15 research outputs found

    A survey of new trends in symbolic execution for software testing and analysis

    Get PDF
    Abstract Symbolic execution is a well-known program analysis technique which represents program inputs with symbolic values instead of concrete, initialized, data and executes the program by manipulating program expressions involving the symbolic values. Symbolic execution has been proposed over three decades ago but recently it has found renewed interest in the research community, due in part to the progress in decision procedures, availability of powerful computers and new algorithmic developments. We provide here a survey of some of the new research trends in symbolic execution, with particular emphasis on applications to test generation and program analysis. We first describe an approach that handles complex programming constructs such as input recursive data structures, arrays, as well as multithreading. Furthermore, we describe recent hybrid techniques that combine concrete and symbolic execution to overcome some of the inherent limitations of symbolic execution, such as handling native code or availability of decision procedures for the application domain. We follow with a discussion of techniques that can be used to limit the (possibly infinite) number of symbolic configurations that need to be analyzed for the symbolic execution of looping programs. Finally, we give a short survey of interesting new applications, such as predictive testing, invariant inference

    A scalable technique for characterizing the usage of temporaries in framework-intensive Java applications

    Full text link
    Framework-intensive applications (e.g., Web applications) heavily use temporary data structures, often resulting in performance bot-tlenecks. This paper presents an optimized blended escape analysis to approximate object lifetimes and thus, to identify these tempo-raries and their uses. Empirical results show that this optimized analysis on average prunes 37 % of the basic blocks in our bench-marks, and achieves a speedup of up to 29 times compared to the original analysis. Newly defined metrics quantify key properties of temporary data structures and their uses. A detailed empirical eval-uation offers the first characterization of temporaries in framework-intensive applications. The results show that temporary data struc-tures can include up to 12 distinct object types and can traverse through as many as 14 method invocations before being captured

    ReCrash: Making Crashes Reproducible

    Get PDF
    It is difficult to fix a problem without being able to reproduce it.However, reproducing a problem is often difficult and time-consuming.This paper proposes a novel algorithm, ReCrash, that generatesmultiple unit tests that reproduce a given program crash.ReCrash dynamically tracks method calls during every execution of the target program. If the program crashes, ReCrash saves information about the relevant method calls and uses the saved information to create unit tests reproducing the crash.We present reCrashJ an implementation of ReCrash for Java. reCrashJ reproducedreal crashes from javac, SVNKit, Eclipse JDT, and BST. reCrashJ is efficient, incurring 13%-64% performance overhead. If this overhead is unacceptable, then reCrashJ has another mode that has negligible overhead until a crash occurs and 0%-1.7% overhead until a second crash, at which point the test cases are generated

    Combining over- and under-approximating program analyses for automatic software testing

    Get PDF
    This dissertation attacks the well-known problem of path-imprecision in static program analysis. Our starting point is an existing static program analysis that over-approximates the execution paths of the analyzed program. We then make this over-approximating program analysis more precise for automatic testing in an object-oriented programming language. We achieve this by combining the over-approximating program analysis with usage-observing and under-approximating analyses. More specifically, we make the following contributions. We present a technique to eliminate language-level unsound bug warnings produced by an execution-path-over-approximating analysis for object-oriented programs that is based on the weakest precondition calculus. Our technique post-processes the results of the over-approximating analysis by solving the produced constraint systems and generating and executing concrete test-cases that satisfy the given constraint systems. Only test-cases that confirm the results of the over-approximating static analysis are presented to the user. This technique has the important side-benefit of making the results of a weakest-precondition based static analysis easier to understand for human consumers. We show examples from our experiments that visually demonstrate the difference between hundreds of complicated constraints and a simple corresponding JUnit test-case. Besides eliminating language-level unsound bug warnings, we present an additional technique that also addresses user-level unsound bug warnings. This technique pre-processes the testee with a dynamic analysis that takes advantage of actual user data. It annotates the testee with the knowledge obtained from this pre-processing step and thereby provides guidance for the over-approximating analysis. We also present an improvement to dynamic invariant detection for object-oriented programming languages. Previous approaches do not take behavioral subtyping into account and therefore may produce inconsistent results, which can throw off automated analyses such as the ones we are performing for bug-finding. Finally, we address the problem of unwanted dependencies between test-cases caused by global state. We present two techniques for efficiently re-initializing global state between test-case executions and discuss their trade-offs. We have implemented the above techniques in the JCrasher, Check 'n' Crash, and DSD-Crasher tools and present initial experience in using them for automated bug finding in real-world Java programs.Ph.D.Committee Chair: Smaragdakis, Yannis; Committee Member: Dwyer, Matthew; Committee Member: Orso, Alessandro; Committee Member: Pande, Santosh; Committee Member: Rugaber, Spence

