
Dynamically Fighting Bugs:

Prevention, Detection, and Elimination

by

Shay Artzi

M.Sc., Technion - Israel Institute of Technology

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

AUG 0 7 2009

LIBRARIES

B.A., Technion - Israel Institute of Technology

Submitted to the Department of Electrical Engineering and Computer Science

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
ARCHIVES

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

June 2009

© Massachusetts Institute of Technology 2009. All rights reserved.

Author .....
Deprtment of Electrical Engineering and Computer Science

.- /7 May 21, 2009

Certified by .....
Michael D. Ernst

Associate Professor
Thesis Supervisor

Accepted by ...
( Terry P. Orlando

Chairman, Department Committee on Graduate Students





Dynamically Fighting Bugs:
Prevention, Detection, and Elimination

by
Shay Artzi

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 2009, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

This dissertation presents three test-generation techniques that are used to improve software qual-
ity. Each of our techniques targets bugs that are found by different stake-holders: developers,
testers, and maintainers. We implemented and evaluated our techniques on real code. We present
the design of each tool and conduct experimental evaluation of the tools with available alternatives.

Developers need to prevent regression errors when they create new functionality. This dis-
sertation presents a technique that helps developers prevent regression errors in object-oriented
programs by automatically generating unit-level regression tests. Our technique generates regres-
sions tests by using models created dynamically from example executions. In our evaluation, our
technique created effective regression tests, and achieved good coverage even for programs with
constrained APIs.

Testers need to detect bugs in programs. This dissertation presents a technique that helps
testers detect and localize bugs in web applications. Our technique automatically creates tests that
expose failures by combining dynamic test generation with explicit state model checking. In our
evaluation, our technique discovered hundreds of faults in real applications.

Maintainers have to reproduce failing executions in order to eliminate bugs found in deployed
programs. This dissertation presents a technique that helps maintainers eliminate bugs by gen-
erating tests that reproduce failing executions. Our technique automatically generates tests that
reproduce the failed executions by monitoring methods and storing optimized states of method ar-
guments. In our evaluation, our technique reproduced failures with low overhead in real programs

Analyses need to avoid unnecessary computations in order to scale. This dissertation presents
a technique that helps our other techniques to scale by inferring the mutability classification of
arguments. Our technique classifies mutability by combining both static analyses and a novel
dynamic mutability analysis. In our evaluation, our technique efficiently and correctly classified
most of the arguments for programs with more than hundred thousand lines of code.

Thesis Supervisor: Michael D. Ernst
Title: Associate Professor
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Chapter 1

Introduction

Software permeates every aspect of our lives. Unfortunately, wherever software is deployed, bugs
are sure to follow. A software bug is a defect in a program that prevents it from behaving as
intended. A 2002 study of the US Department of Commerce' National Institute of Standards
and Technology concluded that software bugs cost the US economy at least 59 billion dollars
annually [122]. For instance, software bugs in the Therac-25 radiation therapy machine caused
patient deaths [92]. As another example, a prototype of the Ariane 5 rocket was destroyed after
launch, due to a bug in the on-board guidance computer program [63].

The software development cycle contains three phases involving code: implementation, test-
ing, and maintenance. Each each of these cycles, different stake-holders need to address issues
relating to software bugs. Developers have to prevent new bugs, testers try to detect hidden bugs,
and maintainers need to eliminate manifested bugs. In this dissertation we present techniques to
prevent, detect, and eliminate software bugs during these three phases. All our techniques achieve
better results than previous techniques for the same problems. Each of our techniques automati-
cally generates tests to address software bugs based on how and by whom the bugs get discovered:

* During the implementation phase, it is the developer's task to prevent new software bugs
from being introduced into the software. We present a technique that automatically generates
tests to prevent software regressions.

* During the testing phase, it is the tester's task to detect hidden software bugs. We present a
technique that automatically generates tests exposing failures in the software.

* During the maintenance phase, it is the maintainer's task to eliminate software bugs dis-
covered by users. We present a technique that automatically generates tests that reproduce
failures to help eliminate software bugs.

In addition, this thesis also introduces a combined static and dynamic' analysis for classifying the
mutability of references. The mutability classification increases the effectiveness of our prevention

'Dynamic analysis observes the behavior of the program when it is executed to provide information such as exe-

cution traces, coverage information, and timing profiles. Static analysis examines the program's source code without

executing it, for various kinds of information



technique and the performance of our elimination technique.
There are previous several solutions for handling software bugs. Each of our technique builds

on, and improves such previous solutions.

Prevention A regression error occurs when working functionality ceases to work as intended, after
a program change. A common way to prevent regression errors is by using regression tests.
Regression tests exercise existing functionally while validating the expected results. When a
regression test fails, the developer can either fix the regression error or update the test. Unit
level regression tests any very useful. The execution time of unit level regression tests is fast,
and they make the tasks of locating regression errors easy. System level regression tests, on
the other hand, can take hours or days to execute. Thus, regression errors are discovered a
long time after being introduced, and locating them becomes much harder. Unfortunately,
since creating unit level regression tests is time consuming, they only exercise small parts
of the functionality for most programs, while system level regression tests exercise more
functionality.

We present a technique that automatically generates regression tests on the unit level. The
technique creates models of program behavior from example executions of the program.
Then the technique generates unit level regression tests for the program by using the models
to guide random test generation.

Detection Traditional testing is aimed at detecting bugs by executing the software under controlled
conditions and evaluating the results. The goal of the testing is to increase the confidence
of the tester that the software behaves as expected. However, due to the nature of the pro-
gramming language or the output, the tests are often lacking in either code coverage, or
specifications coverage.

We present a technique that generate tests to automatically detect failures in the domain of
dynamic web applications. In this domain tests are harder to create manually due to the
dynamicity of underlying languages, the frequency with which the code is modified, and
the heavy dependence of the program flow on user interaction. Our technique combines
dynamic test generation [27, 67, 133] with explicit state model-checking, which were not
exploited before for the task of locating bugs in dynamic web applications.

Elimination Debugging is the process of finding and eliminating bugs. First, the developer needs
to be able to reproduce the failure consistently. Once the failure can be reproduced, the de-
veloper can find the causing bug, and then try a solution for the bug. The task of reproducing
a failure becomes harder when the failure is discovered by a user in a deployed application
during the maintenance phase.

We present an approach to reproduce failures efficiently, without introducing any changes to
the user's environment, and with low execution overhead. This approach connects debugging
with testing by storing partial information on method entry, and generating units test that
reproduce an observed failure.

In this dissertation we have found that dynamic analysis is a very useful tool in addressing
problems related to software bugs, especially when combined with other types of analysis. Our



prevention technique uses dynamic analysis to create models of program execution and combines
dynamic analysis with randomized test generation. This combination has not been previously used
for creating regression tests. Our detection technique uses dynamic analysis (as part of the dynamic
test generation) to find the correlation between inputs and the paths taken during the execution. In
order to explore more functionally, our technique combines the dynamic analysis with explicit state
model checking to allow the simulation of multi-stage user interaction. This allows the dynamic
test generation to be effective for the domain of web-applications in which we are the first to
have tried it. Our elimination technique uses dynamic analysis to store information during the
execution. This information is used to revert the system to different states from before the failure
happened. We combine the dynamic analysis with static analysis used to reduce the overhead of
storing the information. Finally, our mutability inference technique combines scalable dynamic
analysis inference with the accurate lightweight static analysis inference to achieve a combined
scalable and accurate technique.

The different uses of the generated tests also determine the similarity of the tests to the observed
executions. When our technique generates tests to prevent bugs in existing working software, the
goal of the tests is to exercise functionality which is similar to the observed existing functionality.
When our technique generates tests to expose hidden bugs in the program, the goal of the tests
is to explore unrestricted different functionality. Finally, when our technique generates tests for
reproducing a failure, the goal of the tests is the imitate as closely as possible the original failing
execution.

Section 1.1 presents a detailed list of the contributions in this thesis.

1.1 Summary of Contributions

This dissertation presents the following contributions:

A technique that combines dynamic analysis with random testing to automatically gener-
ate regression tests in order to reduce the number of new bugs introduced into object ori-
ented programs when the program is modified. An earlier version of this technique appeared
in [10].

The technique uses an example execution of the program to infer a model of legal call se-
quences. The model guides a random input generator towards legal but behaviorally-diverse
sequences that serve as legal test inputs. This technique is applicable to programs without
formal specification, even for programs in which most sequences are illegal.

We present an implementation of this technique, in a tool called Palulu, and evaluate its
effectiveness in creating legal inputs for real programs. Our experimental results indicate
that the technique is effective and scalable. Our preliminary evaluation indicates that the
technique can quickly generate legal sequences for complex inputs: in a case study, Palulu
created legal test inputs in seconds for a set of complex classes, for which it took an expert
thirty minutes to generate a single legal input.



* A technique that leverages the combined concrete and symbolic execution technique, to au-
tomatically expose and localize crashes and malformed dynamically-generated web pages in
dynamic web applications. These common problems seriously impact usability of Web ap-
plications. Current tools for Web-page validation cannot handle the dynamically-generated
pages that are ubiquitous on today's Internet. An earlier version of this technique appeared
in [11].

We present a dynamic test generation technique for the domain of dynamic web applications.
The technique utilizes both combined concrete and symbolic execution and explicit-state
model checking. The technique generates tests automatically, runs the tests capturing logical
constraints on inputs, and creates failing tests. It also minimizes the conditions on the inputs
to failing tests, so that the resulting bug reports are small and useful in finding and fixing the
underlying faults.

Our tool Apollo implements the technique for the PHP programming language. Apollo gen-
erates test inputs for a web application, monitors the application for crashes, and validates
that the output conforms to the HTML specification. We present Apollo's algorithms and
implementation, and an experimental evaluation that revealed 302 faults in 6 PHP web ap-
plications.

* A technique that uses dynamic analysis to reproduce software failures in object-oriented
programs. The technique automatically converts a crashing program execution into a set of
deterministic and self-contained unit tests. Each of the unit tests reproduces the problem
from the original program execution. An earlier version of this technique appeared in [13].
The technique is based on the idea that it is not necessary to replay the entire execution in
order to reproduce a specific crash. For many crashes, creating a test case requires only
partial information about the methods currently on the stack. Our technique exploits the
premise of unit testing (that many bugs are dependent on small parts of the heap) and the fact
that good object-oriented style avoids excessive use of globals. The technique is efficient,
incurring low performance overhead. The technique has a mode, termed "second chance"
in which the technique will have negligible overhead until a crash occurs and very small
overhead until the crash occurs for a second time, at which point the test cases are generated.
We present ReCrashJ, an implementation of our approach for Java. ReCrashJ reproduced
real crashes from Javac, SVNKit, Eclipsec, and BST. ReCrashJ is efficient, incurring 13%-
64% performance overhead. In "second chance" mode, ReCrashJ had a negligible overhead
until a crash occurs and 0%-1.7% overhead until the crash occurs for a second time, at which
point the test cases are generated.

* A technique that uses a combination of static and dynamic analysis to detect method param-
eters that will not change during execution. An earlier version of this technique appeared
in [14].

Knowing which method parameters may be mutated during a method's execution is useful
for many software engineering tasks. A parameter reference is immutable if it cannot be
used to modify the state of its referent object during the method's execution. We formally



define this notion, in a core object-oriented language. Having the formal definition enables
determining correctness and accuracy of tools approximating this definition and unbiased
comparison of analyses and tools that approximate similar definitions.

We present Pidasa, a tool for classifying parameter reference immutability. Pidasa combines
several lightweight, scalable analyses in stages, with each stage refining the overall result.
The resulting analysis is scalable and combines the strengths of its component analyses. As
one of the component analyses, we present a novel dynamic mutability analysis and show
how its results can be improved by random input generation. Experimental results on pro-
grams of up to 185 kLOC show that, compared to previous approaches, Pidasa improves
both the run-time performance and the overall accuracy of immutability inference. Muta-
bility classifications are used in our first technique (prevention) to reduce the size of the
generated models, and in our third technique (elimination) to reduce the amount of informa-
tion stored on method entry.

The rest of the dissertation is organized as follows. Chapters 2-5 discuss the main parts of the
thesis, introduce the problems and algorithms by examples, and present the design of the exper-
iments that evaluate the work. The chapters correspond to the main components of the work-
bug prevention by automatically creating regression tests (Chapter 2), bug detection in dynamic
web applications (Chapter 3), bug elimination using stored object states (Chapter 4), and mutabil-
ity analysis infrastructure (Chapter 5). Each of the chapters is self contained and can be read in
any order. Finally, Chapter 6 summaries this dissertation and presents several directions for future
work.
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Chapter 2

Prevention

This chapter presents a test generation technique to help developers prevent software regressions.
A software regression occurs when existing working functionality ceases to work as a result of
software changes.

Regression testing is commonly used to prevent software regressions. Regression testing in-
volves the creation of a set of test cases, covering as much of the software functionality as possible,
and the frequent execution of the tests during development. Working on software that has minimal
or no regression tests is like walking on eggshells: every change can break something. However,
unlike walking on eggshells, the damage is not always immediately obvious.

The task of creating regression tests is time-consuming. As a result of limited resources, de-
velopers often neglect the creation of regression tests, or more typically create a set of tests that
doesn't cover most of the existing functionality.

In this chapter we present an automated way of creating test inputs for object- oriented pro-
grams [40, 110, 149, 156, 157]. A test input for an object-oriented program typically consists of a
sequence of method calls that use the public interface (API) defined by the program under test. For
example, List 1 = new List(); 1.add(1); 1.add(2) is a test input for a class that implements a
list. Tests inputs can be automatically or manually augmented with assertions to create regression
tests. For many programs, most method sequences are illegal: for correct operation, calls must oc-
cur in a certain order with specific arguments. Techniques that generate unconstrained sequences
of method calls without the use of formal specifications are bound to generate mostly illegal inputs.

For example, Figure 2-1 shows a test input for the tinySQL database server'. Before a query
can be issued, a driver, a connection, and a statement must be created, and the connection must
be initialized with a meaningful string (e.g., "jdbc : tinySQL"). As another example, Figure 2-8
shows a test input for a more complex API.

Model-based testing [29, 35, 52, 70, 73, 76, 108, 121, 144, 147] offers one solution. A model
can specify legal method sequences (e.g., close() cannot be called before open(), or connect()
must be called with a string that starts with "jdbc :"). But as with formal specifications, most
programmers are not likely to write models (except perhaps for critical components), and thus
non-critical code may not take advantage of model-based input generation techniques.

1http://sourceforge.net/projects/tinysql



TextFileDriver d = new TextFileDriver O;
Conn con = d.connect("jdbc:tinySQL",null);
Stmt s2 = con.createStmt();
s2.execute("CREATE TABLE test (name char(25), id int)");

s2 .executeUpdate("INSERT INTO test(name, id) VALUES('Bob', 1)");

s2.closeO;
Stmt sl = con.createStmt();
sl.execute("DROP TABLE test");

sl.close();
con.close();

Figure 2-1: Example of a manually written client code using the tinySQL database engine. The
client creates a driver, connection, and statements, all of which it uses to query the database.

To overcome the problem of illegal inputs, we developed a technique that combines dynamic
model creation and testing. Our technique creates a model of method sequences from an example
execution of the program under test, and uses the model to guide a test input generator towards the
creation of legal method sequences. Because the model's sole purpose is aiding an input generator,
our model inference technique is different from previous techniques [7, 36, 154, 161] which are
designed primarily to create small models for program understanding. Our models must contain
information useful for input generation, and must handle complexities inherent in realistic pro-
grams (for example, nested method calls) that have not been previously considered. At the same
time, our models need not contain any information that is useless in the context of input generation
such as methods that do not mutate state.

Our generator uses the model to guide its input generation strategy. The emphasis on "guide" is
key: to create behaviorally diverse inputs, the input generator may diverge from the model, which
means that the generated sequences are similar to, but not identical to, the sequences used to infer
the model. Generating such sequences is desirable because it permits our test generation technique
to construct new behaviors rather than merely repeating the observed ones. Our technique creates
diverse inputs by (i) generalizing observed sequences (inferred models may contain paths not ob-
served during execution), (ii) omitting certain details from models (e.g., values of non-primitive,
non-string parameters), and (iii) diverging from models by randomly inserting calls to methods not
observed during execution. (iv) combining instances created from different sequences to further
explore possible functionality. Some of the generated inputs may be illegal-our technique uses
heuristics that discard inputs that appear to be illegal based on the result of their execution [111].

In this chapter, we present the following contributions:

* We present a dynamic model-inference technique that infers call sequence models suitable
for test input generation. The technique handles complexities present in real programs such
as nested method calls, multiple input parameters, access modifiers, and values of primitives
and strings.

* We present a test-input generation technique that uses the inferred models, as well as feed-
back obtained from executing the sequences, to guide generation towards legal, non-trivial



sequences.

* We present Palulu, a tool that implements both techniques for Java. The input to palulu is a
program under test and an example execution. Palulu uses the example execution to infer a
model, then uses the model to guide the input generation in creating inputs. Palulu's output
is a collection of test inputs for the program under test.

* We evaluate Palulu on a set of real applications with constrained interfaces, showing that
the inferred models assist in generating inputs for these programs. We also show that tests
created using our models on highly constrained object oriented programs achieve better cov-
erage than tests created using the universal models.

The remainder of the chapter is organized as follows. Section 2.1 presents the technique.
Section 2.2 describes an experimental evaluation of the technique. Section 2.3 surveys related
work, and Section 2.4 concludes the chapter

2.1 Technique

The input to our technique is an example execution of the program under test. The output is
a set of test inputs for the program under test. The technique has two steps. First, it infers a
model that summarizes the sequences of method calls (and their input arguments) observed during
the example execution. Section 2.1.1 describes model inference. Second, the technique uses the
inferred models to guide input generation. Section 2.1.2 describes test input generation.

2.1.1 Model Inference

For each class observed during execution, our technique constructs a model called a call sequence
graph. Call sequence graphs are rooted, directed, and acyclic. The edges represent method calls
and their primitive and string arguments. Each node in the graph represents a collection of object
states, each of which may be obtained by executing the method calls along some path from the
root to the node. In other words, a node describes the history of calls. Each path starting at the root
corresponds to a sequence of calls that operate on a specific object-the first method constructs the
object, while the rest of the methods mutate the object (possibly as one of their parameters). Note
that when two edges point to the same node, it does not necessarily mean that the underlying state
of the program is the same.

The call sequence graph (model) for the class is a summary of call sequence graphs for all
instances of the class. The model inference algorithm constructs a model in two steps. First, it
constructs a call sequence graph for each instance of the class, observed during execution. Second,
it creates the model for the class by merging all the call sequence graphs of instances of the class.

2.1.1.1 Constructing the Call Sequence Graph

A call sequence of an object contains all the calls in which the object participated as the receiver
or a parameter, with the method nesting information for sub-calls. Figure 2-2(b) shows a call



TS-tinySQL

ConnConnection

StmtEstatement

DR "DROP TABLE test"

CR"CREATE TABLE test (name sl=Conn.createStmt() 1-new Stmt(Conn) sl-Conn.createStmt() 1-new Stmt(Conn)
char(25), id int)"

DR-"DROP TABLE test" A

IB-"INSERT INTO test (name, id) TS.parse(sl,DR) S.parse(sl,DR)

VALUES('Bob', 1)"
s.execute(DR) s.execute(DR) B

(a) Class and string literal
abbreviations sl1.setStmt(SQLStmt)

C

1. sl = Conn.createStmt()
2. -s sl = new Stmt(Conn) 1.closeo0

3. sl.execute(DR) D

4. -* TS.parse(s , DR)

5. --- TSParser.DropTable(s l)
6. -~--+ new DropTableStrnt(sl)

7. - s1.setStmt(SQLStmt)
8. sl.closeo

(b) Call sequence for object (d) Public-call sequence
(c) Call sequence graph for s g

s1 graph for s 1

Figure 2-2: Constructing a call sequence graph for an object. (a) Abbreviations used in Figures 2-2

and 2-4. (b) Call sequence involving object sl in the code from Figure 2-1. Indented lines (marked

with arrows) represent nested calls, grey lines represents state-preserving calls, and lines in bold

face represent non-public calls. (c) Call sequence graph for sl inferred by the model inference

phase; it omits state-preserving calls. The path A-B-C represents two calls (lines 4 and 7) nested

in the call in line 3. (d) Public call sequence graph, after removing from (b) an edge corresponding

to a non-public call.

sequence of the Stmt instance sl from Figure 2-1. A call sequence graph of an instance is a

graph representation of the object's call sequence---each call in the sequence has a corresponding

edge between some nodes, and calls nested in the call correspond to additional paths between the

same nodes. Edges are annotated with primitive and string arguments of the calls, collected during

tracing. (Palulu records method calls, including arguments and return values, and field/array writes

in a trace file created during the example execution of the program under test.)

The algorithm for constructing an object's call sequence graph has three steps. First, the algo-

rithm removes state-preserving calls from the call sequence. Second, the algorithm creates a call

sequence graph from the call sequence. For nested calls, the algorithm creates alternative paths in

the graph. Third, the algorithm removes non-public calls from the graph.
Figure 2-2 (c) shows the call sequence graph corresponding to the call sequence in Figure 2-

2 (b). The call sequence graph indicates, for example, that it is possible to transition an instance of

Stmt from state A to state C either by calling si. executeO or by calling TS.parse(sl, DR) and then



calling s1.setStmt(SQLStmt). Figure 2-2 (d) shows the final call sequence graph for the instance
sl, after removing non-public calls.

Next, we describe the steps in the algorithm for constructing an object's call sequence graph:
1. Removing state-preserving calls. The algorithm removes from the call sequence all calls

that do not modify the state of the object.
State-preserving calls are of no use in constructing inputs, and omitting them reduces model

size and search space without excluding any object states. Use of a smaller model containing only
state-changing calls makes test generation more likely to explore many object states (which is one
goal of test generation) and aids in exposing errors. State-preserving calls can, however, be useful
as oracles for generated inputs, which is another motivation for identifying them. For example, the
call sequence graph construction algorithm ignores the calls in lines 5 and 6 in Figure 2-2(b).

To discover state-preserving calls, the technique use the immutability analysis technique (Chap-
ter 5) on the subject program. A method parameter (including the receiver) is considered im-
mutable if no execution of the method changes the state of the object passed to the method as the
actual parameter. The "state of the object" is the part of the heap that is reachable from the object
by following field references.

2. Constructing call sequence graph. The call sequence graph construction algorithm is
recursive and is parameterized by the call sequence, a starting node, and an ending node. The top-
level invocation (for the entire history of an object) uses the root as the starting node and a dummy
node as the ending node2.

Figure 2-3 shows a pseudo-code implementation of the algorithm. The algorithm processes the
call sequence call by call, while keeping track of the last node it reached. When a call is processed,
a new edge and node are created and the newly created node becomes the last node. The algorithm
annotates the new edge with the primitive and string arguments of the call.

Nested calls are handled by recursive invocations of the construction algorithm and give rise
to alternate paths in the call sequence graph. After a call to method c is processed (i.e., an edge
between nodes nl and n2 is added to the graph), the algorithm creates a path in the graph starting
from nl and ending in n2, containing all calls invoked by c.

For example, Figure 2-2(c) contains two paths from state A to state C. This alternative path con-
taining TS.parse(sl, DR) and sl.setStmt(SQLStmt) was added because the call to
sl.execute() (line 3) of Figure 2-2(b) invokes those two calls (lines 4 and 7).

3. Removing non-public calls. After constructing the object's call sequence graph, the algo-
rithm removes from the graph each edge that corresponds to a non-public method. Thus, each path
through the graph represents a sequence of method calls that a client (such as a test case) could
make on the class. Non-public calls are removed from the graph after it is constructed because
removing them in the same way as state-preserving calls would create paths that were never seen
in the original execution.

For example, Figure 2-2(d) presents the call sequence graph after removing the edge corre-
sponding to the non-public method s .setstmt(SQLStmt) in Figure 2-2(c).

2Dummy nodes are not shown in Figures 2-2 and 2-4.



// Insert sequence cs between nodes start and end.
createCallSequenceGraph(CallSequence cs, Node start, Node end) {

Node last = start;
for (Call c : cs.topLevelCalls()) {
Node next = addNewNode();
addEdge(c, last, next); // add "last --c--> next"
CallSequence nestedCalls = cs.getNestedCalls(c);
createCallSequenceGraph(nestedCalls, last, next);
last = next;

}
replaceNode(last, end); // replace last by end

Figure 2-3: The call sequence graph construction algorithm written in Java-like pseudo-code. The
algorithm is recursive, creating alternate paths in the graph for nested calls. The algorithm uses
the following auxiliary functions. topLevelCalls returns the list of calls that involved the ob-
ject as a parameter, but were not nested in any other call that involved the object as a parameter.
addNewNode adds a new node to the graph. addEdge adds an edge for the method given by its
first parameter, between the nodes given by its second and third parameters. getNestedCalls
returns a call sequence containing all the calls nested in its parameter. replaceNode replaces, in
the graph, the node pointed to by its first parameter with the node pointed to by its second.

s2=Conn.createStmt() 2=new Stmt(Conn) s=Conn.createStmt() = new Stmt(Conn)
sl=ConncreateStt) 1-new Stm(Conn)

pars(sDR) s2.execute(CR) S.parse(s2,CR) s.execute(DRCR) (edge A) TS.parse(s, DRICR)

sl.exu(DR) + B C

s2.executeUpdate(IB) s2execute(lB) TS.parse(s2,IB) s.close() s executeUpdate(IB) s execute(IB) TS.parse(IB, s)

2.close() .close

Figure 2-4: Call sequence graphs for sl (from Figure 2-2(c)), s2 (not presented elsewhere), and
the merged graph for class statement.

2.1.1.2 Merging Call Sequence Graphs

Once the algorithm finished generating the call sequence graphs for all the observed instances of
each class, the algorithm merges them into the class's model as follows. First, merge their root
nodes. Whenever two nodes are merged, merge any pair of outgoing edges (and their target nodes)
if (i) the edges record the same method, and (ii) the object appears in the same parameter positions
(if the object is the receiver of the first method it must be the receiver of the second, similarly for
the parameters); other parameters, including primitives and strings may differ. When two edges
are merged, the new edge stores their combined set of primitives and strings.

Figure 2-4 shows merging of call sequence graphs. The left and center parts show the graphs for



sl and s2, while the right part shows the merged model for the Stmt class. The edges corresponding
to sl.execute(DR) and s2.execute(CR) are merged to create the edge s.execute(DRICR).

2.1.1.3 Advantages of the Call Sequence Graph

Following the call sequence graph can lead to generation of legal sequences that were not seen
in the original execution, or that exercise the program behavior in interesting corner cases. For
instance, a valid call sequence from the model in Figure 2-4(c) might try to create a table and then
close the connection (in the original execution, after the table was created, the statement was used
to issue a query). Another possible sequence might try to drop the table "test" and then try to
insert rows into it, causing a missing table exception to be thrown. Both of those examples exhibit
behavior that should be checked by a regression test. For instance, the regression test for the latter
would check for the missing table exception.

2.1.2 Generating Test Inputs

The input generator uses the inferred call sequence models to guide generation towards legal se-
quences. The generator has three arguments: (1) a set of classes for which to generate inputs, (2)
call sequence models for a subset of the classes (those for which the user wants test inputs gener-
ated using the models), and (3) a time limit. The result of the generation is a set of test inputs for
the classes under test.

The input generator mixes generation using universal models (that allow any method sequence
and any parameters) and generation using the models inferred from the example execution. The
generator is incremental: it maintains an (initially empty) component set of previously-generated
method sequences, and creates new sequences by extending sequences from the component set
with new method calls.

The input generation has two phases, each using a specified fraction of the overall time limit.
In the first phase, the generator uses universal models to create test inputs. The purpose of this
phase is initializing the component set with sequences that can be used during learned model-
based generation. This phase may create sequences that do not follow the inferred models, which
allows for creation of more diverse test inputs. In the second phase, the generator uses the inferred
models to guide the creation of new test inputs.

An important challenge in our approach is creating tests that differ sufficiently from observed
executions. Our technique achieves this goal by (i) generalizing observed sequences (inferred
models may contain paths not observed during execution), (ii) omitting certain details from models
(e.g., values of non-primitive, non-string parameters) (iii) diverging from models by randomly
inserting calls to methods not observed during execution, and (iv) sequences that are created in the
first phase of generation can be inserted in the second phase.

2.1.2.1 Phase 1: Generation Using Universal Models

In this phase, the generator executes the following three steps in a loop, until the time limit expires.



1. Select a method. Select a method m(To,... , TK) at random from among the public methods
declared in the classes under test (To is the type of the receiver). The new sequence will have
this method as its last call.

2. Create a new sequence. For type T of each parameter of method m, attempt to find, in
the component set, an argument of type T for method m. The argument may be either a
primitive value or a sequence si that creates a value of type Ti. There are two cases:

* If T is a primitive (or string) type, then select a primitive value at random from a pool
of primitive inputs (our implementation seeds the pool with inputs like 0, 1, -1, 'a',
true, false, "", etc.).

* If Tj is a reference type, then use null as the argument, or select a random sequence si
in the component set that creates a value of type Ti, and use that value as the argument.
If no such sequence exists, go back to step 1.

Create a new sequence by concatenating the si sequences and appending the call of m (with
the chosen parameters) to the end.

3. Add the sequence to the component set. Execute the new sequence (our implementation
uses reflection to execute sequences). If executing the sequence does not throw an excep-
tion, then add the sequence to the component set. Otherwise, discard the sequence. Se-
quences that throw exceptions are not useful for further input generation. For example, if
the one-method input a = sqrt(-1); throws an exception because the input argument must
be non-negative, then there is no sense in building upon it to create the two-method input
a = sqrt(-1);b = log(a);.

Example. We illustrate input generation using the universal models on the tinySQL classes.
In this example, the generator creates test inputs for classes Driver and Conn. In the first it-
eration, the generator selects the static method Conn.create(Stmt). There are no sequences
in the component set that create a value of type Stmt, so the generator goes back to step 1.
In the second iteration, the generator selects the constructor Driver() and creates the sequence
Driver d = new Driver(). The generator executes the sequence, which throws no exceptions.
The generator adds the sequence to the component set. In the third iteration, the generator se-
lects the method Driver.connect(String). This method requires two arguments: the receiver of
type Driver and the argument of type String. For the receiver, the generator uses the sequence
Driver d = new Driver(); from the component set. For the argument, the generator randomly
selects "" from the pool of primitives. The sequence is Driver d = new Driver(); d.connect("").
The generator executes the sequence, which throws an exception (i.e., the string "" is not valid a
valid argument). The generator discards the sequence.

2.1.2.2 Phase 2: Generation Using the Inferred Models

In this phase the generator uses the inferred model to guide the creation of new sequences. We call
the sequences that the model-based generator creates modeled sequences, which are distinct from



the sequences generated in the first phase. The generator keeps two (initially empty) mappings.
Once established, the mappings never change for a given modeled sequence. The mo (modeled
object) mapping maps each modeled sequence to the object constructed by the sequence. The cn
(current node) mapping maps each modeled sequence to the node in the model that represents the
current state of the sequence's mo-mapped object.

Similarly to the generator from Phase 1, the generator attempts to create a new sequences by
repeatedly extending modeled sequences from the component set. The component set is initially
populated with the (universally modeled) sequences created in the first generation phase. The
generator repeatedly performs one of the following two actions (randomly selected), until the time
limit expires.

* Action 1: create a new modeled sequence. Select at random a class C and an edge E that
is outgoing from the root node in the model of C Let m(To,... , Tk) be the method that edge
E represents. Create a new sequence s' that ends with a call to m, in the same manner as
the generation in phase 1-concatenate any sequences from the component set to create the
arguments for the call, then append the call to m at the end. Execute s' and add it to the
component set if it terminates without throwing an exception. Create the mo mapping for
s'-the s' sequence mo-maps to the return value of the call to m (model inference ensures
that m does have a return value). Finally, create the initial cn mapping for s'-the s' sequence
cn-maps to the target node of the E edge.

* Action 2: extend an existing modeled sequence. Select a modeled sequence s from the
component set and an edge E outgoing from the node cn(s) (i.e., from the node to which s
maps by cn). These selections are done at random. Create a new sequence s' by extending
s with a call to the method that edge E represents (analogously to Action 1). If a parameter
of m is of a primitive or string type, randomly select a value from among those that decorate
edge E. Execute s' and add it to the component set if it terminates without throwing an
exception. Create the mo mapping for s'-the s' sequence mo-maps to the same value as
sequence s. This means that s' models an object of the same type as s. Finally, create the cn
mapping for s'-the s' sequence cn-maps to the target node of the E edge.

