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Abstract
Existing approaches for detecting type errors in unsafe lan-
guages are limited. Static analysis methods are imprecise,
and often require source-level changes, while most dynamic
methods check only memory properties (bounds, liveness,
etc.), owing to a lack of run-time type information. This pa-
per describes libcrunch, a system for binary-compatible run-
time type checking of unmodified unsafe code, currently fo-
cusing on C. Practical experience shows that our prototype
implementation is easily applicable to many real codebases
without source-level modification, correctly flags program-
mer errors with a very low rate of false positives, offers
a very low run-time overhead, and covers classes of error
caught by no previously existing tool.

Categories and Subject Descriptors D.2.5 [Testing and
Debugging]: Debugging aids

Keywords C, unsafe code, pointers, type information

1. Introduction
C, C++ and other unsafe languages remain widely used. Here
“unsafe” means that the language does not enforce memory-
or type-correctness invariants. A general type-correctness
invariant might be that any access to a stored value reads or
writes a value consistent with the type the storage is intended
to hold. In this paper we describe a system for dynamically
checking this property. By contrast, existing tools generally
focus on memory invariants, such as all pointer uses respect
the bounds of the object from whose address the pointer
derives (a memory property; spatial), or an object is only
reclaimed once no pointers into it may any longer be used
by the program (a memory property; temporal).

Many approaches exist for making unsafe languages less
unsafe. Specifically regarding type-correctness, some dy-

[Copyright notice will appear here once ’preprint’ option is removed.]

1if (obj−>type == OBJ_COMMIT) {
2if (process_commit(walker, (struct commit *)obj))
3return −1;
4return 0;
5}

Figure 1. Pointer cast in C code (from git). The program-
mer believes that obj points to a commit, but this is not
checked, either at compile time or at run time.

namic analysis tools exist [3, 16] but suffer high run-time
overhead. Hybrid static/dynamic systems [12, 21] sacrifice
compatibility with existing code at either source level (en-
tailing porting effort) or binary level (precluding use of pre-
built libraries). The most practically compelling tools such
as Memcheck [24], SoftBound and CETS [18, 19] check
only memory properties, and (by design) have no awareness
of data types.

This paper describes libcrunch, a system which enables
run-time type checking within unsafe code (focusing on C),
while maintaining full binary compatibility (for easy use
of libraries), usually requiring no source-level changes, and
with low enough overhead to leave “enabled by default”
during development. Our research contributions are:

• a novel design based on checking pointer creation, not
use, and avoiding per-pointer metadata in favour of per-
allocation type metadata (§3);

• a C front-end dealing pragmatically with C’s untyped
heap allocation (§4), common pointer idioms in standard
C (§5) and more problematic non-compliant idioms that
are nevertheless common (§6);

• an efficient implementation using novel disjoint metadata
techniques (§7);

• experimental evidence demonstrating that the system of-
fers good performance, is easy to apply to real codebases,
and yields useful feedback to programmers (§8).

2. Run-time errors in unsafe languages
Fig. 1 shows a real code fragment (from git). The program-
mer believes that obj points to memory holding a commit,
but this is not checked, at either compile time or run time.

1 2016/9/21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/226941586?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


If the memory holds some other kind of object, a corrupt-
ing failure could occur here, likely resulting in a mysteri-
ous crash in later code, making the cause difficult to debug.
In general, for any pointer cast to a type T*—or, perhaps
more precisely, for any subsequent use of such a pointer—
we would like to check that the target storage really does
contain a T.

How does this relate to properties checked by memory-
correctness tools? In short, memory errors enable type errors,
by allowing accesses to stray into memory of a possibly
different type. The first three kinds of error below are well-
understood memory errors, and sophisticated tools exist for
checking them [1, 10, 18, 19, 23, 24].

1. Spatial memory errors involve the use of an out-of-
bounds pointer or array index.

2. “Too late” temporal errors involve use of a pointer value
that is dangling—examples including use-after-free(),
double-free(), use of a pointer passed up the stack, etc..

3. “Too early” temporal errors involve use of an unspeci-
fied value read from uninitialised storage.

However, these are not the only ways to perform a type-
incorrect access in C. The most common other means to such
an error are as follows.

4. Badly-cast pointer errors are the creation, followed by
use, of a pointer of type T* whose referent is not of type
T (or compatible).

5. Vararg errors involve use of va_arg(_, T) when T is not
compatible with the argument passed into the call (if any
was passed).

These errors are distinct from the above spatial or tempo-
ral memory errors caught by existing tools. The remainder
of this paper describes a system which checks for badly-cast
pointer errors, and also catches certain cases of vararg errors.

It is also interesting to ask: what other errors, besides the
above, can cause type-incorrect accesses in C? We note the
following additional classes of error.

6. Union errors involve reading from a union member when
that union’s last-written member is of different type.

7. Bad-link errors involve use of a linker-initialized refer-
ence whose link-time referent is type-incorrect (e.g. the
linker binds a use of a global of type T to a definition of
incompatible type U).

8. Representation-copying errors include use of mem-
cpy() to copy bytes to a (live, in-bounds) location from
where they will be interpreted using the wrong type.

The code in Fig. 2 includes errors of all eight classes.
To our knowledge, on the compilers we have tried (gcc
and clang), no relevant warnings are generated, nor does

1int g(float *b, float c, ...); // declaration
2int f(int a) {
3int local;
4int *p;
5{
6struct {int x; float y;} z = { 0, 0.0 };
7p = &z.x;
8int xx = *(p + 1); // spatial
9}
10int yy = *p; // temporal "too late"
11int t = local; // temporal "too early"
12return g((float*) &a, t, 42); // bad pointer cast
13}
14/* −−− separate file −−− */
15#include <stdarg.h>
16int g(float *b, int c, ...) {
17union {int x; float y;} z = {.y = 0.0};
18z.x = *b; // (use of bad−cast pointer)
19va_list v; va_start(v, c);
20z.x += va_arg(v, float); // vararg mismatch
21z.x += z.y; // union error
22z.x += c; // exploit bad link
23memcpy(b, &c, sizeof (int)); // bad memcpy
24return z.x;
25}

Figure 2. Some even more problematic C code.

any existing dynamic analysis in the literature1 catch the
errors in classes 4–8, although a link-time analysis has been
developed for class 7 [2].

In the present paper, our focus will be on classes 4 and (to
some extent) 5, neither of which are caught by existing tools.
We adopt this focus partly because duplicating existing tools
is of limited research interest, but also because, as we will
see, a tool focused on these kinds of error turns out to be
implementable at much lower run-time overhead than the
fairly expensive memory-focused tools. (The same likely
holds for classes 6 and 8, but we leave such a tool for future
work—except that our tool happens already to catch a small
subset of union errors.)

It is worth observing a distinction between corrupting
and non-corrupting errors. In the above code, some errors
are non-corrupting: generating a meaningless floating-point
value (on line 20), although clearly an error, is not corrupt-
ing since the failure is localised to the result value and to any
data flowing explicitly outward from it. Bad pointers are in-
variably the source of a corrupting error, because indirect ad-
dressing modes are what allow meaningless values to cause
corruption in arbitrary program state. (Here we count array
indexing as a pointer construct, involving the creation of a
transient pointer that is immediately dereferenced.) Since
corrupting failures are what make unsafe code especially

1 Here we are discounting executable C semantics such as CH2O [14],
Cerberus [17] or kcc [8] since none of these currently scales to large
codebases. We discuss these systems further in §9.
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hard to debug, our emphasis will be on diagnosing corrupt-
ing failures associated with these errors.2

3. Design
Here we set out the core design properties of libcrunch, and
discuss some further details of what precisely it checks.

3.1 Goals
Diagnose corrupting failures The primary purpose of
libcrunch is to ease debugging the corrupting failures that
follow uncaught type errors (not memory errors) in unsafe
code. Reporting type errors cleanly, at or near the point
where incorrect code is first executed, brings value, by re-
ducing debugging time. This benefit is widely accepted, and
we adopt it as a premise of our work. It is precisely the mo-
tivation of dynamically type-safe languages, where “safety”
is, in the sense of Krishnamurthi and Felleisen [15], the
extent to which errors are cleanly trapped. We do not under-
take, in this work, to measure this benefit, e.g. by measuring
the propensity of programmers to write type-incorrect pro-
grams. Instead, our focus is on the design of a pragmatic
infrastructure which can bring this benefit to C code (and
potentially other unsafe languages too; we discuss this possi-
bility in §7.3). Studies measuring this benefit would certainly
be valuable (we are not aware of any) but they are outside
the scope of this work.

Help debugging, not (primarily) bug-finding It follows
that libcrunch is not a bug-finding tool per se: its express
purpose is not to detect bugs “lurking” in deployed code, but
to assist developers fix errors that are easily detected but dif-
ficult to diagnose. In other words, they manifest themselves
during the usual edit-compile-debug cycle, but are hard to
understand the cause of. By contrast, memory errors (both
spatial and temporal) tend to “lurk” in codebases, going un-
detected until after deployment. This is precisely because
they are often non-corrupting in many builds or executions:
an off-by-one bounds error most often reads (or writes) a
harmless extra value, while an uninitialised read or use-after-
free can do the same. Problems manifest only after deploy-
ment, in an unlucky environment that reveals the bug; this
motivates bug-finding tools to uncover them sooner. By con-
trast, the kinds of error we target lead to state corruption
much more readily (consider Fig. 1; if the cast is wrong,
the called function will immediately consume meaningless
data), and are unlikely to “lurk”. The difficulty they present
is down to the corruption they entail, whose root cause the
developer must somehow diagnose.

2 An interesting distinction is that between corrupting failure and merely
distant failure. Both are difficult to debug, and corruption often causes fail-
ure somewhere distant rather than close. However, many distant failures—
such as passing a bad value through a long chain of calls, causing an in-
comprehensible failure in some deeper layer—occur even in safe languages.
Debugging tools assisting the diagnosis these distant yet non-corrupting
failures would certainly be useful, in any kind of language. However, this
would require different techniques from those we consider here.

Performance By focusing solely on type-correctness, we
can produce a low-overhead tool, with around 5–35% slow-
down in most cases, and only occasionally higher. By con-
trast, slowdowns for the fastest precise memory-correctness
tools are typically in the range 50–200% (only occasionally
lower). This difference owes largely to our maintaining meta-
data only per allocation, and checking only low-frequency
operations such as pointer casts. Unlike memory checkers,
the overhead is low enough to be left “on by default” during
development, likely only to be disabled in rare “worst case”
scenarios. Being turned on by default can clearly help reduce
latency in diagnosing certain bugs—those occurring only af-
ter some length of time, or nondeterministically—since it
avoids the need to re-run the code with the tool enabled.