    Profile-driven parallelisation of sequential programs

    Get PDF
    Traditional parallelism detection in compilers is performed by means of static analysis and more specifically data and control dependence analysis. The information that is available at compile time, however, is inherently limited and therefore restricts the parallelisation opportunities. Furthermore, applications written in C – which represent the majority of today’s scientific, embedded and system software – utilise many lowlevel features and an intricate programming style that forces the compiler to even more conservative assumptions. Despite the numerous proposals to handle this uncertainty at compile time using speculative optimisation and parallelisation, the software industry still lacks any pragmatic approaches that extracts coarse-grain parallelism to exploit the multiple processing units of modern commodity hardware. This thesis introduces a novel approach for extracting and exploiting multiple forms of coarse-grain parallelism from sequential applications written in C. We utilise profiling information to overcome the limitations of static data and control-flow analysis enabling more aggressive parallelisation. Profiling is performed using an instrumentation scheme operating at the Intermediate Representation (Ir) level of the compiler. In contrast to existing approaches that depend on low-level binary tools and debugging information, Ir-profiling provides precise and direct correlation of profiling information back to the Ir structures of the compiler. Additionally, our approach is orthogonal to existing automatic parallelisation approaches and additional fine-grain parallelism may be exploited. We demonstrate the applicability and versatility of the proposed methodology using two studies that target different forms of parallelism. First, we focus on the exploitation of loop-level parallelism that is abundant in many scientific and embedded applications. We evaluate our parallelisation strategy against the Nas and Spec Fp benchmarks and two different multi-core platforms (a shared-memory Intel Xeon Smp and a heterogeneous distributed-memory Ibm Cell blade). Empirical evaluation shows that our approach not only yields significant improvements when compared with state-of- the-art parallelising compilers, but comes close to and sometimes exceeds the performance of manually parallelised codes. On average, our methodology achieves 96% of the performance of the hand-tuned parallel benchmarks on the Intel Xeon platform, and a significant speedup for the Cell platform. The second study, addresses the problem of partially sequential loops, typically found in implementations of multimedia codecs. We develop a more powerful whole-program representation based on the Program Dependence Graph (Pdg) that supports profiling, partitioning and codegeneration for pipeline parallelism. In addition we demonstrate how this enhances conventional pipeline parallelisation by incorporating support for multi-level loops and pipeline stage replication in a uniform and automatic way. Experimental results using a set of complex multimedia and stream processing benchmarks confirm the effectiveness of the proposed methodology that yields speedups up to 4.7 on a eight-core Intel Xeon machine

    Dynamically diagnosing type errors in unsafe code

    Get PDF
    Existing approaches for detecting type errors in unsafe languages are limited. Static analysis methods are imprecise, and often require source-level changes, while most dynamic methods check only memory properties (bounds, liveness, etc.), owing to a lack of run-time type information. This paper describes libcrunch, a system for binary-compatible run-time type checking of unmodified unsafe code, currently focusing on C. Practical experience shows that our prototype implementation is easily applicable to many real codebases without source-level modification, correctly flags programmer errors with a very low rate of false positives, offers a very low run-time overhead, and covers classes of error caught by no previously existing tool

    Separation logic for high-level synthesis

    Get PDF
    High-level synthesis (HLS) promises a significant shortening of the digital hardware design cycle by raising the abstraction level of the design entry to high-level languages such as C/C++. However, applications using dynamic, pointer-based data structures remain difficult to implement well, yet such constructs are widely used in software. Automated optimisations that leverage the memory bandwidth of dedicated hardware implementations by distributing the application data over separate on-chip memories and parallelise the implementation are often ineffective in the presence of dynamic data structures, due to the lack of an automated analysis that disambiguates pointer-based memory accesses. This thesis takes a step towards closing this gap. We explore recent advances in separation logic, a rigorous mathematical framework that enables formal reasoning about the memory access of heap-manipulating programs. We develop a static analysis that automatically splits heap-allocated data structures into provably disjoint regions. Our algorithm focuses on dynamic data structures accessed in loops and is accompanied by automated source-to-source transformations which enable loop parallelisation and physical memory partitioning by off-the-shelf HLS tools. We then extend the scope of our technique to pointer-based memory-intensive implementations that require access to an off-chip memory. The extended HLS design aid generates parallel on-chip multi-cache architectures. It uses the disjointness property of memory accesses to support non-overlapping memory regions by private caches. It also identifies regions which are shared after parallelisation and which are supported by parallel caches with a coherency mechanism and synchronisation, resulting in automatically specialised memory systems. We show up to 15x acceleration from heap partitioning, parallelisation and the insertion of the custom cache system in demonstrably practical applications.Open Acces

