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Detecting Driver Sleepiness Using Consumer
Wearable Devices in Manual and Partial

Automated Real-Road Driving
Ke Lu , Member, IEEE, Johan Karlsson , Anna Sjörs Dahlman ,

Bengt Arne Sjöqvist , and Stefan Candefjord

Abstract— Driver sleepiness constitutes a well-known traffic
safety risk. With the introduction of automated driving systems,
the chance of getting sleepy and even falling asleep at wheel could
increase further. Conventional sleepiness detection methods based
on driving performance and behavior may not be available under
automated driving. Methods based on physiological measure-
ments such as heart rate variability (HRV) becomes a potential
solution under automated driving. However, with reduced task
load, HRV could potentially be affected by automated driving.
Therefore, it is essential to investigate the influence of automated
driving on the relation between HRV and sleepiness. Data from
real-road driving experiments with 43 participants were used
in this study. Each driver finished four trials with manual
and partial automated driving under normal and sleep-deprived
condition. Heart rate was monitored by consumer wearable chest
bands. Subjective sleepiness based on Karolinska sleepiness scale
was reported at five min interval as ground truth. Reduced heart
rate and increased overall variability were found in association
with severe sleepy episodes. A binary classifier based on the
AdaBoost method was developed to classify alert and sleepy
episodes. The results indicate that partial automated driving has
small impact on the relationship between HRV and sleepiness.
The classifier using HRV features reached area under curve
(AUC) = 0.76 and it was improved to AUC = 0.88 when adding
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driving time and day/night information. The results show that
commercial wearable heart rate monitor has the potential to
become a useful tool to assess driver sleepiness under manual
and partial automated driving.

Index Terms— Heart rate variability, driver sleepiness, real-
road driving, automated driving, driver monitoring system,
wearable sensors, machine learning.

I. INTRODUCTION

DRIVER sleepiness and fatigue is a contributing factor
to 10–30% of fatal crashes [1]–[3]. Therefore, driver

sleepiness monitoring systems have the potential to save
many lives. According to Euro NCAP 2025 roadmap [4],
driver state monitoring will become one part of their safety
assessment. The sleepiness detection systems are typically
based on driving performance, such as steering and speed;
face analysis, including eye closure, head pose, and eye gaze;
and physiological measurements, such as electroencephalogra-
phy (EEG), electrocardiography (ECG) and electromyography
(EMG). Most of the current commercially available sleepiness
detection systems are based on driving performance and facial
features detection [5].

Applying vehicle automation is another motion towards
improving road safety. By having automated longitudinal and
lateral control, the driving system relieves the driver from
parts of their driving tasks and provides emergency breaking
and turning. SAE International defined six levels for driving
automation from no automation to full automation [6]. At
level 2 (partial driving automation), the driver is responsible
for monitoring the environment. At level 3 (conditional driving
automation), the driver should be prepared to take over driving
when required. Before highly or fully automated (level 4
and 5) vehicles become commercially available, drivers should
maintain a state where they are able to take back control of the
vehicle at any time. However, fatigue due to underload will
probably be more frequent in automated driving when drivers
do not have active task engagement [7]–[9]. Therefore, driver
fatigue becomes a major concern for partial and conditional
automated driving. When steering and speed are partially con-
trolled by the vehicle, the vehicle-based driving performance
metrics will not be available for analyzing driver state in
partial automation [10]. For higher levels of automation when
the driver is not responsible for monitoring the environment,
gaze, eyelid closure or head positioning may be less useful
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as indicators of driver fatigue [11]. These changes challenge
current commercially available driver monitoring systems.
Adding measurements of physiological indicators of fatigue
could be a valuable complement for driver monitoring also in
automated driving.

