
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-054 November 20, 2007

ReCrash: Making Crashes Reproducible
Sunghun Kim , Shay Artzi, and Michael D. Ernst

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/4404288?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ReCrash: Making Crashes Reproducible

Sunghun Kim Shay Artzi Michael D. Ernst
MIT Computer Science and Artificial Intelligence Laboratory

{hunkim, artzi, mernst}@csail.mit.edu

Abstract
It is difficult to fix a problem without being able to reproduce it.
However, reproducing a problem is often difficult and time-consuming.
This paper proposes a novel algorithm, ReCrash, that generates
multiple unit tests that reproduce a given program crash. ReCrash
dynamically tracks method calls during every execution of the tar-
get program. If the program crashes, ReCrash saves information
about the relevant method calls and uses the saved information to
create unit tests reproducing the crash.

We present reCrashJ, an implementation of ReCrash for Java. re-
CrashJ reproduced real crashes from javac, SVNKit, Eclipse JDT,
and BST. reCrashJ is efficient, incurring 13%–64% performance
overhead. If this overhead is unacceptable, then reCrashJ has an-
other mode that has negligible overhead until a crash occurs and
0%-1.7% overhead until a second crash, at which point the test
cases are generated.

1. Introduction
It is difficult to find and fix a problem, and to verify the solution,

without the ability to reproduce it. As an example, consider bug
#302801 from the Eclipse bug database (Figure 1).

A user found a crash and supplied a back-trace, but neither the
developer nor the user could reproduce the problem. Two days after
the bug report, the developer finally reproduced the problem; four
minutes after reproducing the problem, the developer fixed it.

Our work aims to reduce the amount of time it takes a devel-
oper to reproduce a problem. Suppose that the user had been using
ReCrash-enabled version of Eclipse. As soon as the Eclipse crash
occurred, ReCrash would have created a set of unit tests (Figure 2),
each of which reproduces the problem. The user could have sent
these test cases with the initial bug report, eliminating the two-day
delay for the developer to reproduce the problem.

Upon receiving the test cases, the developer could run them un-
der a debugger to examine fields, step through execution, or oth-
erwise investigate the cause of failure. (The readability of the test
case is secondary to reproducibility; a test need not be readable,
nor end-to-end, to be useful.) In this case, the developer would have
1
https://bugs.eclipse.org/bugs/show bug.cgi?id=30280

Technical Report. MIT, Boston, USA.
Published online on November 19, 2007.
http://pag.csail.mit.edu/reCrash

.

2003-01-27 08:01 U: I found crash (here is the back-trace)
2003-01-27 08:26 D: Which build are you using?

Do you have a test-case to reproduce?
2003-01-27 08:39 D: Which JDK are you using?
2003-01-28 13:06 U: I’m running eclipse 2.1, ...

I was not able to reproduce the crash
2003-01-29 04:28 D: Thanks for clarification ...
2003-01-29 04:33 D: Reproduced
2003-01-29 04:37 D: Fixed...

Figure 1: An excerpt of comments between the user (U) who re-
ported Eclipse bug #30280 and the developer (D) who fixed it.

1 // Generated by reCrash
2 // Eclipse 2.1M4/JDK 1.4
3 //-- The original crash stack back trace
4 // for java.lang.NullPointerException:
5 // org...QualifiedAllocationExpression.resolveType
6 // org...Expression.resolve
7 // ...
8 public class EclipseTest extends TestCase {
9 protected void setUp() throws Exception {

10 TraceReader.readTrace("eclipse.trace");
11 }
12

13 public void test_resolveType() throws Throwable {
14 TraceReader.setMethodTraceItem(0);
15 QualifiedAllocationExpression obj =
16 (QualifiedAllocationExpression)TraceReader.readObject(0);
17

18 // load arguments
19 // BlockScope a_1 = Scope-locals: java.lang.String;
20 BlockScope a_1 = (BlockScope)TraceReader.readObject(1);
21

22 // Method invocation
23 obj.resolveType(a_1);
24 }
25

26 public void test_resolve() throws Throwable {
27 TraceReader.setMethodTraceItem(1);
28 Expression obj = (Expression)TraceReader.readObject(0);
29

30 // load arguments
31 BlockScope a_1 = (BlockScope)TraceReader.readObject(1);
32

33 // Method invocation
34 obj.resolve(a_1);
35 }
36 ...
37 }

Figure 2: Two test cases generated by ReCrash to reproduce
Eclipse bug #30280; see Figure 1. Line 19 shows the toString

representation of the object being read from the serialized trace.

1

1 public class QualifiedAllocationExpression {
2 public TypeBinding resolveType(BlockScope scope) {
3 TypeBinding receiverType = null;
4 boolean hasError = false;
5 if (anonymousType == null) {
6 if ((enclosingInstanceType =
7 enclosingInstance.resolveType(scope)) == null){
8 hasError = true;
9 } else if (enclosingInstanceType.isArrayType()) {

10 ...
11 //hasError = true; *Missing and causing the error
12 } else if ((this.resolvedType =
13 receiverType = ...)) == null) {
14 hasError = true;
15 }
16 ...
17 // limit of fault-tolerance
18 if (hasError) return receiverType;
19 if (!receiverType.canBeInstantiated()) ...
20 ...
21 }

Figure 3: Buggy source code from the eclipse compiler causing
bug #30280.

been led to the buggy code in Figure 3. The NullPointerException

is thrown on line 19, but the problem is that the method did not re-
turn on line 18 because an earlier if statement in lines 9–11 failed
to set the receiverType variable to a non-null value. The developer
would fix this problem by adding hasError=true on line 11, and
can use the same test to verify the solution.

Reproducing crashes (in Java, these result from un-handled ex-
ceptions) can be difficult for the following reasons.

Nondeterminism A problem that depends on timing (e.g., con-
text switching), memory layout (e.g., hash codes), or random
number generators will manifest itself only rarely. Repro-
ducing the problem requires replacing the sources of nonde-
terminism with specific choices that reproduce previous be-
havior. As an example, consider the (somewhat contrived)
RandomCrash program [30] of Figure 4.