Example. We use tinySQL classes to show an example of how the generator works. The generator
in this example uses the model presented in the right-hand side of Figure 2-4. In the first iteration,
the generator selects Action 1, and method createStmt. The method requires a receiver, and the
generator finds one in the component set populated in first generation phase (last two lines of the
following example) The method executes with no exception thrown and the generator adds it to
the component set. The following shows the newly created sequence together with the mo and cn
mappings.

sequence s mo(s) cn(s)

Driver d = new Driver();
Connrm c = d.connect("jdbc:tinySQL"); st A
Statement st = c.createStmt();



In the second iteration, the generator selects Action 2 and method execute. The method
requires a string parameter and the model is decorated with two values for this call (denoted by DR
and CR in the right-most graph of Figure 2-4). The generator randomly selects CR. The method
executes with no exception thrown and the generator adds it to the component set. The following
shows the newly created sequence together with the mo and cn mappings.

sequence s mo(s) cn(s)

Driver d = new Driver();
Conn c = d.connect("jdbc:tinySQL");
Statement st = c.createStmt(); st C
st.execute("CREATE TABLE test (name char(25), id int)");

2.2 Evaluation

This section presents an empirical evaluation of Palulu's ability to create test inputs. We mainly
compared Palulu to JOE [111]. JOE is a test input generation technique that uses universal models,
and was shown to out perform all of its competitors. Section 2.2.1 shows that test inputs generated
using Palulu inferred models yields better coverage than test inputs generated by JOE. Section 2.2.2
shows that Palulu regression tests can find more regression errors than regression tests generated
by JOE, and a hand crafted test suite. Section 2.2.3 illustrates that Palulu can create a test input for
a complex data structure, for which JOE was unable to create a test input.

2.2.1 Coverage

We compared Palulu generation's using the inferred models to JOE [11 1]'s generation using the
universal models in creating inputs for programs with constrained APIs. Our hypothesis is that
tests generated by following the call sequence models will be more effective, since the test gen-
erator is able to follow method sequences and use input arguments that emulate those seen in an
example input. We measure effectiveness via block and class coverage, since a test suite with
greater coverage is generally believed to find more errors.

2.2.1.1 Subject programs

We used four Java programs as our subject programs. Each of these programs contains many
classes with constrained APIs, requiring specific method calls and input arguments to create legal
input.

* tinySQL3 (27 kLOC) is a minimal SQL engine. We used the program's test suite as an
example input.

3http://sourceforge.net/projects/tinysql



classes for which technique block coverage
all tested generated at least one input

Program classes classes JOE Palulu JOE Palulu
tinySQL 119 32 19 30 19% 32%
HTMLParser 158 22 22 22 34% 38%
SAT4J 122 22 22 22 27% 36%
Eclipse 320 70 46 46 8.0% 8.5%

Figure 2-5: Classes for which inputs were successfully created, and coverage achieved, by using
JOE's test input generation models, and Palulu's model-based generation.

* HTMLParser4 (51 kLOC) is real-time parser for HTML. We used our research group's
webpage as an example input.

* SAT4J5 (11 kLOC) is a SAT solver. We used a file with a non-satisfiable formula, taken
from DIMACS 6, as an example input.

* Eclipse compiler7 (98 kLOC) is the Java compiler supplied with the Eclipse project. We
wrote a 10-line program for the compiler to process, as an example input.

2.2.1.2 Methodology

As the set of classes to test, we selected all the public non-abstract classes, for which instances
where created during the sample execution. For other classes, we do not infer models and therefore
the inputs generated by the two techniques will be the same.

The test generation was run in two phases. In the first phase it generated components for 20
seconds using universal models for all the classes in the application. In the second phase, test
input creation, it generated test inputs for 20 seconds for the classes under test using either Palulu's
inferred models or the universal models.

Using the generated tests, we collected block and class coverage information with emma8 .

2.2.1.3 Results

Figure 2-5 shows the results. The test inputs created by following the call sequence models achieve
better coverage than those created by JOE.

The class coverage results differ only for tinySQL. For example, without the call sequence
models, a valid connection or a properly-initialized database are never constructed, because of the
required initialization methods and specific input strings.

The block coverage improvements are modest for Eclipse (6%, representing 8.5/8.0) and HTML-
Parser (12%). SAT4J shows a 33% improvement, and tinySQL, 68%. We speculate that programs

4http://htmlparser.sourceforge.net
5http://www.sat4j.org
6ftp://dimacs.rutgers.edu
7http://www.eclipse.org
8http://emma.sourceforge.net



Test Suite Number of Tests Faulty Implementation False Positives
Manually-Written 190 14 0
JOE 2016 42 1
Palulu 1465 64 1

Figure 2-6: Faulty implementations found in the RatPoly experiment by three test suites.
Manually-written, generated by Palulu, and generated by JOE [111]. The first column is the num-
ber of tests in the test suite. The second column contains the number of faulty implementations
reported by the test suite. The third column is the number of correct implementation that failed at
least one test (false positive).

with more constrained interfaces, or in which those interfaces play a more important role, are more
amenable to the technique.

The results are not dependent on the particular time bound chosen. For example, allowing JOE
100 seconds for generation achieved less coverage than generation using the call sequence models
for 10 seconds.

2.2.2 Palulu Generate Effective Regression Tests

This section describes an experiment that evaluates the effectiveness of Palulu's regression test
generation. We compared the generation using Palulu models against JOE [111] which gener-
ates tests using the universal models, and against a manually-written test suite (crafted over six
years). Briefly, a test suite generated using the Palulu models found more bugs than both the suite
generated by JOE, and the manually-written suite.

2.2.2.1 Subject programs

RatPoly is a library for manipulating rational-coefficient polynomials. Implementing the required
API was an assignment in MIT's software engineering class. We had access to 143 student im-
plementations, the staff implementation, and a test suite used for grading. The staff test suite
contains 190 tests and 264 dynamic assertions and been augmented over the period of 6 years by
the course staff. We have no reason to believe that its actual completeness was below the average
state-of-the-practice in the real world. The staff solution (naturally) passed all the tests.

2.2.2.2 Methodology

We used Palulu and JOE to create a regression test suite for the staff implementation. Our goal was
to discover faulty implementation submitted by the students. As the example input to Palulu, we
wrote a small program exercising different methods of the RatPoly library.



Class Description Requires
VarInfoName Variable name
VarInfo Variable description VarInfoName

PptSlice2 Two variables from a program point VarInfo, PptTopLevel, Invariant

PptTopLevel Program point PptSlice2, VarInfo
LinearBinary Linear invariant (y = ax + b) over two PptSlice2

scalar variables
BinaryCore Helper class LinearBinary

Figure 2-7: Some of the classes needed to create a valid test input for Daikon's BinaryCore class.
For each class, the requires column contains the types of all objects one needs to construct an

object of that class.

2.2.2.3 Results

Palulu found more faulty implementations than JOE, even though it contains fewer tests; both
Palulu and Joe found more faulty implementations than the manual test suite.

Figure 2-6 compares the results for the manually-written test suite, Palulu, and JOE. We have
manually inspected all failing test cases and found out that they have been triggered by 19 under-
lining errors.

2.2.3 Constructing a Complex Input

To evaluate the technique's ability to create structurally complex inputs, we applied it to the
BinaryCore class within Daikon [59], a tool that infers program invariants. Daikon maintains
a complex data structure involving many classes to keep track of the valid invariants at each pro-
gram point. BinaryCore is a helper class that calculates whether or not the points passed to it
form a line. BinaryCore was suggested by a developer of Daikon as an example of a class whose
creation requires a nontrivial amount of setup. We now describe this setup in broad strokes to give
the reader an idea of the complexity involved (see Figure 2-7 for a list of constraints):

* The constructor to a BinaryCore takes an argument of type Invariant, which has to be
of run-time type LinearBinary or PairwiseLinearBinary, subclasses of Invariant.
Daikon contains 299 classes that extend Invariant, so the state space of type-compatible
but incorrect possibilities is very large.

* To create a legal LinearBinary, one must first create a legal PptTopLevel and a legal
PptSlice2. Both of these classes require an array of VarInfo objects. The VarInfo
objects passed to PptSlice2 must be a subset of those passed to PptTopLevel. In addition,
the constructor for PptTopLevel requires a string in a specific format; in Daikon, this string
is read from a line in the input file.

* The constructor to VarInfo takes five objects of different types. Similar to PptTopLevel,
these objects come from constructors that take specially-formatted strings.

* None of the parameters involved in creating a BinaryCore or any of its helper classes may
be null.



ProglangType inttype = ProglangType.parse("int"); ProglangType typel = ProglangType.parse("int");
ProglangType filereptype = ProglangType.parse("int"); ProglangType type2 = ProglangType.parse("int");
ProglangType reptype = filereptype.fileToRepType();

VarComparability comp =
VarComparability.parse(@, "22", inttype);

vartomparaDlllty compl =
VarComparability.parse(8, "22", typel);
VarComparability comp2 =
VarComparability.parse(8, "22", type2);

VarInfo[] slicevis = new VarInfo[] (vl, v2); VarInfo[] vs = new VarInfo[] (vl, v2);
VarInfo[] pptvis = new VarInfo[] (vl, v2, v3};

I BinaryCore core = new BinaryCore(inv);

Figure 2-8: The code listing on the left is a test input written by an expert developer of Daikon. It required about 30 minutes to
write. The code listing on the right is a test input generated by Palulu using inferred models created from an example execution of
Daikon. For ease of comparison, we renamed automatically-generated variable names and grouped method calls related to each
class (but we preserved any ordering that affects the results).

I__ __ II



First, we tested our hypothesis that generating a legal instance of BinaryCore is not trivial.
JOE [111] was unable to generate a legal instance of BinaryCore in 24 hours. Next, we created
the model, using as input to Daikon an example supplied with the Daikon distribution. Our input
generator generated 3 sequences that create legal different BinaryCore instances, and about 150
helper sequences in 10 seconds.

Figure 2-8 (left) shows a test input that creates a legal BinaryCore instance. This test was
written by a Daikon developer, who spent about 30 minutes writing the test input. We are not
aware of a simpler way to obtain a BinaryCore.

Figure 2-8 (right) shows one of the three inputs that Palulu generated for BinaryCore. For ease
of comparison between the inputs generated manually and automatically, we renamed automatically-
named variables and reordered method calls when the reordering did not affect the results. Palulu
successfully generated all the helper classes involved. Palulu generated some objects in a different
way from the manual input; for example, to generate a Slice, Palulu used the return value of a
method in PptTopLevel instead of the class's constructor.

2.3 Related Work

Palulu combines dynamic call sequence graph inference with test input generation. Previous tech-
niques for test input generation required hand written models, while techniques that used dynamic
analysis to generate models focused on program understanding. This section discusses related
work in each area in more detail.

2.3.1 Dynamic Call Sequence Graph Inference

There is a large literature on call sequence graph inference; we discuss some techniques most
closely related to our work. Cook and Wolf [36] generate a FSM from a linear trace of atomic,
parameter-less events using grammar-inference algorithms [9]. Whaley and Lam [154] combine
dynamic analysis of a program run and static analysis of the program's source to infer pairs of
methods that cannot be called consecutively. Meghani and Ernst [97] improve on Whaley's tech-
nique by dynamically inferring methods specifications, and using them to create FSMs that are
logically consistent with the specifications. Ammons et al. [7] use machine learning to generate
the graph; like our technique, Ammon's is inexact (i.e., the inferred state machine allows more
behaviors than those observed in the trace).

In all the above techniques, the intended consumer of the inferred graphs is a person wanting
to gain program understanding. Our end goal is generating test inputs for object-oriented APIs;
the consumer of our graphs is a mechanical test input generator, and the model is only as good
as it is helpful in generating inputs. This fact imposes special requirements that our inference
technique addresses. To be useful for real programs, our call sequence graph inference technique
must handle program traces that include methods with multiple input parameters, nested calls,
private calls, primitive parameters, etc. On the other hand, the size of the graph is less crucial to
us. In addition, the models of the above techniques mostly discover rules affecting one object (for



instance, opening a connection before using it). In contrast, our model inference discovers rules
consisting of many objects and method calls.

Another related project is Perracotta [161], which dynamically infers temporal properties from
traces, such as "event E1 always happens before E2." Our call sequence graphs encode specific
event sequences, but do not generalize the observations. Using inferred temporal properties could
provide even more guidance to a test input generator.

2.3.2 Generating Test Inputs with a Model

A large body of existing work addresses the problem of generating test inputs from a specification
or model; below we survey the most relevant.

Most of the previous work on generating inputs from a specification of legal method se-
quences [29, 35, 52, 70, 73, 76, 108, 121, 144, 147] expects the user to write the specification by
hand, and assumes that all inputs derived from the specification are legal. In addition, many of
these techniques are designed primarily for testing reactive systems or single classes such as linked
lists, stacks, etc. whose methods typically can take any objects as parameters. This greatly simpli-
fies input generation-there are fewer decisions to make, such as how to create an object to pass
as a parameter.

Like Palulu, the Agedis [73] and Jartege [108] tools use randomization during the test input
generation; Agedis requires the user to write a model as a UML diagram, and Jartege requires the
user to provide JML specifications. The tools can generate inputs based on the models; the user
also provides an oracle to determine whether an input is legal, and whether it is fault-revealing.
Compared to Palulu, these tools represent a different trade-off in user control versus automation.

Since we use an automatically-generated model and apply our technique to realistic programs,
our test input generator must account for any lack of information in the generated model and still
be able to generate inputs for data structures. Randomization helps here: whenever the generator
faces a decision (typically due to under-specification in the generated model), a random choice is
made. As our evaluation shows, the randomized approach leads to legal inputs. Of course, this
process can also lead to creation of illegal structures.

An alternative approach to creating objects is via direct heap manipulation (e.g., Korat [20]).
Instead of using the public interface of an object's class, Korat constructs an object by directly
setting values of the object's fields (public and private). To ensure that this approach produces
legal objects, the user provides a detailed object invariant specifying legal objects. Our approach
does not require a manually-written invariant to create test inputs. Instead, it infers a model and
uses it to guide the random search towards legal object states.

2.3.3 Creating Unit Tests from System Tests

Our technique captures exhibited behavior at the unit level. It can be used to create a set of unit tests
from a large (potentially long-running) system test. This process can be viewed as a refactoring of
the system test into a set of smaller unit tests.

Test factoring [109, 129] is a different technique to create unit tests from a system test. Test
factoring captures the interactions between tested and untested components in the system, and



creates mock objects for the untested portions of the interaction, yielding a unit test where the
environment is simulated via mocks. Test factoring accurately reproduces the execution of the
entire system test. Our technique, on the other hand, uses the system test as only as a guide to
create new sequences of method calls. Both techniques share the goal of creating focused, fast unit
tests where there were none.

2.4 Conclusion

In this chapter, we have presented a test generation technique that helps developers prevent regres-
sion faults. The technique uses dynamic analysis to automatically generates unit-level regression
test with structurally complex inputs for object oriented programs.

Our technique combines dynamic model inference with model-based test input generation to
create high-quality test suites. The technique is targeted for programs that define constrained
APIs for which generation with universal models alone cannot generate useful tests that satisfy the
constraints. It guides generation with a model that summarizes method sequencing and method
input constraints seen in an example execution.

We have implemented our technique for Java. Our experimental results show that test suites
generated by our tool achieve better coverage than generation using the universal models. Our
technique is capable of creating legal tests for data structures that take a human significant effort
to test.
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Chapter 3

Detection

This chapter presents a test generation technique to help tester in the challenge of automatically
detecting and localizing failures in dynamic web applications. Dynamic test generation tools, such
as DART [67], Cute [133], and EXE [27], generate tests by executing an application on concrete
input values, and then creating additional input values by solving symbolic constraints derived from
exercised control flow paths. To date, such approaches have not been practical in the domain of web
applications, which pose special challenges due to the dynamism of the programming languages,
the use of implicit input parameters, the use of persistent state, and the complex patterns of user
interaction.

This chapter extends dynamic test generation to the domain of web applications that dynam-
ically create web (HTML) pages during execution, which are typically presented to the user in a
browser. We apply these techniques in the context of the scripting language PHP, one of the most
popular languages for web programming. According to the internet research service, Netcraft',
PHP powered 21 million domains as of April 2007, including large, well-known websites such as
Wikipedia and WordPress.

Our goal is to find two kinds of failures in web applications: execution failures that are man-
ifested as crashes or warnings during program execution, and HTMLfailures that occur when the
application generates malformed HTML. As an example, execution failures may occur when a
web application calls an undefined function or reads a nonexistent file. In such cases, the HTML
output contains an error message and execution of the application may be halted, depending on
the severity of the failure. HTML failures occur when output is generated that is not syntactically
well-formed HTML (e.g., when an opening tag is not accompanied by a matching closing tag).
Although web browsers are designed to tolerate some degree of malformedness in HTML, several
kinds of problems may occur. First and most serious is that browsers' attempts to compensate for
malformed web pages may lead to crashes and security vulnerabilities 2. Second, standard HTML
renders faster3 . Third, malformed HTML is less portable across browsers and is vulnerable to

1See http://news. netcraft. com/.
2See bug reports 269095, 320459, and 328937 at https://bugzilla.mozilla. org/show_bug. cgi?
3 See http://weblogs.mozillazine.org/hyatt/archives/2003_03.html#@02904. According to a Mozilla developer, one

reason why malformed HTML renders slower is that "improper tag nesting [...] triggers residual style handling to try



breaking or looking strange when displayed by browser versions on which it is not tested. Fourth,
a browser might succeed in displaying only part of a malformed webpage, while silently discarding
important information. Fifth, search engines may have trouble indexing malformed pages [165].

Web developers widely recognize the importance of creating legal HTML. Many websites
are checked using HTML validators4 . However, HTML validators can only point out problems
in HTML pages, and are by themselves incapable of finding faults in applications that generate
HTML pages. Checking dynamic web applications (i.e., applications that generate pages during
execution) requires checking that the application creates a valid HTML page on every possible
execution path. In practice, even professionally developed and thoroughly tested applications often
contain multiple faults (see Section 3.5).

There are two general approaches to finding faults in web applications: static analysis and
dynamic analysis (testing). In the context of web applications, static approaches have limited
potential because (i) web applications are often written in dynamic scripting languages that enable
on-the-fly creation of code, and (ii) control in a web application typically flows via the generated
HTML text (e.g., buttons and menus that require user interaction to execute), rather than solely
via the analyzed code. Both of these issues pose significant challenges to approaches based on
static analysis. Testing of dynamic web applications is also challenging, because the input space
is large and applications typically require multiple user interactions. The state-of-the-practice in
validation for web-standard compliance of real web applications involves the use of programs such
as HTML Kit5 that validate each generated page, but require manual generation of inputs that lead
to displaying different pages. We know of no automated tool for the validation of web applications
that dynamically generate HTML pages.

This chapter presents an automated technique for finding failures in dynamic web applications.
Our technique is based on dynamic test generation, using combined concrete and symbolic (con-
colic) execution and constraint solving [27, 67, 133]. We created a tool, Apollo, that implements
our technique in the context of the publicly available PHP interpreter.

Apollo first executes the web application under test with an empty input. During each execu-
tion, Apollo monitors the program to record the dependence of control-flow on input. Addition-
ally, for each execution Apollo determines whether execution failures or HTML failures occur (for
HTML failures, an HTML validator is used as an oracle). Apollo automatically and iteratively cre-
ates new inputs using the recorded dependence to create inputs that exercise different control flow.
Most previous approaches for concolic execution only detect "standard errors" such as crashes and
assertion failures. Our approach also detects such standard errors, but is to our knowledge the first
to use an oracle to detect specification violations in the application's output.

Another novelty in our work is the inference of input parameters, which are not manifested
in the source code, but which are interactively supplied by the user (e.g., by clicking buttons in
generated HTML pages).

The desired behavior of a PHP application is usually achieved by a series of interactions be-
tween the user and the server (e.g., a minimum of five user actions are needed from opening the

to produce the expected visual result, which can be very expensive" [106].
4http: //validator.w3. org, http://www.htmlhelp. com/tools/validator
5http://www.htmlkit.com



1 <?php
2

3 make_header(); // print HTML header
4

5 // Make the $page variable easy to use //
6 if(!isset($_GET['page'])) $page = 0;
7 else $page = $_GET['page'];

9 // Bring up the report cards and stop processing //
o10 if($_GET['page2']==1337) {
11 require('printReportCards.php');
12 dieO; // terminate the PHP program
13 )
14

15 // Validate and log the user into the system //
16 if($_GET["login"] == 1) validateLoginO;
17

18 switch ($page)
19 {
20 case @: require('login.php'); break;
21 case 1: require('TeacherMain.php'); break;
22 case 2: require('StudentMain.php'); break;
23 default: die("Incorrect page number. Please verify.");
24 }
25

26 make_footerO; // print HTML footer
27 ...

28 function validateLogin() {
29 if(!isset($_GET['username'])) {
30 echo "<j2> username must be supplied.</h2>\n";
31 return;

32 }
33 $username = $_GET['username'];
34 $password = $_GET['password'];
35 if($username=="john" && $password=="theTeacher")
36 $page=1;

37 else if($username=="john" && $password=="theStudent")
38 $page=2;

39 else echo "<h2>Login error. Please try again</h2>\n";
40 }
41

42 function make_header() { // print HTML header
43 print("
44 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
45 "http://www.w3.org/TR/html4/strict.dtd">
46 <HTML>

47 <HEAD> <TITLE> Class Management </TITLE> </HEAD>
48 <BODY>");

49 }
50

51 function makefooterO I // close HTML elements opened by headerO
52 print("
53 </BODY>

54 </HTML>");
55 }
56 ?>

Figure 3-1: A simplified PHP program excerpt from SchoolMate. This excerpt contains three
faults (2 real, 1 seeded), explained in Section 3.1.3.



main Amazon page to buying a book). We handle this problem by enhancing the combined con-
crete and symbolic execution technique with explicit-state model checking based on automatic
dynamic simulation of user interactions. In order to simulate user interaction, Apollo stores the
state of the environment (database, sessions, cookies) after each execution, analyzes the output of
the execution to detect the possible user options that are available, and restores the environment
state before executing a new script based on a detected user option.

Techniques based on combined concrete and symbolic executions [27,67,133] may create mul-
tiple inputs that expose the same fault. In contrast to previous techniques, to avoid overwhelming
the developer, our technique automatically identifies the minimal part of the input that is responsi-
ble for triggering the failure. This step is similar in spirit to Delta Debugging [34, 163]. However,
since Delta Debugging is a general, black-box input minimization technique, it is oblivious to the
properties of inputs. In contrast, our technique is white-box: it uses the information that certain
inputs induce partially overlapping control flow paths. By intersecting these paths, our technique
minimizes the constraints on the inputs within fewer program runs.

The contributions presented in this chapter are:

* We adapt the established technique of dynamic test generation, based on combined concrete
and symbolic execution [27, 67, 133], to the domain of PHP web applications. This involved
the following innovations: (i) using an HTML verifier as an oracle, (ii) inferring input param-
eters that are not manifested in the source code, (iii) dealing with datatypes and operations
specific to the PHP language, (iv) tracking the use of persistent state and how input flows
through it, and (v) simulating user input for interactive applications.

* We created a tool, Apollo, that implements the technique for PHP.

* We evaluated our tool by applying it to 6 real web applications and comparing the results
with other tools. We show that dynamic test generation can be effective when adapted to
the domain of web applications written in PHP: Apollo identified 302 faults while achieving
line coverage of 50.2%.

* We present a detailed classification of the faults found by Apollo.

The remainder of this chapter is organized as follows. Section 3.1 presents an overview of
PHP, introduces our running example, and discusses classes of failures in PHP web applications.
Section 3.2 presents a simplified version of the algorithm and illustrates it on the example program.
Section 3.3 presents the complete algorithm handling stateful execution with the simulation of
interactive user inputs. Section 3.4 discusses our Apollo implementation. Section 3.5 presents our
experimental evaluation of Apollo on open-source web applications. Section 3.6 gives an overview
of related work, and Section 3.7 presents the chapter conclusions.



3.1 Context: PHP Web Applications

3.1.1 The PHP Scripting Language

This section briefly reviews the PHP scripting language, focusing on those aspects of PHP that
differ from mainstream languages. Readers familiar with PHP may skip to the discussion of the
running example in Section 3.1.2.

PHP is widely used for implementing web applications, in part due to its rich library support
for network interaction, HTTP processing, and database access. The input to a PHP program is a
map from strings to strings. Each key is a parameter that the program can read, write, or check
if it is set. The string value corresponding to a key may be interpreted as a numerical value if
appropriate. The output of a PHP web application is an HTML document that can be presented in
a web browser.

PHP is object-oriented, in the sense that it has classes, interfaces, and dynamically dispatched
methods with syntax and semantics similar to that of Java. PHP also has features of scripting
languages, such as dynamic typing and an eval construct that interprets and executes a string value
that was computed at run-time as a code fragment. For example, the following code fragment:

$code = "$x = 3;"; $x = 7; eval($code); echo $x;

prints the value 3 (names of PHP variables start with the $ character). Other examples of the
dynamic nature of PHP are a predicate that checks whether a variable has been defined, and class
and function definitions that are statements that may occur anywhere.

The code in Figure 3-1 illustrates the flavor of PHP. The require statement that used on
line 11 of Figure 3-1 resembles the C #include directive in the sense that it includes the code
from another source file. However, the C version is a pre-processor directive with a constant
argument, whereas the PHP version is an ordinary statement in which the file name is computed
at run-time. There are many similar cases where run-time values are used, e.g., switch labels
need not be constant. This degree of flexibility is prized by PHP developers for enabling rapid
application prototyping and development. However, the flexibility can make the overall structure
of program hard to discern and it can make programs prone to code quality problems.

3.1.2 PHP Example

The PHP program of Figure 3-1 is a simplified version of SchoolMate 6 , which allows school ad-
ministrators to manage classes and users, teachers to manage assignments and grades, and students
to access their information.

Lines 6-7 read the global parameter page that is supplied to the program in the URL, e.g.,
http://www.mywebsite. com/index.php?page=1. Line 10 examines the value of the global parameter
page2 to determine whether to evaluate file printReportCards.php.

Function validateLogin (lines 28-40) sets the global parameter page to the correct value
based on the identity of the user. This value is used in the switch statement on line 18, which
presents the login screen or one of the teacher/student screens.

6
http://sourceforge.net/projects/schoolmate



3.1.3 Failures in PHP Programs

Our technique targets two types of failures that can be automatically identified during the execution
of PHP web applications. First, execution failures may be caused by a missing included file, an
incorrect MySQL query, or by an uncaught exception. Such failures are easily identified as the PHP
interpreter generates an error message and halts execution. Less serious execution failures, such as
those caused by the use of deprecated language constructs, produce obtrusive error messages but
do not halt execution. Second, HTML failures involve situations in which the generated HTML
page is not syntactically correct according to an HTML validator. In the beginning of this chapter
we discussed several negative consequences of malformed HTML.

As an example, the program of Figure 3-1 contains three faults, which cause the following
failures when the program is executed:

1. Executing the program results in an execution failure: the file printReportCards.php ref-
erenced on line 11 is missing.

2. The program produces malformed HTML because the makefooter method is not executed
in certain situations, resulting in an unclosed HTML tag in the output. In particular, the de-
fault case of the switch statement on line 23 terminates program execution when the global
parameter page is not 0, 1, or 2 and when page is not written by function ValidateLogin.

3. The program produces malformed HTML when line 30 generates an illegal HTML tag j 2.

The first failure is similar to a failure that our tool found in one of the PHP applications we studied.
The second failure is caused by a fault that exists in the original code of the SchoolMate program.
The third failure is the result of a fault that was artificially inserted into the example for illustration.

3.2 Finding Failures in PHP Web Applications

Our technique for finding failures in PHP applications is a variation on an established dynamic
test generation technique [27,67,68, 133] sometimes referred to as concolic testing. For expository
purposes, we will present the algorithm in two steps. First, this section presents a simplified version
of the algorithm that does not simulate user inputs or keep track of persistent session state. We will
demonstrate this simplified algorithm on the example of Figure 3-1. Then, Section 3.3 presents
a generalized version of the algorithm that handles user input simulation and stateful executions,
and illustrates it on a more complex example.

The basic idea behind the technique is to execute an application on some initial input (e.g., an
arbitrarily or randomly-chosen input), and then on additional inputs obtained by solving constraints
derived from exercised control flow paths. We adapted this technique to PHP web applications as
follows:

* We extend the technique to consider failures other than execution failures by using an oracle
to determine whether or not program output is correct. In particular, we use an HTML validator to
determine whether the output is a well-formed HTML page.



* The PHP language contains constructs such as isset (checking whether a variable is de-
fined), isempty (checking whether a variable contains a value from a specific set), require (dy-
namic loading of additional code to be executed), header for redirection of execution, and several
others that require the generation of constraints that are absent in languages such as C or Java.

* PHP applications typically interact with a database and need appropriate values for user
authentication (i.e., user name and password). It is not possible to infer these values by either
static or dynamic analysis, or by randomly guessing. Therefore, our technique uses a pre-specified
set of values for database authentication. E.g., User=joe, Password="12345".

3.2.1 Algorithm

Figure 3-2 shows pseudo-code for our algorithm. The inputs to the algorithm are: a program P, an
oracle for the output 0, and an initial state of the environment So. The output of the algorithm is
a set of bug reports B for the program P, according to O. The report consists of a single failure,
defined by the error message and the set of statements that is related to the failure. In addition,
the report contains the set of all inputs under which the failure was exposed, and the set of all path
constraints that lead to the inputs exposing the failure.

The algorithm uses a queue of configurations. Each configuration is a pair of a path constraint
and an input. A path constraint is a conjunction of conditions on the program's input parameters.
The queue is initialized with the empty path constraint and the empty input (line 3). The program
is executed concretely on the input (line 6) and tested for failures by the oracle (line 7). Then, the
path constraint and input for each detected failure are merged into the corresponding bug report
(lines 7-8).

Next, the algorithm uses a subroutine, newConfigs, to find new configurations. First, the pro-
gram is executed symbolically on the same input (line 15). The result of symbolic execution is a
path constraint, A= 1 ci, that is satisfied by the path that was just executed from entry to exit of the
whole program. The subroutine then creates new inputs by solving modified versions of the path
constraint (lines 16-20), as follows. For each prefix of the path constraint, the algorithm negates
the last conjunct (line 17). A solution, if it exists, to such an alternative path constraint corresponds
to an input that will execute the program along a prefix of the original execution path, and then
take the opposite branch, presumably covering new code. The algorithm uses a constraint solver
to find a concrete input for each path constraint (line 18).

3.2.2 Example

Let us now consider how the algorithm of Figure 3-2 exposes the third fault in the example program
of Figure 3-1.
Iteration 1. The first input to the program is the empty input, which is the result of solving the
empty path constraint. During the execution of the program on the empty input, the condition on
line 6 evaluates to true, and page is set to 0. The condition on line 10 evaluates to false. The
condition on line 16 evaluates to false because parameter login is not defined. The switch
statement on line 18 selects the case on line 20 because page has the value of 0. Execution



parameters: Program P, oracle O, Initial state So
result : Bug reports B;
B : setOf((failure, setOf(pathConstraint), setOf(input)))

1 := 0;
2 toExplore := emptyQueue();

3 enqueue(toExplore, (emptyPathConstraintO, emptyInput));
4 while not empty(toExplore) and not timeExpired() do
5 (pathConstraint, input) := dequeue(toExplore);
6 output := executeConcrete(So, P, input);
7 foreachf in getFailures(O, output) do
8 merge (f, pathConstraint, input) into B;
9 newConfigs := getConfigs(input);

10 foreach (pathConstrainti, inputi) e newConfigs do
11 enqueue(toExplore, (pathConstrainti, inputi));
12 return B;

13 Subroutine getConfigs(input):

14 configs := 0;
15 c1 A ... A cn := executeSymbolic(So, P, input);
16 foreach i = 1,...,n do
17 newPC := C1 A ... A ci- 1 A -ci;

18 input := solve(newPC);

19 if input # I then
20o enqueue(configs, (newPC, input));
21 return configs;

Figure 3-2: The failure detection algorithm. The output of the algorithm is a set of bug reports.
Each bug report contains a failure, a set of path constraints exposing the failure, and a set of input
exposing the failure. The solve auxiliary function uses the constraint solver to find an input satis-
fying the path constraint, or returns I if no satisfying input exists. The merge auxiliary function
merges the pair of pathConstraint and input for an already detected failure into the bug report for
that failure.



terminates on line 26. The HTML verifier determines that the output is legal, and executeSymbolic
produces the following path constraint:

NotSet(page) A page2 # 1337 A login # 1 (I)

The algorithm now enters the foreach loop on line 16 of Figure 3-2, and starts generating new path
conditions by systematically traversing subsequences of the above path constraint, and negating the
last conjunct. Hence, from (I), the algorithm derives the following three path constraints:

NotSet(page) A page2 / 1337 A login = 1 (II)
NotSet(page) A page2 = 1337 (III)
Set(page) (IV)

Iteration 2. For path constraint (II), the constraint solver may find the following input (the solver
is free to select any value for page2, other than 1337): page2 <-- , login <- 1.

When the program is executed with this input, the condition of the if-statement on line 16
evaluates to true, resulting in a call to the validateLogin method. Then, the condition of the if-
statement on line 29 evaluates to true because the username parameter is not set, resulting in the
generation of output containing an incorrect HTML tag j 2 on line 30. When the HTML validator
checks the page, the failure is discovered and a bug report is created and added to the output set of
bug reports.