Heart rate variability (HRV) is known to reflect parasympa-
thetic and sympathetic activity. Several sleep laboratory studies
show that HRV can be a good indicator for vigilance state
under total sleep deprivation [12] and partial sleep depriva-
tion [13], [14]. With the development of unobtrusive sensing
techniques, heart rate (HR) and HRV could be measured
through wearable sensors [15], [16] or vehicle integrated
sensors [17], [18] in a daily driving scenario. Several studies
have approached the relationship between driver sleepiness
and HRV parameters by building sleepiness classifiers based
on HRV features [19]–[26]. High sensitivity and specificity
have been achieved by some of the laboratory studies that
included subject dependent modeling [20], [24], [27]. Dropped
performance has been observed by several studies when imple-
menting subject independent modeling with subject-wise cross
validation [24], [25], due to large individual variations in
HRV. Several studies applied methods for personalization for
detection algorithms to reduce the influence of personal vari-
ation [21], [22], [25]. A recent controlled real-road study [25]
suggests that the assessment accuracy can suffer from other
influential factors on real roads. One study has included
an automated driving task with simulated level 2 automated
driving [24], however it was not compared with manual
driving.

The driving task is one of many confounding factors that can
affect HRV during driving. Change of the task demand, such
as introducing a secondary task [28], handling complex traffic
conditions [29], and driving with driver assistance system [30],
may have influence on HR and HRV. Several simulator studies
show that compared to manual driving, using advanced driving
assistance systems (ADAS) tends to reduce HR [30]–[33],
which is an indication of reduced workload [34]. A real-road
study also demonstrated lower HR as well as increased HRV
during semi-automated driving [35]. Therefore, in order to
introduce HRV-based sleepiness detection, it is essential to
examine the interaction between sleepiness, automated driving,
and HRV.

This paper takes a step forward to study the influence of
partial automated driving on the relationship between HRV
and sleepiness and investigate the performance of HRV based
sleepiness detection in partial automated driving on real roads.
In the experiment, a commercial wearable chest band was used
to monitor HR. Methods to create personalized assessment are
also investigated.

II. MATERIALS AND METHODS

A. Experiment Setup

1) Participants: This study is a sub-part of a larger study
where 89 drivers were recruited, 36 women and 53 men, mean
age 38 years (standard deviation [SD] = 11, min 20, max
59 years). There were five inclusion criteria: 1) Participants
were required to have experience from ADAS such as adaptive
cruise control, lane keep assist and similar; 2) Body mass
index below 30, to reduce the risk of sleepiness originating

from obstructive sleep disorders); 3) No sleep disorders; 4) No
problems with motion sickness; 5) No disabilities preventing
the participant from driving an ordinary car. The first criterion
was relaxed towards the end of the experiment to be able
to recruit the final few drivers. Seventeen drivers did not
have any experience with ADAS, whereas 54 drivers had
experience with adaptive cruise control, 44 had experience
with lane keeping assistance, 48 with parking assistance, and
19 with level 2 assistance. Each participant received 4000 SEK
(≈ 400 USD) to compensate for loss of income, due to the
long hours needed for participation and recovery sleep on the
following day. The study was approved by the Swedish Ethical
Review Authority (Dnr 2019-04813) and was also depending
on the Swedish government approval of experiments with
sleepy drivers on real roads (N2007/5326/TR).

2) Design and Procedure: The study was designed as a
within-subject 2 × 2 design (Fig. 1a), where daytime versus
night-time driving and manual versus partially automated
level 2 driving were the factors. Each experiment day could
accommodate a total of four drivers participating in parallel.
Participants drove their first session in the afternoon (daytime
or alert condition) and a second session after midnight (night-
time or sleep deprived condition). The automated and manual
driving sessions took place on two different days. Two cars
were used (Volvo V60 and Volvo XC90), drivers were driving
the same car on first and second visit. The afternoon driving
session started at 3:00 pm (driver A and C) or 5:00 pm
(driver B and D), whereas the night drive started at 1:00 am
(driver A and C) or 3:00 am (driver B and D). Order was
balanced for driving mode (i.e., manual or partial automation),
but the alert (daytime) condition always preceded the sleep
deprived (night-time) condition. Information material was sent
out to participants beforehand, including instructions for the
three days before the trials to sleep for at least 7 h each night,
go to bed latest at 12:00 midnight, and to get up latest at
9:00 am. They were also asked to fill in a sleep diary covering
the three nights leading up to the experiment day, as well as
a background information questionnaire.