Compatibility Our system accepts plain C code, and
accommodates the overwhelming majority unmodified.
libcrunch supports all common C features and idioms, in-
cluding (but not limited to) casting between pointer and in-
teger, function pointers, pointers to void, multiple indirec-
tion, most casts used to simulate subtyping, custom alloca-
tors, address-taken stack storage, alloca(), and so on. The
guidance required from the programmer is usually limited to
a list of allocator and free functions (whether wrappers or
nested allocators), simple enough to maintain outside source
files. Data representations are unchanged under libcrunch,
giving full binary compatibility.

Pragmatism regarding C standards Even within a single
source language, such as C, the question of when a check
should fail is not straightforward. Adhering blindly to a sin-
gle language specification (say, C11) is not optimal, because
much code is not completely compliant, and because hang-
ing to the letter of the standard may bring penalties that out-
weigh any benefits. Our more pragmatic position, albeit less
precise, is to heed what large populations of programs do. As
a case in point, memory under libcrunch is given a notion
of “type” similar to C11’s “effective type” but with some
differences. Whereas the instrumentation required to pre-
cisely track C11 effective types would be extremely expen-
sive, a much cheaper, slightly stricter approximation nearly
always suffices (perhaps after trivial code changes), since
most code does not test those corners of the language specifi-
cation. Conversely, libcrunch allows the user to select more
relaxed checking styles when faced with code that is unusu-
ally “sloppy”, being non-conformant according to the lan-
guage specification but nevertheless occasionally seen in the
wild. We detail these issues in §5 and §6.

Practical usability Widespread use of sloppy idioms in un-
safe code mean that false positive warnings occur. Our sys-
tem strives to exhibit few false positives, but if a check fails,
the programmer may allow execution to continue, review
the collected warnings much later, and configure suppres-
sions for any false positives. Separately, to avoid the inconve-
nience of rebuilds, binaries compiled for use with libcrunch
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if (obj−>type == OBJ_COMMIT) {
if (process_commit(walker, // perform check as side−effect

((__is_a(obj, &__typ_commit)) ? (void)0 : report_error(),
(struct commit *)obj)))

return −1;
return 0;

}

Figure 3. A sketch (loosely illustrative of our actual auto-
matic instrumentation) of how the code of Fig. 1 might be
checked.

$ crunchcc -o myprog myprog.c util.c ...
$ ./myprog # runs normally
$ LD_PRELOAD=libcrunch.so ./myprog # does checks
...
myprog: Failed check __is_a_internal(0x5a1220, 0x413560
a.k.a. "uint$32") at 0x40dade, allocation was a heap
block of int$32 originating at 0x40daa1
...

Figure 4. A user session using libcrunch’s C front-end.

can still run without it, performing no checks and exhibiting
usually negligible slowdown.

3.2 Overview of libcrunch Operation
Fig. 3 shows how our git example might be instrumented to
catch a type error at the point of the bad cast, assuming an
__is_a() function. Our automatic instrumentation (§7) per-
forms roughly this kind of transformation, and the design
and implementation of an appropriate __is_a() function is
the main challenge addressed by the remainder of this pa-
per. In contrast to other dynamic checks (SoftBound, Mem-
check, Hobbes, etc.), such a function can be implemented
using only coarse-grained per-object type metadata, without
any per-byte, per-word or per-pointer or metadata.

Fig. 4 shows what a user might see at their terminal
when compiling and running a mildly buggy program under
libcrunch. A compiler wrapper crunchcc performs some
pre- and post-processing phases. A key role of these is to
gather additional type information that would otherwise be
discarded during or after compilation: a source-level pass
analyses the use of sizeof around heap allocation calls, and
a binary post-processing pass filters and deduplicates the
compiler-generated debugging information (DWARF, in our
implementation). The output binary is instrumented with
our checks, but these have no effect unless the libcrunch
runtime is loaded. If the library is loaded, as shown in the
figure, execution may produce “check failed” messages as it
proceeds, but is otherwise unaffected. By default, execution
does not terminate on a failed check (although the ensuing
corruption may or may not cause it to crash soon afterwards).

3.3 Pointer Contracts
What makes a pointer bad, and is using one necessarily a
“type error”? Informally, we might say that the use of a

pointer of type T* is a type error if its referent is not an
instance of type T. We call such a pointer contract-violating.
In short, then, our system checks for creation of contract
violating pointers.

Merely creating a contract-violating pointer is not always
an error per se, at least in C, so long as that pointer is not
used. Nevertheless, correct programs have little reason to cre-
ate them, so intuitively, the programmer error is more likely
to lie at the pointer-creating operation (a bad pointer cast,
bad pointer-returning va_arg, bad load of a pointer from a
union, or bad pointer arithmetic) than the pointer-using oper-
ation (which might be far away, in correct code). One com-
mon exception is “one-past” pointers, pointing immediately
beyond the end of a buffer; since we do not check spatial
memory correctness, this does not concern us (unless such
a pointer is later subject to a cast). Since pointer creation is
less frequent than pointer use (dereference), checking only
creation also promises lower run-time overheads.

The above assumes that all storage has a well-specified
run-time type. In the case of C, technicalities of the lan-
guage hold that this is almost true, but not entirely: stor-
age may have a declared type fixed for its lifetime (memory
holding local and global variables), or perhaps only an effec-
tive type that may change (typically heap memory), or per-
haps no type (uninitialised heap memory). Roughly, our ap-
proach is to tighten this so that all storage has a well-defined
type, fixed for its lifetime; we will see that this is not restric-
tive in practice for most real C code, although occasionally
some slight relaxations are necessary. We discuss this fur-
ther in §5.8. Unused storage pooled by memory allocators
is allowed to have no type attached; our run-time explicitly
tracks memory allocators (§7.1).

Somewhat more subtly, to accommodate multiple indirec-
tion, this “typed storage” property must be hold for stored
pointers such that these are tagged not simply as “pointer”,
but as T*, meaning the stored pointer must contractually
point to a T. This errs on the side of strictness; again, we
will explore the extent to which real C code respects this dis-
cipline and ways of relaxing it where necessary.

Our checks are designed to uphold the invariant that no
type-incorrect pointer exists—at least until the first error.
The nature of corrupting failure makes this qualifier neces-
sary, since the first violation is the only one that we can guar-
antee to catch; afterwards, if we continue execution, all guar-
antees are off, although in practice, we will likely continue to
do useful checks if the program survives. A consequence of
this invariant is that there is no need to check pointer deref-
erences. As long as the invariant holds, any pointer is good
to use, by construction.

Since we chose not to duplicate the memory-correctness
checks of other tools, our “until the first error” requires ad-
ditional qualification: until the first reported error or the
first (unreported) spatial or temporal error. In other words,
unchecked memory errors can still violate our invariant, and
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our checks preserve the invariant only conditionally: assum-
ing no memory errors have occurred, then we will trap the
first type error. (As a development exercise it will of course
be useful to produce a combined tool that checks all of these
kinds of error simultaneously. As we discuss later, our imple-
mentation already supports certain combinations with Soft-
Bound, Memcheck and similar tools.)

4. From Untyped to Typed Allocations in C
Our “typed storage” assumption would ideally mean that
heap allocations are explicitly typed, perhaps occurring in
the form allocate(T, n). By contrast, real C code uses func-
tions such as malloc(size). We require some way to map
from the latter to the former, so that type metadata is avail-
able at run time for each heap allocation.

Firstly, we assume a list of allocation functions, along
with their signature. Any argument that is a type-determining
size must be specially identified. For malloc(sz), this is the
unique argument; for calloc(nmemb, sz) this is the second
argument; and so on. For user-supplied allocators, the user
must supply this list. (A similar requirement is made by other
tools that track allocations at run time, such as Valgrind-
family tools. We discuss user-supplied allocators shortly.)

Next, to infer the data type being allocated, we pay at-
tention to how the sizes are computed; in C, this means
the use of sizeof. In simple cases, for example mal-
loc(n * sizeof (T)), the relevant type is simply the type of
the argument to a sizeof operator inside the malloc() call.

In practice, more complex size computations occur. To
handle these, we use an intraprocedural flow-insensitive
analysis rather like dimensional analysis. An expression
sizeof (T) creates a quantity of dimension T. This dimension
propagates to other expressions computed from it by arith-
metic, according to the natural rules. The dimension which
reaches the allocation call’s size argument determines the al-
location site’s data type. Consider the following, which allo-
cates a struct stat.

struct stat ss[12]; // dimensions are:
unsigned n = get_n(); // dimensionless
// ...
long sz1 = sizeof ss; // struct stat
long m = sz1 / sizeof (struct stat); // dimensionless
size_t totalsz = (n+m) * sz1; // struct stat
return malloc(totalsz); // => allocates struct stat

The arithmetic done on sizes is usually multiplication by
a dimensionless number, to create an array. Addition and
division of like-dimension quantities are also common; the
former preserves dimension and the latter divides it away.
Array dimensions decay to their element type. We permit
addition of (dimensionless) padding bytes to a dimensioned
quantity, e.g. to include a room for a character string.

Our source-level analysis outputs a classification record
for each allocation site per (preprocessed) C source file;
this is picked up by our postprocessing step (§7) and prop-
agated to the runtime (§7). Since allocation functions may

be called indirectly, any indirect call with a matching sig-
nature is considered as a possible allocation site. Since it
is the allocation function (callee), not the caller, that is in-
strumented, spurious matches of indirect call sites are harm-
less: most are filtered statically by the sizeofness analysis
(indirect calls which do not receive a sizeof-derived value
are statically ruled out) while, rarely, some result in an ex-
tra never-matched entry in the tables loaded at run time (the
entry records an indirect call site which happens to receive
a sizeof-computed value, but since no allocation function is
ever called from that site, the entry is never used at run time).

A final complication comes from expressions such as
sizeof (T)+n*sizeof(S). We treat these as effectively syn-
thesising a new struct type, possibly with (at most one)
variable-length array encoding the n. Pragmatically, we as-
sume that the textual order in which the components are
added up matches their order in memory. (Since addition
is commutative, this need not hold, although code which
swapped the order would be perverse. We have seen only
one such example, in gcc.)

In practice, much real code also defines its own allocators,
or its own wrappers for existing allocators. As before, we
require the user to identify the existence of these, but code
need not be modified.

Besides heap allocations, global- and stack-allocated data
also require type metadata. Our implementation handles
these cases (see §7).

5. Adding Type Checks to Real C Code
As outlined earlier (§3.3), we are creating a tool that checks
for the creation of contract-violating pointers by errors other
than memory errors. The checks we need to insert are there-
fore the minimum necessary to preserve an invariant: no
contract-violating pointer has been created, assuming no
prior errors have occurred. “Prior errors” includes both the
type errors, which we check (i.e. our checks preserve the in-
variant up to the first error they catch; after that, checking
becomes best-effort since the invariant need no longer hold),
and the memory errors, either spatial or temporal, which are
unchecked by us (but might be caught by another tool).