3.2.3 Path Constraint Minimization

The failure detection algorithm (Figure 3-2) returns bug reports. Each bug report contains a set
of path constraints, and a set of inputs exposing the failure. Previous dynamic test generation
tools [27, 67, 133] presented the whole input (i.e., many (inputParameter, value) pairs) to the user
without an indication of the subset of the input responsible for the failure. As a postmortem
phase, our minimizing algorithm attempts to find a shorter path constraint for a given bug report
(Figure 3-3). This eliminates irrelevant constraints, and a solution for a shorter path constraint is
often a smaller input.

For a given bug report b, the algorithm first intersects all the path constraints exposing b.failure
(line 1). The minimizer systematically removes one conjunct at a time (lines 3-6). If one of
these shorter path constraints does not expose b.failure, then the removed conjunct is required for
exposing b.failure. The set of all such required conjuncts determines the minimized path constraint.
From the minimized path constraint, the algorithm produces a concrete input that exposes the
failure.

The algorithm in Figure 3-3 does not guarantee that the returned path constraint is the shortest
possible that exposes the failure. However, the algorithm is simple, fast, and effective in practice
(see Section 3.5.3.2).

Our minimizer differs from input minimization techniques, such as delta debugging [34, 162],
in that our algorithm operates on the path constraint that exposes the failure, and not the input. A
constraint concisely describes a class of inputs (e.g., the constraint page2 # 1337 describes all



parameters: Program 9P, oracle 0, bug report b
result : Short path constraint that exposes b.failure

1 cl A ... A cn := intersect(b.pathConstraints);
2 pc := true;
3 foreach i = 1,..., n do
4 pci := c1 A ... ci- 1 A ci+ 1 A ... cn;
5 if !exposesFailures(pci) then
6 pc := pc A ci;
7 if exposesFailures(pc) then
8 return pc;
9 return shortest(b.pathConstraints);

lo Subroutine exposesFailure(pc):
11 inputpc := solve(pc);

12 if inputpc IL then
13 outputpc := executeConcrete('P, inputpc);
14 failurespc := getFailures(O, outputpc);
15 return b.failure Efailurespc;
16 returnfalse;

Figure 3-3: The path constraint minimization algorithm. The method intersect returns the set of
conjuncts that are present in all given path constraints, and the method shortest returns the path
constraint with fewest conjuncts. The other auxiliary functions are the same as in Figure 3-2.

inputs different than 1337). Since a concrete input is an instantiation of a constraint, it is more
effective to reason about input properties in terms of their constraints.

Each failure might be encountered along several execution paths that might partially overlap.
Without any information about the properties of the inputs, delta debugging minimizes only a
single input at a time, while our algorithm handles multiple path constraints that lead to a failure.

3.2.4 Minimization Example

The malformed HTML failure described in Section 3.2.2 can be triggered along different execution
paths. For example, both of the following path constraints lead to inputs that expose the failure.
Path constraint (a) is the same as (II) in Section 3.2.2.

NotSet(page) A page2 # 1337 A login = 1 (a)
Set(page) A page = 0 A page2 # 1337 A login = 1 (b)

First, the minimizer computes the intersection of the path constraints (line 1). The intersection
is:

page2 # 1337 A login= 1 (an b)



Then, the minimizer creates two shorter path constraints by removing each of the two conjuncts
in turn. First, the minimizer creates path constraint login = 1. This path constraint corresponds
to an input that reproduces the failure, namely login <- 1. The minimizer determines this by
executing the program on the input (line 14 in Figure 3-3). Second, the minimizer creates path
constraint page2 # 1337. This path constraint does not correspond to an input that exposes the
failure. Thus, the minimizer concludes that the condition login = 1, that was removed from (afnb)
to form the second path constraint, is required. In this example, the minimizer returns login = 1.
The result is the minimal path constraint that describes the minimal failure-inducing input, namely
login <- 1.

3.3 Combined Concrete and Symbolic Execution with Explicit-
State Model Checking

A typical PHP web application is a client-server application in which data and control flows inter-
actively between a server that runs PHP scripts and a client, which is usually a web browser. The
PHP scripts that run on the server generate HTML that includes interactive user input widgets such
as buttons and menu items that, when selected by the user, invoke other PHP scripts. When these
other PHP scripts are invoked, they are passed a combination of user input and constant values
taken from the generated HTML. Modeling such user input is important, because coverage of the
application will typically remain very low otherwise.

In Section 3.2, we described how to find failures in PHP web applications by adapting an
existing test generation approach to consider language constructs that are specific to PHP, by using
an oracle to validate the output, and by supporting database interaction. However, we did not yet
supply a solution for handling user input options that are created dynamically by a web application,
which includes keeping track of parameters that are transferred from one script to the next--either
by persisting them in the environment, or by sending them as part of the call.

To handle this problem, Apollo implements a form of explicit-state software model checking.
That is, Apollo systematically explores the state space of the system, i.e., the program under test.
The algorithm in Section 3.2 always restarts the execution from the same initial state, and discards
the state reached at the end of each execution. Thus, the algorithm reaches only 1-level deep into
the application, where each level corresponds to a cycle of: a PHP script that generates an HTML
form that the user interacts with to invoke the next PHP script. In contrast, the algorithm presented
in this section remembers and restores the state between executions of PHP scripts. This technique,
known as state matching, is widely known in model checking [78, 149] and implemented in tools
such as SPIN [47] and JavaPathFinder [74]. To our knowledge, we are the first to implement state
matching in the context of web applications and PHP.

3.3.1 Interactive User Simulation Example

Figure 3-4 shows an example of a PHP application that is designed to illustrate the particular



1 <html>
2 <head>Login</head>
3 <body>
4 <form name="login" action="exampleLogin.php">
5 <input type="text" name="user"/>
6 <input type="password" name="pw"/>
7 </form>
8 </body>

9 </html> (a) index.phpj

15 <HTML>
16 <?php
17 require( dirname(__FILENAME__).
18 '/includes/constants.php');
19

20 $user = $_REQUEST[ 'user' ];
21 $pw = $_REQUEST[ 'pw' ];
22

23 if (check_password($user, $pw) {
24 print "<HEAD>Login Successful</HEAD>\n";

0C 25

26 $_SESSION[ $userTag] = $user;
27 $_SESSION[ $pwTag ] = $pw;
28 ?>

29

30

31

32

33

34

35

36

37

38

39

40

41

42

<BODY>
<FORM action="view.php">

<INPUT TYPE="text" NAME="topic"/>
</FORM>

</BODY>
<?php

if ($user == 'admin') {
$_SESSION[ $typeTag ] = 'admin';

I
else (

print "<HEAD>Login Failed</HEAD>\n";

?>

</HTML>
(c) login.php

<?php
userTag = 'user'
pwTag = 'pw';
typeTag = 'type';

?>

(b) constants.php

43 <HTML>
44 <HEAD>Topic View</HEAD>
45 <?php
46 print "<BODY>\n";

47 if(check_password($SESSIONE$userTag], $_SESSION[$pwTag]) {
48 require( dirname(__FILENAME_). '/includes/constants.php');
49

50 $type = $_SESSION[ $typeTag ];
51 $topic = $_REQUEST[ 'topic' 1;
52

53 if ($type == 'admin') {
54 print "<H1>Admin ";
55 } else {
56 print "<Hl>Normal";

58 print "View of $topic</Hl>\n";
59

60 /* code to print topic view... */
61

62 if ($type == 'admin') {
63 print "<H2>Administrative Details\n";
64 /* code to print admin details... */
65 }
66 } else {
67 print "Please Log in\n";
68 }
69 print "</BODY>\n";

</HTML> S(d) view.php

Figure 3-4: Example of a PHP web application.



complexities of finding faults in an interactive web applications. In particular, the figure shows:
an index.php top-level script that contains static HTML in Figure 3-4(a), a generic login script
login.php in Figure 3-4(c), and a skeleton of a data display script view.php in Figure 3-4(d). The
PHP scripts in Figure 3-4 rely on a shared include file constants.php that defines some standard
constants, which is shown in in Figure 3-4(b). Note that the code in Figure 3-4 is an ad-hoc mixture
of PHP statements and HTML fragments. The PHP code is delimited by <?php and ? > tokens
(For instance lines 45 and 70 in Figure 3-4(c)). The use of HTML in the middle of a PHP indicates
that HTML is generated as if it were the argument of a print statement. The dirname function-
which returns the directory component of a filename-is used in the require statements, as an
example of including a file whose name is computed at run-time.

These PHP scripts are part of the client-server work flow in a web application: the user first
sees the index.php page of Figure 3-4(a) and enters credentials. The user-input credentials are pro-
cessed by the script in Figure 3-4(c), which generates a response page that allows the user to enter
further input-a topic-that in turn entails further processing by the script in Figure 3-4(d). Note
that the user name and password that are entered by the user during the execution of login.php are
stored in special locations $_SESSION[ $userTag ] and $_SESSION[ $pwTag ], respectively. More-
over, if the user is the administrator, this fact is recorded similarly, in $_SESSION[ $typeTag ].
These locations illustrate how PHP handles session state, which is data that persists from one
page to another, typically for a particular interaction by a particular user. Thus, the updates to
_SESSION in Figure 3-4(c) will be seen (as the SESSION information is saved and read locally on
the server) by the code in Figure 3-4(d) when the user follows the link to view.php in the HTML
page that is returned by login.php. The view.php script uses this session information to verify
the username/password in line 47.

Our example program contains an error in the HTML produced for the administrative details:
the H2 tag that is opened on line 63 of Figure 3-4(d) is not closed. While this fault itself is trivial,
finding it is not. Assume that testing starts (as an ordinary user would) by entering credentials to the
script in Figure 3-4(c). A tester must then discover that setting $user to the value 'admin' results
in the selection of a different branch that records the user type 'admin' in the session state (see
lines 35-37 in login.php). After that, a tester would have to enter a topic in the form generated by
the login script, and would then proceed to Figure 3-4(d) with the appropriate session state, which
will finally generate HTML exhibiting the fault as is shown in Figure 3-5(a). Thus, finding the
fault requires a careful selection of inputs to a series of interactive scripts, as well as making sure
that updates to the session state during the execution of these scripts are preserved (i.e., making
sure that the execution of the different script happen during the same session).

3.3.2 Algorithm

Figure 3-6 shows pseudo-code for the algorithm, which extends the algorithm in Figure 3-2 with
explicit-state model checking to handle the complexity of simulating user inputs. The algorithm
tracks the state of the environment, and automatically discovers additional configurations based on
an analysis of the output for available user options. In particular, the algorithm (i) tracks changes to
the state of the environment (i.e., session state, cookies, and the database) and (ii) performs an "on
the fly" analysis of the output produced by the program to determine what user options it contains,



1 <HTML>
2 <HEAD>Topic View</HEAD> HTML line PHP lines in 3-4(d)

1 43
3 <BODY> 2 44
4 <H1>Admin View of A topic</H1> 3 46

4 54, 585 <H2>Administrative Details 54,58
5 63
6 696 </BODY> 7 71

7 </HTML>

(a) HTML output (b) output mapping

Error at line 6, character 7: end tag for "H2" omitted; possible causes include a missing
end tag, improper nesting of elements, or use of an element where it is not allowed
Line 5, character 1: start tag was here

(c) Output of WDG Validator

Figure 3-5: (a) HTML produced by the script of Figure 3-4(d). (b) Output mapping constructed
during execution. (c) Part of output of WDG Validator on the HTML of Figure 3-5(a).

with their associated PHP scripts. By determining the state of the environment as it exists when an
HTML page is produced, the algorithm can determine the environment in which additional scripts
are executed as a result of user interaction. This is important because a script is much more likely
to perform complex behavior when executed in the correct context (environment). For example, if
the web application does not record in the environment that a user is logged in, most subsequent
calls will terminate quickly (e.g., when the condition in line 47 of Figure 3-4(d) is false) and will
not present useful information. For simplicity, the algorithm implicitly handles the fact that there
are possibly multiple entry points into a PHP program. Thus, an input will contain the script to
execute in addition to the values of the parameters. For instance, the first call might be to index.php
script, while subsequent calls can execute other scripts.

There are four differences (underlined in the figure) with the simplified algorithm that was
previously shown in Figure 3-2.

1. A configuration contains an explicit state of the environment (before the only state that was
used was the initial state So) in addition to the path constraint and the input (line 3).

2. Before the program is executed, the algorithm (method executeConcrete) will restore the
environment to the state given in the configuration (line 7), and will return the new state of
the environment after the execution.

3. When the getConfigs subroutine is executed to find new configurations, it analyzes the out-
put (the actual mechanism of the analysis is explained and demonstrated in Section 3.4.3) to
find new possible transitions from the new environment state (lines 24-26). Each transition
is expressed as a pair of a path constraint and an input.

4. The algorithm uses a set of configurations that are already in the queue (line 14) and it
performs state matching, in order to only explore new configurations (line 11).



parameters: Program 'P, oracle O, Initial state So
result : Bug reports B;
B : setOf((failure, setOf(pathConstraint), setOf(input)))

1 B := 0;
2 toExplore := emptyQueue();

3 enqueue(toExplore, (emptyPC(), emptylnputO, So));

4 visited := {(emptyPathConstrainto, emptylnputO, So));

5 while not empty(toExplore) and not timeExpired() do

6 (pathConstraint, input, Sstart) := dequeue(toExplore);

7 (output, Send) := executeConcrete(Sstart, 4P, input);

s foreachf in getFailures(O, output) do
9 merge (f,pathConstraint, input) into B;

10 newConfigs := getConfigs(input, output, Sstart, Send);

11 newConfigs := newConfigs - visited;

12 foreach (pathConstrainti, inputi, Si) e newConfigs do

13 enqueue(toExplore, (pathConstrainti, inputi, Si));

14 visited := visited U (Si, inputi);

15 return 9;

16 Subroutine getConfigs(input, output, Sstart, Send):

17 configs := 0;

18 cl A ... A Cn := executeSymbolic(Sstart, P, input);

19 foreach i = 1,...,n do
20 newPC := c l A ... A ci- 1 A -iCi;

21 input := solve(pathConstraint);
22 if input IL then
23 enqueue(configs, (newPC, input, Sstart));

24 foreach (newInputi, newPCi) E analyzeOutput(output) do

25 if newlnput - I then

26 configs gconfis U (newPCi, newInputi, Send);

27 return configs;

Figure 3-6: The failure detection algorithm. The output of the algorithm is a set of bug reports,
each reports a failure and the set of tests exposing that failure. The solve auxiliary function uses the
constraint solver to find an input satisfying the path constraint, or returns L if no satisfying input
exists. The merge auxiliary function merges the pair of pathConstraint and input for an already
detected failure into the bug report for that failure. The analyzeOutput auxiliary function performs
an analysis of the output to extract possible transitions from the current environment state.



3.3.3 Example

We will now illustrate the algorithm of Figure 3-6 using the example application of Figure 3-4. The
inputs to the algorithm are: P is the code from Figure 3-4, the initial state of the environment is
empty, the first script to execute is the script in Figure 3-4(a), and 0 is the WDG HTML validator7 .
The algorithm begins on line 3 by initializing the work queue with one item: an empty input to the
script of Figure 3-4(a) with an empty path constraint and an empty initial environment.

iteration 1. The first iteration of the outer loop (lines 5-14) removes that item from the queue
(line 6), restores the empty initial state, and executes the script (line 7).

No failures are observed. The call to executeSymbolic on line 18 returns an empty path con-
straint, so the function analyzeOutput on line 24 is executed next, and returns one user option;
(login.php, 0, 0) for executing login.php with no input, and the empty state. This configuration
is added to the queue (line 13) since it was not seen before.

iteration 2-5. The next iteration of the top-level loop dequeues the new work item, and executes
login.php with empty input, and empty state. No failures are found. The call to executeSymbolic
in line 18 returns a path constraint user # admin A user # reg, indicating that the call to
check_password on line 23 in Figure 3-4(c) returned false8 . Given this, the loop at lines 19-
23 will generate several new work items for the same script with the following path constraints:
user 4 adminAuser = reg, and user = admin which are obtained by negating the previous path
constraint. The loop on lines 24-26 is not entered, because no user input options are found. After
several similar iterations, two inputs are discovered: user = admin A pw = admin, and user =
reg A pw = reg. These corresponds to alternate control flows in which the checkpassword test
succeeds.

iteration 6-7. The next iteration of the top-level loop dequeues an item. Using this item, the call
to check_password will succeed (assume it selected user = reg...). Once again, no failures are
observed, but now the session state with user and pw set is recorded at line 7. Also, this time
analyzeOutput (line 24) finds the link to the script in Figure 3-4(d), and so the loop at lines 24-26
adds one item to the queue, executing view.php with the current session state.

The next iteration of the top-level loop dequeues one work item. Assume that it takes the last
one described above. Thus, it executes the script in Figure 3-4(d) with a session that defines user
and pw but not type. Hence, it produces an execution with no errors.

iteration 8-9. The next loop iteration takes that last work item, containing a user and password
pair for which the call to check_password succeeds, with the user name as 'admin'. Once again,
no failures occur, but now the session state with user, pw and type set is recorded at line 7. This
time, there are no new inputs to be derived from the path constraint, since all prefixes have been
covered already. Once again, parsing the output finds the link to the script in Figure 3-4(d) and
adds a work item to the queue, but with a different session state (in this case, the session state also

7http://htmlhelp.com/tools/validator/
8For simplicity, we omit the details of this function. It compares the user name and password to some constants

'admin' and 'reg'.



includes a value for type). The resulting execution of the script in Figure 3-4(d) with the session
state that includes type results in an HTML failure.

3.4 Implementation

Apollo Architecture

4-

40[-
C

Figure 3-7: The architecture of Apollo.

We created a tool called Apollo that implements our technique for PHP. Apollo consists of
three major components, Executor, Bug Finder, and Input Generator illustrated in Figure 3-
7. This section first provides a high-level overview of the components and then discusses the
pragmatics of the implementation.

The inputs to Apollo are the program under test and an initial value for the environment. The
environment will usually consist of a database with some values, and additional information about
username/password pairs for the database. Attempting to retrieve information from the database
using randomly chosen values for username/password is unlikely to be successful. Symbolic exe-
cution is equally helpless without the database manager because reversing cryptographic functions

ZA



is beyond the state-of-the-art for constraint solvers.
The Executor is responsible for executing a PHP script with a given input in a given state. The

executor contains two sub-components:

* The Shadow Interpreter is a PHP interpreter that we have modified to propagate and record
path constraints and positional information associated with output. This positional informa-
tion is used to determine which failures are likely to be symptoms of the same fault.

* The State Manager restores the given state of the environment (database, session, cookies)
before the execution, and stores the new environment after the execution.

The Bug Finder uses an oracle to find HTML failures, stores the all bug reports, and finds the
minimal conditions on the input parameters for each bug report. The Bug Finder has the following
sub-components:

* The Oracle finds HTML failures in the output of the program.

* The Bug Report Repository stores all bug reports found during all executions.

* The Input Minimizer finds, for a given bug report, the smallest path constraint on the input
parameters that results in inputs inducing the same failure as in the report.

The Input Generator implements the algorithm described in Figure 3-6. The Input Generator
contains the following sub-components:

* The UI Option Analyzer analyzes the HTML output of each execution to convert the inter-
active user options into new inputs to execute.

* The Symbolic Driver generates new path constraints from the constraints found during the
execution.

* The Constraint Solver computes an assignment of values to input parameters that satisfies
a given path constraint.

* The Value Generator generates values for parameters that are not otherwise constrained,
using a combination of random value generation and constant values mined from the program
source code.

3.4.1 Executor

We modified the Zend PHP interpreter 5.2.29 to produce symbolic path constraints for the executed
program, using the "shadow interpreter" approach [42]. The shadow interpreter performs the regu-
lar (concrete) program execution using the concrete values, and simultaneously performs symbolic
execution. Creating the shadow interpreter required five alterations to the PHP run-time:

9
http://www.php.net/



1. Associating Symbolic Parameters with Values

A symbolic variable may be associated with each value. Values derived from the input-
that is, either read directly as input or computed from input values-have symbolic vari-
ables associated with them. Values not derived from the input do not. These associations
arise when a value is read from one of the special arrays _POST, _GET, and REQUEST,
which store parameters supplied to the PHP program. For example, executing the state-
ment $x = $_GET["paraml"] results in associating the value read from the global parameter
paraml and bound to parameter x with the symbolic variable paraml. Values maintain their
associations through assignments and function calls (thus, the interpreter performs symbolic
execution at the inter-procedural level). Importantly, during program execution, the concrete
values remain, and the shadow interpreter does not influence execution.

Unlike other projects that perform concrete and symbolic execution [27, 67, 68, 133], our
interpreter does not associate complex symbolic expressions with all run-time values, but
only symbolic variables, which exist only for input-derived values. This design keeps the
constraint solver simple and reduces the performance overhead. As our results (Section 3.5)
indicate, this lightweight approach is sufficient for the analyzed PHP programs.

2. Storing Constraints at Branch Points

At branching points (i.e., value comparisons) that involve values associated with symbolic
variables, the interpreter extends the initially empty path constraint with a conjunct that
corresponds to the branch actually taken in the execution. For example, if the program
executes a statement if($name == "John") and this condition succeeds, where $name is
associated with the symbolic variable username, then the algorithm appends the conjunct
username = "John" to the path constraint.

3. Handling PHP Native Functions

Our modified interpreter records conditions for PHP-specific comparison operations, such as
isset and empty, which can be applied to any variable. Operation isset returns a boolean
value that indicates whether or not a value different from NULL was supplied for a variable.
The empty operator returns true when applied to: the empty string, 0, "0", NULL, false,
or an empty array. The interpreter records the use of isset on values with an associated
symbolic variable, and on uninitialized parameters.

The isset comparison creates either the NotSet or the Set condition. The constraint solver
chooses an arbitrary value for a parameter p if the only condition for p is Set (p). Otherwise,
it will also take into account other conditions. The NotSet condition is used only in checking
the feasibility of a path constraint. A path constraint with the NotSet (p) condition is feasible
only if it does not contain any other conditions on p. The empty comparison creates equality
or inequality conditions between the parameter and the values that are considered empty by
PHP.

4. Propagating Inputs through Sessions and Cookies



The use of session state allows a PHP application to store user-supplied information on the
server for retrieval by other scripts. We enhanced the PHP interpreter to record when input
parameters are stored in session state. This enables Apollo to track constraints on input
parameters in all scripts that use them.

5. Web Server Integration

Dynamic web applications often depend on information supplied by a web-server (such as
Apache), and some PHP constructs are simply ignored by the command line interpreter (e.g.,
header). In order to allow Apollo to analyze more PHP code, Apollo supports execution
through the Apache web-server in addition to the stand-alone command line executor. A
developer can use Apollo to silently analyze the execution and record any failure found
while manually using the subject program on an Apache server.

The modified interpreter performs symbolic execution along with concrete execution, i.e., every
variable during program execution has a concrete value and may have additionally a symbolic
value. Only the concrete values influence the control flow during the program execution, while the
symbolic execution is only a "witness" that records, but does not influence, control flow decisions
at branching points. This design deals with exceptions naturally because exceptions do not disrupt
the symbolic-value mapping for variables.

Our approach to symbolic execution allows us to handle many PHP constructs that are problem-
atic in a purely static approach. For instance, for computed variable names (e.g., $x = ${$foo}),
any symbolic information associated with the value that is held by the variable named by foo will
be passed to x by the assignment'0 . In order to heuristically group HTML failures that may be
manifestations of the same fault, Apollo records the output statement (i.e., echo or print) that
generated each fragment of HTML output.

State Manager. PHP applications make use of persistent state such as the database, session
information, and cookies. The State Manager is in charge of (i) restoring the environment prior to
each execution, and (ii) storing the new environment after each execution.

3.4.2 Bug Finder

The bug finder is in charge of transforming the results of the executed inputs into bug reports.
Below is a detailed description of the components of the bug finder.

Bug Report Repository This repository stores the bug reports found in all executions. Each
time a failure is detected, the corresponding bug report (for all failures with the same characteris-
tics) is updated with the path constraint and the input inducing the failure. A failure is defined by
its characteristics, which include: the type of the failure (execution failure or HTML failure), the
corresponding message (PHP error/warning message for execution failures, and validator message
for HTML failures), and the PHP statement generating the problematic HTML fragments identi-
fied by the validator (for HTML failures), or the PHP statement involved in the PHP interpreter

10 0n the other hand, any data flow that passes outside PHP, such as via JavaScript code in the generated HTML,
will not be tracked by this approach.



error report (for execution failures). When the exploration is complete, each bug report contains
one failure characteristic, (error message and statement involved in the failure) and the sets of path
constraints and inputs exposing failures with the same characteristics.

Oracle. PHP web applications output HTML/XHTML. Therefore, in Apollo, we use as oracle
an HTML validator that returns syntactic (malformed) HTML failures found in a given document.
We experimented with both the offline WDG validator" and the online W3C markup validation
service' 2 . Both oracles identified the same HTML failures. Our experiments use the faster WDG
validator.

Input Minimizer. Apollo implements the algorithm described in Figure 3-3 to perform post-
mortem minimization of the path constraints. For each bug report, the minimizer executes the
program multiple times, with multiple inputs that satisfy different path constraints, and attempts
to find the shortest path constraint that results (executing the program with an input satisfying the
path constraint) in the same failure characteristics.

3.4.3 Input Generator

UI Option Analyzer
Many PHP web applications create interactive HTML pages that contain user interface ele-

ments such as buttons and menus that require user interaction to execute further parts of the ap-
plication. In such cases, pressing the button may result in the execution of additional PHP source
files. There are two challenges involved in dealing with such interactive applications. First, we
need to analyze the HTML output to find the referenced scripts, and the different values that can
be supplied as parameters. Second, Apollo needs to be able to follow input parameters through the
shared global information (database, the session, and the cookie mechanisms)

Apollo's approach to the above challenges is to simulate user interaction by analyzing the
dynamically created HTML output, and tracking the symbolic parameters through the environment
(with the exception of the database). Apollo automatically extracts the available user options from
the HTML output. Each option contains the script to execute, along with any parameters (with
default values if supplied) for that script. Apollo also analyzes recursive static HTML documents
that can be called from the dynamic HTML output, i.e. Apollo traverses hyperlinks in the generated
dynamic HTML that link to other HTML documents on the same site.

Since additional code on the client side (for instance, Java script) might be executed when a
button is pressed, this approach might induce false positive bug reports. In our experiments, this
limitation produced no false positive bug reports.

For example after analyzing the output of the program of Figure 3-8, the UI Option Analyzer
will return the following two options:

1. Script: "mainmenu.php"
PathConstraint: txtNick = "Admin" A Exist (pwdPassword)

11http://htmlhelp.com/tools/validator/offline
12
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<?php
echo "<h2>WebChess ".$Version." Login"</h2>;

<form method="post" action="mainmenu.php">
<p>

Nick: <input name="txtNick" type="text" size="15" default="admin"/>
<br />
Password: <input name="pwdPassword" type="password" size="15"/>

</P>
<p>

<input name="login" value="login" type="submit"/>
<input name="newAccount" value="New Account"
type="button" onClick="window.open('newuser.php', '_self')"/>

</p>

</form>

Figure 3-8: A simplified version of the main entry point (index.php) to a PHP program. The
HTML output of this program contains a form with two buttons. Pressing the login button exe-
cutes mainmenu.php and pressing the newAccount button will execute the newuser.php script.

2. Script: "newuser.php"
PathConstraint: 0

The Symbolic Driver implements the combined concrete and symbolic algorithm of Figure 3-
2. The driver has two main tasks: select which input to consider next (line 5), and create additional
inputs from each executed input (by negating conjuncts in the path constraint). To select which
input to consider next, the driver uses a coverage heuristic, similar to those used in EXE [27]
and SAGE [68]. Each conjunct in the path constraint knows the branch that created the conjunct,
and the driver keeps track of all branches previously executed and favors inputs created from path
constraints that contain un-executed branches.

To avoid redundant exploration of similar executions, Apollo performs state matching (per-
formed implicitly in Line 11 of Figure 3-6) by not adding already-explored transitions.

Constraint Solver. The interpreter implements a lightweight symbolic execution, in which the
only constraints are equality and inequality with constants. Apollo transforms path constraints into
integer constraints in a straightforward way, and uses choco 13 to solve them.

This approach still allows us to handle values of the standard types (integer, string), and is
straightforward because the only constraints are equality and inequality 4 .

In cases where parameters are unconstrained, Apollo uses a combination of values that are
randomly generated and values that are obtained by mining the program text for constants (in
particular, constants used in comparison expressions).

13http ://choco- solver.net/index.php?title=Main-Page
14Floating-point values can be handled in the same way, though none of the examined programs required it.



program version #files total LOC PHP LOC #downloads
faqforge 1.3.2 19 1,712 734 14,164
webchess 0.9.0 24 4,718 2,226 32,352
schoolmate 1.5.4 63 8,181 4,263 4,466
phpsysinfo 2.5.3 73 16,634 7,745 492,217
timeclock 1.0.3 62 20,792 13,879 23,708

phpBB2 2.0.21 78 34,987 16,993 18,668,112

Figure 3-9: Characteristics of subject programs. The #files column lists the number of .php and
.inc files in the program. The total LOC column lists the total number of lines in the program
files. The PHP LOC column lists the number of lines that contain executable PHP code. The
#downloads column lists the number of downloads from http : //sourceforge.net.

3.5 Evaluation

We experimentally measured the effectiveness of Apollo by using it to find faults in PHP web
applications. We designed experiments to answer the following research questions:

Q1. How many faults can Apollo find, and of what varieties?

Q2. How effective is the fault detection technique of Apollo compared to alternative approaches
in terms of the number and severity of discovered faults and the line coverage achieved?

Q3. How effective is our minimization technique in reducing the size of input parameter con-
straints and failure-inducing inputs?

For the evaluation, we selected 6 open-source PHP programs from http://sourceforge.net
(see Figure 3-9):

* faqforge: tool for creating and managing documents.

* webchess: online chess game.

* schoolmate: PHP/MySQL solution for administering elementary, middle, and high schools.

* phpsysinfo: displays system information, e.g., uptime, CPU, memory, etc.

* timeclock is a web-based timeclock system.

* phpBB2 is a discussion forum.

3.5.1 Generation Strategies

We use the following test input generation strategies in the remainder of this section:

* Apollo generates test inputs using the technique described in Section 3.2.



#inputs % line execution HTML Total
program strategy generated coverage crash error warning error warning faults

Rand 1461 19.2 0 0 0 10 1 11
Apollo 717 92.4 0 9 0 46 19 74
Rand 1805 5.9 1 13 2 3 0 19webchess
Apollo 557 42.0 1 20 2 7 0 35
Rand 1396 8.3 1 0 0 18 0 19schoolmate
Apollo 724 64.9 2 21 9 58 0 100
Rand 406 21.3 0 5 3 2 0 10
Apollo 143 56.2 0 5 4 2 0 11
Rand 928 3.2 0 1 1 29 1 32
Apollo 789 14.1 0 1 1 64 1 67

phpbb2 Rand 2497 11.4 0 0 3 1 0 4
Apollo 649 31.7 0 0 5 21 0 26
Rand 8493 11.6 2 19 9 63 2 95
Apollo 3579 50.2 3 56 21 198 20 302

Figure 3-10: Experimental results for 10-minute test generation runs. The table presents results
for each subject program, and each strategy, separately. The #inputs column presents the number
of inputs that each strategy created in the given time budget. The coverage column lists the line
coverage achieved by the generated inputs. The execution crashes, errors, warnings and HTML
errors, warnings columns list the number of faults in the respective categories. The Total faults
columns sums up the number of discovered faults.

* Randomized is an approach similar to the one proposed by Halfond and Orso [72] for
JavaScript. The test input generation strategy generates test inputs by giving random val-
ues to parameters. The values are chosen from constant values that appear textually in the
program source and from default values. A difficulty is that the parameters' names and types
are not immediately clear from the source code. The randomized strategy infers the param-
eters' names and types from dynamic traces-any variable for which the user can supply a
value, is classified as a parameter.

3.5.2 Methodology

To answer the first research question (Q1) we applied Apollo to 6 subject programs and we classi-
fied the discovered failures into five groups based on their different failure characteristics:

* execution crash: the PHP interpreter terminates with an exception.

* execution error: the PHP interpreter emits an error message that is visible in the generated
HTML.

* execution warning: the PHP interpreter emits an error message that is invisible in the gen-
erated HTML.

* HTML error: the program generates HTML for which the validator produces an error
report.



* HTML warning: the program generates HTML for which the validator produces a warning
report.

This classification is a refinement of the one presented in Section 3.1.3.
To answer the second research question (Q2) we compared our technique to two other ap-

proaches. We compared both the coverage achieved and the number of faults found with the
Randomized generation strategy. Coverage was measured using the line coverage metric, i.e., the
ratio of the number of executed lines to the total number of lines with executable PHP code in each
application. We ran each test input generation strategy for 10 minutes on each subject program.
This time limit was chosen arbitrarily, but it allows each strategy to generate hundreds of inputs
and we have no reason to believe that the results would be materially affected by a different time
limit. This time budget includes all experimental tasks, i.e., program execution, harvesting of
constant values from program source, test generation, constraint solving (where applicable), out-
put validation via an oracle, and line coverage measurement. To avoid bias, we ran both strategies
inside the same experimental harness. This includes the Database Manager (Section 3.4), which
supplies user names and passwords for database access. For our experiments, we use the WDG
offline HTML validator, version 1.2.2.

