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Abstract

Nowadays, smart wearables for sports and fitness have a huge market due to the growing concern
of people in their health condition and improving their performance. Health and fitness trackers,
such as smartwatches, have been developed to record activity and monitor vital signs, while be-
ing comfortable and not causing constraint in body movement. Heart rate is strongly related with
energy expenditure, maximal oxygen uptake and physical activity. The benefits of using wear-
able sensors in human activity recognition and estimation of energy expenditure had been widely
studied, achieving solutions with high accuracy and low computational cost.

This work aims to gather information from feet and arms in order to make running and other
sports more efficient. TUNE is a wearable device that monitors both feet to track technique and
feet symmetry when running, which is an important measure in evaluation of injury occurrence
and sports performance. However, a smartphone is needed to record data and to access to the
information provided by TUNE. A smartwatch worn on the wrist is a great way to overcome the
need of a smartphone during a run. In addiction, it can provide valuable information from the arms
movement and heart rate.

A wearable system, composed of TUNE and the smartwatch Moto 360, was used to measure
relevant movements of upper and lower limbs and physiological signals in sports context. The ac-
celeration and heart rate signals provided by the smartwatch were pre-processed, and acceleration
signals were used to perform activity recognition. Energy expenditure was then estimated based
on the activity being performed, the heart rate measures, the personal information of the subject
and the GPS data from TUNE. Heart rate signal was used to determine HR zones of exercise and
training intensity, and the movement of the arm was analysed through step counting and the mea-
surement of the amplitude of the arm in terms of acceleration, which were compared with TUNE
data, such as step counting and ground contact time.

To validate the developed system, 4 subjects performed 2 cycles of activities. One was per-
formed 3 times including walk very slow, normal walk, run, cycle and rope jump, and the other
cycle consisted of running at a free speed. The developed system was validated against COSMED
K4b2 including a Polar heart rate chest strap.

The results obtained demonstrated that heart rate measurements from Moto 360 differ from
the Polar chest strap ones with an error of 9% and a correlation coefficient of 0.78. Comparing
the relation between speed and heart rate intensity with the physical/health information of the test
subjects, there is a linear relationship between their BMI and this relation. All activities were
classified with a precision above 90%, expect the walking ones. Walking very slow was most clas-
sified as normal walk, leading to low accuracies and precisions. In what regards running activity, it
was classified with 90% of accuracy. Energy expenditure results showed that there are significant
differences between the developed system and COSMED K4b2, with a correlation coefficient of
0.55. Walking and running presented the best results in terms of total energy expenditure value,
being the overall error of the developed system of 14%. Energy expenditure estimation achieved a
NRMSE of 18% for running activity, increasing to 37% when testing all activities. The observed

i



ii

errors are mainly due to the propagation of errors of hear rate measurements and activity recog-
nition. From acceleration signals of the smartwatch, steps were counted with an error of 2% and
acceleration amplitude proved to vary in indirect proportion with ground contact time.

Even though the results obtained showed that Moto 360 does not have the best accuracy and
reliability measuring heart rate, mainly for medical purposes or to monitor cardiac patients, its
reliability value is acceptable for heart rate monitoring of sportspeople who aim to improve their
performance and follow an active and healthy lifestyle. The combined HR-activity model had
shown promising results estimating energy expenditure. The model used in this work still needs
some improvements, as well as the wearable devices themselves. However, it introduced a conve-
nient way to monitor physical health with enough reliability. Furthermore, movement analysis of
the arm proved to be closely related to movement analysis of the feet, so combining a smartwatch
with TUNE demonstrated to make running even more efficient.

Although the results were promising, further work is required to potentially improve sports
experience with regard to user-interface, fatigue detection, analysis of the movement of the arm
and wearable technology evolution.

Keywords: Activity Monitoring; Energy Expenditure; Inertial Sensors; Heart Rate Monitor-
ing; Running Symmetry; Sensor Fusion; Smartwatch; Sports; Upper Limb; Wearables.
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Chapter 1

Introduction

Smartphones and mobile applications are revolutionizing peoples’ lifestyles. Since the introduc-

tion of Apple’s Iphone in 2007 and the first smartphone running Android in late 2008, the smart-

phone industry has been steadily developing and growing, both in market size and in models and

suppliers (eMarketer, AP, 2015). The development of mobile applications has become a huge

market worldwide, particularly with regard to applications that can improve healthcare and sports

performance. The ever increasing availability of wearable devices and fitness trackers has pushed

mobile fitness apps into the limelight. Sportspeople are increasingly concerned to improve their

performance, that is why mobile applications for sports are engaging more and more supporters.

Moreover, the emerge of wearable solutions made it more convenient and interesting for users

(Dufau et al., 2011).

The aim of this work is to improve sport wearable solutions, allowing users to improve perfor-

mance, reduce potential for injuries, increase motivation and improve their experience, as well as

to promote a more effective, healthier and better performing sports practice.

1.1 Context

Concerning the huge interest and need for sportspeople to improve their performance, Kinematix1

is focused in making devices that can extract detailed information from human movement. Run-

ning is becoming very popular with a huge number of people participating in long distance com-

petitions for recreational purposes. However, most of these runners are not well prepared, since

they don’t know how to run properly. This leads to a lot of physical injuries, which is not what

sports should be about.

TUNE is the latest fitness monitor of the company that is able to provide real time statistics

based on the body movement and position of the runner. Data is collected in real time by extracting

information directly from the feet through insoles containing electronic sensors. The information

is collected before, during and after a workout and is synced to a small device located on the

outside of the shoe. TUNE monitors both feet to track technique and feet symmetry when running.

1http://www.kinematix.pt
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It creates a personalized training plan based on the particular information of each runner. This

helps runners improve their technique, leading to a better performance and to a reduced risk of

injuries. Also, this information can be used by coaches to analyze the needs of their runners,

aiming to improve their efficiency.

Kinematix is focused on creating a new generation of wearables, which do not only quantify

movement information, but that qualify it meaningfully. In order to take advantage of wearable

solutions and provide more powerful information to runners, Kinematix aims to extend its market

to a smartwatch application which, together with TUNE, can improve movement information.

In association with the Faculty of Engineering of the University of Porto (FEUP), namely

the course of Biomedical Engineering, it was propose the integration of a smartwatch, taking

advantage of its sensors to improve the information given to runners. Moreover, it can be used to

monitor other sports where arms are used, such as tennis, golf, among others.

1.2 Motivation and Objectives

As depicted in Figure 1.1, the total wearable market is forecast to grow from 22 million units in

2014 to 175 million units by 2020. Smartwatches will be dominant category starting in 2016,

followed by smart bands/bracelets (O’Donnell, 2015). Many of these wearables include health

and fitness trackers (Gfk, 2015a,b). The smart wearables for the sports & fitness industry is

expected to have a market worth of $44.2 billion in 2021 (Moores, 2016), which exhibits the huge

interest of people in this type of wearables.

In 2004, Hreljac (2004) reviewed the current state of knowledge related to overuse running

injuries and they reported that between 37% and 70% of recreational runners sustain an overuse

injury every year due to high impact forces and accelerations, produced when the foot strikes the

Figure 1.1: Worldwide Wearable Unit Shipments by category from 2014 to 2020 (O’Donnell,
2015).
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ground. Concerning the nature of many injuries, asymmetrical running may be a primary cause

of injury or, at least, an early indicator of an underlying injury (Moran et al., 2015). Either way,

identifying running asymmetry may facilitate more effective injury detection and/or management.

TUNE fits this need since it tracks technique and feet symmetry when running.

To improve runners’ experience, the latest smartwatches come equipped with on-board storage

and even music streaming access, so users can leave their smartphones behind and run without

any constraint in body movement. But, more than this, these devices can be utilized to give

important information to the runner in real time, as well as to acquire movement and physiological

signals. Besides runners, other athletes, such as tennis and golf players, have shown interest in

smartwatches in order to achieve a better technique and improve their performance. Smartwatches

have built-in sensors, for instance, accelerometer, ambient light sensor, gyroscope, GPS and heart

rate sensor, which allow to monitory body movements and activities.

The main objective of this dissertation was to apply in wearables advanced methods of sensor

fusion information, such as inertial sensors, GPS and heart rate to recognize patterns of movement

and activity, and to obtain measures of physical activity and energy expenditure. A wearable

system, composed of TUNE and a smartwatch Moto 360, was used to measure relevant movements

and physiological signals in sport context, namely in running.

The system was implemented in the smartwatch to track the upper limb and to obtain physio-

logical signals in order to integrate both information in an energy expenditure estimation module.

Energy expenditure (EE) was estimated using both physical activity (metabolic equivalents) and

heart rate (physiologic information) measures, which proved to be the most accurate method to

estimate EE in previous works, when compared with both methods alone. Moreover, EE com-

putation was activity-specific, using activity recognition methods to distinguish between a set of

physical activities including walking, running, cycling and rope jumping.

Furthermore, heart rate zones of exercise and training intensity were analysed regarding per-

sonal information of each user in order to present relevant information related to the cardiac func-

tions. Such information is helpful with respect to how human body responds to physical activities

and it is essential to improve performance. With regards to the movement of the arm, acceleration

signals were used to count steps and to calculate the amplitude of the arm in terms of acceleration.

These measurements were linked with TUNE data, such as step counting and ground contact time,

to evaluate the possibility of integration of the movement analysis with the smartwatch during a

run.

1.3 Structure

Besides this introduction, which explains the motivation and the main objectives of the proposed

work, this dissertation includes 5 more chapters.

Chapter 2 includes the background, where the fundamental topics regarding the upper limb

movements and heart rate analysis are explained. Moreover, the concepts for the fusion of inertial
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and heart rate sensors to access energy expenditure are described, as well as the methodologies

used in human activity recognition.

Chapter 3 includes the literature review, where the existing studies in human activity recog-

nition and estimation of energy expenditure are revised. Current wrist-worn devices and mobile

applications which use inertial and heart rate sensors for sports are pointed out, and some pub-

lic datasets that were created to evaluate human activity recognition techniques and to monitor

physical and aerobic activities are described.

Chapter 4 presents the work developed in this dissertation, including the research methodol-

ogy and the development of a system which fuses inertial and heart rate sensors implemented in

wearables. The technologies and methodologies used are explained in detail.

In Chapter 5, the experimental work is described including the setup, the protocol and the

datasets used and developed to validate the developed system. The results obtained are present

and discussed.

Finally, Chapter 6 summarizes the main achievements and conclusions of this dissertation and

presents suggestions for future work and improvements.



Chapter 2

Background

This Chapter provides an explanation of fundamental topics regarding the upper limb movements

and heart rate analysis. For both topics, it is described the most used sensors and techniques

to quantify relevant information in activity monitoring, mainly in sport context. Furthermore, it

includes the background concepts for the fusion of inertial and heart rate sensors to access energy

expenditure, used to quantity physical activity. Moreover, methodologies for pattern recognition

are described concerning human movement and activity recognition.

2.1 Upper Limb Movement Analysis

The upper limb is characterized by its high number of degrees of freedom (DOF), therefore it is

important to be aware of the kinematics of the upper limb to understand its movements.

There is a wide range of sensors that can be used to quantify and qualify movements of the

upper limb. Modern smartphones and related devices contain some of these sensors and their

addition into everyday devices has paved the way towards enhanced contextual awareness and

ubiquitous monitoring for healthcare applications (Guiry et al., 2014).

2.1.1 Kinematics

The upper limb is connected to the pectoral gridle and consists of the bones of the arm, forearm,

wrist and hand. It is connected to the body by muscles, which act as fixators to hold the scapula

firmly in position when the muscles of the arm contract. The scapular muscles move the scapula

into different positions, thereby increasing the range of movement of the upper limb (Putte et al.,

2016).

Besides muscles, joints also play an important role in the movement. Regarding the upper

limb, it can be considered the shoulder joint, elbow joint and wrist joint. Each joint structure relates

to the movements that occur at that joint. In the upper limb, the two main types of movements are

angular and circular movements (Hamill and Knutzen, 2006).

5
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Angular movements occur when one bone moves relative to another and the angle between

these two structures changes as a consequence. The most common angular movements are flex-

ion, extension, abduction and adduction (Figures 2.1a and 2.1b). On the other hand, circular

movements occur when a structure rotates around an axis. The most common circular movements

are pronation, supination, rotation and circumduction (Figures 2.1c, 2.1d and 2.1e). Circumduc-

tion only happens in very mobile joints like the shoulder joint, corresponding to a combination of

flexion, extension, abduction and adduction.

In Figure 2.1 there is a representation of these movements. Together, shoulder, elbow and wrist

joints, and their surrounding muscles allow the upper limbs to perform a large set of movements

(Seeley et al., 1998; Putte et al., 2016). Shoulder joint allows the arm to perform movements like

flexion, extension, abduction, adduction, medial and lateral rotations and circunduction; elbow

joint allows the forearm to perform movements like flexion, extension, supination and pronation;

and wrist joint allows the hand to perform movements like flexion, extension, abduction and ad-

duction.

The muscles involved in the mentioned movements are described in Table 2.1. A complex

combination of muscles is involved in the movements permitted by the wrist together with hand

and fingers, however movements of the fingers were left out of the table since they are not relevant

in this work.

(a) Flexion/Extension (b) Abduction/Adduction (c) Pronation/Supination

(d) Medial/Lateral rotation (e) Circunduction

Figure 2.1: Representation of the different types of movements performed by upper limbs: (a)-
pair flexion/extension, (b)-pair abduction/adduction, (c)-pair pronation/supination, (d)-pair medial
rotation/lateral rotation and (e)-circunduction. Adapted from (Freixo, 2015).
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Table 2.1: Muscles acting on the movement of the shoulder, upper arm, forearm and hand (Seeley
et al., 1998; Putte et al., 2016).

Body part Movement Muscles Movement Muscles

Deltoid
Coracobrachialis Teres major

Flexion Pectoralis major Extension Latissimus dorsi
Deltoid Pectoralis major

Tríceps brachii

Pectoralis major
Shoulder Latissimus dorsi

and Abduction Deltoid Adduction Teres major
Upper Supraspinatus Teres minor
Arm Tríceps brachii

Coracobrachialis

Pectoralis Major
Medial Teres major Lateral Deltoid

Rotation Latissimus dorsi Rotation Infraspinatus
Deltoid Teres minor
Subscapularis

Bíceps brachii
Flexion Brachialis Extension Tríceps brachii

Forearm Brachioradialis Anconeus

Supination Bíceps brachii Pronation Pronator quadratus
Supinator Pronator teres

Flexor carpi radialis Extensor carpi radialis brevis
Flexor carpi ulnaris Extensor carpi radialis longus

Flexion Flexor digitorum profundus Extension Extensor carpi ulnaris
Flexor digitorum superficialis Extensor digiti minimi
Palmaris longus Extensor digitorum

Hand Extensor indicis

Flexor carpi radialis
Abductor pollicis longus

Abduction Extensor carpi radialis brevis Adduction Flexor carpi ulnaris
Extensor carpi radialis longus Extensor carpi ulnaris
Extensor pollicis longus
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2.1.2 Inertial Sensors

Inertial sensors are often used to detect human movement. Applying these sensors, for instances,

in a wearable device attached to the arm, the information can be both used to identify the whole

body position and movement, or the upper limb position and movement to recognize patterns of

its activity.

These type of sensors are cost effective and widely available. Moreover, they have a high

sampling rate and can work in total darkness and in unconfined environments. However, measure-

ments from inertial sensors are sensitive to sensor location on the body, and sensor drift might

occur during long operation times. Also, to recognize human motion, these sensors must be worn

by subjects during acquisition and provide enough power battery supply (Chen et al., 2015). The

mostly used sensors in human movement analysis are accelerometers, gyroscopes, magnetometers

and barometers.

Accelerometers measure linear acceleration and tilt angle. Acceleration is measured in meters

per second squared (m/s2) or in G-forces1 (g). They can be single or multi-axis and detect the com-

bined magnitude and direction of linear, rotational and gravitational acceleration. Accelerometers

can be divided in the following three most common types: piezoresistive, piezoelectric and differ-

ential capacitive (Yang and Hsu, 2010). Accelerometers have been used in detection of the human

body movements and postures (Veltink et al., 1993; Machek et al., 2012; Lugade et al., 2014). If

mounted on a segment of a human body, they measure a component of the actual acceleration of

the segment at the site of the sensor, and a component of the equivalent gravitational acceleration.

Signals acquired from accelerometers should be processed in order to be used in the automatic

detection of movements. Machek et al. (2012) describes two algorithms for movement detection

in the accelerometer data which include second differentiation, points of the inflection, cumula-

tive sum algorithm and peak detection. Usually, high frequency noise in acceleration data needs

to be removed. Thus, non-linear, low-pass median, Laplacian and Gaussian filters can be used.

Moreover, FFT can extract primary information of data and reduce its dimension, and wavelet

transforms are a good tool to eliminate noise during activities such as walking and running (Avci

et al., 2010).

Gyroscopes measure the angular rate of rotational movement about one or more axes, in radi-

ans per second (rad/sec). They can measure complex motion accurately in multiple dimensions

and track the orientation and rotation of a moving object. Further, unlike accelerometers and

compasses, gyroscopes are not affected by errors related to external environmental factors such as

gravitational and magnetic fields (Sunny et al., 2015). However, sensor drift can not be avoided.

Magnetic sensors, commonly referred to as compasses, detect magnetic fields and measure

their absolute position relative to Earth’s magnetic north and nearby magnetic materials, usually

in micro Tesla (mT ). The main source of measurement errors are magnetic interference in the

surrounding environment and in the device (Sunny et al., 2015). Compass reading can be used to

1g = 9.80665m/s2
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detect the direction change in the user’s motion, such as walking, and to correct errors from other

sensors, like accelerometers.

Pressure sensors, also known as barometers, measure relative and absolute altitude through

the analysis of changing atmospheric pressure (hPa). These sensors can be used in consumer

devices for sports and fitness, or location-based applications where information on elevation can

be valuable (Lee and Cho, 2011). Air pressure varies with different altitude or even with places of

the same altitude, but having different structures inside a building. So, barometer reading can be

used to indicate the user’s position change in activity recognition related to localization (Sunny

et al., 2015). Integrated with a tri-axial accelerometer, the added information of altitude changes

can be used to determine movement with vertical displacement, such as taking elevator or walking

upstairs and downstairs (Yang and Hsu, 2010).

Systems that employ sensor fusion methods are expected to provide better information than

would be possible when its sources are used individually, i.e., more accurate, more complete, or

more dependable. A physical sensor measurement generally suffers from problems like sensor de-

privation, limited spatial and temporal coverage, imprecision and uncertainty (Elmenreich, 2002).

On the other hand, the fusion of sensor data from a set of heterogeneous or homogeneous sen-

sors provides robustness and reliability, extended spatial and temporal coverage, increased confi-

dence, reduced ambiguity and uncertainty, robustness against interference and improved resolution

(Bosse et al., 1996).

Applying sensor fusion algorithms, it is possible to get a better information about the orien-

tation of the upper limb relative to the geographic coordinates (Luinge et al., 2007). However, it

must be borne in mind that data fusion based on samples from differing modality sensors requires

accurate time synchronization, which sometimes is hard to achieve (Chen et al., 2015). In ad-

dition, a signal filtering pre-processing component is often used. Combining data from multiple

inertial sensors corrects for the deficiencies of the individual sensors to calculate accurate posi-

tion and orientation information. Figure 2.2 shows the combination of the four inertial sensors

mentioned before to get a better estimation of position and orientation 2.

Figure 2.2: Fusion of different sensor data in order to calculate accurate position and orientation.

2http://www.kionix.com/sensor-fusion
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2.2 Heart Rate Analysis

The heart rate is the reflex of each person’s health status, and their lifestyle has a huge impact on

their own health and well-being. Several methods can be used to measure heart rate in real time.