When arriving to the laboratory, participants received further
instructions, concerning both the experiment itself and the test
vehicle with its dual command and automation. After reading
all information, participants signed an informed consent form.
Following the information and consent form, experimenters
helped setting up chest bands and sports watches for heart rate
measurements and attached electrodes for the physiological
reference measurements.

All participants were offered dinner, fruits, non-sugary
snacks, water, red tea, or decaffeinated coffee during the
evening. The route used was a 90-km section of a dual-lane
motorway (road E4, Sweden) where the participants drove
from Linköping (exit 111) to Gränna (exit 104) and back. This
resulted in an overall driving distance of 180 km, with a speed
limit of 120 km/h on the whole section. This road section has,
according to the Swedish Transport Administration, an annual
average daily traffic of about 8000–15,000 vehicles. In the test
vehicle, a test leader was always present, ready to intervene by
dual command if the driver showed signs of inappropriate or
dangerous driving or was too sleepy to continue. Test leaders
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Fig. 1. a) The 2∗2 experiment setup for each participant, where they drive in two different days, and in each day they perform two driving’s sessions in
day- and nighttime, and the leave-one-subject-out cross validation used for the classification model. b) The level 1 personalization uses measurements from
start of the first drive during daytime for certain window length to create a HRV baseline. c) the level 2 personalization uses one day measurement in the
training set to have a personal calibrated model and test the model with the data from the other day.

did not talk to participants during the data acquisition (except
asking for perceived sleepiness, see below).

3) Measurements: Participants were equipped with Garmin
brand sports watches (Fénix 5 and Forerunner 645, Garmin
Ltd., KS, USA) and Polar H10 chest bands (Polar Electro Oy,
Kempele, Finland) for recording RR intervals. H10 has been
validated against ECG Holter device, and can provide excellent
RR readings under low to moderate intensity activities [36].
Sports watches were used as the data logger for the chest band.
On watches, recording interval was set to ‘every second’ and
the option for ‘record HRV’ was enabled. Other parameters
that were measured but not used in this study can be found
in [37].

4) Sleepiness Indicators: Every five minutes during data
acquisition, participants were prompted by the test leader
to verbally report sleepiness according to the Karolinska
Sleepiness Scale (KSS) [38]. KSS has nine anchored levels:
1 – extremely alert, 2 – very alert, 3 – alert, 4 – rather alert,
5 – neither alert nor sleepy, 6 – some signs of sleepiness,
7 – sleepy, no effort to stay awake, 8 – sleepy, some effort
to stay awake, and 9 – very sleepy, great effort to keep
awake, fighting sleep. The reported value should correspond
to the drivers average feeling during the previous five min.
In this study, KSS <= 7 was defined as non-critical con-
dition / alert, KSS > 7 was defined as severe sleepiness.
This dichotomization was used by Buendia et al. [23] and
Persson et al. [25].

B. Preprocessing and Features Extraction

For each reported KSS level, five minutes long RR epochs
prior to the KSS record were taken for analysis. The outliers of
RR intervals were cleaned using the method described in [39].
Time domain, frequency domain, and nonlinear Poincaré
plot features were extracted using PhysioNet cardiovascular
signal toolbox [40]. Lomb periodogram was used for fre-
quency domain analysis, which does not require resampling
for unevenly sampled HRV data. Influence of using different
spectral analysis methods and outlier removal methods on the
HRV features as well as the relationship between different

TABLE I

LIST OF HRV FEATURES

features and KSS level were discussed in [41] and [23]. Used
HRV features are listed in Table I.

