 5.6. The performance of Random Forest classifier with varying number of selected features. 

 

#Features 

BS BMS 

Sen 

(%) 

PPV 

(%) 

F1 

(%) 

Sen 

(%) 

PPV 

(%) 

F1 

(%) 

10 73.44 70.57 71.98 79.88 82.07 80.96 

15 76.25 75.08 75.66 83.37 84.23 83.80 



77 
 

20 75.31 75.08 75.20 83.57 83.74 83.66 

25 74.69 74.69 74.69 83.37 83.37 83.37 

30 74.06 74.29 74.18 83.16 82.99 83.08 

35 75.94 73.64 74.77 82.14 83.86 82.99 

40 72.19 71.74 71.96 81.31 81.65 81.48 

45 74.06 73.15 73.60 82.14 82.82 82.47 

50 74.38 72.78 73.57 81.72 82.92 82.32 

55 72.50 70.95 71.72 80.49 81.67 81.08 

 

Table 5.7. The list of 15 top ranked features obtained from Random Forest classifier. 

Rank Features Rank Features 

1 PSD (δ, F) 9 PSD (β, O) 

2 PSD (β, F) 10 PSD (α, T) 

3 PSD (α/β, F) 11 PSD (β, T) 

4 PSD (δ, C) 12 PSD ((θ+α)/(α+β), T) 

5 PSD (α/β, C) 13 PSD (θ/β, T) 

6 PSD (δ, P) 14 RenEn (F) 

7 PSD (θ, P) 15 SampEn (T) 

8 PSD (δ, O) --- --- 
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5.5. Discussion 

This chapter describes classification of drowsiness using two approaches: classification of 

microsleep (short episodes of eye-closure) from baseline (alert state) among five brain regions and 

classification of before-microsleep (4 sec before eye-closure) from baseline for prediction task 

within the region of aviation headset. Two main tasks of classification are detecting the microsleep 

sates from the whole brain region and more importantly studying the feasibility of EEG electrodes 

within the region of aviation headset for prediction purposes. We obtain overall F1 score of 86.23% 

in classifying microsleep from baseline using QDA+SBS and a similar performance of 83.80% in 

predicting samples before eye-closure using RF classifier. The selected features used are also 

similar, 13 in case of QDA+SBS and 15 in case of RF. One problem with the former classifier i.e. 

QDA with SBS is that it takes longer time to select the features in backward selection approach 

where features in RF are selected based on the reduction of entropy and takes comparatively lesser 

time for execution. It is wise to avoid sequential feature selection techniques (SFS or SBS) during 

feature selection from large features set and fairly better to use procedures from RF.  

The results demonstrate the possibility of automatic drowsiness detection among pilots using the 

hand-engineered feature and machine learning algorithms. This method could be potentially 

applied to intelligent monitoring and warning systems to prevent drowsiness or fatigue. The 

classification performances of four algorithms using Bayesian approach are compared using a 

nested CV architecture. The best performance in terms of F1 score (86.23%) belongs to QDA+SBS 

possibly because QDA has greater flexibility than LDA due to its quadratic decision surface. The 

classes in QDA have different co-variance matrix and assuming the data distribution as Gaussian, 

the decision boundary between two classes is quadratic in nature incorporating various sample 

attributes thereby increasing the classification performance. 
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The analysis is extended constricting the electrodes within the region of aviation headset and to 

speed of the execution time RF classifier is used in a feature ranking architecture based on 

reduction of entropy. Further, the analysis of EEG segments are done 4 sec ahead of eye-closure 

to explore the potential of EEG features to predict drowsiness using RF classifier. The predictive 

performance is obtained as 83.80% in terms of F1 score using top ranked 15 features. The result 

depicts the possibility towards early drowsiness prediction before eye-closure from the electrodes 

within the aviation headset. The performance of headset electrodes on classifying microsleep from 

baseline is also observed using RF and observed as 83.50% in terms of F1 score. The performance 

on detecting and predicting mircosleep from cut datasets within the aviation headset is found to be 

similar. The prediction performance has more significant usage in aviation industry and this 

approach motivates towards embedding EEG electrodes underneath the aviation headset useful for 

predicting drowsy state during flights.  

5.6. Limitations and Future Work 

The classification of before-microsleep with baseline with an acceptable performance has posed 

an important notion for early prediction of microsleep events 4 sec ahead of eye-closure from the 

cut datasets which is crucial for timely warning to the pilots during flight operations. Although, 

this study drives toward the early prediction approach, there are a few limitations. The experiment 

is conducted in a simulated environment and the results may vary during real flights due to 

different environmental conditions such as noises and levels of concentration. The cockpit noise 

and multiple motion artifacts can hinder the signal quality that affects the drowsiness detection 

performances. The results shown in this chapter are based on the cut datasets and the performance 

may unlikely follow the similar trend with the continuous EEG signals in real time scenarios.  
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In future, we will increase the sample size, compare with other classifiers, and expand the analysis 

from cut datasets to drowsiness annotation from continuous EEG signal developing a drowsiness 

annotation engine to predict drowsiness in real time. Eventually, we will record the signals from 

the aviation headset in real flights and annotate the drowsy segments from the developed automatic 

drowsiness annotation engine. The other physiological signals such as ECG, PPG, and EOG will 

also be incorporated into the machine learning model for continuous drowsiness detection. Lastly, 

the baseline (non-drowsy) data collection would happen outside of participant’s window of 

circadian low, ideally during daylight hours when it is expected that the drowsiness levels would 

be lower. 

5.7. Conclusion 

The classification of microsleep from baseline using Bayesian classifier and classification of 

before-microsleep events using Random Forest classifier examine the feasibility of machine 

learning algorithms to detect drowsiness from EEG. The use of Random Forest classifier 

classifying before-microsleep events depict the plausibility of predicting microsleep events 4 sec 

ahead of eye-closure with 83.8% in terms of F1 score from the cut dataset using the selected 15 

hand-engineered features. The results demonstrate the feasibility for early prediction using EEG 

data and leaves the room for further improvement. The concept of automatic drowsiness detection 

from continuous signals is discussed and the development of the system with reliable performance 

is yet to achieve. The proposed method could be potentially useful for developing warning systems 

to prevent drowsiness or fatigue in aviation operations and further be extended to other driving or 

flying related tasks. 
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Chapter 6. 