We also compared Apollo's results to the results reported by Minamide's static analysis [99]
on four subject programs (Section 3.5.3.1 presents the results).

To answer the third research question, about the effectiveness of the input minimization, we
performed the following experiments. Recall that several execution paths and inputs may expose
the same failure. Our input minimization algorithm attempts to produce the shortest possible input
that exposes each failure. The inputs to the minimizer are the failure found by the algorithm in
Figure 3-6 along with all the execution paths that expose each failure.

3.5.3 Results

Figure 3-10 tabulates the faults (we manually inspected most of the reported failures and, to the
best of our knowledge, all reported faults are counted only once). and line coverage results of
running the two test input generation strategies on the subject programs. The Apollo strategy
found 302 faults in the subject applications, versus only 95 faults for Randomized. Moreover, the
Apollo test generation strategy achieved an average line coverage of 50.2%, versus only 11.6%
for Randomized.

The coverage of phpbb2 and timeclock is relatively small as the output of these applications
contains client-side scripts written in JavaScript which Apollo currently does not analyze.

Figures 3-11 and 3-12 classify the faults reported by Apollo. The execution errors (Figure 3-
11) are dominated by database-related errors, where the application had difficulties accessing the
database, resulting in error messages such as (1) "supplied argument is not a valid MySQL result
resource" and (2) "Unable to jump to row 0 on MySQL result". The two SQL-related error mes-
sages quoted above occurred in faqforge (9 cases of error 1) and webchess (19 cases of error 1 and
1 case of error 2), schoolmate (20 cases of error 1 and 9 cases of error 2), timeclock (1 case of
error 1), and phpbb2 (1 case of error 1).



Fault Category Faults Percentage
Malformed SQL 60 71.4
Array index out of bound 5 6.0
Resource used as offset 4 4.8
Failed to open stream 4 4.8
File not found 2 2.6
Can't open connection 2 2.6
Assigning reference 2 2.6
Undefined function 1 1.2

Figure 3-11: Classification of the execution faults found by Apollo.

Fault Category Faults Percentage
Element not allowed 40 17.5
Missing end tag 39 17.1
Can't generate system identifier 25 11.0
No attribute 25 11.0
Unopened close tag 21 9.2
Missing attribute 21 9.2
character not allowed 11 4.8
End tag for unfinished element 11 4.8
Incorrect attribute 8 3.5
Element declaration 8 3.5

finished prematurely
Unfinished tag 7 3.1
Duplicate specification 4 1.8
Undefined element 4 1.8
Incorrect attribute value 4 1.8

Figure 3-12: Classification of the HTML faults found by Apollo.

These failures have the same cause: user-supplied input parameters are concatenated directly
into SQL query strings; leaving these parameters blank results in malformed SQL causing the
mysql_query functions to return an invalid result. The subject programs failed to check the re-
turn value of mysql_query, and simply assume that a valid result is returned. These faults are
indications of a potentially serious problem: the concatenation of user-supplied strings into SQL
queries makes these programs vulnerable to SQL injection attacks [45]. Thus our testing approach
indicates possible SQL injection vulnerabilities despite not being specifically designed to look for
security issues.

The three execution crashes (when the interpreter terminates with an exception) in Figure 3-10
happen when the interpreter tries to load files or functions that are missing. For instance, for some
inputs that can be supplied to the schoolmate subject program, the PHP interpreter attempts to load
a file that does not exist in the current distribution of schoolmate. Since schoolmate has 63 files,



and PHP is an interpreted language that allows the use of run-time string values when loading
files, it is hard to detect such faults. Apollo also discovers a severe fault in the webchess subject

program. This fault occurs when the interpreter tries to call to a function that is undefined since

the PHP file implementing it is not included due to a value supplied as one of the parameters.
The 228 malformed HTML faults can be divided into several categories (Figure 3-12), These

faults are mainly concerned with HTML elements that occur in the wrong place, HTML elements
with incorrect values, and with unclosed tags. The breakdown of HTML faults is similar across
the different PHP applications.

3.5.3.1 Comparison with Static Analysis

Minamide [99] presents a static analysis for discovering HTML malformedness faults in PHP ap-
plications. Minamide's analysis tool approximates the string output of a program with a context-
free grammar, then discovers unclosed tags by intersecting this grammar with the regular expres-
sion of matched pairs of delimiters (open/closed tags). By contrast, our analysis uses an HTML

validator and covers the entire language standard.
We performed our evaluation on a set of applications overlapping with Minamide's (webchess,

faqforge, schoolmate, timeclock). For these four overlapping subject programs, Apollo is both

more effective and more efficient than Minamide's tool. Apollo found 3.4 times as many HTML
validation faults as Minamide's tool (195 vs. 56). The faults found by Minamide's tool are not

publicly available so we do not know whether Apollo discovered all faults that Minamide's tool
discovered. However, Apollo found 80 execution faults, which are out of reach for Minamide's
tool. Apollo is also more scalable-on schoolmate, Apollo found 58 malformed HTML faults
in 10 minutes, while Minamide's tool found only 14 faults in 126 minutes. The considerably longer
running time of Minamide's tool is due to the construction of large automata and to the expensive
algorithm for checking disjointness between regular expressions and context-free languages.

3.5.3.2 Path Constraint Minimization

We measure the effectiveness of the minimization algorithm of Section 3.2.3 via the reduction
ratio between the size of the shortest original (un-minimized) path constraint (and input) and the
minimized path constraint (and input).

Figure 3-13 tabulates the results. The results show that our input minimization technique ef-
fectively reduces the size of inputs by at least 42%, for more than 50% of the faults.

3.5.4 Threats to Validity

Construct Validity. Why do we count malformed HTML as a defect in dynamically generated
webpages? Does a webpage with malformed HTML pose a real problem or this is an artificial
problem generated by the overly conservative specification of the HTML language? Although
web browsers are resilient to malformed HTML, we have encountered cases when malformed
HTML crashed the popular Internet Explorer web browser. More importantly, even though a par-
ticular browser might tolerate malformed HTML, different browsers or different versions of the



success path constraints inputs
program rate% orig. size reduction orig. size reduction
faqforge 64 22.3 78% 9.3 69%
webchess 91 23.4 81% 10.9 60%
schoolmate 51 22.9 62% 11.5 42%
phpsysinfo 82 24.3 82% 17.5 74%

Figure 3-13: Results of minimization. The success rate indicates the percentage of faults whose
exposing input was successfully minimized (i.e., the minimizer found a shorter exposing input).
The orig. size columns list the average size of original (un-minimized) path constraints and inputs.
The size of a path constraint is the number of conjuncts. The size of an input is the number of
key-value pairs in the input. The reduction columns list the amount by which the minimized size
is smaller than the unminimized size (i.e., 1 - minimized ). The higher the percentage, the moreunminimized
successful the minimization.

same browser may not display all information in the presence of malformed HTML. This becomes
crucial for some websites, for example for sites related to financial transactions. Many websites
provide a button for verifying the validity of statically generated HTML. The challenges of dy-
namically generated webpages prevent the same institutions from validating the content.

Why do we use line coverage as a quality metric? We use line coverage only as a secondary
metric, our primary metric being the number of faults found. Line coverage indicates how much
of the application was explored by the analysis. An analysis can only find faults in lines that are
covered, so more coverage generally leads to more faults being detected.

Why do we present the user with minimized path constraints and inputs in addition to the inputs
exposing the failure? Although an input that corresponds to a longer path constraint still exposes
the same failure, in our experience, the removal of superfluous information helps programmers
with pinpointing the location of the fault.

Internal Validity. Did Apollo discover real, unseeded, and unknown faults? Since we used
subject projects developed by others, we could not influence the quality of the subject programs.
Apollo does not search for known or seeded faults, but it finds real faults in real programs. For
those subject programs that connect to a database, we populated the database with random records.
The only thing that is "seeded" into the experiment is a username/password combination, so that
Apollo can access the records stored in the database.

External Validity. Will our results generalize beyond the subject programs? We only used
Apollo to find faults in 6 PHP projects. These may have serious quality problems, or may be
unrepresentative in other ways. Four of the subject programs were also used as subject programs
by Minamide [99]. We chose the same programs to compare our results. We chose an additional
subject program, phpsysinfo, since it is almost double the size of the largest subject that Minamide
used. Additionally, phpsysinfo is a mature and active project in sourceforge. It is widely used, as
witnessed by almost half a million downloads (Figure 3-9), and it is ranked in the top 0.5% projects
on sourceforge (rank 997 of 176,575 projects as of 7 May 2008). Nevertheless, Apollo found 11
faults in phpsysinfo.

Reliability. Are the results reproducible? The subject programs that we used are publicly
available from sourceforge. The faults that we found are available for examination at http: //pag.



csail.mit.edu/apollo.

3.5.5 Limitations

Simulating user inputs based only locally executed JavaScripts. In general, the HTML output
of a PHP script might contain buttons and arbitrary snippets of JavaScript code that are executed
when the user presses the corresponding button. The actions that the JavaScript might perform are
currently not analyzed by Apollo. For instance, the JavaScript code might pass specific arguments
to the PHP script. As a result, Apollo might report false positives. Apollo might report a false
positive if Apollo decides to execute a PHP script as a result of simulating a user pressing a button
that is not visible. Apollo might also report a false positive if it attempts to set an input parameter
that would have been set by the JavaScript code. In our experiments, Apollo did not report any
false positives.

Limited tracking in native methods. Apollo has limited tracking of input parameters through
PHP native methods. PHP native methods are implemented in C, which make it difficult to auto-
matically track how input parameters are transformed into output parameters. We have modified
the PHP interpreter to track parameters across a very small subset of the PHP native methods. Sim-
ilar to [151], we plan to create an external language to model the dependences between inputs and
outputs for native methods to increase Apollo line coverage when native methods are executed.

3.6 Related Work

In this section, we discuss three categories of related work: (i) combined concrete and symbolic
execution, (ii) techniques for input minimization, and (iii) testing of web applications.

3.6.1 Combined Concrete and Symbolic Execution

DART [67] is a tool for finding combinations of input values and environment settings for C pro-
grams that trigger errors such as assertion failures, crashes and nontermination. DART combines
random test generation with symbolic reasoning to keep track of constraints for executed control-
flow paths. A constraint solver directs subsequent executions towards uncovered branches. Exper-
imental results indicate that DART is highly effective at finding large numbers of faults in several
C applications and frameworks, including important and previously unknown security vulnerabil-
ities. CUTE [133] is a variation (called concolic testing) on the DART approach. The authors
of CUTE introduce a notion of approximate pointer constraints to enable reasoning over memory
graphs and handle programs that use pointer arithmetic.

Subsequent work extends the original approach of combining concrete and symbolic executions
to accomplish two primary goals: 1) improving scalability [8,25, 65, 66, 68, 94], and 2) improving
execution coverage and fault detection capability through better support for pointers and arrays [27,
133], better search heuristics [68, 81, 93], or by encompassing wider domains such as database
applications [57].



Godefroid [65] proposed a compositional approach to improve the scalability of DART. In this
approach, summaries of lower level functions are computed dynamically when these functions are
first encountered. The summaries are expressed as pre- and post-conditions of the function in terms
of its inputs. Subsequent invocations of these lower level functions reuse the summary. Anand [8]
extends this compositional approach to be demand-driven to reduce the summary computation
effort.

Exploiting the structure of the program input may improve scalability [66, 94]. Majumdar and
Xu [94] abstract context-free grammars that represent the program inputs to produce a symbolic
grammar. This grammar reduces the number of input strings to enumerate during test generation.

Majumdar and Sen [93] describe hybrid concolic testing, interleaves random testing with
bounded exhaustive symbolic exploration to achieve better coverage. Inkumsah and Xie [81] com-
bine evolutionary testing using genetic mutations with concolic testing to produce longer sequences
of test inputs. SAGE [68] also uses improved heuristics, called white-box fuzzing, to achieve higher
branch coverage.

Emmi [57] extends concolic testing to database applications. This approach creates and inserts
database records and enables testing program code that depends on embedded SQL queries.

Wassermann [152] presents a concolic testing tool for PHP. The goal of his work is to automat-
ically identify security vulnerabilities caused by injecting malicious strings into SQL commands.
Their tool uses a framework of finite-state transducers and a specialized constraint solver.

Some approaches aim at checking functional correctness. A number of tools [23, 26] use a
separate implementation of the function being tested to compare outputs. This limits the approach
to situations where a second implementation exists.

While our work builds on this significant body of research, there are two significant differ-
ences. First, our work goes beyond simple assertion failures and crashes by using on an oracle (in
the form of an HTML validator) to determine correctness, which means that our tool can handle
situations where the program has functionally incorrect behavior without relying on programmer
assertions. Second, our work addresses PHP's complex execution model, that involves multiple
scripts invoked via user-interface options in generated HTML pages, and communicating values
via session state and cookies. The only other concolic testing approach for PHP [152] does not
present a fully automatic solution for dealing with multiple interrelated PHP scripts.

3.6.2 Minimizing Failure-Inducing Inputs

Our work minimizes the constraints on the input parameters. This shortens the failure-inducing
inputs and to help to pinpoint the cause of faults. Godefroid et al. [68] faced this challenge since
their technique produces several distinct inputs that expose the same fault. Their approach hashes
all such inputs and returns an example failure-inducing input. Our work also addresses another
issue: identifying the minimal set of program variables that are essential to induce the failure. In
this regard, our work is similar to delta debugging [34, 162] and its extension hierarchical delta
debugging [100]. These approaches modify the failure inducing input directly, thus leading to a
single, minimal failure-inducing input. In contrast, our technique modifies the set of constraints
on the failure-inducing input. This creates minimal patterns of failure-inducing inputs, which



facilitates debugging. Moreover, our technique is more efficient, because it takes advantage of the
(partial) overlapping of different inputs.

3.6.3 Testing of Web Applications

The language under consideration in this chapter, PHP, is quite different from the focus of previous
testing research. PHP poses several new challenges such as dynamic inclusion of files, and func-
tion definitions that are statements. Existing techniques for fault detection in PHP applications
use static analysis and target security vulnerabilities such as SQL injection or cross-site script-
ing (XSS) attacks [79, 84, 99, 150, 158]. In particular, Minamide [99] uses static string analysis
and language transducers to model PHP string operations to generate potential HTML output-
represented by a context-free grammar-from the web application. This method can be used to
generate HTML document instances of the resulting grammar and to validate them using an exist-
ing HTML validator. As a more complete alternative, Minamide proposes a matching validation
which checks for containment of the generated context free grammar against a regular subset of the
HTML specification. However, this approach can only check for matching start and end tags in the
HTML output, while our technique covers the entire HTML specification. Also, flow-insensitive
and context-insensitive approximations in the static analysis techniques used in this method result
in false positives, while our method reports only real faults.

Kiezun presents a dynamic tool, Ardilla [85], to create SQL and XSS attacks. Their tool
uses dynamic tainting, concolic execution, and attack-candidate generation and validation. Like
ours, his tool reports only real faults. However, Kieiun focuses on finding security faults, while
we concentrate on functional correctness. His tool builds on and extends the input-generation
component of Apollo but does not address the problem of user interaction. It is an interesting area
of future research to combine Apollo's user-interaction and state-matching with Ardilla's exploit-
detection capabilities.

McAllister et al. [96] also tackle the problem of testing interactive web application. Their ap-
proach attempts to follow user interactions. Their method relies on pre-recorded traces of user
interactions, while our approach automatically discovers allowable interactions. Moreover, their
approach to handling persistent state relies on instrumenting one particular web application frame-
work, Django. In contrast, our approach is to instrument the PHP run-time system and observe
database interactions. This allows handling state of PHP applications regardless of any framework
they may use.

Benedikt et al. [17] present a tool, VeriWeb, for automatically testing dynamic webpages. They
use a model checker to systematically explore all paths (up to a certain bound) of user navigate in
a web site. When the exploration encounters HTML forms, VeriWeb uses SmartProfiles. Smart-
Profiles are user-specified attribute-value pairs that are used to automatically populate forms and
supply values that should be provided as inputs. Although VeriWeb can automatically fill in the
forms, the human tester needs to pre-populate the user profiles with values that a user would pro-
vide. In contrast, Apollo automatically discovers input values by looking at the branch conditions
along an execution path. Benedikt et al. do not report any faults found, while we report 302.

Dynamic analysis of string values generated by PHP web applications has been considered in a
reactive mode to prevent the execution of insidious commands (intrusion prevention) and to raise



an alert (intrusion detection) [82, 115, 139]. As far as we know, our work is the first attempt at
proactive fault detection in PHP web applications using dynamic analysis.

Finally, our work is closely related to implementation based (as opposed to specification based
e.g., [123]) testing of web applications. These works abstract the application behavior using a)
client-side information such as user requests and corresponding application responses [54, 60], or
b) server-side monitoring information such as user session data [56, 135], or c) static analysis of
server-side implementation logic [72]. The approaches that use client-side information or server-
side monitoring information are inherently incomplete, and the quality of generated abstractions
depends on the quality of the tests run.

Halfond and Orso [72] use static analysis of the server-side implementation logic to extract
a web application's interface, i.e., the set of input parameters and their potential values. They
implemented their technique for JavaScript. They obtained better code coverage with test cases
based on the interface extracted using their technique as compared to the test cases based on the
interface extracted using a conventional web crawler. However, the coverage may depend on the
choices made by the test generator to combine parameter values-an exhaustive combination of
values may be needed to maximize code coverage. In contrast, our work uses dynamic analysis
of server side implementation logic for fault detection and minimizes the number of inputs needed
to maximize the coverage. Furthermore, we include results on fault detection capabilities of our
technique. We implemented and evaluated (Section 3.5) a version of Halfond and Orso's technique
for PHP. Compared to that re-implementation, Apollo achieved higher line coverage (50.2% vs.
11.6%) and found more faults (302 vs. 95).

3.7 Conclusions

We have presented a test generation technique that helps testers detect faults in PHP web applica-
tions. Our technique is based on combined concrete and symbolic execution. The work is novel
in several respects. First, the technique not only detects run-time errors but also uses an HTML
validator as an oracle to determine situations where malformed HTML is created. Second, we ad-
dress a number of PHP-specific issues, such as the simulation of interactive user input that occurs
when user interface elements on generated HTML pages are activated, resulting in the execution of
additional PHP scripts. Third, we perform an automated analysis to minimize the size of failure-
inducing inputs.

We created a tool, Apollo, that implements the analysis. We evaluated Apollo on 6 open-source
PHP web applications. Apollo's test generation strategy achieves over 50% line coverage. Apollo
found a total of 302 faults in these applications: 84 execution problems and 218 cases of malformed
HTML. Finally, Apollo also minimizes the size of failure-inducing inputs: the minimized inputs
are up to 5.3x smaller than the unminimized ones.



Chapter 4

Elimination

This chapter presents a test generation technique to help maintainers eliminate bugs by automati-
cally reproducing failures. It is almost impossible to find and eliminate a software failure, and to
verify the solution, without the ability to reproduce the failure. However, reproducing a failure is
often difficult and time-consuming.

As an example, consider bug #30280 from the Eclipse bug database (Figure 4-1). A user
found a crash and supplied a back-trace, but neither the developer nor the user could reproduce
the problem. Two days after the bug report, the developer finally reproduced the problem; four
minutes after reproducing the problem, the developer fixed it.

Our work aims to reduce the amount of time it takes a developer to reproduce a problem. Our
technique, ReCrash, generates multiple unit tests that reproduce an observed failure. For example,
suppose that the user (in Figure 4-1) had been using a ReCrash-enabled version of Eclipse. As
soon as the Eclipse crash occurred, ReCrash would have generated a set of unit tests (Figure 4-2),
each of which reproduces the problem. The user could have sent these test cases with the initial
bug report, eliminating the two days delay to reproduce the problem.

Upon receiving the test cases, the developer could run them under a debugger to examine fields,
step through execution, or otherwise investigate the cause of failure. (The readability of the test
case is secondary to reproducibility; a test need not be readable, nor end-to-end, to be useful.) The
developer can use the same test to later verify his proposed solution for the bug.

Reproducing failures can be difficult for the following reasons.

Nondeterminism A problem that depends on timing (e.g., context switching), memory layout
(e.g., hash codes), or random number generators will manifest itself only rarely. Reproduc-
ing the problem requires replacing the sources of nondeterminism with specific choices that
reproduce previous behavior. As an example, consider the (somewhat contrived) Random-
Crash program [143] of Figure 4-5.

Remote detection A problem that is discovered by someone other than the developer who can
fix it may depend on local information such as user GUI actions, environment variables, the
state of the file system, operating system behavior, and other explicit or implicit program
inputs. Not all dependences may be apparent to the developer or the user; many users are not



2003-01-27 08:01 U: I found a crash (back-trace supplied)
2003-01-27 08:26 D: Which build are you using?

Do you have a test-case to reproduce?
2003-01-27 08:39 D: Which JDK are you using?
2003-01-28 13:06 U: I'm running eclipse 2.1, ..

I was not able to reproduce the crash
2003-01-29 04:28 D: Thanks for clarification ...
2003-01-29 04:33 D: Reproduced.
2003-01-29 04:37 D: Fixed.

Figure 4-1: An excerpt of comments (https://bugs. eclipse, org/bugs/showbug. cgi?id=30280) be-
tween the user (U) who reported the Eclipse bug #30280 and the developer (D) who fixed it.

sophisticated enough to gather this information; some of the information may be confiden-
tial; and the effort of collecting it may be too burdensome for the user, the developer (during
interactions with the user), or both.

Test case complexity Even if a problem can be reproduced deterministically, the exposing exe-
cution might be complex, and the buggy method might be called multiple times before the
bug is triggered. A simpler test case, such as a unit test, is often faster and easier to run and
understand than the execution that triggered the failure.

We propose a technique, ReCrash, that help maintainers eliminate bugs, by generating tests
that reproduce executions in many of the above cases. ReCrash automatically converts a failing
program execution into a set of deterministic and self-contained unit tests. Each of the unit tests
reproduces the problem that caused the program to fail.

ReCrash has two phases: monitoring and test case generation.

monitoring During an execution of the target program, ReCrash maintains a shadow stack with an
n-deep copy of the receiver and arguments to each method. From depth n on, these objects
refer to the original objects on the heap (see Section 4.1.2.1). Thus, ReCrash exploits the
object-oriented nature of the program by using objects as the unit of granularity for including
or excluding values from the stored shadow stack. When the program fails (i.e., crashes),
ReCrash serializes the shadow stack contents, including all heap objects referred to from
the shadow stack. Heap data that was not copied to the shadow stack might have been
side-effected between the point of the call and the point of the failure; this is a cause of
imprecision for the ReCrash technique.

test generation ReCrash generates candidate tests by calling each method that was on the shadow
call stack with the de-serialized receiver and arguments from the shadow stack. ReCrash
outputs all candidate tests that reproduce the original failure. ReCrash outputs multiple tests
because tests that call only the methods that were at top of the call stack may not provide
enough context to find the error, while tests calling methods that are closer to the bottom of
the call-stack provide more context, but are less likely to reproduce the original failure.



1 // Generated by reCrash
2 // Eclipse 2.1M4/3DK 1.4

3 //-- The original crash stack back trace for java.lang.NullPointerException:

4 // org...QualifiedAllocationExpression.resolveType

5 // org...Expression.resolve

6 // ...

7 public class EclipseTest extends TestCase {

s protected void setUp() throws Exception {

9 ShadowStackReader.readTrace("eclipse.trace");

10 }
11

12 public void test_resolveType() throws Throwable {

13 ShadowStackReader.setMethodStackItem(G);
14

15 // load receiver
16 // rec = i.new Y(

17 QualifiedAllocationExpression rec =

18 (QualifiedAllocationExpression)ShadowStackReader.readReceiver(O);

19

20 // load arguments

21 // arg_l = Scope-locals: java.lang.String;

22 BlockScope arg_l = (BlockScope)ShadowStackReader.readArgument(1);

23

24 // Method invocation

25 rec.resolveType(arg_1);
26

27

28 public void testresolve() throws Throwable {

29 ShadowStackReader.setMethodStackItem(1);
30

31 // load receiver

32 // rec = i.new Y(
33 Expression rec = (Expression)ShadowStackReader.readReceiver();

34

35 // load arguments

36 // arg_l = Scope-locals: java.lang.String;

37 BlockScope arg_l = (BlockScope)ShadowStackReader.readArgument(1);
38

39 // Method invocation

40 rec.resolve(arg_l);
41

42 }

Figure 4-2: Two test cases (out of eight) generated by ReCrash to reproduce Eclipse bug

#30280. Each test case loads the method arguments from a serialized representation stored in

eclipse. trace(line 9). Lines 16, 21, 32, 36 show the toString representation of the object

being read from the serialized trace.



ReCrash is effective, despite recording only partial information about the program state in-
memory. For many failures, it is possible to reproduce them with only some of the information
available on entry to the methods on the stack at the time of the failure. This may be due to the
following characteristics of object-oriented programs.

* Many bugs are dependent on small parts of the heap (also the premise of unit testing).

* Good object-oriented style encapsulates important state nearby.

* Good object-oriented style avoids excessive use of globals. Furthermore, ReCrash has access
to and will store any parts of the global state or environment that are passed as method
arguments.

ReCrash's monitoring phase can be made efficient by reducing the amount of monitoring. For
example, objects that are not changed by the code need not be monitored. As another example,
ReCrash has an optimization mode called second chance in which the monitoring phase initially
records only stack back-traces when the program fails. On subsequent runs, ReCrash monitors
only the methods that were in the stack back-trace of failures. If the same problem reappears, it
will be captured and reproduced. Second chance allows a vendor to use ReCrash in a similar way
to an anti-virus program that frequently updates the virus profile data. When one client discovers a
failure and sends the produced back-trace to the vendor, the vendor will send an update containing
a list of additional methods to monitor, to all other clients. When ReCrash is used remotely (in the
field, not by the developer who is debugging a failure), the test generation phase may be performed
either remotely or by the developer.

This chapter makes the following contributions:

* The ReCrash technique efficiently captures and reproduces failures using in-memory storage
of method arguments.

* Optimizations give the ReCrash technique low enough overhead to enable routine use, by
monitoring only relevant parts of a program.

* The second chance mode operates with almost no overhead.

* ReCrashJ is a practical implementation of ReCrash for Java.

* Case studies show that ReCrashJ effectively and efficiently reproduces failures for several
real applications.

The remainder of this chapter is organized as follows. Section 4.1 describes the ReCrash tech-
nique. Section 4.2 presents the ReCrashJ implementation. Section 4.3 describes our experimental
evaluation. Section 4.4 discusses some of ReCrash's limitations. Section 4.5 surveys related work,
and Section 4.6 concludes.



4.1 ReCrash Technique

The ReCrash technique has two parts. Monitoring is done during program execution (Section 4.1.1),
and test generation is done after the program fails (Section 4.1.3). Section 4.1.2 discusses several
optimizations to the monitoring phase.

4.1.1 Monitoring Phase

In the monitoring phase, ReCrash maintains in memory a shadow version of the call stack with
copies of the receiver and arguments to each method. Figure 4-3 presents pseudo-code for the
monitoring phase.

On entry to method m with arguments args, ReCrash generates a unique identifier id for the
invocation of m, then pushes (id, m, reccopy, argScopy) onto the ReCrash shadow stack, where reCcopy
contains copies of the method's receiver and argsopy contains a copy of the method's arguments.

ReCrash can use different copy strategies. It can make a deep copy of each argument, store only
a reference, or use hybrid strategies (see Section 4.1.2.1). If m exits normally, ReCrash removes
the method call data (id, m, reccopy, argscopy) from the top of its shadow stack.

If an un-handled exception is thrown out of main, ReCrash outputs the un-handled exception
and a deep copy of the current ReCrash shadow stack. The methods that ReCrash stores include
at least the methods on the virtual machine call stack at the time of the failure. In cases where a
method catches an exception and then throws a different uncaught exception, the ReCrash shadow
stack contains additional methods (those that were on the shadow stack when the original exception
was thrown). This additional information can improve the reproducibility of failures, as ReCrash
will be able to reproduce system states before the time the first exception was thrown.

4.1.2 Optimizations to the Monitoring Phase

The cost of copying the method arguments at method entry dominates ReCrash's time and space
overhead. We have considered two orthogonal ways to reduce overhead by recording less informa-
tion: reducing the depth of copied state for the method's arguments, and monitoring fewer meth-
ods. Recording less information might reduce the chances of reproducing a failure. Section 4.3
discusses tradeoffs between the performance overhead and the ability to reproduce failures.

4.1.2.1 Depth of Copying Arguments

In order to be able to recreate the state of the method's arguments if the method fails, ReCrash
copies parts of the arguments to the shadow stack upon method entry. However, a deep copy of the
shadow stack is only available after an exception is not caught by the program. Thus, any part of
an argument's state that is not copied to the shadow stack may change between the method entry
and the time of the failure. This change might prevent ReCrash from reproducing the failure.

This section considers different strategies for copying arguments (including the receiver) at the
method entry. In each strategy a different amount of the argument state is copied to the shadow



Input: copy - a function that copies arguments (see Section 4.1.2.1)
Output: file - containing deep copy of the shadow stack

s : shadow stack of the current method on the call stack and their arguments

On program start:
begin

s ( new empty stack
end

On entry to method m in the call rec.m(args):
begin

reCcopy < copy(rec)
argscopy <-- copy(args)
id - generate unique id for current execution of m
push tuple (id, m, reccopy, argscopy) into s

end

On non-exceptional exit from method m:
begin

id <- lookup id for current execution of m
pop from s until (id, _, _) is popped

end

On top-level (main) uncaught exception e:
begin

file <- new output file
store e to file
foreach (id, m, reCcopy, argScopy) in s do

store (id, m, deepCopy(reCcopy), deepCopy(argScopy)) to file
end

end

Figure 4-3: Pseudo-code for the ReCrash technique. If an exception is uncaught by the program
(main), ReCrash stores the exception and a deep copy of the current shadow stack to the output
file. The technique uses two auxiliary functions: deepCopy which copies all the reachable state of
an object, and copy which is a parameter to this technique. The exact semantics of copy depends
on the chosen copy strategy (see Section 4.1.2).



stack and the rest of the argument state uses references to the original objects (that might get
side-effected). The different copying strategies, in order of increasing overhead, are:

reference (depth-0) Copying only the reference to the argument.

shallow (depth-1) Copying the argument itself. Each of the fields in the copy contains whatever
the original argument did, a primitive or a reference. Shallow copying is resilient to direct
side effects on the top-level primitive fields of the arguments.

depth-i Copying an argument to a specified depth: all the state reachable with i or fewer derefer-
ences.

deep copy Copy the entire state. This strategy gives ReCrash the best chance of reproducing the
same method execution, since it preserves the object state at the time of the method entry.

ReCrash has an additional copying option, used-fields, applicable to all copying strategies

except reference. When the used-fields option is selected, ReCrash performs that select copying on
arguments and on the fields of arguments that are used (read or written) in the method. For example,
suppose that ReCrash is using shallow (depth-1) copying with used-fields, x is an argument to a
method m, and x.a is used in m. Then ReCrash will perform shadow copying on x and x.a. The used
fields are the fields that the method is likely to depend on, and therefore copying them increases
the chance of reproducing the failure.

It is possible to use different strategies for different arguments. For instance, using shallow
copy for the receiver, and using reference copy for the rest of the arguments. ReCrash always
uses the reference strategy for immutable parameters (calculated using the technique presented in
Chapter 5). A method's parameter p is immutable if the method never changes the state reachable
from p. Therefore, an object passed to an immutable parameter will have the same state at the
method entry and at the time of the failure.

4.1.2.2 Monitoring Fewer Methods

ReCrash need not monitor methods that are unlikely to expose or reveal problems, or that cannot
be used in the generated tests. Those include empty methods, non-public methods, and simple
methods such as getters and setters.

second-chance mode It would be most efficient to monitor only methods that will fail. However,
it is impossible to compute this set of methods in advance. One way of approximating this set is to

record a set of methods that already failed, updating the set each time a new method fails.
This is the underlying idea behind second chance, a mode of operating ReCrash that only

monitors methods that have contributed to a failure at least once. In second chance mode, ReCrash
initially monitors no method calls. Each time a failure occurs, ReCrash enables method argument
monitoring for all methods found on the (real) stack back-trace at the time of the failure.

This mode is efficient, but requires a failure to be repeated twice (possibly with other failures
in between) before ReCrash can reproduce it. Second chance mode has no impact on the repro-
ducibility of a failure (the second time the failure appears).



4.1.2.3 Which Optimizations to Use

When using ReCrash, a developer needs to decide which optimizations to use. Which copying
strategy should ReCrash use for the arguments? Should ReCrash use the used-fields option on the
arguments? Should ReCrash use the second-chance mode?