5.1 First-order Cases
As we showed in Fig. 3, a cast of the form (T*) p is instru-
mented to become roughly
(__is_a(obj, &__typ_T)) ? (void)0 : __report_error(), p

. . . meaning that a check is added as a side-effect to the
pointer creation. The check invokes an __is_a() function and
a run-time representation modelling (reifying) type T. The
__is_a() function embodies the contract (§3.3) that p “really
points to a T”. This is a well-defined notion since we have
type information for all storage.

Our typed heap allocations, together with analogous run-
time metadata on stack and static storage, allow us to map
any p to a containing allocation and a type for that allocation.
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(We describe the implementation of this mapping in §7.) The
logic of __is_a() is then to enumerate the objects beginning
at p, which is some known offset from the allocation start.
Consider the following example.

struct ellipse {
double maj, min;
struct point { double x, y; } ctr;

};
struct ellipse *e = malloc(sizeof(struct ellipse));
double *d = (double*) &e−>ctr;

The cast to double* of the ellipse’s centre proceeds first
by looking up the type of the entire malloc’d heap block
allocation, then searching for a double object starting at the
relevant offset (i.e. that of &e->ctr from e). Since objects
nest within one another—here doubles and point within an
ellipse—there may be many objects starting at this offset.
If one is of type T, the created pointer satisfies its contract;
otherwise, the check fails.

As discussed earlier (§3), we chose to assume spatial
and temporal memory correctness (already checked by other
tools), so we need not instrument pointer dereferencing,
arithmetic or indexing. The same assumption removes the
need to worry about temporal use-after-free errors (formerly
type-correct pointers now pointing to freed-and-reused mem-
ory) or uninitialised reads (including those reading uninitial-
ized pointer values). Non-pointer-yielding type errors (casts
or va_arg whose result is not a pointer) do not cause cor-
rupting failure, so are not checked. We must check all casts
whose target type is a non-void pointer, and also pointer-
yielding use of va_arg. C performs implicit downcasts from
void*; we check these as if an explicit cast were present.

When checking a pointer cast, note that the cast-from type
is irrelevant; the cast-to type and the type of the underlying
object are what matters. Casts to void* need no check. We
also do not check casts to char*, for two reasons. Firstly,
char is ambiguous: it is the data type used both for character
data and for opaque, uninterpreted memory; checking would
create false positives in the latter usage. Secondly, char is
not amenable to allocation site analysis (§4): since it is
known to have size 1, sizeof (char) is generally omitted.
Consequently, libcrunch considers char to be the type of
untyped, unclassified memory. This omission is a pragmatic
one. It is unfortunate that C does not provide a distinct
data type for uninterpreted bytes, since this would allow
us to perform additional checks, but the change would be
highly disruptive. (We could check all writes through char*
and forbid those that touch typed memory, but this would
be expensive—e.g. most string manipulations would trigger
one check per character.)

Even if all pointer casts check successfully, how can we
be sure that the contents of memory are correct, when they
are themselves pointers? Consider the following, where field
t has type T*; we load this pointer via another pointer, s.

S *s = (S *) foo();
T *t = s−>t; // does t really point to a T?

After loading t, we do not need to check that it points to a
T (or null) because, by our invariant, when t was last written,
all pointers in circulation were type-correct—including the
expression written into field t at that time (and, more subtly,
any pointer expression that was used to calculate the address
to write to). In short, the storage contract is enforced (mod-
ulo memory safety) by the combination of the C compiler
(statically insisting on casts) and our checks (dynamically
checking those casts).

What we have just seen is a first-order case: the S* and
T* are singly-indirected data. Some higher-order cases, in-
volving functions and/or multiple indirection, are more sub-
tle and require us to refine both our checks and our invariant.

5.2 Example: Callbacks and void Pointers
Consider a common but more complex idiom in C.

/* library provides... */
typedef (*cb_ptr_t)(int value, void *cb_arg);
void call_for_each_num(cb_ptr_t cb, void *arg);

/* client declarations */
struct my_cb_args {

// ...
} args = { ... };
int my_cb(int value, void *my_arg);

/* client code */
void f(void) {
// ...
call_for_each(my_cb, &my_cb_args);

}
int my_cb(int value, void *cb_arg) {

struct my_cb_args *my_real_args
= (struct my_cb_args *) cb_arg;
// ...

}

This is a classic use of pointers to void: the library sup-
plies generic callback dispatch code, which invokes a user-
supplied callback accepting a user-supplied argument. The
user argument is packaged as a pointer to void, so the li-
brary code remains generic. It can point at any object the user
chooses, and the cast back occurs in the user’s callback. Our
system naturally accommodates this. As C demands, conver-
sion of any pointer to void* is permitted. At the point of
the cast back to my_cb_args*, an __is_a() check will occur
on cb_arg, dynamically looking up the type of the object
pointed to by cb_arg and verifying that it is, or contains at
offset zero, a my_real_args instance. It does, so the check
succeeds. If the user had passed a pointer to an object of
some other type, this would be caught at the point of the cast,
rather than proceeding with a type-incorrect view of memory
and potentially corrupting the program state.
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5.3 Multiple Indirection
Perhaps surprisingly, multiply-indirect pointers typically re-
quire no special treatment. Consider the following.

void *p = /* ... */; // acquire some pointer, as void*, but...

*(int**)p = &argc; // it points to a pointer−to−int

The cast succeeds if and only if the memory pointed at
by p is an int* according to its allocated data type. This
is simply the usual behaviour of __is_a(). It is also exactly
what the contract of int* demands: users of *p may assume,
without check, that this memory holds a pointer to an int.

Later we discuss some more subtle cases of common
idioms that are not compliant C (§6).

5.4 Function Pointers
Casts of function pointers raise analogous problems to
multiply-indirect pointers: they risk creating a capability on
which future errors might go unchecked. For example, if we
cast a void(*)(float*) to a void(*)(int*), we can now pass a
pointer to int to a function that expects a pointer to float,
with no check in place to catch this. To libcrunch, a function
is an object like any other, with a reified function type. The
existing __is_a() test can cope with function pointers, and
will correctly fail the cast in this example. In fact, it fails any
cast to a function pointer type which doesn’t exactly match
the signature of the pointed-to function.

Standard C is strict about function pointers: the only casts
that are portably supported are casting to void*, and casting
from void* back to the original type. Nevertheless, we can
support some more sloppy code fairly easily, as we detail
later (§6.6).

5.5 Simulated Subtyping via Contained Structs
The usual approach to simulate B being a subtype of A is
containment: B contains an A at offset zero. This is handled
directly by __is_a() as previously described.

5.6 Unions
We noted that unions and va_arg allow type-unsafety with-
out pointer casts. Our system includes only limited checking
in these cases.

For unions, we can distinguish two cases: where all mem-
bers of the union are simultaneously valid (e.g. to allow
viewing the bits of a floating-point number as an integer) or
when only the last-written member is meaningful. For non-
simultaneous unions, precise checking would mean tracking
which member of the union had last been written, and check-
ing that reads access only that member. We have yet to add
this; currently we assume all unions are simultaneous.

Despite this omission, some checking is performed on
unions. For an arbitrary type t and a pointer p pointing at
a union object, __is_a(p, t) checks that some member of
the union conforms to t—i.e. the cast is sane, although not
necessarily correct with respect to the last-written member.

The hardest cases involve code which takes the address of
a member of some union type U. Suppose the member has
type T; we now have a T* which is indistinguishable from
other pointers to (non-union) T. We leave treatment of this
to future work—likely it could be handled with some com-
bination of an intra-file interprocedural analysis (to catch
“transient” non-escaping cases) and a “trap pointer” repre-
sentation (issuing a fake pointer via which accesses can be
trapped and emulated with appropriate checks).

5.7 Variadic Functions
For va_arg calls yielding a pointer, we check the result as if
a cast were present. This is sufficient to uphold our “no bad
pointers” invariant. Other va_arg errors, like reading a float
when an int was passed, are not caught. Doing so would be
feasible, using a shadow stack to track the arguments passed
at variadic call sites.

5.8 Relationship to Effective Types in C
Memory in standard C has a notion of “effective type”. This
was introduced to forbid aliasing in places where it would
prevent optimisation. Storage may have a declared type fixed
for its lifetime—this is memory holding local and global
variables, whose type is “declared” within the language.
Heap storage, returned by library calls, has at most an “ef-
fective type”; unlike declared types, effective types may be
changed simply by writing or using memcpy() to copy data
into it from an object of another type. (This is the device
in C that allows a heap object to legally “take on” the type
by which it is used, after having been created by an untyped
primitive such as malloc().)

In libcrunch we have a slightly different, tighter scheme:
the malloc() itself is typed. This is usually a better model of
programmer intent, since, as we noted in §4, programmers
necessarily have some data type in mind when they size
a heap allocation. This tightening also avoids the need to
instrument writes, greatly lowering run-time overheads; if
we were to hang to the letter of C11, trapping writes would
be necessary for catching changes to the effective type.

The “type changing” ability of writes has surprising
consequences for unwary C programmers. For example, it
means that some natural refactorings, such as making a pre-
viously heap-allocated buffer be instead allocated statically,
may be illegal (if writes to the buffer disagree with its now-
declared type). Programmers rarely rely on type-changing
writes; rather, operations which change the type tend to be
procedurally abstracted in some fashion, typically as real-
loc() or memcpy() calls. This means they could be trapped
efficiently; an obvious extension of our system is to check
memcpy(), although currently it does not.

In the next section, we will see one case where a slight
refinement to our approach is necessary to accommodate
some real (albeit not-strictly-conforming) C code.
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6. Accommodating Sloppy C
Some C code is formally undefined, therefore buggy, but
nevertheless occurs in the wild. A common giveaway is
when code requires compiler options to relax the language
spec; in this section all the sloppinesses we consider require
the -fno-strict-aliasing option (on GNU, LLVM, and Intel
compilers).

6.1 Simulated Subtyping via Structure Prefixing
Some data types simulate subtyping more implicitly than the
usual structure containment (§5.5). A common pattern is to
define A as a fieldwise prefix of B, (rather than B contain-
ing an A). To handle this, libcrunch reads an environment
variable which requests that casts to [pointers to] the listed
target types use the more relaxed __like_a(p, t) check. This
treats a structured type t as a pattern rather than a single
type. We unwrap t into its n constituent fields, say of types
si , then check that the memory at p consists of a sequence
of subobjects qi , spanning the length of t and each satisfying
__is_a(qi , si ). Note that the check remains relatively strict,
because we unwrap t only one level, not necessarily down
to primitive types as in physical typing [4]. (We have not
seen any real code which requires the full permissiveness of
physical typing.)

