
Profile-driven Parallelisation of

Sequential Programs

Georgios Tournavitis

T
H

E

U
N I V E R

S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Institute of Computing Systems Architecture

School of Informatics

University of Edinburgh

2011

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429728113?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Traditional parallelism detection in compilers is performed by means of static analysis
and more specifically data and control dependence analysis. The information that
is available at compile time, however, is inherently limited and therefore restricts the
parallelisation opportunities. Furthermore, applications written in C – which represent
the majority of today’s scientific, embedded and system software – utilise many low-
level features and an intricate programming style that forces the compiler to even more
conservative assumptions. Despite the numerous proposals to handle this uncertainty
at compile time using speculative optimisation and parallelisation, the software industry
still lacks any pragmatic approaches that extracts coarse-grain parallelism to exploit
the multiple processing units of modern commodity hardware.

This thesis introduces a novel approach for extracting and exploiting multiple forms
of coarse-grain parallelism from sequential applications written in C. We utilise pro-
filing information to overcome the limitations of static data and control-flow analysis
enabling more aggressive parallelisation. Profiling is performed using an instrumenta-
tion scheme operating at the Intermediate Representation (Ir) level of the compiler.
In contrast to existing approaches that depend on low-level binary tools and debugging
information, Ir-profiling provides precise and direct correlation of profiling information
back to the Ir structures of the compiler. Additionally, our approach is orthogonal to
existing automatic parallelisation approaches and additional fine-grain parallelism may
be exploited.

We demonstrate the applicability and versatility of the proposed methodology us-
ing two studies that target different forms of parallelism. First, we focus on the ex-
ploitation of loop-level parallelism that is abundant in many scientific and embedded
applications. We evaluate our parallelisation strategy against the Nas and Spec Fp

benchmarks and two different multi-core platforms (a shared-memory Intel Xeon Smp

and a heterogeneous distributed-memory Ibm Cell blade). Empirical evaluation shows
that our approach not only yields significant improvements when compared with state-
of-the-art parallelising compilers, but comes close to and sometimes exceeds the per-
formance of manually parallelised codes. On average, our methodology achieves 96%
of the performance of the hand-tuned parallel benchmarks on the Intel Xeon plat-
form, and a significant speedup for the Cell platform. The second study, addresses
the problem of partially sequential loops, typically found in implementations of mul-
timedia codecs. We develop a more powerful whole-program representation based on

i

Abstract

the Program Dependence Graph (Pdg) that supports profiling, partitioning and code-
generation for pipeline parallelism. In addition we demonstrate how this enhances
conventional pipeline parallelisation by incorporating support for multi-level loops and
pipeline stage replication in a uniform and automatic way. Experimental results using a
set of complex multimedia and stream processing benchmarks confirm the effectiveness
of the proposed methodology that yields speedups up to 4.7 on a eight-core Intel Xeon
machine.

ii

Acknowledgements

First of all, I would like to thank my advisor, Björn Franke, for his guidance and support
throughout the four years of my PhD studies. Most importantly, I am grateful to
Björn for his understanding, optimism and confidence in me. I would also like to thank
Michael O’Boyle for his invaluable advice, collaborative spirit and spirited leadership.
In addition, I would like to express my gratitude to Nigel Topham, Marcelo Cintra,
Murray Cole, Aris Efthymiou and Vijay Nagarajan, each one of them contributing
with his own special way to making Icsa a great research institute. Finally, special
thanks to all my colleagues in Card for the endless hours that we spent together and
for making our lab such a fun place to study.

Special thanks to Murray Cole, Mikel Luján and Peter Marwedel not only for un-
dergoing the torture of studying this thesis, but also for their insightful comments and
making my PhD defence a rewarding experience.

This thesis would not have been possible without the support of all my friends; those
who either bearing with my idiosyncrasies on a daily basis or sharing a few minutes on
the phone every now and then have been there for me all these years.

I am dedicating this thesis to my family, for without their love and affection I would
not have achieved any of this.

iii

Acknowledgements

iv

Declaration

I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not
been submitted for any other degree or professional qualification except as specified.

(Georgios Tournavitis)

v

Declaration

vi

Publications

Parts of this thesis have been published in the following refereed conference and work-
shop papers (in reverse chronological order):

1. Semi-Automatic Extraction and Exploitation of Hierarchical Pipeline Parallelism
Using Profiling Information. Georgios Tournavitis and Björn Franke. In PACT’
10: Proceedings of the 19th International Conference on Parallel Architectures
and Compilation Techniques, pages 377–388, Vienna, Austria, 2010. ACM.

2. Towards a Holistic Approach to Auto-parallelisation: Integrating Profile-driven
Parallelism Detection and Machine-Learning Based Mapping. Georgios Tour-
navitis, Zheng Wang, Björn Franke and Michael F.P. O’Boyle. In PLDI ’09:
Proceedings of the 2009 ACM SIGPLAN conference on Programming Language
Design and Implementation, pages 177–187, Dublin, Ireland, 2009. ACM.

3. Towards Automatic Profile-Driven Parallelisation of Embedded Multimedia Ap-
plications. Georgios Tournavitis and Björn Franke. In MULTIPROG-2009:
Proceedings of the Second Workshop on Programmability Issues for Multi-Core
Computers, pages 53–64, Paphos, Cyprus, 2009.

vii

Publications

viii

ix

x

Contents

Abstract i

Acknowledgements iii

Declaration v

Publications vii

Abbreviations xv

1. Introduction 1

1.1. The Problem . 3
1.2. Goals . 4
1.3. Contributions . 5
1.4. Structure . 6

2. Related Work 9

2.1. Data Parallelism . 9
2.1.1. Limit Studies . 9
2.1.2. Dynamic Approaches . 11
2.1.3. Hardware-assisted Approaches 14
2.1.4. Interactive Parallelisation . 15

2.2. Pipeline Parallelism . 16
2.2.1. Non-speculative Approaches . 16
2.2.2. Speculative Approaches . 21

2.3. Commercial Tools . 23
2.4. Conclusion . 24

3. Background 27

3.1. Source-to-source Compiler Framework 27
3.1.1. Overview . 27
3.1.2. CCMIR . 28
3.1.3. Loop-markers . 31

3.1.3.1. Definitions . 31
3.2. Target-specific Compilers . 32

3.2.1. Compilers for x86 64 Architectures 33

xi

Contents

3.2.2. Compilers for the IBM Cell BE 35
3.3. OpenMP . 35

3.3.1. Overview . 36
3.3.2. OpenMP Directives . 36

3.3.2.1. Definitions . 36
3.3.3. Execution Model . 39
3.3.4. Memory Model . 40

3.3.4.1. Sharing Attributes . 40
3.3.4.2. Coherency . 42
3.3.4.3. Consistency . 42

3.4. Benchmarks . 43
3.4.1. Overview . 43
3.4.2. Scientific Applications . 43

3.4.2.1. NAS Parallel Benchmarks 43
3.4.2.2. SPEC CFP2000 . 45

3.4.3. Embedded and Multimedia Programs 46
3.5. Evaluation Platform . 46

3.5.1. OpenMP Overheads . 47

4. Intermediate Representation Profiling 49

4.1. Motivation . 49
4.1.1. Profile-driven Dependence Analysis 49
4.1.2. IR-profiling . 50

4.2. Instrumentation Framework . 52
4.2.1. IR Instrumentation . 52

4.3. Profile-Driven Dependence Analyser . 57
4.3.1. Control-flow . 57
4.3.2. Data-flow . 59
4.3.3. Data Allocation . 60
4.3.4. Memory Disambiguation . 61
4.3.5. Reduction Detection . 61
4.3.6. Limitations . 63

4.4. Possible Optimisations . 64
4.4.1. Multi-threading . 64
4.4.2. Strided Accesses . 65
4.4.3. Static Redundancy Elimination 66

4.5. Conclusion . 67

5. Data-level Parallelism 69

5.1. Introduction . 69
5.1.1. Motivation . 70

xii

Contents

5.1.2. Overview . 72
5.1.3. Contributions . 72

5.2. Parallelisation Framework . 73
5.2.1. Workflow . 74
5.2.2. Parallel Loop Detection . 74
5.2.3. Parallel-Code Generation . 76

5.2.3.1. Privatisation . 77
5.2.3.2. Reduction Operations 79
5.2.3.3. Limitations . 80

5.2.4. Machine Learning Based Parallelism Mapping 81
5.2.4.1. Predictive Modelling . 81
5.2.4.2. Program Features . 82
5.2.4.3. Training Summary . 83
5.2.4.4. Deployment . 84

5.2.5. Safety . 84
5.3. Experimental Methodology . 85

5.3.1. Platforms . 85
5.3.2. Benchmarks . 85
5.3.3. Methodology . 86

5.4. Empirical Evaluation . 87
5.4.1. Overall Results . 87

5.4.1.1. Intel Xeon . 87
5.4.1.2. IBM Cell . 89

5.4.2. Parallelism Detection and Safety 90
5.4.3. Parallelism Mapping . 90

5.4.3.1. Intel Xeon . 91
5.4.3.2. IBM Cell . 92
5.4.3.3. Summary . 93

5.4.4. Scalability . 93
5.5. Data-parallelism in Embedded Applications 94
5.6. Conclusion . 94

6. Hierachical Pipeline Parallelism 97

6.1. Introduction . 97
6.1.1. Motivating Examples . 98
6.1.2. Contributions . 101

6.2. Methodology . 101
6.2.1. Program Dependence Graph . 102
6.2.2. Top-Down Hierarchical Pipeline Stage Partitioning 105
6.2.3. Parallel Code Generation and Runtime System 108

6.2.3.1. Control-Flow . 108

xiii

Contents

6.2.3.2. False Dependences . 110
6.2.3.3. Privatisation . 114
6.2.3.4. Data-flow . 116
6.2.3.5. “Copy in” and “Copy out” Data 117
6.2.3.6. Pointer Disambiguation 117

6.2.4. Stage Replication . 119
6.2.5. Multi-Level Pipelines . 119
6.2.6. Safety . 121

6.3. Empirical Evaluation . 121
6.3.1. Performance . 122

6.3.1.1. MP3 Decoding (EEMBC 2.0) 123
6.3.1.2. Bzip2 Compression (SPEC2000) 124
6.3.1.3. MPEG-2 Video Decoding (EEMBC 2.0) 125
6.3.1.4. JPEG Compression (EEMBC 2.0) 126

6.3.2. Safety . 126
6.4. Conclusion . 126

7. Conclusions 129

7.1. Contributions . 129
7.1.1. Intermediate-Representation Profiling 129
7.1.2. Data-parallelism . 130
7.1.3. Pipeline-parallelism . 130

7.2. Future Directions . 131
7.2.1. Intermediate-Representation Profiling 131
7.2.2. Data-parallelism . 132
7.2.3. Pipeline-parallelism . 133
7.2.4. User Interface Enhancements . 138

A. Data-level Parallelism in Embedded Applications 139

A.1. Case Study: JPEG-2000 Still Image Compression 139
A.1.1. Detection of Parallelism . 140
A.1.2. Static Analysis of DOALL Loops 140
A.1.3. Hot Spot Detection . 141
A.1.4. Profile-Driven Dependence Analysis 141

A.2. Empirical Evaluation . 142
A.2.1. Experimental Methodology . 142
A.2.2. JPEG-2000 . 142
A.2.3. Broader Evaluation . 144

A.3. Conclusions . 145

Bibliography 147

xiv

Abbreviations

API Application Programming Inter-
face

OoO Out-Of-Order

AST Abstract Syntax Tree OS Operating System

AVX Advanced Vector Extensions PC Program Counter

BSS Block Started by Symbol PDG Program Dependence Graph

BB Basic Block PPE Power Processing Element

CCMIR CoSy Common Medium-level IR RLE Run-Length Encoding

CDFG Control Data Flow Graph SCC Strongly Connected Component

CFG Control Flow Graph SDK Software Development Kit

CMP Chip Multi-Processor SEME Single-Entry-Multiple-Exit

CoSy Compiler [1] SESE Single-Entry-Single-Exit

DAG Directed Acyclic Graph SIMD Single Instruction Multiple Data

DSWP Decoupled SoftWare Pipelining SMP Symmetric Multi-Processor

DMA Direct Memory Access SMT Simultaneous Multi-Threading

DSP Digital Signal Processor SON Scalar Operand Network

DWT Discrete Wavelet Transform SPSC Single Producer Single Consumer

FIFO First-In-First-OUT SPE Synergistic Processing Element

FP Floating Point SSE Streaming Simd Extensions

FUD Factored Use-DEF STM Software Transactional Memory

IDE Integrated Development Environ-
ment

TLP Thread-Level Parallelism

ILP Instruction-Level Parallelism TLS Thread-Level Speculation

IR Intermediate Representation TM Transactional Memory

LS Local Storage VLIW Very Long Instruction Word

MPSoC Multi-Processor System-on-Chip VMX Vector Multimedia eXtension

MMX Matrix Math Extensions WAR Write-After-Read dependence

MPI Message Passing Interface WAW Write-After-Write dependence

xv

Abbreviations

xvi

Chapter 1.

Introduction

Transistor miniaturization, increasing clock frequency and Instruction-Level Parallelism
(Ilp) exploitation techniques have been leading the semiconductor industry for the last
thirty years to deliver exponentially increasing performance. Nevertheless, moving
towards the end of the nanoscale transistors era, power density and heat dissipation is-
sues as well as the lack of the micro-architectural breakthroughs of the past has forced
the industry to shift towards multi- and many-core architectures [55, 109, 120, 127]
to continue shipping products that follow this trend, also known as the Moore’s Law
[93]. These architectures have the potential to deliver unprecedented peak perfor-
mance of Teraflop scale on a single die [154], however, this entails a considerable
risk. The established model of providing higher performance through technology and
micro-architectural improvements allowed the overlying software stack to be largely
unchanged. Multi-processing on the other hand requires the software to be efficiently
parallelised and thus breaks this separability between the hardware and software layer.

Only to make things worse, most of today’s applications are sequential and thus
additional effort is required during this transition to the multi-core era. Figure 1.1
shows the implementation cost of portable consumer devices – a market that parallel
processing has only recently been introduced as a means to meet the ever incresing con-
sumer demand for higher functionality – and its breakdown to software and hardware
aspects. Besides the extremely high increase of the overall cost that the adoption of
multi-processing transition causes, this figure clearly shows the widening gap of soft-
ware and hardware productivity. The projection for the following years shows that a
more than two-fold decrease in software development cost is required to rebalance the
two. However, this is based on the optimistic prediction that research on parallel com-
piler technology will lead to a significant increase in software productivity. For this to
happen the research community has to create new methodologies and design tools that
leverage the analyses developed in the last decades but overcome their limitations and
increase their potential.

Multi-core architectures, in contrast to Single Instruction Multiple Data Simd and
Very Long Instruction Word (Vliw) architectures that target word and instruction-
level parallelism respectively, necessitate the extraction of parallelism in the form of
Thread-Level Parallelism (Tlp). At an algorithmic level, there is a plethora of sequen-

1

Chapter 1. Introduction

0

30

60

90

120

2007 2008 2009 2010 2011 2012 2013 2014 2015

24

39

29.6

40.7

56.4

79

33.6

44.9

29.5

15

22
15.7

20.3 19.4

26.3

32.9

46.7

31.1

C
o
st

 i
n

 m
il

li
o
n

s
o
f

$

Total HW engineering cost Total SW engineering cost

Parallel

processing

Concurrent SW

compiler technology

Figure 1.1.: Impact of design technology on the implementation cost of portable consumer
devices (based on data published from the International Technology Roadmap Committee in
[59, 58]). The introduction of parallel processing in 2009 resulted in a steep increase in the
cost spent on the software stack. The projection for 2013 though shows a more than two-fold
decrease in software development cost. However, this is based on the optimistic prediction
that research on parallel compiler technology will lead to a significant increase in software
productivity.

tial applications that consists of high-level operations that can be largely computed in
parallel. At the level of a sequential implementation though, identifying the structure of
parallelism has proven to be an extremely demanding task since it requires a global view
of the whole-program and a precise knowledge of the interaction between its numerous
components. This problem is further complicated if the additional problem of parti-
tioning an application for a specific target is considered. This task entails the modelling
of different resources, constraints and the complex interplay between the application,
the operating system and the architecture. These problems are definitely not new to
the compiler and design automation community. Many ambitious research projects
and countless papers have addressed individual aspects of this topic. Nevertheless, the
lack of a general and applicable methodology in addition to the inadvertent market
domination of the multi-cores and the high stakes involved have posed a challenge and
at the same a unique opportunity to investigate more pragmatic approaches.

Parallel Programming High-level parallel programming languages – such as Cilk [38],
OpenMp [103], StreamIt [140], Upc [50], X10 [126] and OpenCL [71] – and pro-
gramming models – such as Stapl [117], Hta [41], Galois [73] and CnC [18] – have
long be proposed as a means to facilitate intuitive, expressive and efficient application
design and implementation for parallel architectures. This high potential, however,
comes at a cost. Parallel programming not only presumes a long learning process, but

2

1.1. The Problem

is inherently a cumbersome, time-consuming and error-prone process. Therefore, it is
not a surprise that a considerable part of parallel application development is spent in
addressing hard to identify and even harder to correct errors and performance patholo-
gies related to concurrency. This, inevitably, leads to higher software engineering cost
and increased time-to-market (figure 1.1). But most importantly, programming models
do not resolve, nor even address, the immense problem of legacy sequential code which
accounts for the vast majority of existing commercial and industrial applications.

Auto-parallelisation Auto-parallelisation, on the other hand, bears the promise to al-
leviate the burden of identifying and exploiting parallelism, while ensuring formal cor-
rectness of the derived implementation. In fact, remarkable progress has been achieved
in this domain in the past three decades [6] that has also resulted in the emergence
of a new generation of parallelising research compilers, e.g. Polaris [107], Suif [132]
and, more recently, Open64 [21]. These compilers employ sophisticated analyses like
interprocedural array data-flow analysis [19], symbolic analysis [43] and array region
analysis [45, 30], and perform code transformations like array privatisation, parallel
reduction, loop fusion and unimodular loop transformations in order to increase par-
allelisation opportunities. Nevertheless, this large body of work has been primarily
focused on scientific applications written in Fortran.

1.1. The Problem

This thesis is concerned with the problem of automatically extracting Thread-Level
Parallelism (Tlp) from sequential applications written in C. The choice of C as a
source language is dictated by its wide use in the large body of legacy scientific and
embedded applications as well as its dominating position in the consumer electronics
industry. Other languages, like Fortran or StreamIt, offer greater scope for compiler-
based analysis and parallelisation. However, these languages lack the market domi-
nance of C. Unfortunately, C offers a powerful set of low-level language features that
often lead to obscure programming idioms and practices. The extensive use of pointer
arithmetic, dynamic memory allocation, indirect function calls and resizeable arrays in
C programs has proven to be extremely challenging for static analysis. Recent pro-
posals, like context and field-sensitive pointer analysis [48], shape analysis [40] and
other abstract interpretation based techniques like commutativity analysis [4] have def-
initely increased the scope and precision of compiler optimisation for pointer intensive
programs. Nevertheless, the problem of effectively parallelising full-scale real-life C ap-
plications persists [66, 88, 17, 69, 67, 68]. This is mainly due to the inability of static
analysis to disambiguate the sequential semantics on a whole-program level. Unavoid-
ably, to preserve correctness compilers make conservative assumptions and therefore
automatic parallelisation fails even for applications that inherently feature abundant
parallelism.

3

Chapter 1. Introduction

Multi-core architectures offer orders of magnitude faster on-chip communication and
synchronisation in comparison to the scalable distributed memory parallel systems of
the past. Still, threading overheads typically range in the scale of thousands of cycles,
thus preventing the efficient parallelisation of loops that require fine-grain commu-
nication (e.g. Doaccross execution [6]). Despite the emergence of many research
proposals that demonstrate the potential of dedicated hardware support for register
communication [115], cache-to-cache transfers [134], or asynchronous thread messag-
ing [125] these are features that have not yet gained the support of any of the major
microprocessor vendors. Similarly, hardware speculation has long being presented as
the “silver bullet” for parallelisation [72, 85, 129, 133, 119]. Highly complex designs,
interaction with the cache-coherency protocol and high chip-area and validation cost
of such hardware schemes has so far doomed their implementation [36]. To address
the escalating problem of parallelisation on the multi-core systems of the next decade,
however, more grounded and pragmatic approaches are necessary.

Multimedia codecs typically exhibit a stream processing pattern. Input is taken in
the form of packets or blocks of data, then processed by a sequence of transformations/
filters and finally the resulting formatted data are written in the output. Addition-
ally, coarse-grain loops with statically unknown loop bounds and loops that include
operations with loop-carried dependences are partially sequential but still include ex-
ploitable data and task-level parallelism. The automatic extraction of these complex
parallelisation skeletons from real-life implementation, however, poses many difficulties.
Independent tasks are often coupled deep in the call hierarchy, intertwined with I/O or
other inherently sequential operations (e.g. Run-Length or Huffman coding), or span
multiple nested loops further complicating the task of deriving a parallel implementa-
tion. To address this problem interactive tools that assist the developers to identify
and estimate the potential of alternative parallelisation schemes have been recently pro-
posed [64, 31, 52, 155]. To overcome the limitation of traditional auto-parallelisers these
tools either rely on the user to indicate parallelisation candidates or utilise dynamic
dependence profiling. The latter technique is particularly promising since it is relaxing
the conservative view of static dependence analysis, focusing only on those dependences
that manifest during execution. Nevertheless, these tools heavily depend on user in-
tervention and thus presume detailed knowledge of the specific implementation. Most
importantly, existing approaches either do not address or have very limited support for
automatic parallel code generation. It is clear that going beyond Doall parallelism
without compromising programmer’s productivity does not only demand more flexible
tools but a holistic approach that automates every step of the parallelisation process.

1.2. Goals

The primary objective of this thesis is to identify and overcome some of the limita-
tions that have till now prevented compilers to exploit the full potential of coarse-grain

4

1.3. Contributions

parallelism from sequential applications. Although general, our approach mainly fo-
cuses on programs written in C. In addition, our approach is orthogonal to alternative
parallelisation techniques that aim at extracting fine-grain parallelism (e.g. utilising
Simd extension). In fact our experimental methodology includes state-of-the-art auto-
vectorisation in each baseline sequential configuration. To remove the hurdle of con-
servative dependence analysis we employ a powerful profiling mechanism for extracting
data dependence information. Although dependence profiling can not be conclusive,
many applications exhibit stable data-flow behaviour. For these applications and given
a set of representative inputs, profiling can provide the detailed dependence information
that is necessary to enable aggressive parallelisation on a whole-program level.

We should stress that our goal is to present a methodology that addresses not only
parallelism identification but also effective exploitation on commodity hardware. The
main challenge in this goal is to bridge the information gap between profiling and
compilation. Typically profiling is performed in low-level binary or assembly represen-
tations that lack high-level information which is critical to enable data and control-flow
transformations. Furthermore, our plan is to develop a unified framework that not only
addresses established paradigms like loop-level or task parallelism but also extends the
scope of parallelisation tools to more advanced skeletons like parallel pipelines. Finally,
our ultimate goal is to demonstrate that our methodology is applicable not to just
“toy” applications but full-scale real-life implementations.

This thesis is deliberately not targeting sequential applications that exhibit limited
parallelism and therefore have very low performance potential from the exploitation
of Tlp. In other words our goal is to overcome the limitations of coarse-grain paral-
lelisation rather than quest for the “holy grail” of extending the limits of parallelism
itself. This choice is motivated by recent studies [69, 67, 68] that not only confirm
the marginal speedups of Tlp, but also demonstrate the surprisingly small benefits
that hardware support for speculative Tlp can offer – even if ideal threading overheads
are assumed. Our view is that the optimisation of this class of sequential applications
should be pursued using alternative micro-architectural or co-operative software/hard-
ware methods. For instance, helper threads [27, 163, 81] have been proposed to increase
the efficiency of sequential applications by exploiting the additional cores for the exe-
cution of subordinate threads that prefetch data in higher levels of the cache hierarchy.
Nevertheless, we consider such approaches to be beyond the scope of this thesis.

1.3. Contributions

The contributions of this thesis can be summarised in the following:

We demonstrate that Ir-profiling is a powerful tool for the extraction and ex-
ploitation of parallelism beyond loop level. Ir-profiling bridges the information
gap between the low-level execution profile and the IR maintained within the

5

Chapter 1. Introduction

parallelising compiler. This simple, yet effective back annotation capability dis-
tinguishes our approach from the majority of existing profiling methodologies.

We propose the use of profile-driven parallelisation for the extraction of data-level
parallelism in both scientific and embedded applications. We show that profile-
driven analyses can detect more parallel loops than static techniques. In addition,
we demonstrate that our approach when coupled with a Machine-Learning prof-
itability analysis not only yields significant improvements compared with state-
of-the-art parallelising compilers, but also comes close to and sometimes exceeds
the performance of manually parallelised codes.

We develop a top-down approach for the extraction of processing pipelines from
sequential applications. We exploit the power of a whole-program Ir, but avoid
exposing overly detailed (and possibly redundant) dependence information to
the pipeline extraction pass. Using an iterative, selective unfolding strategy we
specifically target the levels of computationally intensive code regions that will
yield exploitable parallelism.

We extend conventional linear-pipeline parallelisation with two concepts borrowed
from streaming languages, namely multi-level pipelines and stage replication. Fur-
thermore, we present evidence that profile-driven dependence analysis is powerful
enough to uncover such high-level structure from real-life applications. Finally,
we demonstrate how their combination can uncover additional parallelisation op-
portunities that existing approaches fail to exploit.

1.4. Structure

The remainder of this thesis is organised as follows:

Chapter 2 presents a critical review of existing parallelisation approaches for data and
pipeline parallelism. In addition, we present the results of existing limit studies
on the potential of static parallelisation.

Chapter 3 describes the CoSy compiler infrastructure that was used for the imple-
mentation of Ir-profiling and the source-to-source transformations proposed in
this thesis. Additionally, we present a brief overview of the main features of the
OpenMP parallel programming interface that is utilised for code-generation in
chapter 5.

Chapter 4 introduces Ir-profiling, a dependence profiling approach that enables precise
and straightforward correlation of the extracted information back to the Ir of the
compiler.

6

1.4. Structure

Chapter 5 addresses the problem of extracting and exploiting data-level parallelism. In
addition, we introduce a novel approach that combines profile-driven parallelism
detection with Machine-Learning profitability analysis. Finally, we demonstrate
the potential of our approach on two different parallel architectures by comparing
with both sequential execution and manual parallelisation.

Chapter 6 considers the case of partially sequential loops that exhibit a stream process-
ing structure. We present a methodology which exploits profiling information to
automatically restructure computation that spans multiple loop-levels and func-
tions into a parallel pipeline. Finally, we demonstrate the applicability and per-
formance of our proposal using a set of widely used embedded and multimedia
benchmarks.

Chapter 7 concludes this thesis with a summary of the main contributions, a retro-
spective critical analysis, and a discussion of topics for future work.

7

Chapter 1. Introduction

8

Chapter 2.

Related Work

This chapter presents a critical review of related work from the fields that are most rele-
vant to this thesis. The primary objective is to compare and contrast the approach and
techniques proposed in this thesis with the existing body of scientific work. We delib-
erately focus on approaches that go beyond static-only parallelisation for two reasons:
(i) this is an extremely wide and well-studied topic, and (ii) despite the sophistication
and the volume of prior work it remains ineffective for the application domains that we
are targeting. The structure of this chapter is as follows. In section 2.1 we present limit
studies, dynamic and hardware-assisted approaches that target data-parallel loops. A
review of recently proposed techniques to parallelise partially sequential loops by ex-
ploiting intra-iteration level parallelism follows in section 2.2. Finally, in section 2.3 we
compare our approach with state-of-the-art commercial tools that focus on interactive
parallelisation. Some approaches cross multiple domains, however, we choose to present
them along with the research which is more relevant to their main contributions.

2.1. Data Parallelism

2.1.1. Limit Studies

Compiler approaches to the problem of automatic extraction of coarse-grain parallelism
have a long history starting from the early methods developed for array data-flow and
loop dependence analysis, like Banerjee’s gcd test [14], and reaching to more advanced
topics like loop transformations for improving the locality of array accesses. Rather
than presenting such an extended literature – a task far beyond the scope of this thesis
–, we present recent studies on the potential of static-only parallelisation approaches.
This way we attempt to highlight the fundamental restrictions of static analysis and
motivate our study on dynamic and profile-driven parallelisation that follows.

Islam et al. An early study from M. Islam [62] uses Intel’s Icc v.9.1 to auto-parallelise
a subset of the MediaBench and Eembc 1.1 embedded benchmarks. Results show
that the loops that were successfully parallelised account for only a minor 10% of the
total execution time. In addition, the author reports that in 38% of the cases that
parallelisation failed, this was due to unknown loop trip count. The main limitation of

9

Chapter 2. Related Work

this work is that it does not identify or quantify available parallelism, i.e. parallelism
that would be available if the limitation of static-analysis are relaxed. Additionally,
it does not provide any details about the speedup potential, the granularity of the
parallelism extracted or the means of exploitation (e.g. Tlp vs. Simd).

Kejariwal et al. The coverage studies from Kejariwal et al. [69, 67, 68] largely over-
come these limitations and present a more thorough evaluation of the speedup potential
that covers Simd, Tlp and speculative-Tlp (Tls). One of the main contributions of
these studies is that they use manual inspection in addition to automatic analysis (us-
ing the Intel Icc) in order to identify the amount of true loop-level Tlp. In addition,
their reported results are based on a baseline that incorporates both auto-vectorisation
and software-pipelining. As we will discuss later in the experimental methodology
chapter, it is crucial for providing a fair comparison to perform these single-threaded
optimisations in the sequential baseline.

More specifically, in [67] the authors used Spec2000 for their evaluation and their
figures show that the coverage of Doall parallelism for the majority of the floating
point applications is very high (higher than 70%), considering either most or outer-
most loops. At the same time, however, their choice to report both automatically
and manually extracted Doall loops using one metric conceals the inability of modern
production and research compilers to be effective in this task. In fact numerous studies,
including [66, 145], have reached the conclusion that although advanced analyses like
the ones referenced in [69], can be effective in individual cases the extraction of coarse-
grain parallelism from full applications is bound to fail. For instance, in [66] the authors
use the Suif research compiler on a set of embedded benchmarks. Their conclusion
is that there is no single-point of failure for static analysis and even if oracle pointer
disambiguation, array privatisation and reduction is assumed, only 29% of the true
Doall will be statically identified.

Another significant result of these studies is that if Doall loops are excluded, the
speedup potential of any of the available Tls methods is surprisingly low; 39% on
average for Spec2000 [67] and only 6% (geometric mean) for Spec2006 [69]. The latter
is actually reduced to the scale of 1% if a realistic threading overhead of 1000 cycles
is accounted. These results confirm our insight and strengthen our original motivation
to focus on methods that leverage profile-driven analysis to uncover coarse-grain loops
that are inherently parallel but compilers fail to automatically parallelise. Nevertheless,
it is important to note that both studies evaluate the potential of relatively simple
parallelisation techniques, exploiting only loop-level parallelism (speculative or not).
In fact, the experimental results presented in this thesis clearly show that in many
cases employing more sophisticated parallelisation transformations, like hierarchical
pipelining, leads to significantly higher coverage and speedups than the ones reported
in [67, 69]. For instance, in section 6.3 it is shown that for bzip2 from the Spec

Cpu2000 benchmark suite the proposed profile-driven approach effectively parallelises

10

2.1. Data Parallelism

loops that account for more than 98% of the sequential execution time, and lead to
speedups of up to 4.7. In contrast, for the same benchmark in [67] the authors report
a coverage of less than 80% for both speculative and non-speculative parallelisation.
Therefore, the aforementioned findings should not be accounted as a conclusive study
on the performance potential of parallelisation in general. Additionally, in section 2.2
we review and compare with the most relevant parallelisation techniques that address
the limitations of the parallelisation model assumed by these studies.

Finally, the same authors in [68] investigate the challenges of auto-parallelisation
but this time in the context of embedded applications. They compile Eembc 1.1,
Eembc 2.0 and MiBench using Intel Icc. A very interesting conclusion of this work is
that many outer-loops in embedded applications cannot be parallelised due to library
calls which are not analysed by the compiler or are inherently sequential (e.g. I/O).
This observation actually motivates the parallelisation of partially-parallel loops using
pipelining, a technique targeted by the techniques presented in chapter 6.

No matter how successful auto-parallelisation has proven to be in the domain of
scientific applications, the main caveat of the vast majority of the approaches which
are based on static analysis is that their application is restricted to subsets of general
purpose programming languages. Pointer-based code, unknown loop bounds, complex
control-flow or non-affine array-access functions force static analysis to be overly conser-
vative. Consequently, production compilers or even sophisticated dependence analyses
employed in research compilers fail to extract parallelism beyond the scope of the in-
nermost loops from embedded applications [68, 62] or general purpose integer codes
[17, 69, 161].

2.1.2. Dynamic Approaches

Static analysis no matter how sophisticated, is still bound to its inherent limitations.
This, for instance, prevents the parallelisation of dynamic and sparse scientific appli-
cations even when coded in more restrictive languages than C like Fortran. In this
context, dynamic (or runtime) analysis aims at exploiting the increased accuracy of
the dependence information that becomes available at execution time to increase the
parallelisation opportunities. Most software techniques that emerged from this concept
during the last two decades fit in one of the two following major classes: (i) analysing
the trace of memory references, and (ii) deferring static analysis tests.

Reference-based Approaches The first records all the possibly offending memory
references at runtime. Then, based on this perfect information it reasons about inde-
pendence. Reference-based approaches can be further divided in two groups based on
the runtime mechanism utilised: (i) inspector/executor that first performs preprocess-
ing at runtime and then executes iterations in an order that maximises parallelism (e.g.
[124]), and (ii) speculation that optimistically executes loop iterations in parallel and
if a dependence materialises computation is squashed and re-executed in a sequential

11

Chapter 2. Related Work

order (e.g. the Lrpd test [116]). The complexity of a trace-based approach is propor-
tional to the number of dynamic memory references and therefore its parallelisation
potential is often diminished by the high runtime overhead. These studies although
pioneering and influential for later hardware or hybrid software/hardware speculation
systems have largely failed to demonstrate significant performance improvements in a
more general context. Essentially, this first class of dynamic techniques together with
static analysis represent the two opposite extremes in parallelisation technology.

Hybrid Approaches The second class in dynamic parallelisation, on the other hand,
tries to fuse these two and largely independent worlds. It delays the computation of
some symbolic expressions extracted during the static dependence testing until the
point of the execution where the values of the variables are known. These techniques
bear the potential of significantly reducing the runtime overhead while retaining the
benefits of precise runtime information.

Predicated Array Data-flow Analysis Moon et al. in [91, 92, 90] propose Predi-
cated Array Data-flow Analysis which is a framework that associates predicates to
each data-flow value. Based on these predicates the compiler can extract simple tests
that describe the conditions under which a dependence is not materialised or transfor-
mations like privatisation can be safely applied. An extensive evaluation of predicated
analysis using the SUIF research compiler, presented in [91], reports successful paral-
lelisation of more than 40% of the available parallel loops that were not parallelised
by the baseline compiler. The benchmarks consisted of scientific applications from the
Perfect, SpecFp95 and Nas suites. One of the main drawbacks of this approach,
however, is that it restricted to loop-invariant assertions that can be easily hoisted out
of the loop body.

Hybrid and Sensitivity Analysis Hybrid Analysis (Ha) [122] overcomes this limi-
tation and additionally it offers a holistic approach that integrates the whole spec-
trum of runtime data-flow analysis, ranging from simple runtime predicates to detailed
reference-based validation (Lrpd test). This is accomplished using an inter-procedural
aggregated reference representation (Run-Time Linear Memory Access Descriptor, Rt-

Lmad). Aggregated references can be used in different program levels (e.g. procedure,
loop or iteration-level) to perform set and interval operations (e.g. union, intersec-
tion, subtraction). Based on these operations – that can be evaluated fully or partially
either at compile or run-time – the compiler can effectively defer the decision for op-
timisations like privatisation and parallel reduction until the point of the execution
that all the operands can be evaluated. The same authors only recently extended Ha

with a novel predicate extraction algorithm, called Sensitivity Analysis (Sa) [123]. Sa

is based on a graph of predicates which enables the compiler to extract simpler op-
timistic approximations of the aggregate references, and thus to considerably reduce

12

2.1. Data Parallelism

the runtime overhead of dynamic parallelisation. The authors implemented SA using
OpenMP directives, a method we also followed for parallel-code generation in chapter
5. The detailed evaluation included in [123] demonstrates that Sensitivity Analysis can
effectively extract and exploit almost all the available parallelism from an extended set
of scientific applications drawn from the Perfect and SpecFp benchmark suites.

STMlite In parallel to our work Mehrara et al. demonstrated a simple dynamic
parallelisation system that targets scientific applications written in C [87]. The au-
thors use a lightweight software Transactional Memory (Tm) system called Stmlite to
guarantee correctness. Their key observation is that restricting the use of a Tm to
loop-level parallelisation only allows the relaxation of some requirements of general-
purpose Tms that are critical for performance. More specifically, Stmlite (i) does not
monitor accesses to local variables, (ii) does not provide strong atomicity guarantees 1,
and (iii) does not support zombie transaction detection. The last point is very critical
since it enables Stmlite to perform lazy conflict detection and subsequently it allows
conflict detection to be decoupled from the parallel execution itself and be centrally
performed by a separate thread, the Transaction Commit Manager (Tcm). Despite all
these performance enhancements, the experimental evaluation in [87], which presents
the speedups for six benchmarks from various SpecFp suites shows a limited potential.
Only two applications show a speedup more than 2 on a system with 8-cores. In con-
trast to profile-driven parallelisation, this approach does not utilise profile-information
to perform speculative privatisation or parallel reduction, using it only for profitability
analysis. Thus many parallel loops that are in fact parallelisable but in their original
form violate the sequential semantics are not parallelised at all or suffer from very fre-
quent squashes. This is clearly demonstrated by the speedup achieved by 183.equake,
where Stmlite fails to get any speedup but our approach achieves a significant speedup
of almost 2 on 8-cores 2.

The majority of the dynamic or hybrid methods is focused on array-based scientific
codes. Most importantly, they presume programming languages like Fortran with well-
defined array operations, language-visible heap allocation, constrained pointers, and
limited or no support for pointer arithmetic. For instance, for the majority of the ap-
plications that we consider in the data-parallelism study of chapter 5 – which are coded
in C – sensitivity analysis would be unable to extract cheap scalar or aggregated refer-
ence assertions. Pointer aliasing, complicated control flow and external library routines,
just to name a few, preclude precise array data-flow analysis. Thus dynamic methods
in these languages are bound to resort to full reference tracing which leads to poor scal-

1Strong atomicity is required in general-purpose Tms to guarantee atomicity between transactional
and non-transactional accesses to same memory location. During the execution of a parallel loop,
however, all accesses are performed within the transactions and therefore weak atomicity suffices.

2Actually the scalability of 183.equake when parallelised using the methods proposed in this thesis is
only constrained from poor spatial locality that is caused from a poor memory-allocation policy in
the original code. Experiments using a simple modification to the allocation code – which is also
incorporated in a later version of the benchmark – achieves a speedup of 5.95.

13

Chapter 2. Related Work

ability. Therefore, dynamic analysis has found limited or no applicability to application
domains where C is predominant, including and not limited to embedded, multimedia,
data-mining, bio-informatics and scientific applications (e.g. Eembc, MiBench, Me-

diaBench, Parsec and BioBench benchmark suites are entirely written in C/C++).
As it is demonstrated in chapter 5 for these languages even state-of-the-art production
compilers fail almost completely to extract exploitable data-parallelism.

Compared to profile-driven parallelisation, proposed in this thesis, hybrid approaches
share the concept of utilising the precise dependence information which becomes avail-
able only at program execution time. Profile-driven parallelisation, however, utilise
this information only off-line, at compile-time, aiming at the exploitation of always-
true parallelism, which, although it cannot be statically verified, is safe for all valid
inputs. This last hypothesis, although it can be systematically asserted using multiple
representative inputs, ultimately demands user-approval to guarantee the safety of the
proposed parallelisation. This usage scenario seems far less attractive than automatic
parallelisation. It is, however, pragmatic since it applies in different application domains
and configurations and most importantly in cases where both static and dynamic ap-
proaches have been proven to utterly fail. In addition, as this thesis demonstrates, when
profiling is performed in the appropriate program representation it bears the potential
of not just parallelism detection but also exploitation, thus alleviating the burden of
manual parallelisation.

2.1.3. Hardware-assisted Approaches

In the section about hybrid approaches to parallelisation we reached the conclusion that
despite the innovative ideas of the last two decades software-only approaches failed to
deliver performance beyond niche settings (e.g. array-based scientific applications in
Fortran). Hardware support for Thread-Level-Speculation (Tls) [72, 85, 129, 133, 119]
revisits speculative execution originally proposed in the context of hybrid parallelisation
but in a more general framework that addresses more forms of parallelism and applies
to programs and languages that are not statically analysable. This is accomplished
either with a hardware-only or software/hardware hybrid infrastructure that facilitates
low-overhead program-state checkpointing and conflict detection. Including a complete
review of the numerous mechanisms that have emerged in this field during the last
decade is definitely beyond the scope of this thesis. Instead, we briefly discuss the
key reasons that, although complementary to ours, such approaches fail to provide a
realistic alternative.

Hardware-assisted approaches achieve modest speedups for sequential integer appli-
cations (e.g. SPEC Cint) which are hard to parallelise with conventional methods.
However, this comes at the cost of increased complexity in the coherency protocol
and the memory subsystem. Evaluating these factors along with the area, power and
verification overheads of such hardware proposals makes their adoption from the micro-

14

2.1. Data Parallelism

processor industry even more challenging. In fact, the only commercial general-purpose
Cmp with thread speculation, the Sun Microsystems Rock3, was permanently discon-
tinued after five years of development and before its final release [22]. This is also
magnified in the embedded systems design world where such intrusive and costly ap-
proaches are of limited applicability. Additionally, the majority of Tls systems utilises
L1 cache as a speculative buffer and therefore it is bound to relatively fine-grain Tlp.
Applications that feature coarse-grain parallelism like floating-point and streaming ap-
plications – and therefore have a greater potential for effective parallelisation under
realistic constraints–, however, demand speculative state that exceeds by far the size
of typical L1 caches (typically 32Kb).

2.1.4. Interactive Parallelisation

.
Interactive parallelisation tools [60, 70, 16, 61] provide a way to actively involve

the programmer in the detection and mapping of application parallelism. Although
promising, the majority relies heavily on the user to provide the critical parallelisa-
tion information. In addition, only a few interactive tools automate the parallel-code
generation, demanding from the user to perform this complex and error-prone task.

SUIF Explorer An interesting example which is focused on data-parallelism for For-
tran programs is Suif Explorer [157]. It combines the advanced static analysis and
transformations of the Suif compiler with profile information and a powerful interac-
tive interface. The first profile analyser, called Loop Profile Analyser (Lpa), collects
information regarding the execution time of individual loops. Thus, it can provide the
user with suggestions about the loops that are more likely to yield significant parallel
speedups. However, the profitability hints are derived using simple heuristics like sort-
ing loops based on the execution time of a specific input. On the contrary, the Machine-
Learning approach adopted in chapter 5 offers automatically tuned rapid performance
prediction across platforms. The feature of Suif Explorer that is most relevant to this
thesis is the Dynamic Dependence Analyzer (Dda), a profile-based technique to iden-
tify potential parallel loops. Although, Dda takes induction and reduction variables
into account, the relevant information is still statically extracted and thus conserva-
tive. In contrast, we propose a more aggressive hybrid static/profiling-based technique
that marks potential reductions at compile time and then verifies them during profiling
of the Ir. This way we overcome the limitations of imprecise alias analysis which in
languages like C normally constraints reduction detection to single scalar statements.

3The underlying micro-architectural mechanism of the Rock processor, called Simultaneous Specu-
lative Threading (Sst), was originally designed to provide speculative execution under cache miss
events. Then it was extended to provide simple Transactional Memory (Tm) primitives that can be
used appropriately by system software designers. Nevertheless, the length of speculation is at most
a few thousand instructions.