Some of these methods are implemented in modern monitor devices and wearables, making self

monitoring more efficient and practical. Moreover, the analysis of heart rate variability can be

used to perform activity measurements, which might be crucial to detect possible abnormalities

and/or to improve users performance in sports context. In the following, physiologic concepts of

cardiovascular system which influence heart rate variability are described, as well as some methods

used to measure it.

The cardiac cycle refers to the repetitive pumping process that starts with the beginning of the

cardiac muscle contraction and ends with the beginning of the next contraction, i.e., a complete

heartbeat. The normal cardiac cycle (0.7 to 0.8 seconds) is dependent on the contractile capability

of the cardiac muscle and the functional integrity of the conduction system (Seeley et al., 1998).

The sinoatrial (SA) node, located in the superior wall of the right atrium, spontaneously initiates

the contraction of the heart, acting as its pacemaker. The electrical impulses generated spread all

through the heart and cause rhythmic contraction and relaxation of heart muscles. Throughout the

cardiac cycle, blood pressure increases and decreases, allowing the blood to flow in the right direc-

tion. Pressure increases in the ventricles during their diastole (contraction) and, when ventricular

diastole (relaxation) begins, pressure in the ventricles decreases (Putte et al., 2016).

When blood enters into the arteries, it causes their walls to stretch and the pressure to increase

to about 120 mmHg, the systolic pressure. At the end of systole, the pressure in the aorta decreases

slowly throughout diastole and, before the ventricle contracts again, the aortic pressure usually has

fallen to about 80 mmHg. This value corresponds to the diastolic pressure, which is two thirds

the maximal pressure of the systolic pressure. The pressure in the right ventricle and pulmonary

artery are similar to those in the aorta, but they are only about one sixth as great (Guyton and Hall,

2006).

To assess the function of the heart, it is important to measure the Cardiac Output (CO), which

is the volume of blood pumped by both ventricles each minute, the Stroke Volume (SV), that

refers to the volume of blood pumped per ventricle each time the heart contracts, and the Heart

Rate (HR), that describes the frequency of the cardiac cycle and is typically expressed as beats per

minute (BPM). These measurements are related as follows:

COmL/min = SVmL/beat ×HRbeats/min (2.1)

and they vary considerably from one person to another. For instance, the size of the heart is bigger

in athletes due to the exercise, so they tend to have a higher SV and lower HR at rest. Therefore,

an HR between 60 and 100 BPM is considered normal for a resting adult (Magalhães, 2016).

Considering the HR of non-athletes to be approximately 72 BPM under resting conditions, it can

increase to 190 BPM during exercise; also, SV can increase from 10 mL/beat to 115 mL/beat;

thus, CO can go from 5 L/min to 22 L/min (Putte et al., 2016).
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Figure 2.3: Cardiac sympathetic and parasympathetic nerves. The vagus nerves to the heart are
parasympathetic nerves. Adapted from (Guyton and Hall, 2006).

Cardiac Output and Heart Rate are controlled by intrinsic and extrinsic mechanisms, i.e., by

the heart itself, in response to changes in volume of blood flowing into the heart, or by nervous

and chemical regulation, respectively. Concerning nervous regulation, it is achieved by means of

the cardioregulatory center, which controls the action potential frequency in the nerve fibers of

the autonomic nervous system (ANS). These nerves abundantly supply the heart and constitute

the sympathetic (SNS) and the parasympathetic nervous systems (PNS), as shown in Figure 2.3

(Guyton and Hall, 2006). Nervous regulation also includes baroreceptors which monitor blood

pressure in the aorta and in the wall of the arteries that carry blood to brain. Cardiovascular

variability mainly allows to access to the activity of the nerves and baroreceptors (Aubert et al.,

2003).

In a normal HR, time between two beats (R-R) can differ substantially. The heart rate vari-

ability (HRV) corresponds to the variation in time between beats (Achten and Jeukendrup, 2003).

The equilibrium between SNS and PNS is implicit in the HRV and corresponds to the ability of

the heart to adapt to changing circumstances. The greater the HRV, the better the heart is capable

of keeping up with changes (Magalhães, 2016).

A sympathetic stimulation increases SV and HR. When the activity of the SNS is depressed

below normal, both HR and strength of ventricular muscle contraction are decreased, thereby de-

creasing the level of cardiac pumping. On the other hand, a parasympathetic stimulation decreases

HR, but doesn’t have much effect decreasing the strength of heart contraction, since the vagal fibers

are distributed mainly to the atria and not much to the ventricles, as shown in Figure 2.3 (Guy-

ton and Hall, 2006). Since the R-R interval has a nonlinear inverse mathematical relation with

the heart rate value, the higher the HR, the shorter the inter-beat interval. Shorter intervals usually

present less variation (Nieminen et al., 2007). Thus, low HRV can be interpreted as a consequence

of the SNS activity and high HRV can be indicative of dominance by the PNS. Furthermore, high

HRV is associated with high maximal oxygen uptake (VO2max) values. The relation between HR
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and VO2 is often used to estimate energy expenditure (Achten and Jeukendrup, 2003).

Many factors can influence heart function by increasing sympathetic or parasympathetic stim-

ulation. It is known that emotions can increase sympathetic stimulation of the heart in response

to exercise, excitement, anxiety, or anger, and increase parasympathetic stimulation in response

to depression (Putte et al., 2016). Moreover, stress, overtraining and inflammation can increase

SNS activity, while PNS activity promotes relaxation, sleep and recovery. Olufsen et al. (2008)

showed that even posture influences HR. During a sit-to-stand movement, the HR increases due to

the decrease in the blood pressure, which stimulates the sympathetic nerve (Magalhães, 2016).

2.2.1 Measurement Methods

The auscultatory method has been the mainstay of clinical blood pressure measurement. However,

it is gradually being replaced by other techniques that are more suited to automated measurement.

Many techniques have emerged to determinate the heart pulse and heart rate. These are integrated

into monitoring devices used in clinical context and, more recently, in self-monitoring. In spite

of the several techniques, this work is focused in measurement methods suitable for wearable

monitoring systems which can be used in sports field.

Electrocardiography captures electrical activity of the heart through biopotencial electrodes

placed on the skin. Plethysmography consists of measuring changes in the volume of blood in the

capillaries. These changes can be detected by photoplethysmography (changes in light absorption)

and impedance plethysmography (changes in electrical resistance). Nowadays, the majority of

smartwatches capable of measuring heart rate rely on plethysmography mechanisms.

Photoplethysmography (PPG) is a mean of determining the timing of cardiac cycles via con-

tinuous monitoring of changes in blood volume in a portion of the peripheral microvasculature.

These type of sensors can be based on the light transmission principle, usually applied on the

finger or earlobe, or based on principle of reflection, for wrist application (Magalhães, 2016).

When light radiation such as infrared is passed through a blood vessel, the received light signals

are periodic and vary due to the rhythmic flow and absorption properties of blood (Kumar, 2011).

This optical variation is employed to make PPG, taking into account the existing relation between

the vessels volume, blood pressure and volume (Tamura et al., 2014). PPG allows to determine

the heart rate, through the period of the blood flow (Zhang et al., 2016). Concerning the HR

monitoring through the wrist using bracelets or watches, it must be used a PPG based on the re-

flection principle, where both the emission module (infrared LEDs) and the detector (photodiode)

are placed on the same site.

A band-pass filter is often used to remove the DC component and the high frequency noise of

the signal. The variation of the optical signal (AC component), is due to changes in blood flux.

During the systole, the optical path is bigger and, consequently, the light absorption is higher. The

instant heart rate can be calculated from the inverse of the time between cardiac cycles. The PPG

signal is the recorded infrared waveform at the detector side. Figure 2.4 is a representation of a

PPG signal, consisting of a large DC component, which is attributed to the total blood volume of

the examined tissue (including bones, skin, tissues, venous blood and non-pulsatile blood), and a
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Figure 2.4: Representation of a typical PPG waveform (not to scale). From (Embedded-Lab,
2013).

pulsatile AC component, which is synchronous to the pumping action of the heart and carries vital

information including the heart rate (Magalhães, 2016; Embedded-Lab, 2013).

Light propagation might be affected by different factors, such as movement artefacts, tempera-

ture control mechanism, measurement area and ambient light, making difficult to obtain a reliable

optical heart rate monitoring (Delgado-Gonzalo et al., 2015).

2.2.2 Effects of Exercise Training

During exercise, heart rate increases due to both a parasympathetic withdrawal and an augmented

sympathetic activity. Once SNS is not capable of controlling HR as swiftly and accurately as the

PNS, it is physiologically meaningful that high frequency HRV is more obscure during exercise

than at rest (Aubert et al., 2003). The decreased influence of PNS is suggested by a decrease in the

values of SDNN, TP, HF and LF in the transition from rest to exercise (Achten and Jeukendrup,

2003). Therefore, there is a decrease in HRV.

The cardiovascular responses to physical activity (PA) depend on the type and intensity of

exercise. For example, during endurance exercise, there is an increased volume load, in contrast to

pressure load during strength exercise. During endurance training, the ability of the heart to pump

blood is increased, by increasing its stroke volume (Aubert et al., 2003). Moreover, endurance

exercise ensue a more efficient pressure-time relationship, since it also decreases the metabolic

load on the heart at rest and at any submaximal exercise intensity, by increasing SV and decreasing

HR (Guyton and Hall, 2006). Differences in HRV between trained and sedentary individuals are

evident: trained individuals present higher values of R-R interval times, SDNN, pNN50, rMSSD,

TP and HF, indicating their higher HRV (Achten and Jeukendrup, 2003).

The HR regulation by ANS during exercise varies substantially within an individual, depend-

ing on age, gender, heredity, fitness level, exercise mode and skill (economy of exercise). Also,
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body posture, temperature, humidity, altitude, state of mood and hormonal status affect HR re-

sponses, as well as, drugs, stimulants, smoking and eating habits (Aubert et al., 2003; Achten and

Jeukendrup, 2003; Acharya et al., 2006).

Aging causes changes in the heart function that are more obvious during exercise. Older people

tend to fell out of breath when they exercise strenuously, due to the hypertrophy of the left ventricle

which reduce its ability to pump blood, leading to increased pulmonary edema. However, physical

exercise has many beneficial effects on the heart by improving its functional capacity (Putte et al.,

2016). In 1970, Dr. William Haskell and Dr. Samuel Fox formulated a relation between HR

and age, which suggests that the highest heart rate a human can achieve without severe sequelae

(HRmax) is given by Simon (2002):

HRmax = FHR−age (2.2)

Where FHR is the fetal heart rate defined as 220. Other authors suggested that, for women, a

FHR of 226 provides a better estimate of the maximum heart rate than 220− age, being more

appropriate for exercise prescriptions (Warburton et al., 2006; Froelicher et al., 2000). Although

recent studies proved that this traditional equation overestimates HRmax in young adults (Tanaka

et al., 2001), presenting a more realistic equation (HRmax = 208−0.7×age), the one proposed by

Haskell and Fox stills the most widely cited formula and it is used by most of the fitness devices

to track heart rate.

This relation is helpful to control the effort done during physical activities, taking into account

the age and the intensity of the physical exercise. For example, if a 20 years old person, who has

a maximum heart rate of 200 BPM, performs a 50-70% intensity physical workout, he/she should

present a HR between 100 and 140 BPM (Tanaka et al., 2001; Magalhães, 2016).

2.3 Physical Activity and Energy Expenditure

Energy expenditure (EE) can be estimated by measuring physical activities, through accelerome-

ters data. Accelerometers provide basic step counting and activity counts (intensity) that can be

used to estimate the EE due to PA (Yang and Hsu, 2010). Moreover, EE can be calculated based

on the values of metabolic equivalents (METs), which are computed depending on the performed

PA (see Appendix A.1.1). A MET represents the amount of oxygen consumed at rest (being one

liter of oxygen equal to 5 kcal, a MET is approximately 3.5 ml O2/kg/min, which is 1.2 kcall/min

for a 70-kg person), and is defined as the resting metabolic rate Jette et al. (1990). Energy expen-

diture is calculated from the METS values using the following equation (Kawahara et al., 2009):

EE(kcal) = 1.05×MET s
(

kcal
kg×h

)
×duration(hour)×weight(kg) (2.3)

Furthermore, both oxygen uptake and heart rate increase linearly with increasing exercise

intensity. To estimate EE, it is determined the individual HR-VO2 relationship. Thus, HR can be

used to estimate VO2max and EE, assuming a linear relationship between HR and VO2. However,



2.3 Physical Activity and Energy Expenditure 15

Figure 2.5: Relationship between accelerometer and EE, and between heart rate and EE data for a
series of activities performed in laboratory conditions. Walking, running and biking activities are
performed at increasing intensities (Altini, 2015).

during very low and very high intensities, this relationship becomes non-linear, leading to some

errors (Achten and Jeukendrup, 2003). Since HR increases so that oxygen can be delivered to

the body, it is verified that, during exercise, there is also a correlation and a linear relationship

between speed and HR. When HR reaches its maximum, VO2max is reached and there can be no

further increase in exercise intensity. Estimating the oxygen volume and subsequently EE from

heart rate presents some advantages, compared to established metabolic equations, since the heart

rate changes during exercise reflect the volume of oxygen whereas metabolic equations assume a

fixed expenditure rate for a specific intensity (Magalhães, 2016). To derive a reliable EE estimate,

it is necessary to normalize HR according to an individual’s cardiorespiratory fitness (CRF) level.

Thus, a normalized HR could be used as independent variable in EE regression models and its

normalization can be obtained using information on CRF (Altini et al., 2015). In Appendix A.1.2,

a model proposed by Altini (2015) to automatically estimate the heart rate normalization factor

can be seen.

As depicted in Figure 2.5, the heart rate is as higher as the physical effort required by the

physical activity performed, which is confirmed by the energy expenditure per minute in each

activity type. Accelerometer data shows a strong relation with EE for weight bearing activities

such as walking at different speeds. However, the relation between accelerometer and EE gets

very weak for non-weight bearing activities, such as biking. The heart rate is highly correlated



16 Background

with energy expenditure during moderate and vigorous activities such as walking, running and

biking, but during lying or sedentary activities this relationship is weaker (Altini, 2015).

Thus, EE is typically estimated using both acceleration and heart rate data (Altini et al.,

2015). The estimation of EE from the heart rate is sport-specific and depends on the PA and

posture. Altini (2015) proposed activity-specific EE linear models (see Appendix A.1.3), which

use anthropometric characteristics, accelerometer and HR features.

Brage et al. (2004) suggested a multi-linear regression equation that was derived and ex-

pressed in terms of both activity counts and heart rate values. The model uses the same equations

as those that were used in the study by Thompson et al. (2006), where accelerometer counts and

heart rate were used to estimate EE (see Appendix A.1.4).

2.4 Human Activity Recognition Methodologies

Human activity recognition (HAR) is performed just like any other machine learning application.

Pattern recognition is a sub-field of the machine learning and its main objective is to learn to

distinguish patterns of interest from their background, using techniques based on probabilistic and

statistical arguments (Freixo, 2015).

In the ideal case, an activity is recognized independently of the environment where it is per-

formed in, or the performing person. It is based on sensor and/or video observation data, as well as

on knowledge about the context within which the observed activities take place (Ranasinghe et al.,

2016). This work focus on physical sensor based HAR, in which physical sensors are attached to

the body of humans to infer their activity.

Wearable sensors based activity recognition is a recent field of study (back to 1990s) due to its

requirements on the power of sensors and a light-weight hardware, allowing mobile systems to be

worn by a single person (Starner et al., 1999). It has been used in healthcare and in interactive ap-

plications, such as medical applications (monitoring and diagnosis, rehabilitation, correlation be-

tween movement and emotions, child and elderly), home monitoring and assisted living (tracking,

monitoring and emergency, assistance for people with cognitive disorders or chronic conditions)

and sports and leisure applications, since it demonstrated good performance in applications which

require explicit motion analysis (Avci et al., 2010). However, it is not able to distinguish similar

actions, for instance, making tea and coffee (Guan et al., 2011).

In Figure 2.6 are presented the common phases in an HAR process. These include the two

main stages of training and testing. The training stage starts with a time series dataset of measured

attributes from individuals performing each activity, which are split into time windows to apply

feature extraction. Then, relevant information is used by learning methods to generate an activity

recognition model. In testing stage, the same type of attributes are collected in order to extract

defined features to be evaluated in the previously trained learning model (classifier), generating a

predicted activity label. The classifier can be evaluated by comparing its result with the ground

truth. Each phase of HAR process is described next.
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Figure 2.6: Common steps for human activity recognition process (Lara and Labrador, 2013; Avci
et al., 2010).

2.4.1 Data Collection and Pre-processing

HAR process begins with the collection of relevant information on human behavior. These in-

formation corresponds to the raw data of a sensor. In HAR, the most used data provides from

environmental attributes, acceleration signals, location data and physiological signals (Lara and

Labrador, 2013). Pre-processing is a key step, since it allows to remove artifacts, noise and redun-

dancy which could distort the final classification. Furthermore, pre-processing allows to perform

data aggregation and normalization, and correct missing data. Finally, a segmentation step is often

used to retrieve important and useful information from continuous stream of sensor data (Avci

et al., 2010).

2.4.2 Feature Extraction and Dimensionality Reduction

Once the components are representative of the activity performed, the main characteristics of fea-

tures are extracted. Statistical and structural approaches have been proposed to extract features

from time series data. Structural approaches take into account the interrelationship among data,

applying, for example, linear, polynomial, exponential or sinusoidal functions. Statistical methods,

use quantitative characteristics of the data to extract features (Lara and Labrador, 2013). These

features are measurable properties which enable the characterization of the movement/activity,

such as time domain, frequency domain and time-frequency domain features. Also, heuristic fea-

tures (signal magnitude area, signal vector magnitude and inter-axis correlation) are often used,

since these features have been derived from a fundamental understanding of how a specific move-

ment would produce an unique sensor signal (Avci et al., 2010).

In order to increase the quality of the features and reduce the computational effort needed for

the classification, a dimensionality reduction should be performed. If features with little discrim-

ination power are selected, the subsequent design of a classifier would lead to poor performance.

Also, the number of features extracted should not be too large, in order to the data not became

minimal relatively to the features dimensionality. However, a short amount of features may not

provide sufficient information to fully describe the performed activity (Lara and Labrador, 2013).
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Selected features should take distant values in the different classes and closely located values in the

same class (Theodoridis and Koutroumbas, 2003). Thus, feature selection methods and feature

transform methods can be used.

In feature selection methods, one possibility is to examine the features individually and dis-

card those with little discriminatory capability (statistical hypothesis testing). Another one is to

examine them in combinations (class separability measures). Unlike the former, the latter takes

into account the correlation that exists among the various features (Theodoridis and Koutroumbas,

2003). The selection itself can be performed by different methods, such as forward-backward se-

quential search, correlation-based feature selection (CFS) approach, K-Means clustering, support

vector machine (SVM) based feature selection, bayesian information criterion (BIC), minimum

description length (MDL), minimum redundancy and maximum relevance (MRMR), among oth-

ers (Theodoridis and Koutroumbas, 2003; Avci et al., 2010; Lara and Labrador, 2013).

The application of a linear or nonlinear transformation to a feature vector sometimes may

lead to a new one with better discriminatory properties. Applying transform-based features, an

appropriately chosen transform can exploit and remove information redundancies, which usually

exist in the set of samples obtained by the measuring devices. Fourier coefficients as features

are often used, because the low-energy, high frequency coefficients can be neglected, with little

loss of information (Theodoridis and Koutroumbas, 2003). Principal component analysis (PCA)

is a widely used statistical analysis method which transforms the original features into a lower

dimensional space (Avci et al., 2010). Other methods such as independent component analysis

(ICA), local discriminant analysis (LDA) and discrete cosine transform (DCT) might be used

(Theodoridis and Koutroumbas, 2003; Avci et al., 2010; Lara and Labrador, 2013).