6.2 Simulated Subtyping via Padding
The Berkeley sockets API’s sockaddr exhibits another pat-
tern: it includes padding bytes which “subtypes” (like sock-
addr_in) “fill in” without changing the structure’s length. We
extend __like_a() such that any char array fields in t are
treated as padding and match a sequence of arbitrary sub-
objects of the appropriate length.

6.3 Mixing Signed and Unsigned
We overload __like_a for integer types to mean a signedness-
oblivious match, since some C code is sloppy in this regard.
As it happens, the C standard does allow this, whereas by
default libcrunch does not, since in our experience it is
more likely to be an error than legitimate. Users who find
otherwise may add integer types to the “like-a” list.

6.4 Mixing void* and Other Pointer Types
Our treatment of multiple indirection can in principle be
defeated by code which weakens (to void) the target type
of a pointer. Consider the following.

struct foo;
void get_foo_ptr(struct foo **fp);
// ...
void *p; // client only uses it opaquely, so declare a weak type
get_foo_ptr((struct foo **) &p); // cast fails __is_a!

The cast is flagged as an error because the stored pointer’s
actual contract is void; it is not safe to later cast it to some-
thing stronger (since a void pointer holds an arbitrary ad-
dress, which e.g. need not be safe to double-dereference).
In general this practice is not legal in C, because the repre-

sentation of void* is not guaranteed to be identical, or even
the same size, as that of unrelated pointer types [11, §6.2.5
pt. 28].

Note that this is an inversion of the usual use of void*, in
which the actual storage’s contract is stronger than void, and
the void* view is a temporary weakening that is strengthened
again by a later cast. This is a synthetic example, and we
have not seen this problem in the wild; if it did occur, the
programmer would likely either configure a suppression of
the warning, or fix the code by strengthening the type of p.

6.5 Parametric-style Polymorphism
Some polymorphic C code demands greater freedom with
multiple indirection, to store pointers which violate their
strict storage contract. Consider the following (from tcc, the
Tiny C Compiler3).

void dynarray_add(void ***ptab, int *nb_ptr, void *data)
{ int nb, nb_alloc;

void **pp;
nb = *nb_ptr;
pp = *ptab;
/* every power of two we double array size */
if ((nb & (nb − 1)) == 0) {

if (!nb) nb_alloc = 1; else nb_alloc = nb * 2;
pp = tcc_realloc(pp, nb_alloc * sizeof(void *));

*ptab = pp;
}
pp[nb++] = data;

*nb_ptr = nb;
}
Sym *sym_pool;
/* ... */
dynarray_add((void ***) &sym_pools, &nb_sym_pools, sym_pool);

The function creates or resizes a vector of pointers. The
client holds a pointer to the vector with an accurate type
(here the vector is of Sym*) while the generic code uses
void*. As before, this practice is not legal in C. Having
compatible representations is a property commonly docu-
mented by implementations, however. To accommodate this
idiom, we relax the contract enforced for pointers to generic
pointers4 (GPPs) and compensate by adding extra checks
around these pointers. Any GPP has a degree of at least 2
(e.g. void**). GPPs of degree n may point to any pointer of
degree n − 1 or higher (even to non-generic pointers, but
never to non-pointers). This is sufficient to ensure we never
read a bad pointer through a GPP; it is unsafe for writes,
since given a void** we could write any void*, whereas the
target storage might be contractually obliged to store T*s,
say. We there additionally check writes made through GPPs,
to enforce the contract of the target storage. Consider writ-
ing a void* through a void**. From the degree constraint,
the target storage must be a T* for some T. We discover T
dynamically by inspecting the metadata for the target stor-
age. We then dynamically check that the written value is
indeed the address of a T, hence accommodating the poly-

3 http://bellard.org/tcc
4 Note that ordinary generic pointers, a.k.a. void*, are not affected.
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morphism dynamically. Functions __is_pointer_of_degree()
and __can_point_to() implement this.

When objects of generic pointer type are heap-allocated,
like the array of void* in the example, their storage contract
is recorded to be “loosely” void* . The contract is made strict
by the first cast producing a non-generic pointer to the object.
After a cast to Sym**, say, the contract would be Sym*. This
can be said to “instantiate” the void.5

Note that this is the relaxation of our “decide type at al-
location time” property anticipated earlier (§5.8). Note also
that it still stops short of trapping most writes. The arrange-
ment is closely analogous to the compromise of arrays in
Java: the array subtyping rules are such that in exchange for
reads from an array to be cheap (unchecked), writes must be
checked to ensure that they preserve the contract of the un-
derlying array (which might be of some more specific type
than the local array reference’s own type), raising an excep-
tion if not.

It is worth reiterating that this relaxation only comes into
play with multiple indirection of void. Most polymorphic C
code, including “simulated object-oriented” styles, gets by
with simple pointers-to-void, which are not affected: one
can never read or write through a pointer-to-void, so any
dereference must be preceded by a cast, which is checked
in the usual way. Multiple indirection of existential void
most commonly occurs with generic containers containing
pointers, where in the generic code, a pointer to void* is
standing in for some actual pointer to T* (not just a pointer
to T!), and the code is allocating space for pointers on behalf
of the user.

6.6 Sloppy Function Pointer Casts
Earlier (§5.4) we identified “exact” function pointer casts as
requiring no special treatment from libcrunch.

Some casts to function pointer types are safe even though
they are inexact: these are those that cast to a supertype
signature, according to the usual function supertyping rule:
we can narrow the arguments of type T* to S* if S is a subtype
of T (every S is a T), and, conversely, widen the return
type. To allow code performing these always-safe casts, we
created a specialised check function that permits cast-to-
supertype, __is_a_function_refining(), used for all casts to
function pointer type, rather than the usual __is_a().

What about casts to non-supertypes? The only common
usage we are aware of is with callback signatures, where a
sloppy programmer might cast the address of int cb(T* arg)
to int(*)(void*). This cast is not safe, because the new signa-
ture permits a superset of the allowable arguments (a caller
may pass any pointer, not just any pointer to FILE as the func-
tion requires). Usually the desirable thing here is to fix the

5 In other systems, like Cyclone, the analogous problem is solved by
statically instantiating these “existential voids”, i.e. by rewriting dynar-
ray_add() and similar functions to use a parameterised type T and checking
that it is used consistently. This approach requires programmer intervention
in general, so is not source-compatible.

code to define int cb(void *arg) and perform the cast inside
the callback; this also renders it standard-compliant C. Nev-
ertheless, to accommodate this slop we also provide a check-
on-use mode for function pointers, enabled by an environ-
ment variable. This performs checks on every pointer argu-
ment at every indirect call site, so can introduce noticeable
slowdowns in some code; it is disabled by default.

Our implementation currently fails (dynamically) all
casts to variadic function pointer types. These are very rare.
“Exact match” cases, say from void* to a function pointer
type exactly matching the target function’s variadic signa-
ture, could be supported easily. More complex cases could
be handled using the same shadow stack we mooted earlier
for va_arg (§5.7), by generating a “checked” wrapper func-
tion which pops the variadic argument range passed from the
caller (using the same va_arg check) and checks against the
signature of the underlying callee. Note that if the callee is
itself variadic and has been instrumented with our checks, it
will do its own checks for the relevant portion of its argument
list, but this need not correspond to the portion checked by
the wrapper, which is determined by the cast-to type’s vari-
adic signature. (Some care is required to preserve function
pointer equality under this wrapper approach.)

In older C code, a similar but distinct kind of cast is some-
times seen: a cast to a function pointer type without argu-
ments. For example, one can write (int(*)()) printf to erase ar-
gument types from view. This is subtly different from a vari-
adic signature: whereas a variadic function signature gives
one or more arguments (such as printf()’s format string)
whose values will be used to decode the remainder of the list,
here no argument information is retained at all. Producing
a binary-compatible wrapper function at the point of such
a cast is potentially difficult, since nothing is known about
what or how arguments will later be passed. This is an out-
dated C idiom, and code using it is fairly rare. Safely permit-
ting such casts could no doubt be achieved by instrumenting
instead the use of function lvalues that have argumentless
types. Currently we do not implement this; instead, casts to
such types provoke a warning at run time.

6.7 Sloppiness and False Negatives
The instrumentation done by libcrunch is comprehensive,
meaning that every possibly-failing pointer cast that is seen
at compile time is instrumented with a check. Without slop-
piness, these checks are precise, in that they cannot pass by
chance: checks pass only if the allocation metadata precisely
agrees with the cast-to type. This contrasts with some other
styles of checking, which could be called “best-effort”, such
as the “redzones” used for spatial memory checking in ASan
[23] and similar bounds checkers. These will only reliably
catch a small overrun (up to the redzone size); they have
some chance of catching a large overrun (if it lands in an un-
used piece of memory, say) but will not catch a large overrun
that happens to land inside a valid object.
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In a sense, then, given that libcrunch’s approach is com-
prehensive and precise, false negatives are absent by con-
struction. However, this only holds if one does not use sloppy
features. The purpose of enabling sloppy treatment is to sup-
press warnings which the programmer considers false posi-
tives; naturally, if such features are enabled inappropriately,
false negatives become possible. Since sloppy checking must
generally be turned on in a fine-grained manner (once per
cast-to data type), this is unlikely to happen accidentally.
The most likely accident comes from over-sloppy treatment
of signed versus unsigned: perhaps only a small amount
of code intends to treat these sloppily, whereas turning on
sloppy treatment program-wide may mask genuine bugs in
other places. Our implementation, described in the next sec-
tion, assists with this by making it easy to turn on sloppi-
ness on a file-by-file basis. Since sloppiness settings are con-
trolled by environment variables, file-by-file variation can
conveniently be coded up in a makefile, not unlike the usage
of variables such as CFLAGS.

(Also, of course, this discussion is neglecting that in
any given application of libcrunch there will be some unin-
strumented code: inline assembly, certain library code, etc..
There may also be allocations for which metadata is not
available, even when the code using those allocations is in-
strumented; this can happen when memory allocated by an
uninstrumented library is used by instrumented code. At run
time, liballocs prints a count of queries that failed in this way,
but no further warning is printed by libcrunch when this hap-
pens. In practice this is a further source of false negatives—
albeit often with the “easy” solution of recompiling the unin-
strumented libraries.)

7. Implementation
Our implementation consists of compile-time passes to ex-
tract allocation-site metadata and perform instrumentation,
a C compiler wrapper (crunchcc) which invokes these, an
experimental C++ compiler wrapper (not described), and the
libcrunch runtime.