15

Chapter 2. Related Work

2.2. Pipeline Parallelism

In the past parallelising compiler technology targeted mainly scientific applications
with an abundance of data level parallelism. Hence, the scope was largely restricted to
the detection and mapping of this particular kind of parallelism. The advent of chip
multi-processors (Cmps) as well as the proliferation of multimedia consumer electronics
has emphasised the importance of compiler tools that address the overwhelming task
of parallelising popular multimedia and other integer applications that are typical to
these domain. Unfortunately, these applications typically feature loops with inherently
sequential operations, like I/O, and therefore demand the adoption of more flexible
parallelisation schemes. Pipelining exploits parallelism by executing multiple regions
(stages) from multiple iterations of a single loop across the available cores of Cmp. In
the paragraphs following we present a critical review of the most significant studies in
the area of pipeline-parallelism extraction and compare it with the approach presented
in chapter 6 of this thesis.

2.2.1. Non-speculative Approaches

Pedigree Among the first to propose pipeline parallelism as an alternative to Doacro-

ss [6] was Newburn et al. in [98]. They motivate their approach using the observation
that single-directional dependences can sustain longer inter-processor communication
latencies and thus achieve better performance and scalability in more realistic multi-
processor configurations. Their approach is based on post-pass tool, called Pedigree
[100, 99], that constructs a Program Dependence Graph (Pdg) representation of the
whole program starting from the optimised assembly code. Pdg enables the extraction
of parallelism beyond the scope of a basic block and ranging from individual instructions
to nested loop iterations and conditionals. Special nodes are inserted in the represen-
tation to group different forms of parallelism (e.g. Doall loops). Code-generation is
then performed hierarchically on the Pdg. A very important constraint, however, of
the code-generation proposed in [98] is that threads have to synchronise at the end
of each iteration in the case of an iteration body being partitioned to more than one
thread. Therefore, inter-iteration parallelism cannot be exploited for non-Doall loops.
Additionally, in contrast to our approach, Pedigree uses a bottom-up approach to re-
construct the program representation and it is based on low-level assembly. No matter
any benefits this choice might yield, it restricts memory-dependence analysis and thus
it is difficult to be effective in the extraction of coarse-grain parallelism. Finally, the
evaluation presented in [98] cannot be used to generalise its findings since it is limited
to relatively simple data and signal-processing kernels (Sdio Benchmark Suite) used in
aerospace and military applications.

DDA In [66], Dynamic Dependence Analysis is proposed as an aggressive, i.e. not safe
and thus verified by user feedback, dependence checking method to uncover loop-level

16

2.2. Pipeline Parallelism

parallelism. The authors extract the traces using a source-to-source transformation
tool similar to ours implemented in Suif [44]. In addition, they present a study of
the parallelisation potential previously unexploited by the Suif parallelising compiler
for a set of Dsp kernels and multimedia applications. They reach the conclusion that
static analysis is too restrictive and parallelising compiler technology is failing to gain
significant speedups on the studied benchmarks even in combination with advanced
techniques like interprocedural analysis, reduction and perfect pointer disambiguation.
The same authors extend their previous work in [65, 64] and show that dependence
vectors extracted by means of Dda can be exploited to combine loop parallelisation
and functional pipelining. This work, however, is focused on the general feasibility
of using dynamic dependence information, and does not present a methodology for
deriving a parallel implementation.

Valerio et al. Another early approach to task-graph extraction for embedded system
synthesis is presented in [150]. The authors construct a Dag from the source code, with
each node representing a set of program statements that execute sequentially and edges
indicating (control/data) dependence between the nodes. Loops are encapsulated in a
single node. Thus, this approach is not addressing the cases of loop-level parallelism,
task-level parallelism within each iteration of a loop, or loops containing function calls.
Inter-procedural propagation of dependences among the different functions is based on
a call-graph that they extract by executing an appropriately instrumented version of the
code. In addition, the instrumentation provides information about the size of the data
structures and the execution time of each task. Comparing to our approach, which is
also using source-code instrumentation, this approach is not addressing the problem of
variability across different data inputs and the information which is extracted involves
control flow information only. Dependence analysis is performed based on def/use infor-
mation extracted by sequentially traversing an Ast representation of the source code,
resembling a single-pass forward data-flow analysis. Regarding the disambiguation of
pointer references the authors follow a particularly conservative approach and do not
comment at all on array accesses, which leads us to the conclusion that they handle an
access to an array-element as an access to the whole object. The granularity as well
as other interesting properties of the extracted parallelism are largely unknown since
the authors present only the number of tasks extracted for each of the benchmarks. As
a concluding remark, this approach seems to be tightly oriented to hardware/software
co-synthesis, and thus overly restrictive and of doubtful applicability to other domains.

Dai et al. In [32] Dai et al. consider the case of automatically parallelising packet-
processing applications for parallel Network Processors. The authors present a parti-
tioning algorithm that incorporates quite a few interesting features like dissecting the
Cfg of the loop-body in non-control-equivalent points and handling multiple loop-exits.
Despite its valuable contributions, this approach seems to be considering only scalar

17

Chapter 2. Related Work

inter-thread dependences and in general, it lacks the generality of subsequent studies
that address the parallelisation of a wider domain of applications.

Thies et al. The work presented by Thies et al. [141] is most relevant to our work.
The authors propose a profile-based parallelisation methodology for applications that
exhibit streaming computation patterns. They use a library of macros to manually an-
notate the boundaries of the pipeline stages at the source-level. In a subsequent step the
correctness of the user-defined partitioning is verified using a binary-instrumentation
tool. A runtime systems manages multiple processes communicating through pipes.
This simplifies code-generation as each pipeline stage (i.e., a process) has its own pri-
vate address space and no explicit privatisation is necessary. However, unnecessary
overhead for communication and process management is introduced. We consider it
a major disadvantage that the user of this methodology is required to both have a
good knowledge of the algorithm to parallelise and its actual sequential implementa-
tion. Manually determining profitable partitionings is generally hindered by deeply
nested functions or loops and idiosyncratic programming styles. In addition, the use
of macros and the manual “matching” of the communication operations, especially in
the case of variably-sized objects further complicates the work flow. This is actually
demonstrated by the fact that most of the proposed partitioning in [141] are highly
unbalanced or fail to unwind sequential (e.g. I/O) and parallel operations. Finally,
the choice to delegate work mapping and scheduling decisions to the Os scheduler and
resorting to system-call based communication primitives may limit parallel scalability.

DSWP Decoupled Software Pipelining (Dswp) is a recent development and works by
statically splitting programs into critical path and off-critical path threads that run con-
currently on thread-parallel architectures. Unlike, Doacross parallelism or approaches
that extract completely independent threads, Dswp requires the flow of data among
the threads to be acyclic.[106] first proposed Dswp for parallelising sequential general-
purpose applications using fully-automatic analysis and code-generation. Dswp offers
high flexibility and precision since it operates on a low-level instruction based represen-
tation, augmented with high-level memory dependence information. The key advantage
of this approach is in the exploitation of latency-tolerant pipeline fashion parallelism
across multiple basic blocks and control-flow paths. Effectively, Dswp performs global
instruction scheduling and exploits Ilp like traditional software-pipelining, but at the
same time has broader scope and utilises multiple cores and functional units. The main
difference to the approach presented in this thesis is that Dswp operates on a low-level
instruction based representation and despite the detailed memory dependence informa-
tion it cannot apply aggressive privatisation. This has an impact on the scope of the
resulting thread-level parallelism. Dswp requires fine-grain communication primitives
to communicate register values, and relies on the cache hierarchy to communicate mem-
ory dependences. In contrast, we target coarser-grain parallelism and memory-based

18

2.2. Pipeline Parallelism

communication which gives rise to pipelines broadly resembling the algorithmic stages
of the application. This enables us to use commodity hardware and longer communi-
cation free intervals, and unlike Dswp we do not rely on special micro-architectural
support to unfold the full performance potential.

PS-DSWP Subsequently, Raman et al. revisited the original non-speculative Dswp

and presented Ps-Dswp [113], an approach exploits data-parallelism of pipeline stages
with no loop-carried dependences. This is data-parallelism that spans more than two
iterations of a partially sequential loop and it can be more beneficial than intra-iteration
parallelism of previous approaches like [10, 28]. This feature is also supported by our
approach that selectively applies stage-replication (6.2.4) when this reduces the exe-
cution time of the slowest stage. Nevertheless, Ps-Dswp shared the same restrictions
with Dswp since it is focused in finer-grain parallelism and relies on dedicated hardware
support.

Rul et al. Rul et al. in [121] demonstrate the significance of profiling information in
uncovering pipeline parallelism in general-purpose applications. They manually paral-
lelise two applications using Pthreads, but their approach lacks an automated code-
generation methodology. In addition, they follow a simulation-based profiling approach
which incurs a very high runtime overhead and lacks any facility to back annotate pro-
filing information to higher level code in order to drive the code transformation and
parallelisation process.

MAPS In [20] the Maps methodology for extracting task parallelism from sequen-
tial C applications and mapping onto MpSoC platforms is presented. By clustering
individual statements into larger clusters a bottom-up approach is taken, resulting in
relatively fine-grained threads that for their efficient execution require a tightly-coupled
architecture with special thread and communication support. Maps assumes cleaned
up code and only operates on single-level loops. It has been shown to deliver good
results on small embedded benchmark kernels and the proprietary, low communica-
tion latency Tct platform, but it is unclear if the Maps approach scales to larger
applications or more generic hardware platforms.

MPA Mpa [10] is a parallelisation exploration tool for MPSoC platforms. It re-
quires the user to provide a parallelisation specification that specifies the functions and
loops to be assigned to each thread. Then the tool utilising a static data-flow anal-
ysis based on Factored Use-Def chains (Fuds) generates separate functions for each
thread and inserts the inter-thread communication/synchronisation. Contrary to our
pipeline approach, Mpa allows arbitrary communication between the threads and not
only unidirectional transfers, thus it follows a paradigm resembling Doacross execu-
tion. Communication is performed using First-In-First-Out (Fifo) queues but it only

19

Chapter 2. Related Work

supports scalar variables and relies on the user to provide synchronisation for more com-
plex structures (arrays or dynamically allocated memory). Furthermore, Mpa assumes
an execution model where all threads are synchronised at the end of each iteration us-
ing a barrier. Therefore, intra-iteration parallelism only is exploited. Finally, in Mpa

the iteration space of nested loops can be distributed across more than one thread but
only using a static iteration scheduling specified in the parallel specification. Hence,
compared to our code-generation approach, Mpa does not support uncounted nested
loops and dynamic iteration distribution.

Cordes et al. Cordes et al. in [28] focus on the problem of optimally partitioning a
program into parallel tasks such that the total execution time is minimised under the
specific architectural constraints given as additional input. Their bottom-up approach
considers different levels for the partitioning of the hierarchical task graph. For the
evaluation of the different alternative partitions at each level the authors propose an
Integer Linear Programming formulation that models both the data communication and
task creation overheads. Hence, the algorithm determines which parts of the program
should form a task as well as the number of processors that should be assigned for each
task if it is parallel. Task extraction utilises a hierarchical program representation but
unlike the Program Dependence Graph introduced in section 6.2.1 control dependences
are not explicit. Therefore, their partitioning can only extract parallelism from control-
equivalent sections that cannot span multiple loop levels and conditionals. Additionally,
this implies that their approach can only extract data-parallelism from within a specific
instance of a task or tasks that can be independently executed. Compared to stage-
replication (6.2.4) that exploits data-parallelism across tasks of different loop-iterations
the scheme of Cordes et al. is less flexible and thus less applicable to applications with
no intra-task parallelism.

Paralax Only recently and in parallel with our work Vandierendonck et al. presented
in [153] a parallelisation framework, called Parallax, that enables the parallelisation of
integer applications. Parallax is based in a set of user annotations that assign data-flow
properties to data and functions which are critical for parallelisation. For instance, one
of the most useful annotations is Kill which informs the compiler that the memory
pointed-to by the specified pointer is invalidated. This is in deep contrast with previous
approaches like [141] or OpenMP which demand from the user to explicitly designate
parallelisation structures (e.g. Doall loops or pipeline stages). Although these im-
plicit parallelisation hints give the flexibility to the compiler to automatically transform
the code without being constrained from a specific parallelisation paradigm, it remains
unclear whether these are more intuitive and easy to use from the programmers per-
spective. The authors try to address this issue by utilising a profiling-based initial stage
similar to our previously published approach [145]. Profiling information is then used

20

2.2. Pipeline Parallelism

to hint the users for the structures which if annotated will yield more parallelisation
opportunities.

The key difference with our approach is that our compiler is aiming at performing
aggressive parallelisation based on the profile-information as a first step. And only
then it informs the user for the exact data and control-flow dependences that had to
be relaxed to achieve this. Additionally, although the code-generation of Paralax is not
described in detail, the experimental evaluation leads us to the conclusion that they do
not consider the case of multi-level loops. Furthermore, the authors do not present a
specific partitioning strategy and do not perform guided function-splitting, a technique
that enables us to uncover and exploit parallelism which is deeply nested in the call
hierarchy 4. This seems to be the reason that the achieved scalability of their approach
for bzip2 compression – the only common benchmark with our experimental evaluation
– is considerably lower (by a factor of two). Finally, Paralax annotations like Syscall

that instructs the compiler to assume external side-effects and Commutative that
designates that changing the order of calls to a function is permitted are very similar
to the instrumented wrapper functions used in our approach for memory allocation and
I/O.

Nevertheless, we consider the work from Vandierendonck et al. to be complementary
to our work. Our view is that these are examples of a new, rapidly developing class
of semi-automatic approaches that prioritise automatic detection and exploitation over
safety and only rely on the user for final approval. The precise semantics and the level
of interaction with the developer, however, still remain to visited by future research.

2.2.2. Speculative Approaches

BOP Ding et al. introduce in [33] Behavior-Oriented Parallelisation (BOP). It is
based on simple annotations where the user or an analysis tool specifies code regions
that can be executed in parallel. Then, at runtime a software speculation system, which
exploits the virtual-memory protection infrastructure (page-fault handlers) available in
modern operating systems, guarantees that the proposed parallelisation does not vi-
olate program semantics. Several techniques, like value-based conflict detection, to
minimise the overhead of speculation which in any case will never lead to slowdowns
compared to sequential execution. Parallel regions in Bop consist of either independent
tasks or segments of successive loop iterations. Nevertheless, Bop does not support
partitioning a loop iteration to multiple stages, a key feature to enable true pipeline
parallelisation. Another, important drawback of this proposal is that it does not sup-
port I/O operations within the parallel regions. As it is demonstrated in the evaluation
section of chapter 6 this is a common pattern in the majority of streaming applica-
tions where computation is effectively decoupled from I/O operations that execute in

4Figure 6 in [153] clearly shows that the authors consider sndMTF to be sequential. In contrast, our
partitioning strategy was able to extract two stages out of it. One that is subsequently merged with
the replicable compression stage and a second sequential one that performs the file output

21

Chapter 2. Related Work

separate threads but in parallel to the data processing threads. Finally, most of the
few applications considered in the empirical evaluation of [33] required a quite detailed
understanding of the implementation and non-trivial modification in order to achieve
good speedups.

Copy-or-Discard Tian et al. [142] focus on the efficient exploitation of pipeline par-
allelism using a data speculation runtime system which creates copies of static as well
as dynamically allocated data on-demand. Similar to [112], this study handles only
single-level loops and using a fixed pipeline skeleton of three stages. Effectively, this
is only applicable to loops with only a few statements with loop-carried dependences
(e.g. induction variable increment) in the beginning or end of the loop and a domi-
nating middle stage. In that sense the scope of our approach is broader and it can be
applied in more complex cases which as we show in section 6.3 are predominant in mul-
timedia applications. In addition, the authors do not discuss or give any information
about the problem of correlating the profiling information which is based on debugging
information and binary instrumentation. This information is necessary to perform par-
allelism extraction and thread partitioning automatically. Their results show excellent
scaling but do not report whole application speedups and in some cases presume that
applications process multiple input files in parallel.

Speculative DSWP Vachharajani et al. [149] extended Dswp with support for spec-
ulation over rarely occurring control or memory dependences, thus extending its appli-
cability and facilitating better balanced partitionings to more than one thread. Never-
theless, this extensions still relies on dedicated hardware support for both low-latency
register communication and thread speculation.

SMTX In parallel to our work, Arun-Raman et al. presented Software Multi-Threaded
Transactions (Smtx) [112] a speculation system that aims at supporting coarse-grain
pipeline parallelism on top of commodity hardware. Its design, similarly to Bop, utilises
multiple Os-processes instead of threads, and therefore it supports transparent private
address-space for each pipeline stage. For the performance evaluation of [112] the
authors follow a parallelisation scheme similar to Ps-Dswp and report impressive scal-
ability up to 24 cores for a set of integer applications. Parallelisation candidates were
identified using a loop-level profiling approach built on top of the Llvm compiler. Un-
like our proposal, parallelism extraction and the necessary code transformations were
performed manually, but systematically. In addition, the case of multi-level loops and
function-splitting, two techniques proposed in chapter 6 is not considered.

22

2.3. Commercial Tools

2.3. Commercial Tools

As we have already discussed, the ubiquitous adoption of multicore systems has led to an
unprecedented increase in the market potential of commercial interactive parallelisation
tools. In the following paragraphs we briefly present a few of them that appear to be
relatively mature and more promising. In addition, we attempt to provide a high-level
comparison with the main features of the work of this thesis 5.

CriticalBlue Prism In the first quarter of 2009 CriticalBlue, a company specialised
in automated embedded system design solutions, released the first version of their
multicore-software analysis tool called Prism [31]. Prism offers an integrated environ-
ment to support optimisation and debugging of parallel applications. It is based on
hardware-specific instrumentation which also allows the developer to inspect the paral-
lel overheads and bottlenecks of a parallel implementation on the specific target. Data
dependence information is extracted using profiling. However, Prism uses a binary
instrumentation approach and thus, unlike Ir-profiling, it is fundamentally limited to
use imprecise debugging symbol information to correlate dependence relations back to
the source code. Another interesting feature of Prism is an interactive interface that
enables the exploration of alternative parallelisation scenarios and their potential ben-
efits. Interestingly, this is accomplished without demanding from the user to provide
a full parallel implementation. Although these features can reduce the effort put by
the developers in the exploration of the parallelisation design space, the great problem
of deriving a parallel implementation is not addressed. Additionally, Prism is based
on a instrumentation approach and therefore it is fundamentally restricted of utilising
imprecise debugging symbols. Finally, the parallelism-mapping approach presented in
chapter 5 bears the potential to substitute hard-tuned analytical models like the one
implemented in Prism [105] with automatic and portable profitability analysis.

Intel Parallel Advisor Lite Intel has also recently released an experimental tool called
Parallel Advisor Lite [52]. Unlike existing tools from the same company that focus on
interactive analysis, debugging and optimisation of already-parallelised code [53, 54],
Parallel Advisor provides a set of simple annotations to let the user specify potentially
parallel constructs in the original sequential code. Then, the tool informs the user
for potential data-sharing problems that will arise and the performance potential of
the proposed parallelisation. In contrast to the approaches proposed in this thesis,
parallelisation should be manually performed by the developer, a process which is
both long and error-prone. Moreover, Parallel Advisor is solely focused on data and
a simple form of task parallelism. Thus, there is no support to express more advance
parallelisation schemes like pipeline parallelism.

5This is, of course, inherently difficult due to limited access to the documentation and the technical
specifications of these products.

23

Chapter 2. Related Work

Vector Fabrics vfAnalyst Only recently – Q1 of 2010 –, the startup company Vector
Fabrics released a novel parallelisation environment called vfAnalyst [155]. vfAna-
lyst shares many features with CriticalBlue’s Prism, however, it profiles dependences
with an infrastructure that allows tracing of individual accesses back to specific source
code expressions and data variables. In addition, it is able to automatically parallelise
code that features data-parallel or streaming parallelism. In the case of memory depen-
dences, however, vfAnalyst relies on the user to provide the appropriate communication
and synchronisation code. As we will demonstrate in chapter 6, embedded and multi-
media applications typically exhibit coarse-grain parallelism that requires privatisation
and synchronisation of heap-allocated data structures, therefore this code-generation
limitation of vfAnalyst can considerably constrain its parallelisation potential. On the
contrary, our approach can effectively handle these issues using precise profiling infor-
mation and runtime pointer disambiguation (section 6.2.3). Furthermore, our flexible
code-generation scheme coupled with an automated top-down partitioning strategy
(section 6.2.2) automatically identifies the candidate schemes that are likely to perform
better and does not rely on the user to traverse the complex program hierarchy to
uncover these loops manually.

2.4. Conclusion

In this chapter we presented a detailed comparison of profile-driven parallelisation
with the current state-of-the-art. We addressed techniques that target Doall loop
parallelism but also proposals like task and pipelining that go beyond iteration-level
parallelism.

As an alternative to a summary of the key features that differentiate our approach
from prior-art in parallelisation we summarised the approaches that were reviewed
in table 2.1. Some features are deliberately summarised or simplified for the sake of
visualisation. The main observation is that Ir-profiling despite its requirement for
user-approval, it represents an interesting and competitive design point in the space
of parallelisation methods. Not only it enables the implementation of many interest-
ing features that may be individually or partially supported from existing approaches,
but it also enhances their applicability. This is achieved with an automatic approach
that identifies and exploits different levels of parallelism automatically, relying to the
user only for the final verification. In contrast to leading static approaches that as-
sume dedicated hardware support (Scalar Operand Networks or hardware speculation
support), profile-driven parallelisation exploits high-level patterns in computation, ex-
tracting coarse-grain parallelism and thus enabling the exploitation of readily available
commodity hardware.

24

2.4. Conclusion

P
a
ra

lle
lism

H
/
W

P
a
ra

lle
lism

D
e
p
e
n
d
e
n
c
e

H
e
a
p

A
rra

y
P

ip
e
lin

e
sp

e
c
ifi

c
fe

a
tu

re
s

T
itle

C
ita

tio
n

S
o
u
rc

e
d
a
t
a

p
ip

e
lin

e
T

L
S

e
x
te

n
sio

n
g
ra

n
u
la

rity
p
ro

fi
lin

g
A

p
p
ro

a
ch

o
b
je

c
ts

re
d
u
c
tio

n
x
-it

e
r
a
t
io

n
m

u
lt

i-le
v
e
l

r
e
p
lic

a
t
io

n

P
a
d
fa

[90]
F
ortran

!
softw

are
coarse

au
to

n
.s.

sta
tic

n
.a.

n
.a.

n
.a.

H
a

&
sa

[122,
123]

F
ortran

!
softw

are
coarse

au
to

n
.s.

sta
tic

n
.a.

n
.a.

n
.a.

S
t
m

lite
[87]

C
!

softw
are

coarse
!

au
to

!
sta

tic
n
.a.

n
.a.

n
.a.

S
u
if

E
x
p
lorer

[157]
F
ortran

!
coarse

in
teractiv

e
n
.s.

sta
tic

n
.a.

n
.a.

n
.a.

P
ed

igree
[6]

C
!

fi
n
e

au
to

D
d
a

[66]
C

coarse
!

n
.s.

!
sta

tic
n
.s.

D
ai

et
a
l.

[32]
C

!
fi
n
e

n
.s.

!
T

h
ies

et
al.

[141]
C

!
coarse

!
an

n
otation

m
an

u
al

!
!

!
D

sw
p

[106]
C

!
!

fi
n
e

au
to

!
!

R
u
l
et

al.
[121]

C
!

coarse
!

m
an

u
al

n
.a

.
!

!
M

a
p
s

[20]
C

!
!

fi
n
e

an
n
otation

!
M

pa
[10]

C
!

coarse
an

n
otation

n
.s.

C
ord

es
et

al.
[28]

C
!

!
coarse

au
to

n
.s.

P
aralax

[153]
C

!
coarse

!
an

n
otation

an
n
o
tate

!
!

B
o
p

[33]
C

!
softw

are
coarse

!
an

n
otation

!
n
.a.

C
oD

[142]
C

!
softw

are
coarse

!
au

to
!

!
!

P
s-D

sw
p

[113]
C

!
!

fi
n
e

au
to

!
!

!
S
p
ec-D

sw
p

[149]
C

!
h
ard

w
are

!
fi
n
e

au
to

!
!

S
m
t
x

[112]
C

!
softw

are
coarse

!
m

an
u
al

!
!

!
!

P
rism

[31]
C

!
coarse

!
m

an
u
al

n
.a

.
n
.a.

P
.
A

d
v
isor

[52]
C

!
coarse

!
m

an
u
al

n
.a

.
n
.a.

v
fA

n
aly

st
[155]

C
!

!
coarse

!
sem

i-au
to

n
.s.

Ir
-p

rofi
lin

g
[145,

144]
C

!
!

coarse
!

sem
i-au

to
!

h
y
b
rid

!
!

!

T
ab

le
2
.1

.:
Sum

m
ary

ofim
portant

features
for

the
approaches

that
are

m
ost

relevant
to

this
thesis

(n.a
and

n.s.
stand

for
not

applicable
and

not
specified

respectively).

25

Chapter 2. Related Work

26

Chapter 3.

Background

This chapter presents background material about the programming models, bench-
marks, compiler and hardware infrastructure used in this thesis. First, we present the
CoSy compiler infrastructure which was used for the source-to-source parallelisation in
section 3.1. Section 3.2 provides information about the architecture-specific compilers.
Section 3.3 is a brief overview of the main features of OpenMP, a parallel programming
model which is used extensively in the remaining of this thesis. Finally, we describe
the evaluation platforms in section 3.5 and the application benchmarks in 3.4.

3.1. Source-to-source Compiler Framework

This section presents the CoSy compiler development system [1], a modular and ex-
tendible compiler infrastructure, on top of which we built the source-to-source tools
proposed in this thesis. More specifically, CoSy was utilised for the implementation of
both, the Ir profiling tool introduced in chapter 4, and the code-generation phase
of the pipeline-parallelism approach which is presented in chapter 6. Although CoSy is
an end-to-end compiler solution with features that range from multiple front-ends (Iso
C 89, Dsp-C, etc.) to a very powerful and flexible Back-End Generator (Beg), we will
only refer to the modules which are more relevant to this thesis.

First, in 3.1.1 we provide an overview of the overall architecture of the CoSy frame-
work. Finally, a description of the middle-level Ir follows in 3.1.2.

3.1.1. Overview

A high-level picture of the CoSy compiler development system architecture is illus-
trated in figure 3.1. At the core of CoSy is Ccmir [2], a common middle-level Ir that
serves as both the source and target representation for all the middle-level compiler
passes (referred to as engines in the CoSy terminology). All the frontends (anc0 in
the case of Iso C) produce as output a program representation in Ccmir. Middle-level
transformations and optimisations take as input and produce a Ccmir representation.
This includes common optimisations like global subexpression elimination, dead-code
elimination, etc. Although the program might be “lowered” as a result of a transfor-
mation pass, it is still expressed in Ccmir. Nevertheless, additional information like

27

Chapter 3. Background

C
source

IR

persistent

id

pipeline

transform

loop

analysis

anc0

pirtoc

memdump

C
source

CoSy

backend
010101
011010
100110

Figure 3.1.: High-level picture of the CoSy compiler development system. The infrastructure
partly consists of multiple engines which perform transformations on a core intermediate rep-
resentation of the program.

debugging information or high-level loop informations can be conveyed in the form of
extensions to Ccmir, which is also a very powerful feature of CoSy. The rest of this
thesis presumes programs written in C, however most of the compiler passes developed
are building on top of Ccmir ’s language independent representation. In symmetry to
the frontend, the backend takes as input Ccmir and produce programs in the target-
specific machine language. A special case of a backend is pirtoc which generates code
in C and effectively enables the use of CoSy as a source-to-source transformation tool.
Despite the fact that CoSy ships with a high-quality code generator for x86 architec-
tures – which is the main target architecture used of this thesis – the choice to use it
only as a source-to-source tool was primarily dictated by our objective to provide a fair
and robust comparison with existing auto-parallelising compilers (e.g. Intel Icc). In
addition, this choice enabled us to utilise the support for established parallel program-
ming interfaces (e.g. OpenMP) which is already built-in in some of the target-specific
compilers.

3.1.2. CCMIR

Ccmir, briefly introduced in the previous section, is the common middle-level Ir of
CoSy. A key property of Ccmir is its generic and versatile design which enables it to
be independent of the source language and the target architecture. It is a graph-based
language where nodes represent statements and expressions, but contrary to common
languages it does not have a syntax or textual representation. Ccmir is fully-typed
and thus each node has a type throughout the middle-level transformations. Nodes
also contain fields which are either by-value or by-reference. By-reference fields point
to other nodes and effectively represent the edges of the graph. By-value are self-
contained fields that do not extend the graph structure, e.g. the value of a constant.
Although the structure of Ccmir is a directed graph, it can also be viewed as a tree

28

3.1. Source-to-source Compiler Framework

with an overlay of additional arcs. At the root of the tree is a node representing the
whole compilation unit (i.e the code in a pre-processed source file) mirUnit, figure 3.2.
Its descendants include nodes representing lists of types, global data and procedures.

mirUnit

Globals

Procedures

Types List(mirTYPE)

List(mirDataGlobal)

List(mirProcGlobal)

mirBody

Locals

CFG

List(mirLocal)

Figure 3.2.: Ccmir is a graph-based representation. Nodes are connected with edges that
represent references. This figure shows a simplified view of mirUnit, which is the topmost node
of every compilation unit (source file). mirUnit has pointers to lists containing Procedures,
global variables and types defined in the current file.

Procedures

Besides fields like its name, type, and linkage each procedure contains a body which,
if defined, consists of a Control Flow Graph (Cfg) and a list of local variables. The
Cfg is a rooted directed graph. There are two special nodes, mirBeginProcedure,
which is also the root of the Cfg and mirEndProcedure, which is the only node with
no successors. Nodes represent Basic Blocks (Bbs), i.e. Single-Entry Multiple-Exit
(Seme) lists of statements. Directed edges show the possible successors of the current
Bb in the control-flow (i.e. jump targets).

Statements

Ccmir makes a distinction between statements and expressions. Expressions are guar-
anteed to not modify the program state (variables, control-flow, dynamic memory etc.),
i.e. expressions are side-effect free. Therefore, there is no dependence between the
expressions of the same statement. On the contrary, statements can modify the pro-
gram state and hence are not allowed to be reorder without prior dependence analysis.
Statements are further divided in two abstract domains: (i) Simple statements like
assignments to variable and function calls and (ii) Control statements that define the
Bbs where the control can be transferred after the current Bb. Table 3.1 summarises
the most important types of Ccmir statements. In every Bb the last statement is
always a control statement, i.e. a conditional or unconditional jump. mirEndProcedure

has the additional requirement to be the only statement in its Bb.
Ccmir does include special control statements (mirBeginLoop and mirEndLoop) to

designate the loop header and pre-header of natural loops 1, however, these constructs
1The terminology follows the definitions in [95]

29

Chapter 3. Background

Statements
Simple statements

Name Description Fields
mirAssign Rhs expr. evaluation

and assignment of the
result to the Lhs

Lhs expr. (address) , Rhs expr.

mirEvaluate Evaluate expr. with no
assignment of the
result

expr.

mirCall Function call with no
return type

procedure expr. , actual parameters list

mirFuncCall Function call with
result assignment

procedure expr. , actual parameters list ,
result expr. (address)

mirStackAllocate Stack memory
allocation

type of pointer , size of memory , result
expr. (address)

Control statements
mirCondAssign Conditional assignment conditional expr., Lhs expr. (address), Rhs

expr.
mirBeginProcedure First statement of the

entry BB
-

mirIf Binary conditional
branch

conditional expr. , then BB , else BB

mirGoto Unconditional branch target BB
mirReturn Return value and then

exit procedure
return value , exit BB

mirSwitch Multi-target
conditional branch

expr. , list of (value range, target BB)

mirBeginLoop Loop pre-header iteration count , loop header BB
mirEndLoop Loop header successor BB in loop body , loop exit BB
mirEndProcedure The last and only

statement of the exit
block

-

Table 3.1.: Statements are divided into two groups: simple and control. This table lists the
most important instances of these two types and their private fields.

are tailored for supporting zero-overhead loops in the code-generator rather than per-
forming loop analyses. Loops are generally expressed Ccmir using lower-level control
statements from table 3.1 like mirIf and mirGoto. As a result, Ccmir is not the appro-
priate representation for the needs of parallelism extraction – which primarily targets
and performs transformations on loop structures. Therefore, for the rest of this thesis
we utilise the Loop-markers extension of Ccmir [3], which provides high-level informa-
tion about the loop structures. Due to their significance, Loop-markers are presented
in detail in the next section, 3.1.3.

Expressions

Expressions are recursive data types and represent side-effect free computation. In
the interest of brevity a list of available expressions is omitted. Figure 3.3 shows an
example of the expression hierarchy for a simple C expression.

30

3.1. Source-to-source Compiler Framework

int A[10];

int sum;

(A[10] - sum)

Source

CCMIR expression trees

mirMinus

mirContent

mirSubscript

mirContent

mirObjectAddr

10

mirIntConst

mirObjectAddr

Locals list

A

sum
int

int[10]

Figure 3.3.: The Ccmir hierarchical representation of a simple expression in C. Sub-expressions
form a tree. The leaves point to objects (locals A, sum) or other structures (opaques) like integer
literals (10).

3.1.3. Loop-markers

Loop-markers are an extension of the Ccmir that provide high-level information about
the loop structures of a procedure. Loop-markers are constructed by the front-end
for languages like Fortran. On the contrary, for C which lacks well-defined loop con-
structs CoSy extracts this information from the middle-level Ir representation that is
produced from the frontend. The loop-markers information can be updated using the
loopanalysis pass. In the case of irreducible Cfgs, i.e. containing loops with multiple
entries, loopanalysis is not constructing any annotation. Contrary to low-level program
representations where irreducible loops are common side-effects of back-end optimisa-
tions like global instruction scheduling, software-pipelining and code replication [147],
in the relatively high-level representation that this thesis is focusing on is a rare phe-
nomenon. In practice, for the wide range of programs used in the empirical evaluation
this property was not found to be a significant constraint. Nevertheless, approaches
similar to [46] can construct a loop-nesting tree with maximal reducible loops even in
the presence of irreducible subgraphs, thus minimising the size of irreducible code. We
plan to utilise such techniques in future work.

For the sake of clarity a few definitions are given before describing the main features
of the loop-markers. These definitions follow the documentation in [3] but are also in
line with the related bibliography [95].

3.1.3.1. Definitions

Natural loop Natural loop of a back-edge v h in a Cfg G is the subgraph of G

consisting of: (i) the set of nodes V containing h and all the nodes from which
v can be reached in the flowgraph without passing through h, and (ii) the set of
edges E connecting all the nodes in the node set V .

31

Chapter 3. Background

Loop header In a natural loop characterised by the back-edge v h Bb h is called
loop header.

Loop entry Loop entry is a Bb that belongs to the loop but it has a predecessor that
it is outside the loop.

Loop exit A Bb that is the successor of a Bb belonging in a loop is called a loop exit

of this loop.

Loop pre-header A Bb that has as its only successor the header of a loop is called the
pre header of this loop.

init

guard

pre-header

test

body

increment

exit BBs

(a) while do loop

init

guard

pre-header

body

increment

test

exit BBs

(b) repeat until loop

Figure 3.4.: This figure shows how the different loop-elements defined by the Loop-markers
framework connect depending on the form of the loop structure (while do or repeat until).
Shaded nodes denote primary elements i.e. elements that are part of the loop. Nodes with just
one successor are Sese subgraphs. The rest are Seme.

The loop-markers infrastructure considers two different loop structures, while-do
and repeat-until. Each such loop structure contains a well-defined set of Single

EntryMultiple Exit (Seme) and node disjoint subgraphs which are called loop-
elements. Figure 3.4 shows the connections between the elements. In addition, table
3.2 summarise their characteristics. If a Cfg does not contain any statements or Bb

that fit with the specification of a primary loop-element, the loopanalysis pass will
create one with only a constant mirGoto statement. This feature is actually utilised
extensively in the pipeline code-generation pass of chapter 6 to inject the inter-stage
communication code.

3.2. Target-specific Compilers

This section summarises information about the compiler infrastructure used to generate
executable machine code for the empirical evaluation.

32

3.2. Target-specific Compilers

Loop elements
Name Type Primary? Description
Init Seme Code for the initialisation of loop variables. Sin-

gle/multiple exits to the loop-header (Test or
Body).

Guard Seme Code that determines whether the loop will ex-
ecute.

Pre-header Sese Loop-invariant code. Single exit to the loop-
header (Test or Body).

Test Seme ! Code executed at every iteration and determines
whether the loop-body will execute. Multiple
exits to the loop-body or/and loop-exit Bbs.

Body Seme ! Every Bb that belongs to the loop but is not in
the Test or Increment loop element. Multiple
exits to loop-exit Bbs and the Increment loop
element.

Increment Sese ! Code executed at every iteration and updates
the loop variables. Single exit to the loop-body.

Table 3.2.: Brief description and main characteristics of loop-elements.

Most of the applications that we consider in this thesis feature ample fine-grain loop-
level parallelism and therefore can be further optimised utilising the Simd extensions
available in most modern embedded and general purpose processors. Nevertheless, the
primary focus of this thesis is on the extraction of coarse-grain Thread-Level Paral-
lelism (Tlp). We consider the exploitation of this form of parallelism to be orthogonal
to our approach and therefore rely solely on the auto-vectorisation features of the
target-specific compilers. All the measurements reported hereafter, including the se-
quential versions of the programs, are performed with auto-vectorisation enabled, thus
guaranteeing comparison with the strongest available baseline.

3.2.1. Compilers for x86 64 Architectures

We used two different compilers when targeting the x86 64 architectures, namely the
auto-parallelising Intel Icc and Gnu Gcc. Version details, optimisation features and
the exact command lines arguments that we used are shown in table 3.3 2. For the study
on data-parallelism in chapter 5 we have used Icc for two reasons: (i) it offers state-of-
the-art auto-parallelisation features and thus it can be used to contrast and compare
to profile-driven techniques, and (ii) Icc’s OpenMP implementation performed signif-
icantly better both in terms of absolute runtime and speedup over sequential execution
for the benchmarks that we considered. On the other hand, for the study about pipeline-
extraction we preferred Gcc because it achieved higher performance when compiling
the C code which is produced by pirtoc, the Ir-to-C CoSy engine.

2The compilation flags used in the case of Icc are the ones Intel is using for reporting published Spec
results for systems similar to M1.

33

Chapter 3. Background

Intel ICC
Version 10.1 (Build 20070913)
Flags -O2 Enable generally recommended optimisa-

tions. Optimisations include:
-aggressive data dependence analysis
-software pipelining
-prefetch insertion
-partial redundancy elimination
-loop unrolling
-copy and constant propagation
-global register allocation
-global instruction scheduling

-parallel Auto-parallelisation using threads.
-ipo Enable multi-file interprocedural optimisa-

tions.
-openmp Enable OpenMp.
-ansi-alias Assume conformance to Iso C aliasing

rules.
-xS Optimised code-generation and auto-

vectorisation for Sse, Sse2, Sse3, Ssse3
and Sse4.

-axS Auto-vectorisation targeting the Simd ref-
erenced above.

Environment
variables

KMP AFFINITY=compact,0 Bind threads to processors as closely to-
gether as possible.

KMP LIBRARY=turnaround Optimise OpenMP runtime for
turnaround time.

KMP BLOCKTIME=infinite Enables busy-waiting when a thread re-
mains idle.

GNU GCC
Version 4.4.1
Flags -O3 Maximum optimisation level. Optimisa-

tions include:
-loop vectorisation on trees
-global interprocedural subexpression elim-
ination, constant and copy propagation
-interprocedural constant propagation
-range value propagation
-partial redundancy elimination
-function inlining

-march=core2 Tune and generate code specifically for In-
tel Core2 architecture, 64-bit extensions
and Mmx, Sse, Sse2 and Sse3 Simd ex-
tensions.

Table 3.3.: Details of the two compilers that were used for generating native code on the x86 64
platform (M1).

34

3.3. OpenMP

IBM XL for Multicore Acceleration
Version 0.9
Flags -O5 Maximum optimisation level. Optimisations

include:
-interprocedural data-flow and alias analysis
-aggressive code motion
-inlining & cloning
-constant propagation
-dead-code elimination

-qstrict Ensures correctness for -O5.
-qarch=cell Specifies target architecture.
-qipa=partition=minute Minimum code-overlay buffer size.
-qipa=overlay Automatic code overlays.

Table 3.4.: Details of the compiler that was used for generating native code on the Cell BE
platform (M2).

3.2.2. Compilers for the IBM Cell BE

Applications for the Cell Be were compiled using the Ibm Xl single-source compiler. Xl

supports OpenMP directives and generates code for both the general-purpose processor
and the synergistic units. To leverage the constraints of the Spe local storage, the Xl

compiler is employing advanced compilation techniques like code overlays and a software
caching [34, 102]. Still for a few programs or data inputs we were unable to produce a
valid executable. Table 3.4 includes version information and the compilation flags that
were used.

3.3. OpenMP

In the study on extraction of data-level parallelism we opted to use the OpenMP pro-
gramming interface for parallel code-generation. This decision was primarily dictated
by the following facts:

OpenMP is the de-facto standard for manual data parallelisation in C and For-
tran. Its specification, which is the outcome of a multi-vendor board, includes an
architecture-independent and well-defined execution and memory model. These
provided an abstraction layer that removed the burden of specifying an interme-
diate parallel architecture from scratch.

The availability of mature and robust industrial compiler products for many par-
allel architectures, e.g. x86 64, Power , Sparc, guarantees performance and
portability. Additionally, it enables us to exploit the high-quality target-specific
code-generation – which is available from these compilers – without sacrificing
target-independence in our parallelisation approaches.

Availability of well studied and widely used sequential benchmarks (e.g. Nas-

Pb and Spec2000 Fp/Spec Omp2001) that are also hand-parallelised using

35

Chapter 3. Background

OpenMP. This provides a strong and realistic upper limit for the speedup that
can be achieved with parallelisation. Contrary to the established methodology
of comparing against a sequential baseline – which always conceals the common
fallacy of assuming linear speedups – this approach evaluates parallelisation into a
more realistic context. In addition, this is particularly useful in identifying which
are the main obstacles that prevent existing compiler technology from matching
the performance achieved by parallel programming experts.

Gcc’s support for OpenMP offers an open and highly portable alternative for
many platforms. Thus, making our parallelisation approach readily available to
test in many platforms.

3.3.1. Overview

OpenMP is a Application Program Interface (Api) that supports multi-platform paral-
lel programming for C C and Fortran [103]. It follows the shared-memory program-
ming model. Nevertheless, it has been successfully ported to architectures which are
not strictly adhering to the shared-memory model. For instance, the Ibm Xl C/C++
for Multicore Acceleration for Linux [51, 34, 102] targets the Cell BE where each ac-
celerator has access to the coherent shared memory through a Dma controller but is
restricted to perform computation using direct access to a private software-managed
local memory. The main components of OpenMP are a collection of (i) compiler
directives, (ii) library routines, and (iii) environment variables.

The sole purpose of the following subsections is to provide the necessary background
for the chapter about data-level parallelism extraction where we use a code-generation
methodology built on top of OpenMP. The main compiler directives and library rou-
tines are presented in 3.3.2. A more detailed description of the execution and memory
model follows in subsections 3.3.3 and 3.3.4 respectively.

3.3.2. OpenMP Directives

3.3.2.1. Definitions

Structured block An executable statement with a single-entry at the top and a single-
exit at the bottom. The statement can be either simple or compound.

Construct A construct includes the directive plus the code included in the lexical extent
of the associated statement, loop or code block.

Region A region includes all the code encountered during the execution of a specific
instance of a construct. Hence, it contains the code of all the routines called
within the associated construct.

36

3.3. OpenMP

Constructs
Name Arguments Description
parallel Starts parallel execution, creating a new team of threads.

A barrier is implied both on entry and exit from the region.
for The iterations of the For loop that follows are distributed

among the threads of the current team based on the current
scheduling policy (default or specified with the schedule
clause). An implied barrier is enforced at the end of the
loop.

parallel for A parallel construct combined with just one nested for.
threadprivate (list) Defines that a global-lifetime variable will be replicated, so

that each thread will have access to a private and persistent
copy of the original variable (see 3.3.4.1)

Synchronisation Constructs Constructs
barrier Specifies a point of a parallel region that no thread of the

current team is allowed to proceed until all the threads of
the team have reached it.

single Specifies that the structured block that follows will be ex-
ecuted only by one thread of the current team. A barrier
for the whole team is implied at the exit of the block.

master Specifies that the structured block that follows will be ex-
ecuted only by the master thread of the current team.

critical [(name)] Enforces exclusive access to all the structured blocks that
have the same name or the default unspecified name.

flush [(list)] The private view of the specified variables, or in the default
case the whole program state of the executing thread, is
written back to the memory. Upon a new access to this vari-
able a new copy will be fetched from memory (see 3.3.4.3)

Synchronisation Clauses
nowait The implied barrier at the end of a worksharing construct

(e.g. for) is removed.