The answers depend on the developer's needs and the subject program. For example, if the
developer doesn't mind missing the first time a failure happens, and the failure occurs relatively
often, the second chance mode is a good fit. If the developer wants ReCrash to reproduce all
possible failures and can suffer the performance hit, then deep copy might be the right mode. We
found that using the copying strategy shallow copying (depth-1) with used-fields enabled ReCrash
to reproduce most failures with acceptable performance overhead.

4.1.3 Test Generation Phase

The test generation phase of ReCrash attempts to generate a unit test for each method invocation
(id, m, reCcopy, argScopy) on the ReCrash shadow stack. The pseudo-code for the test generation
phase is presented in Figure 4-4.

ReCrash generates a test for each of the method frames in the shadow stack (s). ReCrash
restores the state of the arguments (modulo the shadow stack) that were passed to m in execution
id, and then invokes m the same way it was invoked in the original execution. Only tests that end
with the same exception as the original failure are saved. Storing more than one test that ends with
the same failure is useful because it is possible that some tests reproduce a failure, but would not
help the developer understand, fix, or check her solution. See Section 4.2.2 for an example of such
a case.

4.2 Implementation

We have implemented the ReCrash technique for Java. This section describes the implementation,
ReCrashJ, using as an example the program in Figure 4-5. ReCrashJ has two phases: monitoring
(Section 4.2.1) and test generation (Section 4.2.2). Section 4.2.3 discusses implementation details
of the optimizations of Section 4.1.2.

4.2.1 Implementation of the Monitoring Phase

ReCrashJ instruments an existing program (in Java class file format, using the ASM instrumenta-
tion tool [105]) to perform the monitoring phase of the ReCrash technique (Section 4.1.1). The
instrumented program can be deployed in the field instead of the original program. Figure 4-6
shows the instrumented version of the program in Figure 4-5.

The instrumentation has four parts, one for each of the tasks in Figure 4-3.

on program start The shadow stack is implemented using static fields in the ShadowStack class.
When the program starts, the requested copy strategies for the receiver and the arguments



Input: inFile- containing deep copy of the shadow stack
Output: outFile- containing tests reproducing the failure
begin

e : exception, the original exception resulting in the failure
testSuite : Collection of test sources, each test reproducing the original failure
outFile : output file for the generated tests
testSuite -- empty test suite
e < load exception from inFile
len <-- get length of shadow stack from inFile

for i =1 to len do
t : test source
t <-- generateTest(inFile, i)
if execution of t ends with e then

add t to testSuite
end

end
store testSuite into outFile

end

generateTest(File file, int i)
begin

(id, m, reCcopy, argScopy) -- pop ith tuple from file
output("test m.id")
output("rec = load ith receiver from file")
output("args = load ith arguments fromfile")
output("rec.m(args)");

end
Figure 4-4: Pseudo-code for ReCrash test generation. ReCrash generates a test for every method
on the original stack at the time of the failure, using the saved copy of the arguments. ReCrash
outputs each test whose executions results in the same exception. The generateTest subroutine
creates the source for a test. Each test loads the appropriate receiver and arguments from the file
containing the shadow stack, and then calls the method on the receiver with the arguments.



iclass RandomCrash {
2 public String hexAbs(int x) {
3 String result = null;
4 if (X > 0)
s result = Integer.toHexString(x);
6 else if (x < 0)
7 result = Integer.toHexString(-x);
8 return toUpperCase(result);
9

10

11 public String toUpperCase(String s) {
12 return s.toUpperCase();
13 }
14

15 public static void main(String args[]) {
16 RandomCrash rCrash = new RandomCrash();
17 rCrash.hexAbs(random.nextIntO);
18 }

19 }

Figure 4-5: This program, taken from [143], will crash with a null pointer exception in the
toUpperCase method, when the argument x to the method hexAbs is 0. Since the value of x
is randomly chosen (line 17), this crash is not deterministically repeatable. Figure 4-6 presents the
instrumented version of the program.

is set (lines 33 and 34). The different copy strategy classes implement the strategies of
Section 4.1.2.1.

on entry to method m The receiver and the arguments to the method are stored on the shadow
stack at the beginning of each method. In addition, ReCrashJ generates an id for the invo-
cation of m. The id is stored as a local variable (id) in the method. This is demonstrated by
lines 3-5 and 18-20 of Figure 4-6. The specific behavior of the methods addReceiver and
addArgument is determined by the type of the ShadowStack (see Section 4.2.3 for more
details). ReCrash always uses shallow copy for immutable parameters (Chapter 5).

on non-exceptional exit from method m If the method successfully returns without a crash, Re-
CrashJ removes all the data (arguments and receiver) about the method execution from the
shadow stack. ReCrashJ uses the unique identifier id to perform this cleanup (lines 13, 23).

on top-level uncaught exception In order to react to a thrown exception that is not caught by
main, ReCrashJ replaces the original main by a new main as shown in lines 27-37 in Fig-
ure 4-6. The new main invokes the original main in a try-catch block and handles exceptions.
When an exception is caught by the new try-catch block (line 36), ReCrashJ serializes the
information on the shadow stack, and stores it to the output file (line 36).



,class RandomCrash {
2 public String hexAbs(int x) {
3 int _id = ShadowStack. push("hexAbs");
4 ShadowStack.addReceiver(this);
5 ShadowStack. addArgument (x);
6 String result = null;

7 if (x > )
8 result = Integer.toHexString(x);

9 else if (x < 8)

io result = Integer.toHexString(-x);

11

12 String ret = toUpperCase(result);

13 ShadowStack.popUntil(_id);
14 return ret;

15

16

17 public String toUpperCase(String s) {

18 int _id = ShadowStack. push("toUpperCase");
19 ShadowStack.addReceiver(this);
20 ShadowStack. addArgument (s);
21

22 String ret = s.toUpperCase ();
23 ShadowStack.popUntil(_id);
24 return ret;

25

26

27 public static void __original_main_(String args []){

28 RandomCrash rCrash = new RandomCrash();

29 rCrash.hexAbs(random.nextInt());
30

31

32 public static void main(String args[]) {
33 ShadowStack. setReceiverCopyingStrategy(new ShallowCopy());
34 ShadowStack. setArgumentsCopyingStrategy (new ReferenceCopy());
35 try __original_main__(args) ;
36 catch (Throwable e) StackDataWriter.writeStackData(e);
37

38 }

Figure 4-6: The instrumented program of Figure 4-5. Instrumentation code is bold.



4.2.1.1 Serialization

To serialize objects and store the serialized objects into a file, ReCrashJ uses the XStream frame-
work [6] rather than Java serialization. Java serialization is limited to classes implementing the
j ava.io.Serializable interface, and in which all fields must be of Serializable types. XStream
does not have this limitation. ReCrash should be similarly applicable to any language with a li-
brary for marshalling/unmarshalling data. It may be an advantage of Java that Java has libraries
that represent external resources, such as files, as Java objects. It may be that a language like Eiffel
that uses opaque pointers would be at a relative disadvantage.

4.2.1.2 Alternatives to the Shadow Stack

The instrumented program is deployable. No other program or configuration is needed in order
to run it. Both the Java Platform Debugger Architecture (JPDA) [2] and the Java Virtual Machine
Tool Interface (JVMTI) [3] provide features to access Java objects in the stack with low overhead.
However, in order to use these tools, we would have to deploy a separate program (in addition to
the instrumented program) to communicate with either JPDA or JVMTI.

4.2.1.3 Reproducing Non-Crashing Failures

A developer may wish to reproduce failures other than crashes, for example exceptions that are
caught by an exception handler or errors that do not result in an exception. In this case, the vendor
can add calls to writeStackData wherever the program becomes aware of a failure-for example,
in a catch-all handler or where an invariant is found to be false in an invariant validation routine.

As an example, consider the method processList in Figure 4-7. This method processes large
lists. It first tries to minimize the input list by removing duplicates before processing it (call in
line 2). However, if due to a bug, the minimization method fails and returns null, it is possible
to process the entire list without minimization. Thus, the processing method is able to recover
from the bug in the minimization method and continue. However, the developer will probably be
interested in debugging the problem in the minimization method. In this case, the developer can
signal to ReCrash (using the annotation in Line 6) that it should reproduce the state of the method
in this case.

4.2.2 Implementation of the Test Generation Phase

ReCrashJ uses the stored shadow stack to generate a JUnit testSuite. Figure 4-8 shows the tests
that ReCrashJ generated for the crash in Figure 4-5. Figure 4-2 shows two of the tests generated
for the Eclipse compiler crash reported in Figure 4-1. Each test in the suite loads the receiver
and the method arguments for one method from the serialized shadow stack, and then calls that
method, which results in the same exception as the original crash. To facilitate debugging, for
each argument (including receiver) that has a custom toString method, ReCrashJ writes the
argument's string representation as a comment (lines 16, 21, 32, 36 of Figure 4-2).



ipublic void processList(List inputList) {

2 List minimizedList = minimizeList(inputList);

3

4 // minimizedList should not be null
5 if (minimizedList == null) {
6 StackDataWriter.writeStackData(); // record this state

7 minimizedList = inputList;

8 }
9

10

11 }

Figure 4-7: A manually written ReCrash annotation helps record a program state and reproduce
errors that do not results in uncaught exceptions.

Not every object is dynamically read from the stored shadow stack when a test is executed.
ReCrashJ writes the values of primitives, strings, and null objects directly into the tests. For
example, see lines 8 and 18 of Figure 4-8.

4.2.2.1 Generating Multiple Tests for Each Crash

The tests in Figure 4-8 demonstrate a reason to create multiple tests that reproduce the crash, one
for each method on the stack. The first test in Figure 4-8 is useless in detecting and solving the
problem, because the developer is unable to understand the source of the null argument. This
test would also continue to fail even when the problem is solved. On the other hand, the second
test captures a value that is not handled correctly by the hexAbs method. This test is useful in
determining and verifying a solution for the problem.

4.2.2.2 Extra Information

When instrumenting a subject program, developers can embed an identifier, such as a version
number, in the subject program. This identifier will appear in the generated test cases, as shown
in line 2 of Figure 4-2. This identifier can help the developers to identify which version of their
program failed.

4.2.3 Optimizations

In order to implement the different copying strategies of Section 4.1.2.1, ReCrashJ uses the Java
Cloneable interface. ReCrashJ automatically adds the clone method to all classes that do not
already implement it. The added clone method copies primitive fields and the references of non-
primitive fields.

ReCrashJ uses a simple static points-to analysis to determine the set of fields used in each
method.



ipublic void test_toUpperCase() {
2 ShadowStackReader. setMethodStackItem(2);
3

4 // load receiver
5 RandomCrash rec = (RandomCrash)ShadowStackReader.readReceiver();
6

7 // Method invocation
8 rec. toUpperCase (null);
9}

10

iipublic void test_hexAbs() {
12 ShadowStackReader. setMethodStackItem(l);
13

14 // load receiver
1s RandomCrash rec = (RandomCrash)ShadowStackReader.readReceiver ();
16

17 // Method invocation
18 rec.hexAbs(0);
19 }

Figure 4-8: Tests generated by ReCrash for the program of Figure 4-5.

ReCrashJ approximates simple methods (i.e., getters and setters) as methods with no more
than six opcodes. We use six opcodes as the bound since the standard getter (getX(){returnx})
has 4 opcodes and the standard setter (setX(intx){this.x = x}) has 6 opcodes without debug
information.

4.3 Experimental Study

We evaluated ReCrashJ by performing experiments with crashes of real applications. We designed
the experiments around the following research questions:

Q1 How reliably can ReCrashJ reproduce crashes?

Q2 What is the size of the stored deep copy of the shadow stack?

Q3 Are the tests generated by ReCrashJ useful for debugging?

Q4 What is the overhead (time and memory) of running ReCrashJ?

Our results indicate that ReCrashJ can reproduce many crashes, that it generates useful tests,
that it incurs low overhead, and that the size of the stored data (serialized shadow stack) is small.
We present the analysis of two real crashes in detail and show that the tests generated by ReCrashJ
help to locate the source of the problem. In addition, the developers of one subject program found
the generated test cases helpful. Overall, the experimental results indicate ReCrashJ is effective,
scalable, and useful.



program crash exception type # frames # of size of
name shadow reproducible tests shadow

stack reference used-fields copy stack(kb)

Javac ji null pointer 17 5 5 5 374
j2 illegal argument 23 11 11 11 448
j3 null pointer 8 1 1 1 435
j4 index out of bounds 28 11 11 11 431

SVNKit s1 index out of bounds 3 3 3 3 36
s2 null pointer 2 2 2 2 34
s3 null pointer 2 2 2 2 33

Eclipsec el null pointer 13 0 1 8 62
BST bl class cast 3 3 3 3 5

b2 class cast 3 3 3 3 5
b3 unsupported encoding 3 3 3 3 25

Figure 4-9: Subject programs and crashes used in our experimental study. For each crash, Re-
CrashJ generates multiple test cases that aim to reproduce the original crash. In the used-fields
column ReCrashJ used the shallow (depth-1) copying strategy with the used-fields option. The
serialized shadow stack size is in gzipped KB.

4.3.1 Subject Systems and Methodology

We use the following subject programs in our experiments:

* Javac-jsr3081 is the OpenJDK Java compiler, extended with the implementation of JSR308
("Annotations on Java Types") [58]. We used four crashes that were provided to us by the
developers. Javac-jsr308 version 0.1.0 has 5,017 methods in 86 kLOC.

* SVNKit2 is a subversion 3 client. We used three crash examples for SVNKit bug reports #87
and #188. SVNKit version 0.8 has 2,819 methods in 22 kLOC.

* Eclipsec4 is a Java compiler included in the Eclipse JDT. We used the crash from bug #30280
found in the Eclipse bug database. In version 2.1 of Eclipse, Eclipsec has 4,700 methods in
83 kLOC.

* BST 5 is a toy subject program used by Csallner in evaluating CnC [39, 40]. We used three
BST crashes found by CnC. BST has 10 methods in 0.2 kLOC.

We used the following experimental procedure. We ran the ReCrashJ-instrumented versions of
the subject programs on inputs that made the subject programs crash. We counted how many test

lhttp://groups.csail.mit.edu/pag/jsr3@8/
2http://svnkit.com/
3http://subversion.tigris.org
4http://www.eclipse.org
5http://www.cc.gatech.edu/cnc/index.html



cases reproduced each crash. We repeated this process for the different argument copying strategies
introduced in Section 4.1.2.1, and with and without the second chance mode of Section 4.1.2.2. For
the required parameter immutability classification (see Section 4.1.2.2) ReCrashJ runs PIDASA
(Chapter 5 one time for each subject program. It took less than half an hour to calculate the
parameter immutability classification for each of the subject programs.

4.3.2 Reproducibility

Q1 How reliably can ReCrashJ reproduce crashes?

ReCrashJ was able to reproduce the crash in all cases (Figure 4-9). For some crashes (b , b2,
b3, sl, s2, and s3), every candidate test case reproduces the crash. For other crashes (el, jl, j2, j3,
and j4), only a subset of the generated test cases reproduces the crash.

In most cases, simply copying references is enough to reproduce crashes ('reference' column).
However, in some cases an argument is side-effected, between the method entry and the point of
the failure in the method, in such a way that will prevent the crash if the modified argument had
been supplied on the method entry. In those cases (e.g., el), using at least the shallow copying
strategy with used-fields (Section 4.1.2.1) was necessary to reproduce the crash.

4.3.3 Stored Deep Copy of the Shadow Stack Size

Q2 What is the size of the stored deep copy of the shadow stack?

If ReCrashJ is deployed in the field, and a crash happens, the user will need to send the seri-
alized deep copy of the shadow stack to the program developers. For each crash, the last column
of Figure 4-9 presents the size of the serialized deep copy of the shadow stack for each of the
inspected crashes. The size can be further reduced if the tests are generated and evaluated locally.
In this case ReCrash could trim the data from frames whose candidate test cases were discarded,
or perform other minimization of the test cases.

4.3.4 Usability Study

Q3 Are the tests generated by ReCrashJ useful for debugging?

To learn whether ReCrashJ's test cases help developers to find errors, we analyzed the generated
test cases for each crash. We present a detailed analysis of two crashes, e 1 and j4. We also present
developers' comments about the utility of the generated tests for j 1-4.

Eclipsec bug (el): Figure 4-12 presents the bug resulting in crash el. Eclipsec crashes in
method canBeInstantiated (line 19) because an earlier if statement in lines 9-11 failed to set
the variable hasError to true. Using the generated tests (Figure 4-2) the developer would have
been led to the buggy code. The developer would fix this problem by adding hasError = true on
line 11. Notice that the test case for method canBeInstantiated (not shown in the figure) will
reproduce the crash, but is not helpful in understanding it as the state of the parameter is already



corrupted. Also, note that just looking at the backtrace does make the problem obvious: stepping
through will be more useful (the error is far removed from the crash, but is in a method on the
stack). This is an example of why it is important to generate tests for multiple methods on the
stack.

Javac-jsr308 bug (j4): Using Javac-jsr308 to compile source code containing an annotation
with too many arguments results in an index-out-of-bounds exception. Figure 4-10 shows the
erroneous source code. The compiler assumes that the parameters and arguments lists are of
the same size (line 9), but they might not be.

ipublic Void visitMethodInvocation (MethodInvocationTree node, Void p) {
2 List<AnnotatedClassType> parameters = method.getAnnotatedParameterTypes();
3

4 List<AnnotatedClassType> arguments = new LinkedList<AnnotatedClassType>();

s for (ExpressionTree arg : node.getArguments())
6 arguments. add(factory.getClass(arg));
7

8 for (int i = 0; i < arguments.size(); i++) {
9 if (!checker.isSubtype(arguments.get(i), parameters.get(i)))

10 ..

11

12 }

Figure 4-10: A code snippet that illustrates a Javac-jsr308 crash (j4). The crash (in line 9) happens
when the parameters list is shorter then the arguments list.

ReCrashJ generates multiple test cases that reproduce the crash; one test is shown in Figure 4-
11.

Note that the generated test does not require the whole source code and encodes only the
necessary minimum to reproduce the crash. This makes ReCrashJ especially useful in scenarios
where the failure happens in the field, and the user cannot provide the data (possibly proprietary)
for debugging.

Developer testimonials We gave the tests for j 1-4 to two Javac-jsr308 developers and asked
for comments about the tests' usefulness. We received positive responses from both developers.

Developer 1: "I often have to climb back up through a stack trace when debugging. ReCrash
seems to generate a test method for multiple levels of the stack, which would make it useful." "I
find the fact that you wouldn't have to wait for the crash to occur again useful."

Developer 2: "One of the challenging things for me in debugging is that when I set a break
point, the break point maybe be executed multiple times before the actual instance where the error
is cased, [...] Using ReCrash, I was able to jump (almost directly) to the necessary breakpoint."



ipublic void test_visitMethodInvocation() throws Throwable {
2 // load receiver

3 / rec = ...

4 SubtypeVisitor rec = (SubtypeVisitor)

5 ShadowStackReader.readReceiver(@);
6

7 // load arguments

8 // arg_l = test("foo", "bar", "baz");

9 MethodInvocationTree arg_l = (MethodInvocationTree)

10 ShadowStackReader.readArgument(1);

11

12 // Method invocation

13 rec.visitMethodInvocation(arg_1, null);

14 }

Figure 4-11: Test case generated for a Javac-jsr308 crash (j4).

ipublic class QualifiedAllocationExpression {
2 public TypeBinding resolveType(BlockScope scope) {
3 TypeBinding receiverType = null;

4 boolean hasError = false;

5 if (anonymousType == null) {
6 if ((enclosingInstanceType =

7 enclosingInstance.resolveType(scope)) == null){

8 hasError = true;

9 } else if (enclosingInstanceType.isArrayType()) {
10 . . .

11 //hasError = true; Missing and causing the error

12 } else if ((this.resolvedType =
13 receiverType = ... )) == null) {

14 hasError = true;
15 }

16 . . .

17 // limit of fault-tolerance

18 if (hasError) return receiverType;

19 if (!receiverType.canBelnstantiatedo())
20 ...

21

22

Figure 4-12: Buggy source code from Eclipsec (Eclipse Java compiler) causing bug #30280. The

program crashes with a NullPointerException in the canBeInstantiated method (line 19).

This case happens when the positive path of the if in line 9 is taken, in which case hasError is

not set to false (line 11).



task execution time
original reference shallow w/used-fields deep copy

SVNKit checkout 1.17 1.62 (38%) 1.75 (50%) 1657 (142,000%)
SVNKit update 0.56 0.62 (11%) 0.63 (13%) 657 (118,000%)
Eclipsec Content 0.95 1.08 (13%) 1.12(15%) 114 (12,000%)
Eclipsec String 1.07 1.36 (27%) 1.39 (31%) 1656 (155,000%)
Eclipsec Channel 1.27 1.72 (34%) 1.74 (37%) 8101 (638,000%)
Eclipsec JLex 3.45 4.93 (42%) 5.51 (60%) > 2 days

task second-chance execution time
original reference shallow w/used-fields deep copy

SVNKit checkout 1.17 1.17 (0.0%) 1.18 (0.8%) 1.42 (21%)
SVNKit update 0.56 0.56 (0.0%) 0.56 (0.3%) 0.56 (0.8%)
Eclipsec Content 0.95 0.97 (1.5%) 0.96 (0.9%) 3.98 (317%)
Eclipsec String 1.07 1.09 (1.7%) 1.08 (0.8%) 8.99 (742%)
Eclipsec Channel 1.27 1.27 (0.1%) 1.27 (0.0%) 16.6 (1,210%)
Eclipsec JLex 3.45 3.47 (0.7%) 3.48 (1.1%) 1637 (47,000%)

Figure 4-13: Execution times of the original and instrumented programs in seconds. Slowdowns
from the baseline appear in parentheses. The columns are described in Section 4.1.2.1.

4.3.5 Performance Overhead

Q4 What is the runtime overhead (time and memory) of ReCrashJ?

We compared the time and memory usage of the original and instrumented versions of the
subject programs, while performing the following tasks (the three Java classes were taken from the
/samples/nio/server directory in JDK 1.7):

SVNKit checkout:
SVNKit update:
Eclipsec Content:
Eclipsec String:
Eclipsec Channel:
Eclipsec JLex:

Checking out a project 6, 880 files, 44Mb
Updating a project, 880 files, 44Mb
Compiling Content. java (48 LOC)
Compiling StringContent. java (99 LOC)
Compiling ChannelIOSecure. java (642 LOC)
Compiling JLex version 1.2.4 (7,841 LOC) 7

Figure 4-13 compares the execution time of the original subject programs and the instrumented
ones, measured using the UNIX time command. Because of variability in network, disk, and CPU
usage, there is some noise in the measurements, but the trend is clear. The deep copy version is
completely unusable, except possibly in second chance mode, where it might be usable for in-
house testing. A more optimized implementation could be more efficient, but will probably still be
impractical.

6
http://amock.googlecode.com/svn/trunk

7
http://www.cs.princeton.edu/-appel/modern/java/JLex/



Even copying only the references can be expensive, 11%-42% run-time overhead. The shallow
copying strategy with used-fields has a very similar overhead, 13%-60% overhead. These values
are probably usable for in-house testing.

Second chance mode, however, is where our system shines. It reduces the overhead to a barely
noticeable 0%-1.7% - and that is after a crash has already been observed, before which the
overhead is negligible (essentially 0%). Second chance mode obtains these benefits by monitoring
only a very small subset of all the methods in the program. This simple idea is sufficient, effective,
and efficient.

task maximum memory usage (MB)
original shallow w/used-fields overhead%

SVNKit checkout 8.7 9.3 6.9
SVNKit update 7.6 7.8 2.6
Eclipsec Content 4.8 8.4 75.0
Eclipsec String 5.3 9.5 79.2
Eclipsec Channel 5.2 9.9 90.3
Eclipsec JLex 9.1 11.1 21.9

Figure 4-14: Memory use overhead of the instrumented programs, with shallow and used-fields
copying strategy, as measured by JProfiler.

For the memory usage comparison, we used JProfiler8 to measure the maximum memory used
in performing each task. Figure 4-14 shows the memory usage - in our experiments, ReCrashJ
adds 0.2M-4.7M memory overhead for the effective shallow copying strategy with the used-fields
option. The memory overhead for the same copying strategy in the second-chance mode was
negligible.

4.4 Discussion

This section discusses limitations of our technique and threats to the validity of our experiments.

4.4.1 Limitation in Reproducing Failures

ReCrash cannot necessarily reproduce all failures. The following list contains some causes that
might prevent ReCrash from reproducing a failure:

failures dependent on timing This category of failures includes concurrency-related failures such
as failures resulting from a race condition in a multi-threaded application. Monitoring con-
currency timing dependent failures and reproducing them is future work.

failures dependent explicitly on external resources ReCrash may be unable to reproduce a fail-
ure that depends on external resources such as file system, network, hardware devices, etc.

8
http://www. ej -technologies. com/products/jprofiler/overview.html



For example, a failure might depend on loading a file that no longer exists. ReCrash could
be combined with tracing tools for calls that access external resources. This would be less
expensive than performing full tracing.

failures dependent implicitly on external resources Failures may depend implicitly on external
resources. For instance, an argument such as a socket or GUI object cannot be serialized.

failures dependent on global state, or side-effected argument state Failures may depend on un-
serialized state. Or a failure might depend on a part of the argument state that is not stored
to the shadow stack (due to the copying strategy) and is side-effected between the method
entrance and the time of the failure.

We believe that not storing global state is not a great limitation for Java, as noted in the
beginning of the chapter and validated by our experiments. Evaluating the effect of storing
global state on reproducibility is future work.

ReCrash might still be able to reproduce a failure that depends on one of these causes. This
may occur if the program cannot handle some state that is caused from one of this scenarios, but

the state it is recorded in the ReCrash serialized data. In this case the developer might be able to
find, understand, and fix the failure even without understanding the exact condition that led to the
state exposing it.

4.4.2 Buggy Methods Not in the Stack at Time of the Failure

ipublic class SVNCommandLine {
2 private list myURLs;
3

4 public String getURL(int index) {
5 return (String) myURLs.get(index);
6

8 protected void init(String[] arguments) throws SVNException {
9 myURLs = new ArrayList();

to for(int i = 0; i < arguments.length; i++) {
11 .

12 }
13 }
14

Figure 4-15: A code snippet from SVNKit illustrating crash sl. The method causing the crash
(init) will not be on the stack at the time of the crash.

It is possible that a failure is caused by a method that is not on the call stack at the time of the
failure. For example, consider the code in Figure 4-15. This figure contains the source of crash s



(SVNKit bug #87). An index-out-of-bounds exception is thrown if the user omits the URL from
the check-out command. When no URL is supplied, the method init should set a default URL or
throw an exception about a missing URL, but it does neither.

The program in Figure 4-15 will crash on Line 5, and at the time of the crash the call stack
will contain the method getURL but will not contain the method init. ReCrash generates a test
case for each frame in the call stack. The test case ReCrash creates for method getURL calls the
method getURL with 0 as a parameter, and the exception is thrown. This test does not help the
developer to find the reason for the illegal state of myURLs. ReCrash will also generate a test for
the run method (not shown), which calls init. Debugging using the test for the run method will
expose the real bug.

4.4.3 Reusing ReCrash-Generated Tests

The ReCrash-generated tests are not intended to be added as is to the program test suite. The
reason is that the tests de-serialize objects. If the structure of a class changes, the de-serialization
will stop working. However, the generated test cases provide the skeleton of tests, and developers
can replace the de-serialization with normal code.

Developers are not intended to examine the JUnit code of the generated tests to find a bug.
Rather, a developer can use a debugger to examine the test's execution, revealing the cause of the
failure.

4.4.4 Privacy

One of the problems with debugging deployed applications is that users may be reluctant to send
data to the developers for fear of exposing proprietary data. For instance, a user who discovers a
bug in Eclipse might be unable to send proprietary source files to the developer.

While we have not solved this problem, using ReCrash might be seen as an intermediate so-
lution. Sending only the parts of the shadow stack that are used in selected tests is less likely to
contain proprietary data. In addition, it should be possible for a client to prevent ReCrash from
storing sensitive data by marking it (i.e., via program annotations). Another possible solution is
to provide a shadow stack reader to the client, so that the client can review the encoded data and
decide which parts of it (or which tests) are safe to send to the developers.

4.4.5 Threats to Validity

We identify the following key threats to validity.

Systems and crashes examined might not be representative. We might have a system or crash
selection bias. Our experiments use every crash we considered. We did not discard any data
that was not reproducible to us, nor did we find a crash that ReCrash could not reproduce.
However, we examined only 11 crashes from 4 subject systems. It is time-consuming to find
a real bug (by studying bug reports), download an older version of the software, compile it,



and reproduce the bug. We may have accidentally chosen systems or crashes that have better
(or worse) than average ReCrash reproducibility.

All failures are runtime exceptions. Our experiments use failures that manifest as runtime ex-

ceptions, such as null pointer or index out of bounds exceptions. However, ReCrashJ can

monitor user-annotated exceptions or errors as discussed in Section 4.2.1.3. Evaluating
the usefulness of the ReCrash annotation requires a user study. Future experiments and

user studies should consider other types of failures including user-annotated non-exception
points.

4.5 Related Work

4.5.1 Record and Replay

Many existing record and replay techniques for postmortem analysis and debugging [31,32,44,53,
64,90,102,160] are based on three components: checkpoints, logging, and replay. The checkpoint
provides a snapshot of the full state of the program at specific times, while the log records events

between snapshots. The replay component uses the log to replay the events between checkpoints.
By contrast, ReCrash performs a checkpoint at each method entry and has no log of events, only

an in-memory record of stack elements. ReCrash does not replay the entire execution, instead

ReCrash allows the developer to observe the system in several states before the failure, then run

the original program until the failure is reproduced. ReCrash's logging simplicity allows it to be

deployed remotely with relatively low overhead. Most of the previous techniques are designed for
in-house testing or debugging, and have unreasonable overhead for deployed applications.

BugNet [102], ReVirt [53], and FlashBack [136] require changes to the host operating sys-
tem while FDR [160] uses a proprietary hardware recorder. ReCrash, on the other hand, can be
deployed in any environment, and can be used to reproduce a recorded failure in different environ-
ments.

Choi et al. [31], Instant Replay [90], BugNet [103], and many others emphasize the ability to

deterministically replay an execution of a non-deterministic program. They are able to reproduce
race conditions and other non-deterministic failures. In order to achieve this goal, these techniques
either impose a large space and time overhead [31,90], or they only allow replaying a narrow win-

dow of time [103]. Similar to BugNet [103], ReCrash only allows replaying a part of the execution
before the failure. ReCrash is only able to deterministically reproduce a non-deterministic failure
if one of the generated tests captures the state after the non-determinism. ReCrash could be com-

bined with other monitoring tools (storing only some of the environment dependencies) to create
an efficient technique that can reproduce non-deterministic failures.

jRapture [137], test factoring [129], test carving [55], and ADDA [32] capture the interactions
between the program and the environment to create smaller test cases or enable reproducing fail-
ures. These techniques capture a trace, and then run the subject code in a special harness, such as
a mock object representing all interactions with the rest of the system, that reads values out of the
trace whenever the subject code would have interacted with its environment. Test factoring does



this at the level of method calls; ADDA does it at the level of file operations and C standard library
functions. By contrast, our approach does not record a trace; it sets up the system in a particular
start state, and then the system runs unassisted. However, ReCrash can be viewed as writing mock
objects in the method call data. The objects recorded are a faithful representation of the actual
objects down to a given depth. At lower depths their fields contain values that are possibly out of
date, but that in practice are effective in reproducing program behavior.

4.5.2 Test Generation

Contract Driven Development [91] generates test cases using contracts (pre- and post-conditions)
written by developers. If a contract is violated during the execution of an application in debug
mode, CDD captures the transitive state of the arguments to one method (often the failing method).
CDD then attempts to use the captured state to generate a test case that reproduces the violation.
Since the arguments' state is captured after the violation, it is equal to ReCrash's reference copying
strategy. ReCrash might generate more useful tests and reproduce more failures because ReCrash
can store arguments' state before a violation occurs, and because ReCrash generates multiple tests,
one for each method on the shadow stack at the time of the failure. CDD is designed to be used
in the development process, whereas ReCrash can be used either in-house or in-field. ReCrash
monitors the stack and generates a test case without the need for special IDE support.

CnC [40], JCrasher [39], Eclat [110], Randoop [111], and DSDCrasher [41] use random inputs
to find program crash points. Their generated tests may not be representative of actual use, whereas
ReCrash generates tests that reproduce real crashes. Chapter 2 presented Palulu, a model-based
test generation tool that similarly attempt to generates tests based on values observed during an
actual program execution. However, the test generate by Palulu are used for regression testing,
and therefor attempt to exercise similar but different functionality. The tests generate by ReCrash
attempt to imitate the exact original execution to reproduce the problem.