Four-way Classification of Drowsiness: An Approach towards Early 

Prediction 

6.1. Summary    

Background: Drowsiness is a psycho-physiological transition from awake towards sleepiness. 

During this transition, there are short episodes of eye-closure events called microsleeps (MS). The 

early prediction of such MS events are crucial in aviation industry. This chapter presents a four-

way classification of drowsiness among baseline (BS), before microsleep (BMS), during 

microsleep (MS), and longsleep (LS) states utilizing linear and non-linear features derived from 

electroencephalogram (EEG) and provides an approach towards early prediction. Methods: The 

EEG data is acquired from sixteen commercially-rated pilots during the window of circadian low 

(2:00 am- 6:00 am). MS events are annotated using Driver Monitoring System and further verified 

using vertical electrooculogram (EOG). A total of 555 features from time, frequency, and time-

frequency domains as well as non-linear features are extracted from EEG separated into five brain 

regions: frontal, central, parietal, occipital, and temporal. The features are selected in a feature 

ranking procedure. Random Forest classifier with 300 decision trees and unit leaf size is used to 

classify the test data from the top selected 40 hand-engineered features into the mentioned four 

classes using a leave-one-out cross-validation architecture. Results: The unweighted mean of F1 

(UMF1) score is used as an overall performance criterion and the classifier obtains UMF1 to be 

83.70%. The multiway accuracy and unweighted mean of sensitivities of the classifier are achieved 

as 82.55% and 83.75%. Further, F1 score of before microsleep class is obtained as 81.45%. 

Conclusion: The results show the possibility of predicting drowsiness before eye-closure that 

helps to design an early drowsiness prediction system to reduce aviation accidents. 
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6.2. Background 

As stated in earlier chapters, efficient drowsiness detection and prediction has been a major goal 

in the transportation industry. Various drowsiness detection techniques have been developed based 

on driver’s behaviors and performances incorporating physiological signals as well. Most of the 

analysis are binary and [58] has performed both binary and multi-way classification considering 

alert, somewhat sleepy, and sleepy states with accuracy of 93% for binary class and 79% for 

multiclass using EEG, EOG, and contextual information during simulated car driving. Most of the 

drowsiness experiments are conducted using simulated cars [145], [150] and more opportunity 

exists to research drowsiness during flight operations.  

The drowsiness detections and predictions are not interchangeable. There are many published 

research papers where prediction and detection of microsleep are considered similar [151]. Many 

researchers have analyzed drowsiness segments and claimed as prediction [152]–[154]. The 

prediction for drowsiness should be analyzed before the onset of eye-closure. The capability of 

predicting drowsiness with high reliability aids in preventing transportation related accidents. In 

this study, the instances of microsleep, a short episode of eye-closure, are extracted from Seeing 

Machine Driver Monitoring System that tracks participants’ eye movements and label drowsiness 

based on the duration of eye-closure. This chapter addresses the issue of classifying before 

microsleep with multiple classifications from the cut datasets with acceptable performance and 

also provides a concept for early drowsiness prediction from physiological signal that is applicable 

in real flight operations.  

6.3. Feature Engineering and Model Assessment 
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6.3.1. Evaluation Criteria 

Sensitivity (Sen), positive predictive value (PPV), and F1 score of each class is used to evaluate 

the performance of the classifier. Sensitivity (also called recall) measures the proportion of 

correctly classified positive samples from the true positive samples. Positive predictive value (also 

known as precision) measures the proportion of correctly classified positive samples from positive 

classified samples. The accuracy measures the proportion of correctly classified samples from all 

samples. The F1 score is the harmonic mean of precision and recall and is a useful criterion in 

class imbalance problem. Thus, it is adopted as the overall performance criteria. These matrices 

are defined based on the contingency table shown in Table 6.1 and extracted from [83]. Here, 𝑁𝑖𝑗 

represents the total number of samples of class 𝑖 (true label) classified as class 𝑗 (predicted label). 

In this case 𝑖, 𝑗𝜖{𝐵𝑆, 𝐵𝑀𝑆,𝑀𝑆, 𝐿𝑆}≡{1,2,3,4}. The total number of true samples 𝑅𝑖 in class 𝑖 and 

the total number of predicted samples 𝐶𝑖 in class 𝑗 can be expressed as: 

                                 𝑅𝑖 = ∑ 𝑁𝑖,𝑗
4
𝑗=1   and  𝐶𝑗 = ∑ 𝑁𝑖,𝑗

4
𝑖=1                                                                            (6.1) 

The total number of samples is: 

                                  𝑁𝑡𝑜𝑡 = ∑ ∑ 𝑁𝑖,𝑗 = ∑ 𝑅𝑖 = ∑ 𝐶𝑗
4
𝑗=1

4
𝑖=1

4
𝑗=1

4
𝑖=1                                                                (6.2) 

Table 6.1. The contingency table for four-way classification of drowsiness among baseline (BS), 

before microsleep (BMS), during microsleep (MS), and longsleep (LS). 
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             Predicted Label 

 BS BMS MS LS  

BS  N1,1 N1,2  N1,3  N1,4  R1 

BMS  N2,1 N2,2  N2,3  N2,4  R2 

MS  N3,1 N3,2  N3,3  N3,4  R3 

LS  N4,1 N4,2  N4,3  N4,4  R4 

∑ C1 C2 C3 C4 Ntot 

Note: Numerical class equivalencies are: 1≡BS (baseline), 2≡BMS (before microsleep), 3≡ MS 

(microsleep), and 4≡ LS (longsleep) 
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The true positive (TP), false positive (FP), false negative (FN), and true negative (TN) for class i 

can be generalized as follows: 