Remote detection A problem that is discovered by someone other
than the developer who will fix it may depend on user GUI
actions, environment variables, the state of the file system,
operating system behavior, and other explicit or implicit pro-
gram inputs. Not all dependences may be apparent to the de-
veloper or the user; many users are not sophisticated enough
to gather this information; some of the information may be
confidential; and the effort of collecting it may be too bur-
densome for the user, the developer (during interactions with
the user), or both.

Test case complexity Even once a problem can be reproduced de-
terministically, a simpler test case, such as a unit test, is often
faster and easier to run and understand, than the execution
that triggered the problem.

We propose an algorithm, ReCrash, that addresses these prob-
lems. ReCrash automatically converts a crashing program execu-
tion into a set of deterministic, self-contained unit tests. Each of
the unit tests reproduces the problem from the original program ex-
ecution.

ReCrash has two phases: monitoring and test case generation. A
production version of the monitoring phase can have low enough
overhead that the software vendor ships his programs with ReCrash
support built in. (It is also easy for an end user to instrument a
program with ReCrash.) During every execution of the target pro-
gram, ReCrash monitors the arguments to each method call. When

the program crashes, ReCrash records, for each method in the stack
trace, the method signature and the arguments (in serialized form).

The test generation phase uses the stored signatures and argu-
ments to create a unit test for each method in the stack back-trace.
Reporting multiple test cases allows a developer to obtain more or
less context. For example, in some cases it is enough to know that
null can flow to a method, and more information would be extra-
neous. In other cases, it may be helpful to know why null was
passed to a method, which may be clear from the calling context.
When ReCrash is used remotely (not by the developer who is de-
bugging a problem), the test generation phase may be performed
either remotely or by the developer.

The ReCrash monitoring phase can be made even more efficient
by reducing the amount of monitoring. For example, objects that
are not changed by the code need not be monitored. As another ex-
ample, in second chance mode the ReCrash monitoring phase does
nothing but record stack back-traces when the program crashes. On
subsequent runs, ReCrash monitors only the methods that were in
the stack back-trace. If the same problem reappears it will be cap-
tured and reproduced.

reCrashJ is an implementation of the ReCrash algorithm for Java.
In a case study of real applications, reCrashJ reproduced every
crash to which we applied it, with little performance overhead.
We examined crashes from from BST, Eclipse JDT, SVNKit, and
javac/jsr308.

This paper makes the following contributions:

• The ReCrash algorithm efficiently captures and reproduces
crashes by storing method arguments, and using them to gen-
erate unit test cases.

• Optimizations give the ReCrash technique low enough over-
head to enable routine use, by monitoring only relevant parts
of a program.

• reCrashJ is a practical implementation of ReCrash for Java.

• Case studies show that reCrashJ effectively and efficiently
reproduces crashes for several real applications.

The remainder of this paper is organized as follows. Section 2
describes the ReCrash algorithm. Section 3 presents the reCrashJ
implementation. Section 4 describes our experimental evaluation.
Section 5 discusses some of ReCrash limitations. Section 6 surveys
related work, and Section 7 concludes.

2. ReCrash Technique
This section provides a high-level description of the ReCrash

technique. Section 3 gives implementation details of the reCrashJ
system.

ReCrash is based on the idea that it is not necessary to replay the
entire execution in order to reproduce a specific crash. For many
crashes, it is possible to create a useful test suite with only the in-
formation available on entry to the methods on the stack at the time
of the crash.

The ReCrash technique has two parts. Monitoring is done during
program execution (Section 2.1), and test creation is done after the
program crashes (Section 2.2). Section 2.3 discusses optimizations
that can improve performance during the monitoring phase.

2.1 Monitoring phase
The monitoring phase of ReCrash keeps track of all the meth-

ods and arguments that are on the call stack at any given moment.
On entry to method m with arguments args, ReCrash generates a

2

class RandomCrash {
public String hexAbs(int x) {

String result = null;
if (x > 0)
result = Integer.toHexString(x);

else if (x < 0)
result = Integer.toHexString(-x);

return toUpperCase(result);
}

public String toUpperCase(String s) {
return s.toUpperCase();

}

public static void main(String args) {
RandomCrash rCrash = new RandomCrash();
rCrash.hexAbs(random.nextInt());

}
}

Figure 4: A nondeterministic crash that depends on a random num-
ber generator. Taken from [30].

unique id id for the invocation of m, then pushes m, id, and args
onto the ReCrash stack. ReCrash can make a deep copy of each
argument, store only a reference, or use hybrid strategies; see Sec-
tion 2.3. If m exits cleanly, ReCrash removes method invocations
from the top of its stack until, and including, id; this removes meth-
ods whose exceptional exits were handled by m.

If an un-handled exception is thrown by main, ReCrash stores the
current ReCrash stack containing all the methods and arguments.
These are exactly the methods on the stack backtrace at the time
of the failure. ReCrash also stores the ReCrash stack if the pro-
gram reaches any other point indicating failure, as designated by
the vendor of the program; an example would be a general catch
clause or a failure of a consistency checking routine, even if it does
not terminate the program.

2.2 Test creation phase
The test creation phase of ReCrash attempts to create a unit test

for each method invocation m, id, args in the ReCrash stack. The
generated test uses the trace to restore the state of the arguments
that were passed to m in execution id, and then invokes m the same
way it was invoked in the original execution. Only tests that expose
the original crash are retained in the test suite that ReCrash outputs.

Figure 2 shows two tests created for the eclipse compiler when
it crashes on line 19 of Figure 3. The first test, test resolveType,
was created for the method that was on the top of the stack when the
exception was thrown. The second test, test resolve, was created
for the second method on the stack.