Our implementation currently supports only the x86-64
GNU/Linux platform, but presents no particular obstacle to
ports to other platforms. Our experiments have largely used
gcc as the underlying C compiler, but nothing precludes the
use of other compilers such as Clang/LLVM.6

Source-level passes Both the source-level sizeof analysis
and the necessary instrumentation of C code (pointer casts,
va_arg, etc.) are implemented using CIL [20], an OCaml
library for analysis and instrumentation using a simplified
C-like abstract syntax.7

6 In fact, a Clang-based front-end to libcrunch (replacing the CIL-based
instrumentation) already exists, as described by [7].
7 At the time of writing, CIL continues to be maintained (by Gabriel
Kerneis). Various patches originating from libcrunch development have
been accepted upstream.
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Figure 5. How libcrunch works: extra metadata originating
in source code is threaded through an otherwise conventional
toolchain with added compile-time instrumentation.

Compiler wrapper CIL’s cilly compiler wrapper is used
to drive compilation. However, this is augmented with ad-
ditional pre- and post-passes, described shortly.

Runtime The libcrunch runtime is implemented as an ex-
tension to liballocs [13], a run-time system that augments
Unix processes with a reflective metamodel based on the
abstraction of typed allocations. The model of liballocs is
an excellent fit for our typed storage model, and provides a
large amount of ready-made infrastructure for mapping be-
tween addresses and type information. It also allows us to
support user-supplied allocators (a frequent omission in sim-
ilar tools) with no special support or source-level changes.
(By contrast, for example, Valgrind-family tools currently re-
quire source-level annotation of nested allocators.)

7.1 Background: liballocs
Our implementation of libcrunch is built on several key
services provided by liballocs

Reified data types Under liballocs, data types are reified at
run time. DWARF debugging information provides the basic
notion of data type, but link-time tools (see below) postpro-
cess these so that each type has an efficient in-memory repre-
sentation called a uniqtype. Notably, these are made unique
at run time, such that only a single copy of a given datatype
exists throughout the whole process, hence allowing an “ex-
act type” test to be a simple pointer comparison. Reified
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types have symbol names visible to the linker, and the stan-
dard link-time technique is used to keep them unique (global
symbols and section groups, on ELF platforms). Symbol
names also include a hash code which accounts for substruc-
ture (length and encoding of primitive types; members, in-
cluding names, for composite types), avoiding name colli-
sions in the case of distinct like-named data types. Typedefs
and other type synonyms (signed versus int, say) are encod-
ing using aliased linker symbols. Stack frame layouts are uni-
fied with data types; they are described much like C struct
types.

Allocation tree The liballocs runtime infers and dynami-
cally maintains an allocation tree at run time, reflecting how
user-supplied allocators may nest allocations one inside an-
other. For example, when a user-declared allocation function
returns a pointer inside a previously malloc()-issued chunk,
liballocs understands this as a nested allocation, where the
user allocator is parcelling out a slab of memory that it ob-
tained in from malloc(). Queries such as “what is the type
of *p?” are dispatched to the allocator managing the leaf
allocation spanning address p. A special allocator module
is assigned to stack regions; it implements the same inter-
face, answering queries by walking the stack and looking
up the uniqtype for the stack frame spanning the query ad-
dress. (Since stack storage comes and goes without notice,
internally within liballocs less caching of stack walk results
is possible, compared to heap queries which may be cached
and later invalidated on deallocation. This means that pro-
grams making unusually heavy use of the stack run unusu-
ally slowly under libcrunch, as we will see later.)

Pluggable allocators Allocators are explicitly represented
at run time, as entities managed by liballocs. Built-in alloca-
tors represent mechanisms provided by the system (mmap(),
sbrk(), kernel stack allocation, and “static” allocation usu-
ally performed by the dynamic loader), and by the lan-
guage library (malloc()). User-supplied allocators are de-
clared via environment variables and are instantiated sim-
ilarly by liballocs. Each allocator provides its own imple-
mentation of a common metadata query interface, includ-
ing get_type(), get_base(), get_size() and similar opera-
tions, implemented using whatever data structures the allo-
cator chooses (bitmaps, allocation header words, etc.). The
combination of per-allocator metadata queries and the allo-
cator tree brings a whole-address-space metadata query in-
terface—in principle, any valid pointer can be presented to
the query interface, yielding metadata on the object it points
to.

Toolchain wrappers The liballocs distribution includes
compiler wrappers and related tools for gathering type in-
formation and allocation-site information (the addresses and
source coordinates of calls to allocator functions/wrappers).
These tools postprocess compiler-generated debugging infor-
mation, generating a shared object collecting together all the

DWARF-derived uniqtype definitions for the linked binary.
They also collect allocation site tables used by the static,
stack and heap allocators’ index structures, allowing map-
ping of (respectively) static addresses to their types, code
addresses to their stack frame’s “type” (layout) at that point,
and allocation site addresses to the type that they allocate.
These are loaded at run time by liballocs.

7.2 Adding Support Within liballocs

Our runtime implementation has contributed certain features
and optimisations to liballocs that benefit libcrunch.

Reworked top-level data structure As described in the lit-
erature, liballocs provides a “mapping table” tracking the
top-level memory allocations, a.k.a. memory mappings, in
the process. To allow efficient queries on arbitrary addresses,
liballocs maintains an unreserved virtual memory region
containing a two-byte integer for every page in the ad-
dress space; the two bytes, if non-zero, are an offset into
a (fixed-size, preallocated) “big allocation” table. “Unre-
served” means the operating system does not reserve space
for the (huge) unused portions. Previously this region was
only used to track a flat collection of memory mappings.
Since libcrunch issues very frequent queries on allocations
nested some way beneath the top level (e.g. malloc() chunks,
stack frames, etc.). We reworked this part of liballocs so that
it instead tracks a hierarchy of “big allocations”, including
not only memory mappings but also any sufficiently large
chunk and any chunks parcelled out by nested allocators .
This allows short-circuiting metadata lookups from a virtual
address (page number) down to somewhere near the leaf of
the allocator tree, contributing to the run-time efficiency of
libcrunch.

Indexes in liballocs In liballocs, structures holding dis-
joint metadata are called indexes; an index accepts queries
for arbitrary addresses in the allocated region and returns the
corresponding allocation site and/or other metadata. Note
that the queried address need not be the allocation start ad-
dress; queries are effectively range queries, querying the
“nearest preceding” allocation start. In the case of ready-
made index implementations, link- and load-time interposi-
tion is used to generate upcalls on each allocator invocation.
(Other allocators are free to use other mechanisms to imple-
ment the query interface. For example, a high-performance
liballocs-aware garbage-collected heap would probably use
header words maintained directly within the inlined alloca-
tion path, rather than upcalls and a disjoint index.)

Indexing the malloc() heap Specialised per-allocator in-
dex implementations are an obvious way to improve libal-
locs’s performance. The index implementaton for the mal-
loc() heap is particularly important to libcrunch. Chunks in
the malloc() heap range in size from a few bytes to gigabytes.
The largest chunks are already adequately handled by libal-
locs’s “big allocation” mechanism (their metadata is avail-
able direct from the big allocation table). However, smaller
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Figure 6. The malloc() index’s heap-threaded memtable.

chunks are common, and require careful treatment. The
generic index implementation in liballocs, (“generic small”),
although flexible, is compromised by its decision to cater to
all allocators, even those differing substantially from mal-
loc()—in particular, allocators which allocate tightly-packed
and/or fixed-size entries. To improve on this for the case of
malloc()-style heaps, libcrunch includes a specialised index
which exploits the following properties of the conventional
malloc() interface:

• an arbitrary “allocation size” argument (which our instru-
mentation is free to increment);

• an 8- or 16-byte minimum alignment (i.e. limiting the
overall allocation density or “object pitch”);

• ability to query a chunk for its usable size
(malloc_usable_size() call);

• an “mmap() threshold” for size, allocations larger than
which are indexed elsewhere (noting that we instrument
mmap() also).

Our approach combines three ideas.

Local metadata We store metadata directly in the allocated
chunk, by incrementing the size at allocation time. This
adds a one-word overhead per heap chunk. (Of course, in
the worst case, alignment constraints might increase this
to two words minus one byte.)

Link chunks into buckets We also increment the size to al-
low room for a doubly-linked “bucket” list threading to-
gether nearby chunks. Since all chunks are aligned to 8
or 16 bytes, and only nearby chunks go in the list, only
a few bits are needed for each pointer. In our implemen-
tation, chunks start within the same 512 (29) bytes of vir-
tual address space and are aligned to at least 8 (23) bytes,
so 6 bits suffice.

Index buckets using a virtual region As in the “big alloca-
tion” index, we provide a top-level lookup structure us-
ing a large linear region of uncommitted virtual mem-

ory. Each bucket list “hangs” off an entry in this region.
Each entry is simply a pointer to the chunk at the head of
the list. Like the linked-list pointers, only a few bits are
needed; the high-order bits of the chunk addresses are im-
plied by the offset at which the list “hangs” in the linear
region.

The resulting structure, shown in Fig. 6, which we call
a “threaded memtable”, looks rather like a hash table. Cru-
cially, however, it preserves locality (cf. hashing the ad-
dress, which does not), hence allows the range queries we re-
quire. Queries on interior pointers require a backward search
for the preceding chunk start. By knowing or querying the
threshold above which the malloc() implementation uses
mmap() (e.g. 128kB), we can bound the backward search
to a relatively short distance (e.g. 256 buckets, if each cov-
ers 512 bytes). Buckets tend to be small: a 512-byte bucket
will hold at most 32 16-byte-aligned chunks, and typically
far fewer (folklore holds that chunk sizes typically average
around 80 bytes).

7.3 Other Implementation Concerns
Languages other than C Although our instrumentation
logic is highly specific to C, our runtime is largely language-
agnostic. Even at present, linking in certain amounts of non-
C code works well with libcrunch. In particular, although
that code’s operation is not checked, there is no problem
with loss of pointer metadata (a problem suffered by some
systems when pointers are passed to or from uninstrumented
code) because the metadata in libcrunch is per-allocation.
Moreover, liballocs can already trap and (in some cases)
attach metadata to allocations made from other languages
such as Fortran, C++, etc..

Combining with other tools Since we avoid duplicat-
ing memory correctness checking, it is useful to combine
libcrunch simultaneously with other tools. This already
works fairly well. For example, following addition of type
checks by crunchcc, we can successfully compile the re-
sulting C code using SoftBound, gaining spatial memory
checks. Currently, the main limiting factor is the use of vir-
tual memory in the libcrunch runtime. Since the runtime
makes adventurous use of the virtual address space, it pre-
cludes naïve word-by-word shadowing—attempting eagerly
to shadow libcrunch’s own metadata structures quickly ex-
hausts memory. This problem affects SoftBound’s fastest
“shadow space” metadata implementation, so we instead use
the trie-based SoftBound runtime included in the public re-
lease. The same problem defeats Memcheck’s shadow mem-
ory technique. However, it remains possible to run Mem-
check on a libcrunch-enabled binary, simply by omitting to
preload libcrunch (recall Fig. 4); of course, no type checks
occur, but there is no need to rebuild the code. We hope to
improve on this in future by producing a generalised shadow-
memory runtime within liballocs, based on the techniques of
Zhao et al. [28].
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API and other applications As so far described, the only
clients of the libcrunch and liballocs APIs are the instru-
mentation which our front-end inserts. However it is per-
fectly possible, and often useful, to code against these APIs
directly, after explicitly including libcrunch’s and/or libal-
locs’s header files. For example, one can make assertions
about the type of storage on the end of a pointer, or about its
allocation site. It is also possible to invoke the relevant rou-
tines from the debugger, to interactively query these proper-
ties.