                                                                             𝑇𝑃𝑖 = 𝑁𝑖,𝑖 

                                                                    𝐹𝑃𝑖 = 𝐶𝑖 − 𝑁𝑖,𝑖 

                                                                   𝐹𝑁𝑖 = 𝑅𝑖 − 𝑁𝑖,𝑖 

                                𝑇𝑁𝑖 = 𝑁𝑡𝑜𝑡 − 𝑇𝑃𝑖 − 𝐹𝑃𝑖 − 𝐹𝑁𝑖 = 𝑁𝑡𝑜𝑡 − 𝑅𝑖 − 𝐶𝑖 + 𝑁𝑖,𝑖                                   (6.3) 

Thus, the performance metrics for class i are obtained as: 

                                 𝑆𝑒𝑛𝑖 =
𝑇𝑃𝑖

𝑅𝑖
=

𝑁𝑖,𝑖

𝑅𝑖
  ,     𝑃𝑃𝑉𝑖 =

𝑇𝑃𝑖

𝐶𝑖
   and    𝐹1𝑖 =

2∗𝑆𝑒𝑛𝑖∗𝑃𝑃𝑉𝑖

𝑆𝑒𝑛𝑖+𝑃𝑃𝑉𝑖
                           (6.4) 

Further, the major performance measures to summarize the whole confusion matrix are multiway 

accuracy (MulAcc), unweighted mean of sensitivities (UMS), and unweighted mean of F1 score 

(UMF1). These parameters are obtained as: 

            𝑀𝑢𝑙𝐴𝑐𝑐 =
1

𝑁𝑡𝑜𝑡
∑ 𝑁𝑖,𝑖

4
𝑖=1 ,    𝑈𝑀𝑆 =

1

4
∑ 𝑆𝑒𝑛𝑖,

4
𝑖=1     and    𝑈𝑀𝐹1 =

1

4
∑ 𝐹1𝑖

4
𝑖=1                         (6.5) 

Multiway accuracy measures the total accuracy and unweighted mean of sensitivities measures the 

total sensitivity of the classifier. The multiway accuracy is sensitive to class imbalance and 

unweighted mean of sensitivities measure only recall. Therefore, unweighted mean of F1 (UMF1) 

score is used as a global performance measure of the classifier that measure both precision and 

recall and is unaffected by class imbalance problem. 

6.3.2. Feature Extraction 

The EEG features are extracted in time, frequency, time-frequency, and non-linear domains from 

13 channels grouped into five brain regions during four psycho-physiological states: BS, BMS, 

MS, and LS. All the features from each channel are obtained using a 4 sec window. The EEG for 

baseline is obtained starting from 2 min and the signal is cut with a 4 sec segment sliding with no 
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overlap as the same number of MS events in each participant. The baseline of 3 min is not 

completely used to maintain the similar size of BS, BMS, and MS segments. For MS segments, 

MS events greater than 5 sec is chosen and 4 sec signal is cut after 1 sec of MS onset and the 4 sec 

segment just before the onset of MS is extracted for BMS segments. The LS segments are also 

obtained similar to MS after 1 sec of onset. Some of the participants do not have LS events, so the 

sample size of LS events are less than MS. The features in all four domains are described here. 

6.3.2.1. Time Domain Features 

Temporal features are obtained from wavelet packet decomposition at depth 7 with Daubechies5 

(db5) wavelets using Shannon entropy. The four EEG band-related signals: delta (δ, 0.5-4 Hz), 

theta (θ, 4-8 Hz), alpha (α, 8-13 Hz), and beta (β, 13-30 Hz) are extracted from the decomposed 

signal. The statistical information such as mean, standard deviation, root mean square, skewness, 

kurtosis, median, mode, inter-quartile range, first quartile, third quartile, and Hjorth parameters 

(activity, mobility, and complexity) are also computed. Hjorth parameters are based on variance 

of the derivatives of a signal and are activity, mobility, and complexity that are defined as follows 

[155].  

                                                    𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑣𝑎𝑟(𝑥(𝑡))  

                                                          𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 = √
𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (

𝑑𝑥(𝑡)

𝑑𝑡
)

𝐴𝑐𝑡𝑖𝑣𝑖𝑡𝑦 (𝑥(𝑡))
  

                                                         𝐶𝑜𝑚𝑝𝑙𝑒𝑥𝑖𝑡𝑦 =
𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (

𝑑𝑥(𝑡)

𝑑𝑡
)

𝑀𝑜𝑏𝑖𝑙𝑖𝑡𝑦 (𝑥(𝑡))
                                                            (6.6)         

where, 𝑥(𝑡) is a time series data. Activity is the signal power, mobility is the mean frequency, and 

complexity is the change in frequency of the signal obtained from time series signal.  
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6.3.2.2. Frequency Domain Features 

The frequency domain features are obtained from power spectral density (PSD) calculated using 

Welch’s method having a Hamming window size of 128 samples with 50% overlap and 256 

discrete Fourier transform points. The features include absolute power, relative power, power 

ratios, and median frequency. Absolute power corresponds to power in each EEG frequency bands 

(delta, theta, alpha, and beta) and relative or normalized power is the ratio of the power of each 

frequency bands to the total spectral power whereas power ratio is the ratio of two or more 

normalized powers. The four power ratios derived from normalized EEG spectra include (θ+α)/β, 

α/β, (θ+α)/(α+β), and θ/β. The median frequency quantifies the relative strength of low and high 

frequency oscillations. It is the frequency value that separates the frequency range of PSD into two 

equal halves [67]. 