Out of the 356 planned trials in the full study, one was can-
celled due to technical issues with the logging equipment, two
were cancelled due to bad weather, four were cancelled due
to hazardous drivers, and 18 were cancelled due to availability
and scheduling issues, resulting in 331 trials available for
analysis. 54 driving sessions were performed without wearable
HR measurement, and were thus excluded from this sub-
study. In addition, 15 sessions with synchronization problems
and four sessions with low-quality wearable HR measures
were removed from subsequent analysis. In order to have
paired tests among different scenarios, only participants with
data from all four driving sessions were kept for analysis,
which left 43 participants with 172 driving sessions. In total,
the retained dataset contains 3230 5-min epochs. For the
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included participants, 25 drivers had experience with adaptive
cruise control, 12 had experience with lane keeping assistance,
24 with parking assistance, and nine with level 2 assistance.

In addition to HRV features, two other easy-to-access fea-
tures were also extracted for each epoch, namely duration
of driving time and day/night. Day/night is a binary feature
separated by 7 pm, which indicates if the driving is performed
at late night or not.

All data processing and analysis were performed with
Matlab 2020a (MathWorks Inc., MA, USA).

C. Statistical Analysis

All 5-min epochs were grouped by driving conditions
(manual and partial automated) and sleepiness (KSS <= 7
and KSS > 7). Since the HRV features were not normally
distributed, pairwise Mann–Whitney U tests were applied
between groups.

The influence of automation and severe sleepiness on HRV
metrics were analyzed with mixed-model ANOVA test. The
HRV parameters with skewed distribution were logarithmic
transformed and a constant was added to features with zero
values (log(x + 1)). The participant number was set as a
random variable and the automation (manual or partial auto-
mated driving) and severe sleepiness (KSS <= 7 or KSS > 7)
were set as fixed variables. Subjects without severe sleepiness
episodes were removed from this test to avoid empty sub-
groups.

For these tests, the level of significance was set at p < 0.05
(p < 0.0125 after Bonferroni correction for multiple testing).

D. Classification

A machine learning method was employed to assess the
possibility of detecting driver sleepiness based on HRV,
i.e., distinguishing between KSS > 7 (sleepy) and KSS ≤ 7
(noncritical condition / alert). Considering the high inter-driver
variance of HRV levels, leave-one-subject-out (LOSO) cross-
validation was used for the training and validation process,
which estimates how well the model can generalize for new
users. For each iteration, all four driving sessions from the
same participant will be held out for testing, and this process is
repeated for every participant. To compensate the imbalanced
distribution, the severe sleepiness samples were oversampled
five times for reaching approximately equal distribution for the
two classes. The AdaBoost algorithm was used. The settings
used were 50 training cycles with learning rate of 0.1 and
a maximum number of splits for each tree set to 30. The
training cycles and splits numbers were selected by testing,
with higher number of splits, the classifier trended to overfit
the training data, and the training cycle number was balanced
for training time and performance. The learning rate was
used as default value in the Matlab implementation. The area
under the receiver operating characteristic (ROC) curve (AUC)
was used to measure classification performance. The overall
ROC for the cross-validation was plotted by assembling all
predictions of test sets in each round. The importance of
each feature in the trained ensembled tree of classifiers was
examined using Matlab ‘predictorImportance’ function. The

TABLE II

NUMBER OF 5-MIN EPOCHS UNDER EACH CONDITION

contribution of each feature was calculated by first summing
up the changes in the mean squared error on splits and then
dividing by the number of nodes.

To examine if the partial automated driving can influence
HRV based sleepiness assessment, specific models that were
trained and tested with only manual or automated driving
data were developed independently. Their performance was
compared with a manual-automated-combined method where
the classifier was trained with the whole dataset containing
both conditions.