Data-sharing Clauses
private

(list)
Assigns the respective sharing attribute to the
specified list of variables within the region of the
relevant construct (see 3.3.4.1).

firstprivate

lastprivate

copyin (list) Assigns the copyin sharing attribute to the specified list of
threadprivate variables (see 3.3.4.1).

reduction (operator:list) Assigns the reduction sharing attribute to the list of speci-
fied variables. In addition it specifies the specific reduction
operation to be used (e.g. a parallel reduction for a specific
variable using the specified operator.

Scheduling Clauses
schedule (kind[, chunk]) Specifies the iteration distribution policy of the relevant

for construct. Kind can be one of static, dynamic— or
guided. chunk specifies either the number of iterations
distributed among the threads in the case of static and
dynamic, or the minimum number of iterations distributed
in the case of guided.

Table 3.5.: Directives utilised by the code-generator in chapter 5.

37

Chapter 3. Background

Library Routines
Prototype Description

int omp get num threads() Returns the number of threads in the current team.
int omp get num threads() Returns the number of threads that would form a

team if a parallel construct were to be executed.
int omp get thread num() Returns the sequence number of the call-

ing thread with respect to the current team
(0,omp get num threads())

void omp init lock() (omp lock t *) The specified lock is initialised in the unlocked state.
void omp destroy lock() (omp lock t *) The specified lock is set to the unitialised state.
void omp set lock() (omp lock t *) The calling thread blocks at least the specified lock

is in unlocked state.
void omp unset lock() (omp lock t *) The calling thread sets the specified lock in the un-

locked state and returns.

Table 3.6.: library routines utilised by the code-generator in chapter 5.

Worksharing construct is a construct defining the distribution of work among the
threads in the team executing the construct. In C these are the following: for,
sections and single.

The main directives, clause and library routines utilised by the code generator in
chapter 5 are listed in tables 3.5 and 3.6. Figure 3.5 is a simple code excerpt from the
Nas Pb benchmark Cg which demonstrates the parallelisation of a For loop using a
parallel reduction reduction clause. Parallel reductions are a common and extremely
useful design pattern in parallel computation. It enables the parallelisation of loops in
the presence of loop-carried dependence that are caused by associative and commutative
operations like the one in line 8 of figure 3.5.

1 void compute{
2 int x [N] ;
3 int y [N] ;
4 int i , d , sum ;
5

6 #pragma omp p a r a l l e l for reduction (+:sum) private (d)
7 for (i =1; i < N; i++) {
8 d = x [i] y [i] ;
9 sum = sum + d d ;

10 }
11 }

Figure 3.5.: A parallel for construct in OpenMP. Variable d is privatised and thus each
thread accesses a private copy with the same name. Variable sum is part of a parallel reduction
using a operator. The compiler will automatically generate code to accumulate the partial
results in the original variable sum at the end of the parallel region (line 10).

38

3.3. OpenMP

initial

thread

parallel

region

implicit

barrier
implicit

barrier

master construct

nested parallel

region

FORK JOIN

Figure 3.6.: OpenMP follows the fork-join execution model. In the beginning, there is only the
initial thread. New threads are forked when a parallel construct is encountered by one of the
existing threads. Hence, as shown in the figure, nested fork-join hummocks can be constructed.
At the end of each work-sharing construct threads are synchronised on a barrier.

3.3.3. Execution Model

OpenMP follows the fork-join model of parallel execution, figure 3.6. A program in
OpenMP begins its execution as a single sequential thread, named the initial thread.
The initial thread also defines a virtual parallel region which consists of the whole
sequential program. When a new work-sharing construct is encountered by any of the
existing threads, a team of threads is forked. The thread encountering the construct is
called master thread. Each thread in the team is executing the code in the construct.
At the end of the parallel construct all the threads synchronise on an implicit barrier.
After the barrier (join) only the master of the team resumes execution. Upon entering a
worksharing construct the work is split among the threads of the current team. Finally,
at the end of the worksharing construct there is also an implicit barrier like in the case
of a parallel construct but this time all the threads in the team resume executing the
subsequent code of the parallel region.

A team consists of the master plus zero or more threads. The exact number is
determined dynamically based on a set of dynamic and static information and policies
(e.g. num threads clause, support for nested parallelism, OMP NESTED and OMP DYNAMIC

environment variables). In addition, nested regions are valid, hence nested thread teams
are also possible 3. Nevertheless, in the context of this thesis we are only utilising the
simplest option of using single level (i.e. OMP NESTED is false) parallelism and a team
with as many threads as the number of available cores (i.e. OMP NUM THREADS).

It is important to clarify that the execution model defines the intended behaviour
of an OpenMP program and not the implementation specifics. For instance, most
efficient implementations would use a single or multiple pools of Os-threads which are

3Actually supporting nested regions of more than one thread is implementation defined.

39

Chapter 3. Background

spawned on-demand but are not finalised unless the program ends. By reusing threads
the thread-spawning overhead is amortised across the entire execution.

3.3.4. Memory Model

OpenMP specifies a relaxed-consistency, shared-memory model. All threads have ac-
cess to a common memory space to store and retrieve variables, called the memory.
In addition, each thread is provided with a temporary view of the memory. This prac-
tically allows the implementation of any hardware/software caching mechanism (e.g.
register, caches, etc.) which will result to accessing a copy of the data in memory.

3.3.4.1. Sharing Attributes

Each parallel directive defines two kinds of access to variables which are within the
lexical scope of the structured block, private and shared. Each variable referenced
within the structured block has an original variable which is the variable which is out
of current block but has the same name. References to shared variables are translated to
references to the original variable. References to private variables translate to references
to a private version which is has the type and size of the original. Private versions are
allocated in memory for every thread in the team that executed the construct, with the
exception of the master thread which can keep the original.

In addition to the private and shared attributes which are mutually exclusive, there
are four additional attributes for private variables:

Threadprivate: Global-lifetime variables declared threadprivate are replicated and each
thread retains its private copy. The values stored in the copy are persistent across
parallel regions and in any point of the program in general 4. In sequential regions
the references are made to the copy of the initial thread.

Firstprivate: Firstprivate variables have their private copy initialised with the value
that the original variable had just before the construct.

Lastprivate: If a variable is defined as lastprivate, its original variable gets assigned
the value that was assigned to the private copy during the execution of the last
iteration of the loop construct or the execution of the lexically last section.

Reduction: Variables participating in a reduction clause are a special case of private
variables which are initialised with the appropriate identity element for the spe-
cific reduction operator. In addition, the original variable is updated by applying
the operator to each of the private copies.

4There are a number of preconditions for this to hold for any thread but the initial one. Nevertheless,
in this thesis we are only considering a constant number of threads with no nesting and all these
conditions hold.

40

3.3. OpenMP

Copyin: applies to threadprivate variables only. A variable defined copyin has its
thread-private copies initialised with the value of the master thread before enter-
ing the parallel region.

Sharing inference for construct variables The sharing attributes of a variable which
is referenced within the lexical scope of a construct can be determined in one of the
following ways: (i) predetermined, (ii) implicitly, and (iii) explicitly.

When appearing within the lexical scope of a construct the following sets of variables
have predetermined sharing attributes :

1. Variables of automatic storage duration declared in the lexical scope of the struc-
tured block are private,

2. The loop iteration variable of an OpenMP for or parallel for construct is
private.

3. Heap allocated data are shared.

4. Data with static allocation are shared.

Explicitly determined are the variables which are referenced in one of the sharing
clauses of the construct.

Finally, variables which do not belong in one of the former two types are said to
have implicitly determined sharing attributes. There are three cases of variables with
implicitly determined sharing:

1. In a parallel construct which has a default clause, in which case they get their
sharing attributes from the argument of default. Thus in C they can only be
shared5.

2. In a parallel construct without a default clause are implicitly shared, in which
case they are determined to be shared.

3. In another construct, in which case they inherit the attributes of the enclosing
context.

Sharing inference for non-construct variables Variables which are referenced by a
region but are not within the lexical scope of the construct have predetermined sharing
attributes in one of the following cases:

Variables referenced in a region but not within the boundaries of a construct 6 have
their sharing attributes determined with a more straightforward way:

5Or invalid in the case of default(none) which demands explicit declaration for not predetermined
attributes.

6Obviously, this also includes variables which are referenced in the code of routines called within the
region.

41

Chapter 3. Background

1. Variables in called routines with static storage duration are shared.

2. Heap allocated data are shared.

3. File-scope or namespace-scope variables are shared unless they are threadprivate.

4. Formal arguments of routines which are passed by-reference inherit the attributes
of the actual argument passed.

5. All other variables in called routines are private.

3.3.4.2. Coherency

The standard specifies that the following two are unspecified

1. The value stored in a shared variable when multiple threads write to it without
appropriate synchronisation.

2. The value read from a shared variable by one or more threads when at least one
of them writes to that variable without appropriate synchronisation.

3.3.4.3. Consistency

The memory model defined by OpenMP is clearly a relaxed-consistency model, since
each processor is allowed to cache a temporary view of the memory which might not
be consistent at all times. In order to enforce the consistency between the temporary
view and the memory OpenMP defines a flush operation. Flush is always associated
with a set of variables, called the flush-set. For writes to memory flush is a synchronous
operation since it does not complete until the temporary view of the variable has been
updated in memory. For reads flush guarantees that the temporary view of the asso-
ciated variable will be discarded and the next read will be from memory. In addition,
flush also serves as a memory barrier since it guarantees that no memory operations
will execute from this thread before its completion. It should be clear by now that
the OpenMP consistency model diverges from the definition of classic weak ordering
because synchronisation operations in OpenMP (i.e. flush operations) are guaranteed
to be ordered with respect to each other only if they refer to a common variable.

Flush operations are either explicit or implicit. An explicit flush operation is defined
using the flush directive. An implicit operation related to a specific variable is implied
at entry and exit from atomic regions, where the flush refers only to the variable that
is atomically updated.

If there is no variable list associated with the directive OpenMP assumes that the
whole temporary view of the current thread should be flushed. Such a general flush is
implied in one of the following cases:

1. In a barrier construct.

42

3.4. Benchmarks

2. At entry and exit from parallel, critical and ordered regions.

3. At exit from work-sharing constructs unless a barrier or nowait clause is used.

4. In a omp set lock() and omp unset lock() call and in the case of an omp test lock()

that successfully acquires the lock.

3.4. Benchmarks

3.4.1. Overview

For the empirical evaluation of the methods proposed in this thesis we used a very
diverse set of benchmarks, ranging from scientific applications to reference implemen-
tations of industry-standard multimedia codecs and digital signal processing kernels.
This choice was primarily dictated by the diversity of the forms of parallelism that is
inherent to different types of algorithms and applications. In the subsections that fol-
low we provide a high-level description of each application. Properties relevant to the
context of specific parallelisation studies are discussed in greater detail in the evaluation
sections of chapters 5 and 6.

Benchmarks

Parallelism Manual

Name Source LOC data pipeline Parallelisation

Bt

Nas-Pb 2.3

4058 !

Npb2.3-Omp-C

Cg 1275 !
Ft 1608 !
Is 1063 !
Lu 3952 !
Mg 1651 !
Sp 3402 !
ammp

Spec Cfp2000
13487 !

Spec Omp2001art 1289 !
equake 1515 !
bzip2 Spec Cint2000 4649 !
mp3player

Eembc 2.0
23606 !

mpeg2dec 23606 !
cjpeg 29371 !

Table 3.7.: Summary of the benchmarks used in the evaluation of the parallelisation approaches
developed in this thesis.

Table 3.7 summarises the most important benchmarks properties and characteristics.

3.4.2. Scientific Applications

3.4.2.1. NAS Parallel Benchmarks

The Nas Parallel Benchmarks (Nas-Pb) [12] is a set of scientific programs which were
originally designed from the Nasa Advanced Supercomputing Division for the perfor-

43

Chapter 3. Background

mance evaluation of parallel supercomputers. These benchmarks have been widely 7

used by industrial and academic researchers in studies from the fields of parallel archi-
tectures, programming models and runtime systems. Nas-Pb consists of five kernels
and three applications which implement representative algorithms drawn from the field
of computational fluid dynamics. The key feature of Nas-Pb is that it provides both se-
quential and parallel implementations of the algorithms. More specifically, Nas-Pb ver.
2.3 includes (i) a sequential version in C/Fortran, (ii) a parallel implementation using
Mpi that mainly targets distributed memory parallel systems (e.g. clusters of multi-
processors), and (iii) an OpenMP shared-memory parallel implementation. For the
assessment of our parallelisation approach we used both the sequential and OpenMP

-parallelised versions, which provided us not only with absolute speedup figures but
also with an upper limit for what manually extracted parallelisation can achieve. Since
some of the codes were originally written in Fortran we used the optimised C versions
from [47]. It is important to clarify that the Nas-Pb codes are manually parallelised
but not hand-tuned for a specific target architecture. The designers employ parallelisa-
tion patterns that primarily target high-level coarse-grain loop-level parallelism but do
not address architecture-specific optimisations like Simd parallelisation and data place-
ment. Nevertheless, OpenMP ’s directive-based approach in addition to the availability
of target-specific OpenMP compilers and runtime systems provide the guarantee for
highly optimised sequential code-generation and minimum parallel-runtime overhead.

A brief description of the individual kernels and applications follows:

BT A simulated computational fluid dynamics application that uses an implicit al-
gorithm to solve a system of 3-D Navier-Stokes equations [11]. The result of
the finite-differences discretisation is a set of three decoupled systems of 5 5
Block-Tridiagonal.

CG A Conjugate Gradient kernel that is used to numerically approximate the largest
eigenvalue of a sparse and symmetric positive definite matrix [12].

EP An Embarrassingly Parallel kernel [12]. It generates pairs of Gaussian random
deviates and then counts the number of pairs that lie in successive square annuli.
This problem is typical of Monte Carlo simulation applications. It provides an
upper bound for achievable parallel performance since it features minimal inter-
processor communication.

FT A 3D partial differential equation solver using Fast Fourier Transform [12]. This
kernel is the integral part of many spectral codes and it features communication-
intensive scatter/gather operations.

IS A large Integer Sort kernel implemented using bucket sort. This is an essential
component of many particle method applications.

7At the time these lines are written (July 2010) [12] and [11] have a total number of 1379 and 635
citations respectively based on Google Scholar

44

3.4. Benchmarks

LU A simulated computational fluid dynamics application that factors a system of
equations in a Lower and an Upper triangular matrix using the successive over-
relaxation (Ssor) method. The input is a seven-block-diagonal system that re-
sults from the finite-difference discretisation of the Navier-Stokes equations in
3-D.

MG A simplified MultiGrid kernel[12]. It consists of iterations of the V-cycle multigrid
algorithm that approximates the solution of a discrete Poisson problem.

SP A simulated computation fluid dynamics application which is similar to Bt [11].
It uses a Beam-Warming factorisation which results in a system of Scalar Penta-
diagonal bands of linear equations for each of the three dimensions.

3.4.2.2. SPEC CFP2000

In addition to the Nas-Pb we used floating-point intensive benchmarks from the
Spec2000 benchmark suite [130]. Spec2000 is one of the products from the Stan-
dard Performance Evaluation Corporation (Spec) which are the de-facto industrial
standard for performance evaluation of high-performance computing systems. Due to
the lack of a Fortran frontend for the source-to-source toolchain we had restricted our
studies to the subset of applications that are coded in C, namely ammp, art and equake.

The determining factor for using Spec2000 instead of the latest Spec2006 was the
availability of manually parallelised versions of the same benchmarks, which are dis-
tributed as part of the SpecOmp-2001 suite [8]. The applications were parallelised by
expert programmers using OpenMP. Unfortunately, besides the algorithmic modifica-
tions that enhance parallelisation, the programmers have also performed some sequen-
tial code enhancements (e.g. optimised an inefficient allocation policy in equake). As a
result, the single-threaded execution of the SpecOmp-2000 codes is significantly faster
(2 times faster on average) compared to the sequential code of Spec2000. Neverthe-
less, these codes still provide a robust upper bound for the parallelisation potential of
these applications.

A brief description of the applications follows:

ammp is computational chemistry application that performs molecular dynamics com-
putations on a protein-inhibitor complex which is embedded in water.

art is an Adaptive Resonance Theory 2 (ART 2) neural network application. It is used
to recognise objects in a thermal image. art first trains the neural network on the
objects and then it is utilising them to identify the objects in a scanfield image.

equake simulates the propagation of seismic wave in large basins. It involves perform-
ing computation on an unstructured mesh that locally resolves wavelengths, using
a finite element method.

45

Chapter 3. Background

3.4.3. Embedded and Multimedia Programs

This section is presenting a set of applications from the embedded and multimedia
domain. We have considered applications from the Eembc [139] and Spec2000 bench-
marks suites. We focus only on applications which feature rich Tlp and thus are
amenable to parallelisation that exploits the availability of multiple cores. Most of the
benchmarks that are not included in the evaluation can still be parallelised by exploit-
ing word-level parallelism or by performing algorithm-specific modifications. However,
these techniques are beyond the scope of the methods proposed in this thesis.

A brief description of the applications follows:

bzip2 is an application from the Spec2000 benchmark suite that implements a lossless
data compression algorithm based on the BurrowsWheeler transform.

mp3player is part of the consumer applications of the Eembc 2.0 benchmark suite and
it implements a decoder for the de-facto standard for digital music compression,
Mpeg-1 Audio Layer 3.

mpeg2dec is drawn from Eembc 2.0 benchmarks and implements the widely used
international standard for video compression, MPEG-2.

cjpeg is also a consumer applications from Eembc 2.0 that implements the Jpeg image
compression algorithm, the dominant standard in digital image photography and
the Www.

3.5. Evaluation Platform

The evaluation of the contributions of this thesis was performed on two machines which
represent two vastly different parallel architectures.

The first machine, M1 in table 3.8, is a shared memory multiprocessor with two
x86 64 quad-core processors and Uniform Access to Memory (Uma) [56]. M1 is a typi-
cal example of a modern high-end general-purpose system, utilising aggressive hardware
techniques (e.g. Out-of-Order execution, hardware prefetching and multiple instruc-
tion fetch) to extract the maximum of the available Instruction-Level Parallelism Ilp.
This guarantees that we present speedups comparing against the strongest sequential
baseline.

The second machine, M2, in our evaluation is a heterogeneous multiprocessor archi-
tecture with two Cell processors and Non Uniform Access to Memory (Numa) [120, 23].
Each Cell processor contains a general-purpose core (Power Processing Element, Ppe)
and 8 vector accelerators (Synergistic Processing Element, Spe). The Ppe is a In-Order
superscalar core with Simultaneous Multi-Threading (Smt) support which is primarily
used to execute the Operating System (Os) and orchestrate the execution of threads
in the Spes. Spes, on the other hand, are Single-Instruction-Multiple-Data (Simd)

46

3.5. Evaluation Platform

M1: Intel Xeon Server

Hardware Dual Socket, Intel Xeon X5450 @ 3.00GHz
2 Quad-cores, 8 cores in total
with Sse2, Sse3 and Sse4.1 extensions
32Kb I-cache, 32Kb D-cache
6Mb L2-cache shared/2 cores (12Mb/chip)
16Gb Ddr2 Sdram

O.S 64-bit Scientific Linux with kernel 2.6.9-55 x86 64

M2: Cell Blade Server

Hardware Dual Socket, QS20 Cell Blade
2 3.2 GHz Ibm Cell processors
1 Ppe/chip: 32Kb I-cache, 32Kb D-cache, 512Kb L2 cache
with Avx extesions
8 Spes/chip: 128-bit Simd, 256Kb of Local Store
1GB Xdram

O.S Fedora Core 7 with Linux kernel 2.6.22 Smp

Table 3.8.: Hardware and software configuration details of the two evaluation platforms.

cores which are designed to accelerate applications with high word-level parallelism
(e.g. media and streaming applications). In deep contrast to the homogeneous archi-
tecture of M1 the Cell-based system requires not only compiling for multiple target
Instruction Set Architectures (Isa) but also orchestrating the data transfers from/to
the Spes whose Local Storage (Ls) memory is globally addressable but not cache-
coherent. These rather controversial properties of the Cell Be can be viewed as both
features that enable high peak performance but also as extremely challenging hurdles
to achievable performance.

3.5.1. OpenMP Overheads

We used the Epcc microbenchmarks v 2.0 [118] to empirically quantify the overhead
of the specific OpenMP implementations in the two evaluation platforms. A summary
of the most important metrics are shown in table 3.9. At this point we should clarify
that the construct overhead does not include the overhead of the parallel execution
itself. The latter overhead is an inherent property of each specific parallel code and
architecture and includes, for example, the cost of parallelisation-induced coherence and
compulsory cache-misses. The overheads for the Cell platform are reported using the
time of sequential execution in a single Ppe as the baseline. It is obvious that platform
M2, although it features great peak performance, the overhead of data-level parallelism
can be dominated by the overhead for thread creation and synchronisation. In fact
the overhead of most OpenMP constructs in M2 is almost two orders of magnitude
higher than in M1. This observation is used as the primary motivation in chapter
5 for the integration of profile-driven parallelisation with a Machine-Learning based

47

Chapter 3. Background

Overhead (in µsec)
M1 M2

OpenMP construct µ a 5% µ a 5%
Directives

parallel 2.14 0.006 620.42 0.661
for 1.37 0.004 622.96 0.533
parallel for 2.18 0.008 622.56 0.786
barrier 1.36 0.006 364.40 0.331
reduction 2.44 0.008 632.00 0.618
single 1.52 0.025 492.20 0.626
critical 0.44 0.052 19.93 0.003
lock/unlock 0.40 0.041 2.54 0.019

Privatisation (array of 53{Kb})
private 1.98 0.045 622.05 0.962
firstprivate 41.11 0.173 675.71 1.321
copyin 44.09 0.711 1487.00 29.848

Scheduling
static 1.69 0.063 626.57 1.589
dynamic(1) 33.36 2.317 627.78 0.879
dynamic(16) 3.02 0.011 627.98 1.117
dynamic(64) 2.30 0.019 626.43 1.495
guided(1) 46.19 2.315 626.25 1.071
guided(8) 27.96 2.560 626.29 1.048
guided(16) 22.40 0.079

Table 3.9.: Overhead of the most important OpenMP constructs. The measurements were
taken using the Epcc microbenchmarks v 2.0 on platforms M1 and M2 respectively. The
measurements represent mean values (µ) of twenty repetitions using the maximum number of
available cores and lie in the relevant confidence intervals with a confidence level of 1 a 95%.

profitability analysis that enables accurate and automatic mapping of parallelism across
vastly different architectures.

48

Chapter 4.

Intermediate Representation Profiling

The primary objective of this thesis is to enhance the static analysis of a traditional
parallelising compiler using dynamic dependence information, extracted by means of
profiling. The main obstacle in this procedure is correlating the low-level information
gathered during program execution to the high-level data and control flow representa-
tion of the compiler. In this chapter we present a novel dependence profiling technique
that overcomes this issue. Furthermore, we show how this technology can be utilised
for the extraction of more complex program properties using reduction operations as
an illustrative example.

The structure of this chapter is as follows. First, we motivate our work in section 4.1.
The concept of Ir-profiling and its implementation in the CoSy compiler framework
follow in section 4.2. In section 4.3 we describe the details of profile-driven dependence
analysis and the construction of the whole-program representation. Section 4.4 presents
a brief discussion of possible optimisations that can improve the performance of the
current prototype implementation. Finally, we conclude in section 4.5.

4.1. Motivation

4.1.1. Profile-driven Dependence Analysis

Before discussing in more detail the shortcomings of existing dependence profiling
methodologies that motivated the introduction of Ir-profiling, we present a simple
but illustrative example that demonstrates how profiling information can effectively
disambiguate statically undecidable data references. In figure 4.1 loop L1 performs
a simple update operation on array A. The index functions of A in expr1 and expr2,
however, are not known at compile time since they are indirect and reference elements
of arrays R and L respectively. Therefore, static analysis has to pessimistically assume
that different iterations of L1 may access the same elements of A and disallow paralleli-
sation. Profile-driven dependence analysis, on the other hand, inspects the exact data
accesses that expr1 and expr2 generate when the instrumented code is executed using
representative inputs. Therefore, it is able to monitor exactly which range is defined
or used by each iteration and thus deduce that there is no true dependence that limits
parallelisation for a specific input.

49

Chapter 4. Intermediate Representation Profiling

for (i = 0; i < N; i++) {

 A[R[i]] = A[L[i]] - c * B[i];

}

L1:

S1:
expr1 expr2

L1 begin

...
iteration 1

...
use expr2 A[1]
def expr1 A[0]
iteration 2

...
use expr2 A[3]
def expr1 A[2]
iteration 3

...
use expr2 A[7]
def expr1 A[4]
...
L1 end

IR-instruction stream

..
.

A

1

2

3

iteration

1

2

3

R W

address
space

..
.

Data

Figure 4.1.: A typical example that contrasts the limitations of static analysis with the strength
of profile-driven dependence analysis. The source code on the left poses an insurmountable
challenge to static analysis, since the elements of array A accessed by expressions expr1 and
expr2 are statically undecidable. On the right we present a simplified stream of Ir-instructions
that captures the actual memory accesses of each iteration of loop L1. Using this information
profile-driven analysis can deduce that for this specific stream there is no flow-dependence (i.e.,
use after def dependence) among the iterations of L1, and thus parallelise it.

Profile-driven parallelisation despite its strength in disambiguating program behaviour
it can not be conclusive, since it is not able to guarantee correctness for a new input
dataset. Nevertheless, as we will show in the chapters that follow the majority of sci-
entific and multimedia applications exhibit a stable dependence pattern, thus enabling
us to generate correct parallel code and only rely on the user for the final verification.
For instance, in this example a user can provide the application-specific knowledge that
arrays R and L by virtue of the algorithm or the input data store each index only once,
therefore parallelisation is safe for any valid input. Additionally, as we demonstrate
in the hierarchical pipeline extraction methodology, which is presented in chapter 6,
Ir-profiling has an even broader scope. It bears the potential to capture the whole-
program data and control-flow, largely removing the barriers that widely-used C code
features (e.g. powerful pointer arithmetic) impose in static analysis. This way paralleli-
sation is enabled in levels and granularities not reachable before by conventional static
techniques. Most, importantly as we will shall see profile-driven approaches are appli-
cable to real-life full implementations, and thus provide a more pragmatic approach to
parallelisation of sequential applications.

4.1.2. IR-profiling

Program instrumentation has been long used in research and industry to gain useful
insight into the execution behaviour of programs. For instance, path profiling [13] deter-
mines how many times an acyclic path of the control-flow is executed during a sample
run of the program. This information is then utilised by compilers for profile-guided op-

50

4.1. Motivation

timisation to perform control-flow optimisation in order to improve branch-prediction
accuracy. The majority of these tools operates on a low-level representation of the pro-
gram, most often the final native binary 1. Instrumentation is then either performed
off-line using a binary rewriting tool (e.g. Atom [131] and Diablo [152]), or at the
execution time using a more powerful technique called dynamic binary instrumentation
(e.g. DynamoRio [136], Pin [82] and Valgrind [97]).

Despite the applicability of these approaches to a variety of problems, ranging from
program optimisation to software testing (e.g. heap-memory allocation bugs) and archi-
tectural simulation (e.g. fast cache simulation), the information extracted with binary
instrumentation is too low-level to be effectively utilised in profile-driven parallelisation.
This fundamental problem is analogous to the one often faced by compiler-engineers
that have to select in which stage during the Ir-lowering should they implement a spe-
cific optimisation or transformation. Higher-level representations offer more flexibility
but lack the machine-specific specialisation that provides precise modelling of code
properties like code-size, register pressure or instruction latency. Therefore, data-flow
tools based on binary-level instrumentation (e.g. Redux [96], [121] and [141]) mostly
provide information that assists the programmer in program understanding rather than
provide the means to drive automatic program transformation. To alleviate this limi-
tation data-flow approaches typically employ debugging symbol information, a feature
available in most executable file formats (e.g. Elf [143]). Nevertheless, debugging
symbols are fundamentally flawed. Even state-of-the-art recovery techniques [137] that
reconstruct the program structure can track binary instructions back to the source code
with a precision of one line – in the best case. In addition, binary representations are
inevitable – even without any optimisation – further obfuscated as a result of low-level
features of the target’s Instruction Set Architecture (Isa) and Application Binary In-
terface (Abi) (e.g. calling conventions, alternative addressing modes, register spills,
register dependences, etc.).

This thesis aims at automated coarse-grain parallelism extraction that inevitably
involves performing high-level data and code transformations such as heap-data pri-
vatisation and loop splitting. Considering the limitations of existing binary-level ap-
proaches, we believe that such a challenging task requires a more radical and complete
solution to these issues. To bridge this information gap we perform instrumentation
at the Ir level of the compiler and more specifically the middle-level Ir, called Ccmir

(presented in 3.1.2). Effectively our instrumentation creates an executable-Ir which,
when executed generates a trace of Ir-instructions. Therefore, further analyses that
process this trace can utilise this correspondence to associate the derived information
back to the relevant Ir data structures of the compiler.

1Obviously operating on a binary representation has the extra benefit of being applicable also in
programs of which no source is available. However, it should be obvious from the failure of current
compiler technology to address the problem of automatic parallelisation under far looser constraints
that relying on the availability of the source is a reasonable assumption.

51

Chapter 4. Intermediate Representation Profiling

Trace Analyzer

CoSy
compiler

instr/nted
source

C

sequential
 source

C

Data
Dependence

Analyzer

trace
files

execute

program

inputs

whole
program
CDFG

Instrumentation
pass

pirtoc instr/nted
native
binary

native

compiler

Figure 4.2.: Overview of the Ir-profiling workflow. First, instrumentation calls are inserted in
the Ccmir of CoSy. Next, instrumented C code is generated utilising pirtoc – the Ccmir C
pass – which can be compiled with the native compiler of the development platform. Finally,
using one or multiple inputs we can collect Ir-instruction traces that are fed into the Trace
Analyser. The latter is essentially a generic driver for profile-driven program analysis, such as
data dependence analysis.

4.2. Instrumentation Framework

Figure 4.2 gives an overview of the Ir-profiling approach. In a first step, instrumenta-
tion calls to the profiling library, which handles the printing of the relevant information,
are inserted in the Ccmir of CoSy. Next, we utilise the Ccmir C pass (pirtoc) avail-
able in CoSy to generate standard C code from the instrumented Ir. This instrumented
source code can then be compiled with any native C compiler to produce an instru-
mented binary executable. The instrumented program is functionally equivalent to the
original code. In addition, when executed using a sample input it will produce – as
auxiliary output – a sequence of Ir-instructions that can be either saved in a trace file
or processed on-line by a trace analyser2. A trace analyser is a driver-program that
takes Ir-instructions as input and after resolving their type calls the relevant callback
routine of the specific analysis.

4.2.1. IR Instrumentation

Our goal is to profile both the control and data-flow of the program. To achieve
this we implemented an instrumentation pass in CoSy that operates on Ccmir. It
injects instrumentation calls for every Ir construct that either generates a data access
observable in Ccmir (definition or use of an Ir object) or corresponds to a high-level
control-flow event (function, basic-block, loop entry or exit, etc.). More specifically, for
each memory access we emit an Ir-instruction that has the following fields: (i) type
of access (use/def), (ii) the unique id of the corresponding Ccmir node, (iii) memory
address of the object referenced, and (iv) point-to address (if pointer dereference). For
each function, Bb, loop or iteration entry or exit we simply emit an instruction with
the (i) type of control-flow event, and (ii) the unique id of the corresponding Ccmir

node.

2For the sake of simplicity in the rest of this thesis we assume an off-line trace analysis.

52

4.2. Instrumentation Framework

Instruction 1st arg 2nd arg 3rd arg
Data-flow IR-instructions

def id address
use id address [points-to]

Control-flow IR-instructions
bb id
func id
loop id
iter

endfunc

endloop

enditer

Allocation pseudo-instructions
global id address
local id address
alloc base address size
free base address

Summarising instructions
read base address size
write base address size

Table 4.1.: Format of Ir-instructions.

Finally, we insert pseudo-instructions to reveal the address of variables with static or
automatic storage duration3. Heap allocated objects require explicit instrumentation
of the dynamic allocation routines. This can be performed either by the user using a
simple set of macros that generate the appropriate Ir-instructions or in the common
case where the standard library is used fully automatically using the Memory Allocation
Hooks available in all recent implementations of the Gnu libc [37]. Pseudo-instructions
are necessary to allow precise memory disambiguation in the profile-driven dependence
analysis phase.

A similar technique can be used for system or library calls where source code is ei-
ther not available or not conveniently accessible. Although, our tools are not going
to be able to extract parallelism from the routines, they can still be processed as a
black box that only its external effects are visible to the Ir-profile. For this purpose we
provide two additional summarising Ir-instructions, read and write, which are equiv-
alent to performing multiple def or use operations on a continuous range of memory.
In addition, we can enforce sequential execution of these routines by using a simple
write read sequence on a specific reserved address. Effectively this results in a flow-
dependence that connects all the invocations of one or more relevant external calls. In
fact, we utilise this mechanism to provide simple and efficient instrumentation for all
the standard library I/O functions that have Os visible effects and thus should not be
reordered. On the contrary, library calls like malloc that are commutative4 thus can

3According to the Iso C standard specification [57] variables with file, internal or external linkage
and variables declared using the keyword static have static storage duration. Variables declared
in procedure scope without the keyword static and function formal parameters are assigned
automatic storage duration.

4We are using the term commutative function in its more flexible sense. More specifically, commutative
functions are sections of code that can be executed in any order without affecting the outcome of the

53

Chapter 4. Intermediate Representation Profiling

be freely reordered should not enforce such a dependence to provide greater scope for
parallelisation.

Table 4.1 provides a full list of the Ir-instructions and the respective fields. Since
Ccmir is fully-typed the type (including its precise size and alignment) of each Ir-
instruction can be derived from the corresponding Ccmir node using its unique id.
Additionally, this choice has the advantage of saving space. The data representation
for the Ir-instructions can be either in text (using an Xml schema) or binary format.
We have implemented instrumentation libraries and trace analysers for both, but we
have primarily used the binary one that produces both more compact traces and is
faster in processing. The text representation, however, can be very helpful during the
development of the prototypes.

The instrumentation pass presumes that its input Ccmir has been pre-processed by
two additional passes that have to be executed in the following strict order:

1. loopdesign: As we have already discussed in section 3.1.3, Ccmir does not include
a high-level loop representation. Instead, this is reconstructed from the loopdesign
pass based on Ccmir control-flow statements like mirIf and mirGoto. Subsequent
passes can then access this information using the Loop-Markers interface. We
have to execute this pass first since statements are moved and new Bb are created
to comply with the structure defined in the specification of the Loop-Markers
(either while-do or repeat-until). In addition loopdesign generates information
about variables with special loop functionality (e.g. induction variables).

2. splitfunc: This is a transformation pass that modifies the Cfg so as to ensure
that each function call (mirFuncCall or mirCall) is the only Ccmir statement in
a Bb, besides the necessary control statement that is always last. This invariant
greatly simplifies the construction of the Cdfg in section 4.3 and removes the
need for an Ir-instruction that identifies the calling point of a function.

3. persistentid: This is a simple pass that we implemented to provide a persistent
unique id for every Ccmir structure across multiple compiler invocations. This
is achieved by using a deterministic pre-order numbering traversal of the Ccmir

tree. The property of persistence cannot be guaranteed if the sequence of trans-
formations that are executed before this pass is modified.

It should be clear by now that Ir-profiling does not have to model complex low-
level data-flow, such as parameter passing using registers or address calculations, thus
it can be relatively simple, compact and efficient. Ir-instructions that correspond to
expressions are side-effect free and therefore can be inserted in any order as long as
they execute before the main side-effect of the statement (if there is any). The Ccmir

application [4]. This is in contrast with more strict definitions that require commutative functions
to produce identical memory layout. The latter has been shown to be overly conservative and
restrictive for parallelisation [4].

54

4.2. Instrumentation Framework

...

use(rhs1)

use(rhs2)

lhs := rhs1+ rhs2
def(lhs)

...

(a) mirAssign

...

use(arg1)

use(arg2)

res := foo(arg1, arg2)
def(res)

...

function: restype foo(type1, type2)
func(foo)

local(type1)

def(type1)

local(type2)

def(type2)

...

return(...)
endfunc

(b) mirFuncCall

bb(id(headerBB))

...

loop(id(loop1))

goto testBB

preheaderBB

iter()

bb(bodyBB1)

...

if (...)bodyBBx:bodyBBx'

bodyBB1

enditer()

bb(id(incrementBB))

...

goto testBB

incrementBB

bb(bodyBBn)

...

goto incrementBB

bodyBBn

...

bb(id(testBB))

...

if(...) bodyBB1:tmpBB1

testBB

bb(id(exitBB1))

...

goto exitBB2

exitBB1

bb(id(exitBB2))

...

exitBB2

endloop(id(loop1))

goto exitBB2

tmpBB2

tmpBB1

endloop(id(loop1)

goto exitBB2

...

(c) while-do Loop-marker

Figure 4.3.: This figure shows the precise location where Ir-instructions have to inserted in
order to correctly capture the sequential semantics of the instrumented code. Modifications are
highlighted with a thick grey box or line.

55

Chapter 4. Intermediate Representation Profiling

executable-IR
instruction

stream

Hashmap
memory address

!
{last modifier, iteration vector}

bb

bb

bb

bb bb

Whole-program
CDFG

data-flow
edge

back-edgeupdate
last modifier

Trace
Parser

control-flow
edge

: memory inst.

: control inst.

add node
or

control-flow edge

current iteration vector

global address-range tree

update

current CDFG node

Program State

...
...

add/update
data edge

L loop node

bb

F
function

node

bb

...

calling
point

call-tree

loop-tree

compound-tree

...

Figure 4.4.: Overview of the Dependence Analyser. The stream of Ir-instructions is parsed and
processed by algorithm 4.1 that reconstructs the whole-program Cdfg depicted on the right.
In addition, while executing the Trace Analyser maintains two important data-structures (i) an
abstract Program State, and (ii) a Hashmap that is used to determine the source of data-flow
dependences.

statements that we consider have a single side-effect each. To capture the sequential
semantics of the original program in the Ir-instruction trace statement side-effects
have to appear in-order. In addition, control-flow Ir-instructions have to be inserted
appropriately so that the entry/exit instructions enclose only instructions that execute
within the context of the respective structure.

Figure 4.3 illustrates how these properties can be enforced for each one of the data
and control-flow instructions under different scenarios. As it is clear from figure 4.3(b)
functions calls are instrumented upon entering the function. This way we handle direct
and indirect function calls uniformly. Function calls with no return value (i.e., mirCall)
are handled in a similar fashion but there is no need for a def instruction after the call.
In addition, formal parameters are instrumented with an additional def instruction to
make the assignment of the value of actual parameters explicit. Instrumentation of
Loop-markers is slightly more complicated. Figure 4.3(c) shows the instrumentation
of a while-do loop with multiple exits. The loop instruction is inserted at the end of
the pre-header Bb, therefore the initialisation of the loop variables is not accounted to
be part of the loop. If there is a single loop-exit Bb and it has no predecessors then
the endloop instruction can be simply inserted in the beginning of the loop-exit Bb.
Otherwise, to guarantee that endloop executes only once and only after the respective
has been executed we have to perform a simple control-flow transformation. We create

56

4.3. Profile-Driven Dependence Analyser

an additional Bb for each loop-exit Bb. The only Ccmir statements in these new
blocks is the endloop followed by a mirGoto to the relevant loop-exit Bb. In figure
4.3(c) these are tmpBB1 and tmpBB2 for exitBB1 and exitBB2 respectively. Observe
that the additional Bbs are not instrumented themselves and in a later invocation of
the compiler (e.g. for performing parallel code-generation) they can be safely ignored.
Finally, the enditer instruction is inserted at the entry of the increment Bb, thus
updates of the induction variables are not consider to be a part of any iteration. Also
note that there is no enditer at the exits of the loop since it can be safely implied based
on the loopend.

4.3. Profile-Driven Dependence Analyser

When executed the instrumented binary produces a trace of Ir-instructions which is
consumed by the trace analyser, figure 4.4. In this section we present the Dependence
Analyser that builds on top of the functionality of the trace analyser to extract a whole-
program Control and Data-Flow Dependence Graph (Cdfg). Although a large number
of Ir-instructions needs to be processed the whole procedure can be simple and fast as
no low-level machine details or functionality of the instrumented program needs to be
considered.

The remainder of this section is organised as follows. In subsections 4.3.1 and 4.3.2
we describe the construction of the control and data-flow subgraphs of the Cdfg.
Data allocation and memory disambiguation issues are discussed in subsections 4.3.3
and 4.3.4 respectively. Subsection 4.3.5 presents an extension to our framework that
enables the detection of complex reduction operations. Finally, in subsection 4.3.6 we
discuss the limitations of the proposed framework.

4.3.1. Control-flow

Each Ir-instruction is processed using the procedure described in algorithm 4.1. The
control-flow handler (lines 4 13) reconstructs a whole-program Control and Data Flow
Graph (Cdfg) of the application. The Cdfg is a hierarchical graph that contains three
types of nodes, simple Bb nodes and compound Function (F) or Loop (L) nodes (figure
4.4). F nodes explicitly represent a call of a specific function at a given calling point
(a mirFuncCall Ccmir node). Therefore, the same function body might appear in the
Cdfg multiple times. Although this might lead to a graph of size proportional to the
number of distinct calling contexts of each function, in practice for the C programs that
we have instrumented in this thesis it does not appear to be cause for serious concern.
On the other hand, this feature of the Cdfg allows for precise and context-sensitive
dependence analysis. Each F node contains all the Bbs that are executed in its context
and do not belong in a nested function or loop. Similarly, L nodes contain the Bbs
of the loop-header and body of the loop. Any nested F or L nodes are effectively

57

Chapter 4. Intermediate Representation Profiling

Algorithm 4.1: Algorithm for Cdfg construction.
Data
Cdfg V, EC , ED : graph with control (EC) and data-flow (ED) edges
loop carriede : bitset e ED: loop carriede i 1 if e loop-carried in loop-level i
sete : address-range array e ED, indexed by the loop-carried level i
ita : iteration vector of address a
M A, V, ita : hash table: memory addr. a V, ita

I k : extract field k from instruction I
GD: global memory address-range tree
Df : memory address-range tree of function f
it0 : current normalised iteration vector
u V : current node
f V : current function
l V : current loop
c V : current component

1 Procedure IR instruction handler
2 while trace not finished do
3 I next instruction;
4 if I is a control instruction then
5 if I(id) c then
6 create node v for I(id) in c;

7 if edge u, v EC then
8 add u, v in Cdfg ;

9 switch I do
10 case bb u v;
11 case func f v;
12 case loop l v;
13 case iter it0 depth l it0 depth l 1;

14 else if I is a memory instruction then
15 a I addr ;
16 if I is a def then
17 update last writer of a in M ;

18 else if use then
19 w find last-writer of a from M ;
20 if u w edge e Cdfg then
21 add e in ED;

22 foreach i : ita i it0 i do
23 loop carriede i true;
24 sete i sete i a ;

25 ita it0;

26 else if I is an allocation instruction then
27 a I addr ;
28 if I is local then
29 add I id , a, a I size in Df ;

30 else if i is global alloc then
31 add I id , a, a I size in GDf ;

58

4.3. Profile-Driven Dependence Analyser

pointers to the relevant compound nodes. In addition to the Cdfg the control-flow
handler dynamically builds three overlay tree structures, one for the function call-tree,
one for the loop-hierarchy and one that is effectively the tree of compound (F or L)
nodes. The root of the call and compound-tree is function main. For the loop-tree we
assume a virtual top-level loop which is the parent of all first-level loops of the program.
The function call-tree is also utilised as a call-stack using an additional pointer for the
current context. Nodes or edges are added to Cdfg only when there is a control-
flow instruction that references a Bb or L node that does not exist yet in the current
function or an F node that has not been called before from the exact same point (i.e.,
the Bb containing the mirFuncCall or mirCall) (lines 5 8). Finally, utilising the iter

Ir-instructions the analyser maintains a normalised loop-iteration vector at any point
of the execution (line 13).