2.4.3 Classification and Evaluation

Based on the extracted features, the classification of the segments is performed in order to identify

activities. Two learning approaches can be considered: supervised and unsupervised learning,

which deal with labeled and unlabeled data, respectively. This work is more focused on supervised

learning, since a HAR system usually consists of inferring a decision rule from labeled training

data, such as ”walking”, ”running”, etc. Concerning, for example, the movement of the arm,

supervised algorithms associate an observation (or features) of movement to possible movement

states in terms of the probability of the observation, i.e., they use statistical schemes. Supervised

learning includes a training phase and a test phase. The selection and training of the classifier is

done in the training phase. A labeled dataset is used to create a model to classify unlabeled objects

of data. The test phase is used to evaluate the algorithm performance.

Statistical schemes include threshold-based techniques, Bayes-based classifiers, including Naive

Bayes (NB) classifier, Gaussian mixture model (GMM) and hidden Markov model (HMM), lin-

ear classifiers, such as support vector machines (SVM), and nonlinear classifiers, which include

K-Nearest Neighbours (kNN) classification, decision trees and artificial neural networks (ANN)

(Yang and Hsu, 2010; Avci et al., 2010; Lara and Labrador, 2013).
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Threshold-based techniques are widely used to distinguish activities with various intensities.

K-Nearest Neighbours algorithms are used for classification of activities based on the closest train-

ing examples in the feature space (Avci et al., 2010). Decision trees build a hierarchical model

which uses a tree-like model of decisions and their outcomes, and costs (Avci et al., 2010). In

this model, the attributes are mapped to nodes, and edges represent the possible attribute values,

being each branch a classification rule (Lara and Labrador, 2013). Decision trees usually generate

models that are easy to understand by humans.

Naïve Bayes is a simple probabilistic classifier based on the theorem of Bayes (Avci et al.,

2010), which calculate posterior probabilities for each class using estimated conditional probabil-

ities from the training set (Lara and Labrador, 2013). In a HAR, it determines activities according

to the probabilities of the signal pattern of the activities (Yang and Hsu, 2010). The main dis-

advantage of Bayesian methods relies on the fact that it is necessary to make assumptions on the

independence among features. It assumes that all features are conditionally independent given a

class value, however, such assumption does not hold in many cases (Lara and Labrador, 2013). In

fact, acceleration signals are highly correlated, as well as physiological signals such as heart rate.

In GMM approach, the likelihood function is not a typical Gaussian distribution. GMMs are

parametric representations of probability density functions, based on a weighted sum of multi-

variate Gaussian distribution (Avci et al., 2010). The weights and parameters describing probabil-

ity of activities are obtained by the expectation-maximization algorithm. The HMM is a statistical

model applied to determine unknown states at any time according to observable activity features

corresponding to the states. A Markov chain represents the likelihood (probability) of transitions

between possible activities (states), thus it can describe transitions between activities (Yang and

Hsu, 2010). However, GMM and HMM approaches are usually used in the unsupervised context,

trying to directly construct models from unlabeled data.

SVMs represent kernel functions that project all instances to a higher dimensional space in

order to find a linear decision boundary (i.e., a hyperplane) to partition the data. Artificial neu-

ral networks replicate the behavior of biological neurons in the human brain. Activation signals

are propagated to codify knowledge in the network links. Although ANNs are universal function

approximators, showing good results on HAR, a high computational cost is needed, as well as

a large amount of training data. In both support vector machines and artificial neural networks,

knowledge is hidden within the model, which may be prejudicial to the analysis and incorpora-

tion of additional logical information. Moreover, SVM and ANN do not provide a set of rules

understandable by humans (Lara and Labrador, 2013).

The output of several classifiers can be combine in order to improve classification accuracy.

However, this approach is computationally much more expensive.

To evaluate HAR systems, two analysis have been proposed based on the dependency on the

subject: subject-dependent and subject-independent evaluations. In the subject-dependent anal-

ysis, a classifier is trained and tested for each individual with his/her own data, and the average

accuracy for all subjects is computed, while in the subject-independent evaluation only one clas-

sifier is built splitting the data of all individuals into a training set and a testing set (Lara et al.,
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2012). Then, a large set of metrics can be applied to evaluate the algorithm performance. These in-

clude confusion matrices, measurement of accuracy, recall, precision and F-Measure, and receiver

operating characteristic (ROC) curves (Lara and Labrador, 2013).



Chapter 3

Literature Review

This Chapter provides a review of the existing studies in human activity recognition which can

be applied to sports field, using wrist-worn sensors, such as smartwatches, bracelets or other type

of sensors. Estimation of energy expenditure methods, using acceleration and heart rate data,

are also reviewed, as well as works concerning the analysis of the running symmetry. The fol-

lowing keywords and combinations were used in the search: recognition, movement, activity,

smartwhatches, wearables, wrist-worn, upper-limb, sports, accelerometer, inertial sensors, heart

rate, heart rate variability, photoplethysmography, energy expenditure, physical activity, exercise

training, running, symmetry.

Furthermore, it is made a review of current wrist-worn devices and mobile applications in

sport context which use inertial and heart rate sensors in order to provide useful information to

their users.

Finally, some public datasets which might be used in the development of this project are de-

scribed.

3.1 Pattern Recognition of Movement and Activity

Wearable activity sensors can be placed on different parts of a human body whose movements

are being studied. When it is necessary to measure the whole-body movement, the sensors are

commonly placed on the sternum, lower back and waist. Most studies adopted waist-placement

for motion sensors since it is close to the center of mass of a whole human body, so the accelera-

tions measured by a single sensor can better represent the major human motion (Yang and Hsu,

2010). Some systems require the user to wear two or more accelerometers (Tapia et al., 2007;

Ermes and Parkka, 2008; Ghasemzadeh et al., 2009; Riboni and Bettini, 2011; Reiss and Stricker,

2012; Garcia-Valverde et al., 2014), or carry a rucksack with recording devices (Ermes et al.,

2008). However, such approach may be uncomfortable, causing constraint in body movement and

discomfort, mainly during sport activities.

In order to improve comfort and reduce complexity and energy consumption, it is important

to minimize the number of sensors required to recognize activities (Lara and Labrador, 2013).

21
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Accuracy of sensors placed on wrist used to classify physical activities was compared with sensors

placed on other parts of the body, such as hip (Bao and Intille, 2004; Liu et al., 2012; Mannini

et al., 2013), waist (Fergus et al., 2015), thigh, upper arm and ankle (Bao and Intille, 2004;

Mannini et al., 2013), and the accuracy results obtained were close, although sometimes lower.

However, these seem to be reliable for sports purposes. A sensing platform that can be worn as a

sport watch was presented by Maurer et al. (2006) and Lester et al. (2006), using an accelerometer

(ACC), a light sensor, microphone, compass, temperature and barometer sensors. Furthermore,

single ACCs placed on wrist were used in PA recognition (Yang et al., 2007, 2008; Chen et al.,

2008; Siirtola et al., 2009; Kao et al., 2009), as well as sensors from smartwatches combined with

sensors from smartphones (Riboni and Bettini, 2011; Garcia-Valverde et al., 2014; Ramos et al.,

2016), or only a smartwatch (Chernbumroong et al., 2011). Table 3.1 presents a summary of the

literature review done for this topic, including the devices and sensors used, their body placement

and the sampling rates.

Maurer et al. (2006) analyzed the impact of the sensor specifications, such as the accelerom-

eter sampling rate, which lies between 4 Hz (Lester et al., 2006) and 100 Hz (Yang et al., 2007,

2008; Chen et al., 2008; Siirtola et al., 2009; Kao et al., 2009; Reiss and Stricker, 2012), and they

found that no significant gain in accuracy is achieved above 20 Hz for ambulation activities.

Vital signs data (e.g., heart rate, respiration rate, skin temperature, skin conductivity, ECG,

etc.) have also been considered in a few works (Tapia et al., 2007; Liu et al., 2012; Lara et al.,

2012; Reiss and Stricker, 2012; Lara and Labrador, 2013; Garcia-Valverde et al., 2014; Ríos-

Aguilar et al., 2015; Altini et al., 2015). Tapia et al. (2007) proposed an activity recognition

system that combines data from five triaxial ACCs and a HR monitor, concluding that the heart

rate is not useful in a HAR context, since results only improved 1-2%. Contrariwise, some authors

combined acceleration data with vital signs to achieve highly accurate activity recognition (Liu

et al., 2012; Lara et al., 2012; Garcia-Valverde et al., 2014).

Physical activities, including walking, strolling, running, ascending or descending stairs, jog-

ging, standing still and cycling can be classified according to the accelerations and heart rate

signals measured from a wrist-worn device. Movement classification through machine learning

techniques has been widely studied. Walking, for instance, can be identified by frequency-domain

analysis of acceleration signals. It is characterized by a variance of over 0.02 g in vertical accel-

eration and frequency peak within 1–3 Hz in the signal spectrum. Discrete wavelet transform is

used to distinguish walking on a level ground and walking on a stairway (Yang and Hsu, 2010).

Movement classification through supervised machine learning procedure had been applied us-

ing different classifiers: k-nearest neighbors classification, support vector machines, Naive Bayes

classifier, Gaussian mixture model, hidden Markov model, decision trees and artificial neural net-

works. Tables 3.2 and 3.3 present a summary of the literature review done for pattern recognition

of human movement and activity, including pre-processing, feature extraction, selection and clas-

sification methods, test mode and the accuracy obtained by the different works. Implementing

activity recognition in mobile devices becomes challenging because they are still constrained in

terms of processing, storage, and energy. Therefore, feature extraction and learning methods
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Table 3.1: Literature review of the devices and sensors, their body placement and the sampling
rates used for pattern recognition of human movements and physical activities.

References Sensors and Devices Body Placement Sampling Freq. (Hz)

Bao and Intille (2004) 5 ACC Wrist, Ankle, 76.25
Thigh, Upper Arm

Maurer et al. (2006) eWatch: Wrist 50 and lower
ACC, Light Sensor

Wristwatch:
Lester et al. (2006) Temperature,Micophone, Wrist 4

Compass, Barometer,
Light Sensor, ACC

5 ACC and Wrist, Hip, Ankle,
Tapia et al. (2007) Heart Rate Monitor Upper Arm, 30

Thigh, Chest (HRM)

Yang et al. (2008),
Chen et al. (2008), ACC Wrist 100
Kao et al. (2009),
Siirtola et al. (2009)

Ermes et al. (2008) 4 ACC 2 on Wrist, 50
Ankle, Chest

Ermes and Parkka (2008) ACC, GPS Wrist, Hip and 20
a Rucksack (GPS)

Upper Body,
Ghasemzadeh et al. (2009) ACC and Gyroscope Upper Arm, Wrist 30 and 50

and 2 on club

Chernbumroong et al. (2011) eZ430-Chronos Wrist 33
watch: ACC

Smartphone: Wrist and
Riboni and Bettini (2011) ACC, GPS, Pocket 16

Smartwatch: ACC

Reiss and Stricker (2012) 3 IMU and Chest, Wrist, Ankle 100
Heart Rate Monitor

BioHarnessTM: 30 (ACC)
Lara et al. (2012) Vital Signals, Chest 1 (Vital Signals)

Heart Rate, ACC

Liu et al. (2012) Ventilation Sensor Hip and Wrist 30
(breathing) and 2 ACC

Mannini et al. (2013) 4 ACC Wrist, Thigh, Hip, 90
Upper Arm, Ankle

Ramos et al. (2016), Smartphone, Smartwatch: Wrist and
Garcia-Valverde et al. (2014) ACC,Gyroscope, Pocket -

Heart Rate Monitor

Altini et al. (2015) ECG Necklace: Neck and Chest 256 (ECG),
ACC, Heart Rate 32 (ACC)

Fergus et al. (2015) 4 ACC 2 on Wrist, 2 on Hip -
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should be carefully chosen to guarantee a reasonable response time and battery life (Lara and

Labrador, 2013).

Riboni and Bettini (2011) developed a system for automatic activity recognition based on

the integration of hybrid statistical and ontological reasoning, COSAR. The use of the COSAR

technique considerably improves the recognition rate with respect to the solely statistical tech-

niques (error reduction of 45.43% with respect to the statistical technique, and of 29.32% with

respect to the statistical-hist technique). COSAR avoids many misclassifications between activi-

ties characterized by similar body movements but different contexts (e.g., location). The historical

variant of COSAR further improves classification results, gaining a recognition rate of 93.44%

(error reduction of 39.26% with respect to the COSAR technique).

Regarding ACC data, statistical feature extraction is employed and, in most of the cases, either

time- or frequency-domain features. Techniques like Principal Component Analysis (Ghasemzadeh

et al., 2009; Yang et al., 2008) are used to handle the high variability inherent to acceleration sig-

nals. Also, some studies apply Linear Discriminate Analysis to transform features (Maurer et al.,

2006; Yang et al., 2007; Chen et al., 2008; Kao et al., 2009; Ghasemzadeh et al., 2009). Bao and

Intille (2004) and Ermes et al. (2008) extracted frequency domain entropy to discriminate activi-

ties with similar energy values, such as biking and running. Moreover, the peak frequency of the

PSD is used to detect cyclic activities (walking, running and cycling). Ermes et al. (2008) used

the signal variance to estimate the intensity of an activity. Bao and Intille (2004) suggested that

some common everyday activities in naturalistic settings could be detected using fast FFT-based

feature computation and a decision tree classifier algorithm. Decision trees are slow to train but

quick to run, so, a pre-trained decision tree should be able to classify user activities in real-time

on emerging mobile computing devices with fast processors and wireless accelerometers.

Before ACC features are extracted and/or derived, the signal is often high pass filtered to re-

move any baseline offset (Yang et al., 2008) and interpolated using cubic spline interpolation

(Tapia et al., 2007; Fergus et al., 2015) for missing values. Moving average filters are also used

to remove the random noise (Ghasemzadeh et al., 2009; Chernbumroong et al., 2011; Garcia-

Valverde et al., 2014). Altini et al. (2015) applied a bandpass filter between 0.1 and 10 Hz to

isolate the dynamic component due to body motion and a low-pass filter at 1 Hz. Mannini et al.

(2013) used signal magnitude vectors (SMV1) which were low pass filtered using a 15 Hz cut-off

4th order Butterworth filter. This way, he limited the bandwidth of the signal to the frequencies

common in human motion, removing high frequency noise. This work also investigated the ef-

fect of removing wavelet based features from the training set. These features provide not only

good frequency resolution at low frequencies, but also better time resolution at higher frequen-

cies, however, they require substantial processing. The authors concluded that the improvement

of 0.6 percentage points is at the cost of a 12% increase in computation time. Thus, wavelet based

features might be excluded.

Since vital signs have much lower variability than acceleration signals, Lara et al. (2012)

1SMV = 2
√

ACC2
x +ACC2

y +ACC2
z
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proposed structure detectors, i.e., linear and non-linear functions, to extract features. Moreover,

they used the magnitude of change and the trend of the vital signs to discriminate among activities

during periods of vital sign stabilization, overcoming the transient period issue (e.g. the interval

of time after stop running in which vital signs remain as if running).

To dimensionally reduce the number of features, a common method is the Minimum Redun-

dancy and Maximum Relevance (Liu et al., 2012). In contrast, Maurer et al. (2006) and Chern-

bumroong et al. (2011) applied a Correlation-based Feature Selection approach, which works un-

der the assumption that features should be highly correlated with the given class but uncorrelated

with each other (Lara and Labrador, 2013).

In the work by Mannini et al. (2013), the author concluded that one of the limitations of

previous studies was the fact that the algorithms have been trained and evaluated on small pools

of participants with little data per participant. Moreover, some studies used 50% overlapping

windows, which leads some of the same data to appear in two windows, potentially inflating

recognition results, especially if this overlapping window technique is applied jointly with n-fold

validation. In fact, the measured time series if often divided in time overlapping time windows,

which are intended to handle transitions more accurately. This information is included in the

”pre-processing” column of the Table 3.2, and it can be seen that many windows lengths are used

among the different studies.

Some authors pointed out that specific recognition model should be built for each individual,

since people perform activities in a different manner due to age, gender, weight, fitness level,

and so on (Bao and Intille, 2004; Tapia et al., 2007; Reiss and Stricker, 2012). On the other

hand, authors prefer a monolithic recognition model, flexible enough to work with different users.

Therefore, two types of analysis have been proposed to evaluate activity recognition systems:

subject-dependent and subject-independent evaluations (Lara and Labrador, 2013). In the second

one, only one classifier is built for all individuals using n-fold cross validation (Maurer et al.,

2006; Lester et al., 2006; Siirtola et al., 2009; Chernbumroong et al., 2011; Riboni and Bettini,

2011; Lara et al., 2012; Ramos et al., 2016) or leave-one-individual-out analysis (Bao and Intille,

2004; Yang et al., 2007; Tapia et al., 2007; Chen et al., 2008; Yang et al., 2008; Ermes et al., 2008;

Liu et al., 2012; Altini et al., 2015).

Mannini et al. (2013) compared the two subject-independent approaches. In the n-fold cross

validation, data are randomized and divided, and the algorithm is trained on n-1 subsets and tested

on the remaining one. This process is performed n times, alternating circularly the test subset. The

leave-one-subject-out cross validation is a specific case of n-fold, with n equal to the total number

of data. The subsets correspond to data from the various participants, and data from all subjects

are used to train except one that is used for test phase. Results were better using leave-one-subject-

out, since it avoids the problem of n-fold cross validation which can encourage the algorithm to

overfit the data.

-

-

-



Table 3.2: Literature review for pattern recognition of human movements and physical activities. Continued in Table 3.3.

References Pre-processing Features Extracted Feature Selection Test mode Accuracy (%)
and Classification

Bao and Intille (2004) SW with 50% Mean, Energy, DT C4.5, NB LOSO, C4.5:
overlap (6.7 s) Entropy, Correlation SPEC 71.58±7.4(SPEC)

84.26±5.19(LOSO)

Variance, RMS, SD, ZCR, LDA, CFS,
Maurer et al. (2006) SW Interquartile, MAD, MCR, DT, NB, 5 cross DT: 87

Mean, Cumulative Histogram KNN

FFT freq. coefficient, Exclude features, HMM: 87,
Lester et al. (2006) 0.25s Windows BPF coefficient, Correlation, Static, HMM 4 cross HMM, ACC: 45

Entropy, Integral, Mean, Variance

ACC: SW with AUC, Variance, Mean, Entropy, SPEC SPEC: 94.6
Tapia et al. (2007) 50% overlap (4.2s), CSI MDA, Correlation, FFT peaks, Energy, DT, NB (10 cross), LOSO: 56.3

HR: AF, 30s Window Number Heart Beats>Resting HR LOSO

Yang et al. (2007) SW with 50% Mean, Correlation, Interquartile, LDA, FSS, NFC LOSO FSS: 83.41±5.93
overlap (5.24s) MAD, RMS, SD, Variance, Energy LDA: 92.86±5.91

Yang et al. (2008) HPF Mean, MAD, RMS, Correlation, PCA, LOSO ANN: 95.24,
overlap Window SD, Variance, Energy, SMA ANN, KNN KNN: 87.18

Ermes et al. (2008) SW with 50% Average, Variance, DT - 94
overlap PSD peak, Entropy

Mean, Variance, Median, Custom DT,
Ermes and Parkka (2008) - Skew, Kurtosis, Percentil, Automatic generated DT, LOSO HM: 89

PSD peak, Speed ANN, HM

Chen et al. (2008), SW with 50% Mean, Correlation, Energy, MAD, LDA, FBF LOSO 93 and 94.71
Kao et al. (2009) overlap Interquartile, RMS, Variance, SD

Siirtola et al. (2009) Data compression Mean, SD, Percentil Clustering based, DT 10 cross 85
Variance,y-Average change

Ghasemzadeh et al. (2009) 5-point MAF Mean, Variance, SD, MAD, RMS PCA, LDA, LR - -



Table 3.3: Continued from Table 3.2.