Creating a test for each method invocation on the stack is useful
because it is possible that some tests reproduce a failure, but would
not help the developer understand, fix, or check her solution. For
example, the program in Figure 4 [30] will crash with a null pointer
exception in the toUpperCase method, when the parameter x to the
method hexAbs is 0. The tests reCrashJ creates for this program are
shown in Figure 5. The first test is useless in detecting and solving
the problem, because the developer is unable to to understand the
source of the null parameter. This test would also continue to fail
even if the problem is solved. On the other hand, the second test
captures a value not handled correctly by the method hexAbs. This
test is useful in determining and and testing the solution.

Section 4 discusses the tradeoffs between the performance over-
head and the ability to reproduce failures for different alternatives.

2.3 Optimizations

public void test_toUpperCase() {
StackDataReader.setMethodStackItem(2);
RandomCrash thisObject

= (RandomCrash) StackDataReader.readObject(0);
thisObject.toUpperCase(null);

}

public void test_hexAbs() {
StackDataReader.setMethodStackItem(1);
RandomCrash thisObject

= (RandomCrash) StackDataReader.readObject(0);
thisObject.hexAbs(0);

}

Figure 5: Tests created by ReCrash for the program of Figure 4.

ReCrash’s time and space overhead is mostly determined by the
cost of copying method arguments during the monitoring phase
(Section 2.1). We have not highly optimized our implementation,
but we have considered two general ways to reduce overhead: mon-
itoring less information about each argument, or monitoring infor-
mation about fewer methods.

2.3.1 Monitoring Partial Arguments
Here are the several alternatives for monitoring arguments:

reference Copying the reference has the smallest possible perfor-
mance overhead. However, if between the method entry and
the point of the failure, the argument state (all fields of re-
cursively reachable objects) is modified, then when a failure
is detected, ReCrash will be storing the modified arguments.
The failure might not be reproducible because the execution
might not be driven to the same failure.

shallow Performing a shallow copy is more expensive than copy-
ing the reference, but is resilient to direct side effects on the
argument (reassignment of fields of the parameter), so Re-
Crash will be able to reproduce more failures. ReCrash will
still be unable to reproduce failures that depend on deeper
objects — fields that do not get copied and happen to be
modified between the method entry and the point of failure.

used fields Shallow copy can be extended by copying not just the
argument, but all of its fields that are used (read or written)
in the method. These are the fields the method is most likely
to depend on, and so copying them is mostly likely to be
advantageous in increasing the reproducibility of tests. Re-
Crash uses static pointer analysis to determine the set of field
actually used in the method for each argument.

depth i The above approaches can copy an argument to a specified
depth: all the state reachable with i or fewer dereferences,
possibly augmented by deeper copying of used fields.

copy Making a deep copy is the most expensive, but gives ReCrash
the best chance of reproducing the same method execution.

It is possible to apply different alternatives to different arguments—
for instance, shallow copying the receiver and reference copying of
all other parameters.

As an optimization, ReCrash can avoid copying immutable pa-
rameters or fields. A method’s parameter p is immutable, if the
method never changes the state reachable from p. Parameter im-
mutability information can be found statically [25, 27] or by a com-
bination of static and dynamic analysis [8]. If a parameter is im-
mutable, ReCrash can always copy the reference since the state of

3

Figure 6: reCrashJ architecture overview.

the argument at the method entry will be the same as at the time of
the failure.

2.3.2 Ignoring Methods
ReCrash need not monitor methods that are unlikely to expose or

reveal problems. Those include empty methods, non-public meth-
ods, and simple getters and setters (which our implementation de-
fines as those with less than seven byte code instructions).

ReCrash has one more optimization mode, second chance. Even
a failure that cannot be reproduced at will is likely to appear more
than once. In second chance mode, ReCrash initially monitors no
method calls. Each time a failure occurs, ReCrash enables method
argument monitoring for all methods found on the stack backtrace
at the time of the failure. This mode is efficient, but requires a fail-
ure to be repeated twice (possibly with other failures in between)
before ReCrash can reproduce it.

3. Implementation
We have implemented the ReCrash algorithm for Java. This sec-

tion describes the implementation, reCrashJ.
Figure 6 shows the reCrashJ architecture. First, reCrashJ instru-

ments an existing program (in Java class file format, using the ASM
instrumentation tool [22]) to dynamically monitor method invoca-
tions on the stack. Figure 7 shows an instrumented Java program.
The instrumented program (IP) can be deployed instead of the orig-
inal program.

The IP keeps track of the arguments to every method on the
stack. When the program crashes, IP stores all the relevant stack
call data. From the stored data, reCrashJ generates multiple test
cases that reproduce the original crash. Figures 2 and 5 show ex-
amples of generated test cases.

If a test case uses a non-public class, reCrashJ uses a method
invocation proxy that uses reflection in order to use non-public
classes. The following sections describe each module in detail.

3.1 Stack Monitor
The reCrashJ stack monitor in the instrumented program per-

forms two functions: call stack data capturing, and storing call
stack data to a file when a crash happens.

ReCrash captures method information at the beginning of each
method as shown in line 3 of Figure 7. The stack monitor saves
the receiver object and each of the other arguments on a per-thread
stack (in memory) using one of the techniques described in Sec-
tion 2.3.1 (lines 4–5).

If there is a crash, the stored method call information in the Re-
Crash stack will be serialized and written to a file (line 34). If the
method successfully returns without a crash, the method informa-
tion will be removed from the ReCrash stack (line 13).