4.3.2. Data-flow

Data-flow Ir-instructions are processed in lines 14 25 of algorithm 4.1. The main
data structure utilised is a hash-table M that maps a memory address to a tuple
containing (i) the last-modifier of this address, and (ii) the normalised iteration vector
at that point of the execution. In the current prototype the memory granularity is
at a byte-level. Although, this might prevent the identification of parallelism in the
presence of bitfield operations, it would primarily concern very fine-grain parallelism. In
addition experimental results show that this granularity is sufficient to extract coarse-
grain parallelism without sacrificing the performance of the dependence analyser.

Data-dependence information is registered in the form of data-flow edges which are
inserted as an overlay in the Cfg. False-dependences, i.e., output and anti-dependences,
are not explicitly represented in the graph, since our primary goal is to record the data-
dependences that prevent parallelisation. Instead, we compute them on demand only
when parallelisation is possible and based on the form of parallelism (loop-level or
pipeline) that is extracted in each case. Each data-flow edge is annotated with (i) the
address regions that is communicated, (ii) a bit-vector that records at which levels of
the loop-nest this particular edge is loop-carried, and (iii) a vector that records the
maximum normalised dependence-distance in the loop-levels that the distance is loop-
carried. When a def (or similarly a summarising read) Ir-instruction is processed we
add or update the relevant entries in the hash-map M (lines 16 17). In the case of a
use (or similarly a summarising write) Ir-instruction, add or appropriate modify the
data-flow edge which has as its source the last-modifier and as its target the current
Bb (lines 18 25). This mechanism also handles self-edges, with the distinction that
these are only recorded if they are loop-carried.

As soon as the complete trace has been processed the constructed Cdfg with all its
associated annotations can be imported back into the CoSy compiler where it is utilised
along with the statically derived data and control-flow for parallelism extraction and

59

Chapter 4. Intermediate Representation Profiling

parallel-code generation. This is only possible because the dynamic profile is based on
the persistent unique ids that were assigned to each Ir node at the persistenid pass.

4.3.3. Data Allocation

As we have already presented in section 4.2.1 the base address of data with static,
automatic or heap storage duration are made explicit using the pseudo Ir-instructions
global, local and alloc respectively. By convention global instructions are executed
right after entering the function main. The dependence analyser stores the range of
addresses that correspond to each global symbol using a tree of non-overlapping address-
ranges that is not modified during dependence analysis.

Automatic variables, on the other hand, are allocated upon entering a function, using
a similar structure that is associated with each F node. As long as there are no setjmp
or longjmp calls it is safe to assume that the addresses of automatic variables will
be constant among the multiple dynamic instances of the same local Ir-instruction.
Handling calls to alloca is more complicated though5. Typically, most implementations
of the C library implement this with an inlined compiler-defined function (i.e. intrinsic)
that allocates memory on the stack. Since calls to alloca take a variable argument this
can lead to automatic variables having different dynamic addresses on the stack. We
overcome this problem by substituting calls to alloca with a pair of calls to malloc and
free with the latter executing upon exit from the current function. This is actually a
rare scenario but still we can handle it transparently.

Finally, alloc Ir-instructions are inserted in the same address-range tree which is
used for global data. The only difference is that instead of the global symbol these
objects are associated with the calling point of the allocation call. For the sake of sim-
plicity we assume that distinct calls to malloc return non-overlapping addresses regions.
We can achieve this using either a trivial implementation of free that never deallocates
memory or a custom memory allocator that actually deallocates memory but utilises
Os features (e.g. memory mapped I/O) to allocate heap-memory mapped to distinct
address-ranges. Otherwise we should encode the “version” of dynamically allocated
memory using an additional field in the memory address object that we are using in
the dependence analyser. Although at first this seems like a significant limitation it
practically never is because most modern 64-bit machines support address-ranges far
greater than what a typical program will allocate.

At this point we should clarify that any modifications in the allocation mechanisms
that we described in this section are only necessary in the instrumented program. The
parallelised versions are linked with the default standard libraries, so no performance
overhead or change in the original functionality will occur due to the instrumentation
mechanism.

5alloca is widely supported in many compilation platforms, however, it is non-standard.

60

4.3. Profile-Driven Dependence Analyser

for (;;) {
 ...

 use(id(expr), expr)

 reduse(id(lhs), lhs)

 lhs := lhs ! expr
 reddef(id(lhs), lhs)

 ...

}

(a) single statement reduction

for (;;) {
 ...

 use(id(expr1), expr1)

 reduse(id(lhs1), lhs1)

 lhs1 := lhs1 ! expr
 reddef(id(lhs1), lhs1)

 ...

 use(id(expr2), expr2)

 reduse(id(lhs2), lhs2)

 lhs2 := lhs2 ! expr2
 reddef(id(lhs2), lhs2)

 ...

}

(b) coupled reduction state-
ments

Figure 4.5.: Examples for Ir-instrumentation in parallel reduction operations.

4.3.4. Memory Disambiguation

It is clear from the description of the profile-driven data-flow analysis that although
Ir-profiling facilitates precise annotation of the compiler Ir with dynamically extracted
information, it still uses memory address-ranges to handle pointer accesses and other
low-level features of C. However, automatic parallel-code generation as well as further
analyses that we develop in the following chapters necessitate precise memory disam-
biguation. In this section we describe how we translate memory addresses back to
specific source-level symbols of Ccmir and the specific context that they were allo-
cated.

Data with static storage duration are constantly allocated to the same address space
(BSS) and thus are trivial to disambiguate based on the information saved in the global
address-range tree. Automatic (stack-allocated) variables can be disambiguated using
the context of the corresponding reference. More specifically, the symbol table available
at each F node in the Cdfg maps the stack address of each automatic variable to the
relevant local variable or formal argument. As long as there are no context switches
(setjmp/longjmp) and the alloca calls are patched as we specified in the previous section,
it is easy to observe that we can derive an 1-1 mapping for all automatic variables
moving upwards in the call-tree. Note that when an stack address is referenced on
a data-flow edge between two Bbs that belong to different contexts it will definitely
be referring to data allocated in the preceding contexts (i.e., deeper in the call-stack).
Therefore it is sufficient to look in the contexts preceding the Bb that executed first.
Finally, in the case of heap-allocated data it is sufficient to perform a look-up in the
global address-range tree to retrieve the precise point and context of its allocation.

4.3.5. Reduction Detection

As we have already seen the profile-driven approach is able to detect true dependences
that prohibit parallelisation. However, in many cases flow dependences are an artefact
of the sequential programming model rather than a consequence of the sequential se-

61

Chapter 4. Intermediate Representation Profiling

mantics of the program. For instance, loop counters and induction variables in general
result in flow data-dependences but are straightforward to remove them if the induction
formula is detected. Another more interesting example which is frequent in both multi-
media and scientific applications is that of reduction operations (e.g. A i A i k).
Static analysis is effective enough to address many cases of scalar induction and reduc-
tion variables. In the rest of our analysis we are not focusing on these variables which
are already identified by means of static analysis. In the presence of pointers or indi-
rect array accesses (e.g. sparse matrices), however, static analysis makes conservative
assumptions and thus limits the amount of exploitable parallelism. We enhance the
existing static analysis and propose a hybrid approach for these complex cases. In a first
step we use a simple static analysis pass in our compiler to select reduction statement
candidates (excluding any statically detected induction and reduction variables). Then,
we instrument the relevant statements using two additional Ir-instructions (reddef and
reduse) to explicitly denote the operands that are part of a reduction. Finally, the de-
pendence analyser determines which candidates are valid reductions and feeds this
information back to the compiler to decide about their exploitation. A reduction is
valid if and only if all the following statements hold [6]:

1. The reduction operator is both commutative and associative,
2. There is a true self-dependence that denotes the accumulation to the partial result

of the reduction,
3. Only the final result of the reduction is used later, i.e., there is no outgoing

dependence from the reduction, and
4. No true dependence is fed into the reduction.

The first two properties are determined by means of static analysis. The other two are
verified dynamically in the dependence analyser as follows. Let a reduction statement
be lhs : lhs expr, where is a commutative and associative operator. Then we
keep record of:

1. the set DEFred of addresses that a reduction candidate is using as partial results
(i.e., the addresses it writes to or equivalently the addresses referenced by lhs),
and

2. the set DEFother USEother of addresses that are written or read respectively
by statements and expressions, including expr, but do not belong to the set of
any of the reduction candidates of the enclosing loop.

At the end of the loop execution6 we are performing the following test to decide whether
a reduction is valid:

DEF i
red DEFother USEother

k i

DEF k
red

6Intermediate checks can be also performed at the end of each or every few iterations to avoid any
unnecessary analysis for statements that have been asserted as invalid reductions.

62

4.3. Profile-Driven Dependence Analyser

This test effectively determines whether lhs is aliased with expr or referenced/defined
anywhere else within the surrounding loop.

This methodology can be also extended to detect coupled reductions, i.e., reductions
that span more than one statement, figure 4.5(b). For a set of statements to be a valid
reduction there is an additional requirement that the same reduction operator is used
in all the participating statements. Let R be the set of all reduction statements in a
given loop and S a set of coupled reduction candidates. Then the parallel reduction
test will be:

i S

DEF i
red DEFother USEother

k R S

DEF k
red

To perform these tests we have extended the instrumentation framework with two
additional Ir-instructions: (i) reddef that indicates a definition that is also the left-
hand-side of a reduction candidate (e.g. lhs : lhs expr), and (ii) reduse that indicates
a use that is also the only use of the left-hand-side expression in the right-hand-side of
a reduction candidate. These two instructions are handled by the dependence analyser
like regular def and use in algorithm 4.1 but in addition we utilise them to compute
DEF i

red and remove the use of lhs from USEother. Figures 4.5(a) and 4.5(b) show
how should the instrumentation calls be inserted in the case of a simple and a coupled
reduction respectively.

4.3.6. Limitations

For all its power and useful properties, Ir-instrumentation and profile-driven depen-
dence analysis still has limitations. First, as we have already discussed in 4.2.1, Ir-
instrumentation assumes access not only to the C source code of the whole application
but also to the source or alternatively appropriate annotated wrappers (i.e. read/write
Ir-instructions) of all the external library routines called. Given the potential of the
proposed techniques as well as the complexity of the parallelisation task itself, we con-
sider this assumption to be reasonable for the majority of the usage scenarios. For the
purpose of the studies of chapters 5 and 6 we annotated a small subset of the standard
C library, a task that proved to be trivial. In practice, a complete software solution can
provide such annotated wrappers for widely-used libraries with minimal development
effort.

Second, back-annotation of profile information to the Ir and subsequently to the
source code requires performing instrumentation at a high-level Ir and before apply-
ing any Ir lowering or optimisations. In fact, common optimisations like redundancy
elimination pose the danger of making the association of Ir-instructions to source code
extremely complex and inaccurate. Besides the implications to the performance of the
instrumented code itself (a point discussed in more detail in subsection 4.4.3) this re-
striction does not influence the extraction of coarse-grain parallelism. Although the

63

Chapter 4. Intermediate Representation Profiling

sequential execution time of each of the coarse-grain regions that form a parallel region
might vary significantly depending on the applied optimisations, we consider the extrac-
tion of Tlp to be largely orthogonal to any optimisations that target single-threaded
performance. In addition, timing information that is necessary for task partitioning in
chapter 6 is extracted using minimal instrumentation (i.e., with data and control-flow
instrumentation disabled) and with all the standard optimisations of the native com-
piler enabled. Thus, the extracted information for the relative weight of each of the
scheduled components is accurate. On the other hand, this assumption definitely limits
the potential of utilising Ir-profiling as a more general profiling technique, since it can-
not capture lower-level Ir or target-specific code features. However, we consider this to
be out of the scope of this thesis. We prefer presenting Ir-instrumentation as a solution
tailored to the intricate problem of data-flow analysis for program parallelisation.

It is important to clarify that the choice to instrument unoptimised code does not
fundamentally preclude optimisations of the instrumented code or of the code after
performing the parallelisation itself. Furthermore, the majority of the acyclic code
optimisations that improve single-threaded performance are not affected by the paral-
lelising transformations which we present in the subsequent chapters. The only case
that we observed such a side-effect is discussed in detail in section 6.2.3.3 where we also
present a mechanism that eliminates it. In the case of loop-optimisations, however,
parallelisation transformations can be more intrusive and inhibit optimisation like loop
unrolling and loop-invariant code motion. Nevertheless, the techniques of this thesis
mainly parallelise outer-most loops rather than inner-most loops which are the primary
target of such loop optimisations.

4.4. Possible Optimisations

Our current prototype provide the means to instrument and analyse many different
embedded and scientific applications of size ranging from small kernels of a few lines
up to complicated applications and libraries of 30K lines of code. Although the perfor-
mance of our toolchain has been adequate so far for the needs of empirical evaluation,
there is still room for many optimisations and enhancements that can greatly improve
the usability of our tools. In this section we present some of them but since the purpose
of this thesis is to exploit this information rather than optimise its extraction, we leave
their elaborate study and implementation for future work.

4.4.1. Multi-threading

Multi-cores systems are ubiquitous and the systems used by application developers are
no exception. However, the execution of the instrumented binary and also the current
implementation of the dependence analyser are sequential. Even if the execution of the
instrumented binary is not parallelised itself using advanced slicing techniques like Su-

64

4.4. Possible Optimisations

perPin [156] or Shadow Profiling [94] we can still exploit multiple cores by executing the
analyser in parallel to the instrumentation using a pipelining scheme. More specifically,
the instrumentation library can be modified to insert the Ir-instructions in a SCOs pipe
or even better in a shared-memory queue7. Then the analyser can dequeue and process
Ir-instruction from this shared queue instead of the trace. Although the analysis typi-
cally requires more time than the instrumentation, this scheme can practically overlap
the two and completely hide the instrumentation overhead. The buffer itself can be
limited down to a few hundred instruction and still this is only to minimise the syn-
chronisation overhead on the shared queue. This is possible because the dependence
analyser itself is designed to execute at a single pass over the Ir-instruction stream and,
thus, there is no need to store the entire stream. In fact, this method has the additional
benefit that it eliminates the overhead of formatting (although the binary version has
negligible formatting overhead) and performing I/O to store the Ir-instructions.

A more ambitious project would aim at parallelising the analysis step itself exploiting
the data and pipeline parallelism that it naturally exhibits. For instance use instruc-
tions as long as there is no intervening def instruction can be processed in parallel
and commit the changes in the Cdfg sequentially in a subsequent step. In fact, this
decoupling can create an additional opportunity for optimisation by merging adjacent
addresses or removing redundant accesses before modifying the summarising address-
range in line 22 of algorithm 4.1. Nevertheless, the task of parallelising such a complex
algorithm requires a huge engineering effort – ironically even with the help of tools like
the one that we develop in this thesis – and therefore we did not further investigate
such a direction.

4.4.2. Strided Accesses

The current implementation of the dependence analyser is using a compact and efficient
data-structure to implement address sets. More specifically, it represents an address set
as a sorted sequence of continuous ranges of addresses stored in a resizeable array. The
size of this structure is proportional to the number of non-continuous address-ranges.
Find operations that test for membership in a set requires O log2 n steps on average,
where n is the number of continuous ranges. Insertion, however, might require a resize
of the array if the inserted item is not adjacent to any range. Tree data structures like
binary and splay trees [29] provide faster insertion but increase the space overhead and
their extension to support regions of integers can become very complicated. Practically
the range sets for the majority of the applications we have examined are relatively small
but there is room for improvement especially in the case of accesses that exhibit strided
access patterns or nested strided access patterns.

Strided patterns – also called regular sections in array data-flow analysis [45] – are
common in scientific application where they typically occur due to affine array index

7Reading and writing from a Os pipe requires executing a system call and thus incurs higher overhead
than a shared-memory queue which can be synchronised using inter-process mutexes.

65

Chapter 4. Intermediate Representation Profiling

functions (e.g. A i c1 c2 , i loop iterator), column-wise traversals of multidimensional
arrays and element accesses in arrays of structures. In fact, an extensive study [128] by
Shen et al. has shown that about 80% of array accesses in scientific programs exhibit
a fixed-stride pattern. Strided access patterns can be represented efficiently since it
suffices to store a triplet of (i) the base address, (ii) the stride size, and (iii) the length
of the pattern or equivalently the last address of the sequence. Membership test for
regular sections can be trivially implemented in constant time. The identification of
stride patterns is a well-studied subject primarily in the context of hardware prefetchers
that exploit these patterns to reduce the cost of misses in the cache hierarchy [24].
Similarly, recursive strided representations (e.g. Power Regular Section Descriptor
Prsd [83, 114]) can additionally capture patterns with affine expressions of more than
one variables (A i c1 j , i, j loop iterators) a typical side-effect of array accesses
in nested loops. A complication in the exploitation of strided streams are caused by
specific access expressions. Since accesses are summarised for Bbs or whole loops in
the case of reduction detection, a set of streams – possibly overlapping – is required
to be stored. To facilitate efficient membership testing the set should be represented
in a sorted tree structure. This fragmentation of the memory access stream, however,
might miss the opportunity of summarising adjacent addresses in continuous ranges.

4.4.3. Static Redundancy Elimination

Although in our approach we have opted to instrument all accesses to achieve maximum
precision, in many cases data access instrumentation can be avoided altogether just by
exploiting local and statically analysable redundancy in computation or accesses (e.g.
common sub-expressions). In addition, when targeting specific forms of parallelism like
loop-level parallelism the instrumentation of induction variables and automatic vari-
ables defined in the loop is not necessary. Furthermore, the granularity of dependence
tracking can be extended to include only the control structure which is parallelised (e.g.
a whole loop-iteration in the case of loop-level parallelism). Similarly, variables that
static analysis indicates that are not part of any “may” dependences can be omitted
in the instrumentation pass. This class of optimisations raises the issue of whether
the instrumentation pass should precede redundancy elimination optimisation passes
or not. The main hurdle in enabling optimisation prior to instrumentation is that most
of them, especially the more aggressive global ones introduce new dependences in the
data-flow graph and mangle the sequential semantics of the original program. In addi-
tion, optimisations ultimately break the 1 1 correspondence between the source-code
and the Ir -instructions. Nevertheless, in many cases we can perform a single-pass opti-
misation that reduces the instrumentation and analysis overhead without compromising
precision.

Our current implementation exploits redundancy in expression trees which are side-
effect free and thus instrumenting a single instance of an expression does not alter the

66

4.5. Conclusion

dependence graph. Since the Cdfg construction is based on Bbs we can extend this
to remove any redundant references within a Bb. This is accomplished by a common
expression elimination pass that is an inexpensive standard optimisation implemented
in the majority of modern compilers. Global common subexpression elimination on the
other hand applies to the whole procedure but it introduces new inter-Bb dependences.
Closer inspection of the Bb data-flow, however, reveals that the instrumentation can
be reduced even further. Since the parallelisation methods that we develop in the
following chapters target coarse-grain parallelism and in practice never change the
order of instructions within a Bb, it suffices to instrument only those references that
are observable out of the boundaries of the Bb. More specifically, this problem can
be reduced in the well-known local data-flow problem of upward exposed uses (i.e., a
use expr that is not preceded by a def expr in the same Bb) and live definitions
(i.e., a def expr that is not killed by a following def expr in the same Bb). Then
the instrumentation can be reduced in instrumenting the upward exposed uses followed
by the reaching definitions of the specific Bb. Likewise, in loop-level parallelism this
analysis can be extended to the boundaries of an iteration. This transformation has also
the benefit that the results of data-flow analysis can be propagated to each redundant
expression by simply following the results of this local data-flow analysis.

4.5. Conclusion

In this chapter we introduced Ir-profiling, a novel methodology that aims at over-
coming the limitations of traditional static dependence analysis by utilising profiling
information. We presented the design and implementation of a compiler-based tool
that instruments the Ir of the sequential program and generates control- and data-flow
information at profiling time. Ir-profiling avoids the complexity of existing low-level
instrumentation approaches and provides the means to associate the extracted informa-
tion with the compiler’s internal structures. Furthermore, we introduced the Control-
and Data-Flow Graph (Cdfg), a powerful whole-program representation that explic-
itly models the data-dependences which have materialised at profiling time. Finally,
we showed how leveraging the technology of Ir-profiling enables the identification of
complex parallel reduction operations; a common pattern in many sequential applica-
tions that existing profiling-based approaches have so far overlooked. In the chapters
that follow we demonstrate how this infrastructure facilitates not only the extraction,
but also the exploitation of multiple forms of coarse-grain parallelism out of sequential
applications.

67

Chapter 4. Intermediate Representation Profiling

68

Chapter 5.

Holistic Approach to Data-level Parallelism

Exploitation

The work presented in section 5.2.4 has been conducted in collaboration with
Zheng Wang, PhD student at the University of Edinburgh.

In this chapter we address the problem of exploiting data-level parallelism from
sequential applications written in C. We develop a methodology that utilises the Ir-
profiling infrastructure presented in chapter 4 to overcome the limitations of static anal-
ysis in determining loops with independent iterations. Extracted parallelism is then
exploited using OpenMP directives. In addition, we replace the traditional target-
specific and inflexible mapping heuristics with a machine-learning based prediction
mechanism, which results in better mapping decisions while providing more scope for
adaptation to different target architectures. Finally, we demonstrate that our approach
not only yields significant improvements when compared with state-of-the-art parallelis-
ing compilers, but comes close to and sometimes exceeds the performance of manually
parallelised codes.

This chapter is structured as follows. We motivate our work based on simple examples
in section 5.1.1. This is followed by a presentation of our parallelisation framework in
section 5.2. Our experimental methodology and results are discussed in sections 5.3
and 5.4, respectively. Finally, we summarise and conclude in section 5.6.

5.1. Introduction

Parallelisation for multi-processor systems has traditionally followed a data-level decom-
position in which parallel tasks (e.g. threads) perform the same or similar computation
on different elements of aggregate data-structures (e.g. arrays) [76, 77, 159, 132, 107,
14, 6]. Sequential programs typically express that form of computation using loop code
constructs (e.g. Do constructs in Fortran) where each iteration operates on a distinct
element or dimension of the data. In fact, literature often refers to this paradigm as
loop-level parallelisation [77, 161, 6]. The abundance of data parallelism in many sci-
entific and embedded algorithms has led to the emergence of many alternative parallel
programming models that support the parallelisation of loops using special language

69

Chapter 5. Data-level Parallelism

constructs (e.g. upc forall in Upc [50] and FORALL in High-Performance Fortran [80])
or annotations (e.g. OpenMP’s #pragma omp [103]). Nevertheless, compiler support for
automatic extraction of data-level parallelism from sequential programs has been lim-
ited so far to specific programming languages like Fortran [132, 107] that have found lit-
tle acceptance in wider application domains. The main reason that auto-parallelisation
has not been successful in more general configurations is that static analysis is inherently
conservative in languages with more low-level features like pointer arithmetic, dynamic
memory allocation and indirect function calls. In addition, current approaches are
tuned for fixed target architectures and lack a portable parallelism-mapping method-
ology. Given that the number and type of processors of a parallel system is likely
to change from one generation to the next, finding the right mapping for an applica-
tion may have to be repeated many times throughout an application’s lifetime, hence,
making automatic approaches attractive.

5.1.1. Motivation

In this section we provide two simple, but illustrative examples from widely used bench-
mark applications that demonstrate the significance of the aforementioned limitations
in traditional auto-parallelising compilers.

Parallelism Detection Figure 5.1 shows a short excerpt of the smvp function from the
Spec equake seismic wave propagation benchmark. This function computes a sparse
matrix-vector product and takes up more than 60% of the total execution time of the
equake application on an Intel Xeon architecture. Therefore, it is critical to uncover any
available parallelism in it. Unfortunately, automatic parallelisation is bound to fail for
both loops. Even if static analysis is able to determine that the assignments to array
w might comprise a reduction operation that spans multiple statements, it will fail to
disprove that the memory referenced is not accessed at any other point in the respective
loop which is a necessary requirement for a reduction to be valid (see section 4.3.5).
In fact, w is passed as a pointer argument to function smvp and it accesses memory
allocated at the same program point with v. In addition, A and w are accessed using
indirect index functions (e.g. in expression w col , col equals Acol Anext) a common
programming technique in applications that use sparse matrix representations which,
however, makes most of the static dependence tests inconclusive. On the other hand, Ir-
profiling instruments every dynamic memory access and thus it provides the necessary
information to determine that all the statements that access w are in fact commutative
and associative and no other actual flow-dependence materialises for the specific input.
Hence the iterations of the inner and outer loop can be executed in parallel given
that the partial sums values will be accumulated to w after the execution of the loop.
While we still cannot prove absence of data dependences for every possible input we
can classify both loops as candidates for parallelisation and if profitably parallelisable,
present it to the user for approval. For instance, in this example the user can provide

70

5.1. Introduction

1 for (i = 0 ; i < nodes ; i++) {
2 Anext = Aindex [i] ; / The va lue o f Anext i s unknown at compi le time . /
3 / I t i s used f o r index ing array A. /
4 Alast = Aindex [i + 1] ;
5

6 sum0 = A[Anext] [0] [0] v [i] [0] +
7 A[Anext] [0] [1] v [i] [1] +
8 A[Anext] [0] [2] v [i] [2] ;
9 sum1 = . . .

10

11 Anext++;
12 while (Anext < Alast) {
13 c o l = Acol [Anext] ; / The va lue o f c o l i s unknown at compi le time . /
14 / I t i s used f o r index ing both arrays v and w. /
15

16 sum0 += A[Anext] [0] [0] v [c o l] [0] +
17 A[Anext] [0] [1] v [c o l] [1] +
18 A[Anext] [0] [2] v [c o l] [2] ;
19 sum1 += . . .
20

21 w[co l] [0] += A[Anext] [0] [0] v [i] [0] +
22 A[Anext] [1] [0] v [i] [1] +
23 A[Anext] [2] [0] v [i] [2] ;
24 w[co l] [1] += . . .
25 Anext++;
26 }
27

28 w[i] [0] += sum0 ;
29 w[i] [1] += . . .
30 }

Figure 5.1.: Static analysis is challenged by sparse array reduction operations and references
to arrays that may alias.

the knowledge (and guarantee) that w is not aliased with any other pointer in the loop
body.

This example demonstrates that static analysis is overly conservative. Profiling based
analysis, on the other hand, can provide accurate dependence information for a specific
input. When combined we can select candidates for parallelisation based on empirical
evidence and, hence, can eventually extract more application parallelism than purely
static approaches.

1 #pragma omp for reduction (+:sum) private (d)
2 for (j =1; j <= l a s t c o l f i r s t c o l 1; j++) {
3 d = x [j] r [j] ;
4 sum = sum + d d ;
5 }

Figure 5.2.: Despite its simplicity mapping of this parallel loop taken from the Nas Cg bench-
mark is non-trivial and the best-performing scheme varies across platforms.

71

Chapter 5. Data-level Parallelism

Mapping In figure 5.2 a parallel reduction loop originating from the parallel Nas

Conjugate-Gradient (Cg) benchmark is shown. Despite the simplicity of the code,
mapping decisions are non-trivial. For example, parallel execution of this loop is not
profitable for the Cell Be platform due to high communication costs between processing
elements. In fact, parallel execution results in a massive slowdown over the sequential
version for the Cell for any number of threads. On the Intel Xeon platform, however,
parallelisation can be profitable, but this depends strongly on the specific OpenMP

scheduling policy. The best performing scheme (static) results in a speedup of 2.3 over
the sequential code and performs 115 times better than the worst scheme (dynamic) that
slows the program down to 2% of its original, sequential performance.

This example illustrates that selecting the correct mapping scheme has a significant
impact on performance. However, the mapping scheme varies not only from program to
program, but also from architecture to architecture. Therefore, we need an automatic
and portable solution for parallelism mapping.

5.1.2. Overview

Sequential
Code

Parallel
Loop

Candidates

Profiling Based

Analysis

Machine-Learning

Mapping

Code with
OpenMP

Annotations

Figure 5.3.: A two-staged parallelisation approach combining profile-driven parallelism detec-
tion and machine-learning based mapping to generate OpenMP annotated parallel programs.

In this chapter we follow an approach that integrates profile-driven parallelism de-
tection and machine-learning based mapping in a single framework. We use profil-
ing information to extract only those data dependences that materialise at execution
time and enhance the corresponding static analyses with dynamic information. Subse-
quently, we apply a previously trained machine-learning based prediction mechanism
to each parallel loop candidate and decide if and how the parallel mapping should be
performed. Finally, we generate parallel code using standard OpenMP annotations.
Our approach is semi-automated, i.e., we only expect the user to finally approve those
loops where parallelisation is likely to be beneficial, but correctness cannot be proven
conclusively.

5.1.3. Contributions

We have evaluated our parallelisation strategy against the Nas and SPEC Omp bench-
marks and two different multicore platforms (dual quad-core Intel Xeon Smp and dual-
socket QS20 Cell blade). We demonstrate that our approach not only yields significant
improvements when compared with state-of-the-art parallelising compilers, but comes
close to and sometimes exceeds the performance of manually parallelised codes. We

72

5.2. Parallelisation Framework

Sequential

 Code

C

Instrumentation Profiling

Small

Sample

Dataset

Profile-driven

Dependence

Analysis

Parallel-loop

Candidate

Detection

ML-Mapping

User

Approval

Parallel

Code

Generation

Parallel

C Code

with

OpenMP

Native

Compilation

Native

Execution

Full-Sized

Dataset

Results

Figure 5.4.: Our parallelisation framework comprises Ir-level instrumentation and profiling
stages, followed by static and dynamic dependence analyses driving loop-level parallelisation
and a machine-learning based mapping stage where the user may be asked for final approval
before parallel OpenMP code is generated. Platform-specific code-generation is performed by
the native OpenMP-enabled C compiler.

show that profile-driven analyses can detect more parallel loops than static techniques.
A surprising result is that all loops classified as parallel by our technique are correctly
identified as such, despite the fact that only a single, small data input is considered for
parallelism detection. Furthermore, we show that parallelism detection in isolation is
not sufficient to achieve high performance, and neither are conventional mapping heuris-
tics. Our machine-learning based mapping approach provides the adaptivity across
platforms that is required for a genuinely portable parallelisation strategy. On average,
our methodology achieves 96% of the performance of the hand-tuned OpenMP Nas

and Spec parallel benchmarks on the Intel Xeon platform, and a significant speedup
for the Cell platform, demonstrating the potential of profile-guided machine-learning
based auto-parallelisation for complex multicore platforms.

5.2. Parallelisation Framework

In this section we present a parallelisation framework that targets loop-level paral-
lelism. It builds on top of the Ir-profiling infrastructure introduced in chapter 4 to
determine the parallelisable loops of an application and then generate parallel code
using OpenMP directives.

The structure of this section is as follows. First, we provide an overview of the work-
flow of the parallelisation framework in subsection 5.2.1. A description of the parallel
loop detection follows in subsection 5.2.2. Then, in subsection 5.2.3 we present the
parallel-code generation methodology and show how data privatisation and reduction
operations are handled. The Machine-learning based mapping stage is explained in
subsection 5.2.4. Finally, safety issues regarding profile-driven parallelism detection
are discussed in subsection 5.2.5.

73

Chapter 5. Data-level Parallelism

5.2.1. Workflow

In this subsection we provide an overview of the parallelisation framework workflow.
As shown in figure 5.4, after instrumentation and profiling of the sequential C code,
parallelism candidate detection is performed. For these stages we are using a small
sample dataset as input. In this step every loop that is found to be parallel by means
of static or profiling-based dependence analysis is marked as parallel using OpenMP

annotations. In addition, data scoping for shared, private and reduction data also takes
place at this stage. Next, the machine-learning based mapper predicts the performance
of each candidate for the specific target machine and selects only those which are
profitable. Then, only these selected loops are presented to the user for approval. At
the next step parallel C code with OpenMP annotations, including loop-scheduling
clauses, is generated only for those loops that the user guaranteed correctness. Finally,
the parallel code is compiled with the native OpenMP-enabled compiler of the target
platform. A complete overview of tool-chain workflow is shown in figure 5.4.

Ir-instrumentation and profile-driven dependence analysis have already been de-
scribed in detail in chapter 4. Parallel loop detection and code-generation are discussed
in the sections that follow.

5.2.2. Parallel Loop Detection

for (i = 0; i < N; i++) {
for (j = 1; j < N; j++) {

A[i][j] = B[i][j] - A[i][j-1];
}

}

A:

L2:

L1:

(a) source code

L1

bb1

bb2

L2

bb5

bb7

bb4

bb8

bb3

bb6

loop_carriede=[0, 1]

CDFG

control-flow edge
data dependence edge

(b) CDFG

Figure 5.5.: An example of two nested loops where a data-dependence is carried only by the
innermost loop (L2). The respective Cdfg that is extracted using the profile-driven dependence
analysis is shown on the right. Note that the information stored in loop carriede for the self
dependence edge on bb7 allows parallel-loop detection to deduce that L1 is parallelisable but
L2 is not.

After the Ir-trace processing has been completed, parallel loop candidates are de-
tected based on the dependence information of the Cdfg. More specifically, the loop

74

5.2. Parallelisation Framework

hierarchy tree, which is extracted at the Cdfg construction stage, is traversed in a top-
down fashion. For each loop all the data-dependence edges that flow between nodes of
the specific loop are processed. Each dependence edge is annotated with a bit vector
that specifies the loop-levels for which it is a loop-carried dependence. Based on this
information and the loop-level of the current loop we can determine whether this par-
ticular edge prohibits parallelisation or otherwise we proceed with the next edge. For
instance, in figure 5.5 statement A results in a self flow-dependence but this is carried
only from the inner loop L2. The outer loop (L1), however, modifies each line of the
array A independently. In the Cdfg this is represented by a self data-dependence edge
for Bb bb7 with its bit-vector loop carriede set only only at the position corresponding
to loop L2 (loop carriede is computed during the profile-driven dependence analysis,
line 23 of algorithm 4.1).

for (i = 0; i < N; i++) {

 sum = sum + A[i];

}

L1:

A:

(a) source code

data dependence edge

sum := sum + A[i]

goto bb4

bb2

i := i+ 1

goto bb1

bb4

bb3

i := 0

goto bb1

bb0

if i < N bb2 : bb3

bb1

L1

control-flow edge

i

i

[1]

i

[1]

induction

variables:

sum

[1]

DEFred(A) = {sum}
A:

i

[1]

i

i
 {i}

(b) CDFG

Figure 5.6.: An example where the removal of flow-dependences which are induced by induc-
tion and reduction variables enables parallelisation. In the Cdfg data-dependence edges are
annotated with the set of variables which are carried by the dependence and the loop carried
vector. Statement A is a valid reduction and thus the address range that is written as a result
of the reduction (i.e. the address range accessed by the lhs of A, DEFred A) can be subtracted
by the self-dependence edge on bb2. Similarly, i can be removed by all the data-dependence
edges of L1.

There are two cases, however, that although there is a loop-carried true dependence,
parallelisation is still permitted without breaking the sequential semantics. These are
flow-dependences regarding (i) loop induction variables, and (ii) variables that appear
as the left-hand expression of valid reduction variables. The addresses of these variables
are removed from the respective address sets and if the resulting range is empty we
can mark this loop as parallel. Figure 5.6 shows a simple illustrative example where
the removal of loop-carried flow-dependences that relate to induction and reduction
variables enables parallelisation. Induction variables are statically determined by the
compiler in the loopanalysis pass and can be accessed at compile-time using the Loop-
markers infrastructure. In fact, when targeting loop-level parallelism we can selectively
remove the instrumentation for induction variables before the profiling stage to avoid

75

Chapter 5. Data-level Parallelism

any redundant computation. Reduction variables can be ignored in parallel loop de-
tection only if these are marked as valid from the dependence analyser. Reduction
variable analysis has been discussed in detail in section 4.3.5. In this work we are only
considering single loop-level parallelisation and more specifically we heuristically select
always the outermost loop which is parallel. Thus, parallel loop detection for a specific
loop-nest can stop as soon as one level is found to be parallel. All the loops that have
been eventually marked as parallel are subsequently fed to the parallel-code generation
stage.

5.2.3. Parallel-Code Generation

We use OpenMP for parallel code-generation due to the low complexity of generat-
ing the required code annotations and the widespread availability of native OpenMP

compilers. In addition, the availability of well studied and widely used sequential
benchmarks (Nas-Pb and Spec2000 Fp/Spec Omp2001) that are hand-parallelised
using OpenMP provides a strong and realistic upper limit for the speedup that can be
achieved with parallelisation.

Currently, our framework is targeting only C for loops. OpenMP provides two
alternatives for the parallelisation of for loops: (i) using a parallel worksharing con-
struct, i.e., omp parallel for, and (ii) a simple worksharing construct omp for nested
in a parallel region. For simplicity reasons we primarily use the first construct unless
otherwise stated. A simple example from the NAS benchmarks Bt is shown in figure
5.7.

1 #pragma omp p a r a l l e l for
2 for (i 3 = 1 ; i 3 < n3 1; i 3++) {
3 for (i 1 = 0 ; i 1 < n1 ; i 1++) {
4 u [i 3] [n2 1] [i 1] = u [i 3] [1] [i 1] ;
5 u [i 3] [0] [i 1] = u [i 3] [n2 2] [i 1] ;
6 }
7 }

Figure 5.7.: An example from the Nas Mg benchmark where code-generation is inserting the
worksharing construct omp parallel for to parallelise an individual Doall loop.

Additionally, we have to check that the for loop statement complies with OpenMP

standard requirements (2.5.1 in [103]). These restrictions essentially provide the guar-
antee that the loop variable in the for construct is also a valid induction variable of the
form k k cexpr, where cexpr is a loop invariant expression [95]. In addition, the
loop termination test should be an expression that contains only loop-invariant expres-
sions of the form k cexpr, where oplus is one of the following operators {“<”, “<=”,
“>” or “>=”}. The standard loopanalysis pass of CoSy provides detailed information
for induction already and thus the test can be trivially implemented on the statically
identified increment and termination test expressions. These tests are necessary to al-
low the OpenMP runtime to compute the number of iterations on entry to the loop.

76

5.2. Parallelisation Framework

For the applications that we consider in the experimental evaluation we did not find
any case of a profitable loop where parallelisation was prohibited due to this limitation.
Nevertheless, loops that do not comply can be still easily parallelised using alternative
methods. For instance, the latest OpenMP standard (ver. 3.0) [104] supports the
task construct which can be used in the case of uncounted loops. We did not further
investigate this option since we provide a more general and powerful code-generation
solution to handle more complex loops in chapter 6.

5.2.3.1. Privatisation

Cdfg provides the necessary information to determine whether a loop is parallelisable
or not. Nevertheless, parallel code-generation requires determining all those variables
that cause loop-carried anti- and output-dependences in order to privatise them. Vari-
ables that should be privatised are computed using an additional analysis of the Ir-
instruction stream. This can be performed either in parallel to the Cdfg construction
or more efficiently as a post-pass analysis after parallel loop detection. Our current
prototype follows the latter approach to avoid computing false-dependences for loops
that are not parallelisable. In addition, we can perform the analysis only for a single
loop-level, i.e., the outermost parallel loop-level. To compute the data that carry a false
dependence it suffices to determine the data that are read or written in an iteration
and then written in a subsequent iteration. More specifically, for each memory location
a and a specific parallel loop l we record:
1. Ritera : the normalised iteration number of l when the first use for location a was

executed in l. Otherwise Ra is negative.
2. Witera : the normalised iteration number of l when the first def for location a was

executed in l. Otherwise it is negative.
Then we determine if there is a loop-carried false dependence for a memory location
a at analysis time as follows. If Ir -instruction def a is executed in iteration k, then
there are two non-trivial cases:
1. If (Witera 0 Witera k) then there is a loop-carried output-dependence (Waw)

for memory location a in loop l.
2. If (Ritera 0 Ritera k) then there is a loop-carried anti-dependence (War) for

memory location a in loop l.
At the end of the analysis we can determine if a variable requires privatisation by
checking whether an anti- or output-dependence was detected in any memory location
in its address range.

Finally, we have to check that that the variables requiring privatisation are indeed
privatisable.

A variable x is privatisable within a loop if and only if every path from the beginning
to the loop body to a use of x passes from a definition of x before the use [6].

77

Chapter 5. Data-level Parallelism

Observe that since a loop is parallel there are no flow dependences between two distinct
iterations. If a variable is used before its definition and this definition is executed in a
different iteration we would have detected a flow-dependence. Therefore, to determine
if a variable is privatisable it suffices to check if there are any incoming or outgoing
data-dependence edges for this specific variable in the Cdfg.

Still, there is a case where privatisation can be valid in the presence of incoming
and outgoing data-dependences. More specifically, if there is a data-dependence edge
from one loop to a subsequent loop that appears as non loop-carried1, then we can
deduce that every value that is defined in the first loop is used in the second loop in
the iteration with the exact same normalised iteration number. In fact this feature is
supported by OpenMP using global lifetime private copies, i.e. threadprivate data
(section 3.3.2). The only restriction that OpenMP imposes is that the respective loops
should be scheduled with Static loop-scheduling policy and that the same number
of threads executes both loops. Since we execute OpenMP with a constant thread
number – set with the environmental variable OMP THREAD NUM – and we can enforce a
loop scheduling policy to the machine-learning mapper both requirements are met.

After determining that a variable requires privatisation and it is permitted to be
privatised, we add a special private OpenMP clause with the list of these variables at
the end of the parallel loop directive (clause private(var1, var2, ...)). In the case of
a global variable, however, there are two cases that require different handling. If there
is no function called within the loop body that accesses this variable we can still use
the private clause. Otherwise, we add a threadprivate construct after its definition
to make this variable globally private. An example demonstrating this transformation
is shown in figure 5.8. In the latter case, if the thread-private global variable is not
privatisable in all the parallel loops that it is accessed it should be renamed in this loop
and any functions that are accessed within the loop.

Privatisation of heap-allocated objects is more complicated though. For the simple
but common case that an array is allocated using a single call to malloc() we retrieve the
Ir statement using the information stored in the global address-range tree constructed
during the Ir -instruction processing. Based on this statement we create threadprivate

copies for each thread which are all accessed using the same symbol name inside the
parallel loop. In more complicated cases where a multidimensional array is allocated
as an array of pointers, we present to the user with the exact point of the source where
the allocation is performed and we ask the user to provide the symbolic or constant
dimensions of the array. Based on this information we can perform the allocation for
threadprivate data as in the previous case.

1Since iteration numbers are normalised a dependence between two loops appears as non loop-carried
in the Cdfg if a value that is defined in the first loop in iteration k is used in the second loop in
iteration k too.

78

5.2. Parallelisation Framework

1 double A[N] [N] ;
2 double B[N] ;
3 int counter ;
4 #pragma omp threadpr iva t e (counter) ;
5

6 int f (int r)
7 {
8 int j ;
9

10 for (j = 0 ; j < N; j++) {
11 i f (A[r] [j] > 0 .0 && A[r] [j] < 1 . 0) {
12 counter++; / Access out o f the l e x i c a l scope o f the p a r a l l e l
13 cons t ruc t but w i th in the p a r a l l e l r eg ion . /
14 }
15 }
16 return counter ;
17 }
18

19 void g ()
20 {
21 int i ;
22

23 #pragma omp p a r a l l e l for
24 for (i = 0 ; i < N; i++) {
25 counter = 0 ; / Access w i th in the p a r a l l e l c on s t ruc t /
26 B[i] = f (i) ;
27 }
28 }

Figure 5.8.: This example demonstrates the privatisation of a global scope variable that is
accessed out of the lexical scope of the OpenMP parallel construct. In this case it is necessary to
use a global-lifetime private copy of this variable using the threadprivate OpenMP construct.

5.2.3.2. Reduction Operations

Reduction detection is performed by the dependence analyser as described in sec-
tion 4.3.5. Note that a reduction operation is not necessary if dependence analysis
shows that the loop is parallel without removing any reduction related true depen-
dences (the reduction is still valid but unnecessary). Therefore, in this case we can
avoid the reduction overhead altogether. OpenMP handles scalar reductions automat-
ically. A reduction clause is inserted at the end of the parallel loop directive specifying
the commutative and associative operator and the scalar variable name x (clause
reduction(:x)).