References Pre-processing Features Extracted Feature Selection Test mode Accuracy (%)
and Classification

Chernbumroong et al. (2011) MAF, SW with Minimum, Differences, Mean, CFS, DT, ANN 5 cross DT: 94.13,
50% overlap Coefficient Sum, Energy, Entropy, ANN: 90.45

SD, Variance, Correlation

Riboni and Bettini (2011) - Mean, Variance, Correlation, DT, NB, MLR, 4 cross COSAR: 93
Kurtosis, other SVM, COSAR

Reiss and Stricker (2012) SW 5.12s Mean, Variance, Energy. Boosted DT, Bagging DT, SPEC (9 cross), KNN, Boosted DT:
HR: Mean, Gradient DT, NB, kNN LOSO 90 and over

Lara et al. (2012) SW with 50% Mean, Variance, SD, NB, DT, ANN, ALR 5x2 cross 12s Window, ALR:
overlap Correlation, Interquartile, 95.7
(5s, 12s, 20s) MAD, RMS, Energy

Liu et al. (2012) Micro-controller ACC: Mean, SD, Median, MRMR, SVM, LOSO SVM:
Correlation, Energy, Entropy, kNN, NB 76 (Wrist ACC),
Percentil; Breathing: freq. 88 (all)

Mannini et al. (2013) LPF and Mean and SD of SMV, Sets’ combination, N cross, 12.8s Window, LOSO:
12.8s, 4s, 2s PSD, Wavelet Transform, SVM LOSO 95.0 (Ankle),
Windows Minimum, Maximum 84.7 (Wrist)

Garcia-Valverde et al. (2014) MAF Time domain features Sets’ combination, - DT: 99.7,
KNN, Boosted DT KNN: 99.3

Altini et al. (2015) ACC: BPF ACC: Mean, Variance, Clustering based, LOSO SVM + HMM: 92.3
(1-10Hz) SD, Median, MAD, SVM + HMM

MDA, Interquartile, Correlation,
RR interval freq.

Fergus et al. (2015) CSI ACC: Mean. MLP, SVM, cross feature MLP: 74
direct observation DT, NB, ANN (Wrist and HR)
BMI, EE, VO2, HR

Ramos et al. (2016) - Mean, SD, Mean + SD Sets’ combination, 10 cross SVM: 89.63
DT, NB, SVM (Mean + SD)
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3.2 Estimation of Energy Expenditure

Energy expenditure can be estimated by measuring physical activities. Studies by Liu et al.

(2012), Altini et al. (2012) and Garcia-Valverde et al. (2014) estimated EE after recognition of

the physical activities involved using methods mentioned on the previous section.

The doubly labeled water (DLW) method, which is done by administering a dose of DLW

and then measuring the elimination rates of deuterium and oxygen-18 in the subject over time,

and indirect calorimetry, that measures oxygen uptake, carbon dioxide production and cardiopul-

monary parameters, are regarded as the gold-standard references of EE (Yang and Hsu, 2010).

These are often used as ground truth to compare with results from more recent methods, which

use ACC and/or HR data (Thompson et al., 2006; Staudenmayer et al., 2009; Assah et al., 2010;

Altini et al., 2012; Santos et al., 2014), and can replace the gold-standard techniques, which are

expensive, require a controlled laboratory environment and are not convenient in a free-living

environment (Yang and Hsu, 2010).

Metabolic Equivalent Tasks equations, derived or validated for different accelerometers, have

been used to better match exact EE of physical activities among subjects (Thompson et al., 2006;

Staudenmayer et al., 2009; Assah et al., 2010; Duclos et al., 2016).

Staudenmayer et al. (2009) developed two artificial neural networks to apply to PA data col-

lected with a Actigraph uniaxial ACC. The first ANN model estimated physical activity METs

(i.e. energy expended in PA), and the second ANN identified activity type. They correctly classi-

fied activity type (low-level activities, locomotion, vigorous sports, and household/other activities)

88.8% of the time, showing that they could successfully estimate activity METs and identify ac-

tivity type using ANN analytic procedures, which simpler regression-type methodologies would

not.

To predict EE associated with each activity, Liu et al. (2012) implemented a regression version

of the SVM, the support vector regression, to estimate METs and obtained an accuracy of 93.4%

using an ACC on the wrist. However, their previous results for activity recognition with SVM

were 75.8% accurate. Many factors affect the accuracy of EE estimation using accelerometry,

for instance, the location and attachment of ACCs, external vibration, gravitational artifact and

the types of activity performed (Yang and Hsu, 2010). Moreover, Staudenmayer et al. (2009)

suggested that multiple accelerometers and subject-specific models would better identify specific

activities.

Therefore, another promising possibility is the use of both heart rate and accelerometry mea-

sures to recognize human activities and estimate energy expenditure, as proposed by many (Assah

et al., 2010; Altini et al., 2012; Santos et al., 2014; Garcia-Valverde et al., 2014; Altini et al., 2015;

Duclos et al., 2016). Thompson et al. (2006) earlier suggested that combined accelerometry and

heart rate provides an accurate estimate of criterion EE, whereas a simple motion sensor does not.

Assah et al. (2010) and Santos et al. (2014) examined the validity of Actiheart, a combined

HR and motion sensor (uni-axial ACC), in estimating PA EE. Both works showed that combined

sensor measures did not significantly differ from the DLW method.
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Assah et al. (2010) used branched equation modelling and, compared with the combined

models, the separate ACC or HR models were less accurate in predicting DLW measures. In this

work, accelerometer data was converted to EE using group calibrated accelerometry equations,

corresponding to level walking or running acceleration, and a group calibration HR equation,

modified from the equation published by Brage et al. (2004), was used to assess the additional

benefit of using individual calibration compared with group calibration. Results showed that the

mean bias doubled for group compared with individual calibration of HR.

Both works concluded that combined HR and movement sensing is a valid method for estimat-

ing free-living PA EE. The main problems were the small sample size of the validation study and

the possibility of Actiheart electrodes become loose. Moreover, Santos et al. (2014) concluded

that this method had limited usefulness to assess EE in a population with high levels of physical

activity due to the high rate of equipment failure.

In the study by Santos et al. (2014), accelerometry models provided the highest individual

errors. It underestimated EE which is in accordance with Brage et al. (2004), that stated that

accelerometry models tend to underestimate PAI, mainly due to the variability of the sources of

movement and the assumptions about the efficiency of the work performed. The use of HR is not

error free also, as its relation with PAI may be affected by several factors. It is then expected that

EE models that consider both accelerometry and HR data will present better accuracy. Santos

et al. (2014) further concluded that individual heart rate calibration is not necessary when using

combined heart rate and motion sensor in a very active population.

Altini et al. (2012) combined static METs with activity-specific regression equations, apply-

ing four steps to derive an EE model: 1) categorize activities into clusters meaningful for EE

estimates; 2) separate sedentary and non-sedentary activities; 3) examine the motion patterns of

non-sedentary clusters to select the best independent variables for the prediction models and, when

no differences in motion were distinguishable within one cluster, physiological signals were used

to discriminate between different levels of EE; 4) include anthropometric characteristics to take

into account differences in body size. They used a necklace which combines ACC and HR data.

Since HR signals differ greatly at the individual level, they required individual calibration or nor-

malization. The heart rate above rest was used as the only heart rate feature, to reduce between

subject differences in HR during different activities. Measures of motion intensity outperformed

HR for low to medium intensity activities, while activities where whole body motion is not rep-

resentative of EE, such as biking, were better modeled by methods using HR as well. Walking

patters were predicted accurately by methods using ACC only features when differences in EE

could be explained by motion patterns alone. Overall, combining manually selected ACC and

HR features, representative of variations in EE within a cluster, showed significant improvements

compared to other methods (with increases in accuracy from 18 to 31%).

Altini et al. (2015) determined activity composites and used them to optimize the correlation

to HR normalization parameters. Also, individual-specific HR normalization parameters were

used to normalize HR, which was then included in activity-specific regression models to estimate

EE. The HR normalization minimizes the effect of individual fitness differences from entering
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in EE regression models. HR normalization provided optimal results for moderate to vigorous

activities, especially the ones where ACC data is not indicative of EE due to lack of whole body

movement (as shown by the highest reduction in root mean square error for EE estimation when

biking, 18.0%). Other activities such as rowing and walking uphill would most likely benefit as

well, due to the inability of ACCs alone to estimate EE accurately.

Duclos et al. (2016) proposed an acceleration vector variance based method, which consists of

a function which takes into account data from the smartphone or the smartwatch (or both devices,

depending on the activities), personalized categories from acceleration variance, and age, gender,

weight and height of participants. They compared the EE given by a smartphone and a smartwatch

with that produced by Armband, and the mean error of EE obtained between the proposed function

and Armband was less than 4%. This work defined a new predictive mathematical function of EE,

which competes with the non-public function used in dedicated costly devices such as Armband.

In addition, it demonstrated the potential of wearable technologies.

3.3 Running Symmetry Analysis

As mentioned before, accelerometer and heart rate monitoring are useful to evaluate the physical

demands of an activity. Markers such as running symmetry might also be considered in evaluation

of injury occurrence and sports performance (Saba, 2016).

To study the running symmetry is necessary to evaluate the human movement parameters.

Satkunskiene et al. (2009) performed a biomechanical analysis of walking and running using an

accelerometer placed at different body positions to find out its optimal position to determine what

components of acceleration are most valuable. To evaluate the quality of walking/running they

obtained the parameters such as speed, rate, steps duration and length and symmetry index which

is commonly used for evaluation of gait symmetry during walking, running and stair stepping. Re-

sults showed that the vertical component of acceleration measured on the hip is most informative.

Running asymmetries can also be detected through wearable sensors placed on tibia (Moran

et al., 2015) and trunk (Saba, 2016). A running symmetry is a ratio of the synchronization of

the right and left lower limbs during the gait cycle (Saba, 2016). The highest impact acceler-

ations/loads are produced in y-axis direction, thus Moran et al. (2015) concluded that the sum

of impact accelerations along the tibial longitudinal y-axis was best able to identify asymmetries

and was able to identify asymmetry in all participants. For each step, they captured accelera-

tions and segment angular velocities, from which discrete features of interest were extracted in

all three planes (minima and maxima, the sum of the signal over one step cycle, and the cycle’s

standard deviation). To determine an asymmetry value, the measures were subsequently sub-

tracted (right-left). Work by Saba (2016) showed that a trunk-mounted unit, that incorporates

GPS, accelerometer, and magnetometer housed in a waterproof case, can be reliably used to mon-

itor running symmetry and to detect asymmetrical gait patterns. The magnitude of asymmetry

detected was similar to that detected by ankle-mounted sensors. Moreover, it was confirmed that
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running symmetry is affected by varying work out intensities due to fatigue, leading to increased

gait asymmetry.

Worn on feet, TUNE (specifications in Appendix B) measures speed, each foot’s ground-

contact time, heel-contact time and balance/symmetry during a full run. It provides both real-time

data during the run, as well as a post-run analysis that shows the evolution of the runner’s form

throughout a run, and over a longer period of time. This provides the runner with an accurate

view of their progression and allows to better understand how certain conditions (uphill, downhill,

fatigue, etc.) affect their running form.

No studies were found integrating wrist-worn sensors information to detect running asym-

metries. However, some studies used wrist-worn sensors for arm’s tracking (Shen et al., 2016;

Pereira, 2016) and recognition of upper limb movements (Biswas et al., 2014, 2015). Arm sym-

metry in swimming was studied by Stamm et al. (2012) through a wearable sensor placed on

the lower back. Here, the recorded acceleration data was filtered using a 0.5Hz high-pass Ham-

ming windowed finite impulse response filter to gain the sensor orientation. The signal was then

analyzed using a zero-crossing detection algorithm to find the individual stroke rates and the dif-

ferences between left and right arm stroke durations (asymmetry). The comparison of the ac-

celerometer with the video derived results proofed that the sensor is capable of measuring the arm

stroke symmetry as accurate as the video method.

These studies might be important to integrate data from wrist-worn sensors in the detection of

running asymmetries, since the movement described by the arms during a run plays an important

role in its proper execution. Pereira (2016) developed an inertial tracking system to obtain upper

limb joint positions and trajectories in 3D using two inertial measurement units (IMU) placed

at elbow and wrist. An extended Kalman filter was used as a sensor fusion method that fuses

data from accelerometers, gyroscopes and magnetometers, in order to obtain the orientation of

each segment. Lastly, a set of equations was defined to represent the upper and lower segments to

reconstruct position and trajectory (motion) of the upper limb. Results demonstrated an acceptable

performance in different movements, however, a sensor-to-body transformation process had to be

developed in order to overcome errors due to the alignment of the sensors.

Furthermore, Shen et al. (2016) tracked the 3D posture of the entire arm (wrist and elbow)

using the motion and magnetic sensors on smartwatches. The challenge of using only one smart-

watch, a single point on the wrist, as overcame due to the fact that the pointing direction of the

forearm is strongly coupled to the arm’s posture. A system that fuses IMU sensors and the anatomy

of arm joints into a modified hidden Markov model was developed and achieved around 9.2 cm

of median error for free-form postures and 13.3 cm for a real time version, when compared with

Kinect 2.0. To note that a particle filter was first implemented, but resulted in a high-dimensional

system and the estimator could hardly converge, thus the authors aborted the effort and focused on

reducing the state space of the system for good tracking accuracy.

-

-

-
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3.4 Wrist-Worn Devices and Mobile Apps in Sports

Health and fitness trackers have been developed to record activity and monitor vital signs, such

as calorie consumption, fitness activity, pulse, weight and heart rate. To track oxygen intake and

activity pattern along with calorie burning rate, such trackers use 3D accelerometers to identify

movement and transform it to calories burnt. Many studies concluded that majority of wearable

devices produce invalid measures of energy expenditure, overestimating the measures. However,

the successful use of these devices, both in sports and health applications, is due to the implementa-

tion of sensor fusion methods, combining 3D accelerometers, pedometers and heart rate monitors,

which present many advantages when compared to activity monitor systems (El-Amrawy and

Nounou, 2015; Magalhães, 2016).

Many wrist-worn fitness devices include embedded heart rate monitors, which measure HR

by using light to track the blood (PPG based). These can be smartwatches or wristbands, such

as Apple Watch 1 and 22, Motorola Moto 3603, Samsung Gear S2 and Fit24, PulseOn5, Garmin

Vívosmart HR, Vívosmart HR+, and Vívoactive H6, Polar M6007, TomTom Spark 3 Cardio8, and

Fitbit Charge 2, Blaze and Surge9. Table 3.4 compares available wrist-worn fitness devices, which

have both heart rate and accelerometer sensors, in terms of price, compatibility, battery life, and

other specifications. All of them allow to monitor activity and heart rate, including basic features

such as step counting, calories burned, distances and heart rate zones. Furthermore, these devices

transmit data to smartphones or other devices via Bluetooth connection.

Recent study by El-Amrawy and Nounou (2015) evaluated the accuracy, precision, and overall

performance of seventeen wearable devices currently available compared with direct observation

of step counts and heart rate monitoring. With regards to the step count evaluation, the accuracy

of the tested devices ranged between 79.8% (Samsung Gear 2) and 99.1% (MisFit Shine), while

the precision ranged between 4% (MisFit Shine and Qualcomm Toq) and 17.5% (Jawbone UP).

Concerning heart rate measurements, the accuracy ranged from 99.9% (Apple Watch) to 92.8%

(Motorola Moto 360), and precision ranged from 5.9% (Apple Watch) to 20.6% (Samsung Gear

S). They conclude that the accuracy and precision of the selected fitness trackers are reasonable

and can indicate the average level of activity and thus average energy expenditure.

PulseOn design reduces artefacts and improves HR reliability, moreover, movement artefacts

are reduced by adaptive movement-cancellation algorithms and optimized mechanics, which sta-

bilize the sensor-to-skin contact (Delgado-Gonzalo et al., 2015).

2http://www.apple.com/pt/watch/
3https://www.motorola.com.br/products/moto-360-sport
4http://www.samsung.com/pt/wearables/gear/
5http://pulseon.com/
6https://buy.garmin.com/pt-PT/ES/cIntoSports-c571-atFILTER_FEATURE_HEARTRATE_01-

p1.html?sorter=featuredProducts-desc
7https://www.polar.com/pt/produtos/sport/M600
8https://www.tomtom.com/pt_pt/sports/fitness-trackers/gps-fitness-watch-cardio-spark3/black-large/
9https://www.fitbit.com/eu
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Table 3.4: Comparison of available wrist-worn fitness devices. ∗Only iOS and Android systems
are considered.

Fitness Tracker Price (e) Compatibility∗ Battery Life Wi-Fi GPS
Smartwatch
Apple Watch 1 349 iOS 18h yes no

Apple Watch 2 449-999+ iOS 18h yes yes

Motorola Moto 360 300 Android 1 day yes yes

Samsung Gear S2 350 Samsung 2-3 days yes no

Vívoactive HR+ 270 Android & iOS 13h (GPS) no yes

Polar M600 349 Android & iOS 8.5h (GPS) yes yes

Fitbit Blaze 200 Android & iOS 5 days yes no

Fitbit Surge 250 Android & iOS 10h (GPS) yes yes

Spark 3 Cardio 199 Android & iOS 11h (GPS) no yes
Wristband
Samsung Gear Fit2 170 Samsung 9h (GPS) yes yes

PulseOn 186 Android & iOS 7 days no no

Vívosmart HR 149 Android & iOS 5 days no no

Vívosmart HR+ 220 Android & iOS 8h (GPS) no yes

Fitbit Charge 2 160 Android & iOS 5 days no no

The battery life of these devices is very limited, mainly due to GPS. In the case of TomTom

Spark 3 Cardio, although it has a battery life of 11h using GPS, it can go up to 3 weeks in activity

tracking mode, without GPS.

Garmin devices include performance, activity tracking and running features, such as auto

pause (pause and resume timer based on speed), auto lap (automatically start a new lap), auto goal

(learn your activity level and assigns a daily step goal), time/distance alert (trigger alarm when you

reach the goal), save personal records and compute heart rate-based calorie. Moreover, Garmin

Vivoactive HR has built-in sport Apps which include features for cycling, swimming (lengths, dis-

tance, pace, stroke count/rate, calories), golfing (calculates exact yardage for shots from anywhere

on course, calculates distance to front, middle and back of green, and has a digital scorecard),

ski/boarding, cross country skiing and stand-up paddle boarding.

The Polar M600 allows to choose from over a hundred sports profiles and has a Smart Calories

feature that provides an accurate calorie output based on the maximum heart rate and training

intensity.

Fitbit devices detect and record workouts in the Fitbit App, and show simplified heart rate

zones. Charge 2 monitors cardio fitness level and performs guided breathing sessions based on

the heart rate, which helps the user to return breathing to normal after a workout. Like the Blaze,

the Charge 2 automatically tracks exercises like basketball, biking, hiking, running, and more.
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However, it takes upwards of 10 to 15 minutes to register that the user is doing an activity. Fitbit

App syncs with the recorded workouts by the Fitbit trackers so that the user can see all exercise

stats, their impact on overall day, and how is the performance improving. Also, users can check

their cardio fitness level, which is basically a breakdown of the heart rate data (resting, average,

and peak) and estimated VO2max. Several Apps use Fitbit trackers to assess PA and HR, however,

Fitbit does not allow to access the data in real-time (Magalhães, 2016).

Moto 360 has a built-in activity tracker, Moto Body App, to monitor daily efforts and offers

coaching advice to help users meet their goals.

Apple Watches include the Workout App, where users can choose from 12 indoor and outdoor

workouts, Activity App, to track all the activity throughout the day, and allow to connect with

Third-Party Workout Apps.