We used the XStream framework [6] rather than Java serial-
ization. Java serialization is limited to classes implementing the
java.io.Serializable interface, and in which all fields are typi-
cally also from Serializable types (to avoid run time errors). XStream

1 class RandomCrash {
2 public String hexAbs(int x) {
3 int id = Monitor.youMayCrash("hexAbs");
4 Monitor.addObject(this, "RandomCrash");
5 Monitor.addArgument(x, "int");
6 String result = null;
7 if (x > 0)
8 result = Integer.toHexString(x);
9 else if (x < 0)

10 result = Integer.toHexString(-x);
11

12 String ret = toUpperCase(result);
13 Monitor.youAreOK(id);
14 return ret;
15 }
16

17 public String toUpperCase(String s) {
18 int id = Monitor.youMayCrash("toUpperCase");
19 Monitor.addObject(this, "RandomCrash");
20 Monitor.addArgument(s, "String");
21

22 String ret = s.toUpperCase();
23 Monitor.youAreOK(id);
24 return ret;
25 }
26

27 public static void original main (String args[])
28 RandomCrash rCrash = new RandomCrash();
29 rCrash.hexAbs(random.nextInt());
30 }
31

32 public static void main(String args[]) {
33 try original main (args);
34 catch (Throwable e) StackDataWriter.writeStackData(e);
35 }
36 }

Figure 7: The instrumented random crash program of Figure 4.
Instrumented lines are bold.

does not have this limitation and can serialize any instance of any
class.

Both the Java Platform Debugger Architecture (JPDA) [2] and
the Java Virtual Machine Tool Interface (JVMTI) [3] provide fea-
tures to access Java objects in the stack with low overhead. How-
ever, in order to use those tools, ReCrash would have to be deployed
with a separate program that communicates with either JVM or
JPDA. This is why we have chosen to instrument a given subject
program and turns it in to a ReCrash-enabled program which can
then be deployed. No other program or configuration is needed in
order to run the ReCrash-enabled version. Pre-instrumentation also
permits the use of static analysis to determine which object can be
referenced or copied. Doing this analysis dynamically could be
prohibitively expensive.

3.2 Instrumentation
By default, reCrashJ captures failures that result in an exception

thrown by the main method. reCrashJ replaces the original main
and adds a new main as shown in lines 27 and 32 in Figure 7. The
new main invokes the original main in a try/catch block and handles
exceptions.

A vendor may wish to reproduce other violations, for example
exceptions that are caught by an exception handler or violations
that do not result in an exception. In this case, the vendor can add
a call to writeStackData wherever the program becomes aware of
a violation–for example, in a catch-all handler or at a sanity check.

Adding such calls is easy. One of the authors who had never seen
the source code found the appropriate point at which to add the
writeStackData method for SVNKit and javac/jsr308 in 10 min-
utes.

When instrumenting a subject program, developers can embed

4

an identifier, such as a version number, in the subject program.
This identifier will appear in the generated test cases as shown in
line 2 of Figure 2. This identifier can help the developers to identify
which version of their program crashed.

3.3 Test Generator
Using the method call data stored when the program crashes, re-

CrashJ generates a JUnit test suite with multiple JUnit tests, one for
each of the methods on the stack at the time of the failure. Figure 5
shows a generated test case for the program in Figure 4.

Each test loads the receiver and the other arguments from the
serialized representation of the stack back-trace. Then the test in-
vokes the corresponding method on the receiver using the argu-
ments.

4. Experimental Study
We experimentally evaluated the usefulness of the reCrashJ tool,

by performing experiments with sample crashes in real applica-
tions. We designed the experiments around the following research
questions:

Q1 How reliably can reCrashJ reproduce crashes?

Q2 Are the tests generated by reCrashJ useful for debugging?

Q3 What is the overhead (time and memory) of running reCrashJ?

Q4 What is the size of the recorded method call data?

Our results indicate that reCrashJ can reproduce many crashes,
that it generates useful tests, that it, incurs low overhead, and that
the size of the stored data is small. We analyzed three real bugs
in detail and show that the tests generated by reCrashJ help de-
bugging the source of the problem. We also asked the original
program developers about the usefulness of tests generated by re-
CrashJ and the developers found the generated test cases helpful in
debugging. Overall, the experimental results indicate reCrashJ is
effective, scalable and useful.

4.1 Subject Systems
Our experiments used the following subject programs:

• BST (0.2 kLOC, 10 methods)2 is a toy subject program used
by Csallner in evaluating CnC [11, 12]. In our experiments,
we used three BST crashes found by CnC.

• SVNKit 0.8 (22 kLOC, 2,819 methods)3 is a Java implemen-
tation of a Subversion4 client. We found three crash exam-
ples by studying SVNKit bug reports #87, #188, and a new
bug we found by using the application.

Eclipse Compiler 2.1 (83 kLOC, 4,700 methods)5 is a Java
compiler included with the Eclipse IDE.

• javac/jsr308 0.1.0 (86 kLOC, 5,017 methods)6 is the Open-
JDK Java compiler, extended with the reference implemen-
tation of JSR308(“Annotations on Java Types”) [16]. The
compiler developers provided us with four crashes.

2
http://www.cc.gatech.edu/cnc/index.html

3
http://sourceforge.net/projects/tinysql

4
http://subversion.tigris.org

5
http://www.eclipse.org

6
http://groups.csail.mit.edu/pag/jsr308/

1 public class SVNCommandLine {
2 [...]
3 private List myURLs;
4

5 public String getURL(int index) {
6 return (String) myURLs.get(index);
7 }
8

9 protected void init(String[] arguments)
10 throws SVNException {
11 [...]
12 myURLs = new ArrayList();
13 [...]
14 for (int i = 0; i < arguments.length; i++)
15 [...]
16

17 }
18 }

Figure 9: A code snapshot that illustrates a SVNKit crash (s1).

4.2 Reproducibility

Q1 How reliably can reCrashJ reproduce crashes?

To measure the effectiveness of reCrashJ in reproducing crashes,
we used the following experimental procedure. We run the reCrashJ-
instrumented versions of the subject programs on inputs that made
the subject programs crash. When the instrumented version of pro-
gram crashes, reCrashJ generates multiple test cases—one per stack
frame at the moment of the crash. reCrashJ runs each generated test
case and outputs those that reproduce the original crash by termi-
nating with the same exception thrown from the same location as
the original crash. We verified that the reCrashJ did reproduce the
crash, then counted their number. We repeated this process for three
of the argument copying strategies introduced in Section 2.3.1, and
with and without the second chance mode of Section 2.3.2.