4.5.3 Remote Data Collection

Crash reporting systems such as Dr. Watson [4], Apple's Crash Reporter [1], and Talkback [5] send
a stack back-trace or program core-dump to the vendor. The vendor uses the stack back-trace to
correlate the report to known problems. If several reports share similar characteristics, the vendor
may try to reproduce the original failure. However, reproducing the original failure requires non-
trivial human effort. The core-dump provides one snapshot of the program state at the end of time
(after the crash). ReCrash provides several partial snapshots and enables execution of each of them,
using a test. ReCrash's stored data is smaller than a core-dump and thus is easier to send to the
vendor.

4.6 Conclusion

We have introduced the a test generation technique ReCrash that helps maintainers eliminate bugs
by generating unit tests that reproduce software failures. The tests utilize partial snapshots of the



program state that ReCrash captures on each method execution and records in the case of a failure.
ReCrash is simple to implement, it is scalable, and it generates simple, helpful test cases that
effectively reproduce failures. Our ReCrashJ tool implements the technique for Java.

We have evaluated ReCrashJ with real crashes from Javac-jsr308, SVNKit, Eclipsec, and BST.
ReCrashJ created tests that reproduced every crash we have inspected, and developers found the
generated tests useful for debugging. The performance overhead of programs instrumented by
ReCrashJ was 13%-64% for the shallow copying strategy with used-fields and 0%-1.7% for all
copying strategies in the second-chance mode. In our experiments, ReCrashJ increases memory
usage when using the effective shallow copying strategy with used-fields, by 0.2M-4.7M. The size
of the stored snapshots, the serialized shadow stack, is manageable: 0.5k-448k. ReCrashJ is
usable in real software deployment.

The ReCrashJ tool described in this chapter is publicly available for download from http:
//pag.csail.mit.edu/ReCrash.
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Chapter 5

Reference Immutability Inference

This chapter presents the use of combined dynamic and static analysis, to solve the problem of
finding parameter references that can only be accessed in a read-only way. This problem is tra-
ditionally solved using only static analysis. We proposed to combine a dynamic analysis with a
simple and scalable static analysis to present a scalable and efficient solution.

The read-only information is used in two of our techniques. It is used to improve upon the
efficiency of the ReCrash technique(Chapter 4) by reducing ReCrash's overhead in copying ar-
guments on method entry. It is used to reduce the sizes of models created by Palulu (Chapter 2)
to increase the amount of model state explored in the generation of the regression tests. In this
chapter we present a formal definition of parameter mutability, and an analysis for classifying the
mutability of parameters. Such definition was not previously presented in the literature.

Knowing which method parameters are accessed in a read-only way, and which ones may be
mutated, is useful in many software engineering tasks, such as modeling [24], verification [28,142],
compiler optimizations [33, 130], program transformations such as refactoring [62], test input
generation [10], regression oracle creation [95, 155], invariant detection [59], specification min-
ing [43], program slicing [140, 153], and program comprehension [48, 51].

Unintended mutation is a common source of errors in programs. Such errors can be difficult
to discover and debug, because their symptoms often appear far from the location of the error,
in time or in space. The problem of unintended mutation is exacerbated by the difficulty of ex-
pressing the programmer's design intent. A type system or a program annotation system offers
an approximation to the truth regarding whether particular mutations can occur. The advantage of
such approximations is that they are checkable. However, every statically checkable approximation
prevents certain references, that are never used for mutation, from being so annotated because the
proof of that fact is beyond the capability of the program analysis. A trivial example is that whether
a given mutating statement can be executed is undecidable, but the problem is not a theoretical one
and arises frequently in practice [19, 112, 146, 164]

Informally, reference immutability guarantees that a given reference is not used to modify its
referent. (An immutable reference is sometimes known as a "read-only reference".) This definition
has been the basis of much previous research [19, 22,49, 77, 86, 131, 134, 145, 164]. The informal
description is intuitively understandable, but because it is vague, different people have different
intuitions. For example, "used" might refer to the time the reference is in scope [12, 131] or the



entire execution [22, 145]. The referent might be considered to be only a single object [22, 138], or
also all objects (transitively) referred to by subfields [86, 146, 164]. Modification might refer to the
referent's concrete state [12, 22, 131] or to its abstract state [145, 164]. Modifications via aliases
may be ignored [131] or counted as a mutation [164]. (See Section 5.8.2 for further discussion of
related work.)

A precise definition of parameter reference mutability is a prerequisite to understanding, eval-
uating, or verifying an algorithm or tool. Some research [49, 86, 104, 134] informally describes
reference mutability but does not define the concept precisely. Capabilities [22], Javari [145], and
IGJ [164] use type/annotation systems to formally define different variants of reference immutabil-
ity. Such formal definitions (e.g., type rules) conservatively approximate what mutations can actu-
ally occur: some references, that cannot be used to perform mutation, are mutable according to the
definition. By contrast, our definition is precise: it does not depend on any particular implemen-
tation or approximation. Another difference is that the previous definitions considered mutations
in the entire program execution when determining method parameter mutability. In our definition,
which is inspired by [12, 131], only mutations during the execution of the containing method are
counted when determining parameter mutability. However, our definition easily extends to the
definitions used by Javari, Capabilities, and IGJ. (Section 5.1.3 discusses the extension).

The lack of a precise, formal definition of reference (im)mutability has made it difficult to de-
termine both whether a program analysis tool correctly approximates the ideal, and how closely it
does so. In addition, previous approaches for computing mutability suffered from scalability prob-
lems (static systems) and accuracy problems (dynamic systems). Our research addresses these
issues. We formally define parameter (im)mutability; we present Pidasa, an approach to detect
mutability that combines the strengths of both static and dynamic analysis resulting in a system
with better run-time performance and accuracy. Finally, we qualitatively and quantitatively com-
pare both our definition and our implementation to existing immutability inference systems.

The Pidasa approach to mutability detection combines the strengths of static and dynamic
analyses. Previous work has employed static analysis techniques to detect immutable parameters.
Computing accurate static analysis approximations threatens scalability, and imprecise approxi-
mations can lead to weak results. Dynamic analyses offer an attractive complement to static ap-
proaches, both in not using approximations and in detecting mutable parameters. In our approach,
different analyses are combined in stages, forming a "pipeline", with each stage refining the overall
result.

This chapter focuses on reference immutability of parameters. Parameter immutability is an
important and useful special case of reference immutability, and it is supported by tools against
which we can compare our definition. Our definition extends in a straightforward way to general
reference immutability.

Parameter reference immutability can be computed per method implementation. A type system
for reference immutability may enforce that method overriding preserve mutability of parameters,
and type annotations can be easily computed from the per-implementation reference immutability
information.

Contributions. This chapter makes the following contributions:



* A formalization of a widely-used definition of parameter reference immutability that does
not depend on a type or annotation system.

* The first staged analysis approach for discovering parameter mutability. Our staged approach
is unusual in that it combines static and dynamic stages and it explicitly represents analysis
incompleteness. The framework permits both sound and unsound analyses for immutability.
We examine the tradeoffs involved in such a choice.

* Mutability analyses. Our novel dynamic analysis scales well, yields accurate results (it has
a sound mode as well as optional heuristics), and complements other immutability analyses.
We extend the dynamic analysis with random input generation, which improves the analysis
results by increasing code coverage. We also explore a new point in the space of static
techniques with a simple but effective static analysis.

* Evaluation. We have implemented our framework and analyses for Java, in a tool Pidasa.
We performed two kinds of experiments.

The first kind of experiments, investigates the costs and benefits of various sound and un-
sound techniques, including both Pidasa and that of Silcianu and Rinard [131]. Our results
show that a well-designed collection of fast, simple analyses can outperform a sophisticated
analysis in both run-time performance and accuracy.

The second kind of experiments demonstrates that the our formal definition is useful in

exposing similarities and differences between approaches to immutability. We find that the
evaluated analyses (Pidasa, JPPA [131], Javari [19, 146], and JQual [69]) produce results
that are very close to our formal definition, which confirms the need for a common formal
base.

Outline. The remainder of this chapter is organized as follows. Section 5.1 formally defines
parameter reference immutability and illustrates it on an example (Appendix 5.2 contains a longer
example). Section 5.3 presents our staged mutability analysis framework. Sections 5.4 and 5.5

describe the new dynamic and static mutability analyses that we developed as components in the
staged analysis. Section 5.6 experimentally evaluates various instantiations of the staged analysis
framework. Section 5.7 experimentally compares results computed by the Pidasa inference tool
and other existing tools to the formal definition. Section 5.8 surveys related work, and Section 5.9
concludes.

5.1 Parameter Mutability Definition

Informally, an object pointed by an immutable parameter reference cannot be changed. However,
there exist different interpretations of what is considered a change exist. For instance, the change
might be to the set of reachable references from the parameter (deep), or to the references immedi-
ately reachable from the parameter (shallow). The change might happen during the method call, or
after the method call. A change might happen through an aliasing reference, without even referring



to the parameter in the method (reference vs. object immutability). Thus, a formal definition of
parameter reference mutability is non-trivial.

Reference immutability differs from object immutability, which states that a given object can-
not be mutated through any reference whatsoever. Both immutability variants have their own
benefits. Reference immutability is more useful for specifying that a procedure may not mod-
ify its arguments, even if the caller reserves the right to do so before or after the procedure call.
Object immutability is more useful, for example, when optimizing a program to store constant
data in a shared section or read-only memory. Reference immutability is more fine-grained-
reference immutability may be combined with an alias and escape analysis to infer object im-
mutability [19, 131], but not vice-versa.

Section 5.1.1 informally defines parameter mutability. Section 5.1.2 demonstrates the intuition
on an example. Section 5.1.3 formalizes parameter mutability. Section 5.1.4 and Appendix 5.2
give examples of the formal definition.

5.1.1 Informal definition

Parameter p of method m is reference-mutable if there exists any execution of m during which p is
used to mutate the state of the object pointed to by p. Parameter p is said to be used in a mutation,
if the left hand side of the mutating assignment was p or was obtained from p via a series of field
accesses and copy operations during the given execution. (Array accesses are analogous. The
index expression is not considered to be used; that is, a[b.f].f = 0 is not a mutation of b.) The
mutation may occur in m itself or in any method that m transitively calls. The state of an object o
is the part of the heap that is reachable from o by following references, and includes the values of
reachable primitive fields. Thus, reference immutability is deep-it covers the entire abstract state
of an object, which includes the fields of objects reachable from the object.

If no such execution (in all possible well-typed invocations of the method) exists, the parameter
p is reference-immutable.

For example, in the following method:

void f(C c) {
D d = c.d;
E e = d.e;
e.f = null;

}

parameter c is used in the mutation in the last statement since the statement is equivalent to
c.d.e.f = null.

The definition presented in this section, as well as its formalism in Section 5.1.3, is perfectly
precise, but it is not computable, due to the quantification over all possible executions. Any tool
can only infer an approximation of this definition of reference-mutability. (By contrast, some other
attempts at defining mutability are based on a computable algorithm, but that does not capture the
actual behavior of the program.) Section 5.7 compares several mutability inference tools, including
our Pidasa tool (Section 5.3), to the definition.



5.1.2 Immutability Classification Example

In the code in Figure 5-1, parameters p - p 5 are reference-mutable, since there exists an execution

of their declaring method such that the object pointed to by the parameter reference is modified via

the reference. Parameters p6 and p7 are reference-immutable.
mutable parameters:

* pl may be directly modified in modifyParaml (line 8).

* p2 is passed to modifyParaml, in which it may be mutated.

* p3 is mutable because line 19 modifies p3.next.next.

* p4 is directly modified in modifyAll (line 18), because the mutation occurs via reference
p4.

* p5 is mutable because the state of the object passed to p5 can get modified on line 19
via p5. This can happen because p4 and p3 might be aliased: for example, in the call
modifyAll(x2, x2, xl, false). In this case, the reference to p5 is copied into c and then
used to perform a modification on line 19. Neither p3 nor p5 is considered reference mutable
as a result of line 18 even though they might be aliased to p4 at run-time. I.e., the mutating
assignment is equal to p5.next = null.

immutable parameters:

* p6 and p7 are reference-immutable. No execution of either method doNotModifyAnyParam
or doNotModifyAnyParam2 can modify an object passed to p6 or p7.

5.1.3 Formal Definition

We present our formal parameter mutability definition in three steps. The first step defines a core
object-oriented language (Section 5.1.3.1). The second step defines the evaluation rules (Sec-

tion 5.1.3.2) (i.e., the operational semantics) that compute whether a parameter reference is used
in a mutation. The third step (Section 5.1.3.3) formally defines parameter reference-mutability
(Definition 1) by adding universal quantification over all possible well-typed invocations.

Our definition, described in this section, is quantified over all well-typed expressions. As a
consequence, our definition does not depend on any specific execution, although it is defined using
operational semantics in Section 5.1.3.1.

5.1.3.1 Core Language

We define reference-mutability in the context of Mut Lightweight Java (MLJ), an augmented ver-
sion of Lightweight Java (LJ) [145], a core calculus for Java with mutation. LJ extends Feath-
erweight Java (FJ) [80] to include field assignment with the set construct. To support the field



class C {
public C next;

5class Main {
6 void modifyParaml(C pl, boolean dolt) {
7 if (doIt) {
8 pl.next = null;
9 }

10 }

I I

void modifyParamlIndirectly(C p2,
modifyParaml(p2, dolt);

boolean dolt) {

void modifyAll(C p3, C p4, C p5, boolean dolt)
C c = p3.next;

p4.next = p5;

c.next = null;
modifyParamlIndirectly(p3, dolt);

}

void doNotModifyAnyParam(C p6) {
if (p6.next == null)

System.out.println("p6.nextuisnull");
I
void doNotModifyAnyParam2(C p7) {

doNotModifyAnyParam(p7);
I

Figure 5-1: Example code that is used to illustrates parameter immutability. All non-primitive
parameters other than p6 and p7 are mutable.
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assignment, LJ adds the store (S) that records a mapping from each object to its class and field

record. LJ uses the field record (T) to record a mapping from each field to the values they contain.

The syntax of MLJ is presented in Figure 5-2. The syntax of MLJ is identical to the syntax of

LJ without the parts of LJ that are related to generics and wild-cards. Those parts are irrelevant

to reference immutability. Control flow constructs such as if only propagate, never introduce,
mutation, so adding them to MLJ would only clutter the presentation. Similarly, arrays offer no

more insight than field accesses. Other features, such as local variables, can be emulated in MLJ.

The definition ignores reflection, but some tools handle it, including the dynamic analyses of our

Pidasa tool (Section 5.3).

Q class C extends C {Cf; K M} class declarations

K ::= C(C f) {super(f); this.f = f; } constructor declarations

M ::=C m(C x){ return e; } method declarations
e ::= x expressions

I e.f
e.m(e)

I new C(e)
set e.f = e then e

C class names
m method names
f field names
x parameter names

Figure 5-2: Syntax of Mut Lightweight Java: same as Lightweight Java [145] without generics
and wild cards. X is a vector of X. The set syntax was chosen to avoid the complications of

allowing multiple expressions within a method. Method arguments and assignment expressions
are evaluated left-to-right.

Mut Lightweight Java allows us to define mutability in the context of the underlying structure
of Java, without being overwhelmed by the complexity of the full language. Since the definition is
quantified over all possible executions, it does not depend on any specific execution, even though
it uses operational semantics mechanism.

To avoid clutter, in the description below we present the operational semantics (evaluation)
rules, but omit the typing rules, which are irrelevant to reference immutability.

Figure 5-3 shows the notations of MLJ that are used in the operational semantics, with the
changes from LJ shown shaded. A value v = o, MD in MLJ is a pair containing the corresponding
value o from LJ, and a mutability set M. If the value v can be modified, then the formal parameters
in lo, M are parameter reference-mutable. The ret expression provides a hook for removing
formal parameters from mutability sets when a method exits. A ret expression cannot be written
by a user, but is created during the evaluation of a program. The mutability store (n) contains the
set of parameters that have been discovered to be reference-mutable.



::= ret ereturn expressions

S ::= 0 mutability sets

I lC.m'x, .... parameters

v ::= o M values : pairs of object, mutability set

S ::= 0 stores

S, o = (C, F) object bindings
F ::= 0 field records

I 7, f = v field bindings
::= 0 mutability stores

C.x ... mutable parameters
o objects
i natural numbers

Figure 5-3: Mut Lightweight Java notations used in the operational semantics (Figure 5-4).
Changes from Lightweight Java [145] are shaded.

5.1.3.2 Evaluation Rules

In MLJ, evaluation maintains a mutability set M for each value v. M contains a set of parameters
that were used in obtained the value. A formal parameter C.m.x is added to set M for a given
value v if either v was the value bound to parameter C.m.x or if v was a result of a dereference
operation from a value that had C.m.x in its mutability set. On exit from the ith invocation of m,
evaluation removes from all mutability sets, any parameters added on the corresponding method
entry. A modification to a value causes the parameters in the value's mutability set to be classified
as mutable.

Figure 5-4 shows the operational semantics rules for MLJ. Each reduction rule is a relation-
ship, (e, S, 9) --- (e', S', K'), where expression e with store S and mutability store 2 reduces
to expression e' with store S' and mutability store 92'. The £2 is only updated when a parameters
is assigned. In this case the rules add all the parameters that were used to obtain the mutated
reference to the K2. The changes from LJ, in computation and congruence rules, are shaded in Fig-
ure 5-4. The congruence rules remain essentially unchanged between LJ and MLJ. We describe
each computation rule, and the additional computation in MLJ.

[R-FIELD] This rule evaluates field accesses.

LJ: locates the value v2 stored in the field and returns it.

MLJ: adds the mutability set M,,, of the dereferenced value vl, to the mutability set of
v2. The field access causes v2 to be accessed from the parameters in Mv,, as well as the
parameters that were previously used to obtain v2 (i.e., the mutability set of v2 ).

[R-INVK] This rule evaluates method invocations.
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Computation:

S(o 1) = (C, T) T(fi) = V2 ,

[R-FIELD]

S(o) = (C, T) mbody(m, C)= xeo

(v.m(), S, ) (, ret m" [ ,/x, M igthis D /thisleo, S, )

o V dom(S) J- = [I " V]

(new C(v), S , ) ( a ) , S[o - (C, F)] , )

S(oi) = (C, T)

(set vl.fi = V2 then eb, S , --) (eb, S[01 (C, [fi V2 U removeSuperscript(M

[R-INVK]

[R-RET]

[R-NEw]

[R-SET]

Congruence:

[RC-FIELD]

eom(eo, ) -- (e.(e), S' )
(eo.m(e), S , -- (eo .m(e), S' 0')

(v.m(-, ej, e), S , - (v.m(-, e', -e), S' , f2'

(new C(, ej, e), S > , ~ (new C(i, e, e), S' )

(eo, S , o -- (e o S , KY)

(set eo.f = ev then eb, ) -, - (set e0.f = ev then eb, S' )

y, S , ( (e', S' , '

(set v.f = ev then eb, S ) -- (set v.f = e' then eb, S' ,

[RC-INVK-REcv]

[RC-INVK-ARG]

[RC-NEw-ARG]

[RC-SET-LHS]

[RC-SET-RHS]

[RC-RET]

Figure 5-4: Operational semantics (evaluation rules) for Mut Lightweight Java. Changes from
Lightweight Java [145] are shaded.
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LJ: works in two stages. First, it finds the correct method m (using auxiliary function mbody
which returns a pair x.e where x are m's formal parameters and e is m's body). Second,
it replaces the call with the body of m and replaces each formal parameter with the actual
parameter.

MLJ: updates the mutability set of each formal parameter with the corresponding super-
scripted (with number of invocations) formal parameter, e.g., m'.x. This rule also adds a
ret expression call. The ret expression enables the [R-RET] rule to remove the same su-
perscripted (with number of invocations) formal parameters from all the relevant mutability
sets when the method exits. This rule uses the auxiliary method invocations which returns
the number of times the method m was invoked (also ensures that i is fresh).

[R-RET] This rule evaluates ret expressions and it does not exist in LJ.

MLJ: removes superscripted (see rule [R-INvK]) method formal parameters from all muta-
bility sets. The function remove removes the parameters of m' from the mutability set of the
returned value v. The function removeAll does the same for all other values in the store.

[R-NEw] This rule evaluates object allocations.

LJ: creates a newly-allocated object.

MLJ: sets the mutability set of the newly-allocated object o to the empty mutability set.

[R-SET] This rule evaluates set expressions, i.e., field writes.

LJ: updates the value stored in a field for a given object.

MLJ: adds all the un-superscripted parameters (auxiliary method removeSuperscript)
from the mutability set of the modified object to the mutability store i2.

5.1.3.3 Reference-Immutability Definition

We define reference-immutable and reference-mutable parameters:

Definition 1. (parameter reference mutability) Parameter x of method m of class C is reference-
mutable if there exists an expression e such that C.m.x c E2 at the end of the evaluation of e.
Otherwise, p is reference-immutable.

To simplify the presentation in the rest of this section, we will refer to C.m.x as x and to C.m
as m. Theorem 1 demonstrates the properties of Definition 1 and its equivalence to the intuitive
informal definition. An auxiliary Definition 2 formalizes the notion of a series of dereferences
needed for Theorem 1.

Let 0(i, m, e) be the evaluation of the it invocation (dynamically) of m in e. We write it as q
when the parameters can be inferred from context.

Let vX = lo, M, U m'.x be the value passed to x at the start of q (Rule [R-INVK]).
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Definition 2. We inductively define 60(x), the executed dereference set of x during the first j eval-

uation steps of 0.

6(x) = {vX)
6(x) = 6 (x) U 02, Mv U MV40 if the jthstep is [R-FIELD] and vl E 6 Jl(x)

(x) = ,(x) otherwise

Let 6"(x) be the set of executed dereferences at the end of b.

Theorem 1. A parameter x is reference-mutable iff there exist v, i, m, e, j such that v E 6"(x) and

[R-SET] is evaluated on v.f during q.

Before proving Theorem 1 we present two auxiliary lemmas. Lemma 1 states that mi.x can exist

in a mutability set only during q. Lemma 2 states that if a value v is in the executed dereferences

of a parameter x, then v's mutability set contains x.

Lemma 1. Suppose that v = lo, M,) and mi.x E Mv. Such a value v can exist only during 4.

Proof mi.x is created and added to a mutability set in rule [R-INVK] when starting the evaluation

q. [R-RET], which evaluates at the end of 0, removes all parameters of the form m'.x from all

mutability sets. o

Lemma 2 presents the equality of the mutability set and the set of "used" references.

Lemma 2. Let v = lo, M. Then mi.x e M1 iff v C 6 (x).

Proof Proof by induction on j where v = vi such that vj E 60(x) A v t 6 _(x).

If j= 1 then v = vx0 and mi.x e vx by definition.

Otherwise, from Definition 2

S= 102, v . U M A v E 60 (x).

By the induction assumption mi.x E M 1,. Thus m'.x e Mvj.

- From mi.x E Mv it follows that m'.x was added to Mv in either rule [R-INVK] or rule

[R-FIELD] (the only two rules that augment a mutability set).

If mi.x was added to My in rule [R-INVK] then v E 6(x).

If m'.x was added to Mv in rule [R-FIELD] then

v = 102, Mvl U Mv24 and m'.x E Mv, or m'.x E My2.

The rest of the proof follows by induction on the length of the executed [R-FIELD] from a value

that contains m'.x in its mutability set. o

The proof of Theorem 1 follows directly from Lemma 2 and Lemma 1.
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Proof ---- By Definition 1,

3e such that m.x E Q2 during the evaluation of e.

Since rule [R-SET] is the only rule creating a larger QZ it follows that

3v = jo, Mj such that m'.x e M, and [R-SET] is evaluated on v.f.

By Lemma 1, v can only exist during . The proof now follows directly from Lemma 2.
<- By v E E (x) and Lemma 2,

mi.x E M.

Since [R-SET] is evaluated on v.f during 0, we get m'.x E Q. By Definition 1, x is mutable. 1

Our definition accounts for mutations that occur during the dynamic extent of a method invoca-
tion. In some other mutability definitions [22, 145, 164], if a parameter's value escapes to another
context in which the value is later mutated, then the parameter is mutable in the original method
(e.g., a getter method). Our framework accommodates both varieties of definition: removing rule
[R-RET] converts Definition 1 into the other variant. In the revised definition, a reference is not
removed from the mutability set when its method exits.

The rest of this chapter uses mutable and immutable to refer to parameter reference mutable
and parameter reference immutable, respectively.

5.1.4 Examples

We illustrate Definition 1 on two example functions in Figures 5-5 and 5-6. Each example contains
a program in MLJ and a table with the evaluation of MLJ operational semantics on the program.
Each line in the table presents an expression to be evaluated, the state of the stores corresponding
to the expression, and the next rule to apply. Similarly to Featherweight Java [114], we treat Obj as
a distinguished class name whose definition does not appear in the class table. Obj has an empty
constructor, no methods, and no fields. In addition, irrelevant (to mutability) details such as calls
to super in constructors and the extends keyword are omitted.

Example: Classifying a modified receiver as mutable (Figure 5-5)
The parameter thi s of the function m in Figure 5-5 is mutable because line 4 modifies thi s.f.

The first two lines in the MLJ evaluation show the evaluation of the [R-NEw] rules. These rules
creates the initial state of the store, and all the values created in them have empty mutability sets.
The rule [R-INvK] is applied to the expression in step 3. Since it is the first invocation of the method
m, parameters m' and m'.this are added to the mutability sets of the newly created values. The rule
[R-SET] is applied to the expression in step 4. Since the object 03 is modified, the parameters in its
mutability set {m'.this} are added to the store of mutable parameters. Finally, the evaluation of the
rule [R-RET] signals the exit from method mi and thus it removes all parameters superscripted by
1 from the mutability sets.

Example: Classifying aliased parameters (Figure 5-6)
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1 class B {
2 Obj f;
3 B(){ this.f = new Obj( }
4 Obj m(Obj p){ return set this.f = p then p }

5
6 new B().m(new Obj())

expression S KI next rule

1 new BO.m(new ObjO) e 0 [R-NEw]

2 new B().m((ol, 0 ) {(o, (Obj, 0)) 0 [R-NEw]

3 (03, 0).m( ol, 01) (o01, (Obj, 0)), (02, (Obj, 0)), 0 [R-INVK]

(03, (B, {f : (02, 0 )))}

4 ret 1 set (o3 , {ml.this}.f = (ol, m'.p }) then (ol, {m .p}) ... 0 [R-SET]

5 retm1 (oi, {m'.p} {(ol, (Obj, 0)), (02, (Obj, 0)), {m.this} [R-RET]

(03, (B, (f : Jol, {m1.p }))
6 (oi, 1 {(o, (Obj, 0)), (02, (Obj, 0)), {m.this) Done

(03, (B, {f : o01, 01))))

Figure 5-5: Classifying a mutable parameter. The Mut Lightweight Java program calls a method

that updates a field in an object. The figure shows the evaluation of the program using the rules of

Figure 5-4. After the rule [R-SET] is applied (step 4), the parameter m.thi s is classified as mutable.

Symbol ... means that a store does not change between evaluation steps.

In function m (Figure 5-6), reference pi is mutable due to the modification in line 5. However,

reference P2 is reference-immutable-it is never used to make any modification to an object during

the execution of m. The evaluation table in Figure 5-6 demonstrates that parameter P2 of function

m is not reference-mutable in the call m(o, o) (i.e., even when parameters are aliased). When the

execution finishes, m.p 2  K2 and thus it is not classified as mutable during the evaluation of the

call new BO.nO or any other call for that matter.

Our definition is concerned with reference mutability, which, together with aliasing informa-

tion, may be used to compute object mutability. In the example of function m in Figure 5-6, the

information that parameter p2 is reference-immutable can be combined with information about pi

and P2 being aliased in the call m(o, o) to determine that, in that call, both objects may be modified.

Appendix 5.2 contains an additional, more involved, example of an evaluation of MLJ.

5.2 More Complicated Example of Reference Immutability

This section presents an additional example of Definition 1. We apply Definition 1 to the method

modifyAll of Figure 5-1 (which is problematic for JPPA).

The left hand side of figure 5-7 contains the partial Java code for a simplified version of the

method modifyAll of figure 5-1. The right hand side contains the same method after in MLJ.

It is obvious that parameters P2 and P3 of method m are reference-mutable (line 2 modifies

P2, and line 4 modifies p 3 .f). It is harder to see that parameter pi is also reference-mutable. pi
is mutated when, for example, parameters p2 and p3 are aliased (like in the call m(x, y, y)). In

this case, the state of the object passed to pi is modified on line 4 using a series of dereferences
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1 class B{
2 Obj f;
3 B(){ this.f = new Obj() }
4 Obj n(){ return this.m(this, this) }
5 B m(B pl, B P2)( return set pl.f = new Obj() then this }
6

7 new BO.no

expression S Q next rule

1 new B().nO 0 0 [R-NEw]

2 (o2, 0D.no) (O, (Obj, 0)), (02, (B, f : (ol, 0 }))} 0 [R-INVK]

3 ret n1  
02, (n1 .this)).m(o2, {n1 .thisl}, 02, {n1 .thisl}) ... 0 [R-INVK]

4 ret ni ret m1 set ( 2, {n 1.this, m'.pi).f = 0 [R-NEw]

new Obj() then o2, {n .this, m' .this})

5 ret n1 ret mi set (o2, {n'.this, m..PI}0D.f =  (ol, (Obj, 0)), (o2 , (B, (f o: l, 00})) 0 [R-SET]

(03, 0D then (02, {n'.this, m'.this}D, (03, (Obj, O))}

6 ret n i ret m i (02, {n.this, m'.this} ... n.this, m.pi [R-RET]

7 ret n I 
(02,{n

1 .this} ... n.this, m.pl [R-RET]

8 02, 0 ... n.this, m.pi

Figure 5-6: Classifying a mutable parameter while leaving another parameter, that points to a
modified object, non mutable. Symbol ... means that a store does not change between evaluation
steps. For the lack of local variables in the language, the utility method n sends the same object
(this) as both parameters of the method m. The figure demonstrate how 2 parameters are classified
as mutable, using the rules of Figure 5-4. After the rule [R-SET]is applied to the expression in
line 5, the parameters n.this and m.pI are classified as mutable. Parameter m.p 2 can not be in the
modified set of any parameter in the body of method m and thus there is no execution that will
modify m.p 2, and so m.p 2 is defined as immutable.

from pi. Sglcianu [130] presents this method as an example for unsoundness in his static analysis.
Slcianu's tool, JMH, wrongly classifies parameter pi as immutable.

Figure 5-8 presents the application of Definition 1 to method m by evaluating m in MLJ. Step 2
contains the expression and the stores that are the results of evaluating all the initial constructors.
Step 3 is the result of invoking the method n. Step 4 is the result of invoking the method m.

Notably, P2 is replaced with 06, {n1.P2, m1.P2) and P3 is replaced with the same object (06) but

with a different value (06, {n .p2 , 1 .P3 }. After evaluating the first set expression (corresponding

to p 2.f = pl), the parameters n.p 2 and m.p2 in the mutability set of 106, {n1 P2, m1 .P2 }D are classified
as mutable. Step 6 presents the result of evaluating the field access. The resulting object 04 has the

combined mutability set of both its previous value o4, {n1.pl, m' .Pl ) (from the store) those of the
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1 void m(B pl, C P2, C p 3) { 1 class A extends Object {
2 pz .f = pi; 2 A(){ super();
3 B1 = p3.f; 3 A n(B pl, C p2){ return this.m(pl, p2, P2)
4 1.f = this; 4 A m(B pl, C p2, C P3){ set p2.f = 1 then q(p3.f) }
5 } 5 A q(B 1){ return set l.f = this then this }

6
7 class B extends Object {
8 Af;
9 B(A f){ super(); this.f = f }
10 }

11 class C extends Object {
12 Bf;
13 C(B f){ super(); this.f = f }
14 1

new AO.n(new B(new AO), new C(new B(new AO)))

Figure 5-7: The left-hand side contains a simplified version of method modifyAll from Figure 5-

1. Parameters P2 and P3 are mutable since they are mutated in lines 2 and 4. Parameter pi is

also mutable. It will be mutated when parameters P2 and p3 are aliased, for example in the call

m(x, y, y). The right-hand side contains the same method and the call m(x, y, y), converted to MLJ.

Since MLJ has no local variables, we have converted the local variable 1 into a method's parameter

(method q). Method n passes the same parameter twice to method m, used to implement the Java

call m(x, y, y).

dereferenced value 1o6, {n1.p2, ml.p3} . When that value is modified in step 7, all the parameters in

its mutability set (n .p l , m '.p, n P2, m1 .P3) are classified as mutable. Thus definition recognizes

that parameter m.pi is mutable.

5.3 Staged Mutability Analysis

The goal of any parameter-reference-mutability analysis is the classification of each method pa-

rameter (including the receiver) as either reference-mutable or reference-immutable.

In Pidasa approach, mutability analyses are combined in stages, forming a "pipeline". The

input to the first stage is the initial classification of all parameters (typically, all unknown, though

parameters declared in the standard libraries may be pre-classified). Each stage of the pipeline

refines the results computed by the previous stage by classifying some unknown parameters. Once a

parameter is classified as mutable or immutable, further stages do not change the classification. The

output of the last stage is the final classification, in which some parameters may remain unknown.