6.3.2.3. Time-Frequency Features 

The time-frequency features used for analysis are discrete wavelet transform coefficients (DWT), 

and energy, and homogeneity of continuous wavelet transform (CWT) coefficients. DWT 

coefficients are obtained using wavelet decomposition with Daubechies5 (db5) wavelet and 7 

levels of decomposition using Shannon entropy. Only four DWT coefficients (d2, d3, d4, and d5) 

are extracted that corresponds to the frequency range of four basic EEG spectra: δ, θ, α, and β. The 

CWT coefficients are obtained using continuous wavelet transform with Morlet wavelet and 

energy and homogeneity are calculated as: 

                                                   𝐸𝑛𝑒𝑟𝑔𝑦 = ∑ 𝑝(𝑖, 𝑗)2
𝑖,𝑗   

                                                        𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑒𝑖𝑡𝑦 = ∑
𝑝(𝑖,𝑗)

1+|𝑖−𝑗|𝑖,𝑗                                                       (6.7) 
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where, 𝑝(𝑖, 𝑗) is the probability of bin (𝑖, 𝑗) in CWT space. The energy measures uniformity of 

CWT coefficients and homogeneity measures the closeness of the distribution of coefficients in 

CWT space.   

6.3.2.4. Non-Linear Features 

The Hurst exponent and three entropies (Shannon, Sample, and Renyi) are used as non-linear 

features for classification. The Hurst exponent (H) is used to measure the presence or absence of 

long-range dependence and its degree in time series. It characterizes non-linear behavior of EEG 

[90]. The H value is obtained as: 

                                                       𝐻 =
𝑙𝑜𝑔 (

𝑅

𝑆
)

𝑙𝑜𝑔 (𝑇)
                                                                                           (6.8) 

where, T is the duration of sample data, R is the difference between maximum deviation from the 

mean and minimum deviation from the mean, and S is the standard deviation. Shannon entropy is 

a measure of probability distribution that reflects the predictability of signal behavior. Sample 

entropy describes the production rate of new information that quantifies EEG complexity. In our 

analysis, we choose embedding dimension of 2 with 0.1 tolerance window for sample entropy 

[148]. Renyi entropy is a superclass of Shannon entropy and when order of the entropy approaches 

to 1, Renyi entropy converges to Shannon entropy.  

All the features from 13 channels are grouped into five brain regions that ultimately results a total 

of 555 features. All these features are feed to the classifier for training and assessment. 

6.3.3. Feature Selection  

A random forest classifier is used to rank all the handcrafted 555 features based on the decreasing 

order of entropy. The out of bag (OOB) feature importance profile is depicted in Figure 6.1. The 
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OOB error is a way of predicting error in RF utilizing bootstrap aggregation (bagging) to sub-

sample the training data. The more description of the classifier is in classification section below. 

A subset of ranked features with varying sizes are selected to analyze the classifier performances. 

 

Figure 6.1. Feature ranking based on the decreasing order of entropy from Random Forest 

classifier with 300 decision trees and unit leaf size among four classes using uniform prior. 

6.3.4. Classification 

Random forest (RF) classifier is used to classify the four psycho-physiological states: BS, BMS, 

MS, and LS from the selected top 40 features in the feature selection procedure. A random forest 

is an ensemble of decision trees. An ensemble is a group or combination of multiple machine 

learning algorithms to obtain better predictive performance than any of the individual algorithms. 

During training, multiple decision trees are constructed. These individual decision trees turn out 

to be different because only a subset of features are given to each of them, using a technique called 

bootstrap aggregation or bagging. This is a technique for reducing variance of an estimated 
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prediction function. During prediction, mode of the classes of individual decision trees constitute 

the output of the RF [81]. 

6.4. Results 

Data from sixteen participants (age: 21.5±2.4 year, 2 females, 14 males, previous average flight 

experience: 282 hours) were used for four-way classification. Out of eighteen participants, two 

were not considered for data analysis because data recording was interrupted for one participant 

due to technical problems and no MS events in another. A total of 1,650 EEG segments (BS=488, 

BMS=488, MS=488, and LS=186) under four conditions are extracted from the aviation dataset. 

The performance of the classifier in each class is assessed in terms of Sen, PPV, and F1 score and 

the performance of the classifier among all the four classes is analyzed from MulAcc, UMS, and 

UMF1. Moreover, UMF1 is used as a global performance measure.  

The classification performances of RF classifier with 300 decision trees and 1 leaf size in leave-

one-participant-out cross-validation architecture varying the number of selected features from 10 

to 200 is shown in Table 6.2. The best performance in terms of UMF1 is 83.70% obtained from 

the top selected 40 features. Further, the classifier has the potential of classifying BS, BMS, MS, 

and LS with performance of 83.79%, 81.45%, 79.46%, and 90.08% respectively in terms of F1 

score. 

Table 6.2. The performances of Random Forest classifier with varying number of selected features 

NumFeat 

MulAcc 

(%) 

UMS 

(%) 

UMF1 

(%) 

BS BMS MS LS 

Sen 

(%) 

PPV 

(%) 

F1 

(%) 

Sen 

(%) 

PPV 

(%) 

F1 

(%) 

Sen 

(%) 

PPV 

(%) 

F1 

(%) 

Sen 

(%) 

PPV 

(%) 

F1 

(%) 

10 77.52 79.33 79.06 79.51 77.60 78.54 78.28 77.02 77.64 70.29 74.24 72.21 89.25 86.46 87.83 

20 80.55 81.64 81.60 82.79 82.28 82.53 78.07 80.04 79.05 78.07 76.81 77.44 87.63 87.17 87.40 
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40 82.55 83.75 83.70 85.25 82.38 83.79 80.53 82.39 81.45 78.89 80.04 79.46 90.32 89.84 90.08 

50 80.97 82.17 82.16 83.20 80.40 81.77 79.71 82.24 80.96 77.05 77.37 77.21 88.71 88.71 88.71 

60 80.55 81.97 81.85 82.58 79.49 81.01 79.10 81.61 80.33 76.43 77.55 76.99 89.78 88.36 89.07 

100 79.88 80.58 80.79 82.17 81.17 81.67 75.41 79.65 77.47 80.33 76.26 78.24 84.41 87.22 85.79 

150 78.67 79.31 79.56 79.92 80.58 80.25 73.98 78.14 76.00 80.53 74.86 77.59 82.80 86.03 84.38 

200 78.79 79.91 79.90 79.71 79.55 79.63 73.77 79.82 76.68 80.12 74.62 77.27 86.02 86.02 86.02 

 

Note: The sensitivity (Sen), positive predictive value (PPV), and F1 score (F1) are computed in 

each class out of four classes: baseline (BS), before microsleep (BMS), microsleep (MS), and 

longsleep (LS). Further, multi-way accuracy (MulAcc), unweighted mean of sensitivities (UMS), 

and unweighted mean of F1 score (UMF1) are calculated from the overall classes.  