The results of the experiment (Figure 8) are promising—reCrashJ
was able to reproduce the crash in all cases. For some crashes (b1,
b2, b3, s1, s2, and s3), every internally-generated test case repro-
duces the crash. For some other crashes (e1, j1, j2, j3, and j4), only
a subset of the generated test cases reproduce the crash.

In most cases, simply monitoring references is enough to repro-
duce crashes (‘reference’ column). However, this is not enough if
the object is side-effected, between the method entry and the point
of the failure in the method, in such a way that will prevent the fail-
ure if the object had the new state on method entry. In those cases
(e.g., e1), using uses-fields (Section 2.3), is necessary to reproduce
the crash.

4.3 Usability Study

Q2 Are the tests generated by reCrashJ useful for debugging?

To learn whether reCrashJ ‘s output helps developers to find er-
rors, we analyzed a crash in SVNKit, and crash in the eclipse com-
piler, and we asked the JSR308 developers to analyze a crash in
Javac/JSR308.

SVNKit bug (s1): SVNKit bug, #87 in the SVNKit database,
causes the program to throw an index-out-of-bounds exception if a
user omits the URL from the checkout command. Figure 9 shows
the source code responsible for this bug: When no arguments are
supplied, the myURLs list remains empty. The crash occurs when
the getURL method (line 5) attempts to access a non-existent array
element.

Figure 10 shows a test case that reCrashJ generates for this crash.
The test 1 method calls getURL with argument 0, which causes

5

program crash name crash type # of generated tests # of reproducible tests *method call data size
reference used fields copy (zipped in KB)

b1 class cast exception 3 3 3 3 5
BST b2 class cast exception 3 3 3 3 5

b3 unsupported encoding 3 3 3 3 25
Eclipse JDT e1 null pointer exception 13 0 1 8 62

s1 index out of bounds 3 3 3 3 36
SVNKit s2 null pointer exception 2 2 2 2 34

s3 null pointer exception 2 2 2 2 33
javac/jsr308 j1 null pointer exception 17 5 5 5 374

j2 illegal argument exception 23 11 11 11 448
j3 null pointer exception 8 1 1 1 435
j4 index out of bounds 28 11 11 11 431

Figure 8: Subject programs and crashes used for our experimental study. For each crash, reCrashJ generates multiple test cases that aim to
reproduce the original crash. The size of stack data file for each crash is noted. *The stack data file size is from used-fields mode.

1

2 public void test_getURL() {
3 SVNCommandLine thisObject =
4 (SVNCommandLine) StackDataReader.readObject(0);
5

6 // load arguments
7 int arg_1 = 0;
8

9 // Method invocation
10 thisObject.getURL(arg_1);
11 }

Figure 10: A generated test case to reproduce the bug in Figure 9.

1 public Void visitMethodInvocation
2 (MethodInvocationTree node, Void p) {
3 [...]
4 List<AnnotatedClassType > parameters
5 = method.getAnnotatedParameterTypes();
6

7 [...]
8 List<AnnotatedClassType > arguments =
9 new LinkedList <AnnotatedClassType >();

10 for (ExpressionTree arg : node.getArguments())
11 arguments.add(factory.getClass(arg));
12

13 for (int i = 0; i < arguments.size(); i++) {
14 if (!checker.isSubtype(arguments.get(i),
15 parameters.get(i)))
16 [...]
17 }
18 [...]
19 }

Figure 11: A code snapshot that illustrates a javac/jsr308 crash (j4).

the crash. Running the generated test case reveals that myURLs
is not in the correct state at the time of the call to getURL. This
alone, however, does not explain why myURLs is in an incorrect
state. Here’s where the multiple test cases created by reCrashJ are
useful—the test case generated for the next level (i.e., 2 call away
in the stack) contains a call to the run method. That method calls
init—which results in myURLs being incorrectly initialized. This
second-level test case clearly exposes the bug. At this point, fixing
the bug is trivial.

javac/jsr308 bug (j4): Due to a bug, using javac/jsr308 to com-
pile source code with an annotation with multiple arguments, re-
sults in an index-out-of-bounds exception. Figure 11 shows the
erroneous source code. The problem is that, during parsing, the
compiler assumes that the parameters and arguments lists are
of the same size (line 15), while, in fact, they may not be.

1 public void test_2() throws Throwable {
2 // load the SubtypeVisitor instance
3 SubtypeVisitor thisObject =
4 (SubtypeVisitor) StackDataReader.readObject(0);
5

6 // load arguments
7 // MethodInvocationTree arg_1 =
8 // test("foo", "bar", "baz");
9 MethodInvocationTree arg_1 =

10 (MethodInvocationTree)StackDataReader.readObject(1);
11 Void arg_2 = null;
12

13 // Method invocation
14 thisObject.visitMethodInvocation(arg_1, arg_2);
15 }

Figure 12: Test case generated for a javac/jsr308 crash (j4).

reCrashJ generates multiple test cases that reproduce the crash;
one is shown in Figure 12. test 2 loads the receiver from serialized
data (line 3). Then, the test loads the argument (line 9). To facilitate
debugging, reCrashJ writes the arguments’ string representation as
a comment (line 8). Finally, the test calls visitMethodInvocation
(line 14), which reproduces the original crash. By running this test
case, a developer of javac/jsr308 can identify the cause of the crash.

Note that the generated test does not require the whole source
code and encodes only the necessary minimum to reproduce the
crash. This makes reCrashJ especially useful in scenarios where
the compiler crash happens in the field, and the user cannot provide
the developers with the whole source code to reproduce the crash.

Developer’s testimonial We gave the generated tests cases to
two javac/jsr308 developers and asked for comments about the tests’
usefulness. We received positive responses from both developers.

Developer 1: “I often have to climb back up through a stack
trace when debugging. ReCrash seems to generate a test method
for multiple levels of the stack, which would make it useful”

“I like the fact that you wouldn’t have to wait for the crash to
occur again is useful.”

Developer 2: “One of the challenging things for me in debug-
ging is that when I set a breakpoint, the break point maybe be ex-
ecuted multiple times before the actual instance where the error is
cased, [...] Using ReCrash, I was able to jump (almost directly) to
the necessary breakpoint.”