Google Play Store and App Store offer several apps related to Health & Fitness, being the most

popular the Google Fit App10, and the Apple Health App11, respectively. Users can access to their

data in real-time and anywhere, since their progress can be tracked from the smartphone/iPhone,

tablet/iPad, Android Wear Watch/Apple Watch, or web. Furthermore, they consolidate health data

from third-party apps to monitor fitness, nutrition, sleep and weight data: Nike +, Runkeeper,

Strava, MyFitnessPal, Lifesum, Basis, Withings and Xiaomi Mi Band, among many others.

Most of the devices which monitor heart rate present heart rate training zones to help the users

track their heart rate during exercise. These zones are defined based on the maximum heart rate

(FHR-age) as depicted in Figure 3.112. Some also use heart rate together with speed and personal

info (such as age, sex and weight) to estimate VO2max, since the better the aerobic fitness, the more

oxygen can pass into body.

Figure 3.1: Heart rate zone training with wearables.

10https://play.google.com/store/apps/details?id=com.google.android.apps.fitness
11http://www.apple.com/ios/health/
12http://gadgetsandwearables.com/2017/01/13/benefits-of-heart-rate-zone-training/
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3.5 Datasets

Some of the previous works used public datasets in order to evaluate human activity recognition

techniques and to monitor physical and aerobic activities. To predict the activity being performed

and energy expenditure, acceleration and heart rate variability patterns are used.

COSAR-DS-1.013 dataset was acquired to evaluate activity recognition techniques under the

Pal-SPOT Project and it was used in the work by Riboni and Bettini (2011). For the experi-

mental evaluation of activity recognition techniques, 5-hours activity data were collected by two

Pal-SPOT (Small Programmable Object Technology) sensors placed on the left pocket of the sub-

jects, plus a GPS, and another on their right wrist. Data from the accelerometer of each sensor

was collected at 16 Hz and, for each activity instance, accelerometer readings were merged to

build a feature vector composed of 148 features, including means, variances, correlations, kurto-

sis, and other statistical measures. Six volunteers, three men and three women of ages ranging

from 30 to 60 years old and with different levels of athletic preparation, recorded 10 different

activities (brushing teeth, climbing up, climbing down, riding a bicycle, jogging, standing still,

strolling, walking downstairs, walking upstairs, writing on a blackboard) performed both indoor

and outdoor.

The Activity Recognition Repository14 presents 6 arff files containing information of 4 phys-

ical activities (walking, standing, sitting and driving) collected from 3-axis accelerometers of a

smartphone (Sony Smartphone Xperia Z1) and a smartwatch (Sony SmartWatch 2 SW2) in order

to study their usage in HAR (Ramos et al., 2016). This dataset includes arithmetic mean and

standard deviation features. The subjects were thirteen, twelve males and one female, aged from

20 to 35 years old and without any physical disability.

The Heterogeneity Dataset15 for Human Activity Recognition from Smartphone and Smart-

watch sensors consists of two datasets created to investigate the impact of sensor heterogeneities

on HAR algorithms (Stisen et al., 2015). It contains the readings of accelerometers and gyro-

scopes, sampled at the highest frequency the respective device allows. Reading were recorded

from nine users while executed 6 different activities (biking, sitting, standing, walking, walking

downstairs and walking upstairs) carrying 4 smartwatches (2 LG watches, 2 Samsung Galaxy

Gears) and 8 smartphones (2 Samsung Galaxy S3 mini, 2 Samsung Galaxy S3, 2 LG Nexus 4, 2

Samsung Galaxy S+).

The public datasets PAMAP and PAMAP216 include both activity and heart rate data and were

used in works by Reiss and Stricker (2012) and Magalhães (2016). The PAMAP dataset was

recorded with an early system prototype developed in the PAMAP (Physical Activity Monitoring

for Aging People) project to identify basic aerobic activities and estimates their intensity level.

Eight volunteers, 7 male and 1 female, aged from 25 to 31 years old, were subjected to a predefined

data collection protocol of about one hour each, which makes approximately 8 hours of data

13http://everywarelab.di.unimi.it/palspot
14https://goo.gl/Y8NXP1
15https://archive.ics.uci.edu/ml/datasets/Heterogeneity+Activity+Recognition
16http://www.pamap.org/demo.html
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collected. The subjects wore 3 Colibri wired IMUs on wrist, chest and ankle, and a HR-monitor

on the chest. The PAMAP2 dataset was recorded to physical activity monitoring and includes data

from nine volunteers subjects, 8 male and 1 female, aged from 25 to 31 years old, wearing the

same sensors as in PAMAP dataset, and performing 18 different activities. Over 10 hours of data

were collected altogether, from which nearly 8 hours were labeled as one of different 18 activities.

Both datasets include outdoor (walking, running, cycling, playing soccer and rope jumping) and

indoor (lying, sitting, standing, vacuum cleaning, ironing and ascending/descending five flights

of stairs) activities, and transient activities (e.g. going from one location to the next activity’s

location, or waiting for the preparation of some equipment).

The dataset mHealth17 was recorded to benchmark techniques dealing with human behavior

analysis based on multimodal body sensing. Ten volunteers of diverse profile worn 3 Shimmer2

sensors placed on chest, right wrist and left ankle, which acquired acceleration, rate of turn and

magnetic field orientation data. The sensor positioned on the chest also provided 2-lead ECG

measurements. All data was acquired at 50 Hz and during 12 different activities (standing still,

sitting and relaxing, lying down, walking, climbing stairs, waist bends forward, frontal elevation of

arms, knees bending, cycling, jogging, running, jump front and back) of 1 minute or 20 repetitions,

depending on the activity (Banos et al., 2014, 2015).

Among these datasets, ACC data acquired from wrist-worn sensors was useful during the

development phase of this project. Also, the heart rate data present in the datasets was useful to

compare with HR data acquired using smartwatches to infer on its reliability.

17https://archive.ics.uci.edu/ml/datasets/MHEALTH+Dataset



Chapter 4

Research and Development
Methodology

This Chapter presents the work developed in this dissertation, including the research methodology

and the development of a system which fuses inertial and heart rate sensors to be implemented in

wearables. The system was implemented in a smartwatch to track the upper limb and physiological

signals in order to obtain measures of physical activity and energy expenditure, and to recognize

patterns of movement and activity. The system was then integrated with TUNE, allowing runners

to get motor learning and training feedback information, reduce potential for injuries, increase

motivation and improve their running experience. The technologies and methodologies used are

explained in detail.

4.1 System Overview

Figure 4.1 depicts the architecture of the developed system. Each module is described in detail in

the following sections. A wearable system, composed of TUNE and the smartwatch Moto 360,

was used to measure relevant movements and physiological signals in running context (Data Ac-

quisition module in Section 4.2). The movement of the upper limb was measured through the

acceleration sensor of the smartwatch, and the heart rate was measured trough its photoplethys-

mography (PPG) sensor. The movement of the lower limbs was obtained through TUNE, which

monitors both feet using force sensitive resistor (FSR) sensors and GPS data to analyze symmetry

during a full recording.

The signals provided by the smartwatch were pre-processed as described in Section 4.3, in

order to remove random noise and isolate the frequencies of interest.

Acceleration signals were used to perform activity recognition. Section 4.4 describes the fea-

tures extracted, their selection and the classification techniques used. The result of this module

was used to estimate energy expenditure, which was calculated according to the activity being

performed, the heart rate measures, the personal information of the subject and the GPS data from

TUNE, as described in Section 4.5.

37
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Figure 4.1: System flowchart.

Heart rate signal was also used to determine HR zones of exercise and training intensity, as

mentioned in Section 4.6.

To analyze the movement of the arm (Section 4.7), the peaks of the acceleration signal were

detected to count steps and to calculate the amplitude of the arm in terms of acceleration. These

measurements can be compared with TUNE data, such as step counting and ground contact time

in order to relate movements of the arms and feet.

Android Studio and SDK Tools were used to build an application for both wearable and mobile

devices in order to obtain and save acceleration and heart rate signals from the smartwatch and to

record data from TUNE. Python was used to evaluate the signals and test all the methodologies

described, which were later implemented in Android to build a wearable application, as described

in Section 4.8.

4.2 Data Acquisition

4.2.1 Smartwatch

Motorola Smartwatch Moto 3601 placed at the dominant wrist was used to acquire acceleration

and heart rate signals. Both signals were saved in real time together with their time stamp (the

time in nanosecond at which each event happened). Moto 360 has bluetooth and Wi-Fi commu-

nication and the operative system Android WearT M is compatible with Smartphones AndroidT M

4.3 or higher. It was design for sports, with barometric altimeter, accelerometer, ambient light

sensor, gyroscope, vibration/haptics engine and heart rate sensors. Heart rate is obtained through

an optical heart rate monitor (PPG) and Moto 360 allows to continuously track heart rate during a

run to monitor performance.

1https://www.motorola.com.br/products/moto-360-sport
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Moto 360 includes a built-in activity tracker to monitor users daily efforts and offers coaching

advice to help them meet their goals (Moto Body). It has built-in GPS that works seamlessly with

Moto Body to measure performance, and it allows to track distance travelled, pace, lap times, and

more. For running and fitness, Moto 360 uses Moto Body software to record workout data and

sync seamlessly with Android apps like Fitbit, MapMyRun, and Under Armour Record. Plus,

cyclists can use the GPS-supported Strava app right on their Moto 360 Sport.

4.2.1.1 Accelerometer Sensor

The ACC sensor of Moto 360 was used to measure the linear acceleration of the arm caused by

its movement. This sensor was set to record data with a sampling frequency of 50 Hz, however,

events can be received faster or slower than the specified rate. Figure 4.2 shows the coordinate

system relative to the device that is used by the ACC sensor API.

Figure 4.2: 3-axis coordinate system of the ACC sensor relative to the smartwatch. When placed
on the wrist, with the arm in the same position as this figure: the x-axis is horizontal and points
backwards, the y-axis is vertical and points down, and the z-axis points right, toward the outside
of the screen face. In this system, coordinates behind the screen have negative z values.

4.2.1.2 Heart Rate Sensor

The HR sensor of Moto 360 was used to obtain the heart rate measurements of the users. This

sensor does not allow to establish a constant reading rate, thus the HR sampling frequency was set

to SENSOR_DELAY_NORMAL, an Android pre-defined parameter. The heart rate data is recorded

with a variable frequency, from every 1 to 20 seconds, depending on the activity and effort required

from the watch system.

4.2.2 TUNE

TUNE (see specifications in Appendix B) was used to monitor both feet in terms of stance, swing,

pace, speed, cadence, number of steps, step length, foot’s ground-contact and heel-contact time.

Such parameters allow this device to analyze balance/symmetry during a full recording. TUNE
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has bluetooth communication and it is compatible with AndroidT M 4.3 or higher. Its 4 FSR sen-

sors acquire at a sampling rate of 1.000 Hz. Moreover, TUNE provides information on latitude,

longitude, altitude, mean velocity, distance and duration through GPS data.

The gait cycle is divided into stance (while foot is in contact with the ground) and swing (while

foot is in the air). The flight time (when neither foot is touching the ground) is incorporated in the

swing of a foot and happens at the beginning and at the end of the swing phase. The gait cycle

time is equal for both feet due to this interaction between them. A lower percentage of time spent

in the stance phase and a shorter gait cycle time, means a faster run. The ground contact time,

or stance time, indicates the duration of the stance phase, reflecting the capacity to produce force

when the foot is on the ground and to use elastic energy stored in the muscles to propel the body

of the ground. The percentage of stance time that a runner has their heel on the ground is the

heel percentage. The stance time is directly affected by cadence and speed variations. The time in

propulsion during the stance phase is given by the the stance dynamics index, and, the higher this

index, the better the runner is using the ground underneath his feet to move forward and to avoid

excessive vertical oscillation. The heel strike measurement shows the percentage of strides landed

with the heel first.

4.3 Signal Pre-Processing

4.3.1 Acceleration

The acceleration provided by the smartwatch includes the force of gravity (g) applied to the device

according to the following relationship:

Ad =−g−∑F/mass (4.1)

, where g = 9.81m/s2, Ad is the acceleration applied to the device, and F is the force caused by

body movement. Therefore, an high-pass filter was applied to obtain the real acceleration of the

device. First, a low-pass filter was used to isolate the force of gravity, which was then subtracted

to the raw signal.

Moreover, a low-pass filter with a cut-off frequency of 15Hz was applied to isolate the common

frequencies observed in human motion (Mannini et al., 2013) and a 5-point Moving Average Filter

was implemented to remove random noise (Ghasemzadeh et al., 2009).

4.3.2 Heart Rate

The heart rate signal was filtered by a Moving Average Filter using a kernel with size of 5 samples

in order to smooth noisy data. To assume an equidistant sampling, a cubic spline interpolation at

1Hz was applied to the heart rate signal (Tapia et al., 2007).
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4.4 Activity Recognition

Only acceleration signals were used to perform activity recognition, since the recognition will

be performed in real time, and heart rate does not respond immediately to changes in physical

activity (Magalhães, 2016). It was verified in the preliminary work of this dissertation that a

sudden increase in work effort will not result in an immediately increase of the values of heart rate,

as shown in Figure 4.3. On the other hand, when the work effort decreases, the heart rate values

remain high for some time and gradually return to rest values. However, acceleration is in close

agreement with the activity being performed, thus, acceleration signals were used to recognise the

activity.

Figure 4.3: Relationship between heart rate values and physical effort (acceleration signal rep-
resented in bluish gray color) during a different set of activities being performed. This data is
relative to a subject of PAMAP dataset and was acquired outdoor.

4.4.1 Feature Extraction and Selection

All features extracted are present in Table 4.1 and the mathematical formulas are presented in Ap-

pendix C, Section C.1. Each feature was extracted from the total acceleration, x-axis acceleration,

y-axis acceleration and z-axis acceleration signals, except the last two which were only extracted

from the total acceleration signal, given a total of 54 features. Features were computed for each

window of 5 seconds with 50% overlap.

To select and reduce feature’s dimension, four methods from the feature selection module of

scikit-learn software2 implemented in Python were tested: Recursive Feature Elimination (RFE),

Principal Component Analysis (PCA), Linear Discriminant Analysis (LDA) and Extra Trees Clas-

sifier (ETC).

2http://scikit-learn.org/stable/modules/feature_selection.html
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Table 4.1: Features extracted from acceleration signals. Mathematical formulas are presented in
Appendix C, Section C.1.

Domain Features

Mean Median Absolute Deviation (MAD)
Median Interquartile Range (IQR)
Maximum Energy

Time Minimum Zero Crossing Rate (ZCR)
Root Mean Square (RMS) Skewness
Standard Deviation (SD) Kurtosis

Spectral Entropy
Frequency Power Spectral Density (PSD) Peak

Total Average Power (TAP)

RFE selects features by recursively considering smaller and smaller sets of features. Weights

are assigned to each feature and those whose absolute weights are the smallest are eliminated from

the current set. At each iteration, 1 feature was set to be removed. The procedure is recursively

repeated on the eliminated set until the desired number of features to select is eventually reached.

RFE was tested for the top 20, 10 and 6 features.

PCA performs a linear dimensionality reduction using singular value decomposition of the

data to project it to a lower dimensional space, replacing the original features with a new set of

variables that can be ranked in the order of their importance. The LDA model fits a Gaussian

density to each class, assuming that all classes share the same covariance matrix. The model is

used to reduce the dimensionality of the input by projecting it to the most discriminative directions.

Thus, this technique aims to maximize the between-class scatter, while minimizing within-class

scatter (Ghasemzadeh et al., 2009). Both PCA and LDA were tested to obtain 20, 10 and 6

components.

Extra tree classifiers implements a meta estimator that fits a number of randomized decision

trees (a.k.a. extra-trees) on various sub-samples of the dataset and use averaging to improve the

predictive accuracy and control over-fitting. Decision tree is a hierarchical model that recursively

separates the input space into class regions. It composes of decision nodes and leafs in which each

node has a test function. The test function is applied to the input and, depending on the output,

one of the branches is taken Chernbumroong et al. (2011). It aims to find the smallest tree possible

and, in order to achieve that, it finds the best attribute that would make the data after the split pure

as possible. Gini impurity measure was used to find that attribute 3. This a measure of how often

a randomly chosen element from the set would be incorrectly labeled if it was randomly labeled

according to the distribution of labels in the subset. The number of features to consider when

looking for the best split was set to be equal to the square root of the total number of features.

3http://scikit-learn.org/stable/modules/generated/sklearn.ensemble.ExtraTreesClassifier.html
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4.4.2 Classification

To classify each activity, 9 classifiers used in supervised learning from scikit-learn software4 im-

plemented in Python were tested: Logistic Regression, Linear Discriminant Analysis, K-Nearest

Neighbours, Decision Trees, Gaussian Naive Bayes, Support Vector Machine, Linear SVM, Multi-

layer Perceptron Classifier and Bagging Classifier.

Logistic regression is a linear model for classification where the probabilities describing the

possible outcomes of a single trial are modelled using a logistic function. Logistic regression

was used with L2 regularization. As an optimization problem, binary class L2 penalized logistic

regression minimizes a cost function (Bishop, 2006).

Using K-Nearest Neighbours, classification is computed from a simple majority vote of the

nearest neighbours of each point, i.e, a point is assigned the data class which has the largest

number of representatives amongst the nearest neighbours of the point (Bishop, 2006). The model

chose implements learning based on the k nearest neighbours of each point and was set to use 5

neighbours weighted equally.

Decision tree classifier was applied to create a model that predicts the value of a target variable

by learning simple decision rules inferred from the data features. Gini impurity was again used

with decision tree classifier to measure the quality of a split.

With regard to the Support Vector Machines classifiers, two classes were tested: C-support

vector classification (SVC) and linear SVC. SVMs have the advantage of being effective in high

dimensional spaces, even if the number of dimensions is greater than the number of samples.

However, they are likely to give poor performances if the number of features is much greater than

the number of samples, and probability estimates are calculated using an expensive five-fold cross-

validation (Wu et al., 2004). Both classifiers were set with all classes having weight one. SVC was

set to use the rb f kernel function5 with a kernel coefficient equal to the inverse of the number of

features, and to use the shrinking heuristic. Linear SVC is similar to SVC but with a linear kernel.

The multi-layer perceptron classifier is a model based on supervised neural networks, which

optimizes the log-loss function using LBFGS or stochastic gradient descent 6. This classifier was

set to use 100 neurons in the hidden layer and to use relu function7 as the activation function

for the hidden layer. The solver for weight optimization was set to a stochastic gradient-based

optimizer.

Bagging methods are part of ensemble methods’ family, whose goal is to combine the pre-

dictions of several base estimators built with a given learning algorithm in order to improve ro-

bustness over a single estimator. Bagging Classifier builds several estimators independently and

average their predictions, reducing the variance of a base estimator (Breiman, 1996). A decision

tree was used as the base estimator to fit on random subsets of the dataset, and 10 base estimators

were used in the ensemble. The number of samples and the number of features to drawn from the

4http://scikit-learn.org/stable/supervised_learning.html
5rb f : exp

(
−γ

∣∣∣x− x
′
∣∣∣2) · γ,γ > 0

6http://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html
7relu : The rectified linear unit function, returns f (x) = max(0,x)
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dataset to train each base estimator were set to the length of the dataset and to the total number of

features present, respectively, and samples were drawn with replacement.

The PAMAP dataset acquired outdoor was used to train and test each classifier with each

feature selection/reduction method, and the best combination was chose. The activities classified

were ”walk very slow”, ”normal walk”, ”running”, ”cycling” and ”rope jumping”. For evaluation,

a subject-independent analysis was made using 10-fold cross validation.