Status As described so far, libcrunch is implemented,
working and stable at the time of writing, and supports mul-
tithreaded code. Source code is available online.8

8. Evaluation
This section will demonstrate that:

• libcrunch stays acceptably quiet on most well-tested
code (false positives);

• libcrunch successfully catches the kinds of violations it
was intended to (true positives).

• libcrunch’s run-time overhead is generally low enough to
leave it enabled during the course of development;

Anecdotally it is hard to find a C programmer who cannot
recall plenty of mysterious crashes whose cause turned out
to be a bad pointer cast. However, as noted earlier (§3) we
do not, in this work, attempt to turn these anecdotes into
evidence—we do not attempt to measure the propensity of
C programmers to write bad pointer casts, or to spend time
debugging them.

8.1 Studying False Positives
Since we wish to study both performance and false posi-
tives, we considered all SPEC CPU2006 benchmarks writ-
ten entirely in C. We exclude libquantum since it uses C99’s
_Complex which is unsupported by CIL. We were forced to
exclude perlbench since our system currently fails to deal
with Perl’s (highly idiosyncratic, nonconformant) code (see
Appendix B). The remaining ten benchmarks compiled, ran
and passed output validation under libcrunch. Each consists
of well-tested code from a real application.

Method For each codebase we built and applied any com-
pile fixes (required by CIL or, less commonly, by the underly-
ing gcc compiler). Then we did an initial libcrunch-enabled
build whose purpose is to elicit and impart “developer knowl-
edge” of the code to libcrunch. As noted earlier (§7.1, §6)
both liballocs and libcrunch accept hints via environment
variables, informing them of details such as which functions
are allocation functions and which data types might require
special treatment (such as __like_a() rather than __is_a()
checking). Setting these environment variables requires a

8 http://github.com/stephenrkell

process of manual code inspection, guided by diagnostic
messages from an initial run under libcrunch. If we were
the original developers of the code, writing this informa-
tion down would be substantially easier; to help, liballocs
dumps a list of unrecognised allocation sites, since the most
common requirement is to set environment variables nam-
ing allocator wrapper functions. Similarly, libcrunch warn-
ings reporting similar-named types are a giveaway of likely
__like_a() cases. Once the environment variables are set cor-
rectly, we re-build to effect any changes to the instrumen-
tation. At this point, we have done as much as we can to
impart developer knowledge of the code to libcrunch, and
so any remaining libcrunch warnings may be classified as
true or false positives. In the following paragraphs we de-
scribe our experiences with the SPEC CPU2006 codebases,
which are functionally well-tested, so more likely to exhibit
false positives than true positives. We summarise our find-
ings in Table 1; as we will see, it turns out useful to distin-
guish “unhelpful” false positives (outright failure of the tool)
from “helpful” ones (genuine code quality problems, albeit
not strictly bugs). After counting these, we apply any obvi-
ous fixes to the code, with the goal of reducing its warning
count to zero (or as close to zero as possible); we summarise
these changes in Appendix A.

Straightforward cases The gobmk (Go-playing), hm-
mer (gene-searching) and sjeng (chess-playing) bench-
marks presented no problems. The latter two perform very
few casts. The mcf combinatorial optimisation system
proved a good test for our improved memory index (§7.2) by
allocating huge arrays, and correctly reported no errors. The
milc quantum chromodynamics simulation performs non-
trivial casts in a tight loop, so was a performance challenge,
but ran without false positives. The sphinx3 speech recog-
nition system involved complex custom allocators, some use
of pointers to generic pointers (§6.5) and a checksum func-
tion that uses signed integers as if unsigned (§6.3). Without
the signedness relaxation, libcrunch correctly flags the latter.
The relevant environment variable avoids these warnings.

h264ref After two one-line compile fixes, this video en-
coder reported 27 failed casts. We tracked it down to two
copies of the following code.
if (((*array4D) = (short****)calloc(idx,sizeof(short**))) == NULL)
no_mem_exit("get_mem4Dshort: array4D");

The allocation is sized using short**, but clearly this
should be sizeof(short***). The sizes are (usually) the same,
so conventional toolchains do not expose this error. This is a
real defect, if not (behaviourally) a bug per se; we count it a
“helpful” false positive.

lbm This computational fluid dynamics system allocates
a very large array (or “grid”) of double. Initially we saw
many millions of failing casts to unsigned* on this grid. On
investigation, the code was treating every 20th double as an
array of bit-flags: the storage is allocated as double but is

13 2016/9/21



always read and written as unsigned. The following macros
were used for this.

#define MAGIC_CAST(v) ((unsigned int*) ((void*) (&(v))))
#define FLAG_VAR(v) unsigned int* const _aux_ = MAGIC_CAST(v)
// ...
#define TEST_FLAG(g,x,y,z,f) \

((*MAGIC_CAST(GRID_ENTRY(g, x, y, z, FLAGS))) & (f))
#define SET_FLAG(g,x,y,z,f) \
{FLAG_VAR(GRID_ENTRY(g, x, y, z, FLAGS)); (*_aux_) |= (f);}

We worked around this problem by a small change: allo-
cate the grid as a simultaneous union (§5.6) of double and
unsigned. The change can be made at effectively a single
point in the code (one C file and its header). Of course this
change is overly permissive, in that it allows all of the dou-
ble values to be treated as unsigned; a better solution would
to introduce a more abstract data type. Effectively, this warn-
ing resulted from the programmer “opting out” of data ab-
straction. Although not a bug per se, it was appropriate for
libcrunch to flag it, so we count it as a helpful false positive.
It is also a rare instance of C’s “effective type” rules being
exploited: since the array is allocated on the heap, it is per-
mitted to use a differently-typed write to change the effective
type (here from double to unsigned). The same would not
be permitted for a static or stack-allocated array.

bzip2 A few casts in bzip2 are used to set up differently-
typed pointers to the same working array, such that different
subsets of the array are used to hold different-width integers
at different times. As one would expect, these changes to the
array’s use occur infrequently, at changes of program phase,
although the pointers of different types are all created at
initialization. This violates liballocs’s view of the storage’s
type—but is arguably a reasonable practice and is done in a
disciplined, documented way within the code, so is counted
an “unhelpful” false positive. Warnings in such cases may
be avoided fairly easily, either by using a union (as with lbm
above) or by exploiting the facility of liballocs to dynami-
cally change a chunk’s type. This change can be signalled to
liballocs with a realloc() call, sized using the new type but
totalling the same number of bytes (or fewer). We did not
apply any fix in bzip2, since doing so would require refac-
toring the code somewhat, and the number of false warnings
is small.

gcc In this codebase, compiling via CIL required us to
refactor one K&R-style function into modern C. gcc’s use of
alloca() stressed our stack handling, and its use of a garbage-
collected heap (nested under malloc()) required the slower
generic allocator index (§7.2). Therefore gcc is something
of a worst case for performance. It is also the largest code-
base, including at least six different internal allocation APIs.
Among the libcrunch warnings, several identified tiny bugs
involving bad sizeof (like in h264ref) and transposed xcal-
loc() args (which defeated our allocation site classifier, as
predicted in §4) and were fixed. The bad sizeof had the
side effect of incorrectly typing a generically-allocated ar-

ray of pointers in a hash table implementation, causing sec-
ondary errors (at four unique locations) as writes into the
hash table, made through GPPs (§6.5), were flagged as type-
incompatible; these disappeared after the sizeof bug was
corrected. Currently our classifier still fails on a small frac-
tion of allocation sites, accounting for about 15% of the
heap checks attempted by libcrunch. The remaining failing
checks are manageably few for such a large codebase, and
break down as follows. Firstly, there was one case of “pointer
stuffing”, i.e. creating a type-incorrect pointer knowing it
will not be dereferenced. In this case it stuffs a pointer to
a character string (yielded by the XSTR() macro) into the
base field intended to point at an rtx structure (intermediate-
representation graph node)

if (value−>kind > RTX_DOUBLE && value−>un.addr.base != 0)
switch (GET_CODE (value−>un.addr.base))
{
case SYMBOL_REF:
/* Use the string’s address, not the SYMBOL_REF’s address,

for the sake of addresses of library routines. */
value−>un.addr.base = (rtx) XSTR (value−>un.addr.base, 0);
break;

/* ... */
}

Since this is a highly error-prone coding practice, we
consider it helpful to flag.

Secondly, there were a handful of cases of casts to ar-
gumentless function pointer types (§6.6); as before, we
consider these outdated style and therefore helpful to flag.
Thirdly, we saw one peculiar converse case whereby a func-
tion accepting no arguments was passed (following a cast)
into a context where arguments are passed at the indirect
call. This passed function immediately aborts the program
if called (in our SPEC runs it is not called), so the type-
incompatibility is usually harmless. However, this code is
not compliant modern C, so the warning is counted as a
“helpful” false positive. Fourthly and finally, there was the
case of “short-allocated union”.

union tree_node
{
struct tree_common common;
/* ... */
struct tree_list list;
/* ... */
};
typedef union tree_node *tree;
tree tree_cons (purpose, value, chain)

tree purpose, value, chain;
{
tree node;
node = ggc_alloc_tree (sizeof (struct tree_list));
/* ... */

}

Here the code allocates only enough space for a
struct tree_list, which is one particular member of union
tree_node and is much smaller than some of the others. It
then immediately casts it to the bigger type. This saves mem-
ory, and is permitted by C’s “effective type” rules, but is ob-
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run-time false positives
benchmark compile fixes instances unique (of which. . . )

total unhelpful fixed
bzip2 0 48 3 3 3
gcc 1 3× 105 14 3 11
gobmk 0 0 0 0 0
h264ref 2 27 2 0 0
hmmer 0 0 0 0 0
lbm 0 5× 107 8 0 0
mcf 0 0 0 0 0
milc 0 0 0 0 0
sjeng 0 0 0 0 0
sphinx3 0 0 0 0 0

Table 1. Summary of false positives. “Helpful” counts warn-
ings that reflect real defects in the code, albeit not be-
havioural bugs; examples include calloc() argument trans-
position or wrong-type sizeof errors. “Unhelpful” includes
marginal or unhelpful warnings (e.g. on disciplined re-use of
heap memory, as in bzip2). The table shows both dynamic
counts (instances) of failed checks, and unique check-failing
points in the code, both summed across all of the SPEC work-
load’s invocations of the program. “Unfixed” counts those
left standing in the code (cf. the fixes shown in Appendix A)
before performance measurement (Table 2).

viously unsafe and error-prone, so we consider it helpful to
flag.9

Other codebases besides SPEC We have successfully built
and run many other codebases under libcrunch, includ-
ing tcc and git (used in examples earlier in the paper),
ghostscript, libpng, lcms, x11-apps and others. Our experi-
ences with these have not uncovered any issues divergent
from those seen with SPEC. Common obstacles to using
libcrunch are unworkroundable CIL bugs (encountered with
eglibc and ffmpeg) or small amounts of C++ code in mostly-
C codebases (e.g. ncurses). We already have early-stage
Clang and (source-to-source) C++ front-ends which promise
to avoid these problems.