4.4 Performance Overhead

Q3 What is the runtime overhead (time and memory) of reCrashJ?

6

task Execution Time
original program reference used fields used fields(Imm) deep copy

SVNKit checkout 1.17 1.62 (38%) 1.75 (50%) 1.75 (50%) 1657 (142,000%)
SVNKit update 0.556 0.617 (11%) 0.632 (13%) 0.628 (13%) 657 (118,000%)
Eclipse Content 0.954 1.08 (13%) 1.1 (15%) 1.1(15%) 114 (12,000%)
Eclipse String 1.07 1.36 (27%) 1.41 (32%) 1.39 (31%) 1656 (155,000%)
Eclipse Channel 1.27 1.7 (34%) 1.77 (40%) 1.74 (37%) 8101 (638,000%)
Eclipse JLex 3.45 4.9 (42%) 5.63 (64%) 5.51 (60%) > 2 days
task Second Chance-Execution Time

original program reference used fields used fields(Imm) deep copy
SVNKit checkout 1.17 1.17 (0%) 1.17 (0%) 1.18 (0.8%) 1.42 (21%)
SVNKit update 0.556 0.556 (0%) 0.56 (0%) 0.558 (0.3%) 0.56 (0.8%)
Eclipse Content 0.954 0.969(1.5%) 0.97 (1.4%) 0.963 (0.9%) 3.98 (317%)
Eclipse String 1.07 1.09 (1.7%) 1.08 (0.8%) 1.08 (1%) 8.99 (742%)
Eclipse Channel 1.27 1.27 (0.1%) 1.27 (0%) 1.27 (0%) 16.6 (1,210%)
Eclipse JLex 3.45 3.47 (0.7%) 3.47 (0.9%) 3.48 (1.1%) 1637 (47,000%)

Figure 13: Execution times of the original and instrumented programs. Slowdowns from the baseline appear in parentheses. The columns
are described in Section 2.3.1. (IMM) stands for the immutability optimization.

reCrashJ will be most useful if is runtime overhead is minimal.
We measured the user time and memory usage while performing
the following tasks using the original and instrumented versions of
the subject programs.

• SVNKit checkout. We checked out files from a SVN repos-
itory.

• SVNKit update We performed SVNKit update of the checked
out source code.

• Eclipse Content We compiled Content.java (48 LOC) from
JDK 1.7 samples/nio/server.

• Eclipse String We compiled StringContent.java (99 LOC)
from JDK 1.7 samples/nio/server.

• Eclipse ChannelIOSecure We compiled ChannelIOSecure.java
(642 LOC) from JDK 1.7 samples/nio/server.

• Eclipse JLex We compiled JLex (7,841 LOC)7.

Figure 13 compares user-mode time of the original and instru-
mented programs, measured using the UNIX time command. Be-
cause of variability in network, disk, and CPU usage, these is some
noise in the measurements (occasionally an optimization slightly
slowed down the subject program), but the trend is clear.

Even storing only references is surprisingly expensive: 11%–
42% run-time overhead. Together with immutability analysis to
avoid storing unchanged data, copying “one and a half” levels of
data structure (the first level plus any fields on the second level that
are used in the method) has very little additional overhead: a total
of 13%–60%. These values are higher than we would prefer, but
are probably usable for truly critical bugs.

Our (unoptimized, serializing) deep copy version is completely
unusable, except possibly in second chance mode, where it might
be usable for in-house testing. A better implementation could be
more efficient, but would probably still be impractical.

Second chance mode, however, is where our system shines. It
reduces overheads to the barely noticeable 0%–1.7% — and that is
after a crash has already been observed, before which the overhead
is negligible (essentially 0%). Second chance mode obtains these
benefits by monitoring only a very small subset of all the methods
in the program. The observation that this simple idea is sufficient,
effective, and efficient is one of the main contributions of our work.
7
http://www.cs.princeton.edu/∼appel/modern/java/JLex/

task Memory usage (MB)
original program used-fields

SVNKit checkout 1.8 2.3
Eclipse JLex 4.6 4.8

Figure 14: Memory use overhead of the instrumented programs.

For the memory usage comparison, we measured the maximum
memory use using JProfiler 8. We performed the SVNKit checkout
and Eclipse JLex tasks using the original and instrumented pro-
grams. Figure 14 shows the memory usage—reCrashJ adds only
0.2–0.5M memory overhead.

4.5 Recorded Data Size

Q4 What is the size of the recorded method call data?

If ReCrash is deployed in the field, and a crash happens, ReCrash
sends the stored method call data back to the program developers.
For each crash, Figure 8 shows the sizes of the stored method call
data. The sizes are small—around 35KB for SVNKit, and around
450KB for javac/jsr308. Data this small can easily be sent to the
developers.

5. Discussion
This section discusses threats to validity and a limitation of our

technique.

5.1 Threats to Validity
We identify the following key threats to validity.

Systems and crashes examined might not be representative. We
might have a system selection bias. We examined only 11
crashes from four subject systems. For each crash we im-
proved our system until it could reproduce that crash. It is
time-consuming to find a real bug (by studying bug reports),
download an older version of the software, compile it, and re-
produce the bug. We may have accidentally chosen systems
or crashes that have better (or worse) than average ReCrash
reproducibility. For example, ReCrash may not be effective
for crashes that depend on data in static fields.

Monitors only Runtime Exceptions. Our experiments consider any
violations that manifest as as runtime exceptions such as null

8
http://www.ej-technologies.com/products/jprofiler/overview.html

7

pointer or index out of bounds exceptions. Future experi-
ments should consider other types of violations.

5.2 Privacy
ReCrash stores the serialized stack data in XML files. An XML

file can be read by numerous applications and thus our serialized
data might even be useful for future tasks of program understand-
ing. On the other hand, one of the problem we set to solve is de-
bugging deployed application when the client is unable to send his
data to the developer in fear of exposing proprietary data. For in-
stance, a user who discovers a bug in eclipse might be unable to
send proprietary source files to the developer.