Throughout this chapter, two objects are aliased if the intersection of their states contains at

least one non-primitive object (the same object is reachable from both of them).

Our dynamic and static analyses complement each other to classify parameters in Figure 5-1
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next rule
expression IS I 10

new AO.n(new B(new A()), new C(new B(new AO)))

(oj, OD.n(( 4, 0D, (06, 0))

ret n ol, {n'.this)0.m(( o4, {n'.pD, O06, Inl.p2, 06, in.p21p)
ret n ret m set o06 , n1 .p 2 , mlP 2 .f =

a04, {nI .p, m1.p l  then this.q(06, {n1 .P2, m 1 .p3}.f)
ret n1 ret m1 this.q((o6 2,{n'P2, ml P3 }.f)

ret n ret m' this.q((o4, {n.p2, m 1.p3, .p1, m'.pl )
ret n ret m1 ret q' set (0 4 , {n.p2, m .P3, n1P, 1 .pi,q' 1pl .- f

~o0, n'.this, m'.this, ql.this}) then (~o, {n1 .this, m .this, q '.this})

ret n1 ret m1 ret q1' ol, {n1.this, m'.this, q'.thisD

ret ni ret m' ol, {n'.this, m'.this}D

ret n (oi, {n'.this} p

(o, OP

0o 0
0

((01, (A, 0)), (02, (A, 0)), (03, (A, 0))

(04, (B, {f :02, 0D})), (05, (B, If : (03, 0 }))

(o6, (B,{f : o5, D)))

[(01, (A, 0)), (02, (A, 0)), (03, (A, 0))

(04, (B, If : 02, OD)), (o5, (B, If : (03, O)))

((o 1, (A, 0)), (02, (A, 0)), (03, (A, 0))

(05, (B, {f : 03, 0o }))
(06, (B, If : 04, {n .pl, ml.p 1}))}
((oi, (A, 0)), (02, (A, 0)), (03, (A, 0))

(04, (B, {f : 01, n 1 .this, m1 .this))), ql.this

(0 5 , (B, {f : 03, 0D))

(06, (B, {f : (04, {nl PI,ml P1

(o01, (A, 0)), (02, (A, 0)), (03, (A, 0))
(04, (B, {f : 01, n 1.this, ))m .this ))

(05, (B, {f :03, O} ))(06, (B, {f : 04, In pl,mp l}MM

{(01, (A, 0)), (02, (A, 0)), (03, (A, 0))
(04, (B, {f : jol, n . h i s}) )

(05, (B, {f : (03, 00))
(06, (B, If : 04,00 l ))
(06, (B,{If: o4, 00 )

[R-NEw]

[R-INVK]

[R-INVK]
[R-SET]

[R-FIELD]

[R-INVK]

[R-SET]

[R-RET]

0

0

n.p2, m.p2

n.P2, m.p2, m.P3

n.pi, m.pi, q.pi

n.p2, m.p2, m.p3

n.pi, m.pl, q.pi

n.p2, m.P2, m.p 3

n.pl, m.pl, q.pl

Figure 5-8: Applying Definition 1 to the code in Figure 5-7. The figure shows the evaluation using the rules of Figure 5-4. Symbol

... means that a store does not change between evaluation steps. After the rule [R-SET]is applied in step 7, the parameter m.pl

is classified as mutable. The mutation to this parameter is not obvious and it depends on the aliasing between the other two

parameters P2 and P3.

I

[R-RET]

[R-RET]

Done



into mutable and immutable, in the following steps:

1. Initially, all parameters are unknown.

2. A flow-insensitive, intra-procedural static analysis classifies pi, p4, and p5 as mutable. The
analysis classifies p6 as immutable--there is no direct mutation in the method and the pa-
rameter does not escape.

3. An inter-procedural static analysis propagates the current classification along the call-graph.
It classifies p2 as mutable since it is passed to an already known mutable parameter, p 1. It
also classifies parameter p7 as immutable since it can only be passed to immutable parame-
ters.

4. A dynamic analysis classification of p3 depends on the given example execution. The dy-
namic analysis classifies p3 as mutable if a method (similar to the main method below)

void main() {
modifyAll(xl, x2, x2, false);

}

is supplied or generated (see Section 5.4.4). Otherwise, the dynamic analysis classifies p3
as unknown.

Our staged analysis correctly classifies all parameters in Figure 5-1. However, this example
poses difficulties for purely static or purely dynamic techniques. On the one hand, static tech-
niques have difficulties correctly classifying p3. This is because, to avoid over-conservatism, static
analyses often assume that on entry to a method all parameters are fully un-aliased, i.e., point to
disjoint parts of the heap. In our example, this assumption may lead such analyses to incorrectly
classify p3 as immutable (in fact, Slcianu uses a similar example to illustrate the unsoundness
of his analysis [130, p.78]). On the other hand, dynamic analyses are limited to a specific execu-
tion and only consider modifications that happen during that execution. In our example, a purely
dynamic technique may incorrectly classify p2 as immutable if during the execution, p2 is not
modified.

Combining mutability analyses can yield an analysis that has better accuracy than any of the
components. For example, a static analysis can analyze an entire program and can prove the
absence of a mutation, while a dynamic analysis can avoid analysis approximations and can prove
the presence of a mutation.

Combining analyses in a pipeline also has performance benefits-a component analysis in a
pipeline may ignore previously classified parameters. This can permit the use of techniques that
would be too computationally expensive if applied to an entire program.

The problem of mutability inference is undecidable, so no analysis can be both sound and
complete. An analysis is i-sound if it never classifies a mutable parameter as immutable. An
analysis is m-sound if it never classifies an immutable parameter as mutable. An analysis is
complete if it classifies every parameter as either mutable or immutable.
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In our staged approach, analyses may explicitly represent their incompleteness using the un-
known classification. Thus, an analysis result classifies parameters into three groups: mutable,
immutable, and unknown. Previous work that used only two output classifications [124, 126] loses
information by conflating parameters/methods that are known to be mutable with those where
analysis approximations prevent definitive classification.

Some tasks, such as many compiler optimizations [33, 130] require i-sound results (unless the
results are treated as hints or are used online for only the current execution [159]). Therefore, we
have i-sound versions of our static and our dynamic analyses. However, other tasks, such as test
input generation [10], can benefit from more complete immutability classification while tolerating
i-unsoundness. For this reason, we have devised several unsound approximations to increase the
completeness (recall) of the analyses. Clients of the analysis can create an i-sound analysis by
combining only i-sound components. Other clients, desiring more complete information, can use i-
unsound components as well. Figure 5-9 summarizes the soundness characteristics of the analyses
presented in this chapter.

Analysis Name Section i-sound m-sound
dynamic D 5.4.2 /* "
dynamic heuristic A DA 5.4.3 -

dynamic heuristic B DB 5.4.3 /* -

dynamic heuristic C DC 5.4.3 /* -

dynamic heuristics A,B,C DH 5.4.3
static intraprocedural S 5.5.2 / -

static intraprocedural heuristic SH 5.5.2.1
static interproc. propagation P 5.5.3 / ,t
JPPA [131] J 5.6.2 - /*
JPPA + main JM 5.6.2 - /*
JPPA + main + heuristic JMH 5.6.2

Figure 5-9: The static and dynamic component analyses used in our experiments. "J*" means the
algorithm is trivially sound, by never outputting the given classification. "'t" means the algorithm
is sound but our implementation is not.

Some previous work [124, 126, 131] has used the term "sound" to denote i-sound while being
m-sound by avoiding from classifying any mutable parameters or impure methods. [131] provide
proofs of the i-sound property and optionally provides m-unsound mutability classifications in its
output. Mutable parameters and/or impure methods classifications are useful even for applications
that are using only immutable parameters and/or pure methods, since they allows a better sense of
the recall achieved by the analysis.

Salcianu's algorithm is not i-sound: Consider the classification of the method modi fyAll().p3
of Figure 5-1. p3 is reference-mutable according to definition 1 and object-mutable by Slcianu's
definition. However, Sdlcianu's algorithm make the assumption that on top-level entry to a method
all parameters are fully un-aliased (i.e., point to disjoint parts of the heap) since accounting for
all possible side effects under all possible aliasing conditions would yield unusable conservative
results in his static analysis. Therefore, in this case his algorithm will unsoundly classify cl as
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immutable.
In the context of compiler optimizations, misclassifying a mutable parameter as immutable

can lead to impermissible changes in behavior, but misclassifying mutable can only lead to lost
optimization opportunities. This lead previous work to work under the assumption that a muta-
ble parameter can never be classified as immutable. In certain contexts, such as many software
engineering tasks, scalability and accuracy are key metrics of quality, so the assumptions made
by previous work are unnecessarily restrictive. As one example, test suite generators should use
methods with side effects in the bodies of test cases, and should use methods without side effects
as "observers" in their assertions [10, 95, 155]. Misclassification is not fatal: if a method is mis-
takenly marked as side-effect-free, this merely reduces test suite coverage, and even if a supposed
observer actually modifies some of its parameters, a test case can still be effective in revealing
errors. Similar arguments apply to invariant detection and specification mining. Program under-
standing is yet another domain in which perfect classification is not essential, since humans easily
handle some inaccuracy [101]. Human judgment is required in any event, because automatically
generated results do not necessarily match programmer abstractions (e.g., automatic analyses do
not ignore modifications to caches).

To address the needs of different mutability analysis contexts, the analyses presented in this
chapter can be combined in pipeline with varying precision and recall properties. The client of the
analysis can create an i-sound analysis by combining only i-sound components (all of our analyses
have i-sound variations) in the pipeline. It is also possible to combine i-unsound components in
the pipeline to trade precision for improved recall.

5.4 Dynamic Mutability Analysis

Our dynamic mutability analysis observes the program's execution and classifies as mutable those
method parameters that are used to mutate objects. Our analysis does not implement the formal
rules of Definition 1. It implements a simpler version of the formal rules that is designed for
optimization.

The algorithm is m-sound: it classifies a parameter as mutable only when the parameter is
mutated. The algorithm is also i-sound: it classifies all remaining parameters as unknown. Sec-
tion 5.4.1 gives the idea behind the algorithm, and Section 5.4.2 describes an optimized implemen-
tation.

To improve the analysis results, we developed several heuristics (Section 5.4.3). Each heuristic
carries a different risk of unsoundness. However, most are shown to be accurate in our experiments.
The analysis has an iterative variation with random input generation (Section 5.4.4) that improves
analysis precision and run-time.

5.4.1 Conceptual Algorithm

The conceptual algorithm is based on Definition 1. The algorithm maintains the mutability set for
each reference during the program execution. The mutability set is the set of all formal parameters
(from any method invocation on the call stack) whose fields were directly or indirectly accessed
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to obtain the reference. When a reference x is side-effected (i.e., used in x.f = y), all formal
parameters in x's mutability set are classified as mutable. The algorithm implements the following
set of data-flow rules based on the evaluation rules in Section 5.1.3.2.

1. On method entry, the algorithm adds each formal parameter (that is classified as unknown)
to the parameter set of the corresponding actual parameter reference.

2. On method exit, the algorithm removes all parameters for the current invocation from the
parameter sets of all references in the program.

3. Assignments, including pseudo-assignments for parameter passing and return values, prop-
agate the parameter sets unchanged.

4. Field accesses also propagate the sets unchanged: the set of parameters for x.f is the same
as that of x.

5. For a field write x.f = v, the algorithm classifies as mutable all parameters in the parameter
set of x.

The next section presents an alternative algorithm that we implemented.

5.4.2 Optimized Dynamic Analysis Algorithm

Maintaining mutability sets for all references, as required by the algorithm of Section 5.4.1, is
computationally expensive. To improve performance, we developed an alternative algorithm that
does not maintain mutability sets. The alternative algorithm is i-sound and m-sound, but is less
complete-it classifies fewer parameters. In the alternative algorithm, parameter p of method m
is classified as mutable if: (i) the transitive state of the object that p points to changes during the
execution of m, and (ii) p is not aliased to any other parameter of m. Without part (ii), the algorithm
would not be m-sound-immutable parameters that are aliased to a mutable parameter during the
execution might be wrongly classified as mutable.

The example code in Figure 5-10 illustrates the difference between the conceptual algorithm
presented in Section 5.4.1 and the alternative algorithm presented in this section. By definition 1
parameters pl, p3, p4 are mutable. The conceptual algorithm will classify them correctly when
observing the execution of the method main. However, the alternative algorithm leaves all pa-
rameters as unknown since these parameters are aliased (in fact in this example they refer to the
same object)-when the modification occurs. Note that the intra-procedural static analysis (Sec-
tion 5.5. 1) compensates for the incompleteness of the dynamic analysis in this case and correctly
classifies pl, p3, p4 as mutable.

The algorithm permits an efficient implementation: when method m is called during the pro-
gram's execution, the analysis computes the set reach(m, p) of objects that are transitively reach-
able from each parameter p via field references. When the program writes to a field in object o,
the analysis finds all parameters p of methods that are currently on the call stack. For each such
parameter p, if o c reach(m, p) and p is not aliased to other parameters of m, then the analysis
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1 class Main {
2 void ml(C pl, C p2) {
3 pl.x = null;
4 }
5 void m2(C p3, C p4) {
6 p3.x = null;

p4.x = null;
8 }
9

10 main(){

11 o = new C();
12 ml(o,o);
13 m2 (o, o);
14 }
15 }

Figure 5-10: Example code that is used to illustrates the limitation of the alternative algorithm in
Section 5.4.2.

classifies p as mutable. The algorithm checks aliasing by verifying emptiness of intersection of
reachable sub-heaps (ignoring immutable objects, such as boxed primitives, which may be shared).

The implementation instruments the analyzed code at load time. The analysis works online,
i.e., in tandem with the target program, without creating a trace file. Our implementation includes
the following three optimizations, which together improve the run time by over 30x: (a) the analy-
sis determines object reachability by maintaining and traversing its own data structure that mirrors
the heap, which is faster than using reflection; (b) the analysis computes the set of reachable ob-
jects lazily, when a modification occurs; and (c) the analysis caches the set of objects transitively
reachable from every object, invalidating it when one of the objects in the set is modified.

5.4.3 Dynamic Analysis Heuristics

The dynamic analysis algorithm described in Sections 5.4.1 and 5.4.2 is m-sound-a parameter is
classified as mutable only if it is modified during execution. Heuristics can improve the complete-
ness, or recall (see Section 5.6), of the algorithm. The heuristics take advantage of the absence of
parameter modifications and of the classification results computed by previous stages in the anal-
ysis pipeline. Using the heuristics may potentially introduce i-unsoundness or m-unsoundness to
the analysis results, but in practice, they cause few misclassifications (see Section 5.6.3.5).

(A) Classifying parameters as immutable at the end of the analysis. This heuristic classifies
as immutable all (unknown) parameters that satisfy conditions that are set by the client of the
analysis. In our framework, the heuristic classifies as immutable a parameter p declared in method
m if p was not modified, m was executed at least N times, and the executions achieved block
coverage of at least t%. Higher values of the threshold N or t increase i-soundness but decrease
completeness.
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The intuition behind this heuristic is that, if a method executed multiple times, and the ex-
ecutions covered most of the method, and the parameter was not modified during any of those
executions, then the parameter may be immutable. This heuristic is m-sound but i-unsound. In
our experiments, this heuristic greatly improved recall and was not a significant source of mistakes
(Section 5.6.3.5).

(B) Using current mutability classification. This heuristic classifies a parameter as mutable
if the object to which the parameter points is passed in a method invocation to a formal parameter
that is already classified as mutable (by a previous or the current analysis). That is, the heuristic
does not wait for the actual modification of the object but assumes that the object will be modified
if it is passed to a mutable position. The heuristic improves analysis performance by not tracking
the object in the new method invocation.

The intuition behind this heuristic is that if an object is passed as an argument to a parameter
that is known to be mutable, then it is likely that the object will be modified during the call. The
heuristic is i-sound but m-unsound. In our experiments, this heuristic improved recall and run time
of the analysis and caused few misclassifications (see Section 5.6.3.5).

(C) Classifying aliased mutated parameters. This heuristic classifies a parameter p as mu-
table if the object that p points to is modified, regardless of whether the modification happened
through an alias to p or through the reference p itself. For example, if parameters a and b happen
to point to the same object o, and o is modified, then this heuristic will classify both a and b as
mutable, even if it the modification is only done using the formal parameter's reference to a.

The heuristic is i-sound but m-unsound. In our experiments, using this heuristic improved the
results in terms of recall, without causing any misclassifications.

5.4.4 Using Randomly Generated Inputs

In this section we consider the use of randomly generated sequences of method calls as the required
input for the dynamic analysis. Random generation can complement (or even replace) executions
provided by a user. For instance, Pacheco et al. [111] uses feedback-directed random generation
to detect previously-unknown errors in widely used (and tested) libraries.

Using randomly-generated execution has benefits for a dynamic analysis. First, the user need
not provide a sample execution. Second, random executions may explore parts of the program
that the user-supplied executions do not reach. Third, each of the generated random inputs may
be executed immediately-this allows the client of the analysis to stop generating inputs when the
client is satisfied with the results of the analysis computed so far. Fourth, the client of the analysis
may focus the input generator on methods with unclassified parameters.

Our generator gives a higher selection probability to methods with unknown parameters and
methods that have not yet been executed by other dynamic analyses in the pipeline. Generation
of random inputs is iterative. After the dynamic analysis has classified some parameters, it makes
sense to propagate that information (see Section 5.5.3) and to re-focus random input generation on
the remaining unknown parameters. Such re-focusing iterations continue as long as each iteration
classifies at least 1% of the remaining unknown parameters (the threshold is user-settable).

By default, we set the number of generated method calls per each iteration to be the maximum
between 5000 and the number of methods in the program. The randomly generated inputs are
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executed in a safe way [111], using a Java security manager.

5.5 Static Mutability Analysis

This section describes a simple, scalable static mutability analysis. It consists of two phases:
S, an intraprocedural analysis that classifies as (im)mutable parameters (never) affected by field
writes within the procedure itself (Section 5.5.2), and P, an interprocedural analysis that propagates
mutability information between method parameters (Section 5.5.3). P may be executed at any point
in an analysis pipeline after S has been run, and may be run multiple times, interleaving with other
analyses. S and P both rely on an intraprocedural pointer analysis that calculates the parameters
pointed to by each local variable (Section 5.5.1).

5.5.1 Intraprocedural Points-To Analysis

To determine which parameters can be pointed to by each expression, we use an intraprocedural,
context-insensitive, flow-insensitive, 1-level field-sensitive, points-to analysis. As a special case,
the analysis is flow-sensitive on the code from the beginning of a method through the first back-
wards jump target, which includes the entire body of methods without loops. We are not aware of
previous work that has explored this point in the design space, which we found to be both scalable
and sufficiently precise.

The points-to analysis calculates, for each local variable 1, a set Po(l) of parameters whose state
I can point to directly and a set P(1) of parameters whose state I can point to directly or transitively.
(Without loss of generality, we assume three-address SSA form and consider only local variables.)
The points-to analysis has "overestimate" and "underestimate" varieties; they differ in how method
calls are treated (see below).

For each local variable I and parameter p, the analysis calculates a distance map D(l, p) from the
fields of object 1 to a non-negative integer or oo. D(l, p)(f) represents the number of dereferences
that can be applied to I starting with a dereference of the field f to find an object pointed to (possibly
indirectly) by p. Each map D(1, p) is either strictly positive everywhere or is zero everywhere.
As an example, suppose 1 directly references p or some object transitively pointed to by p; then
D(1, p)(f) = 0 for all f. As another example, suppose 1.f.g.h = p.x; then D(l, p)(f) = 3. The
distance map D makes the analysis field-sensitive, but only at the first layer of dereferencing; we
found this to be important in practice to provide satisfactory results.

The points-to analysis computes D(l, p) via a fixpoint computation on each method. At the
beginning of the computation, D(p, p)(f) = 0, and D(l, p)(f) = Co for all l # p. The dataflow rules
are straightforward, so we give their flavor with a few examples:

* A field dereference 11 = 12.f updates

Vg : D(l1 , p)(g) -- min(D(l1 , p)(g), D(12, p)(f)- 1)

D(12, p)(f) < min(D(12, p)(f), min D(1 , p)(g) + 1)
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e A field assignment ll .f = 12 updates

D(ll, p)(f) -- min(D(l, p)(f), minD(12, p)(g) + 1)
g

Vg : D(12 ,p)(g) - min(D(12 ,p)(g),D(ll,p)(f)- 1)

* Method calls are handled either by assuming they create no aliasing (creating an underes-
timate of the true points-to sets) or by assuming they might alias all of their parameters
together (creating an overestimate). If an underestimate is desired, no values of D(1, p)(f)
are updated. For an overestimate, let S be the set of all locals used in the statement (in-
cluding receiver and return value); for each l E S and each parameter p, set D(l, p)(f) <
min,'s minf, D(l', p)(f').

After the computation reaches a fixpoint, it sets

P(1) = {p I 3f : D(l, p)(f) oo}

Po(1) = {p I Vf : D(l, p)(f) = 0}

5.5.2 Intraprocedural Phase: S

The static analysis S works in four steps. First, S performs the "overestimate" points-to analysis
(Section 5.5.1). Second, the analysis marks as mutable some parameters that are currently marked
as unknown: for each mutation 11.f = 12, the analysis marks all elements of Po(l) as mutable.
Third, the analysis computes a "leaked set" L of locals, consisting of all arguments (including
receivers) in all method invocations and all locals assigned to a static field (in a statement of the
form Global.field = local). Fourth, if all the parameters of a method that are not already
classified as immutable are unknown parameters that are not in the set UtcLP(1) the analysis marks
them as immutable.

S is i-sound and m-unsound. To avoid over-conservatism, S assumes that on the entry to
the analyzed method all parameters are fully un-aliased, i.e., point to disjoint parts of the heap.
This assumption may cause S to miss possible mutations due to aliased parameters; to maintain
i-soundness, S never classifies a parameter as immutable unless all other parameters to the method
can be classified as immutable.

For example, S does not detect any mutation to parameter p5 of the method modifyAll in
Figure 5-1. Since other parameters of modifyAll (i.e., p3 and p4) are classified as mutable, S
conservatively leaves p 5 as unknown. In contrast, Salcianu's static analysis JPPA [131] incorrectly
classifies p5 as immutable.

The m-unsoundness of S is due to infeasible paths (e.g., unreachable code), flow-insensitivity,
and the overestimation of the points-to analysis.

5.5.2.1 Intraprocedural Analysis Heuristic

We have also implemented a i-unsound heuristic SH that is like S, but it can classify parameters as
immutable even when other parameters of the same method are not classified as immutable. In our
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experiments, this never caused a misclassification.

5.5.3 Interprocedural Propagation Phase: P

The interprocedural propagation phase P refines the current parameter classification by propagat-
ing both mutability and immutability information through the call graph. Given an i-sound input
classification, the propagation algorithm is i-sound and m-sound. However, our implementation is
i-sound and m-unsound.

Because propagation ignores the bodies of methods, the P phase is i-sound only if the method
bodies have already been analyzed. It is intended to be run only after the S phase of Section 5.5.1
has already been run. However, it can be run multiple times (with other analyses in between).

Section 5.5.3.1 describes the binding multi-graph (BMG), and then Section 5.5.3.2 gives the
propagation algorithm itself.

5.5.3.1 Binding Multi-Graph

The propagation uses a variant of the binding multi-graph (BMG) [37]; our extension accounts
for pointer data structures. Each node is a method parameter m.p. An edge from ml.pl to m2.p2
exists iff ml calls m2, passing as parameter p2 part of pl's state (either pl or an object that may be
transitively pointed-to by p 1).

A BMG is created by generating a call-graph and translating each method call edge into a set of
parameter dependency edges, using the sets P(l) described in Section 5.5.1 to tell which parameters
correspond to which locals.

The BMG creation algorithm is parameterized by a call-graph construction algorithm. Our
experiments used CHA [46]-the simplest and least precise call-graph construction algorithm of-
fered by Soot. In the future, we want to investigate using more precise but still scalable algorithms,
such as RTA [15] (available in Soot, but containing bugs that prevented us from using it), or those
proposed by Tip and Palsberg [141] (not implemented in Soot).

The true BMG is not computable, because determining perfect aliasing and call information is
undecidable. Our analysis uses an under-approximation (i.e., it contains a subset of edges of the
ideal graph) and an over-approximation (i.e., it contains a superset of edges of the ideal graph) to
the BMG as safe approximations for determining mutable and immutable parameters, respectively.
One choice for the over-approximated BMG is the fully-aliased BMG, which is created with an
overestimating points-to analysis which assumes that method calls introduce aliasings between all
parameters. One choice for the under-approximated BMG is the un-aliased BMG, which is created
with an underestimating points-to analysis which assumes that method calls introduce no aliasings
between parameters. More precise approximations could be computed by a more complex points-
to analysis.

To construct the under-approximation of the true BMG, propagation needs a call-graph that
is an under-approximation of the real call-graph. However, most existing call-graph construction
algorithms [15, 46, 50, 141] create an over-approximation. Therefore, our implementation uses
the same call-graph for building the un- and fully-aliased BMGs. Due to this approximation, our
implementation of P is m-unsound. Actually, P is m-unsound even on the under-approximation
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of the BMG. For example, assume that ml.pl is unknown, m2.p2 is mutable, and there is an
edge between ml.pl and m2.p2. It is possible that there is an execution of m2.p2 in which p2
is mutated, but for every execution that goes through ml, m2.p2 is immutable. In this case, the
algorithm would incorrectly classify ml.pl as mutable. In our experiments, this approximation
caused several misclassifications of immutable parameters as mutable (see Section 5.6.3.1).

5.5.3.2 Propagation Algorithm

Propagation refines the parameter classification in 2 phases.
The mutability propagation classifies as mutable all the unknown parameters that can reach

in the under-approximated BMG (that is, can flow to in the program) a parameter that is classified
as mutable. Using an over-approximation to the BMG would be unsound because spurious edges
may lead propagation to incorrectly classify parameters as mutable.

The immutability propagation phase classifies additional parameters as immutable. This
phase uses a fix-point computation: in each step, the analysis classifies as immutable all unknown
parameters that have no mutable or unknown successors (callees) in the over-approximated BMG.
Using an under-approximation to the BMG would be unsound because if an edge is missing in
the BMG, the analysis may classify a parameter as immutable even though the parameter is really
mutable. This is because the parameter may be missing, in the BMG, a mutable successor.

5.6 Evaluation

We implemented the combined static and dynamic analysis framework in a tool, Pidasa, and
experimentally evaluated all sensible combinations (192 in all) of the mutability analyses described
above, we compared the results with each other and with the correct classification of parameters
as determined by Definition 1. Our results indicate that staged mutability analysis can be accurate,
achieve better run-time performance, and are useful.

5.6.1 Methodology and Measurements

We computed mutability for 6 open-source subject programs (see Figure 5-11). When an example
input was needed (e.g., for a dynamic analysis), we ran each subject program on a single input.

* jolden' is a benchmark suite of 10 small programs. As the example input, we used the main
method and arguments that were included with the benchmarks. We included these programs
primarily to permit comparison with Sdlcianu's evaluation [131].

* sat4j2 is a SAT solver. We used a file with an unsatisfiable formula as the example input.

* tinysql3 is a minimal SQL engine. We used the program's test suite as the example input.

Ihttp://www-ali.cs. umass.edu/DaCapo/benchmarks.html
2http://www.sat4j.org/
3http://sourceforge.net/projects/tinysql

118



program size classes parameters
(LOC) all non-trivial inspected

jolden 6,215 56 705 470 470
sat4j 15,081 122 1,499 1,136 118
tinysql 32,149 119 2,408 1,708 206
htmlparser 64,019 158 2,270 1,738 82
ejc 107,371 320 9,641 7,936 7,936
daikon 185,267 842 16,781 13,319 73
Total 410,102 1,617 33,304 26,307 8,885

Figure 5-11: Subject programs.

* htmlparser 4 is a real-time parser for HTML. We used our research group's webpage as the
example input.

* ejc5 is the Eclipse Java compiler. We used one Java file as the example input.

* daikon 6 is an invariant detector. We used the StackAr test case from its distribution as the
example input.

As the input to the first analysis in the pipeline, we used a pre-computed classification for all
parameters in the Java standard libraries. Callbacks from the library code to the client code (e.g.,
toString(), hashCodeO) were analyzed under the closed world assumption in which all of the
subject programs were included. The pre-computed classification was created once, and reused
many times in all the experiments. A benefit of using this classification is that it covers otherwise
un-analyzable code, such as native calls.

We measured the results only for non-trivial parameters declared in the application. That is,
we did not count parameters with a primitive, boxed primitive, or String type, nor parameters
declared in external or JDK libraries.

To measure the accuracy of each mutability analysis, we determined the correct classification
(mutable or immutable) for 8,885 parameters: all ofjolden and ejc, and 4 randomly-selected classes
from each of the other programs. To find the correct classification, we first ran every tool available
to us (including our analysis pipelines, Salcianu's tool, and the Javarifier [119, 145] type inference
tool for Javari). Then, we manually verified the correct classification for every parameter where any
two tool results differed, or where only one tool completed successfully. In addition, we verified
an additional 200 parameters, chosen at random, where all tools agreed. We found no instances
where the tools agreed on the mutability result, but the result was incorrect.

Figure 5-12 and the tables in Section 5.6.3 present precision and recall results, computed as
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follows:
i-precision = ii11+1M

i-recall = ii11+ui+mi

m-precision = mm

m-recall = mm
mm+um+im

where ii is the number of immutable parameters that are correctly classified, and mi is the number
of immutable parameters incorrectly classified as mutable (similarly, ui). Similarly, for mutable
parameters, we have mm, im and um. i-precision is measure of soundness: it counts how often the
analysis is correct when it classifies a parameter as immutable. i-recall is measure of completeness:
it counts how many immutable parameters are marked as such by the analysis. m-precision and
m-recall are similarly defined. An i-sound analysis has i-precision of 1.0, and an m-sound analysis
has m-precision of 1.0. Ideally, both precision and recall should be 1.0, but this is not feasible:
there is always a trade-off between analysis precision and recall.

5.6.2 Evaluated Analyses

Our experiments evaluate pipelines composed of analyses described in Section 5.3. X-Y-Z denotes
a staged analysis in which component analysis X is followed by component analysis Y and then by
component analysis Z.

Our experiments use the following component analyses:

* S is the sound intraprocedural static analysis (Section 5.5.2).

* SH is the intraprocedural static analysis heuristic (Section 5.5.2.1).

* P is the interprocedural static propagation (Section 5.5.3).

* D is the dynamic analysis (Section 5.4), using the inputs of Section 5.6.1.

* DH is D, augmented with all the heuristics described in Section 5.4.3. DA, DB, and DC are
D, augmented with just one of the heuristics.

* DRH is DH enhanced with random input generation (Section 5.4.4); likewise for DRA, etc.

Additionally, we used JPPA [131]. Its informal mutability definition matches Definition 1,
so JPPA is a natural comparison for the above analyses. We included the following additional
analyses:

* J is Salcianu and Rinard's state-of-the-art static analysis JPPA that never classifies parame-
ters as mutable-only immutable and unknown.

* JM is J, augmented to use a main method that contains calls to all the public methods in the
subject program [124]; J only analyzes methods that are reachable from main.

* JMH is JM plus an m-unsound heuristic to classify as mutable any parameter for which J
provides an explanation of a potential modification.
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5.6.3 Results

We experimented with six programs and 192 different analysis pipelines. Figure 5-12 compares
the accuracy of a selected set of mutability analyses among those with which we experimented.
S-P-DRBC-P is the best-performing i-sound staged analysis. For clients that do not require i-
soundness, the pipeline with the highest sum of precision and recall was SH-P-DRH-P. Compared
to SAlcianu's [131] state-of-the-art analysis J, the staged mutability analysis achieves equal or
slightly worse i-precision, better i-recall, and much better m-recall and m-precision. SH-P-DRH-
P also achieves better run-time performance (see section 5.6.4). Salcianu's analysis augmented
with a heuristic for classifying mutable references, followed by our best stage analysis, JMH-SH-
P-DRH-P, achieves the highest i-recall.

This section discusses the important observations that stem from the results of our experiments.
Each sub-section discusses one observation that is supported by a table listing representative pipe-
lines illustrating the observation. The tables in this section present results for ejc. Results for other
programs were similar. However, for smaller programs all analyses did better and the differences
in results were not as pronounced.

5.6.3.1 Interprocedural Propagation

Running interprocedural propagation (P in the tables) is always beneficial, as the following table
shows on representative pipelines.

Analysis i-recall i-precision m-recall m-precision
SH 0.563 1.000 0.299 0.998
SH-P 0.777 1.000 0.904 0.971
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-P 0.940 0.776 0.663 0.988

Propagation may decrease m-precision but, in our experiments, the decrease was never larger
than 0.03 (not shown in the above table). In the experiments, propagation always increased all
other statistics (sometimes significantly). For example, the table shows that propagation increased
i-recall from 0.563 in SH to 0.777 in SH-P and it increased m-recall from 0.299 in SH to 0.904
in SH-P. Moreover, since almost all of the run-time cost of propagation lies in the call-graph con-
struction, only the first execution incurs notable run-time cost on the analysis pipeline; subsequent
executions of propagation are fast. Therefore, most pipelines presented in the sequel have P stages
executed after each other analysis stage.