8.2 Performance Results
The run-time overheads of our techniques are dependent on
many details, not least the host architecture (e.g. regarding
TLB overhead of our virtual memory techniques), and our
implementation could certainly be optimised further. Rather
than definitively quantifying its overhead, our goal in mea-
suring overhead is to justify the claim that the overhead is
low enough for a developer to leave it “on by default” for
the code they are developing. Application code is instru-
mented; the host C library is not. Data were intentionally
collected on a developer-class machine (Lenovo Thinkpad
T420s, Intel i7-2640M quad-core, 4GB memory) running a

9 A future extension of libcrunch checking union access would be useful
here, but would need to implement an additional, non-obvious check: on
any write to a union member, a check that the underlying storage was large
enough to accommodate it.

bench normal/s crunch/s crunch % nopreload onlymeta
bzip2 4.95 5.29 +6.8% +1.4% +2.6%
gcc 0.983 2.58 +160 % – % +14.9%
gobmk 14.6 16.1 +11 % +2.0% +4.1%
h264ref 10.1 10.5 +3.9% +2.9% +0.9%
hmmer 2.16 2.34 +8.3% +3.7% +3.7%
lbm 3.42 3.75 +9.6% +1.7% +2.0%
mcf 2.48 2.77 +12 % (−0.5%) +3.6%
milc 8.78 12.1 +38 % +5.4% +0.5%
sjeng 3.33 3.38 +1.5% (−1.3%) +2.4%
sphinx3 1.60 2.02 +13 % +0.0% +8.7%

Table 2. Run-time performance results: “normal” execution
time in seconds, the same under libcrunch, and as a slow-
down percentage. The last two columns offer comparisons:
“nopreload” is the slowdown of a libcrunch-built binary
when libcrunch is not loaded, and “onlymeta” is the slow-
down of loading libcrunch without having built with it, i.e.
of maintaining, but not using, allocation metadata (for static,
stack and malloc() heap storage; excludes nested allocators).

recent Ubuntu GNU/Linux operating system using gcc 4.9.2.
Similarly, we deliberately use SPEC’s smaller test work-
load sizes, to model the intended development-time “edit-
run-debug” use pattern; the startup overhead of liballocs is
small but measurable, so it would be over-generous to amor-
tise it on unrealistically long jobs. Table 2 shows our execu-
tion time measurements. Figures are the median of five runs,
taken with all inessential background tasks stopped. Inter-
run variation was extremely low—most benchmarks varied
no more than 2% from the median, except milc and bzip2
(up to 5%). Note carefully that the crunch slowdown is only
observed when libcrunch is loaded; for a libcrunch-built bi-
nary run normally, the (much lower) slowdown is shown in
the nopreload column. (The gcc nopreload case currently
crashes, owing to a bug in glibc’s dynamic linking of weak
thread-local symbols.)

Unsurprisingly, the incurred slowdown depends hugely
on the density of checks during execution. The sjeng case,
which runs marginally faster when compiled with crunchcc,
executes only four checks, while gcc performs over 8 million
casts in less than a second. Interestingly though, lbm has an
even greater check density (49 million in about 3 seconds)
but runs with little overhead. This difference owes largely
to cacheability: gcc is a heavy user of the stack, including
alloca(), but libcrunch’s inline check path cannot safely
cache stack metadata (§7.1). By contrast, lbm dispatches
nearly all its checks on a single heap allocation, which stays
at the top of the cache, greatly speeding up checks.

9. Related Work and Discussion
Table 3 summarises some existing systems intended to catch
some of the errors we listed in §2; only systems relying
partly or wholly on dynamic analysis are included. Note
that no tool (besides libcrunch) dynamically checks pointer
casts. As we discussed earlier, existing tools such as Soft-
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checking implementation compatibility
system citation static? spatial? temporal? type? metadata gran. check on slower source binary catches Fig. 1?
Cyclone Jim et al. [12] part yes yes yes some pointers ptr create, deref −10–200% no no yes
CCured Necula et al. [21] part yes use GC physical some pointers ptr create, deref 0–150% no no depends
Safe-C Austin et al. [1] part yes yes no all pointers ptr deref 2–7× yes no no
SoftBound1 Nagarakatte et al. [18] no yes no no pointer ptr deref 10–350% yes yes no
CETS Nagarakatte et al. [19] no no yes no allocation, pointer ptr deref 0–170% yes yes no
Memcheck Seward and Nethercote [24] no coarse yes no bit value create 10–55× yes yes no
ASan Serebryany et al. [23] no coarse partial no pointer ptr deref 10–170% yes yes no
Hobbes Burrows et al. [3] no coarse no physical word value create 90–190× yes yes maybe, in callee
unnamed Loginov et al. [16] no coarse no physical byte value use 5–135× yes yes maybe, in callee
SAFECode Dhurjati et al. [6] part partial partial partial allocation pool ptr create 0–30% yes no depends
libcrunch this paper no no no yes allocation ptr create 0–160% yes yes yes

1 for consistency, fields refer to SoftBound’s “full checking” mode

Table 3. Some existing dynamic (or part-dynamic) analyses for catching type- and/or memory-related errors in unsafe code.

Bound [18] and Memcheck [24] are focused on memory
properties which we do not check, while heavyweight dy-
namic type checkers [3, 16] work by tagging words in
memory, and do not model user-defined data types. We
can also distinguish existing systems by what granularity
of metadata they maintain (per word, per allocation, etc.),
and what classes of primitive operation they interpose on
(pointer dereference, pointer cast, etc.). The low overhead
of libcrunch is explained by the relative infrequency of the
operations it intercepts, and (relatedly) the relatively coarse-
grained metadata that suffices. As we discuss next, other
work takes hugely varying approaches to source- and binary-
level compatibility: perhaps restricting or outright modifying
the the source language (no compatibility), perhaps keeping
source unchanged but forgoing binary compatibility (as with
traditional “fat pointer” approaches) through to preserving
the binary compatibility also (as with disjoint metadata ap-
proach like libcrunch’s or SoftBound’s).

Hybrid static/dynamic approaches Modified source lan-
guages can offer partially static checking, hence low run-
time overheads, but at the expense of imposing on the pro-
grammer. CCured [21] is a dialect of C which enforces
run-time type- and memory-safety properties, performing
much of its reasoning statically but with a dynamic fall-
back. It sacrifices binary compatibility in most cases (when
“wild” pointers are needed), requires wrapper annotations
for calls to external libraries, and imposes a conservative
garbage collector. Cyclone [12] eschews the latter in favour
of region-based memory management, but also diverges
more markedly from C.

Physical typing CCured adopts “physical typing” as a ba-
sis for type checks [4, 25]. This means treating memory as
a list of primitive values (pointers, integers, floating-point
numbers), which can discard arbitrarily deep structures. Con-
sider a deep nest of structs, where at the leaves all fields are
double: physically this is merely an array of double, but this
view removes a lot of information. Although this naturally
accommodates “loose” C idioms, like casting struct point-
ers between unrelated target types, it is extremely imprecise
and can discard meaningful data abstraction.

Dynamic complement to alias analysis SAFECode [6]
combines whole-program static analysis with just enough
dynamic checking to enforce properties inferred by static
analysis: that memory errors at run time do not invalidate
the points-to class of a given pointer. Points-to classes can
encode object types. However, the checking is very partial:
a hard-to-analyse codebase, for which static analysis is in-
conclusive, leads to fewer dynamic checks, hence more un-
caught errors.

Heavyweight dynamic approaches Hobbes [3] and the
system of Loginov et al. [16] use heavyweight instrumen-
tation to attach physical types to machine words. Unfortu-
nately, this forbids the legal conversion of pointers to inte-
gers and back, as noted by Yong and Horwitz [27], and the
slowdown is considerable (of the order 10x–100x).

Type qualifiers We discard C’s const and volatile. While
we could perhaps exploit them, the issue is subtle. A const
qualifier on a pointer type like C’s const char * exists to
restrict the user of the object (it may not modify the target
chars) rather than the range of objects pointed to (it may
point to objects that were or were not allocated as const).
By contrast, volatile generally does refer to allocations. The
applicability of other qualifiers explored in various research
work [5, 9] is likely to vary similarly, and is worth investi-
gating. Dynamic checking could prove useful, since enforc-
ing static checking of qualifiers like const means onerous
“transitive” changes when they are introduced to a codebase
(referred to as “const poisoning” at the time of const’s intro-
duction).

Debug-time analysis Polishchuk et al. [22] present an anal-
ysis of memory image snapshots which attempts to infer
a typing for every allocated region of the memory image.
Like our work, it exploits debugging infrastructure and in-
struments the program’s allocators. Unlike ours, the analysis
is invoked from a debugger, rather than running continuously
during execution. Another key difference is that it makes cer-
tain assumptions that we avoid: that “no non-pointer ever
takes on a valid pointer value by chance” (prone to failure
in large programs), that a heap block’s size is an exact mul-
tiple of its element size (falsified many cases of padded or
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variable-length objects we have seen in practice) and has no
nested allocators. Plumbing libcrunch into a debugger like
gdb would be very worthwhile.

Executable C semantics As noted, earlier executable C
semantics such as CH2O [14], Cerberus [17] or kcc [8]
are valuable but essentially complementary efforts. They are
exhaustive, highly detailed tools likely to prove useful for
establishing strong correctness and/or portability properties
of small pieces of C code. By contrast, our system is a
pragmatic tool that developers can reasonably leave enabled
during everyday development on large codebases. We are
currently working on stating the properties libcrunch checks
in terms of the semantic framework of Cerberus.

Approaches to heap metadata Our runtime relies on care-
fully crafted index structures to look up allocations’ type
metadata. Another family of approaches to associating meta-
data with heap allocations is based on placement, i.e. the allo-
cator encodes metadata by its choice of object address, as in
the “big bag of pages” allocator (described by Wilson et al.
[26]). Our approach has some benefits regarding composi-
tionality: whereas placement inherently supports only one
placement policy at a time, multiple heap-threaded indexes
can index the same set of chunks in different ways. It can
also store more metadata without exhausting the available
address space. By contrast, placement can inherently encode
only a fraction of a word (i.e. the set of address ranges avail-
able for issue) and quickly absorbs large regions of the VAS.