In the case of an array reduction we insert a template reduction prologue and epi-
logue around the loop to be parallelised. Figure 5.9 shows an example template for a
two-dimensional array of dimensions dim1 dim2. Instead of a parallel worksharing
construct omp parallel for we enclose the array in a parallel region (omp parallel)
and the loop itself in a nested simple worksharing construct (omp for). This way we
perform the reduction itself in parallel after the loop execution, avoiding the creation
of multiple parallel regions. In the reduction prologue the private copies of the array
are initialised with the identity element of the specific operator and of the specific data

79

Chapter 5. Data-level Parallelism

1 #pragma omp p a r a l l e l
2 {
3 int t , i1 , i 2 ;
4 int t i d = omp get thread num () ;
5

6 / Reduction Prologue /
7 for (i 1 = 0 ; i 1 < dim1 ; i 1++) {
8 for (i 2 = 0 ; i 2 < dim2 ; i 2++) {
9 A priv [t i d] [i 1] [i 2] = identity value ;

10 }
11 }
12

13 #pragma omp for
14 for (i = . . .) {
15 for (j = . . .) {
16 A priv [t i d] [i] [j] = A priv [t i d] [i] [j] . . . ;
17 }
18 }
19

20 / Reduction Epi logue /
21 #pragma omp for
22 for (i 1 = 0 ; i 1 < dim1 ; i 1++) {
23 for (t = 0 ; t < omp get num threads () ; t++) {
24 for (i 2 = 0 ; i 2 < dim2 ; i 2++) {
25 A[i 1] [i 2] = A[i 1] [i 2] + A priv [t i d] [i 1] [i 2] . . . ;
26 }
27 }
28 }
29

30 } / end o f p a r a l l e l r eg ion /

Figure 5.9.: An example of the parallel array reduction template for a two-dimensional array.
The epilogue is distributed among the threads. Each one performs the accumulation of the
partial results to an independent region of the original array.

type (e.g. 0.0f for “+” on floats). The prologue is performed in parallel by each thread.
Each thread is initialising its own copy so that subsequent references do not cause
coherency misses. In the reduction epilogue we distribute the reduction computation
among all threads. Entry in the epilogue is always safe for all the threads since there
is an implied barrier at the end of the omp for region. Each thread is accumulating
the partial results to the initial variable. Finally note that we extend the private array
by one dimension to enable each thread accessing each own copy but also the copies
of the other threads. This is necessary to avoid performing the reduction computation
sequentially or expensive critical sections.

5.2.3.3. Limitations

Our approach to code-generation is relatively simple and, essentially, relies on OpenMP

code annotations alongside minor code transformations. We do not yet perform high-
level code restructuring which might help expose more parallelism or improve data
locality. While OpenMP is a compiler-friendly target for code-generation it imposes a
number of limitations. For instance, we do not yet exploit more flexible parallelisation

80

5.2. Parallelisation Framework

structures like pipelines that enable the exploitation of parallelism in partially sequen-
tial loops. In fact, this is one of the primary motivations behind the more general
parallelism extraction approach which will be presented in chapter 6 and features a
more general and effective code-generation methodology.

5.2.4. Machine Learning Based Parallelism Mapping

The responsibilities of the parallelism mapping stage are to decide if a parallel loop
candidate is profitable to parallelise and, if so, to select a scheduling policy from the
four options offered by OpenMP : cyclic, dynamic, guided, and static. As the
example in figure 5.2 demonstrates, this is a non-trivial task and the optimal solution
depends on both the particular properties of the loop under consideration and the
target platform. To provide a portable, but automated mapping approach we use a
machine learning technique to construct a predictor that, after some initial training, will
replace the highly platform-specific and often inflexible mapping heuristics of traditional
parallelisation frameworks.

5.2.4.1. Predictive Modelling

Separating profitably parallelizable loops from those that are not is a challenging task.
Incorrect classification will result in missed opportunities for profitable parallel execu-
tion or even in a slow-down due to an excessive synchronization overhead. Traditional
parallelising compilers such as Suif-1 employ simple heuristics based on the iteration
count and the number of operations in the loop body to decide on whether or not a
particular parallel loop candidate should be executed in parallel.

Our data – as shown in figure 5.10 – suggests that such a näıve scheme is likely to
fail and that misclassification occurs frequently. A simple work based scheme would
attempt to separate the profitably parallelizable loops by a diagonal line as indicated
in the diagram in figure 5.10. Independent of where exactly the line is drawn there will
always be loops misclassified and, hence, potential performance benefits wasted. What
is needed is a scheme that (i) takes into account a richer set of – possibly dynamic –
loop features, (ii) is capable of non-linear classification, and (iii) can be easily adapted
to a new platform.

We propose a predictive modelling approach based on machine-learning classification.
In particular, we use Support Vector Machines (Svm) [15] to decide (a) whether or not
to parallelise a loop candidate and (b) how it should be scheduled. The Svm classifier
is used to construct hyper-planes in the multi-dimensional space of program features
– as discussed in the following paragraph – to identify profitably parallelizable loops.
The classifier implements a multi-class Svm model with a Radial Basis Function (Rbf)
kernel capable of handling both linear and non-linear classification problems [15]. The
details of our Svm classifier are provided in figure 5.11.

81

Chapter 5. Data-level Parallelism

1 10 100 1000 10000 100000 1000000 1E7 1E8

10

100

1000

 Should be parallelized Should NOT be parallelized

N
u
m

b
e
r

o
f
In

s
tr

u
c
ti
o
n
s

Number of Iterations

Figure 5.10.: This diagrams shows the optimal classification (sequential/parallel execution) of
all parallel loop candidates considered in our experiments for the Intel Xeon machine. Linear
models and static features such as the iteration count and size of the loop body in terms of IR
statements are not suitable for separating profitably parallelizable loops from those that are
not.

5.2.4.2. Program Features

We extract characteristic program features that sufficiently describe the relevant aspects
of a program and present it to the Svm classifier. An overview of these features is given
in table 5.1. The static features are derived from CoSy’s internal code representation.
Essentially, these features characterize the amount of work carried out in the parallel
loop similar to e.g. [162]. The dynamic features capture the dynamic data access and
control flow patterns of the sequential program and are obtained from the same profiling
execution that has been used for parallelism detection.

Static features

IR Instruction Count
IR Load/Store Count
IR Branch Count
Loop Iteration Count

Dynamic features
Data Access Count
Instruction Count
Branch Count

Table 5.1.: Features characterizing each parallelizable loop.

It is rather surprising that none of the features in table 5.1 directly expresses the
imbalance of the work performed by each iteration of a loop. Still these feature suffice to
effectively select the loop-scheduling policy that yields the highest performance. Note,
however, that a non-linear machine-learning model is often able to combine the given

82

5.2. Parallelisation Framework

1. Baseline SVM for classification

a) Training data:
D xi, ci xi Rp, ci 1, 1 n

i 1

b) Maximum-margin hyperplane formulation:
ci w xi b 1, for all 1 i n.

c) Determine parameters by minimization of w (in w, b) subject to 1.(b).

2. Extensions for non-linear multiclass classification

a) Non-linear classification:
Replace dot product in 1.(b) by a kernel function, e.g. the following
radial basis function:
k x, x exp γ x x 2 , for γ 0.

b) Multiclass SVM:
Reduce single multiclass problem into multiple binary problems. Each
classifier distinguishes between one of the labels and the rest.

Figure 5.11.: Support vector machines for non-linear classification.

features in non-trivial ways and thus its findings are not open to direct interpretation.
In fact, experimentation with more features showed that there is no room for further
improvement of the scheduling policy prediction. This is also due to the fact that for
the specific programs and target platforms that we have studied only in a few cases
it is more profitable to select a scheduling policy other than static. In fact, this is
also the default scheduling policy for both evaluation platforms that we studied and
therefore the benefit of correctly selecting the scheduling policy does not improve the
performance over manual or heuristic-based mapping. Additionally, in some cases the
benefit is negligible. Nevertheless, machine-learning has the advantage that it offers
a solution that is both automatic and portable. Therefore, the proposed mechanism,
even if it requires the extraction of features like the variation of instructions executed
by each iteration, can be also applied in programs and platforms that exploit less biased
behaviour and benefit from scheduling policies other than static.

5.2.4.3. Training Summary

We use an off-line supervised learning scheme whereby we present the machine-learning
component with pairs of program features and desired mapping decisions. These are
generated from a library of known parallelizable loops through repeated, timed execu-
tion of the sequential and parallel code with the different available scheduling options
and recording the actual performance on the target platform. Once the prediction
model has been built using all the available training data, no further learning takes
place.

83

Chapter 5. Data-level Parallelism

5.2.4.4. Deployment

For a new, previously unseen application with parallel annotations the following steps
need to be carried out:

1. Feature extraction. This involves collecting the features shown in table 5.1 from
the sequential version of the program and is accomplished in the profiling stage
already used for parallelism detection.

2. Prediction. For each parallel loop candidate the corresponding feature set is
presented to the Svm predictor and it returns a classification indicating if parallel
execution is profitable and which scheduling policy to choose. For a loop nest we
start with the outermost loop ensuring that we settle for the most coarse-grained
piece of work.

3. User Interaction. If parallelisation appears to possible (according to the initial
profiling) and profitable (according to the previous prediction step), but cor-
rectness cannot be proven by static analysis, we ask the user for his/her final
approval.

4. Code Generation. In this step, we extend the existing OpenMP annotation with
the appropriate scheduling clause, or delete the annotation if parallelisation does
not promise any performance improvement or has been rejected by the user.

5.2.5. Safety

Unlike static analysis, profile-guided parallelisation cannot conclusively guarantee the
absence of control and data dependences for every possible input. One simple approach
regarding the selection of the “representative” inputs is based on control-flow coverage
analysis. This is driven by the empirical observation that for the vast majority of
the cases the profile-driven approach might have a false positive (i.e., there is a flow-
dependence but the tool suggests the contrary) is due to a control-flow path that
the data input set did not cover. This also gives a fast way to select representative
workloads (in terms of data-dependences) just by executing the applications natively
and recording the resulting code coverage. Of course, there are many counter-examples
where an input dependent data-dependence appears with no difference in the control-
flow. The latter can be verified by the user.

For this current work, we have chosen a “worst-case scenario” and used the smallest
data set associated with each benchmark for profiling, but evaluated against the largest
of the available data sets. Surprisingly, we have found that this naive scheme has
detected almost all parallelisable loops in the Nas and Spec Omp benchmarks while
not misclassifying any loop as parallelisable when it is not.

Furthermore, with the help of our tools we have been able to identify three incorrectly
shared variables in the original Nas benchmarks that should in fact be privatised.

84

5.3. Experimental Methodology

This illustrates that manual parallelisation is prone to errors and that automating this
process contributes to program correctness.

5.3. Experimental Methodology

In this section we summarise our experimental methodology and provide an overview
of the multicore platforms and benchmarks used throughout the evaluation.

5.3.1. Platforms

For the empirical evaluation we have selected two different architectures that also repre-
sent the two extremes of the multi-core design space. The first machine, M1 in table 3.8,
is a shared memory multiprocessor with two x86 64 quad-core processors and Uniform
Access to Memory (Uma). The second machine, M2, is a heterogeneous multiprocessor
architecture with two Cell processors and Non Uniform Access to Memory (Numa).
Each Cell processor contains a general-purpose core (Ppe) and 8 vector accelerators
(Spe) each with a software-managed private memory. For a more detailed description
of the architectural and system configuration of the two machines, as well as an empir-
ical analysis of the overhead for the OpenMP constructs used in code-generation the
reader can refer to section 3.5.

5.3.2. Benchmarks

For our evaluation we have selected benchmarks (Nas and Spec Omp) where both
sequential and manually parallelised OpenMP versions are available. This has enabled
us to directly compare our parallelisation strategy against parallel implementations
from independent expert programmers.

More specifically, we have used the Nas Npb (sequential ver. 2.3) and Npb (Omp

ver. 2.3) codes alongside the Spec Cpu2000 benchmarks and their corresponding Spec

Omp2001 counterparts. However, it should be noted that the sequential and parallel
Spec codes are not immediately comparable due to some amount of restructuring of
the “official” parallel codes, resulting in a performance advantage of the Spec Omp

codes over the sequential ones, even on a single processor system.
Each program has been executed using multiple different input data sets (shown

in table 5.2), however, for parallelism detection and mapping we have only used the
smallest of the available data sets2. The resulting parallel programs have then been
evaluated against the larger inputs to investigate the impact of worst-case input on the
safety of our parallelisation scheme.

2Some of the larger data sets could not be evaluated on the Cell due to memory constraints.

85

Chapter 5. Data-level Parallelism

Program Suite Data Sets/Xeon Data Sets/Cell
Bt Npb2.3-Omp-C S, W, A, B Na
Cg Npb2.3-Omp-C S, W, A, B S, W, A
Ep Npb2.3-Omp-C S, W, A, B S, W, A
Ft Npb2.3-Omp-C S, W, A, B S, W, A
Is Npb2.3-Omp-C S, W, A, B S, W, A
Mg Npb2.3-Omp-C S, W, A, B S, W, A
Sp Npb2.3-Omp-C S, W, A, B S, W, A
Lu Npb2.3-Omp-C S, W, A, B S, W, A
art Spec Cfp2000 test, train, ref test,train, ref
ammp Spec Cfp2000 test, train, ref test,train, ref
equake Spec Cfp2000 test, train, ref test,train, ref

Table 5.2.: Benchmark applications and data sets.

5.3.3. Methodology

We have evaluated three different parallelisation approaches: manual, auto-parallelisation
using the Intel Icc compiler (just for the Intel platform), and our profile-driven ap-
proach.

For native code-generation all programs (both sequential and parallel OpenMP)
have been compiled using the Intel Icc and Ibm Xlc compilers for the Intel Xeon and
Ibm Cell platforms, respectively.

Furthermore, we use leave-one-out cross-validation to evaluate our machine-learning
based mapping technique. This means that for K programs, we remove one, train
a model on the remaining K 1 programs and predict the Kth program with the
previously trained model. We repeat this procedure for each program in turn.

For the Cell platform we report parallel speedup over sequential code running on the
general-purpose Ppe rather than a single Spe. In all cases the sequential performance
of the Ppe exceeds that of a single Spe, ensuring we report improvements over the
strongest baseline available.

All execution time and speedup figures presented in the following paragraphs have
been computed as the arithmetic mean over 10 executions. Machines M1 and M2 were
practically idle before the experiments start and besides the absolutely necessary system
services no other programs were executing during the experiments. Additionally, any
I/O performed has been exclusively to local filesystems in order to reduce variation
introduced by the cluster’s network filesystem. Performance figures do not include
standard deviation bars since the relative standard error of the mean was less that
0.5% for all the experiments. This rather surprising fact can be primarily attributed
to static work partitioning that is selected for the majority of the parallelised loops.
Furthermore, binding threads to specific cores by utilising the thread-to-core affinity
feature of Icc’s runtime system did not only result to the highest performance for
each individual parallelisation approach, but also practically eliminated any variation
introduced due to Os scheduling decisions.

86

5.4. Empirical Evaluation

5.4. Empirical Evaluation

In this section we present and discuss the results of the empirical evaluation.

5.4.1. Overall Results

B
T

.S

B
T

.W

B
T

.A

B
T

.B

C
G

.S

C
G

.W

C
G

.A

C
G

.B

E
P

.S

E
P

.W

E
P

.A

E
P

.B

F
T

.S

F
T

.W

F
T

.A

F
T

.B

IS
.S

IS
.W

IS
.A

IS
.B

L
U

.S

L
U

.W

L
U

.A

L
U

.B

M
G

.S

M
G

.W

M
G

.A

M
G

.B

S
P

.S

S
P

.W

S
P

.A

S
P

.B

am
m

p
.t

es
t

am
m

p
.t

ra
in

am
m

p
.r

ef

ar
t.

te
st

ar
t.

tr
ai

n

ar
t.

re
f

eq
u
ak

e.
te

st

eq
u
ak

e.
tr

ai
n

eq
u
ak

e.
re

f

A
V

E
R

A
G

E

0

1

2

3

4

5

6

7

8

9

S
p
ee

d
u
p

 ICC Manual Parallelization Prof-driven Parallelization

(a) Speedup over sequential codes achieved by Icc auto-parallelisation, manual parallelisation and
profile-driven parallelisation for the Xeon platform.

C
G

.S

C
G

.W

C
G

.A

E
P

.S

E
P

.W

E
P

.A

F
T

.S

F
T

.W

F
T

.A

IS
.S

IS
.W

IS
.A

L
U

.S

L
U

.W

L
U

.A

M
G

.S

M
G

.W

M
G

.A

S
P

.S

S
P

.W

S
P

.A

a
rt

.t
e

s
t

a
rt

.t
ra

in

a
rt

.r
e

f

a
m

m
p

.t
e

s
t

a
m

m
p

.t
ra

in

a
m

m
p

.r
e

f

e
q

u
a

k
e

.t
e

s
t

e
q

u
a

k
e

.t
ra

in

e
q

u
a

k
e

.r
e

f

A
V

E
R

A
G

E
0

1

2

3

4

5

6

S
p

e
e

d
u

p

 Manual Parallelization Prof-driven Parallelization

(b) Speedup over sequential code achieved by manual parallelisation and profile-driven parallelisation
for the dual Cell platform.

Figure 5.12.: Speedup of the different parallelisation schemes on the two evaluation platforms.

Figures 5.12(a) and 5.12(b) summarise our performance results for both the Intel
Xeon and Ibm Cell platforms.

5.4.1.1. Intel Xeon

The most striking result is that the Intel auto-parallelising compiler fails to exploit any
usable levels of parallelism across the whole range of benchmarks and data set sizes. In

87

Chapter 5. Data-level Parallelism

fact, auto-parallelisation results in a slow-down of the Bt and Lu benchmarks for the
smallest and for most data set sizes, respectively. Icc gains a modest speedup only for
the larger data sets of the Is and Sp benchmarks. The reason for this disappointing
performance of the Intel Icc compiler is that it is typically parallelising at inner-
most loop level where significant fork/join overhead negates the potential benefit from
parallelisation.

The manually parallelised OpenMP programs achieve an average speedup of 3.5
across the benchmarks and data sizes. In the case of Ep, a speedup of 8 was achieved
for large data sizes. This is not surprising since this is an embarrassingly parallel
program. More surprisingly, Lu was able to achieve super-linear speedup (9) due
to improved caching [39]. Some programs (Bt, Mg and Cg) exhibit lower speedups
with larger data sets (A and B in comparison to W) on the Intel machine. This is a
well-known and documented scalability issue of these specific benchmarks [39].

For most Nas benchmarks our profile-driven parallelisation achieves performance
levels close to those of the manually parallelised versions, and sometimes outperforms
them (Ep, Is and Mg). This surprising performance gain can be attributed to three
important factors. Firstly, our approach parallelises outer loops whereas the manually
parallelised codes have parallel inner loops. Secondly, our approach exploits reduction
operations on array locations and, finally, the machine learning based mapping is more
accurate in eliminating non-profitable loops from parallelisation and selecting the best
scheduling policy.

The situation is slightly different for the Spec benchmarks. While profile-driven
parallelisation still outperforms the static auto-paralleliser we do not reach the per-
formance level of the manually parallelised codes. Investigations into the causes of
this behaviour have revealed that the Spec Omp codes are not equivalent to the se-
quential Spec programs, but have been manually restructured [7]. For example, data
structures have been altered (e.g. from list to vector) and standard memory allocation
(excessive use of malloc) has been replaced with a more efficient scheme. Obviously,
these changes are beyond what an auto-paralleliser is capable of performing. In fact,
we were able to confirm that the sequential performance of the Spec OpenMP codes
is on average about 2 times (and up to 3.34 for art) above that of their original Spec

counterparts. We have verified that our approach parallelises the same critical loops
for both equake and art as Spec Omp. For art we achieve a speedup of 4, whereas the
Spec Omp version is 6 times faster than the sequential Spec Fp version, of which more
than 50% is due to sequential code optimisations. We also measured the performance
of the profile-driven parallelised equake version using the same code modifications and
achieved a comparable speedup of 5.95.

Overall, the results demonstrate that our profile-driven parallelisation scheme sig-
nificantly improves on the state-of-the-art Intel auto-parallelising compiler. In fact,
our approach delivers performance levels close to or exceeding those of manually paral-
lelised codes and, on average, we achieve 96% of the performance of hand-tuned parallel

88

5.4. Empirical Evaluation

Profile-driven ICC Manual
Application #loops (%cov) FP FN #loops (%cov) #loops (%cov)

Bt 205 (99.9%) 0 0 72 (18.6%) 54 (99.9%)
Cg 28 (93.1%) 0 0 16 (1.1%) 22 (93.1%)
Ep 8 (99.9%) 0 0 6 (1%) 1 (99.9%)
Ft 37 (88.2%) 0 0 3 (1%) 6 (88.2%)
Is 9 (28.5%) 0 0 8 (29.4%) 1 (27.3%)
Lu 154 (99.7%) 0 0 88 (65.9%) 29 (81.5%)
Mg 48 (77.7%) 0 3 9 (4.7%) 12 (77.7%)
Sp 287 (99.6%) 0 0 178 (88.0%) 70 (61.8%)
equake Seq 69 (98.1%) 0 0 29 (23.8%) 11 (98.0%)
art Seq 31 (85.6%) 0 0 16 (30.0%) 5 (65.0%)
ammp Seq 21 (1.4%) 0 1 43 (1%) 7 (84.4%)

Table 5.3.: Number of parallelised loops and their respective coverage of the sequential execu-
tion time.

OpenMP codes, resulting in an average speedup of 3.34 across all benchmarks.

5.4.1.2. IBM Cell

Figure 5.12(b) shows the performance resulting from manual and profile-driven paral-
lelisation for the dual-Cell platform.

Unlike the Intel platform, the Cell platform does not deliver a high performance on
the manually parallelised OpenMP programs. On average, these codes result in an
overall slowdown. For some programs such as Cg and Ep small performance gains
could be observed, however, for most other programs the performance degradation is
disappointing. Given that these are hand-parallelised programs this is perhaps surpris-
ing and there are essentially two reasons why the Cell’s performance potential could
not be exploited. Firstly, it is clear that the OpenMP codes have not been developed
specifically for the Cell. The programmers have not considered the communication
costs for a distributed memory machine. Secondly, in absence of specific scheduling
directives the OpenMP runtime library resorts to its default behaviour, which leads
to poor overall performance. Given that the manually parallelised programs deliver
high performance levels on the Xeon platform, the results for the Cell demonstrate
that parallelism detection in isolation is not sufficient, but mapping must be regarded
as equally important.

In contrast to the “default” manual parallelisation scheme, our integrated paralleli-
sation strategy is able to successfully exploit significant levels of parallelism, resulting
in average speedup of 2.0 over the sequential code and up to 6.2 for individual programs
(Ep). This success can largely be attributed to the improved mapping of parallelism
resulting from our machine-learning based approach.

89

Chapter 5. Data-level Parallelism

5.4.2. Parallelism Detection and Safety

Our approach relies on dynamic profiling information to discover parallelism. This has
the obvious drawback that it may classify a loop as potentially parallel when there exists
another data set which would highlight a dependence preventing correct parallelisation.
This is a fundamental limit of dynamic analysis and the reason for requesting the user
to confirm uncertain parallelisation decisions. It is worthwhile, therefore, to examine to
what extent our approach suffers from false positives (i.e., loop is incorrectly classified
as parallelisable). Clearly, an approach that suffers from high numbers of such false
positives will be of limited use to programmers.

Column 2 in table 5.4.2 shows the number of loops our approach detects as potentially
parallel. The column labelled Fp (False Positive) shows how many of these were in fact
sequential. The surprising result is that none of the loops we considered potentially
parallel turned out to be genuinely sequential. Certainly, this result does not prove
that dynamic analysis is always correct. Still, it indicates that profile-based dependence
analysis may be more accurate than generally considered, even for profiles generated
from small data sets. Clearly, this encouraging result will need further validation on
more complex programs before we can draw any final conclusions.

Column 3 in table 5.4.2 lists the number of loops parallelisable by Icc. In some
applications, the Icc compiler is able to detect a considerable number of parallel loops.
In addition, if we examine the coverage (shown in parentheses) we see that in many
cases this covers a considerable part of the program. Therefore we conclude that it is
less a matter of the parallelism detection that causes Icc to perform so poorly, but
rather how it exploits and maps the detected parallelism (see section 5.4.3).

The final column in table 5.4.2 eventually shows the number of loops parallelised in
the hand-coded applications. As before, the percentage of sequential coverage is shown
in parentheses. Far fewer loops than theoretically possible are actually parallelised
because the programmer have obviously decided only to parallelise those loops they
considered “hot” and “profitable”. These loops cover a significant part of the sequential
time and effective parallelisation leads to good performance as can be seen for the Xeon
platform.

In total there are four false negatives (column Fn in table 5.4.2), i.e., loops not
identified as parallel although safely parallelisable. Three false negatives are contained
in the MG benchmark, and two of these are due to loops which have zero iteration
counts for all data sets and, therefore, are never profiled. The third one is a Max

reduction, which is contained inside a loop that our machine-learning classifier has
decided not to parallelise.

5.4.3. Parallelism Mapping

In this section we examine the effectiveness of three mapping schemes (manual, heuristic-
based, and machine-learning using profiling information) for the two platforms.

90

5.4. Empirical Evaluation

B
T

.S

B
T

.W

B
T

.A

B
T

.B

C
G

.S

C
G

.W

C
G

.A

C
G

.B

E
P

.S

E
P

.W

E
P

.A

E
P

.B

F
T

.S

F
T

.W

F
T

.A

F
T

.B

IS
.S

IS
.W

IS
.A

IS
.B

L
U

.S

L
U

.W

L
U

.A

L
U

.B

M
G

.S

M
G

.W

M
G

.A

M
G

.B

S
P

.S

S
P

.W

S
P

.A

S
P

.B

A
V

E
R

A
G

E

0

20

40

60

80

100

120

140

160

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 N
P

B
 (

%
)

 ICC (default) ICC (runtime) Profiling + Heuristic Profiling + Machine Learning

(a) Nas benchmarks on the Intel Xeon platform.

C
G

.S

C
G

.W

C
G

.A

E
P

.S

E
P

.W

E
P

.A

F
T

.S

F
T

.W

F
T

.A

IS
.S

IS
.W

IS
.A

L
U

.S

L
U

.W

L
U

.A

M
G

.S

M
G

.W

M
G

.A

S
P

.S

S
P

.W

S
P

.A

ar
t.

te
st

ar
t.

tr
ai

n

ar
t.

re
f

am
m

p
.t

es
t

am
m

p
.t

ra
in

am
m

p
.r

ef

eq
u
ak

e.
te

st

eq
u
ak

e.
tr

ai
n

eq
u
ak

e.
re

f

A
V

E
R

A
G

E

0

200

400

600

800

1000

1200

P
er

fo
rm

an
ce

 r
el

at
iv

e
to

 N
P

B
 a

n
d
 S

P
E

C
O

M
P

 (
%

) Profiling + Heuristic Profiling + Machine Learning

(b) Nas and Spec Fp benchmarks on the Ibm Cell platform.

Figure 5.13.: Impact of different mapping approaches (100% = manually parallelised OpenMP
code).

5.4.3.1. Intel Xeon

Figure 5.13(a) compares the performance of Icc and our approach to that of the hand-
parallelised OpenMP programs. In the case of Icc we show the performance of two
different mapping approaches. By default, Icc employs a compile-time profitability
check while the second approach performs a runtime check using a dynamic profitability
threshold.

For some cases (Bt.B and Sp.B) the runtime checks provide a marginal improvement
over the static mapping scheme while the static scheme is better for Is.B. Overall, both
schemes are equally poor and deliver less than half of the speedup levels of the hand-
parallelised benchmarks. The disappointing performance appears to be largely due to
non-optimal mapping decisions, i.e., to parallelise inner loops rather than outer ones.

91

Chapter 5. Data-level Parallelism

am
m

p
.t

es
t

am
m

p
.t

ra
in

am
m

p
.r

ef

ar
t.

te
st

ar
t.

tr
ai

n

ar
t.

re
f

eq
u
ak

e.
te

st

eq
u
ak

e.
tr

ai
n

eq
u
ak

e.
re

f

A
V

E
R

A
G

E

0

20

40

60

80

100

120

140

160
P

er
fo

rm
an

ce
 r

el
at

iv
e

to
 S

P
E

C
O

M
P

 (
%

)

 ICC (default) ICC (runtime) Profiling + Heuristic Profiling + Machine Learning

Figure 5.14.: Impact of different mapping approaches for the Spec benchmarks (100% = man-
ually parallelised OpenMP code).

In the same figure we compare our machine-learning based mapping approach against
a scheme which uses the same profiling information, but employs a fixed, work-based
heuristic similar to the one implemented in the Suif-1 parallelising compiler. This
heuristic considers the product of the iteration count and the number of instructions
contained in the loop body and decides against a static threshold. While our machine-
learning approach delivers nearly the performance of the hand-parallelised codes and,
in some cases, is able to outperform them, the static heuristic performs poorly and
is unable to obtain more than 85% of the performance of the hand-parallelised code.
This translates into an average speedup of 2.5 rather than 3.7 for the Nas benchmarks.
The main reason for this performance loss is that the default scheme using only static
code features and a linear work model is unable to accurately determine whether a loop
should be parallelised or not.

In figure 5.14 we compare the performance resulting from the different automated
mapping approaches to that of the hand-parallelised Spec Omp codes. Again, our
machine-learning based approach outperforms Icc and the fixed heuristic. On aver-
age, our approach delivers 88% of the performance of the hand-parallelised code, while
Icc and the fixed heuristic approach achieve performance levels of 45% and 65%, re-
spectively. The lower performance gains for the Spec benchmarks are mainly due to
a better starting point of the hand-parallelised Spec Omp benchmarks (see section
5.4.1.1).

5.4.3.2. IBM Cell

The diagram in figure 5.13(b) shows the speedup of our machine-learning based map-
ping approach over the hand-parallelised code on the Cell platform. As before, we
compare our approach against a scheme which uses the profiling information, but em-
ploys a fixed mapping heuristic.

92

5.4. Empirical Evaluation

The manually parallelised OpenMP programs are not specifically “tuned” for the
Cell platform and perform poorly. As a consequence, the profile-based mapping ap-
proaches show high performance gains over this baseline, in particular, for the small
input data sets. Still, the combination of profiling and machine-learning outperforms
the fixed heuristic counterpart by far and, on average, results in a speedup of 9.7 over
the hand-parallelised OpenMP programs across all data sets.

5.4.3.3. Summary

The combined profiling and machine-learning approach to mapping comes within reach
of the performance of hand-parallelised code on the Intel Xeon platform and in some
cases outperforms it. Fixed heuristics are not strong enough to separate profitably par-
allelisable loops from those that are not and perform poorly. Typically, static mapping
heuristics result in performance levels of less than 60% of the machine learning ap-
proach. This is because the default scheme is unable to accurately determine whether
a loop should be parallelised or not. The situation is exacerbated on the Intel Cell
platform where accurate mapping decisions are key enablers to high performance. Ex-
isting (“generic”) manually parallelised OpenMP codes fail to deliver any reasonable
performance and heuristics, even if based on profiling data, are unable to match the
performance of our machine-learning based scheme.

5.4.4. Scalability

1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9

10

 LU

 EP

 art

 FT

 CG

 BT

 MG

 equake

 SP

 IS

S
p
e
e
d
u
p

Number of Processors

(a) Intel Xeon platform

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

S
p
e
e
d
u
p

 EP

 MG

 equake

 CG

 SP

 FT

 IS

 LU

Number of Processors

(b) IBM Cell platform

Figure 5.15.: Scalability of all the applications using the largest data set on the two platforms.

For the Xeon platform the Lu and Ep benchmarks scale well with the number of
processors (see figure 5.15(a)). In fact, a super-linear speedup due to more cache mem-
ory in total can be observed for the Lu application. For other benchmarks scalability
is more limited and often saturation effects occur for four or more processors. This
scalability issue of the Nas benchmarks is well-known and in line with other research
publications [39]. Figure 5.15(b) shows a performance drop for the step from one to

93

Chapter 5. Data-level Parallelism

two processors on the Cell platform. This is due to the fact that we use the generally
more powerful Ppe to measure single processor performance, but then use the multiple
Spes for parallel performance measurements. The diagram reveals that in the best
case it takes about three Spes to achieve the original performance of the Ppe. Some of
the more scalable benchmarks such as Ep and Mg follow a linear trend as the number
of processors increases, however, most of the remaining benchmarks saturate at a low
level.

5.5. Data-parallelism in Embedded Applications

So far our evaluation has focused on scientific applications. Still, profile-driven par-
allelism extraction is generally applicable to all applications that exhibit data-level
parallelism. Many embedded and multimedia kernels consist of parallelisable Doall

loops. The majority of them, however, operates on small datasets and thus parallelisa-
tion is often not effective, especially on modern powerful embedded or general-purpose
processors. These kernels are typically utilised as constituting components in more
complex algorithms where they are arranged so as to form a processing pipeline – a
parallelisation structure that we address in the chapter that follows. These observa-
tions are in agreement with recent studies [62, 68] that reach the conclusion that the
potential of loop-level parallelism in embedded applications is limited and thus other
forms of parallelism should be explored. Nevertheless, for the sake of completeness we
include the experimental results of a study for data-parallelism in appendix A. Note
that although our approach successfully detects parallelism in these kernels, the input
datasets used in the evaluation had to be scaled up. For typical inputs these pro-
grams have very short execution time and thus parallelisation leads to limited speedup
if not slowdown. This leads us to the conclusion that in the case of embedded appli-
cations the rather limited impact on overall performance is due to inherent features
of the applications and the typical datasets rather than a limitation of the proposed
methodology.

5.6. Conclusion

In this chapter we have developed a platform-agnostic, profiling-based parallelism ex-
ploitation methodology that enhances static data dependence analyses with profiling
information, resulting in larger amounts of parallelism uncovered from sequential ap-
plications. We have also shown that parallelism detection in isolation is not sufficient
to achieve high performance, but requires close interaction with an adaptive mapping
scheme to unfold the full potential of parallel execution across programs and archi-
tectures. Results obtained on two complex multicore platforms (Intel Xeon and Ibm

Cell) and two sets of benchmarks (Nas and Spec) confirm that our method is more

94

5.6. Conclusion

aggressive in parallelisation and more portable than existing static auto-parallelisation
and achieves performance levels close to manually parallelised codes.

95

Chapter 5. Data-level Parallelism

96

Chapter 6.

Semi-Automatic Extraction and

Exploitation of Hierarchical Pipeline

Parallelism

In the past parallelising compiler technology targeted mainly scientific applications with
an abundance of data-level parallelism and, hence, the scope was largely restricted to
the detection and mapping of this particular kind of parallelism. On the other hand,
popular multimedia – and many other streaming applications – typically comprise mul-
tiple levels of parallelism. The advent of general-purpose chip multi-processors (Cmps)
as well as the proliferation of multimedia consumer electronics has underlined the im-
portance of tools that take a broader approach and target higher-level parallelism. At
the same time the increased complexity of modern multimedia algorithms necessitates
the exploitation of not only the inner-most vectorizable loops – which also characterised
traditional digital signal processing (Dsp) applications – but also coarse-grain paral-
lelism [108]. In this chapter we address the problem of extraction and exploitation of
pipeline parallelism which is central to most multimedia and stream processing appli-
cations [108]. This does not exclude the exploitation of other levels of parallelism and,
in fact, the approach presented is orthogonal to e.g. data-level parallelisation within
individual pipeline stages.

This chapter is structured as follows. We present motivational examples and an
overview of our approach in section 6.1. The methodology for pipeline partitioning and
parallel-code generation follows in section 6.2. Finally we demonstrate the applicability
of our approach in section 6.3, before we summarise and conclude in section 6.4.

6.1. Introduction

Parallelism detection is tightly coupled to static data and control-flow analyses that pro-
vide essential information about dependence relationships that a parallelisation scheme
must obey in order to guarantee correctness. Unfortunately, dependence analysis is
often statically undecidable and conservative approximations need to be made which
in turn limit the success of automatic parallelisation. In the previous chapters we
introduced a profiling-based parallelisation approach which demonstrated that many

97

Chapter 6. Hierachical Pipeline Parallelism

potential dependences do not materialise in real-world applications. Therefore, more
aggressive approaches can deliver performance improvements matching those of man-
ual parallelisation while only requiring minimal user interaction [145]. We build on
top of this work and present an optimistic pipeline extraction methodology based on
intermediate representation profiling (Ir-profiling) – introduced in chapter 4 – and a
hierarchical whole program representation. Since profiling for data and control depen-
dences is inherently unsafe our approach does not guarantee correctness. We therefore
provide the user with a graphical representation of the extracted pipeline and highlight
the critical items for manual verification.

Traditionally, there has been an information gap between profiling and compilation.
This is due to binary profiling tools that track dependences on machine instruction
level, but are unable to back annotate this information and make it usable within
the parallelising compiler. We bridge this gap and show how instrumentation of the
compiler intermediate representation (Ir) enables us to make the profiling data readily
available in the compiler. Furthermore, we develop a uniform program representation
based on the Program Dependence Graph (Pdg) that is used throughout the entire
parallelisation process including profiling, transformation, partitioning, mapping and
eventually code-generation. We introduce a hierarchical top-down pipeline extraction
methodology that splits functions and multi-level loops on demand, for example, to
achieve a better balance between pipeline stages. Individual pipeline stages that form
a performance bottleneck, but can be shown to operate on independent data items, are
replicated and, effectively, create the opportunity for Out-of-Order (OoO) execution.

Our approach is complete and comprises a code-generation stage that automatically
forms processing pipelines and builds on top of a lightweight, retargetable runtime
system. Our current code generator targets readily available commodity systems and
does not require special hardware (Hw) or operating system (Os) support. We have
evaluated our approach on a number of popular multimedia and stream processing
applications taken from the Eembc and Spec benchmark suites. These applications
contain complex, idiosyncratic programming constructs that are typical of many real-
world applications. We demonstrate how we perform pipeline extraction in the presence
of multi-level loops, dynamic memory management, and interleaved I/O and achieve
speedups of up to 4.7 on a eight-core Intel Xeon machine.

6.1.1. Motivating Examples

Multimedia applications typically comprise pipelined computations and operate on a
stream of data of different granularity. This is illustrated in the code excerpt in figure 6.1
representing a simplified Mp3 decoder. The outer-most loop operates on audio frames,
III stereo operates on both stereo channels, and III hufman decode and III antialias
operate on a single audio channel at each invocation. It is clear that any approach
that forms pipelines by partitioning the code on a single level (e.g. [141, 20, 142])

98

6.1. Introduction

level 1

level 3

level 2

level 3

level 1

Single-level

approaches

Multi-level

+

Replication

input,
decoding 98%

output 2%

speedup

potential

1.02x

speedup

potential

4.16x

: bottleneck stage

: replicable stage

1 while (end) {
2 /∗ . . . input . . . ∗/
3 decode info(&bs , &fr ps) ;
4 /∗ . . . input . . . ∗/
5 I I I ge t s ide info(&bs , &III s ide info , &fr ps) ;

7 for (gr = 0; gr < max gr ; gr++) {
8 for (ch = 0; ch < stereo ; ch++) {
9 I I I ge t sca le fac tors (gr , ch , . . .) ;

10 III hufman decode (gr , ch , . . .) ;
11 III dequantize sample (gr , ch , . . .) ;
12 } /∗ ch ∗/

14 I I I s te reo (gr , . . .) ;

16 for (ch = 0; ch < stereo ; ch++) {
17 I I I reorder (ch , gr , . . .) ;
18 I I I a n t i a l i a s (ch , gr , . . .) ;

20 for (sb = 0; sb < SBLIMIT; sb++) {
21 III hybrid (sb , ch , . . .) ;
22 } /∗ ss ∗/

24 for (ss = 0; ss < SSLIMIT; ss++) {
25 for (sb = 0; sb < SBLIMIT; sb++) {
26 i f ((ss % 2) && (sb % 2))
27 polyPhaseIn [sb] = −hybridOut [sb] [ss] ;
28 else
29 polyPhaseIn [sb] = hybridOut [sb] [ss] ;
30 } /∗ sb ∗/
31 cl ip += SubBandSynthesis (ch , ss , . . .) ;
32 } /∗ ss ∗/
33 } /∗ ch ∗/
34 } /∗ gr ∗/

36 out f i fo (∗pcm sample , . . .) ;
37 } /∗ while ∗/

dequantiz.

header info,
huffman dec.

7%

dequantize 22%

stereo, reorder,
antialias, hybrid

23%

subband

synthesis
24%

output 2%

x2

Figure 6.1.: Multimedia applications typically consist of computation pipelines which operate
on a stream of data of different granularity. This figure shows a code excerpt from the EEMBC
2.0 MP3 decoding application.

is always bound by the execution time of the slowest pipeline stage. For example,
partitioning on level 1 can only form a pipeline of two highly imbalanced stages, input
& decoding (98% of total execution time) and output (2%), which in theory can lead
to a minuscule 2% improvement over the sequential execution, but in practice will lead
to slowdown due to communication overheads. Similar to top-level partitioning neither
does partitioning at levels 2 or 3 alone result in a balanced pipeline. Decoupled Software
Pipelining (DSWP) [106], for example, operates on a representation too low level to
perform the necessary data privatisation required for its parallel implementation. Our
approach, on the other hand, is not restricted to a single loop level from which to
extract pipeline stages and constructs the more balanced pipeline on the right side of
figure 6.1. Using a hierarchical whole-program representation we identify the pipeline
stage that represents the bottleneck (input & decoding) and selectively expose inner
levels, creating a pipeline that spans multiple levels of the loop nest. The more equally
balanced pipeline has a speedup potential of 4.16.

In general, multi-level loop partitioning can expose more parallelisation opportunities
and, thus, provide more flexibility to the partitioner. For instance, the III hufman deco-
de function that is inherently sequential can be decoupled from III dequantize sample.
Then the latter, which is in fact a parallel stage and can operate on two audio channels
independently, can be replicated as shown in the rightmost pipeline in figure 6.1.

Another common scenario is that parallel operations are interleaved with sequential
operations such as I/O. Although, program representations with explicit dependences
(control or data) can overcome such limitations, effectively separating the parallelism
from code syntax, the problem still holds for code with function calls. Figure 6.2 shows

99

Chapter 6. Hierachical Pipeline Parallelism

1 void compressStream ()
2 {
3 while (True) {
4 blockNo++;
5 initialiseCRC () ;
6 loadAndRLEsource(stream) ;
7 i f (l a s t == −1) break ;

9 blockCRC = getFinalCRC () ;
10 combinedCRC = (combinedCRC<< 1) | · · · ;
11 combinedCRC ˆ= blockCRC;

13 doReversibleTransformation () ;

15 /∗ output block header ∗/
16 bsPutUChar(0x31) ;
17 · · ·

19 i f (blockRandomised) {
20 bsW(1 ,1) ; nBlocksRandomised++;
21 } else
22 bsW(1 ,0) ;
23 moveToFrontCodeAndSend () ;
24 }
25 }

27 void moveToFrontCodeAndSend (void)
28 {
29 bsPutIntVS (24, origPtr) ;
30 generateMTFValues () ;
31 sendMTFValues () ;
32 }

34 void sendMTFValues (void)
35 {
36 /∗ generate coding tables ∗/
37 /∗ compute MTF values for selectors ∗/
38 · · ·
39 /∗ · · · output data · · · ∗/
40 }

() {
bsW(1 ,1) ; nBlocksRandomised++;

}
bsW(1 ,0) ;

g ()
sendMTFValues () ;

(,) ;
moveToFrontCodeAndSend() ;

/∗ · · · output data · · · ∗/

inherently
sequential

:

{
bsPutIntVS (24, origPtr) ;

Figure 6.2.: Sequential programs are usually factored using the procedural programming
paradigm. Nevertheless, programmers most often aim at following software engineering re-
lated properties of the code, such as modularity, rather than expressing parallelism. This figure
shows a code excerpt from the SPEC bzip2 compression application. Inherently sequential
code, I/O in this case, is intertwined in nested function calls, preventing the identification of
parallelism in the outer-most loop.

the main loop of the bzip2 compression algorithm. On an algorithmic level bzip2 ex-
hibits a three stage pipeline, namely input, compression, and output. However, as the
shaded areas in figure 6.2 show the parts of the code that have to be executed sequen-
tially are coupled with compression. This enforces nested functions like generateMTF-
Values, which can be executed in parallel for each data block, to execute sequentially.
In addition, the moveToFrontCodeAndSend function that accounts for up to 36% of
the total execution time, contains a significant amount of parallelism which belongs
to the top loop-level of the compressStream function. Although aggressive function
inlining could possibly resolve these issues, it leads to code bloat and other detrimen-
tal effects [25]. In contrast, our analyses operate on a partially folded whole-program
representation that enables us to hierarchically and on-demand discover function calls
which – if inlined – can lead to more profitable parallelisation. For the code in figure
6.2, moveToFrontCodeAndSend will be inlined only if it turns out to be the dominating
stage of the pipeline. Similar to Mp3 decoding example, this will uncover further par-
allelisation opportunities. For example, the call to function generateMTFValues can

100

6.2. Methodology

be fused with doReversibleTransformation in a single scalable data-parallel stage.
In summary, our approach extracts a pipeline structure that a programmer would

construct using a data-flow or streaming programming paradigm. For instance, repli-
cation of pipeline stages corresponds to stateless filters and split-join operations in the
StreamIt programming language. Similarly, multi-level loop partitioning corresponds
to multi-rate signal processing where filters operate at different input and output rates.