The confusion matrix of the classifier with best performance results from the ranked 40 features 

are illustrated in Table 6.3 where the row represents true class and column represents predicted 

class. 

Table 6.3. The confusion matrix of the classifier with best results from the selected features  

T
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                   Predicted Class  

 BS BMS MS LS 

BS 416 20 52 0 

BMS 32 393 44 19 

MS 57 46 385 0 

 LS 0 18 0 168 

 

The top 40 selected features comprising the best performance results are listed in Table 6.4. The 

features in the table are illustrated in terms of feature name (brain region) or feature name (EEG 

spectra, brain region). 
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Table 6.4. The list of 40 selected features using Random Forest classifier from feature ranking 

based on entropy. 

Rank Features Rank Features Rank Features Rank Features 

1 homogeneity (T) 11 q1 (d2, O) 21 rms (d3, P) 31 PSD ((θ+α)/β, P) 

2 homogeneity (P) 12 q1 (β, O) 22 norm_PSD (α, O) 32 PSD ((θ+α)/β, O) 

3 homogeneity (F) 13 mobility (δ, F) 23 abs_PSD (α, O) 33 rms (β, O) 

4 homogeneity ( C) 14 mobility (β, O) 24 abs_PSD (α, P) 34 iqr (β, O) 

5 homogeneity (O) 15 std (d2, O) 25 mean (α, T) 35 q1 (α, O) 

6 PSD (α/β, P) 16 activity (β, O) 26 mobility (β, C) 36 complexity (θ, T) 

7 PSD (α/β, O) 17 std (d3, P) 27 mobility (β, P) 37 mobility (δ, T) 

8 abs_PSD (β, O) 18 mobility (β, T) 28 rms (d2, O) 38 complexity (β, T) 

9 iqr (d2, O) 19 q3 (β, O) 29 kurtosis (d3, O) 39 kurtosis (α, P) 

10 norm_PSD (α, P) 20 kurtosis (d3, P) 30 kurtosis (α, O) 40 rms (d2, P) 

 

6.5. Discussion 

This chapter describes the four-way classification of drowsiness into alert (baseline), before falling 

into drowsiness (before microsleep), short drowsiness episodes (microsleep) and long eye-closure 

events (longsleep). The two main tasks of classification in this study are detecting microsleep and 

more importantly predicting before the occurrence of microsleep. From the cut datasets, the 

classifier achieves F1 scores of 81.45% and 79.46% respectively for classifying before microsleep 

and during microsleep. The F1 score is observed to be higher in detecting before microsleep due 

to comparatively higher positive predictive value in the class. The classifier performance for 

classifying before microsleep events strengthen the claim that drowsiness can be detected with 

81.45% of F1 just before 4 sec of the occurrence of microsleep events among all the four 

drowsiness conditions. This helps to design a drowsiness prediction system. This work is an 

extension of our previous two works. The binary classification of drowsiness in [156] is extended 
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to four classes in this work and the comparison of EEG power spectral analysis among three states: 

baseline, microsleep, and longsleep [66] is extended here in the discussion to four states including 

beforemicrosleep events. 

Out of the features extracted in time, frequency, and non-linear domains, spectral power changes 

in EEG frequency bands: delta, theta, alpha, and beta are common in literature to estimate the shift 

of psychological state from alertness towards drowsiness [96], [110]. The alpha has been observed 

as the most relevant drowsiness indicator within the spectrum. However, there are contradicting 

views regarding the spectral changes in different brain regions due to traditional approaches for 

drowsiness annotations [65], [97]–[100]. In our previous work [66], we compared three 

psychological states mentioned before and observed significant changes in delta and alpha during 

microsleep and longsleep states. In this work, the power spectral features are extracted in four 

frequency bands and compared among four psychological conditions: BS, BMS, MS, and LS 

illustrated in Figure 6.2.  

The Kruskal-Wallis test followed by Bonferroni correction was used to calculate the significant 

difference at α=0.05 between the four states in the four EEG spectrum. On analyzing the power 

spectral analysis among four psychological states, we observed more significant changes in delta 

and alpha bands.Even in drowsiness related research, delta and alpha are considered as primary 

indicators. The relative delta power decreases significantly (p<0.05) during BMS and MS 

compared to BS among all the five brain regions. There is significant rise (p<0.05) in relative delta 

power during LS compared to BMS and MS among central, parietal, and occipital brain regions. 

The decrease in delta power is observed more profound during BMS than MS and then increases 

during LS. The alpha, another primary drowsiness indicator, also exhibits profound changes during 

four drowsy states, however, possess antagonistic behavior with respect to delta. The relative alpha  



93 
 

 

Figure 6.2. Relative spectral power distributed (mean±SE) in four EEG frequency bands: δ, θ, α, 

and β under four psychological states (BS, BMS, MS, and LS) in five brain regions: F, C, P, T, 

and O. The x-axis represents four psychological states and y-axis represents relative power spectral 

density. The significant difference among the four states at p=0.05 is represented by a (BS-BMS), 

b (BS-MS), c (BS-LS), d (BMS-MS), e (BMS-LS), and f (MS-LS). The color of these symbols 

represent significant changes (p<0.05) at particular brain region.  

power increases significantly  (p<0.05) during BMS and MS compared to BS among all the five 

brain regions. There is also significant rise in alpha power during LS compared to BS at frontal 

and temporal regions, and majorly in parietal and occipital regions during LS compared to BMS 

and MS. Theta exhibits a few significant rise (p<0.05) during LS, however, beta does not show 

any significant changes at all. There are high significant changes (in terms of p value) during BMS 

than MS compared to BS that justify the claim that drowsiness occurs before eye-closer. 
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Drowsiness is a progressive psycho-physiological phenomenon that starts before eye-closure and 

the effect may result to eye-closure due to which it can be detected before eye-closing state [4], 

[7]. The probable reason for high significant changes before eye-closure could be due to high 

neural activities just before falling towards drowsiness since the participants are struggling to keep 

them awake. The capability of EEG in detecting drowsiness before eye-closure helps in the 

development of physiological signals based early drowsiness prediction system useful for human 

performance related operations in aviation and road transportations. 