10. Conclusions
We have presented libcrunch, a system which complements
previously existing dynamic checking in unsafe code by
checking type correctness properties with high precision and
low run-time overhead. The obvious next question to ask is:
can we use these techniques, in combination with known
spatial and temporal memory checks, to create a memory-
and type-safe variant of C that is source-compatible with a
large fraction of existing code? We believe so. Even without
this, as we have shown, the techniques in libcrunch enable a
valuable tool for working programmers debugging difficult-
to-understand failures arising from pointer casts and similar
errors.
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A. Code Changes to SPEC CPU2006
This Appendix briefly lists all the changes to the SPEC
CPU2006 code that were made before measuring perfor-
mance results. They incorporate compile fixes, and, follow-
ing libcrunch’s warnings, minor changes to fix and/or si-
lence false-positive warnings (both helpful and unhelpful) in
the original code. A full patch is available in the accompany-
ing artifact.

gcc

• c-common.c line 2934: rewrite K&R prototype as mod-
ern C.

• hashtab.c lines 311 and 318: use intended type in sizeof
(PTR not PTR *).

• reload1.c line 3504: fix transposed xcalloc() arguments.
• sbitmap.c line 63: use intended type in sizeof (sbitmap

not sbitmap *).
• tree.c line 787: reorder summation of sizeof applications

to reflect in-memory order.

h264ref

• image.c line 65 and 1706: fill in argument types in func-
tion declaration and definition.

• mv-search.c line 1092: replace known-buggy
(undefined) code with fix from gcc bugzilla
(http://gcc.gnu.org/bugzilla/show_bug.cgi?id=53073).

• parsetcommon.c lines 35, 37, and 56: fix transposed
calloc() arguments.

• memalloc.c lines 304 and 552: use intended type in
sizeof (short *** not short **).

lbm

• lbm.c and lbm_1d_array.h: introduce union dou-
ble_or_uint as detailed in §8.1.
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B. The Problems of perlbench
We noted in Section 8 that perlbench, a version of the Perl
scripting language interpreter, was the only in-scope SPEC
CPU2006 benchmark that our tool could not usefully be
applied to. Here we discuss what currently goes wrong, and
how it can likely be fixed.

B.1 Loose Structural Aliasing
The core of Perl is built on a family of struct types with
similar (but not identical) field prefixes. The following real
code excerpt illustrates.

/* Using C’s structural equivalence to help emulate C++

* inheritance here... */

struct sv {
void* sv_any; /* pointer to something */
U32 sv_refcnt; /* how many references to us */
U32 sv_flags; /* what we are */

};
struct gv {

XPVGV* sv_any; /* pointer to something */
U32 sv_refcnt; /* how many references to us */
U32 sv_flags; /* what we are */

};
struct cv {

XPVCV* sv_any; /* pointer to something */
U32 sv_refcnt; /* how many references to us */
U32 sv_flags; /* what we are */

};

/* snip */

struct xrv {
SV * xrv_rv; /* pointer to another SV */

};

struct xpv {
char * xpv_pv; /* pointer to malloced string */
STRLEN xpv_cur; /* length of xpv_pv as a C string */
STRLEN xpv_len; /* allocated size */

};

struct xpviv {
char * xpv_pv; /* pointer to malloced string */
STRLEN xpv_cur; /* length of xpv_pv as a C string */
STRLEN xpv_len; /* allocated size */
IV xiv_iv; /* integer value or pv offset */

};

We cannot use the usual treatment of structure prefixing,
based on __like_a() (§6.1), since, for example, a gv is un-
fortunately not __like_a sv. This is because its first field has
an incompatible type (not void*): whereas the first field in
sv can hold any pointer, in gv it must point to an XPVGV.
So we cannot cast the address of a gv to sv* without risking
unchecked writes that violate gv’s contract. But note that our
treatment of parametric-style polymorphism using void**
solved (§6.5) almost the same problem: storage holding a
T* cannot be treated __like_a void* because clients of the
latter won’t enforce the former’s contract. We fixed this by
allowing void** to point more widely (to any safely-readable
value) while dynamically enforcing the actual contract of the

pointed-to storage (by instrumenting writes). The same ap-
proach generalises to sv*: a pointer-to-sv that actually points
at a gv would be read-safe (since reading the pointer field as
void* is harmless) but would require additional checks on
writes (to enforce the underlying gv’s stronger contract on
its pointer field).

We therefore re-formulate our “pointers to generic point-
ers” treatment in terms of pointers to generic-pointer-
containing object types (GPCOTs). An object of type void*
is a generic-pointer-containing object, but so is a struct hav-
ing a void* element. In general, a generic-pointer-containing
object type is defined recursively as

• a generic pointer type; or
• (recursively) a struct or union type having a field that is

a GPCOT; or
• (recursively) an array type whose element type is a GP-

COT.

Casts whose target type is a pointer to some GPCOT
type T are checked using the __loosely_like_a(_, T) predicate.
This is like __like_a but, for any subobject in T that is a
generic pointer, matches any pointer subobject in the actual
object, so long as it has at least the degree of the generic
pointer. This allows a T* to be viewed as a void*, or a S***
to be viewed as a void**, while the degree check prevents,
say, an int* from being viewed as a void** and then double-
dereferencing (which would dereference an int).

As with GPPs, and again in a departure from our usual
check-on-create, this relaxation requires all writes of point-
ers through an lvalue of GPCOT type be instrumented, such
that the written value is contract-checked against the under-
lying object’s stored type. The recursive definition ensures
that it is not possible to bypass this write-checking by taking
the address of (any part of) an lvalue of GPCOT type; that
pointer, too, will be (by construction) a pointer-to-GPCOT
so any writes through it must be checked.

We have implemented this refinement in libcrunch’s in-
strumentation, and it does indeed eliminate a large fraction
of perl’s false positives—but far from all, as the next section
notes.

B.2 Fudged Allocations
These structure types are allocated out of many arenas that
are obtained from malloc(). Each arena holds only instances
of a single struct type. For example, the following shows the
code for allocating an xpv-holding arena. The while loop im-
plements an initialization convention for unused structures:
the first pointer in a free structure points to the next such
structure in the arena, i.e. the arena is initialized to a free
list.

/* allocate another arena’s worth of struct xpv */
STATIC void
S_more_xpv(pTHX)
{
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register XPV* xpv;
register XPV* xpvend;
New(713, xpv, PERL_ARENA_SIZE/sizeof(XPV), XPV);
xpv−>xpv_pv = (char*)PL_xpv_arenaroot;
PL_xpv_arenaroot = xpv;

xpvend = &xpv[PERL_ARENA_SIZE / sizeof(XPV) − 1];
PL_xpv_root = ++xpv;
while (xpv < xpvend) {

xpv−>xpv_pv = (char*)(xpv + 1);
xpv++;

}
xpv−>xpv_pv = 0;

}

This is something libcrunch is very capable of dealing
with—the New macro expands to a malloc() invocation with
appropriate sizeof, so we can infer that the object holds XPV
instances. Unfortunately, almost all the other structs’ such
arenas are allocated in a perverse way: by first creating an
arena to hold XPV, and then “fudging” it to in fact initialize
the pointers using the alternative struct size.

STATIC void
S_more_xiv(pTHX)
{

register IV* xiv;
register IV* xivend;
XPV* ptr;
New(705, ptr, PERL_ARENA_SIZE/sizeof(XPV), XPV);
ptr−>xpv_pv = (char*)PL_xiv_arenaroot; /* linked list of xiv arenas

*/
PL_xiv_arenaroot = ptr; /* to keep Purify happy */

xiv = (IV*) ptr;
xivend = &xiv[PERL_ARENA_SIZE / sizeof(IV) − 1];
xiv += (sizeof(XPV) − 1) / sizeof(IV) + 1; /* fudge by size of XPV */
PL_xiv_root = xiv;
while (xiv < xivend) {

*(IV**)xiv = (IV *)(xiv + 1);
xiv++;

}

*(IV**)xiv = 0;
}

As expected, this causes lots of casts to XIV (and other
types) to fail, thinking that they are pointing at allocations
of xpv. The only solution is to rewrite the code to avoid
fudging.

B.3 Type Descriptors
A final challenge in supporting Perl is the fact that some
allocations are not sized near the allocation site, but instead
using a size value that was stored for later pick-up. The
Newc macro invocation in the following code retrieves a size
from a PerlIO_funcs object (in the expression tab->size).

if (tab−>size) {
PerlIOl *l = NULL;
if (tab−>size < sizeof(PerlIOl)) {

goto mismatch;
}
/* Real layer with a data area */
Newc(’L’,l,tab−>size,char,PerlIOl);

// ...
What are these sizes? A host of PerlIO_funcs instances

are defined statically, of the following form.

PerlIO_funcs PerlIO_remove = {
sizeof(PerlIO_funcs),
"pop",
0,
PERLIO_K_DUMMY | PERLIO_K_UTF8,
PerlIOPop_pushed,
NULL,
NULL,
NULL,
// ...
NULL, /* flush */
NULL, /* fill */
NULL,
// ...

};

As it happens, the stored size is always
sizeof(PerlIO_funcs), but there is no easy way for us
to infer this. One way to fit this into liballocs’s allocation-
site-centric approach is to view the passed-in pointer to a
PerlIO_funcs as a size descriptor, where each descriptor has
an identity and link time and maps to a specific size. These
can then be enumerated by the user, in an environment
variable, using their linkage name, much like the user
already enumerates allocation functions. This is a little
tedious, however. It would be possible to propagate the
dimensioned sizeof quantities as far as link time, hence
recording the fact that the first field of each PerlIO_funcs is
initialized to some value having a sizeof dimension. This
is then enough to infer the sizeofness associated with the
PerlIO_remove object, say, and can be seen as a link-scope
generalisation of the (function-local) static analysis we
currently perform (§4). The most precise approach would
pass dimensioned size quantities around at run time; when
they could perhaps be represented using pointers to our
uniqtype objects. However, this propagation would have
significant cost.

B.4 Prospects of Perl running under libcrunch
With enough effort to accommodate the above difficulties,
and fixing of the egregious “fudging” code, we believe it is
possible to have Perl running smoothly under libcrunch—
although that remains to be seen. The hardest part to dealing
with all the above is to understand it—to unpick the arcane
allocation and subtyping schemes that Perl’s authors have
created. Consequently, one expects the effort required by
developers to use libcrunch routinely in their work to be
much lower than that required when a third party (here the
present author!) does so from a cold start. Even if Perl were
not an extreme case in the extent of its allocation and type-
punning quirks, the effort involved for its own developers,
who already understand these arcana, would be significantly
reduced.
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