Sending ReCrash stack data to the developer should be seen as
an improvement to existing solutions, since it only contains parts of
processed data that were accessible to the arguments on the time of
the crash. However, this is not the perfect solution as some propri-
etary information might still escape. As a possible partial solution
ReCrash might provide a stack data reader, so that the client can
review the encoded data and decide how much of it is safe to send
it to the developers.

6. Related work
There are several topics related to our work. This section presents

the most related, divided into categories.

6.1 Record and Replay
Many existing record and replay techniques for postmortem anal-

ysis and debugging [10, 14, 18, 9, 20, 17, 31, 15] are based on three
components: checkpoints, log, and replay. The checkpoint pro-
vides a snapshot of the full state of the program at specific times,
while the log records events between snapshots. The replay com-
ponent uses the log to replay the events between checkpoints. By
contrast, ReCrash performs a checkpoint at each method entry and
has no log of events, only an in-memory record of stack elements.
ReCrash do not replay the entire execution, instead ReCrash allows
the developer to observe the system in several states before the fail-
ure, then run the original program until the failure is reproduced.
ReCrash logging simplicity allow it to be deployed remotely with-
out significant overhead to the clients. Most of the previous tech-
niques are designed for in-house testing or debugging, and have
unreasonable overhead for deployed applications.

BugNet [20], ReVirt [15], and FlashBack [28] requires changes
to the host operating system while FDR [31] uses a proprietary
hardware recorder. ReCrash, on the other hand, can be deployed
in any environment, and its log file can be used to reproduce a
recorded failure in different environments.

Choi et al. [9], Instant Replay [18], BugNet [21], and many oth-
ers emphasize the ability to deterministically replay an execution
of a non-deterministic program. They are able to reproduce race
conditions and other non-deterministic failures. In order to achieve
this goal, these techniques either impose a large space and time
overhead [9, 18]; or they only allow replaying a narrow window of
time [21]. Similar to BugNet [21], ReCrash only allow replaying a
small part of the execution before the failure. ReCrash is only able
to deterministically reproduce the a non-deterministic failure if one
of the generated tests captures the state after the non-determinism.

jRapture [29], test factoring [26], and ADDA [10] capture the
interactions between the program and the environment to create
smaller test cases or enable reproducing failures. These techniques
capture a trace, and then run the subject code in a special harness,
such as a mock object representing all interactions with the rest of
the system, that reads values out of the trace whenever the subject
code would have interacted with its environment. Test factoring

does this at the level of method calls. ADDA does it at the level
of file operations and C standard library functions. By contrast, our
approach does not record a trace; it sets up the system in a particular
start state, and then the system runs unassisted.

6.2 Test Generation
Contract Driven Development [19] generates test cases using

contracts (pre and post conditions) defined by developers. When
run in debug mode, CDD captures debug information when a con-
tract is violated. CDD uses the debug information to generate test
cases. ReCrash similarly generates test cases from information
saved when a failure was detected. However, CDD is designed
to be used in the development process rather than in deployment.
ReCrash instruments a target program and the target program is de-
ployed in-field. The instrumented program monitors the stack and
generates a test suite without the need for contracts or special IDE
support.

CnC [12],JCrasher [11], Eclat [23], Randoop [24], and DSD-
Crasher [13] are using random inputs to find program crash points.
Their generated tests may not be representative of actual use, whereas
ReCrash generates tests that reproduce real crashes. Palulu’s [7]
model-based test generation similarly attempts to generates tests
based on values observed during an actual program execution.

6.3 Remote data collection
Crash report systems such as Dr. Watson [4], Apple’s Crash Re-

porter [1], and talkback [5] send a stack back-trace or program
core-dump to the vendor. The stack back-trace helps the vendor
to correlate between problems. However, reproducing the original
failure requires non-trivial human effort. The core-dump enables
to examination of the program state at the time of the crash, it re-
quires debugging tools, and deep knowledge of the target software.
ReCrash automatically generates stack method data smaller than a
core-dump that can be similarly sent to the vendor. The developer
can use this data to create a test that reproduces the original failure.

7. Conclusion
We have introduced the ReCrash algorithm, which captures crashes

and generates unit tests that reproduce them. ReCrash is simple to
implement, it is scalable, and it generates simple, helpful test cases
that effectively reproduce crashes. The ReCrash performance over-
head is acceptable, and it creates method call data of manageable
size. Our reCrashJ tool implements the algorithm for Java.

We have evaluated reCrashJ with real crashes from SVNKit, Eclipse
JDT, and javac/jsr308. reCrashJ was able to reproduce all the crashes.
The performance overhead of instrumented programs by reCrashJ
has low user time overhead: 0%-1.7% for the second chance mode
and 13%–64% for the use field mode. reCrashJ increase memory
use by 0.2–0.5M. The size of stored stack method data is manage-
able (0.5k–448k). Considering the overhead and the stack data size,
reCrashJ is usable in real software deployment.

The generated test cases are useful for debugging. We showed
real bug examples and how the generated tests can locate the bugs.
Two developers’ testimonials indicate that the generated test cases
help to find bug locations or reduce debugging work.

References
[1] Apple Crash Reporter, 2007.

http://developer.apple.com/technotes/tn2004/tn2123.html.
[2] Java Platform Debugger Architecture, 2007.

http://java.sun.com/javase/technologies/core/toolsapis/jpda/.

8

[3] JVMTM Tool Interface (JVM TI), 2007.
http://java.sun.com/j2se/1.5.0/docs/guide/jvmti/index.html.

[4] Microsoft Online Crash Analysis, 2007.
http://oca.microsoft.com.

[5] Talkback Reports, 2007. http://talkback-public.mozilla.org.
[6] XStream Project Homepage, 2007.

http://xstream.codehaus.org/.
[7] S. Artzi, M. D. Ernst, A. Kieżun, C. Pacheco, and J. H.