The automatic drowsiness prediction system detects drowsiness before eye-closure from the 

continuously acquired EEG signals after testing the continuous signals of the participants at work 

from the trained classifier model. This approach can be extended for predicting drowsiness in real 

time from the modified aviation headset. The 13 channel EEG electrodes used for data acquisition 

can be modified and EEG electrodes can be embedded underneath the aviation headset used by the 

pilots in cockpit that incorporates electrodes within the central sulcus of the brain.    

The classifier detecting microsleep even though the participants were in baseline state is termed as 

false positives. The occurrence of more number of false positives is a serious problem for 

implementation of automatic drowsiness prediction system for aviation operations. One probable 

reason for such false positives would be that the participants were fatigued on arriving at the 

experimental session late night at 2 am since they were requested to avoid sleep and even naps at 

least 18 hours prior to the experiment. The other reason might be the inefficiency of Seeing 

Machines Driver Monitoring System to capture eye-closure moments when participants are away 

from the focus of camera. During such situations, the participants were fatigued and drowsy 

whereas, the true labels were not calibrated as drowsy events. This would result a more number of 

false positives reducing the performance of automatic drowsiness prediction system. 
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6.6. Limitations and Future Work 

The four-way drowsiness classification has posed an important notion for early prediction of 

microsleep events 4 sec ahead of eye-closure from the cut datasets which is crucial for timely 

warning to the pilots during flight operations. Although, this study drives toward the early 

prediction approach, there are a few limitations. First, the experiment is conducted in a flight 

simulator although the participants were commercially-rated pilots and the results may differ 

during real flight scenarios. Second, the pilot’s attentiveness may differ between simulated and 

real flights and may prone towards frequent drowsiness due to safer simulated environment. And, 

the third limitation is that the results are obtained from a cut dataset and may differ when the 

training model is implemented in a continuous EEG signals during real flights. The cockpit noise 

and multiple motion artifacts can hinder the signal quality that affects the drowsiness detection 

performances. The results are presented from a limited number of 16 participants out of which 2 

were females. A larger number of participants with even demographics would allow greater 

confidence in generalizing results to a population of commercial pilots. The initial time for 

choosing baseline also affects the results since the participants were prone towards fatigue at the 

beginning of the experiment as they remained awake at least 18 hours prior.   

As discussed above, Seeing Machines Driver Monitoring System has incapability of detecting eye-

closure when the participants face is away from the focus of a camera. During this time, the 

participants can be nodding their head down due to drowsiness, and the system is incapable to 

assure they are drowsy. Therefore, in future, this problem can be resolved installing more cameras 

covering 1800 plane of both horizontal and vertical sights so that the bowed head will be covered. 

The other physiological signals such as ECG, PPG, and EOG will also be incorporated into the 

machine learning model for continuous drowsiness detection system. More importantly, the 
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analysis of brain regions will be constricted around the central sulcus of the brain, an area 

underlying aviation headset, to study the feasibility of using modified aviation headset for 

continuous drowsiness detection and prediction. Apart from feature extraction and classification, 

the interactions and causal influences between brain and heart signals could also be analyzed to 

understand the effect of cardiac functions during different states of drowsiness. 

6.7. Conclusion 

The four-way classification results using Random Forest classifier depict the plausibility of 

predicting microsleep 4 sec ahead with 81.45% of F1 score from the cut dataset using the selected 

40 hand-engineered features. Further, the classifier has an overall performance of 83.70% in terms 

of UMF1. The results demonstrate the feasibility for four-way classification into baseline, before 

microsleep, during microsleep, and longsleep with a reasonable performance and leaves the room 

for further improvement. This paper also discusses the power spectral changes during four states 

providing a notion of more spectral phenomena before eye-closure that aids in design of early 

prediction systems. The proposed method could be potentially useful for developing warning 

systems to prevent drowsiness or fatigue in aviation operations and further be extended to other 

driving or flying related tasks. 
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Chapter 7.  

Conclusions and Future Directions 

7.1. Conclusions 

Drowsiness is a short momentary period of sleep that lacks consciousness and can cause severe 

accidents during driving vehicles or flying airplanes. The main challenge is to characterize 

drowsiness, more importantly predict drowsiness before the eye-closure so that the losses can be 

minimized. Although there are various techniques available to estimate drowsiness levels, the 

analysis based on changes in physiological parameters of human system is a reliable one and can 

be adopted in any environmental situations. The common physiological signals used in this thesis 

to characterize drowsy events are EEG, ECG, and PPG. EOG is used here as an additional marker 

of eye-closure events along with Seeing Machines DMS technology. This thesis demonstrates the 

usefulness of these physiological signals to characterize, detect, as well as predict drowsy events 

in a simulated flight environment during the WOCL. The major conclusions drawn from the thesis 

are outlined below. 

7.1.1. EEG Spectral Behavior Can Characterize Drowsiness 

The study on EEG spectral behavior during drowsiness aids to understand the neural activity of 

the brain when a participant prone towards sleep. On studying the changes in four spectral bands: 

delta, theta, alpha, and beta; one can understand the most influential spectra and that helps further 

to expand the work for the development of reliable automated drowsiness detection system. During 

our work, we observe significant (p<0.05) reduction in delta power and increment in alpha power 

in all five brain regions: frontal, central, parietal, temporal, and occipital during microsleep. This 
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experimental result depicts the plausibility of EEG spectral power to characterize drowsy state. 