6.1.2. Contributions

Among the contributions of the work presented in this chapter are:

We demonstrate that Ir-profiling is a powerful tool for the extraction and ex-
ploitation of parallelisation beyond loop level. Ir-profiling bridges the informa-
tion gap between the low-level execution profile and the IR maintained within
the parallelising compiler. This simple, yet effective back annotation capability
distinguishes our approach from most other profiling methodologies.

We develop a top-down approach for the extraction of processing pipelines from
sequential applications. We exploit the power of a whole-program Ir, but avoid
exposing overly detailed (and possibly redundant) dependence information to
the pipeline extraction pass. Using an iterative, selective unfolding strategy we
specifically target the levels of computationally intensive code regions that will
yield exploitable parallelism.

We extend conventional linear-pipeline parallelisation with two concepts borrowed
from streaming languages, namely multi-level pipelines and stage replication. Ad-
ditionally, we demonstrate how their combination can uncover further paralleli-
sation opportunities.

6.2. Methodology

The parallelisation work-flow is illustrated in figure 6.3. The sequential source program
written in C is processed by the CoSy C compiler and its IR is instrumented. The
resulting executable is executed with one or more representative input files. This results
in a set of trace files that is presented to our trace analyser for dependence analysis.
The generated program dependence graph is passed on to the partitioner that will
produce a pipeline specification with annotations relating to the original Ir. The CoSy
compiler then processes the source program a second time. It generates parallel C code
with calls to our runtime system according to the pipeline specification. Eventually this
code is compiled for the target platform using the Gcc compiler and linked against the
pipeline runtime library.

In subsection 6.2.1 we explain how we generate the program dependence graph from
the trace files. The hierarchical top-down partitioning algorithm is presented in section

101

Chapter 6. Hierachical Pipeline Parallelism

C
FG

pa
rt

iti
on

in
g

Partitioner Trace Analyzer

CoSy
compiler

instr/nted
source

C

sequential
 source

C

Dependence
Analyzer

trace
files

exec

pipelinelib
runtime

input

GCC

whole
program

PDG

Hierachical
Explorer

Loop Analysis
Profitability

estimation

pipeline

specification

Figure 6.3.: Overview of the parallelisation work-flow.

6.2.2. Code-generation is covered in section 6.2.3. Pipeline stage replication and the
generation of multi-level pipelines are part of this algorithm and are introduced in
sections 6.2.4 and 6.2.5, respectively.

6.2.1. Program Dependence Graph

The Ir which is used to perform the hierarchical parallelism extraction is based on the
Program Dependence Graph (Pdg) [35] with its explicit representation of both control
and data-dependences. In contrast to control-flow representations which are tied to a
fixed sequencing enforced mainly by syntactic properties of the source rather than the
necessary ordering of operations enforced by the sequential model of computation. This
increased expressiveness of the Pdg representation enables the partitioning algorithms
to be simple and efficient. In our case the Pdg is derived from the middle-level control-
flow representation which is augmented with data-dependence edges as computed by the
Dependence Analyser (algorithm 4.1) based on profiling information. Pdgs, typically
focus on lower-level Irs where each instruction or operand/operator form a separate
node. Our choice to operate on a middle-level representation is motivated by the
following factors: (i) it provides rich high-level information about the loop constructs
and the data organisation, facilitating aggressive code and data transformations, (ii)
code partitioning transformations can remain simple since we can still rely on the full
set of compiler optimisation passes and (iii) the existing basic-block structure avoids
overly aggressive coarsening during partitioning without compromising load-balancing.

Each node of the Pdg represents a single-entry-multiple-exit (Seme) list of Ir state-
ments. In addition, using a preprocessing pass we isolate function calls and place them
in separate nodes (pass splitfunc is presented in section 4.2.1). We define compound
nodes to encapsulate the hierarchical structure of a program as any of the following:
(i) the basic block (Bb) containing a function call site in addition to the maximum
recursively defined set of Bbs that the specific function call includes, (ii) the set of
Bbs belonging to a loop (loop-structure information is based on a variant of standard

102

6.2. Methodology

control-flow graph analysis performed before the instrumentation pass) (iii) a Strongly
Connected Component (Scc) containing other compound nodes or single Bbs.

The Pdg is initially computed for the whole program and then compound nodes are
formed in a postorder fashion based on a whole program function/loop tree. At this
point compound nodes consist of either functions or loops. The current implementation
is based on the simple iterative algorithm from [6]. Each data-dependence edge in the
Pdg is annotated with the following fields: (i) loop-carried bit mask that designates
the loop-levels which carry the relevant dependences, (ii) loop-independent dependence
bit mask, and (iii) mean size of the data communicated between the adjacent nodes per
iteration at each level. A data-dependence is loop-independent when both the relative
def and use have the same iteration vector. The Cdfg construction algorithm in 4.1
can be trivially extended to compute these since it already records the iteration vectors
to compute loop-carried dependences.

In addition to true data-dependences that we have considered so far, pipeline par-
allelism requires handling some cases of false dependences that are not amenable to
privatisation. This is due to the fact that Pdg partitioning might reorder nodes of
the loop body and thus we have to ensure that producers do not get hoisted over a
preceding producer of the same variable. At the same time we have to avoid intro-
ducing dependences between operations that operate on the same variable but have no
producer/consumer relation. To distinguish these two cases we introduce a new term,
that of relevancy set. More specifically:

Relevancy set Two nodes u and w are said to belong to the same relevancy set of a
variable a if there is an undirected path of data-flow edge between u and w that
carries a.

Effectively a relevancy set of a contains all the nodes that belong to the same undirected
connected component in the data-flow graph of variable a. Nodes which do not belong
to the same relevancy set of variable a are called non-relevant nodes regarding a. In
abstract terms, the relevancy set represents the set of def/use operations that use the
same variable a to communicate. Likewise, non-relevant nodes might operate on the
same variable but do not communicate, and therefore we can later use privatisation
to decouple them. Therefore, our goal is to enforce the original sequential order only
between producers that belong in the same relevancy set.

We achieve this by inserting additional data-dependence edges between producer
nodes (i.e. nodes with an outgoing data-flow edge) of the same relevancy set when
there is a path that connects them in the Cdfg. More specifically, we determine the
edges that have to be added using a single-pass forward data-flow problem formulation.
We present the formulation for a single variable and relevancy set but it can be easily
extended to handle multiple variables in parallel. For each node u of the Cdfg and a
given relevancy set R of variable a we first compute the set:

103

Chapter 6. Hierachical Pipeline Parallelism

W u u, if there is a data-flow edge for a with its source in u, otherwise
W u .

Using a reverse postorder traversal of the Cdfg we compute the following data-flow
equations for each node u:

IMPRin u v pred u IMPRout v .
IMPRout u if W u , then W u , else IMPRin u

Finally, for all the producer nodes u in the relevancy set we add a data-flow edge from
all the nodes in IMPRin u to u if there is no such data- or control-dependence edge.
Figure 6.4 shows the computed equations for a sample Cdfg graph and the resulting
data-flow graph with the additional dependence edges1.

1

0

2 4

3 5

6

7

R={0, 2, 3, 4, 5, 6, 7}

: producer node

{0}

{0} {0}

{4}{2}

{2}

{2, 4}

{2}

{5}

{5}

{2, 5}

: data-flow

: control-flow

(a) Cdfg showing only the data-flow edges for
a specific variable.

1

0

2 4

3 5

6

7
: producer node

: data-dependence

: control-dependence

: producer-producer

 data-dependence

(b) Pdg with the necessary producer-
producer data-flow edges that prevent
hoisting.

Figure 6.4.: An example showing how additional data-flow edges are added in the data-flow
graph to enforce producer nodes of the same relevancy set R to execute in the order appearing
in the sequential Cfg. The sets in brackets show the progressive computation of the data-flow
equations IMPR in and IMPR out from node 0 to node 7.

Note that the Cdfg like the Pdg consists of coarse-grain compound nodes and thus it
is compact. Additionally, any unfolded loops can be considered a single folded node and
thus can be processed independently since we never hoist any computation from nested
loops out of their loop-body. In practice, these edges do not limit pipeline parallelism
but just enforce the ordering of dependent writes that can be still assigned in different
stages. Pipeline parallelism is primarily limited by loop-carried flow dependences that
form SCCs which have to be scheduled in the same stage and not false dependences.
Non-relevant reads and writes are handled using privatisation which is presented in
section 6.2.3.2. In addition, observe that we did not limit producer nodes being hoisted
over nodes that are only consumers in the same relevancy set. We show how to handle
this case with a similar technique also in section 6.2.3.2.

1Note that a graph like the one in figure 6.4(a) is valid because in the case of a compound variable
(e.g. array) two producers might write disjoint subsets of the variable, in which case the nodes
have no direct producer/consumer relationship. However, the two producers might have the same
consumer in the case that the latter reads from both subsets of the compound variable.

104

6.2. Methodology

6.2.2. Top-Down Hierarchical Pipeline Stage Partitioning

Algorithm 6.1: Top-down parallelism selection.
Input
L, F : loop and function set respectively
CTREE: tree of compound nodes
L0: virtual top-most loop
Ldoall: profitable DOALL loops
Wi : i CTREE, profiled weight of i
np: # of available cores

Result
Pdoall: selected DOALL loops
Ppipe: selected pipelined loops

Data
Q: work queue

1 Procedure top down parallelise
2 Q L0 ;
3 while Q do
4 c Q.poll ;
5 if c Ldoall Wc thresholddoall then
6 add c in Pdoall;

7 else if c L Wc thresholdpipe then
8 P, Wpipe partition loop(c, Wc, np);
9 if P Wc Wpipe thresholdspeedup then

10 add c in Ppipe;

11 else
12 Q.add(children of c in CTREE);

13 else if c F Wc threshold then
14 Q.add(children of c in CTREE);

Most applications that exhibit pipeline parallelism will only have a small number
of dominating stages. When targeting Cmps with high a number of cores this factor
will eventually limit the maximum attainable speedup and lead to poor utilisation
of the available resources. This necessitates the exploitation of multiple domains of
parallelism. More specifically, we consider (i) data-level parallelism as well as (ii)
pipelines that span multiple loop-levels, and (iii) replication of stateless stages.

The parallelism selection algorithm operates on a partially folded Pdg. Initially, the
whole program is folded into a single function node. Algorithm 6.1 describes the itera-
tive traversal of the Ir and unfolding of compound nodes which results in the selection
of the loops that contain profitable parallelism. At this stage, the algorithm unfolds
only the compound nodes (loops or function calls) that are likely to expose additional
exploitable parallelism. Currently, we use a simple heuristic based on fixed thresholds
to determine profitability. Future work, however, can investigate more advanced and
possibly machine-learning based strategies.

For sequential loops we use pipelining (line 8). The effectiveness of pipeline paral-
lelisation is mainly determined by the execution time of the longest stage. Therefore,
the primary objective of a pipeline partitioning algorithm is to balance the load across

105

Chapter 6. Hierachical Pipeline Parallelism

Algorithm 6.2: Pipelined-loop partitioning.
Input
l: the target loop
Wl: profiled weight of loop l
np: # of available cores

Result
P : the set of partitions
Wmax : max

P
PWi

Data
Q: sorted descending list, sorted by Wv, v PDG
Pi: set of nodes in PDG assigned to partition i
PWi: aggregate weight of partition Pi

RS v : v 1, np , v PDG, 1 if v is replicated

1 Procedure partition loop l, Wl, np
2 DAG, Wmax preprocess PDG();
3 k 0;
4 Q.add(roots of DAG);
5 while Q k np do
6 v first in Q : PWk Wv Wmax θ;
7 if v then
8 k k 1;
9 PWk 0;

10 continue ;

11 else if RS v 1 then
12 add v in Pk 1 .. Pk RS v ;
13 k k RS v 1;

14 else
15 add v in Pk;
16 PWk PWk Wv;

17 Q.add(ready children of v in DAG);

18 add remaining nodes of PDG in Pnp 1;
19 return (i 0,k 1 Pi, max PW) ;

20 Procedure preprocess PDG l ;
21 set RS u 1, u l;
22 repeat
23 insert IMPR dependences(PDGl);
24 DAG compute SCCs(PDGl);
25 augment replicable stages();
26 peek v DAG : Wv is max;
27 update Wv, v DAG;
28 if v is replicable RS u np 2 then
29 RS v RS v 1;

30 Wv Wv
RS v 1

RS v ;

31 else if v F L then
32 PDGl.unfold(v);

33 else if v is SCC then
34 peek w SCC : Ww is max;
35 PDGl.unfold(w);

36 else break ;

37 until Wv Wl np θ ldepth u thresholddepth;
38 return DAG, Wv ;

106

6.2. Methodology

the available cores. Our key observation is that balancing can be effective only if the
granularity of each node is small relatively to the stage size of a theoretically optimally
balanced pipeline that uses the maximum of the available cores, i.e., Wl #P (Wl the
profiled weight of the loop). Unfortunately, the size of the schedulable nodes is inher-
ently limited by the code structure (e.g. function, loop nests) and the dependences
among them. We address this problem through (i) partitioning of multi-level loops, (ii)
stage replication and (iii) function-splitting. Therefore, partitioning is performed in two
steps. First, we preprocess the Pdg performing the aforementioned transformations
when applicable (preprocess PDG() in algorithm 6.2). Next, we partition the resulting
Directed Acyclic Graph (Dag) using a heuristic that effectively tries to balance the load
given the number of available resources (partition loop()).

The preprocessing step iterates over the Pdg of the loop attempting to break the
slowest compound node in finer-grain blocks of computation. At the beginning of each
iteration, the additional dependence edges that enforce the sequential order between
the producers of the same relevancy set are inserted using the analysis presented in
the previous section (insert IMPR dependences(), line 23). Next, Sccs are collapsed,
resulting in a Dag. This ensures that the algorithm processes chunks of computation
that can be actually executed in parallel. In the case of a dominating stage that
is replicable we eagerly augment it with nodes that preserve its replication property,
i.e., without introducing new cycles in the Pdg. This augmented stage is replicated
multiple times till it is no longer the dominating stage of the pipeline (lines 28-30).
Alternatively, if a loop or function dominates the loop body we opt to unfold it (lines
31-32) in order to generate finer-grain components using multi-level loop partitioning
and function-splitting. Finally, in the case of a Strongly Connected Components (Scc)
we seek to uncover a computation which is not part of the dependence cycle. Again,
we select to unfold the compound node of the Scc with the highest weight (lines
33-35). This iterative process is repeated until the dominating stage is under the
threshold Wl #P (line 37), since further partitioning will not increase the attainable
speedup. In addition, we bound the unfolding of loops up to a depth thresholddepth

since partitioning deeply nested loops is limited by the synchronisation/communication
overhead. For the applications covered in this thesis a loop depth of 5 was adequate to
uncover all available exploitable parallelism.

In the second step, partition loop partitions the Pdg of a given loop in successive
stages (P0..Pnp 1) by effectively following a topological ordering of the graph. Con-
sequently, any inter-stage data dependences will be pointing to a successive stage,
preserving the sequential semantics of loop execution. Nodes are processed using a
descending sorted list, sorted by the profile weight of each node. In case of a tie, the
node that minimises communication with the next stage is selected. A node is included
in the current stage only if its addition will not result in exceeding the threshold Wmax

(line 6). The threshold is not Wl #P as before, but it is given as a parameter that
equals the maximum node weight that derived from preprocessing. Thus, we avoid

107

Chapter 6. Hierachical Pipeline Parallelism

eager partitioning – which subsequently leads to higher communication and context
switching cost – when it does not decrease the execution time of the dominating stage.
In addition, we use an slack factor θ to avoid excessive number of under-filled partitions.

Loop partitioning, along with the set of partitions P , also returns the weight of
the dominating stage, which assists hierarchical parallelisation to determine whether it
should add the current loop to the set of loops that can be effectively parallelised Ppipe

(line 9 in algorithm 6.1) or proceed to inner-levels of the component hierarchy (line 12).

6.2.3. Parallel Code Generation and Runtime System

The code-generation process (figure 6.5) takes as input the partitioned pipeline specifi-
cation and the original procedure-level Cfgs. In order to handle any unfolded function
nodes which are descendants of the loop to be partitioned, we utilise the inline trans-
formation already present in our compiler. Parallel code-generation is then performed
on the Cfg for each procedure at the middle-level Ir in the CoSy compiler.

Additionally, although the resulting partitioned Cfgs are not optimal in any case (in
terms of number of nodes, control instructions, complexity of data access expressions
etc.), parallel-code generation is part of the middle-level passes of the compiler and
thus it enables our approach to remain relatively simple and rely on subsequent intra-
procedural optimisations to eliminate any inefficiencies.

Partitioner
Code

generation

PDG

pipeline

specification

mutliple

CFGs

sequential

CFG

Figure 6.5.: Overview of the code-generation process.

The description of the code-generation process that follows is based on the example
code in figure 6.6. On the left hand, the annotations refer to the contribution (in %)
of each statement in relation to the whole program execution time. The initial Cfg

which is used for the profiling stage as well as parallelisation is shown in figure 6.7(a).
Basic blocks with just one unconditional control statement (e.g. bb4, bb5) are place
holders for loop control structures which are not present (e.g. test and increment block
respectively) and are inserted by the initial control-flow analysis pass.

6.2.3.1. Control-Flow

First, algorithm 6.3 computes the set of Bbs (V a
s) of the original Cfg which include

the control instructions that determine the execution of the Bbs in the current pipeline
stage s (line 3). This control-replication set of Bbs can be computed as the union of

108

6.2. Methodology

Algorithm 6.3: Pipeline parallel-code generation.
Input
CFG: original control-flow graph
PDOMT : post-dominance tree of CFG
PDG: program dependence graph
N : number of pipeline stages
Pdesc N : pipeline stage descriptors
V a

s : set of BBs assigned to stage s
Result
CFG! N : a Vs, Es graph stage s Pdesc

Data
V r

s : control-replication BBs of stage s
outctrls: predicate variables assigned in stage s

1 Procedure pipeline loop:
2 foreach s Pdesc N do
3 V r

s compute control replication BB(PDG, s);
4 Vs V r

s V a
s ;

5 Es e u, v : u, v Vs ;
6 foreach e u, v : u Vs v Vs do
7 v deepest ancestor of v in PDOMT : v Vs;
8 Es Es e u, v ;

9 CFG! s outline CFG subgraph(CFG, Vs, Es);
10 outctrls capture outgoing control flow(CFG! s);
11 fix local data references(CFG! s , s);
12 fix global data references(CFG! s , s);
13 insert pipeline dataflow(CFG! s , outctrls, s);
14 init copyin data(CFG! s , outctrls, s);
15 init copyout data(CFG! s , outctrls, s);

16 insert pipeline initialisation finalisation(CFG);

the vertices in Pdg that are backwards-reachable from any vertex in s using control-
dependence edges only. In figure 6.7, for stage 2 this is V r

2 bb1, bb8 . Then, we create a
new function with a subgraph of the original Cfg that includes both the blocks assigned
to stage s by the partitioner V a

s and the control-replication blocks V r
s (line 10). We

also replicate the pre-header, loop-header and the loop-increment blocks (e.g. bb7, bb0
and bb5 respectively) which are later used to inject the pipeline communication code.
Initially, replicated Bbs contain only the control instruction of the original Bb. The
subgraph includes every edge connecting vertices in Vs, but also edges that substitute
dangling outgoing edges. We redirect these edges to the deepest ancestor of the missing
vertex in the post-dominance tree of the original graph (lines 6-8). For instance, in stage
3 of the previous example the edge bb1, bb7 is replaced by edge bb1, bb2 as shown in
figure 6.7(c).

The final step is to add Ir statements that capture the outcome of the conditional-
control statements of Bbs in V a

s which are control-replication Bbs for any of the sub-
sequent stages (line 11). For each such conditional-control statement we define a new
local variable, predicate, which is assigned the value of the conditional expression. For
example, this is shown for the predicate variables pred1 and pred2 in figure 6.11. This
transformation enables handling control-dependences with a single, uniform pipeline

109

Chapter 6. Hierachical Pipeline Parallelism

5%

20%

50%

20%
5%

1 while ((n = read f i le (inf , data)) != EOF) {
2 for (blk=0; blk<n; blk++) {
3 coef [blk] = decode(data , blk) ;
4 raw data [blk] = inv transform (coef , blk) ;
5 }
6 out data = enhance fi l ter (raw data) ;
7 wr i te f i l e (outf , out data) ;
8 } /∗ while ∗/

Figure 6.6.: Source code for the example in figure 6.7

n ! read_file()

goto bb1

bb0

if n!=-1 bb7 : bb6

bb1

blk := 0

goto bb8

bb7

if blk<n bb9 : bb2

bb8

call decode()

goto bb10

bb9

call inv_transform()

goto bb11

bb10

blk := blk + 1

goto bb8

bb11

bb6

goto bb0

bb5

goto bb5

bb4

call write_file()

goto bb4

bb3

call enhance_filter()

goto bb3

bb2

"

"

#

$

(a) sequential CFG

 (coef)

L[-, CD]

(blk)

10
2

[0, 1]

[8, 11]

9

3 L

(out_data)

(blk)

(blk)

L[CD]

control dep.
data dep.
control & data dep.

L[] : loop-carried dep. vector
C: loop-carried control dep.
D: loop-carried data dep.

(raw_data)

 (data)

7(n)

(blk)

L[-, D]

4

5

"

#

$

(b) PDG with folded SCCs

"

#

$

: 0, 1, 4, 5, 6, 7, 8, 9, 11

: 10

: 2, 3

Partitioning

1

0

6

4

5

7

8

9

11

1

5

2

3

Stage _" Stage _$ Stage _#

: replicated BB

: normal BB

0

1

0

6

5

7

8

10

11

(c) partitioned CFGs

Figure 6.7.: A simplified example based on the source of figure 6.6, demonstrating the inter-
mediate representations used for partitioning and parallel-code generation.

data-flow mechanism (line 14).

6.2.3.2. False Dependences

Flow-dependences are derived from the data-dependence edges of the Pdg that connect
two nodes belonging in different pipeline stages. The data-flow mechanism that enforces
these dependences is based on explicit communication and is described in detail in
section 6.2.3.4. Besides flow-dependences, pipeline code-generation should satisfy any
false dependences too. These can be grouped based on their properties in the following
classes:

i. data intra-stage anti- and output-dependences in a sequential stage,
ii. data inter-stage anti- and output-dependences, and
iii. data loop-carried intra-stage anti- and output-dependences in a replicated stage.

110

6.2. Methodology

Intra-stage false dependences when the stage is not replicated, class (i), are implicitly
satisfied by virtue of the Cfg partitioning algorithm. More specifically, the construction
of the partitioned Cfgs (procedure outline CFG subgraph()) follows the control-flow
of the original sequential Cfg. Therefore, an intra-stage anti-dependence will never be
inverted in the resulting Cfgs (figure 6.7(c)).

while(1){

 ...

 a = 1;

 f(a);

 g(a);

 a = 2;

 h(a);

 ...

}

A:

B:

C:

D:

E:

A D

B C E

"

$

a=1

a=1

a=2

a a a

R1={A, B, C}

R2={D, E}

(a) Source code and a valid
partitioning of the resulting
PDG.

stage1{

 while (1) {

 a = 1;

 f(a);

 a=2;

 push(a);

 }

}

stage2{

 while(1) {

 a !pop();

 g(a);

 h(a);

 }

}

A:

B:

D:

C:

E:

a=1

a=2

a=2

(b) Wrong value communication
due to interfering relevancy
sets R1 and R2.

stage1{

while (1) {

 a_1 = 1;

 f(a_1);

 a_2=2;

 push(a_1, a_2);

 }

}

stage2{

 while(1) {

 [a_1, a_2] !pop();

 g(a_1);

 h(a_2);

 }

}

A:

B:

D:

C:

E:

a_1=1

a_1=1

a_2=2

(c) Code-generation using sepa-
rate thread-private variables.

Figure 6.8.: An example demonstrating the necessity of handling interfering relevancy sets
and the technique of renaming that overcomes this problem. The boxes show the value of the
variable read in the respective Bb.

In section 6.2.2 we presented how the sequential order of false dependences between
producers in the same relevancy set can be preserved across multiple stages by inserting
explicit dependence edges. Non-relevant operations in the same variable, on the other
hand, can be handled with privatisation since they represent independent computation
streams. This is better demonstrated by the example in figure 6.8. It is clear that if
statement (C) is placed in a stage after the stage of statement (D) like in figure 6.8(b),
the data flow mechanism will communicate the updated value rather than the one from
statement (A). This is an artefact of the communication mechanism that transfers
data only at the beginning and the end of an iteration as we will see in section 6.2.3.4.
Transferring data after the source and before the sink of the dependence resolves this
problem but it leads to fine-grain communication and therefore we did not follow this
approach. Instead we create separate thread-private variables which are used in the two
disjoint relevancy sets, R1 A,B, C and R2 D,E. This is necessary only if (i) two
or more nodes of a single pipeline stage belong to vertex-disjoint relevancy sets of the
same variable, and (ii) one of the nodes in these sets is scheduled in another stage.
The latter is required because otherwise there is no need for duplicating variables in a

111

Chapter 6. Hierachical Pipeline Parallelism

while(1){

 ...

 a = 1;

 f(a);

 g(a);

 a = a+1;

 h(a);

 ...

}

A:

B:

C:

D:

E:

a=1

a=1

a=2

a=1

(a) Source code.

A

D

B

C

E

"

$

a
a

a

R={A, B, C, D, E}

a

: producer BB

: consumer-only BB

(b) A valid partitioning of the
PDG. Producer node D is
hoisted over node C.

stage1{

 while (1) {

 a_1 = 1;

 a_2 = a_1;

 f(a_1);

 a_1 = a_1+1;

 push(a_1, a_2);

 }

}

stage2{

 while(1) {

 [a_1, a_2] !pop();

 g(a_2);

 h(a_1);

 }

}

A:

B:

D:

C:

E:

a_1=1

a_1=1

a_2=1

a_1=2

a_1=1

a_1=2 a_2=1

(c) Code-generation using an in-
termediate buffer.

Figure 6.9.: An example of using an intermediate buffer to handle the case when a producer
node is hoisted over a consumer-only node in the same relevancy set. The boxes show the value
of the variables read in the respective Bb.

single stage where the control-flow is identical to the sequential one (by virtue of the
Cfg partitioning algorithm).

In fact, this technique resembles register renaming in OoO microprocessors where it
is utilised to resolve false dependences in architectural registers and thus increase the
extracted Ilp. Similarly, compilers compute intersected Def-Use chains (webs) that rep-
resent connected live ranges and use this representation to perform register allocation.
Figure 6.8(c) illustrates the transformed program with the renamed variables.

Finally, we create an additional thread-private variable for those stages that have
nodes with no exposed reads or writes, i.e., no incoming or outgoing data-flow edges
for the specific variable. This is necessary because these nodes can be freely reordered
and might perform write operations that conflict with writes of a relevancy set that
is scheduled in the same stage. The mechanism used for privatisation is presented in
detail in section 6.2.3.3.

The second case that requires privatisation is when a producer or consumer node
is hoisted over a consumer-only node of the same relevancy set. Remember that we
have only enforced the original ordering for producer nodes. To handle this case we
create a additional thread-private instance of this variable only for the specific consumer
node. This is necessary only if (i) a producer or consumer node w in a relevancy set R is
scheduled in a stage before a consumer-only node u also in R, and (ii) u is a predecessor
of w in the Cfg. The difference with the previous case of non-relevant nodes is that
we have to save the intermediate result at the end of the producer node. Then its
value will be communicated using the same uniform data-flow mechanism that we use
for all variables. Also observe that this applies for a hoisted consumer node because
it might still perform conflicting write operations that are not communicated to any

112

6.2. Methodology

further nodes.
Figure 6.9 demonstrates this technique for an example of a single variable. In the

Pdg partitioning in figure 6.9(b) producer D is hoisted over C which is legal since C

is a consumer-only node and thus we have not inserted a data-flow edge from C to D.
Since C is a predecessor of D in the control-flow the result of producer A is saved after
its execution in the separate thread-private variable a2. Finally, node C in stage 2 is
consuming the communicated value of a2. Node E – the other node of the relevancy set
R which is in stage 2 – is consuming the communicated value from the default thread-
private variable a1 which is assigned to every other node of R in stage 1. Although
this analysis is necessary to ensure correctness under aggressive reordering, in practice
producer/consumer nodes in the same relevancy set form a sequential pipeline and the
creation of additional buffers was not necessary in any of the program that we have
considered.

Besides the false dependences that involve data communicated from/to another stage,
the rest require simple privatisation. We determine these dependences using a post-
pass on the Ir-instruction stream. This process can be performed efficiently given that
it is performed when the code partitioning is fixed and tracking dependences in stage
granularity is sufficient. More specifically, for false dependences in class (ii) for each
memory location a we record:
1. Wa bitset of size N where Wa s is set if stage s has executed a def for memory

location a (N the number of pipeline stages).
2. Ra bitset of size N where Ra s is set if stage s has executed a use for memory

location a.
Then we determine if there is an inter-stage false dependence for a memory location
at analysis time as follows. If a def a instruction is executed in stage s, there are two
non-trivial cases:
1. If (Wa : 0 Wa : 1 s) then there is an inter-stage output-dependence

(Waw) between s and the stages that correspond to the non-zero bits of the value
Wa.

2. If (Wa : 0 Ra : 1 s) then there is an inter-stage anti-dependence (War)
between s and the stages that correspond to the non-zero bits of the value Ra.

In practice we can relax both tests and perform the following test at the end of the
analysis.
1. If Wa has more than one bit set then there is an inter-stage output-dependence

(Waw) between the stages that correspond to the non-zero bits of Wa.
2. Let RW : Ra : Wa : . If RW has more than one bits set then there is an inter-

stage anti-dependence (War) between the stages that correspond to the non-zero
bits of RW .

This might result to false-positive anti-dependences which are in fact flow-dependences
or output-dependences. Since we are privatising these variables anyway this overesti-
mation is sufficient. An alternative approach is to compute the read and write address

113

Chapter 6. Hierachical Pipeline Parallelism

range for each stage but the technique presented was significantly more efficient for
some programs that we have instrumented. In addition note that we do not have to
distinguish between loop-carried and loop-independent dependences or determine their
direction.

Dependences in class (iii) apply only in pipeline stages that are replicated. Let these
stages be M 0, N in number. For each memory location a we record:
1. Ritera array of size M where Ritera s is the normalised iteration number of the

pipelined-loop when the first use for location a was executed in stage s. Otherwise
it is negative.

2. Witera array of size M where Witera s is the normalised iteration number of the
pipelined-loop when the first def for location a was executed in stage s. Otherwise
it is negative.

Then we determine if there is a loop-carried intra-stage false dependence for a memory
location as follows. If a def a instruction is executed in stage s at iteration number k,
there are two non-trivial cases:
1. If (Witera s 0 Witera s k) then there is a loop-carried intra-stage output-

dependence (Waw) in stage s.
2. If (Ritera s 0 Ritera s k) then there is a loop-carried inter-stage anti-

dependence (War) in stage s.
Since we are always privatising whole objects we can stop the analysis of class (iii) for
the respective address ranges as soon as the first false dependence is observed for an
object.

6.2.3.3. Privatisation

Based on the analyses of section 6.2.3.2 we determine which variables should be pri-
vatised to preserve correctness. The paragraphs that follow describe the privatisation
mechanism for the case of local and global variables.

Local Variables Local variables are privatised by default since they execute in the
context of a new thread stack. In line 11 of algorithm 6.3 any references to local2

variables or arguments of the original function are modified to reference thread-private
data. For every thread-private variable referenced in the body of an outlined stage
function a new local, stack-allocated variable is defined. Scalars are allocated with
the same type of the original variable. Aggregate-typed variables (e.g. structures and
arrays) are transformed to pointer-to-original-type variables in order to facilitate copy-
by-reference initialisation and communication. Initialisation by reference can reuse the
original object of the sequential thread but this is only legal in the following two cases:

2Terminology regarding variable or object visibility, storage, etc. is based on the language-portable
IR of the compiler and not the one of ISO C. Nevertheless, the usage of terms should be clear from
the context.

114

6.2. Methodology

% reduction in accesses
Function name loads stores
qSort3 20.82 3.59
sortIt 50.41 20.88
simpleSort 15.91 4.77
fullGtu 1.21 3.59
Total for
compression thread 24.35 2.52

Table 6.1.: Comparison of using thread-local storage for privatising global and static variables,
compared to a thread-id indexed array scheme. The table shows the reduction in dynamic
memory accesses for the dominating functions of bzip2 compression algorithm.

(i) a shared aggregate local variable, or (ii) a thread-private copy of the first pipeline
thread that accesses a private aggregate object.

Global Variables References to global variables (line 12) are more complicated to
handle since all threads share the same global naming scope. For instance, if a func-
tion is called from more than one stages, changing the accesses of the global variable
to reference the thread-private copy is not an option. Likewise, supporting multiple
thread-private instances of a variable to avoid conflicting relevancy sets is not pos-
sible. We first discuss the case of aggregate types. Global aggregate variables are
substituted with pointer-to-original-type variables. This mechanism has the benefit
that it avoids allocating and initialising memory in Bss for threads that do not access
a specific variable. Therefore the only wasted space is of the size of a pointer and not
that of the original type. Accessing thread-private data using the same global symbol
from all threads can be implemented in two alternative ways. The first is following
the popular parallel programming paradigm of using an array-of-original-type, indexed
by the unique thread ID. A second option is to use Thread-Local Storage variables
(i.e. variables declared with the qualifier thread) [146]. This feature implements a
platform-specific and optimised mechanism to transparently access thread-private data
using the same symbol name. Evaluation of these two options led to the conclusion to
adopt the latter, although not purely portable, because thread ID indexing results in
significant performance degradation. This was particularly significant in applications
like bzip2 (see table 6.1) that access global variables repetitively in computationally
intensive code.

Further investigation revealed that this was due to a combination of poor common
subexpression elimination and increased register pressure. The latter is in fact overem-
phasised in architectures like x86 64 which have a limited amount of architectural
registers. Thread-local storage, on the other hand, does not suffer from this side-effect
because it utilises a free segment register and fixed offsets to perform each access to
private data. Nevertheless, we retain thread-id indexed arrays in order to provide a

115

Chapter 6. Hierachical Pipeline Parallelism

mechanism to access private data before/after thread creation/termination. Finally,
any local variables of static storage duration are handled similarly to globals.

For global scalar variables we utilise thread-local storage too. The difference with
aggregate variables is that we preserve the original type. This way we avoid using
indirection and switching between multiple thread-private instances can be performed
with a single scalar assignment of the value stored in the thread-id indexed array.

6.2.3.4. Data-flow

Pipeline data-flow is based on the communication primitives of the runtime system
(libpipeline). Each pipeline thread is connected to each immediate predecessor and
successor using two single-producer-single-consumer (Spsc) queues, one outgoing for
produced data and one incoming for recycling consumed buffers. Queue operations
(push(), pop()) communicate fixed-sized pointers, which effectively point to structures
that contain the communication data.

Before continuing, we introduce a few clarifying definitions:
1. Loop backedge x, y is an edge where y dominates x.
2. loop header is a node y that dominates all the nodes in the loop.
3. Body BBs are all the predecessors of x that can reach y without traversing x, y

and do not belong to test or increment Bbs do not belong to.
4. Test BBs is a single-entry-multiple-exit (Seme) subgraph containing all Bbs with

an exit to either a loop exit or a body Bb.
5. Increment BBs is a single-entry-single-exit (Sese) subgraph which exits to test

Bb only and it contains any loop-variable update.
Body, test and increment subgraphs are vertex disjoint. These blocks are identified

or created by an early loop analysis performed after the front-end. The header of the
loop might be either a body or test Bb (repeat until or while do loops respectively).

Inter-stage dependences are satisfied at the loop iteration boundaries. Stages with a
predecessor pop a context buffer and restore its contents at the beginning of the loop-
header (e.g. bb0 for the outer loop in figure 6.7(a)). Similarly, stages with a successor
store the outgoing data in a buffer structure and push them in the outgoing queue at
the end of the loop-increment Sese (e.g. bb11 for the inner loop). Scalar variables
are copied-by-value in the context buffer. Aggregate-typed and dynamically allocated
objects are at the producer side using memory copying (e.g. memcpy()). When data-flow
analysis shows that there is no intra-stage loop-carried dependence for an aggregate
variable copy-by-reference can be used. However, in the case that data are pushed
further to subsequent stages we have to establish additional pointer recycling queues
between non-adjacent stages. In addition, in multi-core architectures that support
cache-bypassing stores this migratory access pattern does not necessarily lead to better
cache behaviour than memory copying. Therefore, we opted to not implement this
scheme in our compiler. At the consumer side scalar variables are updated using the

116

6.2. Methodology

value stored in the buffer. Aggregates variables have been substituted by pointer-to-
original-type (section 6.2.3.3 and just require updating the respective pointer to refer
to the object of the buffer.

Memory copying can exploit streaming Simd extensions, available to all modern
multi-cores (e.g. Intel’s Sse and Ibm’s Altivec) to minimise the copying delay. Addi-
tionally, since the producer is not going to access these data soon we evaluated the use
of non-temporal store instructions (e.g. movntdq for Intel’s Mmx). These hints can
effectively minimise cache pollution, avoiding allocation of cache lines for data not in
the cache and bypassing the cache-hierarchy for memory stores. In addition, these in-
structions are implemented using write combining memory operations, leading to more
efficient bus bandwidth utilisation. Nevertheless, this might not be beneficial in the
case of communicating threads that share higher-cache levels.

6.2.3.5. “Copy in” and “Copy out” Data

In addition to data communicated through inter-stage dependences, code-generation
has to handle the initialisation/finalisation of “copy in” and “copy out” variables, re-
spectively (lines 14-15). We qualify as “copy in” (similar in semantics to OpenMp’s
copyin clause) any thread-private variable which needs to be initialised with the value of
the sequential thread. “Copy in” variables are identified by incoming data-dependence
edges that have their source outside the loop body. A variable that is “copy in” in
multiple stages, but it is also part of an inter-stage dependence is initialised only in the
earliest stage. Pipeline data-flow ensures that later stages will receive the initialised
copies.

On the other hand, thread-private variables are qualified as “copy out” if there is a
definition in the loop body that reaches an external use. Handling “copy out” variables
is more complicated, though. Variables that have been initialised with the copy of
the sequential thread by reference are implicitly copied out and no further action is
necessary. Variables which are private to more than one stage are finalised by the
sequential thread using the array of private copies where each thread has stored a
reference to the buffer it used before terminating. If the first stage has many Bbs
pointing to a loop-exit, the last modifying stage has to be identified at runtime. In
order to determine the loop-exit that terminated the loop we use a special variable
private to each thread and a mechanism analogous to the one described earlier for
control-replication blocks.

6.2.3.6. Pointer Disambiguation

The allocation of thread-private pointer variables is handled just like any other variable,
scalar or aggregate. Initialisation of pointers that might point to thread-private data,
though, is more complicated. Each thread is consuming multiple incoming buffers which
in turn contain privatised copies of data. Pointers to these data must be initialised

117

Chapter 6. Hierachical Pipeline Parallelism

co
n
te

x
t

id

allocation

Translation table

context idsizeaddress base

0xaaa00

...

...

...

0

(0xaaa00, 64)

private-copy
creation

(0xaaa00, k)

(0xbbb00, 64)

translate to
private-copy

0xbbb00 k ..
.

0

1

..
.

k

64

64

(0xaaa04, k)

(0xbbb04)

Figure 6.10.: To disambiguate pointers that point to privatised data we utilise a translation
table like the one depicted here. The original objects of the sequential thread is stored at
address 0xaaa00 and is associated with context-id 0. Thread-private copies are registered when
they are created in the pipeline initialisation section. Each one gets assigned a unique context-id
k. Address 0xaaa04 is translated to the corresponding address for the private-copy of context
k, which is 0xbbb00+0x04=0xbbb04.

appropriately. In principle, in the presence of recursive data-structures (e.g. linked
lists) this requires either scanning and updating pointers through the whole structure
or patching each dynamic pointer access. Copy-or-discard proposed by Tian et al.
[142] is following the latter approach which introduces a significant overhead at every
pointer access3. Fortunately, in practice the majority of streaming applications use
simpler structures. Therefore, we opted for a simple, yet effective mechanism that
dynamically disambiguates and translates pointers to thread-private-data.

For each privatised object we register its original address in the context of the sequen-
tial thread in a translation table4. In the case of objects with static or automatic storage
duration we emit explicit calls at the pipeline initialisation section. For heap-allocated
objects, we intercept any memory allocation calls (malloc(), etc.). At inter-stage buffer
allocation each buffer is assigned a sequence number, context-id, and each object copy
is associated with this ID and its (dynamic or static) size in bytes (figure 6.10). Effec-
tively, this establishes a notion of alternative thread-private contexts. Each object as
accessed by the initial context of the sequential thread is associated with the special
zero context-id. Then, at pipeline runtime when a buffer is popped out of the queue
every pointer to “copy in” or thread-private data is updated based on its current value
and the context-id of the incoming buffer. The table in figure 6.10 stores both the
original copy of the sequential thread and the thread-private copies used in the buffers.
Let a translation query request the equivalent of address addr0 that corresponds to
the copy with context-id id (a tuple (addr0, id)). The table is looked up with addr0
and returns the line that contains the base of addr0, base0. The offset is computed by
subtracting the base from addr (offset=addr0-base0). Then using the pointer table that

3In C programs arrays are passed-by-reference, i.e., translated to pointers. This results to most of the
accesses in nested functions to be pointer rather than array accesses.

4The translation table is practically implemented using a search tree rather than a table.

118

6.2. Methodology

is indexed by the context-ids – depicted on the right side of figure 6.10 – the base baseid

corresponding to context id is retrieved. Finally, the requested pointer is computed as
baseid+offset.

6.2.4. Stage Replication

Pipeline stages that have no loop-carried intra-stage dependences are stateless and,
thus, can be replicated in order to further reduce the critical path of the pipeline. This
kind of parallelism is highly beneficial for applications that contain a single dominating
stage that forms a performance bottleneck.

In order to process multiple incoming buffers in parallel our framework spawns mul-
tiple threads. Data that carry any loop-carried false dependences within the replicated
stage have to be privatised to facilitate independent execution. Incoming buffers can be
processed Out-of-Order (OoO) by the thread pool since its output is either completely
independent or it will be explicitly pushed to the next stage through the outgoing
buffers. It is important to stress at this point that the OoO property creates further
opportunities regarding the work distribution policy, i.e., the policy that specifies which
thread will consume each incoming buffer. Thus, in the case that different iterations
of a stage show great variation in processing time we have the flexibility to employ a
load balancing scheme. In this study we employ a simple round-robin policy that has
the benefit of lock-free single-producer-single-consumer queues.

Detecting parallel stages using the Pdg is relatively straightforward. Using the loop-
carried dependence bit sets precomputed in the profiling stage we can mask out data
dependences that manifest only across inner loop levels. Computing the additional data
that have to be privatised to eliminate any false dependences can be deferred until the
code-generation phase. Stage replication, however, is invalid in the case of stages with
loop exits.