E. Personalization

Two levels of personalization methods were applied to the
HRV features. The first level was to add a baseline corrected
feature set. The baseline values were derived by using the HRV
features from a certain time window at the beginning of the
first driving session for the participant (Fig. 1b). The rationale
was that the driver was likely to be alert and fully fit to drive
at the first driving session at daytime. The baseline HRV level
was calculated as the mean value of all 5-min epochs during
the selected window size. Then a baseline corrected feature
set was generated by normalizing each HRV parameter by
dividing all values with the mean baseline level. We tested
different window sizes from 5 min to 70 min, as well as the
entire driving session. Similar method has been applied by [21]
with fixed 3 min window. The second level was to have a
personalized calibration by, for each participant, including data
from one day in the training session together with all data
from other participants and predict the other day when testing
(Fig. 1c). This level represented the scenario where a personal
calibration with reported KSS is available.

III. RESULTS

A. Sleepy Episodes Under Different Driving Conditions

A summary of the distribution of epochs for different
driving conditions and states of sleepiness is shown in Table II.
In total, there are 545 out of 3230 5-min epochs with
KSS > 7, where most of those epochs (526) occurred in
the night driving session. Almost equal number of sleepy
epochs can be found with manual (265) and automated (280)
driving sessions. At individual level, each participant had
12.67 sleepy epochs in average with a standard deviation
of 11.03 epochs.
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Fig. 2. Box plots for selected HRV features grouped by manual / automated driving and non-critical (KSS <= 7) / sleepy (KSS > 7). Datapoints outside
the whiskers (1.5 times the interquartile range above the upper quartile and below the lower quartile) are not shown in the plots.

B. HRV, Automated Driving, and Sleepiness

Boxplots of selected HRV features at group level are shown
in Fig. 2. For all HRV parameters, significant differences are
found between the KSS > 7 and KSS <= 7 groups for
both manual and automated driving conditions. Lower HR,
increased SDNN, RMSSD, LF, HF and LF/HF are observed
in sleepy episodes. No significant difference is found when
comparing manual and automated driving episodes under
sleepy or non-critical conditions.

The results of mixed model ANOVA are shown in Table III.
When having the participant as a random effect, it shows
a significant influence on all HRV parameters. Almost all
HRV parameters are significantly affected by severe sleepiness
besides pNN50, HF and SD1/SD2, whereas the automation
condition shows no significant effect on any feature. For

the interaction between severe sleepiness and automation,
significant influence can only be found for SD1/SD2.

C. Classification With HRV

Specific models that are trained and evaluated using
dataset that contains only manual or partial automated driving
episodes have been developed. The performance of the manual
specific model is AUC = 0.60, and AUC = 0.68 for the
partial automated specific model. No advantage is found for
using specific models over the manual-automated-combined
(AUC = 0.69), which is developed with the whole data set.

D. HRV Personalization

The classification performance of different calibration pro-
cedures is shown in Table IV. Improved performance can
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TABLE III

MIXED-MODEL ANOVA RESULTS FOR HRV FEATURES

TABLE IV

CLASSIFICATION PERFORMANCE BY DIFFERENT

PERSONALIZATION METHODS

be found for level 1 personalization. When adding baseline
corrected feature set, we find longer windows over 20 min
bring better performance than shorter windows, for current
dataset best performance is achieved with 60 min window
baseline. Further improvement is achieved by adding personal
calibration for level 2 personalization. The ROC curves of
having no personalization, personal baseline and personal
calibration are compared in Fig. 3.

E. HRV With Other Features

Fig. 4. shows the performance of using HRV together
with other easy to access data. The performance reaches
AUC = 0.88 when combing baseline corrected HRV,
day/night (AUC = 0.62 when using alone) and driving time
(AUC = 0.71 when using alone) together.

Fig. 3. ROC comparison between non personalization and two levels of
personalization methods.

F. HRV Feature Importance for Trained Models

The contribution of different HRV features in trained models
is shown in Fig. 5 and Fig. 6. For the trained model without
personalization, the most important features are NN mean,
VLF and SD2 (Fig. 5). When having the baseline corrected
HRV feature set, the baseline corrected NN mean becomes the
most important feature, and non-personalized NN mean and
VLF remains the second and the third (Fig. 6).