Our long term objective is to develop an automated system incorporating signals within the region 

of aviation headset. For this, we also tested the interactions between five EEG electrodes: T7, C3, 

Cz, C4, and T8 underlying the headset region via MSC and WTC and observed no interactions at 

all via MSC. However, alpha interactions were significantly higher (p<0.05) via WTC during 

drowsiness computed among four electrode pairs (T7-Cz, T7-C4, T7-T8, and C3-T8). These 

results on EEG spectra computed via PSD and coherence support the hypothesis to characterize 

drowsiness via recorded EEG signals among pilots and further the plausibility for extending this 

work using aviation headset in real flight scenarios. To corroborate our claim, we need to include 

more number of participants for data recording.       

7.1.2. HRV Can Be an Estimator during Drowsiness Detection 

HRV is a homeostatic marker for autonomic state of a body obtained from ECG analysis.  Mental 

fatigue and drowsiness are closely associated with ANS and HRV can be used to study the 

physiological state during drowsiness and fatigue. ANS consists of sympathetic activity (SN) and 

parasympathetic activity (PSN). Wakefulness is marked by an increase in SN and/ or a decrease 

in PSN, whereas, drowsiness is characterized by an increase in PSN and/ or decrease in SN. The 

changes in SN and PSN induces alterations in heart rate that further changes various HRV 

parameters in time and frequency domain. In our result, we observed significant rise (p<0.05) in 

HR, NN50, and PNN50 during drowsy state compared to baseline among time domain features. 

We also obtained significant increase (p<0.05) in LF and TP among frequency domain features 

during fatigue and drowsiness. The results depict to exhibit changes in cardiovascular parameters 

during drowsiness that can aid for analyzing drowsy state for the development of drowsiness 

detection and warning system incorporating other physiological signals such as EEG and PPG. 
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More importantly, we observed the surrogate behavior of PPG with ECG on analyzing PRV similar 

to HRV. This helps to claim that the drowsy state can be identified on analyzing PPG signal 

standalone from a feasible pulse-oximetry locations. On incorporating with the headset, the 

feasible PPG acquisition location would be earlobe or surrounding locations. On using earlobe, 

the HR estimation might be affected due to valley formation on accumulation of blood on the lobe 

and the feasible location could be nearby mastoid process of the ear over the carotid artery that 

encompasses the aviation headset.    

7.1.3. Approach for Early Drowsiness Prediction 

Drowsiness detection plays an important role in aviation industry. The airplanes fly in wide space 

over the ground and have a very little time to rectify the issue, the pilots should remain in alert 

state. In our work, we classified microsleep from baseline using LDA and QDA classifiers. The 

performance of best algorithm QDA+SBS on classifying microsleep from baseline is 86.23% in 

terms of F1 score. This shows the plausibility of classifying microsleep using EEG. Then, we used 

RF classifier to classify before-microsleep events from baseline using top selected 15 features with 

the region of aviation headset and obtained an acceptance performance of 83.80% in terms of F1 

score. Further, we extended binary classes to four drowsy classes: BS, BMS, MS, and LS and 

obtained the overall performance of 83.70% in terms of unweighted mean of F1 score. In addition, 

we also achieved F1 score of 81.45% for classifying before-microsleep among four classes from 

the EEG signals within five brain regions. Although the result needs improvement, it shows the 

possibility of predicting drowsiness before eye-closure events which is crucial in drowsiness 

analysis. In our work, we also used electrodes within the region of aviation headset for prediction 

task to analyze the feasibility of headset for real time prediction purposes embedding sensors 

underneath the headset to acquire EEG. The goal of prediction is more important than detection in 
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drowsiness related works. Identifying drowsiness before eye-closure helps to warn the pilots 

before they fall into sleep and there will be a time though little for wakefulness that prevents from 

committing errors in the cockpit. The same scenario applies to drivers in roads. The development 

of drowsiness prediction classifier from continuous EEG signals collected from bigger sample size 

would further provide higher confidence on the results and towards the real time hardware 

implementation. 

7.1.4. Drowsiness Detection and Prediction are Different Tasks 

The drowsiness detection and prediction terms are not interchangeable. There are many published 

research papers where prediction and detection of microsleep are considered similar [151]. Many 

researchers have analyzed drowsy segments after the eye-closure events and claimed as prediction 

[152]–[154], [157]. The prediction for drowsiness should be made before its onset and the EEG 

segments should be analyzed before the onset of eye-closure. The capability of predicting 

drowsiness with high reliability aids in preventing transportation related accidents.  

7.2. Future Directions 

After performing the simulated flight experiment from commercially rated pilots during WOCL 

and analyzing the results, we have observed some of the issues that need to be addressed in future 

that are outlined below. 

7.2.1. Experimental Protocol 

We conducted the experiment in a flying simulator although the participants were commercially-

rated pilots and the results may differ during real flight scenarios. The pilot’s attentiveness may 

differ between simulated and real flights and may prone towards frequent drowsiness due to safer 
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simulated environment. In our experiment, the baseline is selected within the WOCL at the 

beginning of experiment and the participants were fatigued due to sleep deprivation from 18-20 

hours before arriving to the simulator. In future, we will modify our experimental protocol and 

select baseline during daytime when the participants remain active without sleep deprivation. We 

will also acquire the data during real flights from the headset. The cockpit noise and multiple 

motion artifacts can hinder the signal quality that affects the drowsiness detection performances. 

This will help us to study the feasibility of headset to record physiological signals and also the 

potential of physiological signals to characterize drowsiness from the real flights.  

7.2.2. Data Size and Demographics 

In this work, we managed to collect data from 18 FAA certified commercially-rated pilots using a 

flight simulator. Among 18 participants, one participant data was interrupted during recording due 

to technical issues and the other subject had no MS data. So, we had only 16 participants whose 

data were useful for our analysis out of which only 2 were female. We did EEG analysis from 16 

valid participants whereas for ECG analysis we had only 14 valid participants because the two 

more participants had poor ECG signal quality therefore, we need to discard for our ECG analysis. 

We have presented our results from a limited sample size with only 2 females. This show uneven 

distribution of demographics within the population. In future, we will recruit more pilots with 

varying age and gender that incorporates equal samples distribution. The more sample size (>30) 

exhibit normal data distribution and also increases confidence level on presenting the results. 