Although stage replication essentially diverges from a purely linear pipeline paradigm
it is straightforward to extend our code-generation and runtime strategy to handle it.
We extended libpipeline runtime system with the following primitives: (i) push a buffer
to one of the multiple out-going queues, the selection is based on a callback (current
implementation supports only static balancing), and (ii) pop a buffer from on of the
multiple queues of the previous stage.

6.2.5. Multi-Level Pipelines

We have extended our analyses to handle partitions that span more that one loop-level.
Effectively, this coalesces multiple pipelines that operate at different rates into a single
linear pipeline. It is important to note that the choice of a Pdg based representation, as
opposed to a control-flow based one, enables us to handle the rather complicated control
of nested loops in a uniform and transparent way. Therefore, the partitioning algorithm
can proceed and distribute the internal nodes of an unfolded inner loop level to different

119

Chapter 6. Hierachical Pipeline Parallelism

n ! read_file()

goto bb1

bb0

pred1 := (n!=-1)

if pred1 bb7 : bb6

bb1

blk := 0

push(q1, [&coef, pred1])

goto bb8

bb7

pred2 := (blk<n)

if pred2 bb9 : bb4

bb8

call decode()

goto bb11

bb9

 push(q1, [-, pred1])

bb6

push(q2, [-, pred2])

goto bb0

bb5

goto bb5

bb4

push(q2, [blk, pred2])

blk := blk + 1

goto bb8

bb11

(a) stage "

[coef, pred1] ! pop(q1)

goto bb1

bb0

if pred1 bb7 : bb6

bb1

goto bb8

bb7

[blk, pred2] ! pop(q2)

if pred2 bb10 : bb5

bb8

call inv_transform()

goto bb11

bb10

 push(q3, [-, pred1])

push(q3, [raw_data, pred1])

goto bb0

bb5

goto bb8

bb11

bb6

(b) stage $

[raw_data, pred1] ! pop(q3)

goto bb1

bb0

if pred1 bb2 : end

bb1

call write_file()

goto bb5

bb3

call enhance_filter()

goto bb3

bb2

goto bb0

bb5

(c) stage #

Figure 6.11.: This figure demonstrates the insertion of data and control-dependence communi-
cation using the primitives of libpipeline. The partitioned Cfgs are from the example in figure
6.7(c). Matching pairs of push() and pop() calls in adjacent stages are highlighted with the
same color. Communication calls that recycle the consumed buffers are omitted.

partitions and largely disregards the code-generation intricacies. Then, as part of the
PDG CFG transformation, the unfolded loops are processed in a bottom up order.
The replication of the additional control dependences that determine the execution of
the nodes of nested loops result in the replication of the control-flow of the inner-loop
to multiple threads, similar to single-level partitioning. Data communication is handled
in the same fashion, too.

For instance, in figure 6.7 we process the inner For loop first. In this case bb9,
bb10 are control dependent to the header of the nested loop bb8. This Bb is included
in the resulting partitioned Cfgs of both stage 1 and 2, figure 6.7(c). The result of
the if conditional is captured in the predicate variable pred2 which is communicated
either in the increment block of the inner loop (bb11). Data-communication code which
is relevant to the inner-loop only (e.g. blk) is injected in the beginning of bb11 for
stage 1 (outgoing) and bb8 for stage 2 (incoming), figure 6.11. Next, the outer loop is
processed. Communication regarding dependences of the outer loop should be inserted
at the end (before the control statement) of the pre-header of the inner loop (bb7).
This is necessary to enable the execution of stage 2 to proceed to the header of the
inner loop. In the example of figure 6.11 the predicate pred1 is pushed in bb7 which is
associated with the if conditional in bb1. The matching communication is inserted like
in the single-loop case in the header of the outer loop in stage 2 which is bb0. Stage 3
receives only the predicate pred1 since none of its nodes is control-dependent to bb8.
This is pushed in queue q3 along with the data-dependences (raw data) at the end of
the iteration in stage 2 which is the beginning of the loop-increment Bb bb5. Note that

120

6.3. Empirical Evaluation

this way we preserve any data dependences that are due to def statements in the rest
of the loop body. In stage 1 the communication was necessary to be inserted in the
pre-header of the inner loop to allow the execution of the inner loop in stage 2. In the
case that there were any dependences with their source after the inner loop in stage 1
it would be necessary to communicate them at the end of the outer loop, i.e., in bb5.
Another interesting point is that the variable coef is communicated out of the loop
instead of being communicated at each iteration. This is permitted only if there are
no intra-stage loop-carried false dependences for a variable, hence privatisation is not
required. Therefore, we only communicate the reference to the variable and the threads
modify it in parallel. Although this is rarely true for the outermost loop, in nested loops
it is common and we exploit this to reduce the communication cost. Finally, note that
the predicate values have to be communicated in both the left and right path of the
conditional to ensure termination of the relevant loops. So, for instance, in pred1 is
pushed in stage 2 both in bb5 and bb6.

6.2.6. Safety

The use of profiling for dependence analysis cannot guarantee safety. Unlike static
analysis that reasons about all possible program execution paths profile-driven analysis
is limited to a small number of paths and, hence, might miss data or control depen-
dences. We therefore expect the user to perform the final verification of the suggested
partitioning scheme.

In this work we have taken the following steps to verify the correctness of the gen-
erated parallel code. First, we have run a number of tests with both the sequential
and the parallel versions of the programs on different input data sets and compared
their outputs. Second, we have manually inspected the generated code. In this second
step we have been guided by our tools that generate an additional, graphical pipeline
diagram highlighting the data items and code regions where static and dynamic depen-
dence information differs.

We are fully aware that such a manual verification process is not scalable and envisage
a scenario whereby dynamic checks for dependence violations are inserted into the
generated code. These checks may be implemented in the underlying pipeline library
or be based on additional hardware [148]. This is, however, beyond the scope of this
thesis.

6.3. Empirical Evaluation

We evaluated our methodology on M1, a shared memory system comprising two quad-
core Intel Xeon processors. The configuration of the target platform is given in table
3.8.

121

Chapter 6. Hierachical Pipeline Parallelism

Pipeline techniques
Benchmark LOC dataset replicate multi-level func. split #cores speedup
mp3 20K 128Kb/s cbr stereo ! ! 6 3.52x
bzip2 5K 64MB program ! ! 8 4.70x
mpeg2dec 23K 375 704x576 frames ! ! 3 2.68x
cjpeg 22K 4096x4096x24bit bmp ! ! 2 1.47x

Table 6.2.: List of the benchmarks used for evaluation and their main characteristics. For all
the benchmarks more than one of the techniques that we introduced were necessary to achieve
reasonable parallel speedups. The last column reports the attainable speedup in M1 (table 3.8)
which is equipped with 8 cores in total. Note that some applications utilise less than 8 cores
since further partitioning would only increase the communication overhead without reducing
the execution time of the slowest stage.

The speedup figures presented in the following paragraphs have been computed as the
arithmetic mean over 10 executions. Machine M1 was idle before the experiments start
and besides the absolutely necessary system services no other programs were executing
during the experiments. Additionally, any I/O performed has been exclusively to local
filesystems in order to reduce variation introduced by the cluster’s network filesystem.
The relative standard error of the mean was less that 0.5% for all the experiments.
This is primarily due to fact that the proposed parallelisation strategy yields static
work partitioning and scheduling, i.e., it results in exactly the same data buffers being
processed by the same threads in the same order5. Also note that replicated stages
although in principle can process incoming buffers Out-of-Order the current prototype
is using a simple round-robin scheduling policy to simplify the runtime system and
minimise the synchronisation overhead (see section 6.2.4). Finally, application threads
were bound to a single-core each and without Cpu time-sharing among them6.

6.3.1. Performance

For our evaluation we have chosen four non-trivial benchmark applications from the
Eembc and Spec benchmark suites with up to 23,000 lines of code. The details of
these benchmarks are shown in table 6.2. While there are more programs in the two
benchmark suites that are amendable to pipeline extraction we are mainly interested
in multimedia and stream processing and, hence, we have restricted ourselves to those
programs which are most representative of this application domain. In the following
paragraphs we provide an in-depth discussion of the four benchmark applications, their
parallelisation and the resulting performance.

5Static parallelisation or work partitioning does not necessarily result to deterministic parallel execu-
tion. The execution of the application threads might still result to significantly different overlapping
of computation/communication, unavoidably leading to further variation in the architectural events
(e.g. consistency protocol events) seen by each thread.

6This was implemented by utilising the thread-to-core affinity feature available in Linux and more
specifically the sched setaffinity() interface.

122

6.3. Empirical Evaluation

dequantiz.

header info,
huffman dec.

7%

dequantize 22%

stereo, reorder,
antialias, hybrid

23%

subband

synthesis
24%

output 2%

x2

(a) MP3 decoding

x6dequantiz.

intput,

RLE
15%

BW transform,

generate MTF,

generate tables

output 4%

13.5%

(b) bzip2 compression

36%
27%

motion

compentation

output

input,

decode MB
37%

36%

27%

(c) MPEG-2 decoding

input, color convert,

downsample 40%

fwd DCT, quantize,

encode, output 59%

: bottleneck stage

: replicable stage

(d) JPEG compression

Figure 6.12.: Flow graph of the extracted pipeline for each application in table 6.2

6.3.1.1. MP3 Decoding (EEMBC 2.0)

This benchmark implements a decoder for the de-facto standard for digital music com-
pression, Mpeg-1 Audio Layer 3. As shown in the motivating example in figure 6.1,
the decoding pipeline comprises multiple kernels that process the encoded data stream
at various levels of granularity, ranging from whole audio frames down to frequency
sub-bands.

The key challenge in parallelising this application is in exposing sufficient work spread
over multiple loop levels to the Pdg partitioner in order to facilitate the extraction of
a well-balanced pipeline. The Mp3 decoder makes use of idiosyncratic programming
idioms that typically evade static analysis such as returning function values through
buffers passed into functions by pointers, deeply nested function calls and the extensive
use of dynamically allocated buffers. Existing approaches either do not address this
issue at all [20], or rely on manual code transformations (e.g. function inlining, full
loop unrolling or loop distribution) [141]. The latter is both an error-prone process,
but most importantly, if it is not guided and selective, it can lead to suboptimal results.

Using multi-level loop distribution and stage replication we achieve a speedup of
3.52 on 6 cores over the sequential baseline. The extracted pipeline structure for this
benchmark is shown in figure 6.12(a) and, in fact, this structure resembles the one
contained in the explicitly parallel streaming StreamIt benchmarks [140]. This result
is encouraging and suggests that our pipeline extraction methodology is capable of
“imitating” the coarse-grain algorithmic parallelisation that previously was alone in
the hand of the expert programmer.

123

Chapter 6. Hierachical Pipeline Parallelism

6.3.1.2. Bzip2 Compression (SPEC2000)

This benchmark implements a lossless, block-sorting data compressor. It exhibits a
typical pipeline structure which operates on constant size data blocks. It consists
roughly of the following stages: (i) input and Run-Length Encoding (Rle) which are
both inherently sequential, (ii) independently compression of each block by performing
a Burrows-Wheeler transform, (iii) Mtf transform and (iv) output.

: bottleneck stage

: replicable stage

loadAndRLEsource()

15%

doReversible

Transformation()

moveToFrontCodeAnd
Send()

33%

52%

loadAndRLEsource()

15%

doReversible

Transformation()

 generateMTFValues()

17%

26%

sendMTFValues()

16%

loadAndRLEsource()

15%

doReversible
Transformation(),
generateMTFValues()

~14%

sendMTFValues()

16%

x5

doReversible
Transformation(),
generateMTFValues(),
generate coding tables
& selectors

output 4%

~13%

x6

loadAndRLEsource()

15%

unfold
function

replicate
stage x2

loadAndRLEsource()

15%

doReversible

Transformation()

moveToFrontCodeAnd
Send()

33%

26%
x2

augment
&

replicate
stage x5

unfold
function

loadAndRLEsource()

15%

doReversible
Transformation(),
generateMTFValues()

~14%

generate coding
tables
& selectors

output

12%

4%

augment
&

replicate
stage x6

: data-parallel stages

(f)(e)(d)

(c)(b)(a)

 to be merged

x2

x5

Figure 6.13.: The main steps of the partitioning algorithm for bzip2 compression. Note that
selective function unfolding and function splitting creates new opportunities for stage replica-
tion. In addition, it is clear that the form of the pipeline is changing as the number of utilised
cores increases.

Figure 6.12(b) depicts the extracted pipeline structure for the bzip2 benchmark. Pro-
cessing of constant sized blocks can be accomplished in parallel in a replicated stage.
The extensive use of dynamic memory allocation, pointer arithmetic and pointer alias-
ing (e.g. pointers of different types are used to access the same allocated buffer) have
been a particular challenge to our tools, still an overall speedup of 4.7 on eight proces-
sors could be achieved. This is an example where a purely static approach would have

124

6.3. Empirical Evaluation

failed completely to detect the parallelisation opportunities, but profiling accurately
and correctly identifies the independence of individual blocks, even if this has to be
ultimately verified by the user.

Figure 6.13 illustrates the main steps of the partitioning algorithm (algorithm 6.2).
Selective unfolding and splitting of function nodes successfully decouples interleaved
I/O operations and computation nested in lower-level functions. For instance, in step
6.13(c) (d) function moveToFrontCodeAndSend() is unfolded and thus generateMT-
FValues() and sendMTFValues() are decoupled, forming two new stages that can be
executed in parallel and reduce the length of the dominating stage. In addition, this
split creates an additional parallelisation opportunity. Function generateMTFValues()
is a replicable stage since it does not perform any I/O and thus it can be merged
with the preceding stage of doReversibleTransformation() without breaking the data-
parallel property (line 24 in algorithm 6.13). This way a coarser replicable stage is
formed which can scale up to 5 cores, further reducing the execution time of the slow-
est stage. Similarly, in step 6.13(d) (e) function sendMTFValues() is unfolded to
enable the decoupling of intertwined I/O. This results to a pipeline where the dominat-
ing stage is the one that reads the input file and performs the Run-Length encoding, a
process which is inherently sequential and exhibits only fine-grain parallelism. Finally,
note that there is no fixed partitioning that performs better for a given total number
of utilised cores.

An alternative to function splitting would have been to use special link-time hooks
that bypass output calls and save the output in intermediate buffers which are later
flushed in-order [112, 142]. This, however, would assume the use of specific I/O libraries
and bzip2 is using memory mapped I/O instead of the standard library. Therefore, these
approaches presume manually modified sources.

6.3.1.3. MPEG-2 Video Decoding (EEMBC 2.0)

This benchmark implements the widely used international standard for video compres-
sion. At an algorithmic level, Mpeg-2 decoding features multiple processing stages
(e.g. coefficient decoding, saturation control, motion compensation) which successively
operate on the encoded input stream of frames on different levels of granularity (e.g.
frames, slices, components, macro-blocks).

Using our tools we extract the multi-level pipeline structure shown in figure 6.12(c)
that results in a speedup of 2.68 utilising three processors. Given that we solely rely on
pipeline parallelism and do not attempt to exploit further fine-grain Ilp or Simd-style
short vector data parallelism this result is impressive. For this application the speedup
is eventually restricted by an unbalanced distribution of work between stages. This can
be seen in figure 6.12(c) where next to the extracted pipeline and relative time spent
in each pipeline stage is shown. Integrated approaches targeting Ilp and short vector

125

Chapter 6. Hierachical Pipeline Parallelism

instructions inside pipeline stages may eventually contribute to further speedups, but
are outside the scope of this thesis.

6.3.1.4. JPEG Compression (EEMBC 2.0)

This benchmark implements the Jpeg image compression algorithm, the dominant
standard in digital image photography and the Www. Using our tools we managed to
extract a two-stage pipeline (see figure 6.12(d)) which resulted to a moderate speedup
of 47%. This is mainly due to the fact that although Jpeg features abundant fine-
grain parallelism, even on an algorithmic level most components are inter-dependent.
In order to parallelise this application we annotated the memory allocation routines
before analyzing the application with the IR-profiler. This was necessary because the
reference implementation uses a custom memory manager that utilises OS features
like memory mapped I/O. Nevertheless, this is a relatively straightforward process
compared to process-based systems like ([112, 141]) that claim transparent privatisation
but in this case would most probably require major modification to the source of the
memory manager.

6.3.2. Safety

We have tested each of the benchmarks using an extensive set of additional, previously
unseen input data sets. For all benchmarks and inputs this has resulted in identical
outputs for the sequential and the parallelised codes. In addition, manual code in-
spection did not reveal any violation of dependences. This result is initially surprising.
However, for the static pipelines we are targeting in this work complex, but regular
dependence patterns can be expected.

6.4. Conclusion

In this chapter we have presented a semi-automatic, profile-driven methodology for
the extraction of pipeline parallelism from sequential codes. We improve on existing
work in that we do not rely on manual code annotation, but only involve the user
for final approval. We consider our work to be a feasibility study into the limits of
parallelism detection using profile information. Our approach covers multi-level loops,
hierarchical pipelines and pipeline stage replication in a uniform framework. It, thus,
avoids the performance bottlenecks resulting from imbalanced pipeline stages that ex-
isting pipeline parallelisation approaches suffer from. We have demonstrated that our
methodology can successfully exploit pipeline parallelism in real-world multimedia and
streaming applications featuring idiosyncratic programming constructs. Speedups of up
to 4.7 for an eight-core Intel Xeon machine are promising and demonstrate the poten-
tial of profile-driven, semi-automatic parallelisation approaches that target parallelism
beyond the loop level. Future work will focus on the extraction and exploitation of dy-

126

6.4. Conclusion

namic parallelism, target heterogeneous architectures, improve our safety mechanisms
and consider the use of machine learning for the construction of improved partitioning
heuristics.

127

Chapter 6. Hierachical Pipeline Parallelism

128

Chapter 7.

Conclusions

This thesis investigated the case of leveraging profile-driven dependence analysis to en-
hance coarse-grain parallelism extraction from sequential applications. We presented
an instrumentation framework that enables the integration of precise dependence in-
formation in the Intermediate Representation of the compiler. Our first study aimed at
demonstrating the applicability but also the effectiveness of profile-driven approaches
for the exploitation of loop-level parallelism in scientific and embedded applications.
Next, in a more ambitious study, we presented how this methodology can be extended
to address more powerful parallelisation schemes. To accomplish this we developed a
hierarchical partitioning algorithm and a flexible code-generation infrastructure that
automatically transforms a sequential application in a multi-threaded pipeline.

The structure of this chapter is as follows. In section 7.1 we present a summary
of the contributions and experimental results of this thesis. Section 7.2 provides a
critical analysis of issues that we have not addressed in this thesis and discusses possible
directions for future research.

7.1. Contributions

7.1.1. Intermediate-Representation Profiling

Auto-parallelisation despite its success in uncovering parallelism from programs written
in languages like Fortran has so far failed to reach its potential in a more general
setup. This thesis was primarily focused in the exploitation of coarse-grain parallelism
from applications written in the C programming language; including pointers, dynamic
memory allocation, non-affine index expressions and other language features or idioms
that make static dependence analysis conservative. To remove these obstacles in chapter
4 we introduced a code instrumentation approach that facilitates powerful and precise
dependence analysis on a whole-program level.

Established dependence profiling techniques utilise binary instrumentation mecha-
nisms and hence rely on inaccurate debugging information to establish a connection of
the information back to the source code. To bridge this information gap, we followed
an approach that operates directly on the Intermediate Representation (Ir) of the com-
piler. Additionally, it provided the means to identify opportunities for more aggressive

129

Chapter 7. Conclusions

transformations like privatisation and reduction operations; two transformations that
are commonly used in static compilation of array-based programs but have limited ap-
plicability in languages like C. In fact, in the case of parallel reductions this was only
made possible with a novel bidirectional analysis that identifies candidate reduction op-
erations at compile-time, verifies their semantics at profile-time and finally annotates
the Ir of the compiler to enable their exploitation in parallel-code generation.

7.1.2. Data-parallelism

Chapter 5 presented a parallelisation methodology for data-parallel loops that builds on
top of profile-driven dependence analysis. To generate parallel code we used OpenMP

directives. OpenMP offers compiler and runtime support for the majority of modern
parallel architectures and thus allowed us to target multiple architecture avoiding any
cumbersome code-generation issues. Additionally, in this study we integrated a power-
ful Machine-Learning profitability analysis to select the loops to parallelise as well as
the most suitable loop-scheduling policy.

For the evaluation of this scheme we used an Intel Xeon architecture with eight cores
in total and an extensive set of benchmarks, namely Nas Pb and Spec Fp2000. Be-
sides the sequential code these benchmarks also include OpenMP versions manually
parallelised by expert programmers. The ML-based scheme improved the attainable
speedup over the default heuristic-based 48% on average. More surprisingly, the com-
bined scheme achieved on average 98% of the hand-parallelised code performance, re-
sulting in an average speedup of 3.5. Furthermore, profile-driven parallelisation was
proven to be effective for loops that although sequential, can still be parallelised if
transformations like privatisation or reduction is applied. Loops parallelised using this
approach often span multiple files, and include deeply nested function calls, dynamically
allocated objects and pointers addressing resizeable arrays. These results look definitely
promising given that profile-driven parallelisation can actually match the performance
attainable till now only by experienced developers with domain-specific knowledge of
both the algorithms and the implementation. Finally, in an additional experiment we
investigated the case of utilising Ml-mapping to target a non-conventional architec-
ture, the Ibm Cell Be. Unlike manually tuned and hard-wired heuristics that lack any
portability across architectures, ML-mapping not only successfully selected the loops
which are profitable, but also managed to significantly outperform the hand-parallelised
codes which were also compiled with the native OpenMP compiler.

7.1.3. Pipeline-parallelism

Despite the ample data-parallelism available in scientific applications and embedded
kernels, simple iteration-level decomposition is not sufficient for more complex applica-
tions. For instance, multimedia applications typically feature loops that execute mul-
tiple algorithms and data transformations – some of them data-parallel – intertwined

130

7.2. Future Directions

with I/O operations, all in a single iteration. To exploit available parallelism under
this scenario, programmers typically employ a parallelisation paradigm inspired by the
pipelined organisation of modern processors. More specifically, the loop body is divided
in stages, each one operating in turn on successive packets of data, effectively forming a
functional pipeline that processes a stream of data. Nevertheless, this comes at the cost
of increased design and programming effort; requiring non-trivial manual transforma-
tions like outlining the thread code for each pipeline stage, privatising and initialising
local, global or heap-allocated structures, inserting communication and synchronisa-
tion calls. And this procedure has to be repeated for the exploration of alternative
partitionings or adjusted for new target architectures or system configurations.

Contrary to loop-level parallelisation where entire loop iterations are executed in par-
allel, pipeline partitioning required a more flexible approach. To achieve this in chapter
6 we introduced a whole-program representation based on the Program Dependence
Graph where both data and control dependences are explicitly represented. Based on
this Ir we developed a top-down partitioning strategy that aims at balancing the load
across the available resources while keeping communication overhead low. In addition,
we enhanced the traditional pipeline skeleton with two powerful concepts borrowed
from streaming languages, namely stage replication and multi-rate filters. Finally, we
developed a powerful code-generation infrastructure and an efficient runtime system
to enable their automatic exploitation. Empirical evaluation using real-life multime-
dia codec implementations confirmed the effectiveness of this approach, demonstrating
speedups of up to 4.7 (3.1 on average). These results provide evidence that Ir-profiling
can not only overcome many of the hurdles imposed by widely used low-level features of
C, but can also extend the reach of automatic parallelisation methods to more complex
forms of parallelism.

As software development costs are rising rapidly during this unprecedented transi-
tion of the microprocessor design industry to multi-cores we expect next-generation
development tools to adopt profile-driven techniques to increase productivity and turn
parallelism from a problem to an opportunity for higher performance.

7.2. Future Directions

In this section we discuss related issues that have not been thoroughly addressed in
this thesis along with promising directions for future research.

7.2.1. Intermediate-Representation Profiling

Optimisations In section 4.4 we discussed how the current implementation of Ir-
profiling can be further optimised for performance without losing its precision. Fur-
thermore, there are techniques which can trade-off between performance and the preci-
sion of the profiling information. Information about deeply nested loops and functions,

131

Chapter 7. Conclusions

for instance, can be collapsed in a single compound node where control-flow is not
instrumented and data accesses are summarised in a single address range. This can be
particularly advantageous for short loops with irregular accesses, where address signa-
tures cannot be effectively compressed. This way we avoid the overhead of tracking
loop-carried dependences within a loop that is highly unlikely to be parallelised and we
just process it as a single black box. A possible technique to achieve this is to leverage a
Machine-Learning approach similar to the one presented in chapter 5 that predicts the
maximum loop-depth that parallelisation will be profitable. Another, more ambitious
technique would be to dynamically remove the instrumentation for loops that have
already been determined to be sequential. Nevertheless, this entails the integration of
a complex virtualisation layer, possibly utilising dynamic binary translation.

Trace indexing Another implementation issue that we hope to address in future
research is the storage of the trace itself. Instead of storing a flat sequence of Ir-
instructions we can devise a hierarchical structure that enables fast seek operations in
specific parts of the execution. This can be achieved either by using an index that
records the offset of specific control-flow operations (e.g. function or loop entry) in
the instruction stream or an even more radical relational representation that can be
stored in a database management system. The latter option also has the benefit of
transparently utilising the powerful and efficient file-backed data structures (e.g. B+
trees) implemented in modern RDBMSs. Building on top of this feature the analysers
but also the graphical interface can extract additional metrics (e.g. size and granularity
of data communication) about a specific code region on-demand, in contrast with an a
priori global detailed analysis.

7.2.2. Data-parallelism

Loop transformations Our methodology for extracting data-parallelism in chapter 5
uses the heuristic of selecting for parallelisation the outermost parallel loop of a loop
nest. This choice was based on the simplistic assumption that the coarser the iteration
granularity the more effective its parallelisation. This technique performed reasonably
well as it is clear from the empirical evaluation, however, there is still room for im-
provement. The problem of determining the optimal loop-depth for parallelisation is
quite complicated since it involves modelling the access patterns of each loop-level in
relation to the memory hierarchy of the target architecture. The problem gets further
complicated if we consider unimodular (e.g. loop-interchange, -reversal and skewing)
or more complex loop transformations (e.g. loop-fusion, unrolling and tiling) that can
improve parallelisation, data-locality and vectorisation opportunities. The problem of
finding the optimal sequence of such transformations has been heavily studied, espe-
cially in the context of the polyhedral model, employing advanced iterative or Machine-
Learning approaches to counter the combinatorial explosion of the optimisation space
[158, 160, 110, 111]. Nevertheless, the majority of these studies has only addressed

132

7.2. Future Directions

these issues to fully analysable linear algebra kernels and thus presumes detailed and
accurate dependence information. Despite the fact that complex locality optimisations
like loop-tiling are difficult to apply in the presence of ambiguous dependence informa-
tion, simpler transformations like loop interchange or loop-fusion can still be performed
using profiling-based dependence information.

Nested parallelism Another opportunity for future research is the exploration of
multi-level data-parallelism. Our approach so far selected a single loop-level to paral-
lelise (the outer most one). The next step will be to investigate the parallelisation of
multiple nested loops. Despite the additional threading overhead, this technique can
provide better load-balancing and data locality compared to single-level. In fact, recent
studies [151, 9, 63] on Computational Fluid Dynamics applications have demonstrated
improved scalability especially for large distributed memory machines with hundreds
of processors. As the number of cores per chip has already started following an ex-
ponential trend – analogous to the trend predicted by G. Moore for the number of
transistors in a chip – such multi-level approaches will become the norm for many ap-
plications that feature big datasets. The challenges for auto-parallelisation in this case
will be 1. uncovering such multi-level parallelism from sequential applications, 2. find-
ing a partitioning/mapping (i.e. which loops in a nest should be parallelised) that
best matches the performance characteristics (e.g. threading overhead, communication
latency) of the targeted architecture, and 3. determining the loop scheduling policy
for each level that achieves the optimal trade-off between effective load-balancing and
synchronisation cost.

7.2.3. Pipeline-parallelism

Partitioning and scheduling The pipeline partitioning algorithm presented in chapter
6 had proven to be a simple, yet effective approach at least for the applications that
we have considered so far. Nevertheless, it is based on the simplifying assumption that
the load of each pipeline stage is evenly distributed in the program execution time. In
addition we presumed a fixed target architecture and number of resources. Finally, we
optimised parallelisation having only maximum throughput as an objective. However,
there are many cases where these conjectures may be proven to be insufficient. Future
research should account for these sources of variation and more specifically:

Input variation Variation in the execution behaviour due to characteristics inherent in
the input stream may lead to profile-driven partitionings that are suboptimal for
a new input. For instance in Mpeg-2 motion compensation is only performed for
I-frames. A dynamic scheme can exploit this property to schedule other threads
of the application that might be co-scheduled due to resource limitations.

OS scheduling Our approach is binding threads to cores using a static round-robin
scheduling scheme. In a multi-programmed system this might not be preferable or

133

Chapter 7. Conclusions

even feasible1. The Os can reduce the number of cores available to a program/user
or use time-sharing for some cores based on the current workload and system
scheduling policy.

Power and thermal constraints The proliferation of portable consumer devices in ad-
dition to technology constraints often force designers to optimise for power-
efficiency rather than just performance. Furthermore, voltage and frequency of
individual cores has to be dynamically scaled due to thermal or other constraints
that regard the operation stability of the chip. The mechanism controlling these
parameters are currently fixed on the hardware or offer limited control to the Os.
However, recent developments like the Intel Single-chip Cloud Computer [55] re-
search prototype that features Os-level control for the multiple voltage domains
of the chip definitely show that this restrictions are soon to be waived.

Letting the Operating System (Os) or the compiler address this adaptation problem
independently will unavoidably lead to suboptimal solutions. The compiler even if we
assume precise profiling information, has little flexibility to address input-dependent or
hard to predict load variation scenarios. On the other hand the Os, can utilise advanced
monitoring techniques like performance counter sampling but still has limited knowl-
edge for the interaction between the application’s threads and should keep the runtime
overhead to a minimum. Purely runtime solutions on the other hand incur signifi-
cant overheads and lack the flexibility of more elaborate approaches. Our view is that
the problem of runtime adaptation and the variation of the application load require
a multi-layered synergistic approach that involves all the critical components: com-
piler, runtime and operating system. Such a scheme can provide both high flexibility
and reasonable overhead by delegating expensive scheduling decisions to the compiler
and only perform minimal adaptation on the runtime utilising Os-based policies and
runtime-system mechanisms.

Only recently, Hormati et al. proposed Flextream [49] a novel approach that com-
bines static compilation and dynamic adaptation for streaming applications. This ap-
proach although promising is only focusing on variation in the parameters of the target
architecture (e.g. on-chip memory size, number of cores). In addition it addresses
only programs with explicit stream graph representations (e.g. StreamIt) and explic-
itly managed memory communication (e.g. similar to Cell Be local storage). These
programs, however, are relatively simple and thus feature minimum inherent variation.
Compared to stream programs automatic parallelisation of sequential application of-
fers less control over the granularity of the extract pipeline but is applicable to more
complex program and thus requires performance modelling that exceed the scope of

1Most probably, future many-core systems will probably not be utilised as time-shared resources not
only due to the abundance of available cores but also due to thermal and power constraints. For
instance, hotspots can be prevented or mitigated by spreading the computation across many cores
operating at a relatively low-frequency. Still these are scenarios where an application should not
assume exclusive access to cores.

134

7.2. Future Directions

Flextram (e.g. interaction with the cache hierarchy). Nevertheless, this is one of the
first approaches that identifies the key problem of existing approaches, i.e. assuming a
fixed pipeline structure.

Suleman et al. introduce in [135] an adaptive scheme for scheduling pipeline pro-
grams on homogeneous multi-cores. They control the number of threads executing each
stage and their mapping to the available cores with the objective of optimising either
power or performance. The main shortcoming of this approach is that it explores the
space of different mapping decisions on the runtime. In addition, in order to min-
imise the instrumentation and adaptation overhead they only monitor the execution
time of each pipeline stage. We believe that such run-time schemes can be further
enhanced and remain minimally obtrusive at the same time even. First, by explicitly
monitoring the memory behaviour of each thread using hardware performance counters
(e.g. L2 cache misses and coherency invalidations). Using these explicit metrics com-
pared to the implicit metric of the execution time the scheduler can more accurately
model 1. the interaction of co-scheduled threads regarding the size of their working-set,
and 2. the communication pattern/dependence between threads scheduled in differ-
ent cores. Second by utilising off-line analysis performed at compile/profile time and
precise knowledge of the underlying cache-hierarchy on the runtime. For instance, ad-
jacent stages can exploit shared higher cache-levels to minimise communication time.
Similarly, stages with large working-sets can be co-scheduled with stages that are not
that memory intensive to avoid cache-thrashing. Similar monitor techniques can also
be applied for inter-core, inter-chip and memory bandwidth.

Another related monitoring technique is presented in [5]. The authors use taint
analysis to determine key control points in streaming applications that might lead to
execution time variation. Then, this information is used to build an on-line execution
time estimator for each stage of a set of manually parallelised applications. Contrary to
our original assumption, their experimental analysis presumes more application threads
than available cores, which are therefore dynamically scheduled using the produced esti-
mations. Under this scenario, this estimation mechanism can be utilised to pro-actively
balance the load in a way that favours the current (but time variable) dominating stage.
This study is definitely paving the way for more aggressive compiler-based techniques
to predict variability at runtime accurately and ahead-of-time. Its main shortcoming,
however, is that the load-balancing heuristic is not accounting for runtime overhead
caused by cache sharing, thread migration and context switching. This is also sug-
gested by the parallelisation methodology that the authors followed, since they eagerly
partitioned the code in parallel stages without accounting for the aforementioned over-
heads 2

2Although direct comparison is not possible, we observed that the speedup attained for the only
benchmark that we have also parallelised (Mpeg-2 decoding) is lower than the one reported in
section 6.3, even after dynamic load-balancing is applied.

135

Chapter 7. Conclusions

Heterogeneous cores Most of today’s multi-core systems consist of homogeneous pro-
cessing elements – Ibm Cell Be being a notable exception. Heterogeneous configura-
tions, on the other hand, have been proposed as a solution to the escalating problem of
power efficiency. For embedded systems in particular heterogeneity can be considered
as another design option in the hardware-software co-design process. As is obvious
from figure 6.12 each pipeline stage comprises one or more coarse-grain algorithmic
blocks. As a consequence each thread of the pipeline exhibits better instruction local-
ity and therefore is more power and performance efficient. More interestingly, pipeline
partitioning by separating the application in its functional components creates the op-
portunity for finer tuning of the architectural parameters of each core. For instance,
pipeline stages rich in word-level parallelism can be executed more efficiently on Vliw

cores or in-order cores with powerful Simd units. Similarly, the designers have the
option to specialise the instruction set extensions for each pipeline stage rather than
the whole program. This technique can result in more efficient utilisation of the limited
configurable-hardware budget available on each embedded core. Still, pipeline parti-
tioning can be advantageous in general-purpose systems too. The main difference is
that core specialisation is transformed in its dual problem, mapping stages to cores
while trying to maximise an objective function like throughput or power.

Our view is that future research that will focus on these topics should incorporate
the pipeline partitioner in its design methodology as a dynamic component rather than
assume a fixed pipeline configuration. Finer-grain partitioning, for instance, provides
the designer with more opportunities for core specialisation but this comes at the cost
of increased communication overhead.

Architectural extensions The primary overhead of pipeline parallelisation is due to
the inter-thread communication cost, either explicit or implicit. Explicit communica-
tion occurs while copying the contents of thread-private memory to the pipeline buffers.
Implicit communication, on the other hand, occurs when the consumer thread accesses
the contents of the incoming buffer and stalls in a coherency miss till that cache-line
is fetched either from main memory or one of the cache-levels of the core executing
the producer thread. In our prototype we utilised Simd extensions for streaming loads
and stores a feature already available from the majority of modern Cmps to mitigate
these effects. Streaming instructions avoid cache pollution because they bypass the
cache-hierarchy writing directly to memory, and have the extra benefit of effectively
utilising the memory bandwidth using write-combining operations. Another technique
to reduce the implicit communication cost is cache-aware scheduling (i.e., scheduling
threads with high communication in cores that share a higher cache-level). Neverthe-
less, since modern Cmps typically share caches in groups of two (e.g. L2 in Intel Core2)
or four (e.g. L3 in Intel Nehalem) and cache sharing does not scale well beyond eight
cores anyway, there is a limit to this approach.

136

7.2. Future Directions

This thesis intentionally did not utilise any hardware features not readily available in
commodity hardware. However, it would be very interesting to investigate the potential
of a simple and generic hardware mechanisms that can address the communication
problem that we have just reviewed. For instance, an interesting approach for this
problem would be the addition of a special instruction that not only invalidates lines in
the producer side but also starts pushing the data to the consumer cache. The problem
with existing prefetching hints is that they have to be initiated on the consumer’s side
and therefore most probably prefetching will be untimely. Therefore, future research
should aim for pro-active schemes.

A promising proposal towards that direction, called Data Marshalling, was only re-
cently published in [134]. It is based on a profiling stage that aims at identifying
the load and store instructions where inter-thread communication occurs both incom-
ing (first-load) or outgoing (last-write). Then, based on this information it annotates
the binary using two special instructions. On the runtime these instructions trigger
explicit cache-line communication which is implemented using a very small buffer (16-
entries) for storing the relevant addresses and a cache-to-cache network. The main
shortcoming of this approach is that it requires profiling for detecting a pattern that
can be easily monitored on the runtime using a simple Program Counter (Pc) predic-
tor. Furthermore, their profiling scheme does not disambiguate among communicating
and non-communicating dynamic instances of the same load/store instruction. In fact,
this is also obvious from the very low accuracy, less than 60% and 50% on average,
of the predictions. Previous work on the related subject of cache-line self-invalidation
has actually shown that far better accuracies are possible if a trace-based predictor 3 is
utilised [75, 74].

Another problem with Data Marshalling is that it only exploits very short commu-
nication sequences (up to 16 cache-lines long). This is sufficient for the majority of the
applications that the authors used that were manually parallelised and use fine-grain
communication. On the contrary, the applications that we consider in chapter 6 feature
more coarse-grain communication (e.g. bzip2 processes a buffer of 100-900Kb). There-
fore a more general approach is required, most probably similar to pre-invalidation
that starts evicting cache-lines from the lower cache-levels towards larger shared cache-
levels. Such a scheme will have the additional benefit of reducing cache-pollution in
the producer core too since evictions will start evicting data that are not going to be
accessed again from the current core and thus will improve cache utilisation.

3Trace-based predictors for cache-line self-invalidation predict the cache-lines that will be invalidated
by the coherency protocol before being accessed again (i.e. last-write). In addition, such a scheme
does not depend on off-line profiling. They are based on the same principle with path-based branch-
predictors that exploit the history of branch target addresses to predict the outcome of conditional
jump.

137

Chapter 7. Conclusions

7.2.4. User Interface Enhancements

The user interface that visualises the whole-program dependence graph and the ex-
tracted pipeline flow-graph was designed having as a primary objective to assist us in
the empirical evaluation. Nevertheless, it lacks some features that will allow our ap-
proach to increase the productivity of developers in a realistic usage-scenario. A short
list of potential enhancement follows:

Incorporate the dependence graph visualisation in a widely-used Integrated De-
velopment Environments (Ide) like Eclipse [138] or Microsoft visual studio [89].
This will allow developers to inspect the original source code in parallel with the
extracted pipeline.

The current visualisation depicts all the dependence arcs at the same time. A
simple filtering mechanism that will select dependence arcs that manifest only on
specific levels of the code or relate to a subset of all the communicated data will
provide a more focused and clear view of the data-flow.

The validation procedure can be more systematic. More specifically, the Ide can
provide a list of validation steps that the user should follow in order to confirm
the correctness of the proposed parallelisation scheme.

138

Appendix A.

Data-level Parallelism in Embedded

Applications

In this appendix we present an empirical evaluation of the data-level parallelism ex-
traction method presented in chapter 5 focused on embedded programs. The purpose
of this study is to demonstrate that profile-driven parallelism detection is applicable to
a wider domain of applications rather than just scientific applications. However, as we
discussed in section 5.5, data-parallelism is often exploitable only in individual stages of
a full-scale embedded application. Exploitation on whole-program scale requires more
powerful schemes like pipeline parallelisation, a method which is covered in chapter 6.
For the purpose of this empirical evaluation we use a collection of embedded kernels
that contain exploitable loop-level parallelism as well as a full-scale implementation of
the Jpeg-2000 image-coding standard.

The structure of this appendix is as follows. In section A.1 an overview of Jpeg-

2000 and its parallelisation is given. The experimental methodology and the empirical
evaluation follows in section A.2.3. Finally, we conclude in section A.3.

A.1. Case Study: JPEG-2000 Still Image Compression

Jpeg-2000 [84, 26] is the most recent standard produced by the Jpeg committee for
still image compression and is widely used in digital photography, medical imaging
and the digital film industry. The main stages of the wavelet-based coding process as
defined in the Jpeg-2000 standard are shown in the diagram in figure A.1.

!"#$"%&%'(
')*%+,")#

-*.&/&'
0)*%+,")#

12*%'34*'3"% 5*'*
6)7&)3%8

+"2)9&
3#*8&

9"#$)&++&7
3#*8&(7*'*

!"&,!93&%'
:3'(#"7&/3%8

;)3'<#&'39
9"73%8

=&83"%(",(3%'&)&+'

!"7&(+')&*#(+>%'*?(@("$'3"%+

03&)AB(9"73%8 03&)AC(9"73%8

Figure A.1.: Overview of the Jpeg-2000 coding process.

139

Appendix A. Data-level Parallelism in Embedded Applications

In the component transformation stage images have to be transformed from the Rgb

colour space to another colour space, leading to three components that are handled sep-
arately. Furthermore, the image is partitioned into non-overlapping rectangles, called
tiles. The tile size can be chosen arbitrarily. Each tile, with the exception of the
border-line tiles, are equally sized and are encoded independently, enabling the use of
Jpeg-2000 on memory constrained platforms. However, tiling is also known to cause
a degradation of the rate-distortion performance as well as introducing visible blocking
artefacts when used in lossy mode. In the wavelet transformation stage each tile is pro-
cessed by either an irreversible Cdf 9 7 floating point wavelet transform or a reversible,
biorthogonal Cdf 5 3 integer wavelet transform, corresponding to lossy or lossless cod-
ing modes respectively. In the subsequent quantisation stage the coefficients computed
in the earlier wavelet transformation stage are quantised to reduce the number of bits
used to represent them. In addition, sub-bands resulting from the previous stage are
further divided into code-blocks. These are rectangular arrays of coefficients that can be
extracted independently. In the following passes of the coding pipeline entropy encod-
ing is applied separately to each code-block (Tier-1 encoding). Finally, Tier-2 reorders
and packs the code-block bit-streams into the final Jpeg-2000 bit-stream.

A.1.1. Detection of Parallelism

Jpeg-2000 exhibits multiple levels of data-parallelism (e.g. tiles, components, code-
blocks). Even without tiling most of the coding stages can be performed independently
on each component. Furthermore, during entropy bit coding, an additional level of
parallelism can be exploited using a code-block decomposition. However, extracting all
these levels of parallelism from a sequential implementation in C is challenging.

A.1.2. Static Analysis of DOALL Loops

Initially, we evaluated the amount and type of parallelism a production auto-parallelising
compiler can extract. We used Intel Icc version 10.1 (section 3.2). Enabling the most
powerful optimisations available in the Intel compiler (e.g. multi-file interprocedural
analysis, auto-parallelisation and auto-vectorisation) had no impact on the overall per-
formance of the application for both compression and decompression. The compiler
vectorised 17 and 11 loops, respectively, but could not parallelise any loops. Setting
the profitability threshold to its minimum value resulted in 31 and 20 vectorised loops
for compression and decompression, respectively, and 54 and 27 parallelised loops. This
more aggressive parallelisation scheme, however, resulted in a slow-down of 8 compared
to the default setting. Similarly to the scientific applications, this is due to static anal-
ysis being successful in extracting parallelism only from deeply nested loops which are
too fine-grain to be profitably parallelised.

140

A.1. Case Study: JPEG-2000 Still Image Compression

Block name Function % seq. time
Dwt dwt encode 53.3
Tier-1 coding t1 encode cblks 41.2
Tier-2 coding t2 encode packets 1

Table A.1.: Execution times for each stage of the Jpeg-2000 algorithm (compression in lossless
mode).