IV. DISCUSSION

In this study, the influence of automated driving on the
relation between HRV and sleepiness was investigated. Sleepy
drivers showed decreased HR, increased HF, LF power and
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Fig. 4. ROC for models using personalized HRV with baseline correction,
driving time, day/night and all three together.

Fig. 5. The feature importance of trained classifier for non-personalized
model.

LF/HF for both manual and partial automated driving. The
trend is consistent with previous real-road studies with sim-
ilar setup for manual driving [23], [25]. The trend for HF,
LF and LF/HF change is not consistent through all stud-
ies [19], [42]. It has been hypothesized that sleepy states
activate the parasympathetic nervous system, which leads
to higher levels of HF, whereas when the sleep demand
is counteracted by subjects fighting to stay awake this will
lead to sympathetic activation that increases LF [21]. The
inconsistence could also be caused by different experimental
setups. Michail et al. [42] reported instant LF/HF drop with the
occurance of driving error under sleepy state, which is different
from studies comparing alert and sleepy state in a longer
time span [23], [25]. The fatigue manipulation method and
fatigue reference measurement method were not described by
Patel et al. [19].

Previous studies have shown decreased heart rate when
using ADAS. In our study, we did not find significant

difference in HR between manual and partial automated
driving for the noncritical / alert or severe sleepy group. One
possible explanation is the decreased HR using ADAS is in
line with the faster sleepiness development. We did not find a
significant effect on use of automation for most of the HRV
parameters. Similar results have been shown in another real-
road study [43], the authors suggesting the reason could be
that inherent variability of real-road driving over-shadowed
any possible effects resulting from automation. Thus, partial
automated driving has minor influence on the relationship
between HRV and sleepiness. Furthermore, no benefit was
found to train specific HRV based detection model for partial
automated driving in the present study.

Due to the high individual variability in HRV, person-
alization methods have been suggested to improve model
performance. Fujiwara et al. used a personalized abnormalities
detection method [22], whereas Vicente et al. used normalized
features with baseline established by the first three minutes
of driving [21]. Persson et al. used baseline established by
sections with KSS < 5 [25], this strategy requires labeling
measurements with KSS first in practice. In this study, similar
method to Vicente et al. [21] was applied, where baseline was
established by initial driving at daytime. The results show that
using averaged baseline over a slightly longer time window
(20–60 min) may provide better results. This averaging process
may reduce the effect of local HRV fluctuations caused by
other factors. However, a too long window will decrease the
performance, possibly because the driver state is changing over
time. The baseline methods only considered the variation of
personal HRV base level but not the range of HRV change. The
other method in this study, personal calibration, by collecting
one day of labeled data to predict the other day, reached the
best performance. However, this method is less practical as it
requires labeled data to establish a personal HRV to sleepiness
relation.

Different experiment setups, sleepiness labeling methods,
validation methods and performance measurements make it
difficult to compare results across studies. In the study by
Persson et al. [25], similar experiment setup was used for
manual driving on real roads, but with a three-class classi-
fication, for the KSS > 7 group 13.2% sensitivity and 86.8%
specificity were reached when using baseline corrected HRV
features with LOSO. In comparison, in the present study
49.3% sensitivity was reached at the same (86.8%) specificity
with baseline corrected HRV features (Fig. 3). A simulator
study [24] compared a wrist-worn HR sensor and ECG for
sleepiness detection with 5-min interval, the LOSO result
was 78.9% accuracy for ECG and 73.4% for wristband. The
performance of HRV with personal baseline in this study was
86.5% accuracy using chest band.