7.2.3. Analysis Methods 

In this work, we analyze three physiological signals: EEG, ECG, and PPG separately via classical 

statistical inference as well as machine learning approach using cut datasets. In future, we will 
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combine all the three signals (EEG, ECG, and PPG) as well as incorporate EOG behavior to 

develop a machine learning model for prediction in real time using continuous physiological 

signals.  We will also compare the performance with other classifiers and even use deep learning 

concepts on arranging huge datasets. We will eventually develop a warning system based on 

physiological parameters to prevent drowsiness or fatigue in aviation operations and further extend 

to other driving or flying related tasks. In addition to the development of systems, the research can 

be directed to explore the interactions between cardiovascular and nervous systems during 

drowsiness. Although, this thesis studied the interactions between different EEG electrodes within 

the brain via coherence, the work could be extended to estimate cross-interactions between heart 

and brain signals. As already known from the literature, heart activities are regulated by SN and 

PSN from the central nervous system, there should be interactions between ECG and EEG signals 

that needs to be quantified through any of the directed and non-directed interaction techniques.   
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Appendixes 

Appendix A. 

A1. Time Domain Features 

The time domain features obtained from ECG/PPG are described here. 

1) Heart rate (HR): HR can be calculated from RR or PP intervals (RRI or PPI). RRI is the 

duration between two adjacent R peaks in QRS complexes of ECG, and mean HR is 

obtained as the reciprocal of mean RR interval within a certain duration. HR is an important 

indicator to estimate psycho-physiological states.  

2) Standard deviation (SD): SD of RRI provides variation in HR within a certain period, and 

increase in this variation is due to longer RRI, which is indirectly related to the reduction 

in HR. The comparison of SD should be done in equal duration of experimental conditions. 

3) Standard Deviation of Successive Difference (SDSSD): SDSSD is the standard deviation 

of differences between adjacent RR intervals. It provides the variation of second order 

difference in R peaks which further helps to estimate variation in heart rate similar to SD 

but at secondary level.   

4) Root Mean Square of Successive Difference (RMSSSD): RMSSSD is the square root of the 

mean of the sum of the squares of differences between adjacent RR intervals. It gives power 

associated with variation in RR intervals and slower heart rate has higher RMSSSD. 

5) Triangular Index (TI): HRV triangular index (TI) is calculated as the total number of RR 

intervals divided by number of most frequently occurring RR interval. Faster heart rate has 

higher density of frequently occurring RR intervals thus, lowering TI. 
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6) Sample Entropy (SA): Entropy, a non-linear feature, is the rate of generation of new 

information. Reduction in sample entropy characterizes abnormal heart rate characteristics 

due to reduced variability caused by vagal dominance.  

7) NN20: NN20 represents number of RR or NN intervals greater than 20 ms, and there are 

less NN20 counts if heart beats faster and vice versa. 

8) PNN20: PNN20 represents percentage of NN20 within the RR interval. It is calculated as 

the NN20 counts divided by total number of RR intervals. 

9) NN50: NN20 represents number of RR or NN intervals greater than 50 ms, and more NN50 

counts represent slower heart rate. 

10) PNN50: PNN50 represents percentage of NN50 within the RR interval. It is calculated as 

the NN50 counts divided by total number of RR intervals. 

A2. Frequency Domain Features 

The following features are extracted from HRV in frequency domain to estimate drowsiness. PSD 

provides the variation of power as a function of frequency and the power distribution in respective 

frequency band is related to the changes in autonomic response of heart beats. 

1) Low-frequency (LF) Power: LF band (0.04-0.15 Hz) power is influenced by both SN and 

PSN as well as some other mechanisms. LF is generally considered as a sympathetic 

dominance when expressed in normalized units and its dominance corresponds to alert 

state. 

2) High-frequency (HF) Power: HF band (0.15-0.4 Hz) power is considered due to PSN and 

the dominance of HF corresponds to relaxed state. 

3) Total Power (TP): TP is the total power within the spectrum of 0.4 Hz.   
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4) LF/HF ratio: Balance between SN and PSN is measured by LF/HF ratio, also called as 

sympathovagal balance. Drowsy states correspond to higher HF from increased PSN while 

fatigue states correspond to demand for sleep causing higher LF resulting from increased 

SN. Therefore, sympathovagal balance is decreased at the onset of drowsiness whereas it 

will increase at fatigue state due to increase in SN. However, there are contradictions with 

the increase or decrease in the LF/HF ratio during drowsiness and fatigue among 

researchers. This might be due to the fact that these researches did not separate drowsiness 

with fatigue. 

 

Appendix B. 

 Driver Monitoring System (DMS): DMS is a Seeing Machines technology that 

performed computer vision analysis to track facial behavior i.e. face, eye, and eyelid to 

annotate drowsy periods. It consists of camera sensor, which included an infrared light and 

an infrared camera. The camera was glare shield-mounted and facing rearward. DMS is 

designed to detect microsleep candidates from prolonged long eyelid closure events. 

 Human Annotation Classification Method (HACM): Once a prolonged eye closure 

event is identified by DMS, a manual review process is followed known as HACM to 

determine if that instance is indeed a microsleep candidate using specific rules. These rules 

include: 1) the instance of prolonged eyelid closure is greater than 1.5s in duration, but less 

than 15s; 2) the participant is not engaged in an intentional secondary behavior; and 3) the 

participant appears to exhibit signs of drowsiness or reduced cognitive capacity like 

slumping head position or posture [85]. 
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 PERCLOS: It measures the proportion of eyes closed over a specific time interval and is 

strongly correlated with fatigue. The Seeing Machines PERCLOS signal is calculated as 

described by Wierwille et al. [59] as the proportion of time that the eyes of participant are 

closed 80% or more. For instance, if 5 frames out of 100 are marked as closed, the 

PERCLOS value becomes 5/100=0.05. A PERCLOS value higher than 0.15 is reported as 

drowsy [85]. 
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