4.4.3 Results and Discussion

The best feature selection methods proved to be RFE and LDA, however, RFE method with top

10 features was chose due to its higher computational efficiency. Figure 4.4 presents the results

obtained for all classifiers using RFE with top 10 features as the selection method. The results of

the remaining selection methods can be found in Appendix C (Section C.2).

Figure 4.4: Classification’s accuracy results using RFE method for 10 top features. Classifiers
from left to right: Logistic Regression, Linear Discriminant Analysis, K-Nearest Neighbours,
Decision Trees, Gaussian Naive Bayes, Support Vector Machine, Linear SVM, Multi-layer Per-
ceptron Classifier and Bagging. The vertical lines represent non-outlier data points that extend to
the most extreme (whiskers), the circle represents data that extend beyond the whiskers, the green
triangles represent the mean value, and the orange lines represent the median of each box.

The top 10 features selected using RFE method were: median of the x-axis acceleration,

root mean square of x-axis acceleration, standard deviation of x-axis and y-axis accelerations,

interquartile range of x-axis, z-axis and total accelerations, and zero-crossing rate of x-axis, y-axis

and z-axis accelerations.

The x-axis acceleration features were the most effective to distinguish between activities, and

time-domain features are sufficient for different physical activities, as had also been conclude

by Yang et al. (2008). Interquartile range is used when the mean values of different classes are
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similar, representing the dispersion of the data and avoiding the effect on range caused by extreme

values in the data. Root mean square and standard deviation measure the magnitude of a varying

quantity in the ACC data (Yang et al., 2008). RMS measures central tendency while SD is a

dispersion measure (Lara and Labrador, 2013; Avci et al., 2010), thus SD differentiates activities

with different intensities, such as running vs others (Reiss and Stricker, 2012). Also, ZCR has

more impact in running and rope jumping activities, which are more vigorous activities.

As depicted in Figure 4.4, the best classifier applied after the RFE selection method is MLP

classifier, with an accuracy score of 95%. The correspondent confusion matrix is present in Table

4.2, and the main classification metrics of precision, recall and F1 score for each class are present

in Table 4.3.

Running activity was the most precise, which may attribute to their distinct characteristics in

generation acceleration among other activities, since it generates very large accelerations. Walking

very slow was the less precise, revealing similarities with other movements, mainly with normal

walk. Since they are very similar movements, there is an overlap in terms of features, being hard

to control acceleration differences between the two. Rope jumping was the worst classified, due to

the less representative acceleration generated with a sensor on wrist. Its false negative goes most

to walking activities.

Table 4.2: Normalized confusion matrix of MLP classifier using RFE method for 10 top features.

Predicted
Walk very slow Normal walk Run Cycle Rope jump

Walk very slow 0.99 0.00 0.00 0.01 0.00
Normal walk 0.06 0.93 0.00 0.01 0.00

True Run 0.02 0.01 0.95 0.00 0.02
Cycle 0.02 0.00 0.02 0.97 0.00
Rope jump 0.05 0.05 0.00 0.03 0.88

Table 4.3: Main classification metrics results (precision, recall and F1-score for each class) of
MLP classifier using RFE method for 10 top features.

Class Precision Recall F1-score

Walk very slow 0.83 0.99 0.90
Normal walk 0.98 0.93 0.96
Run 0.99 0.95 0.97
Cycle 0.97 0.97 0.97
Rope jump 0.92 0.88 0.90

Average/Total 0.95 0.95 0.95
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4.5 Energy Expenditure Estimation

As mentioned before in Section 3.2, ”Energy Expenditure Estimation”, of the ”Literature Review”

Chapter, the use of both heart rate and accelerometry measures to estimate energy expenditure

showed to be a promising method. In the present work, the equation structure proposed by Brage

et al. (2004), in Appendix A.1.4, for the combination of accelerometry and heart rate, was adapted.

The author suggested a multi-linear regression equation that was derived and expressed in terms of

both activity counts and heart rate values, where weighting factors were used to discriminate be-

tween activity and rest, to discriminate between walking and running activities, and to discriminate

between the existence of movement or not during inactive states (Magalhães, 2016).

In this procedure, weighting factors were used to discriminate between the studied activities:

walking, running, cycling and rope jumping. Heart rate proved to be a very reliable measure

of energy expenditure during running, while activity measures are less reliable since it does not

increase linearly with speed (Magalhães, 2016). Thus, the weighting factor relative to the HR-EE

relationship is set to a higher value than the one relative to activity-EE relationship. The same

was applied to rope jump activity, since movement registration is not relevant. On the other hand,

during resting activities the heart rate is a poor measure, while movement registration is more

reliable (Brage et al., 2004). Since, in this work, walking and cycling are less vigorous activities,

movement and heart rate were equally weighted, as proposed by Brage et al. (2004) and Crouter

et al. (2008).

Thus, energy expenditure was computed for running and rope jumping activities giving weight-

ing factors of 0.9 to heart rate derived measures and 0.1 to activity-derived measures, whereas for

walking and cycling activities both measures where given a weighting factor of 0.5 (Equation 4.2).

EE =

0.9×EEHR +0.1×EEMET s, if running or rope jumping

0.5×EEHR +0.5×EEMET s, if walking or cycling
(4.2)

Activity-EE relationship (EEMET s) was computed through metabolic equivalents values (Kawa-

hara et al., 2009):

EEMET s = 1.05×MET s×duration×weight (4.3)

METs were computed depending on the performed physical activity, as described by Equation

4.4. METs values for cycling and rope jumping activities were computed based on Jette et al.

(1990), who adapted METs values from an expert committee report submitted to the Canada Fit-

ness Survey. Values for cycling vary with speed, and MET value for rope jump was set to 10.0,

which corresponds to a workout of around 70 jumps per minute. METs values for running and

walking were adapted from Ryu et al. (2008), who used a model that depends on activity and

speed, but does not takes into account the grade. The influence of the grade was incorporated in

the model by adding a vertical component: each m/min of vertical rise consumes an additional 1.8
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mL/Kg/min for each m/min of speed (Plowman and Smith, 2013).

MET s =



0.093× speed−4.7+grade× speed×1.8, if running

0.0272× speed +1.2+grade× speed×1.8, if walking

0.25× speed×3.6+2.2, if cycling

10.0, if rope jumping

(4.4)

HR-EE relationship (EEHR) was computed through Equation 4.5, which uses a gender-dependent

parameter (Magalhães, 2016). This parameter (HRparam) is obtained based on the relationship be-

tween heart rate, weight and age, depending on gender, as present in Equation 4.6. This model

was predicted by Keytel et al. (2005), as result of the need of a model without a measure of fit-

ness, such as VO2max, since it is not always available. The model developed achieved a correlation

coefficient of 0.857. The authors concluded that, after adjusting for age, gender and body mass, it

is possible to estimate physical activity EE from heart rate in a group of individuals with a great

deal of accuracy.

EEHR =
HRparam

4.184
×60×duration (4.5)

HRparam =

−55.0969+(0.6309×HR)+(0.1988×weight)+(0.2017×age), if male

−20.4022+(0.4472×HR)− (0.1263×weight)+(0.074×age), if f emale
(4.6)

4.6 Heart Rate Analysis

Heart rate measurements over time were used to determine heart rate zones of exercise and training

intensity (Criner et al., 2009). The heart rate zones are obtained through the training intensity (I),

the heart rate reserve (HRreserve) and the resting heart rate (HRrest), as present in equation (4.7).

The heart rate reserve is calculated as present in equation (4.8), where the heart rate at rest is

obtained by taking the pulse in the morning (ideally the average of 5 days), and the maximum

heart rate (HRmax) depends on gender, or fetal heart rate, and age through equation (4.9).

HRzones = I×HRreserve +HRrest (4.7)

HRreserve = HRmax−HRrest (4.8)

HRmax =

220−age, if man

226−age, if woman
(4.9)
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The training intensities were set from 45% to 100%, with intervals of 5%, of the maximum

effort and they define the heart rate zones as depicted in Figure 4.5, in which the heart rate zones

are defined for a male subject with 20 years and a heart rate at rest of 60 BPM. During exercise,

the measured heart rate will correspond to one of the zones, indicating the intensity achieved by

the subject as a measure of fitness.

Fitness can also be assessed by measuring resting heart rate and compare it to a fitness chart8.

The resting heart rate varies with the fitness level, age and gender, and, the fitter the person is,

generally the lower the resting heart rate. This is due to the heart getting bigger and stronger with

exercise, and getting more efficient at pumping blood to the body, so, at rest, more blood can

be pumped with each beat, and therefore less beats per minute are required. In accordance with

these parameters, resting heart rate can be evaluated as ”Athlete”, Excellent”, ”Good”, ”Above

Average”, ”Average”, ”Below Average” or ”Poor”, as depicted in the Tables present in Appendix

D.

Figure 4.5: Heart rate training zones for a male subject with 20 years and a heart rate at rest of 60
BPM. For different subjects, the values of beats per minute that define the heart rate zones would
vary according to equation (4.7).

4.7 Movement Analysis

Figure 4.6 depicts the relation between TUNE information and ACC information during a gait

cycle when running. Peaks in the x-axis of the ACC signal correspond the the arm’s swinging

when running, and are related with specific occurrences on the feet in a gait cycle. The minimum

peak corresponds to the the maximum amplitude achieve by the arm in front of the body, and the

8http://www.topendsports.com/testing/heart-rate-resting-chart.htm
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maximum peak corresponds to the the maximum amplitude achieve by the arm behind the body

(with the smartwatch placed on the right wrist).

Steps were counted using the total acceleration signal computed from acceleration signals

of the smartwatch MOTO 360. Since a gait cycle encompasses two positive and two negative

peaks, as depicted in Figure 4.6, the standard deviation along the acceleration signal was used as

threshold to detect the peaks of interest. The difference between positive peaks and the successive

negative peaks was computed to obtain the acceleration amplitude of the arm. The resulting signal

is representative of the movement of the arms during a run.

Since arms and legs act synchronously, the movement of the arms might be linked with the

movement of the feet through these two measurements from smartwatch’s acceleration signal, in

order to provide runners with real time measures of interest to improve running experience and

their efficiency.

Figure 4.6: Representation of the relation between TUNE information and ACC information dur-
ing a gait cycle when running. On top: Schematic representation of the information provided by
TUNE. In red the left side of the body, and in blue the right side including a smartwatch. The
blue and red circles represent right and left heel strikes, respectively. Heel time, stance dynamics,
stance time and swing, i.e., a complete gait cycle, are represented for the right leg (blue). On bot-
tom: Example of the x-axis of the ACC signal obtained from the smartwatch when running. The
orange dashed line matches the peaks observed in the ACC signal with the correspondent moment
in the gait cycle. The two peaks correspond to the maximum amplitude achieve by the arm in front
and behind the body, respectively. The other two peaks between them correspond to the passage
of the arm parallel to the body.
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4.8 Android Wear Application

As depicted in the component diagram of Figure 4.7, TUNE system includes both a mobile APP

and a wear APP which receive data from TUNE devices. In order to take advantage of smartwatch

capabilities, which have been mentioned in this work, a Heart Rate Module was added to TUNE’s

wear application. The developed module integrates the previous sections, from Data Acquisition

to Heart Rate Variability Analysis (Sections 4.2 to 4.6), as shown in the use case diagram of Figure

4.8.

Acceleration and heart rate built-in sensors were accessed through the Android sensor frame-

work, which provides several classes and interfaces to perform a wide variety of sensor-related

tasks. The pre-processing methodology described in Section 4.3 was applied to the sensors’ raw

data. To perform activity recognition, the features resulting from the best selection method, men-

tioned in Sub-section 4.4.3, were computed. These features were then used by the classifier to

recognise the activity being performed in real time. The best classifier obtained during Research

and Development part of this work was the MLP, as discussed in Sub-section 4.4.3. The MPL clas-

sifier model built and trained in scikit-learn software was exported to Java, using sklearn-porter9.

As result, a Class was built in Java and it was integrated in the Heart Rate Module to perform

activity recognition based on real-time acceleration signals acquired by the smartwatch.

Figure 4.7: Component Diagram.

9https://github.com/nok/sklearn-porter
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Figure 4.8: Use Case Diagram.

Energy expenditure is estimated as described in Section 4.5, depending on the activity being

performed, heart rate measures, personal information of the subject and GPS data from TUNE.

GPS data was used to obtain the values of distance and elevation, in order to compute the grade,

and the values of speed (Equation 4.4). When the GPS connection fails, grade is set to 0 and

velocity is computed using ACC information10, integrating acceleration (a) over time (t) to get

velocity (v):

v =
∫

a ·dt = v0 +a · t (4.10)

Personal information of the subject includes age, gender, weight and resting heart rate. The

physical activity intensity achieved by the subject is obtained as described in Section 4.6, using

the resting heart rate value of the subjects and heart rate measures. Moreover, resting heart rate

is evaluated as present in Section 4.6 and Tables in Appendix D. Such information is helpful

with respect to how human body responds to physical activities and it is essential to improving

performance. Analyzing this information, users can tailor their training to their specific goals,

adjusting training intensity and following the evolution of their resting heart rate.

10http://www.analog.com/en/analog-dialogue/articles/enhancing-pedometers-using-single-accelerometer.html
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Chapter 5

Experimental Work

This Chapter presents the experimental work of this dissertation, including the setup, the protocol

and the datasets used and developed to validate the developed system. The statistics used to

validate the system are described and the results obtained are present and discussed for each part of

the work, including heart rate and movement analysis, activity recognition, and energy expenditure

estimation.

5.1 Setup and Protocol

To validate the developed system, 4 subjects (see personal information in Table 5.1) performed the

cycle A of activities present in Table 5.2, in a total of 8 minutes each cycle. With regard to health

risk of the subjects, the body mass index (BMI) categorized subjects 1 and 2 as normal weight,

subject 3 as overweight and subject 4 as underweight. However, all subjects are healthy and have

a past in sports practice. The subjects performed 3 cycles A, with a break of 1 minute between

each one. At the end, each subject performed the cycle B, running at a free speed during 3 to 5

minutes. The activities were performed outdoor with each subject using a smartwatch Moto 360

(right wrist), TUNE (feet) and COSMED K4b2 (chest, upper back and head). Tests were taken in

collaboration with LABIOMEP1, who provided the COSMED K4b2 system and technical support.

COSMED K4b22 was used to measure energy expenditure ground truth and to measure heart

rate ground truth. The K4b2 is a portable system for pulmonary gas exchange measurement with

true breath-by-breath analysis. Its technology and dimensions allow the user to measure physio-

logical response to exercise without limitations. The K4b2 is provided with integrated GPS for

speed, distance, altitude and position measurements, which are synchronized with Gas Exchange

Data. Besides breath-by-breath exercise testing, which measures oxygen uptake (VO2), K4b2

also performs indirect calorimetry, computing energy expenditure values (Cosmed, 1998). Energy

expenditure is measured indirectly with a metabolic cart by analysis of respired gases (usually

expired) to derive volume of air passing through the lungs, the amount of oxygen extracted from

1https://labiomep.up.pt/
2http://www.cosmed.com/en/products/cardio-pulmonary-exercise-testing/k4-b2-mobile-cpet

53
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it (VO2) and the amount of carbon dioxide, as a by-product of metabolism, expelled to atmo-

sphere (i.e. carbon dioxide output, VCO2). K4b2 was integrated with a wireless Polar heart rate

chest strap3 which transmitted HR measures to the K4b2 system. Data was recorded with variable

frequency, since it depends on the individual breath-by-breath frequency.

Table 5.1: Subject information. The body mass index (BMI) is defined as the body mass divided
by the square of the body height.

Subject ID Gender Age (years) Height (m) Weight (kg) Resting HR (bpm) BMI (kg/m2)

1 Male 19 1.81 64 63 19.5
2 Male 23 1.79 66 59 20.6
3 Female 22 1.74 89 71 29.4
4 Female 23 1.61 45 60 17.4

Table 5.2: Data collection protocol.

Cycle Activity Description Duration (min)

Walk very slow Walking at a speed lower than 0.9m/s 1
Normal walk Walking at a speed of 1.3m/s to 1.5m/s 2

A Run Running at a speed of 2.0m/s to 3.0m/s 2
Cycle Bicycling at a speed lower than 4.5m/s 2
Rope jump Around 70 jumps/minute 1

B Run Running at a free speed 3-5

5.2 Datasets

Among the datasets described in Section 3.5 of the Literature Review chapter, the public dataset

PAMAP is the one that best suits this project, since it has the complete signals obtained dur-

ing recordings, allowing to extract the same type of features extracted in the signals used in this

project. Moreover, acceleration signals include recordings from an IMU placed on wrist, which

is similar to a smartwatch, and the HR monitor used provides heart rate signals instead of ECG

signal. Only the outdoor recordings were used, including the activities walking, running, cycling,

playing soccer and rope jumping. However, the playing soccer activity was not taken into account,

since it is not part of this project. The information on each of the 7 test subjects is present in Table

5.3 and the description of the performed activities in Table 5.4.

For the development of the experimental work, a dataset was developed with the acquired sig-

nals during the research and development part of this project, and during the validity of the system.

This dataset includes recordings of HR and ACC signals from the smartwatch MOTO 360, data

obtained from TUNE (right and left devices, and GPS data) and the activity recognition and EE

results. The information of the test subjects and the description of the performed activities during
3https://www.polar.com/us-en/products/accessories/T31_transmitter
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the validity of the system is present in Tables 5.1 and 5.2 of the previous section, respectively. The

dataset includes recordings of two more subjects, which collected data during the research and

development part of this project. Table 5.5 presents the information of each subject available in

the dataset. Subjects 1 to 4 correspond to the ones in Table 5.1 and subjects 4 and 5 correspond

to subjects used in tests performed during the research and development part of this project, thus

they do not have information on activity and EE results, and they only performed cycle B, with

a duration of more than 10 minutes per run. During validation tests, one of the TUNE devices

failed, thus TUNE information is missing for subjects 1 and 4, and for subject 2 during cycle A.

The developed dataset and the PAMAP dataset were used for activity recognition purposes,

and the developed dataset was used for energy expenditure estimation, heart rate analysis and

movement analysis.

Table 5.3: Subject information of PAMAP outdoor dataset.

Subject ID Gender Age (years) Height (m) Weight (kg) Resting HR (bpm)

2 Male 27 1.82 92 67
3 Male 30 1.68 62 56
4 Male 31 1.93 85 54
5 Male 25 1.80 70 69
6 Male 26 1.81 75 59
7 Male 29 1.74 91 56
8 Male 26 1.82 85 63

Table 5.4: Data collection protocol of PAMAP outdoor dataset.

Activity Description METs Duration (min)

Walk very slow Walking, < 0.9 m/s, level ground, strolling, very slow. 2.0 3
Normal walk Walking, 1.3 m/s, level, moderate pace, firm surface; 3.3-3.8 3

Walking, 1.5 m/s, level, brisk, firm surface, for exercise.
Run Jogging, general; Running, 2.2 m/s. 7.0-8.0 3
Cycle Bicycling, < 4.5 m/s, leisure, to work or for pleasure. 4.0 3
Rope jump Rope jumping, moderate, general; Rope jumping, slow. 8.0-10.0 2

Table 5.5: Information present in the developed dataset. The Xmeans that the information is
present in the dataset for the corresponding subject, and the × means that it is not present.

Subject ID Cycle ACC HR Activity EE GPS TUNE Total time (min)

1 A + B X X X X X × 32
2 A + B X X X X X Xonly cycle B 32
3 A + B X X X X X X 30
4 A + B X X X X X × 30
5 B X X × × X X 66
6 B X X × × X X 148
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5.3 Statistics

Heart rate and energy expenditure measures obtained by the developed system were compared

with results from Polar HR chest strap and COSMED K4b2, respectively used as reference. The

normalized root mean square error (NRMSE) was evaluated. NRMSE computes the similarity

between the results obtained and the reference values using the root mean square error and the

mean of the reference data. Further, it was also evaluated the percentage error and the Pearson

correlation, to determine whether the values of two variables are associated.