Studies have tried to build multimodal systems to achieve
better accuracy, where HRV is used in combination with addi-
tional input such as driving performance [44], [45] and other
physiological measurements, e.g., EEG and EOG [45]–[47].
The usability can be limited when the input parameters
cannot be monitored unobtrusively or are unavailable under
automated driving conditions. In this work, good performance
was reached by adding day/night and driving-time information,
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Fig. 6. The feature importance of trained classifier for personalized model with baseline corrected feature set.

which would be simple to retrieve from the wearable device
or the vehicle. However, the relation between sleepiness and
driving time is related to the driving task. With the same route
used in each single trial, this feature may be overfitted to the
current experiment. A model using the day/night information
may not be suitable for users with different daily schedule
such as people with shift works. In future studies, respiration
measurement may be a good physiological signal to be used
together with HRV [48], [49]. Consumer wearable devices can
also provide valuable data beyond driving sessions, such as
sleep log, physical activity level, and 24-hour HR measure-
ment, for better estimation.

KSS ratings were used as ground truth data for sleepiness
in this study. The KSS has been validated against performance
tasks and EEG variables in laboratory settings and it is related
to driving performance in simulator and real driving [1],
[50], [51]. In this study KSS = 7 was selected as threshold
for classification as studies have demonstrated that KSS level
8 and 9 are clearly associated with driving performance
impairment and physiological changes [1], [52], [53]. Using
KSS will not identify exact occurrence of microsleep events,
which causes deterioration in driving performance [54], and
current 5-min HRV processing window may not be suitable to
precisely locate microsleep events that usually have a duration
of few seconds. But increase of KSS has been found to
correlate with duration and occurrence of microsleep events
under sleep restriction [55]. However, there are concerns
regarding the validity and reliability in more complex real-life
driving situations. In this study and other real-road studies,
subjects occasionally report low KSS despite showing obvious
signs of sleepiness [56].

The terms sleepiness and fatigue have often been used
synonymously in the literature. Efforts have been made to
make a clear delineation between fatigue and sleepiness, where
some research groups argue that sleepiness is a sub-category
of fatigue [57], while others suggest they are distinguish-
able [58]. Regardless, the clarification of those concepts
depends on different causal factors. The major causal factors
can be divided into sleep related factors where circadian

effects and homeostatic sleep pressure are dominant, and task
related factors including time-on-task effect and task load.
In this study both sleep and task related factors influenced
the subjective sleepiness level. When it comes to the severe
sleepiness episodes with KSS above 7, the sleep related
factors are assumed to be the major component in our
experiment.

Sleep and task related factors are difficult to separate during
a driving session. Studies that address those factors separately
can be found out of driving context. The relation between
HRV and performance of psychomotor vigilance test has
been studied under total sleep deprivation for 40 hours [12]
and partial sleep deprivation for five nights [14], increased
HRV, VLF and LF power have been correlated to decreased
vigilance performance. Those findings are in line with our
observations in this study. When it comes to task related
factors, [59] decreased HR, increased RMSSD, pNN50 and
HF were associated to time-on-task effects. However, the
change of HRV with time-on-task was not consistent among
all studies. Melo et al. [60] reported decrease in rMSSD
and pNN50 with time-on-task effect. In future studies, the
interaction between the sleep and task introduced fatigue and
their influence on driving performance and HRV should be
investigated.

All four driving tests were conducted on the motorway at
fixed time slots. Testing with more sophisticated scenarios that
cover different traffic conditions and different schedules for
driving and sleeping with extended test groups is required to
better reflect real-life driving. Moreover, each subject came
for the experiment at two occasions a few days apart, so the
current study cannot take care of the intra-individual variation
over time. The long-term validity of personalized algorithms
needs to be investigated in future studies. The development
of driver sleepiness has strong sequential characteristics with
time. The current classification model treated each epoch inde-
pendently, meaning that the information during the transition
process to sleep is not fully utilized. New models that consider
the time series effect could bring improvements in future
studies.
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V. CONCLUSION

This study shows that consumer wearable HR monitors
can provide valuable information regarding driver sleepiness
under partial automated and manual driving condition. The
classification results indicate a potential of using HRV together
with other information to form an accurate sleepiness detection
system well suited for automated driving scenarios. In our
experiment, partial automated driving shows limited impact
on the relationship between HRV and sleepiness.
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