Perkins. Finding the needles in the haystack: Generating legal
test inputs for object-oriented programs. In M-TOOS 2006:
1st Workshop on Model-Based Testing and Object-Oriented
Systems, Portland, OR, USA, October 23, 2006.

[8] S. Artzi, A. Kieżun, D. Glasser, and M. D. Ernst. Combined
static and dynamic mutability analysis. In ASE 2007:
Proceedings of the 22nd Annual International Conference on
Automated Software Engineering, Atlanta, GA, USA,
November 7–9, 2007.

[9] J.-D. Choi and H. Srinivasan. Deterministic replay of Java
multithreaded applications. In SPDT ’98: Proceedings of the
SIGMETRICS symposium on Parallel and distributed tools,
pages 48–59, 1998.

[10] J. Clause and A. Orso. A technique for enabling and
supporting debugging of field failures. In ICSE’07,
Proceedings of the 29th International Conference on Software
Engineering, pages 261–270, Minneapolis, MN, USA,
May 23–25, 2007.

[11] C. Csallner and Y. Smaragdakis. JCrasher: an automatic
robustness tester for Java. Software: Practice and Experience,
34(11):1025–1050, September 2004.

[12] C. Csallner and Y. Smaragdakis. Check ’n’ Crash: Combining
static checking and testing. In ICSE’05, Proceedings of the
27th International Conference on Software Engineering,
pages 422–431, St. Louis, MO, USA, May 18–20, 2005.

[13] C. Csallner and Y. Smaragdakis. DSD-Crasher: A hybrid
analysis tool for bug finding. In ISSTA 2006, Proceedings of
the 2006 International Symposium on Software Testing and
Analysis, pages 245–254, Portland, ME, USA, July 18–20,
2006.

[14] D. A. S. de Oliveira, J. R. Crandall, G. Wassermann, S. F. Wu,
Z. Su, and F. T. Chong. ExecRecorder: VM-based full-system
replay for attack analysis and system recovery. In ASID ’06:
Proceedings of the 1st workshop on Architectural and system
support for improving software dependability, pages 66–71,
2006.

[15] G. W. Dunlap, S. T. King, S. Cinar, M. A. Basrai, and P. M.
Chen. Revirt: enabling intrusion analysis through
virtual-machine logging and replay. SIGOPS Oper. Syst. Rev.,
36(SI):211–224, 2002.

[16] M. D. Ernst and D. Coward. JSR 308: Annotations on Java
types. http://pag.csail.mit.edu/jsr308/, October 17,
2006.

[17] D. Geels, G. Altekar, S. Shenker, and I. Stoica. Replay
debugging for distributed applications. In USENIX-ATC’06:
Proceedings of the Annual Technical Conference on
USENIX’06 Annual Technical Conference, pages 27–27,
Boston, MA, 2006.

[18] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel
programs with instant replay. IEEE Trans. Comput.,
36(4):471–482, 1987.

[19] A. Leitner, I. Ciupa, and A. Fiva. Contract Driven
Development = Test Driven Development −Writing Test

Cases. In Proc. of the 12th European Software Engineering
Conference held jointly with 15th ACM SIGSOFT
International Symposium on Foundations of Software
Engineering (ESEC/FSE), pages 425–434, September 2007.

[20] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Continuously recording program execution for deterministic
replay debugging. In ISCA ’05: Proceedings of the 32nd
annual international symposium on Computer Architecture,
pages 284–295, 2005.

[21] S. Narayanasamy, G. Pokam, and B. Calder. BugNet:
Recording application-level execution for deterministic replay
debugging. IEEE Micro, 26(1):100–109, 2006.

[22] ObjectWeb Consortium. ASM - Home Page, 2007.
http://asm.objectweb.org/.

[23] C. Pacheco and M. D. Ernst. Eclat: Automatic generation and
classification of test inputs. In ECOOP 2005 —
Object-Oriented Programming, 19th European Conference,
pages 504–527, Glasgow, Scotland, July 27–29, 2005.

[24] C. Pacheco, S. K. Lahiri, M. D. Ernst, and T. Ball.
Feedback-directed random test generation. In ICSE’07,
Proceedings of the 29th International Conference on Software
Engineering, Minneapolis, MN, USA, May 23–25, 2007.

[25] A. Rountev. Precise identification of side-effect-free methods
in Java. In ICSM 2004, Proceedings of the International
Conference on Software Maintenance, pages 82–91, Chicago,
Illinois, September 12–14, 2004.

[26] D. Saff, S. Artzi, J. H. Perkins, and M. D. Ernst. Automatic
test factoring for Java. In ASE 2005: Proceedings of the 20th
Annual International Conference on Automated Software
Engineering, pages 114–123, Long Beach, CA, USA,
November 9–11, 2005.

[27] A. Sălcianu and M. C. Rinard. Purity and side-effect analysis
for Java programs. In VMCAI’05, Sixth International
Conference on Verification, Model Checking and Abstract
Interpretation, pages 199–215, Paris, France, January 17–19,
2005.

[28] S. M. Srinivasan, S. Kandula, C. R. Andrews, and Y. Zhou.
Flashback: A lightweight extension for rollback and
deterministic replay for software debugging. In ATEC’04:
Proceedings of the USENIX Annual Technical Conference
2004 on USENIX Annual Technical Conference, pages 3–3,
Boston, MA, 2004.

[29] J. Steven, P. Chandra, B. Fleck, and A. Podgurski. jRapture: A
capture/replay tool for observation-based testing. In ISSTA
’00: Proceedings of the 2000 ACM SIGSOFT international
symposium on Software testing and analysis, pages 158–167,
2000.

[30] A. Tomb, G. P. Brat, and W. Visser. Variably interprocedural
program analysis for runtime error detection. In ISSTA, pages
97–107, 2007.

[31] M. Xu, R. Bodik, and M. D. Hill. A “flight data recorder” for
enabling full-system multiprocessor deterministic replay. In
ISCA ’03: Proceedings of the 30th annual international
symposium on Computer architecture, pages 122–135, 2003.

9