Since this data does not follow a normal distribution, the Wilcoxon Signed Ranked test, a non-

parametric test was applied, and the Kruskal-Wallis test, an extension of the Wilcoxon test, was

used to test the hypothesis that a number of unpaired samples originate from the same population.

In Kruskal-Wallis test, if the null-hypothesis, being the hypothesis that the samples originate from

the same population, is rejected (P<0.05), then the conclusion is that there is a statistically signif-

icant difference between at least two of the subgroups. The subgroups used were the subjects for

the HR measures, and the activities for the EE measures. In Wilcoxon test, if the resulting P-value

is small (P<0.05) then it can be accepted that the median of the differences between the paired

observations is statistically significantly different from 0.

Moreover, Scatter plots were created to represent graphically the relationship between the two

variables, and Bland-Altman plots were created to compare the two measurements techniques. In

Bland-Altman plots, the limits of agreement (LoA) are defined as the mean difference ±1.96SD

of differences. If these limits do not exceed the maximum allowed difference between methods,

the two methods are considered to be in agreement. Statistics were computed using MedCalc4

software.

Activity recognition results were evaluated through confusion matrix and classification metrics

of precision, recall and F1 score for each class. The classification obtained by the developed

system was compared with direct observation.

With regards to step counting results, they were evaluated computing the error between the

number of steps obtained with the developed system (using acceleration signals from Moto 360)

and the number of steps given by TUNE.

5.4 Results and Discussion

This Section describes the results obtained with the developed system described in Chapter 4 and

will provide the necessary information to evaluate its performance and discuss its benefices in the

sports context to improve athletes’ performance and to help them to follow an active and healthy

lifestyle, using non-intrusive wearable smart devices. Furthermore, gaps that need improvement

are identified and discussed.

4https://www.medcalc.org/statistics.php
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5.4.1 Heart Rate Analysis

Table 5.6 presents statistical results obtained for heart rate measures, and Figure 5.1 depicts Scatter

Plots and the Bland-Altman Plot for heart rate data results of all subjects. Moreover, Figures 5.2

and 5.3 depict the comparison between the Polar HR chest strap and smartwatch heart rate signals,

including error signal (difference between Polar chest strap and Moto 360 measures).

It was obtained a Pearson correlation coefficient of 0.78 (P<0.0001, 95% CI 0.76 to 0.79),

and, applying the statistical test for a significance level of 5%, it can be confirmed that there are

significant differences between the heart rate obtained from the Polar HR chest strap and from the

smartwatch Moto 360. Although the Bland-Altman Plot shows that both devices agreed in most

part of the tests, with the majority of data being between the 95% limits of agreement, the mean

of the percentage error (9.30%) and Figures 5.2 and 5.3 evidence errors above 10 BPM, which

are not acceptable for reliability purposes, indicating the need to improve wrist worn systems to

measure heart rate reliably. As depicted in Figures 5.2 and 5.3, measurements from Moto 360

seem to be underestimated in relation to Polar chest strap measures.

Applying the Kruskal-Wallis test, the null-hypothesis is rejected for subject 4, being the con-

clusion that there is statistical significant difference between this subject and the others. Moreover,

it can be observed from Scatter and Bland-Altman Plots that subjects 1 and 4 presented the great-

est dispersion. However, it must be noticed that the way each subject attached the smartwatch to

their wrist influences the readings, and consequently, a wrong placement can be more propitious

to dispersion.

As mentioned in Section 3.4, previous works concerning the reliability of smartwatches to

monitor heart rate conclude that such devices are relatively accurate and beneficial, however, Moto

360 proved to be the least accurate with errors of 7.2% against the best error of 1% from Apple

Watch (El-Amrawy and Nounou, 2015).

Although Polar HR chest strap is expectable to be more reliable since it is placed in chest, it is

also susceptible to errors such as motion artefacts, not being the most trustful reference. In turn,

the PPG method used by the smartwatch is susceptible to outside light errors sources and the wrist

blood vessels expression might vary with the subjects, being very prone to movement artefacts

(Magalhães, 2016). Furthermore, anatomical issues might also have influenced the results, since

the subjects present different morphologies (as depicted in Table 5.1) and the the devices used

were the same size for everyone. Hence, the devices might have adjusted better to some volunteer

than others. Moreover, each subject placed on himself the chest strap and smartwatch, which

might represent an error source.

Even though the results obtained show that Moto 360 does not have the best accuracy and relia-

bility, mainly for medical purposes or to monitor cardiac patients, its reliability value is acceptable

for heart rate monitoring of sportspeople who aim to improve their performance and follow an

active and healthy lifestyle. Therefore, the errors obtained were decent enough to have the device

showing correct readings most of the time during normal use and present some credibility to use

it in a daily basis.
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Table 5.6: Statistical results of heart rate measures. The mean of the percentage error (% Error) and
normalized root mean square error (NRMSE) of the obtained heart rate measures for each cycle
of the protocol and for each subject. Evaluation of the statistical difference between smartwatch
Moto 360 and Polar HR chest strap, using data from all the participants (Correlation Coefficient
and Wilcoxon Signed Ranked Test).

Subject ID Cycle A Cycle B Correlation Wilcoxon
% Error NRMSE (%) % Error NRMSE (%) Coefficient Test

1 14.27 17.80 1.92 2.31
2 8.20 10.27 6.12 7.43 0.78 P < 0.0001
3 5.26 7.80 2.81 4.28
4 9.49 12.88 5.70 6.93

Average 9.30 12.19 4.14 5.24

(a) Scatter Plot (Subjects 1 and 2) (b) Scatter Plot (Subjects 3 and 4)

(c) Bland-Altman Plot

Figure 5.1: Scatter Plots for subjects 1 and 2 (a) and subjects 3 and 4 (b) and Bland-Altman Plot
(c) for heart rate data results of all subjects, with the confidence interval µ±1.96SD represented
by the dashed lines.
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(a) (b) (c)

(d) (e)

Figure 5.2: Results of heart rate measures obtained for subject 1 ((a), (b) and (c)) and subject 2
((d) and (e)), for each cycle of the protocol. Comparison between the Polar HR chest strap and
smartwatch heart rate signals.
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(a) (b)

(c) (d)

Figure 5.3: Results of heart rate measures obtained for subject 3 ((a) and (b)) and subject 4
((c) and (d)), for each cycle of the protocol. Comparison between the Polar HR chest strap and
smartwatch heart rate signals.
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Recalling the protocol performed by the test subjects: walk very slow (1min), normal walk

(2min), run (2min), cycle (2min), rope jump (1min) and rest (1min); the heart rate behaviour re-

flects the intensity and effort required by each activity and the responses of the autonomic nervous

system. Although heart rate variability parameters were not computed in this work, since heart

rate is the available data and not the ECG, the R-R interval would be computed as 60000/HR,

representing an inverse behaviour of the heart rate, i.e., the higher the HR, the shorter the inter-

beat interval. Shorter intervals usually represent lower HRV, thus Figures 5.2 and 5.3 show that

running and rope jumping are the most vigorous activities, presenting an higher HR value and,

consequently, lower HRV. This behaviour expresses the lower influence of the PNS and the in-

creased sympathetic stimulation, i.e, the ability of the heart to pump more blood and respond to

body needs.

Table 5.7 presents an evaluation of the resting heart rate and training intensity during protocol

cycle B for each subject. The relation speed-heart rate intensity is a measure of performance and

it was normalized between 0 and 1 for this set of subjects (1 corresponds to the best performance).

Figures 5.4 and 5.5 show the mean velocity and heart rate training intensity achieved by each

subject during the performed protocol. Heart rate zones were computed as explained in Section

4.6 in order to obtain a measure of fitness.

Comparing these results with the physical/health information of the subjects (Table 5.1), there

is a linear relationship between their BMI and the result obtained in speed−HRintensity relation.

Moreover, their resting heart rate also reflects their state of health. Subject 3, who presents an high

BMI and resting heart rate, was the one who had most difficulty reaching high training intensities.

In other words, training intensity evaluation is a valuable measure of the clinical state of the

individuals and its regular monitoring can improve health risk and sports performance. The same

happens with the monitoring of the resting heart rate, since a reduced resting HR is an indication

of the effect of improved cardiovascular fitness.

These measures are also important to detect stages of fatigue. Without accumulated fatigue,

HR intensity can easily rise above 70% during the first moments of exercise and the HR remains

constant during exercise during several days. With accumulated fatigue, it becomes harder to

achieve the 70% zone and the resting HR increases. To recover, it is recommended to train in HR

zones lower than 70% or even stop exercising for some days.
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Table 5.7: Resting heart rate and training intensity evaluation during protocol cycle B for each
subject. The relation speed-heart rate intensity is a measure of performance and it was normalized
between 0 and 1 for this set of subjects (1 corresponds to the best performance).

Subject HR Rest Top HR Zone Average Average Speed-HR Int.
ID Evaluation HR Zone Speed (m/s) Relation

1 Good Aerobic-intensive Aerobic-extensive 3.03 0.87
(63 bpm) (80%) (71%)

2 Excellent Aerobic-intensive Aerobic-extensive 3.38 1
(59 bpm) (80%) (73%)

3 Above Average Weight Control Moderate Activity 2.23 0.55
(71 bpm) (70%) (60%)

4 Athlete Anaerobic Aerobic-extensive 2.89 0.83
(60 bpm) (85%) (71%)
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(a)

(b)

(c)

(d)

Figure 5.4: Mean velocity and heart rate training intensity achieved during the performed protocol
for subject 1 ((a) and (b)) and subject 2 ((c) and (d)).
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(a)

(b)

(c)

(d)

Figure 5.5: Mean velocity and heart rate training intensity achieved during the performed protocol
for subject 3 ((a) and (b)) and subject 4 ((c) and (d)).
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5.4.2 Activity Recognition

Table 5.8 presents the confusion matrix obtained for the activity recognition part of the work, and

the classification metrics of precision, recall and F1 score for each class are present in Table 5.9.

All activities presented similar results to those obtained during the research and development

part of this work, mentioned in Section 4.4. However, results were significantly worst concerning

walking activities. Classifying walking activities was hard due to the difficulty controlling differ-

ences between the two in terms of acceleration. Since they are very similar movements, there is an

overlap of the features. Walking very slow was most classified as normal walk mainly because the

difference between walking very slow and normal walk was not well marked in terms of velocity

and acceleration during tests, being hard to control such parameters. Moreover, the classifier was

trained using PAMAP dataset and, although its protocol was similar to the one used in the test

phase, the subjects performed the activities at a speed higher than expected, as confirmed by the

mean velocity chart of Figures 5.4 and 5.5 in the previous sub-section.

Despite some errors, running, cycling and rope jumping activities achieved a precision of

97%, 99% and 90%, respectively. In what regards running activity, which is the main focus of this

work, it was classified with 90% of accuracy. Overall, the results obtained were close to the ones

presented by the previous works mentioned in Section 3.1 of the ”Literature Review” Chapter.

Table 5.8: Normalized confusion matrix obtained for activity recognition during cycle A. Results
are the average of the 4 subjects.

Predicted
Walk very slow Normal walk Run Cycle Rope jump

Walk very slow 0.16 0.83 0.00 0.00 0.00
Normal walk 0.01 0.97 0.02 0.00 0.01

True Run 0.02 0.03 0.90 0.00 0.06
Cycle 0.17 0.19 0.01 0.63 0.01
Rope jump 0.04 0.10 0.02 0.01 0.84

Table 5.9: Main classification metrics results (precision, recall and F1-score for each class) of
activity recognition phase during cycle A. Results are the average of the 4 subjects.

Class Precision Recall F1-score

Walk very slow 0.27 0.17 0.20
Normal walk 0.60 0.97 0.74
Run 0.97 0.92 0.94
Cycle 0.99 0.64 0.77
Rope jump 0.90 0.84 0.86

Average/Total 0.79 0.76 0.75
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It is important to note that, in this work, only acceleration signals from a smartwatch were

used, therefore the results obtained represent an improvement when compared with results of

similar works: 87% (Maurer et al., 2006), 76% (Liu et al., 2012), 85% (Mannini et al., 2013;

Siirtola et al., 2009), and 74% (Fergus et al., 2015). Better results were achieved by Chen et al.

(2008), Kao et al. (2009) and Chernbumroong et al. (2011) with 94% of accuracy. The main

problems detected which might had affected activity recognition were the small number of test

subjects, the way subjects placed the smartwatch on their wrists, and the non-fulfilment of the

protocol rigorously.

5.4.3 Energy Expenditure Estimation

Table 5.10 presents statistical results obtained for energy expenditure measures and Table 5.11

presents the total energy expenditure values of the developed system and COSMED K4b2, and

the error between them, per activity and per subject. Figure 5.6 depicts Scatter and Bland-Altman

Plots for energy expenditure estimation results of all subjects, for all activities performed, and

Figure 5.7 depicts Bland-Altman Plots per activity. Moreover, Figures 5.8 and 5.9 depict the

comparison between the developed system and COSMED K4b2 energy expenditure measures,

including error signal (difference between K4 and the developed system measures). Note that the

resting period of 1 minute between each cycle of the protocol was removed from these results.

It was obtained a correlation coefficient of 0.55 (P<0.0001, 95% CI 0.52 to 0.57). Applying

the statistical test for a significance level of 5%, it can be confirmed that there are significant

differences between the energy expenditure values obtained from the developed system and from

the COSMED K4b2. Applying the Kruskal-Wallis test, the null-hypothesis is rejected for all

activities, so there is statistical significant difference between these activities.

Table 5.10: Statistical results of the obtained energy expenditure measures. The mean of the
percentage error (% Error) and normalized root mean square error (NRMSE) of the obtained EE
measures for each cycle of the protocol and for each subject. Evaluation of the statistical dif-
ference between the developed system and COSMED K4b2, using data from all the participants
(Correlation Coefficient and Wilcoxon Signed Ranked Test).

Subject ID Cycle A Cycle B Correlation Wilcoxon
% Error NRMSE (%) % Error NRMSE (%) Coefficient Test

1 28.24 34.63 12.07 15.28
2 36.36 42.03 17.92 19.81 0.55 P = 0.0059
3 26.71 33.75 16.76 20.03
4 28.52 36.37 14.20 15.05

Average 29.96 36.69 15.24 17.54
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Table 5.11: Total energy expenditure values, per activity and per subject, of the developed system
and COSMED K4b2, and the error between them.

Activity Method Subject 1 Subject 2 Subject 3 Subject 4 Error (%)

Walk Dev. system 970 1299 1989 1317 9.05
COSMED K4b2 1068 1386 2047 1117

Run Dev. system 4094 3681 4553 2248 10.76
COSMED K4b2 4301 4578 4326 2594

Cycle Dev. system 2303 2969 2943 2074 15.74
COSMED K4b2 2028 2375 2676 1812

Rope Jump Dev. system 1040 1804 1753 856 18.79
COSMED K4b2 1262 1591 1460 690

Error (%) 11.29 16.06 9.54 17.46 13.59

Although the Bland-Altman Plot shows that both devices agreed in most part of the tests, with

the majority of data being between the 95% limits of agreement, it can be observed that walking

and running activities presented the greatest dispersions. However, it must be noticed that the

amount of running samples was the highest and, consequently, the most propitious to dispersion.

Moreover, errors in activity recognition have led to some activities being erroneously classified as

walking, leading to propagation errors in the energy expenditure estimation. On the other hand,

walking and running presented the best results in terms of total energy expenditure value, being

the overall error of the developed system of 13.59%. Table 5.11 and Figures 5.8 and 5.9 show that

the developed system mostly overestimates EE in cycling and rope jumping activities, and mostly

underestimates EE in walking and running activities. In what regards running activity, expressed

by the cycle B of the protocol, EE estimation achieved a NRMSE of 17.54%. This value increases

when testing all activities, as expressed by the cycle A of the protocol, which achieved a NRMSE

of 36.69%.

As mentioned before in Section 3.2 of the ”Literature Review” Chapter, the combined HR-

activity model had shown promising results estimating energy expenditure. In this work, results

demonstrated that the model used still needs some improvements, as well as the wearable devices

themselves. Using a similar EE estimation model, Magalhães (2016) achieved an NRMSE of

19.9%. However, the smartwatch used to measure HR was Fitbit Surge, which has an accuracy

of 93.8% measuring heart rate, higher than the accuracy of the smartwatch Moto 360 used in

this work; and the acceleration signals were provided by a smartphone placed on the belt of the

subjects.

The high percentage error and the low correlation coefficient are mainly due to the propagation

of errors of heart rate measurements and activity recognition. Furthermore, EE was estimated

using group calibrated models, thus EE estimation could be improved using individual calibration,

as proposed by Altini et al. (2015), who used individual-specific HR normalization parameters.

However, such method is not suitable for generalized sports applications that are used by different
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users, since it would required an individual calibration, which is time-consuming and not practical

in the sports context. Therefore, the method presented in this work introduces a convenient way

to monitor physical health with enough reliability.

(a) Scatter Plot

(b) Bland-Altman Plot

Figure 5.6: Scatter Plot (a) and Bland-Altman Plot (b) for energy expenditure estimation results
of all subjects, with the confidence interval µ±1.96SD represented by the dashed lines.
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(a) Walk

(b) Run

(c) Cycle

(d) Rope Jump

Figure 5.7: Bland-Altman Plots, with the confidence interval µ ± 1.96SD represented by the
dashed lines, for energy expenditure estimation results of all subjects, per activity: walk (a),
run (b), cycle (c) and rope jump(d).



70 Experimental Work

(a) (b) (c)

(d) (e)

Figure 5.8: Results of energy expenditure measures obtained for subject 1 ((a), (b) and (c)) and
subject 2 ((d) and (e)), for each cycle of the protocol. Comparison between the COSMED K4b2
and the developed system.
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(a) (b)

(c) (d)

Figure 5.9: Results of energy expenditure measures obtained for subject 3 ((a) and (b)) and subject
4 ((c) and (d)), for each cycle of the protocol. Comparison between the COSMED K4b2 and the
developed system.
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5.4.4 Movement Analysis

Table 5.12 presents the results obtained for step counting by TUNE and by the developed system

using acceleration signals from smartwatch Moto 360. The error obtained for the total number of

steps counted was 1.10% and the average of the 9 measurements present in the table is 2.40%.

El-Amrawy and Nounou (2015) reported that the accuracy of Moto 360 in step counting was 89%,

thus, the proposed method represents an improvement of 9%.

Figure 5.10 shows the relation between ground contact time from TUNE left foot and the right

arm acceleration amplitude of 3 of the measurements collected. Figure 5.10 (a) corresponds to

5 sets of running followed by going up and down stairs. Figure 5.10 (b) corresponds to a slow

run followed by a faster run and Figure 5.10 (c) to sets of slow and fast runs. As shown in the

figures, acceleration amplitude varies in indirect proportion with ground contact time, i.e., large

accelerations of the arms are related to the rapid contact of the feet with the ground and therefore

to a faster run. This behaviour reflects the increased ability to produce force when the foot is on

the ground and to use elastic energy stored in the muscles to propel the body of the ground.

Although these graphs evidence a relation between the movement of the arm and the movement

of the feet, it would be necessary more information to draw concrete conclusions. For instance,

the comparable situations of running with and without moving the arms could be evaluated to

infer about the importance of this movement in body balance while running, and to compute met-

rics that would evidence a better relation with metrics acquired from feet. Moreover, symmetry

and synchronization of the arms was thought to be evaluated during this project, however another

accelerometer would be necessary on the left wrist. The fusion of data from accelerometers, gy-

roscopes and magnetometers would be another option to evaluate the posture of the arm, however,

a model would have to be design to overcame the issue of having only a single point on the wrist.