    Static Analysis in Practice

    Get PDF
    Static analysis tools search software looking for defects that may cause an application to deviate from its intended behavior. These include defects that compute incorrect values, cause runtime exceptions or crashes, expose applications to security vulnerabilities, or lead to performance degradation. In an ideal world, the analysis would precisely identify all possible defects. In reality, it is not always possible to infer the intent of a software component or code fragment, and static analysis tools sometimes output spurious warnings or miss important bugs. As a result, tool makers and researchers focus on developing heuristics and techniques to improve speed and accuracy. But, in practice, speed and accuracy are not sufficient to maximize the value received by software makers using static analysis. Software engineering teams need to make static analysis an effective part of their regular process. In this dissertation, I examine the ways static analysis is used in practice by commercial and open source users. I observe that effectiveness is hampered, not only by false warnings, but also by true defects that do not affect software behavior in practice. Indeed, mature production systems are often littered with true defects that do not prevent them from functioning, mostly correctly. To understand why this occurs, observe that developers inadvertently create both important and unimportant defects when they write software, but most quality assurance activities are directed at finding the important ones. By the time the system is mature, there may still be a few consequential defects that can be found by static analysis, but they are drowned out by the many true but low impact defects that were never fixed. An exception to this rule is certain classes of subtle security, performance, or concurrency defects that are hard to detect without static analysis. Software teams can use static analysis to find defects very early in the process, when they are cheapest to fix, and in so doing increase the effectiveness of later quality assurance activities. But this effort comes with costs that must be managed to ensure static analysis is worthwhile. The cost effectiveness of static analysis also depends on the nature of the defect being sought, the nature of the application, the infrastructure supporting tools, and the policies governing its use. Through this research, I interact with real users through surveys, interviews, lab studies, and community-wide reviews, to discover their perspectives and experiences, and to understand the costs and challenges incurred when adopting static analysis tools. I also analyze the defects found in real systems and make observations about which ones are fixed, why some seemingly serious defects persist, and what considerations static analysis tools and software teams should make to increase effectiveness. Ultimately, my interaction with real users confirms that static analysis is well received and useful in practice, but the right environment is needed to maximize its return on investment

    Dynamically fighting bugs : prevention, detection and elimination

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 147-160).This dissertation presents three test-generation techniques that are used to improve software quality. Each of our techniques targets bugs that are found by different stake-holders: developers, testers, and maintainers. We implemented and evaluated our techniques on real code. We present the design of each tool and conduct experimental evaluation of the tools with available alternatives. Developers need to prevent regression errors when they create new functionality. This dissertation presents a technique that helps developers prevent regression errors in object-oriented programs by automatically generating unit-level regression tests. Our technique generates regressions tests by using models created dynamically from example executions. In our evaluation, our technique created effective regression tests, and achieved good coverage even for programs with constrained APIs. Testers need to detect bugs in programs. This dissertation presents a technique that helps testers detect and localize bugs in web applications. Our technique automatically creates tests that expose failures by combining dynamic test generation with explicit state model checking. In our evaluation, our technique discovered hundreds of faults in real applications. Maintainers have to reproduce failing executions in order to eliminate bugs found in deployed programs. This dissertation presents a technique that helps maintainers eliminate bugs by generating tests that reproduce failing executions. Our technique automatically generates tests that reproduce the failed executions by monitoring methods and storing optimized states of method arguments.(cont.) In our evaluation, our technique reproduced failures with low overhead in real programs Analyses need to avoid unnecessary computations in order to scale. This dissertation presents a technique that helps our other techniques to scale by inferring the mutability classification of arguments. Our technique classifies mutability by combining both static analyses and a novel dynamic mutability analysis. In our evaluation, our technique efficiently and correctly classified most of the arguments for programs with more than hundred thousand lines of code.by Shay Artzi.Ph.D

    Empirically-Grounded Construction of Bug Prediction and Detection Tools

    Get PDF
    There is an increasing demand on high-quality software as software bugs have an economic impact not only on software projects, but also on national economies in general. Software quality is achieved via the main quality assurance activities of testing and code reviewing. However, these activities are expensive, thus they need to be carried out efficiently. Auxiliary software quality tools such as bug detection and bug prediction tools help developers focus their testing and reviewing activities on the parts of software that more likely contain bugs. However, these tools are far from adoption as mainstream development tools. Previous research points to their inability to adapt to the peculiarities of projects and their high rate of false positives as the main obstacles of their adoption. We propose empirically-grounded analysis to improve the adaptability and efficiency of bug detection and prediction tools. For a bug detector to be efficient, it needs to detect bugs that are conspicuous, frequent, and specific to a software project. We empirically show that the null-related bugs fulfill these criteria and are worth building detectors for. We analyze the null dereferencing problem and find that its root cause lies in methods that return null. We propose an empirical solution to this problem that depends on the wisdom of the crowd. For each API method, we extract the nullability measure that expresses how often the return value of this method is checked against null in the ecosystem of the API. We use nullability to annotate API methods with nullness annotation and warn developers about missing and excessive null checks. For a bug predictor to be efficient, it needs to be optimized as both a machine learning model and a software quality tool. We empirically show how feature selection and hyperparameter optimizations improve prediction accuracy. Then we optimize bug prediction to locate the maximum number of bugs in the minimum amount of code by finding the most cost-effective combination of bug prediction configurations, i.e., dependent variables, machine learning model, and response variable. We show that using both source code and change metrics as dependent variables, applying feature selection on them, then using an optimized Random Forest to predict the number of bugs results in the most cost-effective bug predictor. Throughout this thesis, we show how empirically-grounded analysis helps us achieve efficient bug prediction and detection tools and adapt them to the characteristics of each software project
    corecore