A.1.3. Hot Spot Detection

In a first step we identify the computational intensive parts of the application. Table
A.1 shows the execution times for each of the algorithmic stages of the Jpeg-2000

application are shown. Clearly, Tier-1 encoding and discrete wavelet transform are the
most computationally intensive stages. Tier-2 coding, on the other hand, contributes
less than 1% of the total encoding time. Therefore, in the subsequent steps we primarily
focus on extracting coarse-grain loop-level parallelism from functions dwt encode and
t1 encode cblks.

A.1.4. Profile-Driven Dependence Analysis

Following hot spot detection we use our analysis tool described in section 5.2 to extract
parallelism at any level of the call hierarchy under dwt encode and t1 encode cblks.

The main loop of the discrete wavelet transform can be easily parallelised as a Doall

loop at the colour-component level. Tier-1 coding can be either parallelised in the
colour-component level or at a code-block level. Although both are coarse-grain loops
the main difference is that there are only three colour-component in each image, thus
the scalability of the former is expected to be limited. Parallelisation of the loops in
t1 encode cblks was more complicated. A loop-carried dependence prevents parallelisa-
tion of the original sequential code. Using the automatic reduction detection feature of
the Dependence Analyser, however, we can automatically detect that this dependence
is due to a valid parallel reduction operation. Indeed, manual code inspection revealed
that this is due to the update of an accumulation variable which is not used before
later stages of the encoding process.

Decoding We repeated the same process for Jpeg-2000 decoding where we paral-
lelised the corresponding stages of the codec. To achieve this we had to repeat the
profile-driven analysis using appropriate input data and command line flags. The code
is almost symmetrical, however the execution-time of the parallelisable stages (Tier-1
and Dwt) represents less than 90% of the total decoding time.

Tiling As we have already mentioned, another interesting opportunity resides in the
tiling option of Jpeg-2000. Tiling is inherently parallel. However, analysing the
OpenJpeg implementation using the profile-driven dependence analyser revealed that

141

Appendix A. Data-level Parallelism in Embedded Applications

although the decoding process is trivially parallelizable the same does not hold for
encoding. This is due to a true dependence caused by the call to an I/O function in
the tile-level loop. Once again we observe that arbitrary decisions of the programmer
might hamper parallelisation. In fact, parallelising this form of partially sequentially
loops is of the main motivations of the study on pipeline parallelisation in chapter 6.

A.2. Empirical Evaluation

A.2.1. Experimental Methodology

We evaluated the achievable speedup of the parallelised benchmark on an Intel Xeon
machine with 8 cores in total (M1 in table 3.8). Since most applications feature only
a few coarse-grain loops we followed a manual approach for selecting them rather than
the integrated machine-learning based mapping scheme used in chapter 5. Both the
sequential and OpenMP versions of the code were compiled using Intel Icc compiler
(C1 in table 3.3). The reported speedups are over the unmodified sequential code and
include automatic vectorisation using Sse Simd extensions, thus ensuring the strongest
available sequential baseline.

We have selected applications from multiple embedded benchmark suites: MiBench
[42], MediaBench [79], and Utdsp [78] based on their suitability for parallelisation
and compatibility with our tools. The benchmarks and their main characteristics are
summarised in table A.2. For all the applications we are using properly scaled input
datasets so that the execution time of the sequential kernel is over 300msec on the
target platform.

Benchmarks

Parallelism Manual

Name Source LOC data pipeline Parallelisation

j2kenc
OpenJpeg

19934 ! !
[86, 101]j2kdec 18975 ! !

epic MediaBench 3533 !
susan

MiBench
2130 !

stringsearch 524 !
fft

Utdsp

86 !
edge detect 208 !
compress 181 !
histogram 75 !
spectral 240 !

Table A.2.: Summary of the embedded benchmarks used for evaluation.

A.2.2. JPEG-2000

Performance results for both encoding and decoding using either parallelisation at
colour-component or code-block level of t1 encode cblks are shown in figure A.2. In

142

A.2. Empirical Evaluation

"

#

$

%

&

'

(

)

(*"+

#*&)

$*##

$*('

%*&#

,
-
..
/
0
-

1#21 1$21 1%21 1&21 1'21 1(21 1)21 132

45678$"""109:;<-*=>?>9@1
A$'(B$'(C

45678$"""109:;<-*
A:;<-;9.9=8?.D.?C

45678$"""1:;<-*1
AE?;:F8?.D.?C

45678$"""1:;<-*
1A:;<-;9.9=8?.D.?C

45678$"""109:;<-*1
AE?;:F8?.D.?C

Figure A.2.: Speedups achieved for various functional modes of the Jpeg-2000 codec using
alternative parallelisation schemes.

the case of compression we achieve promising speedups of up to 3.41 using the block-
level parallelisation scheme. Comparing the performance of the component-level and
the block-level decomposition, it is clear that the latter is more scalable since as we
already mentioned the maximum number of components in an image is three. This
also explains why the performance of the component-level parallelisation on more than
three cores is almost identical to the one on three cores. Finally, note that only Tier-1
coding – which accounts for 41% of the total encoding time – is parallelisable at the
block-level. In fact, this is also clear in the results of figure A.2. We observe that
increasing the number of threads to more than three improves the overall speedup, but
the rate of improvement is significantly reduced.

In the case of Jpeg-2000 decompression, parallelisation results in speedups of up to
2.65. This improvement is lower than the one in the compression scenario but this is to
be expected if we take into account that Tier-1 and Dwt decoding represent a smaller
fraction of the total coding time.

Image Tiling Parallelising Jpeg-2000 decompression at a tile-level achieved far better
scalability than the one-tile parallelisation schemes, reaching a speedup of 6.09 on eight
cores and 256 256 tiles1. In fact, these results are in line with those obtained by
manual parallelisation by expert programmers [86, 101]. The results in this case should
be interpreted as a manifestation of the fact that our approach can exploit multiple
levels of inherent parallelism available on different inputs, rather than a more scalable
parallelisation strategy of the non-tiled scenario.

143

Appendix A. Data-level Parallelism in Embedded Applications

epic susan_c susan_e susan_s stringsearch fft edge_detect compress histogram spectral
0

1

2

3

4

5

6

7

8

9

7.18

3.08

7.00

2.82

1.41

5.84

8.24

3.53

4.30

S
p

ee
d

u
p

 1T 2T 3T 4T 5T 6T 7T 8T

4.20

Figure A.3.: Speedups achieved by the parallelised implementations of the benchmarks on M1
utilising 1 to 8 cores.

A.2.3. Broader Evaluation

In this subsection we present performance results for the remaining embedded bench-
marks of table A.2. Figure A.3 shows the maximum attainable speedup. The average
speedup using 8 threads is 4.76. Applications with ample coarse-grain Doall paral-
lelism in outer loops like epic, susan, compress, and spectral achieve relatively higher
speedups and demonstrate good scalability. In fact, in the case of susan s the par-
allelised version achieves a super-linear speedup. This is mainly due to better cache-
utilisation. On the other hand applications, like fft, and histogram exhibit either large
sequential parts, or are only parallelizable in lower-levels of nested-loops. Therefore,
these applications are not scaling so well, attaining relatively lower speedups. In the
case of edge detect, performance of the OpenMP version with a single thread is almost
two times slower than the original sequential version. This is primarily due to high-
level optimisations (e.g. loop unrolling) which are applied by Icc in the sequential
code but not in the OpenMP version2. Similar phenomena have also been reported by
Rul et al. in [123]. Still, the performance of edge detect improves when more threads
are added, attaining a maximum speedup of 2.82 on 8 cores. Finally, manual inspec-
tion of the source code revealed that profile-driven parallelisation was able to uncover
loop-level parallelism even in cases where static analysis fails. In fact, Icc was able
to improve performance merely by means of auto-vectorisation rather than parallelisa-
tion of coarse-grain loops. As in the case of scientific applications this was due to the
extended use of pointers, nested function calls and non-affine array index functions.

1Tile size in decompression is fixed for a given input and not user settable. Thus, 256 should is an
indicative example rather than a parameter that our parallelising framework selects.

2The information about the transformations that are applied to each loop were extracted utilising the
verbose optimisation report of Icc (flag -opt-report).

144

A.3. Conclusions

A.3. Conclusions

In this appendix we presented an empirical evaluation of profile-driven data-parallelism
extraction for embedded programs. The results show that our approach is able to ef-
fectively parallelise kernels and applications that feature exploitable, coarse-grain data-
parallelism. However, in many cases loop-level parallelism is of very fine granularity or
it is constrained by sequential operations and I/O. In addition, in some cases parallel
loops account only for a small fraction of the total execution time and thus paral-
lel speedup has low potential for enhancing the overall application performance. In
these cases alternative means for enhancing performance should be investigated. More
specifically, the performance of fine-grain parallel loops can be improved using more
aggressive auto-vectorisation. However, this is a direction which is beyond the scope of
this thesis. For the case of partially sequential loops these results are actually the main
motivation point of profile-driven pipeline parallelism extraction which is presented in
chapter 6.

145

Appendix A. Data-level Parallelism in Embedded Applications

146

Bibliography

[1] ACE Associated Compiler Experts b.v. Cosy compiler development system, 2007.
http://www.ace.nl/compiler/cosy.html.

[2] ACE Associated Compiler Experts b.v. CCMIR Definition: Specification in fSDL,
Description and Rationale, Feb 2008.

[3] ACE Associated Compiler Experts b.v. Loop Markers: Design and Implementa-
tion, Feb 2008.

[4] F. Aleen and N. Clark. Commutativity analysis for software parallelization: let-
ting program transformations see the big picture. In ASPLOS-XIV: Proceeding
of the 14th international conference on Architectural support for programming
languages and operating systems, pages 241–252, 2009.

[5] F. Aleen, M. Sharif, and S. Pande. Input-driven dynamic execution prediction of
streaming applications. In PPoPP ’10: Proceedings of the 15th ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 315–324,
2010.

[6] J. Allen and K. Kennedy. Optimizing compilers for modern architectures: a
dependence-based approach. Morgan Kaufmann Publishers Inc. San Francisco,
CA, USA, 2001.

[7] V. Aslot, M. Domeika, R. Eigenmann, and G. Gaertner. SPEComp: A new
benchmark suite for measuring parallel computer performance. Lecture Notes in
Computer Science, Jan 2001.

[8] V. Aslot and R. Eigenmann. Performance characteristics of the SPEC OMP2001
benchmarks. ACM SIGARCH Computer Architecture News, 29(5):31–40, 2001.

[9] E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost. Employing nested OpenMP
for the parallelization of multi-zone computational fluid dynamics applications.
Journal of Parallel and Distributed Computing, IPDPS ’04 Special Issue, 66(5):
686 – 697, 2006.

[10] R. Baert, E. Brockmeyer, S. Wuytack, and T. Ashby. Exploring parallelizations
of applications for MPSoC platforms using MPA. In DATE ’09: Proceedings of
Design, Automation Test in Europe Conference Exhibition, pages 1148 –1153,
2009.

[11] D. Bailey, T. Harris, W. Saphir, R. van der Wijngaart, and A. Woo. The NAS
Parallel Benchmarks 2.0. Technical Report NAS-95-020, NASA Ames Research
Center, Dec 1995.

[12] D. H. Bailey, E. Barszcz, J. T. Barton, D. S. Browning, R. L. Carter, L. Dagum,
R. A. Fatoohi, P. O. Frederickson, T. A. Lasinski, R. S. Schreiber, H. D. Simon,

147

Bibliography

V. Venkatakrishnan, and S. K. Weeratunga. The NAS parallel benchmarks–
summary and preliminary results. In SC ’91: Proceedings of the 1991 ACM/IEEE
conference on Supercomputing, pages 158–165, 1991.

[13] T. Ball and J. Larus. Efficient path profiling. In MICRO-29: Proceedings of the
29th Annual IEEE/ACM International Symposium on Microarchitecture, pages
46 –57, 1996.

[14] U. Banerjee. Loop Transformations for Restructuring Compilers: The Founda-
tions. Kluwer Academic Publishers Norwell, MA, USA, 1993.

[15] E. B. Bernhard, M. G. Isabelle, and N. V. Vladimir. A training algorithm for
optimal margin classifiers. In Proceedings of the fifth annual workshop on Com-
putational learning theory, 1992.

[16] T. Brandes, S. Chaumette, M. C. Counilh, J. Roman, A. Darte, F. Desprez,
and J. C. Mignot. HPFIT: A set of integrated tools for the parallelization of
applications using High Performance Fortran. part I: HPFIT and the TransTOOL
environment. Parallel Computing, 23(1-2):71 – 87, 1997.

[17] M. Bridges, N. Vachharajani, Y. Zhang, T. Jablin, and D. August. Revisiting the
sequential programming model for multi-core. In MICRO-40: Proceedings of the
40th Annual IEEE/ACM International Symposium on Microarchitecture, pages
69 – 84, Nov 2007.

[18] Z. Budimlic, A. Chandramowlishwaran, K. Knobe, G. Lowney, V. Sarkar, and
L. Treggiari. Multi-core implementations of the concurrent collections program-
ming model. In CPC ’09: 14th International Workshop on Compilers for Parallel
Computers, 2009.

[19] M. G. Burke and R. K. Cytron. Interprocedural dependence analysis and paral-
lelization. ACM SIGPLAN Notices, 39(4):139–154, 2004.

[20] J. Ceng, J. Castrillon, W. Sheng, H. Scharwachter, R. Leupers, G. Ascheid,
H. Meyr, T. Isshiki, and H. Kunieda. MAPS: an integrated framework for MPSoC
application parallelization. In DAC 2008: Proceedings of the 45th ACM/IEEE
Design Automation Conference, pages 754–759, 2008.

[21] S. C. Chan, G. R. Gao, B. Chapman, T. Linthicum, and A. Dasgupta. Open64
compiler infrastructure for emerging multicore/manycore architecture all sym-
posium tutorial. In IPDPS ’08: Proceedings of the 22nd IEEE International
Symposium on Parallel and Distributed Processing, 2008.

[22] S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip, H. Zeffer,
and M. Tremblay. Rock: A High-Performance Sparc CMT Processor. Micro,
IEEE, 29(2):6 –16, 2009.

[23] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata. Cell broadband engine architec-
ture and its first implementation: A performance view. IBM Journal of Research
and Development, 51(5):559 –572, Sep 2007.

[24] T.-F. Chen and J.-L. Baer. Reducing memory latency via non-blocking and
prefetching caches. In ASPLOS-V: Proceedings of the fifth international confer-
ence on Architectural support for programming languages and operating systems,
pages 51–61, 1992.

148

Bibliography

[25] W. Chen, P. Chang, T. Conte, and W. Hwu. The effect of code expanding
optimizations on instruction cache design. IEEE Transactions on Computers, 42:
1045–1057, 1993.

[26] C. Christopoulos, A. Skodras, and T. Ebrahimi. The JPEG2000 still image cod-
ing: An overview. IEEE Transactions on Consumer Electronics, 46(4):1103–1127,
Nov 2000.

[27] J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. Lee, D. Lavery, and J. P.
Shen. Speculative precomputation: long-range prefetching of delinquent loads.
SIGARCH Computer Architecture News, 29(2):14–25, 2001.

[28] D. Cordes, P. Marwedel, and A. Mallik. Automatic parallelization of embedded
software using hierarchical task graphs and integer linear programming. In Pro-
ceedings of the 8th IEEE/ACM international conference on Hardware/software
codesign and system synthesis, 2010.

[29] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. MIT press, 2nd edition, 2001.

[30] B. Creusillet and F. Irigoin. Interprocedural array region analyses. International
Journal of Parallel Programming, 24(6):513–546, 1996.

[31] CriticalBlue. Prism : Evaluating complex code for parallelism. http:
//www.criticalblue.com/prism/eval/whitepapers/eval complex code/
eval complex code.htm.

[32] J. Dai, B. Huang, L. Li, and L. Harrison. Automatically partitioning packet
processing applications for pipelined architectures. In PLDI ’05: Proceedings
of the 2005 ACM SIGPLAN conference on Programming language design and
implementation, Jun 2005.

[33] C. Ding, X. Shen, K. Kelsey, C. Tice, R. Huang, and C. Zhang. Software behavior
oriented parallelization. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation, pages 223–234,
2007.

[34] A. E. Eichenberger, J. K. O’Brien, K. M. O’Brien, P. Wu, T. Chen, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang, P. Zhao, M. K.
Gschwind, R. Archambault, Y. Gao, and R. Koo. Using advanced compiler tech-
nology to exploit the performance of the cell broadband enginetm architecture.
IBM Systems Journal, 45(1):59–84, 2006.

[35] J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph
and its use in optimization. ACM Transactions on Programming Languages and
Systems (TOPLAS), 9(3):319–349, 1987.

[36] J. Finkle. Reuters Special Report: Can that guy in Ironman 2 whip IBM in real
life? http://www.reuters.com/article/idUSTRE64B5YX20100512.

[37] Free Software Foundation. The GNU C Library: 3.2.2.10 Memory Allocation
Hooks. http://www.gnu.org/s/libc/manual/html node/Hooks-for-Malloc.
html.

149

Bibliography

[38] M. Frigo, C. E. Leiserson, and K. H. Randall. The implementation of the Cilk-5
multithreaded language. ACM SIGPLAN Notices, 33(5):212–223, 1998.

[39] R. E. Grant and A. Afsahi. A comprehensive analysis of OpenMP applications
on dual-core Intel Xeon SMPs. In IPDPS ’07: Proceedings of the International
Parallel and Distributed Processing Symposium, pages 1 – 8, Feb 2007.

[40] B. Guo, N. Vachharajani, and D. I. August. Shape analysis with inductive recur-
sion synthesis. SIGPLAN Notices, 42(6):256–265, 2007.

[41] J. Guo, G. Bikshandi, D. Hoeflinger, and G. Almasi. Hierarchically tiled arrays
for parallelism and locality. In IPDPS ’06: Proceedings of the 20th International
Parallel and Distributed Processing Symposium, Jan 2006.

[42] M. Guthaus, J. Ringenberg, D. Ernst, T. Austin, and et al. Mibench: A free,
commercially representative embedded benchmark suite. International Workshop
on Workload Characterization, Jan 2001.

[43] M. Haghighat and C. Polychronopoulos. Symbolic Analysis: A Basis for Paral-
lelization, Optimization, and Scheduling of Programs. In LCPC ’93: Proceedings
of the 6th International Workshop on Languages and Compilers for Parallel Com-
puting, pages 567–585. Springer-Verlag, 1993.

[44] M. Hall, J. Anderson, S. Amarasinghe, B. Murphy, S.-W. Liao, and E. Bu. Max-
imizing multiprocessor performance with the suif compiler. Computer, 29(12):84
–89, Dec 1996.

[45] P. Havlak and K. Kennedy. An implementation of interprocedural bounded reg-
ular section analysis. IEEE Transactions on Parallel and Distributed Systems,
pages 350–360, 1991.

[46] P. Havlak. Nesting of reducible and irreducible loops. ACM Transactions on
Programming Languages and Systems (TOPLAS), 19(4):557–567, 1997.

[47] High Performance Computing System (HPCS) Laboratory. NAS Parallel Bench-
marks in OpenMP. http://phase.hpcc.jp/Omni/benchmarks/NPB/index.
html.

[48] M. Hind. Pointer analysis: haven’t we solved this problem yet? In Proceedings of
the 2001 ACM SIGPLAN-SIGSOFT workshop on Program analysis for software
tools and engineering, pages 54–61, 2001.

[49] A. Hormati, Y. Choi, M. Kudlur, R. Rabbah, T. Mudge, and S. Mahlke. Flex-
tream: Adaptive compilation of streaming applications for heterogeneous archi-
tectures. In PACT ’09: Proceedings of 18th International Conference on Parallel
Architectures and Compilation Techniques, pages 214 –223, 2009.

[50] P. Husbands, C. Iancu, and K. Yelick. A performance analysis of the Berkeley
UPC compiler. In ICS ’03: Proceedings of the 17th annual international confer-
ence on Supercomputing, pages 63–73, 2003.

[51] IBM. IBM XL C/C++ for Multicore Acceleration for Linux. http://www.ibm.
com/software/awdtools/xlcpp/multicore/.

150

Bibliography

[52] Intel Corporation. Intel Parallel Advisor Lite. http://software.intel.com/
en-us/articles/intel-parallel-advisor-lite/.

[53] Intel Corporation. Getting Started with the Intel Parallel Ampli-
fier. http://software.intel.com/sites/products/documentation/studio/
amplifier/en-us/2009/start/getting started amplifier.pdf.

[54] Intel Corporation. Getting Started with the Intel Parallel Inspec-
tor. http://software.intel.com/sites/products/documentation/studio/
inspector/en-us/2009/start/getting started inspector.pdf.

[55] Intel Corporation. Single-chip cloud computer. http://techresearch.intel.
com/articles/Tera-Scale/1826.htm.

[56] Intel Corporation. Quad-Core Intel Xeon Processor 5400 Series, Datasheet.
Intel Corporation, Aug 2008.

[57] International Organization for Standardization. ISO/IEC 9899:1999 Specifica-
tion: International Standard - Programming Languages - C. Apr 1999.

[58] International Roadmap Committee. The international technology roadmap
for semiconductors (IRTS), 2007. http://www.itrs.net/Links/2009ITRS/
2009Chapters 2009Tables/2009 Design.pdf.

[59] International Roadmap Committee. The international technology roadmap
for semiconductors (IRTS), 2009. http://www.itrs.net/Links/2009ITRS/
2009Chapters 2009Tables/2009 Design.pdf.

[60] F. Irigoin, P. Jouvelot, and R. Triolet. Semantical interprocedural parallelization:
an overview of the PIPS project. In ICS ’91: Proceedings of the 5th international
conference on Supercomputing, pages 244–251, 1991.

[61] M. Ishihara, H. Honda, and M. Sato. Development and implementation of an in-
teractive parallelization assistance tool for OpenMP: iPat/OMP. IEICE - Trans.
Inf. Syst., E89-D(2):399–407, 2006.

[62] M. Islam. On the limitations of compilers to exploit thread-level parallelism in
embedded applications. Computer and Information Science, Jan 2007.

[63] H. Jin and R. F. V. der Wijngaart. Performance characteristics of the multi-zone
nas parallel benchmarks. In IPDPS ’04: Proceedings of the 18th International
Parallel and Distributed Processing Symposium, volume 66, pages 674 – 685, 2006.

[64] I. Karkowski and H. Corporaal. Design of heterogenous multi-processor embedded
systems: Applying functional pipelining. In PACT ’97: Proceedings of the Sixth
International Conference on Parallel Architectures and Compilation Techniques,
1997.

[65] I. Karkowski and H. Corporaal. Fp-map-an approach to the functional pipelining
of embedded programs. In HiPC ’97: Proceedings of the fourth International
Conference on High-Performance Computing, 1997.

[66] I. Karkowski and H. Corporaal. Overcoming the limitations of the traditional
loop parallelization. In B. Hertzberger and P. Sloot, editors, High-Performance

151

Bibliography

Computing and Networking, volume 1225 of Lecture Notes in Computer Science,
pages 898–907. Springer Berlin / Heidelberg, 1997. http://dx.doi.org/10.
1007/BFb0031661. 10.1007/BFb0031661.

[67] A. Kejariwal, X. Tian, W. Li, M. Girkar, S. Kozhukhov, H. Saito, U. Banerjee,
A. Nicolau, A. V. Veidenbaum, and C. D. Polychronopoulos. On the perfor-
mance potential of different types of speculative thread-level parallelism. In ICS
’06: Proceedings of the 20th annual international conference on Supercomputing,
page 24, 2006.

[68] A. Kejariwal, A. V. Veidenbaum, A. Nicolau, M. Girkarmark, X. Tian, and
H. Saito. Challenges in exploitation of loop parallelism in embedded applica-
tions. In CODES+ISSS ’06: Proceedings of the 4th international conference on
Hardware/software codesign and system synthesis, pages 173–180, 2006.

[69] A. Kejariwal, X. Tian, M. Girkar, W. Li, S. Kozhukhov, U. Banerjee, A. Nico-
lau, A. V. Veidenbaum, and C. D. Polychronopoulos. Tight analysis of the per-
formance potential of thread speculation using spec cpu 2006. In PPoPP ’07:
Proceedings of the 12th ACM SIGPLAN symposium on Principles and practice
of parallel programming, pages 215–225, Jan 2007.

[70] K. Kennedy, K. McKinley, and C. Tseng. Interactive parallel programming using
the ParaScope Editor. IEEE Transactions on Parallel and Distributed Systems,
2(3):329 – 341, Jul 1991.

[71] Khronos OpenCL Working Group. OpenCL 1.1 Specification, 2009. http://
www.khronos.org/registry/cl/specs/opencl-1.1.pdf.

[72] V. Krishnan and J. Torrellas. Hardware and software support for speculative
execution of sequential binaries on a chip-multiprocessor. In ICS ’98: Proceedings
of the 12th international conference on Supercomputing, pages 85–92, 1998.

[73] M. Kulkarni, K. Pingali, B. Walter, G. Ramanarayanan, K. Bala, and L. P.
Chew. Optimistic parallelism requires abstractions. In PLDI ’07: Proceedings
of the 2007 ACM SIGPLAN conference on Programming language design and
implementation, pages 211–222, 2007.

[74] A. Lai and B. Falsafi. Selective, accurate, and timely self-invalidation using last-
touch prediction. ACM SIGARCH Computer Architecture News, 28(2):139–148,
2000.

[75] A. Lai, C. Fide, and B. Falsafi. Dead-block prediction & dead-block correlating
prefetchers. ACM SIGARCH Computer Architecture News, 29(2):144–154, 2001.

[76] L. Lamport. The parallel execution of do loops. Communications of the ACM,
17(2):83–93, 1974.

[77] J. Larus. Loop-level parallelism in numeric and symbolic programs. IEEE Trans-
actions on Parallel and Distributed Systems, 4(7):812 –826, Jul 1993.

[78] C. Lee. UTDSP benchmark suite, 1998.

[79] C. Lee, M. Potkonjak, and W. Mangione-Smith. Mediabench: a tool for evalu-
ating and synthesizing multimedia and communications systems. In MICRO-30:

152

Bibliography

Proceedings of the 30th annual international symposium on Microarchitecture,
Jan 1997.

[80] D. Loveman. High performance Fortran. IEEE Parallel Distributed Technology:
Systems Applications, 1(1):25 –42, Feb 1993.

[81] C.-K. Luk. Tolerating memory latency through software-controlled pre-execution
in simultaneous multithreading processors. SIGARCH Comput. Archit. News, 29
(2):40–51, 2001.

[82] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J.
Reddi, and K. Hazelwood. Pin: building customized program analysis tools with
dynamic instrumentation. In PLDI ’05: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation, pages 190–200,
2005.

[83] J. Marathe, F. Mueller, T. Mohan, S. Mckee, and et al. METRIC: Memory tracing
via dynamic binary rewriting to identify cache inefficiencies. ACM Transactions
on Programming Languages and Systems (TOPLAS), Jan 2007.

[84] M. W. Marcellin and M. J. Gormish. The JPEG-2000 Standard. Kluwer Academic
Publishers, Norwell, MA, 1995.

[85] P. Marcuello and A. González. Clustered speculative multithreaded processors.
In ICS ’99: Proceedings of the 13th international conference on Supercomputing,
pages 365–372, 1999.

[86] P. Meerwald, R. Norcen, and A. Uhl. Parallel JPEG2000 image coding on mul-
tiprocessors. In IPDPS ’02: Proceedings of the 16th International Parallel and
Distributed Processing Symposium, Jan 2002.

[87] M. Mehrara, J. Hao, P. Hsu, and S. Mahlke. Parallelizing sequential applications
on commodity hardware using a low-cost software transactional memory. In PLDI
’09: Proceedings of the 2009 ACM SIGPLAN conference on Programming lan-
guage design and implementation, pages 166–176, 2009.

[88] W. mei Hwu, S. Ryoo, S.-Z. Ueng, J. Kelm, I. Gelado, S. Stone, R. Kidd, S. Bagh-
sorkhi, A. Mahesri, S. Tsao, N. Navarro, S. Lumetta, M. Frank, and S. Patel.
Implicitly parallel programming models for thousand-core microprocessors. In
DAC ’07: Proceedings of the 44th annual conference on Design automation, Jun
2007.

[89] Microsoft Corporation. Microsft Visual Studio. http://www.microsoft.com/
visualstudio/en-us/.

[90] S. Moon, B. So, M. Hall, and B. Murphy. A Case for Combining Compile-Time
and Run-Time Parallelization. In Selected Papers from the 4th International
Workshop on Languages, Compilers, and Run-Time Systems for Scalable Com-
puters, page 106. Springer-Verlag, 1998.

[91] S. Moon and M. W. Hall. Evaluation of predicated array data-flow analysis for
automatic parallelization. ACM SIGPLAN Notices, 34(8):84–95, 1999.

153

Bibliography

[92] S. Moon, M. W. Hall, and B. R. Murphy. Predicated array data-flow analysis
for run-time parallelization. In ICS ’98: Proceedings of the 12th international
conference on Supercomputing, pages 204–211, 1998.

[93] G. Moore. Cramming more components onto integrated circuits. Proceedings of
the IEEE, Jan 1998.

[94] T. Moseley, A. Shye, V. J. Reddi, D. Grunwald, and R. Peri. Shadow profiling:
Hiding instrumentation costs with parallelism. In CGO ’07: Proceedings of the
International Symposium on Code Generation and Optimization, pages 198–208,
2007.

[95] S. Muchnick. Advanced compiler design and implementation. Morgan Kaufmann
Publishers Inc. San Francisco, CA, USA, 1998.

[96] N. Nethercote and A. Mycroft. Redux a dynamic dataflow tracer. Electronic
Notes in Theoretical Computer Science, Jan 2003.

[97] N. Nethercote and J. Seward. Valgrind: a framework for heavyweight dynamic
binary instrumentation. In PLDI ’07: Proceedings of the 2007 ACM SIGPLAN
conference on Programming language design and implementation, pages 89–100,
2007.

[98] C. Newburn and J. Shen. Automatic partitioning of signal processing programs
for symmetric multiprocessors. In PACT ’96: Proceedings of the 1996 Conference
on Parallel Architectures and Compilation Techniques, pages 269–280, 1996.

[99] C. Newburn, A. Huang, and J. Shen. Balancing fine-and medium-grained paral-
lelism in scheduling loops for the XIMD architecture. In Proceedings of the IFIP
WG10, volume 3, pages 39–52. Citeseer, 1993.

[100] C. Newburn, D. Noonburg, and J. Shen. A PDG-based tool and its use in analyz-
ing program control dependences. In Proceedings of the IFIP WG10. 3 Working
Conference on Parallel Architectures and Compilation Techniques, pages 157–168.
North-Holland Publishing Co. Amsterdam, The Netherlands, The Netherlands,
1994.

[101] R. Norcen and A. Uhl. High performance JPEG 2000 and MPEG-4 VTC on
SMPs using OpenMP. Parallel Computing, Jan 2005.

[102] K. O’Brien, K. O’Brien, Z. Sura, T. Chen, and T. Zhang. Supporting OpenMP on
Cell. In IWOMP ’07: Proceedings of the 3rd international workshop on OpenMP,
pages 65–76, 2008.

[103] OpenMP Architecture Review Board. OpenMP Application Programming Inter-
face v2.5, May 2005.

[104] OpenMP Architecture Review Board. OpenMP Application Programming Inter-
face v3.0, May 2008.

[105] B. O’Rourke. Based on the Q&A session with Barry O’Rourke that followed the
presentation of CriticalBlue Prism at ICSA, 16th November 2009.

154

Bibliography

[106] G. Ottoni, R. Rangan, A. Stoler, and D. I. August. Automatic thread extrac-
tion with decoupled software pipelining. In MICRO-38: Proceedings of the 38th
Annual IEEE/ACM International Symposium on Microarchitecture, volume 0,
pages 105–118, 2005.

[107] D. Padua, R. Eigenmann, J. Hoeflinger, P. Petersen, P. Tu, S. Weatherford, and
K. Faigin. Polaris: A new-generation parallelizing compiler for MPPs. In CSRD
Rept. No. 1306. Univ. of Illinois at Urbana-Champaign, 1993.

[108] H. Park, Y. Park, and S. Mahlke. Polymorphic pipeline array: a flexible mul-
ticore accelerator with virtualized execution for mobile multimedia applications.
In MICRO-42: Proceedings of the 42nd Annual IEEE/ACM International Sym-
posium on Microarchitecture, pages 370–380, 2009.

[109] S. Pawlowski. Exascale science: the next frontier in high performance computing.
In ICS ’05: Proceedings of the 19th annual international conference on Supercom-
puting, page 1. ACM, 2010.

[110] L. Pouchet, C. Bastoul, A. Cohen, and N. Vasilache. Iterative optimization in
the polyhedral model: Part i, one-dimensional time. In CGO ’07: Proceedings
of the fifth annual IEEE/ACM international symposium on Code generation and
optimization, Jan 2007.

[111] L. Pouchet, C. Bastoul, A. Cohen, and J. Cavazos. Iterative optimization in
the polyhedral model: part ii, multidimensional time. In PLDI ’08: Proceedings
of the 2008 ACM SIGPLAN conference on Programming language design and
implementation, Jan 2008.

[112] A. Raman, H. Kim, T. R. Mason, T. B. Jablin, and D. I. August. Specula-
tive parallelization using software multi-threaded transactions. In ASPLOS XV:
Proceedings of the 15th international conference on Architectural support for pro-
gramming languages and operating systems, pages 65–76, Mar 2010.

[113] E. Raman, G. Ottoni, A. Raman, M. J. Bridges, and D. I. August. Parallel-
stage decoupled software pipelining. In CGO ’08: Proceedings of the 6th annual
IEEE/ACM international symposium on Code generation and optimization, pages
114–123, 2008.

[114] R. Ramaseshan and F. Mueller. Toward thread-level speculation for coarse-
grained parallelism of regular access patterns. Workshop on Programmability
Issues for Multi-Core Computers, page 12, Feb 2008.

[115] R. Rangan, N. Vachharajani, M. Vachharajani, and D. August. Decoupled soft-
ware pipelining with the synchronization array. In PACT ’04: Proceedings of
the 13th international conference on Parallel architectures and compilation tech-
niques, number 177 – 188, Jan 2004.

[116] L. Rauchwerger and D. Padua. The LRPD test: speculative run-time paralleliza-
tion of loops with privatization and reduction parallelization. ACM SIGPLAN
Notices, 30(6):218–232, 1995.

[117] L. Rauchwerger, F. Arzu, and K. Ouchi. Standard templates adaptive parallel
library. In LCR ’98: Proceedings of the 4th International Workshop on Languages,
Compilers and Run-Time Systems for Scalable Computers, pages 402–409, 1998.

155

Bibliography

[118] F. Reid and J. Bull. OpenMP Microbenchmarks Version 2.0. In EWOMP 2004,
page 63, 2004.

[119] J. Renau, J. Tuck, W. Liu, L. Ceze, K. Strauss, and J. Torrellas. Tasking with
out-of-order spawn in TLS chip multiprocessors: microarchitecture and compi-
lation. In ICS ’05: Proceedings of the 19th annual international conference on
Supercomputing, pages 179–188, 2005.

[120] M. W. Riley, J. D. Warnock, and D. F. Wendel. Cell broadband engine processor:
Design and implementation. IBM Journal of Research and Development, 51(5):
545 –557, Sep 2007.

[121] S. Rul, H. Vandierendonck, and K. Bosschere. Extracting coarse-grain paral-
lelism in general-purpose programs. In PPoPP ’08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallel programming, Feb
2008.

[122] S. Rus, L. Rauchwerger, and J. Hoeflinger. Hybrid analysis: Static & dynamic
memory reference analysis. International Journal of Parallel Programming, Jan
2003.

[123] S. Rus, M. Pennings, and L. Rauchwerger. Sensitivity analysis for automatic
parallelization on multi-cores. In ICS ’07: Proceedings of the 21st annual inter-
national conference on Supercomputing, pages 263–273, 2007.

[124] J. H. Salz, R. Mirchandaney, and K. Crowley. Run-time parallelization and
scheduling of loops. IEEE Transactions on Computers, 40(5):603–612, 1991.

[125] D. Sanchez, R. M. Yoo, and C. Kozyrakis. Flexible architectural support for fine-
grain scheduling. In ASPLOS-XV: Proceedings of the fifteenth edition of ASPLOS
on Architectural support for programming languages and operating systems, pages
311–322, 2010.

[126] V. A. Saraswat, V. Sarkar, and C. von Praun. X10: concurrent programming for
modern architectures. In PPoPP ’07: Proceedings of the 12th ACM SIGPLAN
symposium on Principles and practice of parallel programming, pages 271–271,
2007.

[127] M. Shah, J. Barreh, J. Brooks, R. Golla, and G. Grohoski. UltraSPARC T2:
A highly-treaded, power-efficient, SPARC SOC. Solid-State Circuits Conference,
Jan 2007.

[128] Z. Shen, Z. Li, and P.-C. Yew. An empirical study of Fortran programs for
parallelizing compilers. IEEE Transactions on Parallel and Distributed Systems,
1(3):356 –364, Jul 1990.

[129] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors. In
ISCA ’95: Proceedings of the 22nd annual international symposium on Computer
architecture, pages 414–425, 1995.

[130] SPEC: Standard Performance Evaluation Corporation. SPEC CPU2000, 2001.
http://www.spec.org/cpu2000/docs/.

156

Bibliography

[131] A. Srivastava and A. Eustace. Atom: a system for building customized program
analysis tools. In PLDI ’94: Proceedings of the ACM SIGPLAN 1994 conference
on Programming language design and implementation, pages 196–205, 1994.

[132] Stanford SUIF Compiler Group. SUIF: A Parallelizing & Optimizing Research
Compiler. Technical Report CSL-TR-94-620, Computer Systems Laboratory,
Stanford University, 1994.

[133] J. Steffan and T. Mowry. The potential for using thread-level data speculation to
facilitate automatic parallelization. In HPCA ’08: Proceedings of Fourth Inter-
national Symposium on High-Performance Computer Architecture, pages 2 –13,
1998.

[134] A. M. Suleman, O. Mutlu, J. A. Joao, Khubaib, and Y. N. Patt. Data marshal-
ing for multi-core architectures. In ISCA ’10: Proceedings of the 37th annual
international Symposium on Computer Architecture, pages 441–450, 2010.

[135] M. Suleman, M. Qureshi, Khubaib, and Y. Patt. Feedback Driven Pipelining. In
PACT ’10: Proceedings of the 19th international conference on Parallel architec-
tures and compilation techniques, pages 147–156, 2010.

[136] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S. Amarasinghe. Dy-
namic native optimization of interpreters. In IVME ’03: Proceedings of the 2003
workshop on Interpreters, virtual machines and emulators, pages 50–57, 2003.

[137] N. R. Tallent, J. M. Mellor-Crummey, and M. W. Fagan. Binary analysis for
measurement and attribution of program performance. In PLDI ’09: Proceedings
of the 2009 ACM SIGPLAN conference on Programming language design and
implementation, pages 441–452, 2009.

[138] The Eclipse Foundation. Eclipse. http://www.eclipse.org/projects/
project summary.php?projectid=eclipse.

[139] The Embedded Microprocessor Benchmark Consortium (EEMBC). EEMBC 2.0.
http://www.eembc.org.

[140] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt: A language for stream-
ing applications. Lecture Notes in Computer Science, 2304:179–??, 2002.

[141] W. Thies, V. Chandrasekhar, and S. Amarasinghe. A practical approach to
exploiting coarse-grained pipeline parallelism in c programs. In MICRO 40: Pro-
ceedings of the 40th Annual IEEE/ACM International Symposium on Microar-
chitecture, pages 356–369, 2007.

[142] C. Tian, M. Feng, N. Vijay, and G. Rajiv. Copy or discard execution model
for speculative parallelization on multicores. In MICRO-41: Proceedings of the
41st annual IEEE/ACM International Symposium on Microarchitecture, pages
330–341, 2008.

[143] TIS Committee. Executable and Linking Format (ELF) Specification Version 1.2,
1995.

157

Bibliography

[144] G. Tournavitis and B. Franke. Semi-automatic extraction and exploitation of
hierarchical pipeline parallelism using profiling information. In PACT ’10: Pro-
ceedings of the 19th International Conference on Parallel Architecture and Com-
pilation Techniques, pages 377–388, Sep 2010.

[145] G. Tournavitis, Z. Wang, B. F. Franke, and M. F. O’Boyle. Towards a holistic
approach to auto-parallelization: integrating profile-driven parallelism detection
and machine-learning based mapping. In PLDI ’09: Proceedings of the 2009
ACM SIGPLAN conference on Programming language design and implementa-
tion, pages 177–187, 2009.

[146] R. H. I. Ulrich Drepper. ELF Handling for Thread-Local Storage, Version 0.20,
2005.

[147] S. Unger and F. Mueller. Handling irreducible loops: optimized node splitting
versus DJ-graphs. ACM Transactions on Programming Languages and Systems
(TOPLAS), 24(4):299–333, 2002.

[148] N. Vachharajani. Intelligent Speculation for Pipelined Multithreading. PhD thesis,
Princeton University, 2008.

[149] N. Vachharajani, R. Rangan, E. Raman, M. J. Bridges, G. Ottoni, and D. I.
August. Speculative decoupled software pipelining. In PACT ’07: Proceedings
of the 16th International Conference on Parallel Architecture and Compilation
Techniques, pages 49–59, 2007.

[150] K. Vallerio and N. Jha. Task graph extraction for embedded system synthesis.
In Proceedings of the 16th International Conference on VLSI Design, pages 480
– 486, 2003.

[151] R. Van der Wijngaart and H. Jin. NAS Parallel Benchmarks, Multi-Zone Versions.
2003.

[152] L. Van Put, D. Chanet, B. De Bus, B. De Sutler, and K. De Bosschere. Diablo: a
reliable, retargetable and extensible link-time rewriting framework. In Proceedings
of the Fifth IEEE International Symposium on Signal Processing and Information
Technology, pages 7 –12, 2005.

[153] H. Vandierendonck, S. Rul, and K. D. Bosschere. The paralax infrastructure: Au-
tomatic parallelization with a helping hand. In PACT ’10: Proceedings of the 19th
International Conference on Parallel Architecture and Compilation Techniques,
2010.

[154] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,
A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-
tile 1.28tflops network-on-chip in 65nm cmos. ISSCC 2007: Digest of Technical
Papers, IEEE International Solid-State Circuits Conference, pages 98 – 589, Jan
2007.

[155] Vector Fabrics. Using vfAnalyst to understand program behav-
ior. http://www.vectorfabrics.com/images/uploads/products/vfAnalyst
Whitepaper A4.pdf.

158

Bibliography

[156] S. Wallace and K. Hazelwood. Superpin: Parallelizing dynamic instrumenta-
tion for real-time performance. In CGO ’07: Proceedings of the fifth annual
IEEE/ACM international symposium on Code generation and optimization, pages
209–217, Mar 2007.

[157] S. wei Liao, A. Diwan, R. Bosch, Jr, A. Ghuloum, and M. Lam. Suif explorer:
an interactive and interprocedural parallelizer. In PPoPP ’99: Proceedings of
the seventh ACM SIGPLAN symposium on Principles and practice of parallel
programming, Aug 1999.

[158] R. Whaley and J. Dongarra. Automatically tuned linear algebra software. In SC
’98: Proceedings of the 1998 ACM/IEEE conference on Supercomputing, pages
1–27. IEEE Computer Society, 1998.

[159] M. J. Wolfe. Optimizing Supercompilers for Supercomputers. MIT Press, Cam-
bridge, MA, USA, 1990.

[160] K. Yotov, X. Li, G. Ren, M. Garzaran, D. Padua, K. Pingali, and P. Stodghill. Is
search really necessary to generate high-performance BLAS? Proceedings of the
IEEE, 93(2):358–386, 2005.

[161] H. Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering hidden loop
level parallelism in sequential applications. In HPCA ’08: 14th IEEE Interna-
tional Symposium on High Performance Computer Architecture, Jan 2008.

[162] H. Ziegler and M. Hall. Evaluating heuristics in automatically mapping multi-
loop applications to fpgas. In FPGA ’05: Proceedings of the 2005 ACM/SIGDA
13th international symposium on Field-programmable gate arrays, pages 184–195,
2005.

[163] C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In
ISCA ’01: Proceedings of the 28th annual international symposium on Computer
architecture, pages 2–13, 2001.

159