Further, overlapping data of the activities represented in the figures (e.g. running and going up

and down stairs), it would be possible to obtain a pattern for each movement that then could be

compared with metrics acquired from feet. Thus, although results are promising, further work is

needed to obtain consistent metrics that are able to describe the movement of the arm.

Table 5.12: Step counting results for running activity.

Subject ID Moto 360 (steps) TUNE (steps) Error (%)

2 792 783 1.15
3 475 474 0.21
5 8780 8899 1.34
6a 3884 3751 3.55
6b 5388 5786 6.88
6c 1366 1323 3.25
6d 2823 2834 0.39
6e 5273 5422 2.75
6 f 5424 5313 2.09

Total 34205 34585 1.10
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(a) Subject 5

(b) Subject 6c

(c) Subject 6d

Figure 5.10: Arm’s acceleration amplitude (orange) obtained by Moto 360 and ground contact
time from left foot (blue) obtained by TUNE device.
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Chapter 6

Conclusions and Future Work

The ubiquity of wearable connected devices is mainly due to the growing popularity of fitness

trackers. Athletes and health-conscious individuals are monitoring the physical parameters of their

bodies by wearing health and fitness trackers. With the concern of such devices do not interfere

in their performance, wristbands and watches with built-in GPS, activity sensors and heart rate

monitors are on the top of their preferences. Heart rate is an important tool to access maximal

oxygen uptake and energy expenditure values through wrist-worn devices, which are highly valued

by athletes. Many authors suggested that the use of both heart rate and accelerometry/activity

measurements improves the estimation of such parameters, when compared with both methods

alone.

The aim of this work was to improve sport wearable solutions, allowing users to improve

performance, reduce potential for injuries, increase motivation and improve their experience, as

well as to promote a more effective, healthier and better performing sports practice. To do so, a

wearable system, composed of TUNE and a smartwatch Moto 360, was used to measure relevant

movements and physiological signals in sport context, namely in running. Heart rate and physical

activity information were integrated in an energy expenditure estimation module.

EE computation was activity-specific, using activity recognition methods to distinguish be-

tween a set of physical activities including walking, running, cycling and rope jumping. Activities

were recognized accurately with a simple and computationally inexpensive subject-independent

method, applying supervised machine learning through Multilayer Perceptron Classifier to time

features from acceleration signals. Running was classified with an accuracy of 90% and a preci-

sion of 97%. With regard to heart rate measurements, Moto 360 proved to not be reliable enough

for medical purposes or to monitor cardiac patients, with an error of 9% comparing with Polar

chest strap. However, taking into account that this chest strap is not the most reliable reference and

that the smartwatch readings are influenced by many factors such as way of placement, anatomical

issues and movement artefacts, the heart rate readings from Moto 360 were considered credible

enough for sport proposes and for cardiac monitoring to improve physical activity. Energy ex-

penditure estimation was expected to reflect errors from both activity recognition and heart rate

measurements. EE estimation achieved a NRMSE of 18% for running activity, which increased

75
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to 37% when testing all activities. Computing the total EE value, the developed system achieved

an overall error of 14% when compared with COSMED K4b2. Although the results demonstrated

that the model used still needs some improvements, as well as the wearable devices technology,

the method presented in this work introduced a convenient way to monitor physical health with

enough reliability.

Furthermore, heart rate zones of exercise and training intensity were analysed regarding per-

sonal information of the users. Such information is helpful with respect to how human body re-

sponds to physical activities and it is essential to improve performance. Results showed that there

is a linear relationship between the body mass index and the result obtained in speed-HRintensity

relation, and that the resting heart rate also reflects the state of health. It can be concluded that

regular monitoring of training intensity and resting heart rate can improve health risk and sports

performance, not only because they are a reflex of the cardiovascular fitness, but also because they

can be used to detect stages of fatigue.

With regards to the movement of the arm, acceleration signals were used to count steps and

to compute the amplitude of the arm in terms of acceleration. These measurements were linked

with TUNE data, such as step counting and ground contact time. Steps were counted with an error

of 2% and acceleration amplitude proved to vary in indirect proportion with ground contact time.

Thus, movement analysis of the arm through a smartwatch is closely related to movement analysis

of the feet.

TUNE allows for the detection of asymmetries between the left and right feet by monitoring

both feet at the same time. Designed to help improve fitness and avoid injury on the track, it helps

to improve the running style using customized workout routines based on the user data. Being

an unique and powerful device on the market, its combination with a smartwatch proved to make

running even more efficient, since the additional information on upper limb movement provides

accurate metrics of activity and physiological information.

Therefore, this work successfully achieved the main objective of combining the symmetry

of the feet and the movement of the arms with heart rate and acceleration measures, and physical

activity and energy expenditure values, turning it in a valuable way of optimize sports performance

without constraints. Furthermore, the possibility of leaving the smartphone behind is a major plus

for running experience.

6.1 Future Work

Although the results were promising, further work is required to potentially improve sports expe-

rience using all the capabilities analysed in this dissertation. First of all, it is important to develop

an user-interface associated with TUNE APP to present real-time metrics related to the movement

of the arms and the physiological parameters such as heart rate, training intensity and energy ex-

penditure. Moreover, it is essential to present the self-evolution of the users in terms of resting

heart rate, ability to achieve higher heart rate training zones, calories burned and BMI evolution.
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Another improvement would be taking advantage of heart rate measurements to study with

more detail stages of fatigue and its influence on sports performance. Besides the resting heart

rate and training intensity zones, heart rate variability is a powerful indicator of fatigue and car-

diovascular health and it was not taken into account in this project due to time constraints.

Furthermore, this work could be expanded to other sports where the movement of the arms is

crucial for a good performance, such as tennis and golf. Although patterns of movement are dif-

ferent, similar methodologies might be applied to monitor physiological behaviour and movement

analysis in order to provide a better experience and improve performance.

In addiction, and following the idea of expansion to other sports, a more detailed study on arm

movement would be opportune. To do so, and not forgetting body constraints, the fusion of data

from accelerometers, gyroscopes and magnetometers from the smartwatch would be a way to infer

about arm symmetry and posture without the need of extra devices attached to the body.

Last but not least, a very important improvement will be the technology evolution of the wear-

able devices, integrating sensors capable of more accurate and precise readings.
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Appendix A

Mathematical Formulations

A.1 Energy Expenditure Estimation

A.1.1 Metabolic Equivalents Equations

The values of metabolic equivalents (METs) are computed from the equations in Table A.1.

Table A.1: Metabolic equivalents estimation per activity type (Kawahara et al., 2009; Magalhães,
2016). METs in kcal

kg×h , speed in km
h and constant multiplying by speed in kcal

kg×km .

Activity METs

Walking 0.00163× speed +1.2
Running 0.00558× speed−4.7
Sitting Between 1.0 and 2.0
Standing Between 1.2 and 2.3
Laying Between 0.95 and 1.3

A.1.2 Heart Rate Normalization Factor

A multiple linear regression model (see Table A.2) was built by Altini (2015) to predict the

normalization factor (i.e. an individual’s HR while running at 10 km/h) using activities of daily

living only.

Actual HR measurements are used after applying the HR normalization factor, derived with

the normalization factor estimator, using the simple ratio (Altini, 2015):

NormalizedHR =
CurrentHR

NormalizationFactor
(A.1)
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Table A.2: Heart Rate Normalization Factor Estimation Model (R20.87). The best model relies on
HR while lying down resting and while walking at 4, 5 and 6 km/h, together with the individual
height and age, as independent variables (Altini, 2015).

Variable Coefficient

Intercept 66.91
HR at rest 0.29
HR 4 km/h 1.58
HR 5 km/h -2.80
HR 6 km/h 2.18
Height -0.17
Age -0.23

A.1.3 Activity-Specific EE Linear Models

EE is estimated by first classifying the activity performed, by means of ACC features, and then

applying an activity-specific EE linear regression model. Altini (2015) developed six multiple

linear regression models, one for each cluster of activities (see Table A.3).

Table A.3: Activity-specific EE linear models, using anthropometric characteristics, ACC and HR
features. Resting Metabolic Rate (RMR), motion intensity (MI), standard deviation (SD), median
(MED), main frequency peak (FFT peax f ) and its amplitude (FFT peaka), body weight (BW ) and
Normalized Heart Rate (HRNorm) (Altini, 2015).

Cluster Model

Lying 0.49+0.00068RMR−29.66MIx +9.78SDx +0.11MEDx +0.68MEDy

Sedentary 0.31+0.00061RMR+8.42MIx +11.12MIy−2.37MIz +2.9SDx+
2.48SDy +0.47MEDy−0.14MEDz +0.05FFTpeakYa

Dynamic −3.43+5.95HRNorm+0.035BW +7.65MIy +8.59MItot +4.80SDx

Walking −9.00+15.07HRNorm+0.056BW +3.91SDx

Biking −10.58+0.0029RMR+16.75HRNorm−37.66MIx +14.23MIy−
54.37VARy +26.22SDx

Running −8.73+11.50HRNorm+0.12BW +13.99MIy−5.28SDy+
4.16MEDx−3.70MEDz−1.33FFTpeakX f

A.1.4 Multi-linear Regression Equation

In work by Thompson et al. (2006), accelerometer counts and heart rate were used to estimate

energy expenditure using the following equations:

PAI = 5.95×HraS−134+0.23×age(y)+84× sex (A.2)
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PAI = 0.203× counts/min+46−0.75×age(y)+83× sex (A.3)

where PAI is the physical activity intensity in J ·min−1 ·kg−1, sex is coded 0 for females and 1 for

males, HraS represents heart rate above sleep, and counts/min represents accelerometer counts

per minute.

Figure A.1 depicts the equation structure proposed by Brage et al. (2004) for the combination

of accelerometry and heart rate. All physical activity intensity (PAI) relationships are determined

by calibration. P1, P2, P3 and P4 are weighting factors, X refers to the accelerometer counts,

which is used to discriminate between activity and rest. Y and Z behave as heart rate thresholds in

the presence and absence of activity, respectively. Y is used to discriminate between walking and

running activities and Z is used to discriminate between the existence of movement or not during

inactive states (Magalhães, 2016).

Figure A.1: Equation structure for the combination of accelerometry and heart rate (Magalhães,
2016).
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Tune Datasheet 

Data: 12 / 01 / 2017 
Version: V1.0  

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
TUNE Charger 

 

 

Weight 10g 

Length 45mm 

Thickness 15.8mm 

Width 12.65mm 

 
TUNE Devices 

 

 

Weight 12g 

Length 45mm 

Thickness  12.65mm 

Width 25mm 

Picture 1 - Charger 
Picture 2 - 2 x Device 

Picture 3 - Micro flat USB cable 

Picture 4 – Devices start guide 

Picture 4 – Insole start guide 

1 
Copyright @ 2017 Kinematix. All rights reserved. Confidential and privileged information. 
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Tune Datasheet 

Data: 12 / 01 / 2017 
Version: V1.0  

 
 

 
TUNE Functioning features  
Battery 3.7V (70mAH) 
Battery Type Li-ion polymer 
Power 60 mW (max. 90 mW) 
Transmission ISM 2.4 GHz 
Battery time on stand-by 30 days 
Battery time in use 10 hours of continuous usage 
Type of communication Bluetooth Low Energy (BLE) 
UBS Cable 1.5m 
Charger connection Micro USB (5V) 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 
TUNE Insole 

 

 

Weight 16g 

Length 225mm to 300mm 

Thickness 2mm 

Width 12.65mm 

 
TUNE Insole Dock 

 

 

Weight 6g 

Length 29mm 

Thickness (with clip) 12.10mm 

Width 29mm 

Picture 5 – Pair of insoles Picture 6 – Insole start guide 
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Tune Datasheet 

Data: 12 / 01 / 2017 
Version: V1.0  

 
 

 
TUNE insole pressure sensors  
Number of sensors 4 
Type of sensors Piezo-resistive 
Active area/sensor 600 mm2 
Sampling rate 1000 Hz 
Operating Range Temperature -15°C to 45°C 
Durability > one million load cycles 
Cable length 84.1mm to 98.3mm 
Cable thickness 1.8mm 
Cable wide 9.1mm 

 

 

 
Tune System Requirements  
Android 4.3 or higher 
Android Wear 4.3 or higher 
IOS 8.4 or higher 

 

 

 

 
Activity data provided by TUNE  
Duration Duration of the test in hours, minutes and 

seconds. 
Speed Average speed for the test 
Distance Distance of the test in Km given by GPS 
Stance time Ground contact time: indicates the 

duration of stance phase 
Stance dynamics Measures the time in propulsion during the 

stance phase 
Heel strike Percentage of strides you land the heel first 
Heel time Time of the heel keep on the ground. 
Fitness plan Generated based on your last 4 races. 

 

3 
Copyright @ 2017 Kinematix. All rights reserved. Confidential and privileged information. 

 



Appendix C

Activity Recognition Development

C.1 Feature Extraction Formulations

Mathematical formulas of the features extracted from acceleration signals are present below. x is

the variable vector (total acceleration, x-axis acceleration, y-axis acceleration or z-axis accelera-

tion) and N is the length of x.

C.1.1 Time Domain Parameters

Mean(x) =
∑

N
n=1 xn

N
(C.1)

Median(x) =

x N+1
2
, if N is odd

1
2

(
x N

2
+ x N

2 +1

)
, if N is even

(C.2)

Minimum(x) = MIN(x) (C.3)

Maximum(x) = MAX(x) (C.4)

RMS(x) =

√
1
N
×

N

∑
n=1

x2
n (C.5)

SD(x) =

√
1
N
×

N

∑
n=1

(xn−Mean(x))2 (C.6)

MAD(x) = Median(|xn−Median(x)|) (C.7)

IQR(x) = 75th percentile(x)−25th percentile(x) (C.8)
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Energy(x) =
∑

N
n=1 x2

n

N
(C.9)

ZCR(x) =
1
N

N

∑
n=1
|(sn)− (sn−1)| ,where s =

1, if xn > 0

0, otherwise
(C.10)

Skewness(x) = 3×Mean(x)−Median(x)
SD(x)

(C.11)

Equation C.11 computes the skewness of a data set. For normally distributed data, the skew-

ness should be about 0. A skewness value > 0 means that there is more weight in the left tail of

the distribution (Mac Gillivray, 1992).

Kurtosis(x) =
1
N

N

∑
n=1

(
xn−Mean(x)

SD(x)

)4

(C.12)

Equation C.12 computes the kurtosis using Pearson’s definition of a dataset (with normal=3.0).

Kurtosis is the fourth central moment divided by the square of the variance (Mac Gillivray, 1992).

C.1.2 Frequency Domain Parameters

SpectralEntropy(x) =−∑s∗ log2(s+0.00000001) (C.13)

where

s = ∑
subWindows2

∑
N
n=1 (x2

n)+0.00000001
(C.14)

and

subWindows =

x[0 : f loor(N/10)∗10], if N 6= f loor(N/10)∗10

x, otherwise
(C.15)

Equation C.13 computes spectral entropy1 through the spectral sub-energies (Equation C.14)

of subwindows (Equation C.15).

PSDpeak(x) = MAX

(
1
K

K

∑
k=1

Pk

)
,k ∈ [0,N−1] (C.16)

where

Pk =
1

∑
N
n=0 x2

n
|Xk|2 ,k ∈ [0,N−1] (C.17)

1https://github.com/tyiannak/pyAudioAnalysis/blob/master/audioFeatureExtraction.py
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where

Xk =
N−1

∑
n=0

xn · e−i2πkn/N ,k ∈ [0,N−1] (C.18)

Power spectral density was estimated using Welch’s method2, which computes it by dividing

the data into overlapping segments, computing a modified periodogram for each segment and

averaging the periodograms. It first computes discrete Fourier transform (DFT) at frequency of

50Hz for each segment (Equation C.18). Then, the periodogram value is calculated from DFT

(Equation C.17) and its average is computed to obtain Welch’s estimate of the PSD as in Equation

C.16, where finally the peak is computed as PSD’s maximum value (Solomon Jr, 1991).

Total Average Power (TAP) is given by the sum of the power spectral density (Equation C.19).

TAP(x) = ∑

(
1
K

K

∑
k=1

Pk

)
,k ∈ [0,N−1] (C.19)

C.2 Activity Recognition Results

Figures C.1, C.2 and C.3 show the results obtained for all classifiers using different selection

methods: RFE with top 20 and top 15 features, ETC, LDA with 20, 10 and 6 components, and

PCA with 20, 10 and 6 components.

2https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.signal.welch.html
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(a) RFE with 20 features

(b) RFE with 15 features

(c) ETC

Figure C.1: Classification’s accuracy results using Recursive Feature Elimination method for (a)-
20 top features, (b)- 15 top features, and using (c)- Extra Trees Classier method. Classifiers from
left to right: Logistic Regression, Linear Discriminant Analysis, K-Nearest Neighbours, Deci-
sion Trees, Gaussian Naive Bayes, Support Vector Machine, Linear SVM, Multi-layer Perceptron
Classifier and Bagging. The vertical lines represent non-outlier data points that extend to the most
extreme (whiskers), the circle represents data that extend beyond the whiskers, the green triangles
represent the mean value, and the orange lines represent the median of each box.
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(a) LDA with 20 components

(b) LDA with 10 components

(c) LDA with 6 components

Figure C.2: Classification’s accuracy results using Local Discriminant Analysis method with (a)-
20 components, (b)- 10 components and (c)- 6 components. Classifiers from left to right: Lo-
gistic Regression, Linear Discriminant Analysis, K-Nearest Neighbours, Decision Trees, Gaus-
sian Naive Bayes, Support Vector Machine, Linear SVM, Multi-layer Perceptron Classifier and
Bagging. The vertical lines represent non-outlier data points that extend to the most extreme
(whiskers), the circle represents data that extend beyond the whiskers, the green triangles repre-
sent the mean value, and the orange lines represent the median of each box.
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(a) PCA with 20 components

(b) PCA with 10 components

(c) PCA with 6 components

Figure C.3: Classification’s accuracy results using Principal Component Analysis method with
(a)- 20 components, (b)- 10 components and (c)- 6 components. Classifiers from left to right:
Logistic Regression, Linear Discriminant Analysis, K-Nearest Neighbours, Decision Trees, Gaus-
sian Naive Bayes, Support Vector Machine, Linear SVM, Multi-layer Perceptron Classifier and
Bagging. The vertical lines represent non-outlier data points that extend to the most extreme
(whiskers), the circle represents data that extend beyond the whiskers, the green triangles repre-
sent the mean value, and the orange lines represent the median of each box.



Appendix D

Resting Heart Rate Tables

Tables D.1 and D.2 show resting heart rate evaluation considering gender and age 1.

Table D.1: Resting Heart Rate for men.

Age 18-25 26-35 36-45 46-55 56-65 65+

Athlete 49-55 49-54 50-56 50-57 51-56 50-55

Excellent 56-61 55-61 57-62 58-63 57-61 56-61

Good 62-65 62-65 63-66 64-67 62-67 62-65

Above Average 66-69 66-70 67-70 68-71 68-71 66-69

Average 70-73 71-74 71-75 72-76 72-75 70-73

Below Average 74-81 75-81 76-82 77-83 76-81 74-79

Poor 82+ 82+ 83+ 84+ 82+ 80+

Table D.2: Resting Heart Rate for women.

Age 18-25 26-35 36-45 46-55 56-65 65+

Athlete 54-60 54-59 54-59 54-60 54-59 54-59

Excellent 61-65 60-64 60-64 61-65 60-64 60-64

Good 66-69 65-68 65-69 66-69 65-68 65-68

Above Average 70-73 69-72 70-73 70-73 69-73 69-72

Average 74-78 73-76 74-78 74-77 74-77 73-76

Below Average 79-84 77-82 79-84 78-83 78-83 77-84

Poor 85+ 83+ 85+ 84+ 84+ 84+

1http://www.topendsports.com/testing/heart-rate-resting-chart.htm
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