5.6.3.2 Combining Static and Dynamic Analysis

Combining static and dynamic analysis in either order is helpful-the two types of analysis are
complementary.
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K Analysis i-recall i-precision m-recall m-precision

S-P-DRBC-P 0.781 1.000 0.915 0.956
SH-P 0.777 1.000 0.904 0.971

o SH-P-DRH-P 0.928 0.996 0.907 0.971
J 0.593 0.999 0.000 0.000
JMH 0.734 0.998 0.691 0.941
JMH-SH-P-DRH-P 0.939 0.997 0.944 0.951

S-P-DRBC-P 0.829 1.000 1.000 0.924
SH-P 0.829 1.000 0.907 1.000

. SH-P-DRH-P 0.973 1.000 1.000 0.970
SJ 0.894 1.000 0.000 0.000
JMH 0.985 1.000 0.660 0.955
JMH-SH-P-DRH-P 0.989 0.996 0.990 0.970

S-P-DRBC-P 0.705 1.000 0.931 0.844
SH-P 0.636 1.000 0.931 0.844

= SH-P-DRH-P 0.750 1.000 0.931 0.844
SJ 0.750 1.000 0.000 0.000
JMH -

JMH-SH-P-DRH-P - -

S-P-DRBC-P 0.965 1.000 0.655 0.655
SH-P 0.955 1.000 0.667 0.800
SH-P-DRH-P 0.980 0.995 0.667 0.667
J
JMH
JMH-SH-P-DRH-P - -

S-P-DRBC-P 0.763 1.000 0.968 0.968
SH-P 0.763 1.000 0.968 0.968
SH-P-DRH-P 0.854 0.980 0.968 0.968

MJ

JMH
JMH-SH-P-DRH-P - - - -

S-P-DRBC-P 0.482 1.000 0.962 1.000
SH-P 0.482 1.000 0.654 1.000
SH-P-DRH-P 0.978 0.989 0.962 0.976
J
JMH
JMH-SH-P-DRH-P

Figure 5-12: Mutability analyses on subject programs. Empty cells mean that the analysis aborted

with an error. The abbreviations for the component analysis are described in Section 5.6.2.
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Analysis i-recall i-precision m-recall m-precision
SH-P 0.777 1.000 0.904 0.971
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-SH-P 0.928 0.996 0.907 0.971
DRH 0.540 0.715 0.144 0.987
DRH-SH-P 0.939 0.812 0.722 0.981
DRH-SH-P-DRH 0.943 0.813 0.722 0.981

For best results, the static stage should precede the dynamic stage. Pipeline SH-P-DRH, in
which the static stage precedes the dynamic stage, achieved better i-precision and m-recall than
DRH-SH-P, with marginally lower (by 0.01-0.02) i-recall and m-precision.

Repeating executions of static or dynamic analyses bring no substantial further improvement.
For example, SH-P-DRH-SH-P (i.e., static-dynamic-static) achieves essentially the same results
as SH-P-DRH (i.e., static-dynamic). Similarly, DRH-SH-P-DRH (i.e., dynamic-static-dynamic)
only marginally improves i-recall over DRH-SH-P (i.e., dynamic-static).

5.6.3.3 Comparing Static Stages

In a staged mutability analysis, using a more complex static analysis brings little benefit. We ex-
perimented with replacing our lightweight interprocedural static analysis with J, Stlcianu's heavy-
weight static analysis.

Analysis i-recall i-precision m-recall m-precision
SH-P-DRH-P 0.928 0.996 0.907 0.971
J-DRH-P 0.973 0.787 0.664 0.998
JMH-DRH-P 0.939 0.922 0.878 0.949
JMH-SH-P-DRH-P 0.939 0.997 0.944 0.951

SH-P-DRH-P outperforms JMH-DRH-P with respect to 3 of 4 statistics, including i-precision
(see Section 5.6.3.6). Combining the two static analyses improves recall--JMH-SH-P-DRH-P has
better i-recall than SH-P-DRH-P and better m-recall than JMH-DRH-P. This shows that the two
kinds of static analysis are complementary.

5.6.3.4 Randomly Generated Inputs in Dynamic Analysis

Using randomly generated inputs to the dynamic analysis (DRH) achieves better results than using
a user-supplied execution (DH), at least for the relatively small user-supplied inputs (described
in Section 5.6.1) with which we experimented. Although random generation can outperform or
improve the results of a single user supplied input, Future work should evaluated whether random
input generation can outperform and or augment the use of an exhaustive test suite.
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Analysis i-recall i-precision m-recall m-precision
SH-P-DH 0.827 0.984 0.911 0.961
SH-P-DH-P-DRH 0.917 0.984 0.915 0.958
SH-P-DRH 0.922 0.996 0.906 0.971
SH-P-DRH-P-DH 0.932 0.983 0.912 0.970



Pipeline SH-P-DRH achieves better results than SH-P-DH with respect to i-precision, i-recall
and m-precision (with lower m-recall). Using both kinds of executions can have different effects.
For instance, SH-P-DH-P-DRH has better results than SH-P-DH, but SH-P-DRH-P-DH has a
lower i-precision (due to i-unsoundness of heuristic A) with a small gain in i-recall and m-recall
over SH-P-DRH.

The surprising finding that randomly generated code is as effective as using an example execu-
tion suggests that other dynamic analyses (e.g., race detection [107, 132], invariant detection [59],
inference of abstract types [71], and heap type inference [116]) might also benefit from replacing
example executions with random executions.

5.6.3.5 Dynamic Analysis Heuristics

By exhaustive evaluation, we determined that each of the heuristics is beneficial. A pipeline with
DRH achieves notably higher i-recall and only slightly lower i-precision than a pipeline with DR
(which uses no heuristics). This section indicates the unique contribution of each heuristic, by
removing it from the full set (because some heuristics may have overlapping benefits). For con-
sistency with other tables in this section, we present the results for ejc; however, the effects of
heuristics were more pronounced on other benchmarks.

Heuristic A (evaluated by the DRBC line) has the greatest effect; removing this heuristic low-
ers i-recall (as compared to SH-P-DRH-P, which includes all heuristics.) However, because the
heuristic is i-unsound, using it decreases i-precision, albeit only by 0.004. Heuristic B (the DRAC
line) increases both i-recall and i-precision, and improves performance by 10%. Heuristic C (the
DRAB line) is primarily a performance optimization. Including this heuristic results in a 30%
performance improvement and a small increase in m-recall.

Heuristic A is parameterized by a coverage threshold t. Higher values of the threshold classify
fewer parameters as immutable, increasing i-precision but decreasing i-recall. Figure 5-13 shows
this relation. The heuristic is m-sound, so it has no effect on m-precision. The threshold value may
reduce m-recall (if the analysis incorrectly classifies a mutable parameter), but, in our experiments,
we have not observed this.

5.6.3.6 i-sound Analysis Pipelines

An i-sound mutability analysis never incorrectly classifies a parameter as immutable. All our
component analyses have i-sound variations, and composing i-sound analyses yields an i-sound
staged analysis.
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Analysis i-recall i-precision m-recall m-precision
SH-P-DR-P 0.777 1.000 0.905 0.971
SH-P-DRH-P 0.928 0.996 0.907 0.971
SH-P-DRBC-P 0.777 1.000 0.906 0.971
SH-P-DRAC-P 0.927 0.995 0.905 0.971
SH-P-DRAB-P 0.928 0.996 0.906 0.971
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Figure 5-13: Relation between i-precision, i-recall, and the coverage threshold in dynamic analysis
heuristic A. The presented results are for the dynamic analysis DA on the ejc subject program.

S is the i-sound intra-procedural static analysis. Not surprisingly, the i-sound pipelines achieve
lower i-recall than the i-unsound pipelines presented in Figure 5-12; (Figure 5-12 also presents the
i-sound results for S-P-DRBC-P for all subjects.) For clients for whom i-soundness is critical, this
may be an acceptable trade-off. In contrast to our analyses, J is not i-sound [130], although it did
achieve very high i-precision (see Figure 5-12).

5.6.4 Run-time Performance

Figure 5-14 shows run times of analyses on daikon (185 kLOC, which is considerably larger than
subject programs used in previous evaluations of mutability analyses [124, 126, 131]). The exper-
iments were run using a quad-core AMD Opteron 64-bit 4x1.8GHz machine with 4GB of RAM,
running Debian Linux and Sun HotSpot 64-bit Server VM 1.5.0_09-b01. Experiments were run on
single thread and used one core. Staged mutability analysis achieves better run-time performance
on large code-bases and runs in about a quarter the time of Silcianu's analysis (J in Figure 5-14).

Figure 5-14 shows that S-P (Section 5.6.3.6) runs, on daikon, an order of magnitude faster
than J (or even better, if differences in call graph construction are discounted). Moreover, S-P
is i-sound, while J is i-unsound. Finally, S-P has high m-recall and m-precision, while J has 0
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Analysis i-recall i-precision m-recall m-precision
S 0.454 1.000 0.299 0.998
S-P 0.777 1.000 0.904 0.971
S-P-DRBC-P 0.777 1.000 0.906 0.971
S-P-DBC-P 0.777 1.000 0.912 0.959



Figure 5-14: The cumulative run time, and the time for the last component analysis in the pipeline,
when analyzing the daikon subject program. Time is in seconds. Empty cells indicate that the
analysis aborted with an error.

m-recall and m-precision.
An optimized implementation of the P and DRH stages could run even faster. First, the major

cost of propagation (P) is computing the call graph, which could be reused later in the same
pipeline. J's RTA [15] call graph construction algorithm takes seconds, but our tool uses Soot,
which takes two orders of magnitude longer to perform CHA [46] (a less precise algorithm). Use
of a more optimized implementation could greatly reduce the cost of propagation. Second, the
DRH step iterates many times, each time performing load-time instrumentation and other tasks
that could be cached; without this repeated work, DRH can be much faster than DH . We estimate
that these optimizations would save between 50% and 70% of the total SH-P-DRH-P time.

There is a respect in which our implementation is more optimized than J. J is a whole-program
analysis that cannot take advantage of pre-computed mutability information for a library such
as the JDK. By contrast, our analysis does so by default, and Figure 5-14's numbers measure
executions that use this pre-computed library mutability information. The number of annotated
library methods is less than 10% of the number of methods in daikon.

5.6.5 Application: Test Input Generation

Section 5.6.3 evaluated the accuracy of mutability analyses. This section evaluates their utility by
measuring how much the computed immutability information helps a client analysis. The client
analysis is Palulu which was presented in chapter 2, a tool for generating regression tests.

Palulu combines dynamic analysis with random testing to create legal test inputs, where each
input is a sequence of method calls. Palulu works even for programs in which most random se-
quences of method calls are illegal, and it does not require a formal specification.

Palulu operates in two steps. First, Palulu infers a model that summarizes the sequences of
method calls (and their input arguments) observed during the example execution. Palulu generates
a model for each class. The model is a directed graph where each edge corresponds to a method
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Analysis total time last component
S 167 167
S-P 564 397
SH 167 167
SH-P 564 397
SH-P-DH 859 295
SH-P-DH-P 869 10
SH-P-DRH 1484 920
SH-P-DRH-P 1493 9
J 5586 5586
JM
JMH



analysis nodes ratio edges ratio ltime (s) ratio
jolden + ejc + daikon
no immutability 444,729 1.00 624,767 1.00 6,703 1.00
SH-P-DRH-P 124,601 3.57 201,327 3.10 4,271 1.56
J 131,425 3.83 210,354 2.97 4,626 1.44
htmlparser + tinysql + sat4j
no immutability 48,529 1.00 68,402 1.00 215 1.00
SH-P-DRH-P 8,254 5.88 13,047 5.24 90 2.38
J - -

Figure 5-15: Palulu (Chapter 2) model size and model generation time, when assisted by im-
mutability classifications. The numbers are sums over indicated subject programs. Models with
fewer nodes and edges are better. Also shown are improvement ratios over no immutability infor-
mation (the "ratio" columns); larger ratios are better. Empty cells indicate that the analysis aborted
with an error.

call, and each node corresponds to an abstract state of an observed instance. The model contains
every sequence of method calls that occurred in the example execution.

Second, Palulu uses the inferred models to guide a feedback-directed random input genera-
tor [111] in creating legal and behaviorally-diverse method sequences. The test generator uses the
model to decide which method should be called and what constants can be used as parameters.

An intermediate method in the sequence of method calls (that is, not the final method call about
which some property is asserted) is useful only if it produces a new abstract value that can be used
later in the sequence. The new abstract value can come from the method's return value or from
side-effecting some existing value. In the absence of other information, Palulu assumes that every
method can side-effect every parameter. For example, it would generate both of these method
sequences:

Date d = new DateO; Date d = new Date();
assert d.getTimeO >= 0; boolean b = d.equals(null);

assert d.getTimeO >= 0;

because the equals method might side-effect its receiver.
The model can be pruned (without changing the state space it describes) by removing calls

that do not mutate specific parameters, because non-mutating calls are not useful in constructing
behaviorally-diverse test inputs. A smaller model permits a systematic test generator to explore
the state space more quickly, or a random test generator to explore more of the state space. Per-
parameter mutability information permits more model reduction than method-level purity infor-
mation.

We ran Palulu on our subject programs using no immutability information, and using im-
mutability information computed by J and by SH-P-DRH-P. Since exhaustive model exploration
is generally infeasible, Palulu can use unsound immutability information to improve its likelihood
of finding errors within a given time bound.

Using the mutability information, Palulu's first step generated smaller models. Using the
smaller models, Palulu's second step generated tests that achieved better line and block coverage

127



program size classes parameters
(LOC) all 2 non-trivial 2 inspected 2 immutable

jolden 6,215 56 705 470 470 277
tinysql 32,149 119 2,408 1,708 206 200
htmlparser 64,019 158 2,270 1,738 82 56
ejc 107,371 320 9,641 7,936 7,936 3,679
Total 209,754 653 15,033 11,852 8,994 4,212

Figure 5-16: Subject program characteristics. The all column lists the total number of parameters
in the subject program. non-trivial parameters are not of primitive type or known immutable type
(j ava.lang.String and boxed primitive types from package j ava.lang). Trivial parameters are
always immutable. The inspected column lists the number of non-trivial parameters that we man-
ually classified in each subject program (Section 5.6.1 describes how the parameters were selected
for classification). Finally, the immutable column lists the number of inspected parameters that
we manually determined to be immutable.

of the subject programs. Figure 5-15 shows the number of nodes and edges in the generated model
graph, and the time Palulu took to generate the model (not counting the immutability analysis).
Our experiment used J rather than JM, in part because JM runs on fewer programs, but primarily
because JM's results would be no better than J . Palulu models include only methods called during
execution, and J starts from the same main method. JM adds more analysis contexts, but doing so
never changes a mutable parameter to immutable, which is the only way to improve Palulu model
size.

5.7 Tool Comparison

Definition 1 is useful for evaluating both annotation-based systems expressing reference immutabil-
ity and inference-based systems inferring reference immutability. We experimentally evaluated
four tools that each infer an approximation to a different mutability definition, by comparing the
tool results to Definition 1. We used the Pidasa and JMH tools described in Section 5.6, as well as
Javari [19, 146] and JQual [69], both of which are static inference tools.

Our results indicate that the evaluated tools produce results that are similar to the formal defi-
nition we propose. This finding supports the practical utility of a common formal definition. Our
results also highlight the differences between the expressiveness of the evaluated tools, i.e., which
immutable references each tool identifies.

Section 5.7.1 summarizes the four tools we compared against Definition 1. Section 5.7.2 quan-
titatively compares the formal definition of reference immutability to each of the four evaluated
tools. Section 5.7.3 presents qualitative comparisons that illustrate the major conceptual differ-
ences between our definition and the definitions implemented by the four tools.
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5.7.1 Tools compared

We evaluated four tools:

* Pidasa is the tool that implements the static and dynamic analysis described in Section 5.6.
We used the two best combinations: S-P-DRBC-P and SH-P-DRH-P. The tool for combina-
tion S-P-DRBC-P, denoted Pidasasd, is i-sound. The tool for combination SH-P-DRH-P,
denoted Pidasa,,s, is i-unsound, but achieves better recall. Pidasa may also leave parame-
ters unclassified; in the evaluation, we conservatively treated such parameters as mutable.

* JMH is a static analysis tool for computing reference immutability [131], described in Sec-
tion 5.6.2.

* Javari is a type-annotation-based Java extension for specifying and enforcing reference im-
mutability [19, 146]. The Javarifier tool [38, 119] inferred Javari annotations for the subject
programs. To match the assumptions of the other tools, we ran Javarifier with the assumption
that all fields should be considered part of the abstract state of an object, even though Javari
and Javarifier support excluding specific fields from the abstract state of an object. Then,
we conservatively changed all inferred @Polyread annotations (parametric polymorphism
over mutability) to mutable (15 for jolden, 39 for htmlparser, 70 for tinysql, and 112 for
eclipsec). We did not change the Javarifier output in any other way. The resulting annotated
programs typecheck in accordance to the Javari definition.

* JQual is a static analysis tool for computing reference immutability [69]. We used the ver-
sion downloaded from http://www. cs.umd. edu/proj ects/PL/jqual (10 December, 2007). We
ran JQual in the context-insensitive, field-insensitive mode, because in any other mode it is
unscalable [69] and could process none of the subject programs. Thus, JQual did not infer
its parametric polymorphism over mutability.

Regrettably, we did not find more programs on which all of the tools run to completion-bugs
in the tools make them terminate with errors.

5.7.2 Quantitative Comparison

Figure 5-17 presents the results of the quantitative analysis. In this section, we take precision and
recall to mean i-precision and i-recall, respectively. Precision and recall of 1.0 would indicate
perfect agreement with the definition. This evaluation uses precision and recall not as a measure
of analysis quality (i.e., how well an analysis classifies parameters according to its own definition),
but rather as a measure of how the mutability results of existing tools match our formal definition.

All four evaluated analyses are flow-insensitive, so none has perfect recall. Pidasa,,s achieves
highest recall by sacrificing some precision. Javari and Pidasasd aim for perfect precision and
accept low recall. JMH also has nearly perfect precision (the imprecision is due to an implemen-
tation bug), but the conservative static analysis may lead to low recall (e.g., in the largest subject
program, ejc). JQual also has nearly perfect precision, and its low recall is due to a difference in
its definition of field mutability, discussed in Section 5.7.3.4.
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Prog # params analysis i-recall i-precision

Pidasa,,ns 0.978 1.000
Pidasasn,d 0.829 1.000

jolden 470 JMH 0.985 1.000
Javari 0.968 1.000
JQual 0.696 0.965

Pidasauns 0.980 0.995
Pidasasnd 0.965 1.000

tinysql 206 JMH
Javari 0.956 1.000
JQual - -

Pidasauns 0.978 0.989
Pidasasnd 0.482 1.000

htmlparser 82 JMH - -
Javari 0.756 1.000
JQual - -

Pidasauns 0.928 0.996
Pidasasnd 0.781 1.000

ejc 7936 JMH 0.734 0.998
Javari 0.986 1.000
JQual

Figure 5-17: Mutability analyses on subject programs. The # params columns list the numbers
of parameters that we manually inspected for mutability (see Figure 5-16). Precision and recall
are computed only for the set of inspected parameters (Section 5.7.2 describes the details). Empty
cells mean that the analysis aborted with an error.

5.7.3 Qualitative Comparison

This Section presents a qualitative analysis describing more closely how each tool's results com-
pare to Definition 1.

5.7.3.1 Pidasa

We examined all parameters on which Pidasa disagreed with the classification according to Def-
inition 1. All differences can be attributed to imprecision in Pidasa's implementation. Thus,
our examination showed that the definition of reference immutability used in Pidasa's technique,
agrees with our formal definition.

Pidasa,,us misclassified 23 mutable parameters as immutable due to an unsound heuristic in
its dynamic component. The heuristic classifies a method parameter as immutable if no mutation
occurred during the dynamic analysis phase and the block coverage of the method is above a certain
threshold (Pidasa,,s uses a 85% threshold).

Pidasa,,, and Pidasasnd classified a parameter as mutable in several cases where the formal
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definition classifies the parameter as immutable, because no mutation can occur at run time. The
discrepancies are due to the following analysis imprecision:

* Flow-insensitivity of the static analysis component. Flow-insensitive analysis does not con-
sider the order of statements in the method. This contrasts with Definition 1, which is flow-
sensitive. Flow-insensitivity may lead Pidasa to classify some types to be mutable even
though no mutation will ever occur at run-time.

For example, in this code:

void foo(Date d) {
d = new Date();
d. setHour(12);

a flow-insensitive analysis would classify parameter d as mutable because the variable d can
be mutated, even though the value passed as the parameter cannot be mutated.

* Dynamic component failing to generate inputs that exercise a method. This results in the
parameters being left unclassified, which, in this evaluation, we conservatively treated as
mutable.

* Call-graph approximations in the static component. Because the precise caller-callee rela-
tionship cannot always be computed in an object-oriented language, the static component of
Pidasa uses a conservative approximation of the call-graph.

* Heuristics in the dynamic component. For example, in the code

void m(Object pl, Object p2){
pl.field = ... ;

I

if, at run-time, p and p2 happen to be aliased (i.e., there is an overlap between the parts of
the heap reachable from p1 and p2), then the dynamic analysis heuristic incorrectly classifies
p2 as mutable.

5.7.3.2 JMH

We examined all parameters on which the JMH results disagreed with the classification according
to the formal Definition 1. All differences are due to either bugs, or imprecision in the inference
tool. Thus, our examination showed that the (implicit) definition used by JMH agrees with our
proposed formal definition of reference immutability.

In ejc, JMH misclassified 5 mutable parameters as immutable. More precisely, JMH clas-
sified as immutable 5 parameters that are mutable according to the proposed formal definition.
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Program Inspected Arrays Flow Dynamic Total
parameters insensitivity scope differences

jolden 470 12 3 0 15
tinysql 206 9 0 0 9
htmlparser 82 6 12 2 20
ejc 7,936 17 1 31 49

Figure 5-18: Discrepancies where Javarifier classified a parameter reference as mutable, when it's
classification by Definition 1 is immutable. For jolden, we manually analyzed all classes. For
tinysql, htmlparser and ejc, we manually analyzed four classes selected at random. The columns
Arrays, Flow Insensitive, and Dynamic indicate difference sources for the discrepancies as ex-
plained in Section 5.7.3.3.

This misclassification is due to what seems to be an incorrect treatment of the native method
System.arraycopy(). System.arraycopyo copies objects from a source array to a destination
array. JMH seems to treat the destination array as immutable, which is incorrect.

JMH fails to correctly classify immutable parameters (i.e., the computed result disagrees with
the proposed formal definition, with JMH reporting mutable when the parameter cannot be mutated
at run time) due to:

* Failure to analyze package-private constructors that are called in static field initializers.

* Failure to analyze non-abstract methods in abstract classes.

* Conservative pointer analysis. For example, the method CompilationResult.compute-
Priority() in ejc calls the method HashMap.geto on a field. This receiver is classified as
mutable by JMH, since LinkedHashMap.get() can mutate its receiver (optimized internal
state). However, the specific field can only be instantiated with HashMap (super-class of
LinkedHashMap) for which get() is a side-effect-free method. Since JMH is a closed-world
analysis, in theory it could compute the correct results in this case.

* Call-graph approximations similar to Pidasa (Section 5.7.3.1).

* Flow-insensitivity of the analysis similar to Pidasa (Section 5.7.3.1).

5.7.3.3 Javari

The Javarifier type inference tool infers the reference mutability of every parameter according to
the Javari mutability definition. Figure 5-18 tabulates the differences between the formal Defi-
nition 1 and Javari. Javari is perfectly i-precise: the only kind of difference is when Javarifier
inferred a mutable type that Definition 1 classifies as an immutable type. Javarifier disagreed with
Definition 1 on the mutability of a parameter for three reasons:

Arrays. In Javari immutability is not deep with respect to arrays (or generics)-a client can
control the mutability of each level explicitly. Therefore, Javari allows different mutabilities for
arrays and their elements, while our definition does not. When Javarifier inferred an immutable
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1 class Client {
2 public static void main(String[] args) {
3 Client c = new Client();
4 Data d = new Data();
5 c.update(d);
6 c.mutateData();
7 }
8
9 private Data data;
10
11 // Formal definition: parameter is immutable
12 // 3avari: parameter is mutable
13 public void update(Data newData) {
14 data = newData;
15 }
16
17 public void mutateData() {
18 data.mutate();
19 }
20 }

Figure 5-19: The formal definition considers parameter newData to be immutable because
update() does not itself mutate either data or newData. Javari considers newData to be mu-
table because update() stores newData for possible later mutation.

array of mutable elements for a parameter, for the purpose of comparison to Definition I, we treat
Javarifier's classification as a mutable parameter. Definition 1, however, classified the parameter
as immutable.

Flow-insensitivity. Javari is a flow-insensitive type system (like most type systems, e.g.,
Java's), and thus can misclassify immutable parameters as mutable, similarly to Pidasa (Sec-
tion 5.7.3.1).

Dynamic scope. The formal definition accounts for mutations that occur during the execution
of a method. By contrast, Javari marks a parameter as mutable if the actual argument may later be
mutated, even after the method has exited, as a result of being passed into the method. For example,
consider Figure 5-19. As noted in Section 5.1.3.3, the formal definition can be modified to account
for mutations even after a method has exited, simply by removing rule [R-RET] of Figure 5-4.
Future work could compare this modified formal definition to Javari.

Similarly, certain uses of parametric polymorphism force the Javari classification of some pa-
rameters to be mutable, while Definition 1 classifies them as immutable. Javari uses the @PolyRead
type qualifier to express parametric polymorphism over mutability type qualifiers.7 Definition 1

7A method with @PolyRead parameters can be viewed as having two signatures that are resolved via overloading:
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1 class DateScanner {
2 private List<@ReadOnly Date> allDates;
3
4 // Formal definition: receiver is mutable, parameter is immutable
5 // Javari: receiver is mutable, parameter is mutable
6 void addDate(Date date) {
7 Date scannedDate = scanDate(date);
8 allDates. add(scannedDate);
9 }
10
11 // Formal definition: receiver is immutable, parameter is immutable
12 // Javari: receiver is polyread, parameter is polyread
13 // The polyread keyword after the parameter list annotates the
14 // receiver of the method as polyread.
15 void @PolyRead Date scanDate(@PolyRead Date newDate) @PolyRead {
16 ...
17 }
18 }
19 }

Figure 5-20: A program in which the parameter of addDate is passed into method scanDate,
which takes a @Polyread parameter and receiver. Javari type rules require that parameter date
of addDate be declared as mutable.

is unable to express this polymorphism. In Javari, @PolyRead parameters cannot be mutated
explicitly in a method, so Definition I classifies these parameters as immutable.

For example, in Figure 5-20, the method addDate has a mutable receiver because it adds
to the list allDates. Javari type-correctness requires the receiver types to be compatible when
addDate calls scanDate. Since addDate's receiver is mutable, it uses the version of scanDate
with a mutable receiver. But that version has a mutable parameter, and so date is marked as
mutable, even though addDate does not mutate it (and no later mutation can occur when the Date
is extracted from the list, because its type is @ReadonlyDate).

5.7.3.4 JQual

In the jolden subject program, JQual inferred 7 parameters to be readonly that Definition 1 states
are mutable because it cannot be mutated at run-time.

in one version, all instances of @PolyRead are replaced by @Mutable, and in the other version, they are replaced by
@ReadOnly. Almost every accessor method has its receiver and return type classified as @PolyRead. This means
that when an accessor method is called on a @Mutable reference, the returned reference is @Mutable; when an
accessor method is called on a @ReadOnly reference, the returned reference is @ReadOnly.
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1 public class Counter {
2 int count;
3
4 public Counter head()
5 return this;
6 }
7
8 // Formal definition: receiver mutable
9 // JQual: receiver immutable
10 public void resetHead()
11 headO).resetO;
12 }
13
14 public void reset()
15 count = 0;
16 }
17 }

Figure 5-21: Example in which the proposed formal definition specifies that the receiver of
resetHeadO is mutable, while JQual classifies the receiver as immutable.

* In one case, JQual was more expressive when it inferred a parameter to be a readonly array
of mutable objects, which the proposed formal definition classifies as a mutable array of
mutable objects.

* In four cases, JQual incorrectly classified the receiver of a modifying method. Figure 5-21
demonstrates this problem when a mutating method is called on a reference that is passed
through another accessor method.

* In 2 cases, JQual incorrectly classified the receiver of a method because the method was a
member of an inner class.

In 84 other cases, JQual inferred a parameter to be mutable that is immutable according to
Definition 1. We manually analyzed ten of these parameters, selected at random. All the differences
were due to a definitional difference with regard to field mutability. In JQual, every method that
reads a mutable field must have a mutable receiver, even if the method only reads the field and
does not mutate the program state. This restriction makes JQual overly conservative in declaring
mutable references, but helps ensure soundness in its type system. Figure 5-22 illustrates the
problem.

In order to resolve this issue, JQual would need to run in a field-sensitive and context-sensitive
mode. Running in a field-sensitive mode, JQual infers a separate type for each instance of a field,
rather than a single static type for the field. Running in a context-sensitive mode, JQual can treat
methods as polymorphic over mutability, similar to Javari's @Polyread. (Even though JQual
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1 public class Info {
2 private int[] data;
3
4 // Formal definition: receiver immutable
5 // JQual: receiver mutable
6 public int first() {
7 return data[8];
8 }
9
18 public void resetFirst() {
11 data[8] = 8;
12 }
13 }

Figure 5-22: Example in which the proposed formal definition specifies that the receiver of first()
is reference immutable, while JQual classifies the receiver as mutable. Method first () reads
this.data, so JQual requires that this have at least the same mutability as data (which is
mutable).

cannot express this polymorphism over mutability in its final output, the method can be treated as
polymorphic over mutability during the inference step.) In a field-sensitive and context-sensitive
mode, JQual's inference is similar to Javari's inference. Specifically, in the class in Figure 5-22,
the fact that the data field can be mutated in resetFirst() does not require reading the field in
first() to be considered a mutation. As noted in Section 5.7.1, we were unable to run JQual in
field-sensitive and context-sensitive mode, because JQual does not scale in this mode.

5.8 Related Work

Section 5.8.1 discusses previous work that discovers immutability (for example, determines when
a parameter is never modified during execution). Section 5.8.2 discusses previous work that checks
or enforces mutability annotations written by the programmer (or inserted by a tool).

5.8.1 Discovering Mutability

Early work [ 16,37] on analyzing programs to determine what mutations may occur considered only
pointer-free languages, such as Fortran. In such a language, aliases are induced only by reference
parameter passing, and aliases persist only until the procedure returns. Analyses that compute
MOD set (modified parameters) determine which of the reference parameters, and which global
variables, are assigned by the body of a procedure. Our static analysis extends this work to handle
pointers and object-oriented programs, and incorporates field-sensitivity.
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Subsequent research, often called side-effect analysis, addressed aliasing in languages contain-
ing pointers. An update r.f = v has the potential to modify any object that might be referred to
by r. An alias analysis can determine the possible referents of pointers and thus the possible side
effects. (An alias or class analysis also aids in call graph construction for object-oriented programs,
by indicating the type of receivers and so disambiguating virtual calls.) This work indicates which
aliased locations might also be mutated [87]--often reporting results in terms of the number of
locations (typically, an allocation site in the program) that may be referenced-but less often in-
dicates what other variables in the program might also refer to that site. More relevantly, it does
not answer reference immutability questions regarding what references might be used to perform
a mutation; ours is the first analysis to do so. A follow-on alias or escape analysis can be used to
strengthen reference immutability into object immutability [19].

New alias/class analyses yield improved side-effect analyses [124, 128]. Landi et al. [88] im-
prove the precision of previous work by using program-point-specific aliasing information. Ryder
et al. [128] compare the flow-sensitive algorithm [88] with a flow-insensitive one that yields a sin-
gle alias result that is valid throughout the program. The flow-sensitive version is more precise
but slower and unscalable, and the flow-insensitive version provides adequate precision for certain
applications. Milanova et al. [98] provide a yet more precise algorithm via an object-sensitive,
flow-insensitive points-to analysis that analyzes a method separately for each of the objects on
which the method is invoked. Object sensitivity outperforms Andersen's context-insensitive anal-
ysis [125]. Rountev [124] compares RTA to a context-sensitive points-to analysis for call graph
construction, with the goal of improving side-effect analysis. Rountev's experimental results sug-
gest that sophisticated pointer analysis may not be necessary to achieve good results. (This mirrors
other work questioning the usefulness of highly complex pointer analysis [75, 127].) We, too,
compared a sophisticated analysis (Salcianu's) to a simpler one (ours) and found the simpler one
competitive.

Side-effect analysis [30, 98, 124, 126, 130, 131] originated in the compiler community and has
focused on i-sound analyses. Our work investigates other tradeoffs and other uses for the im-
mutability information. Specifically, differently from previous research, our work (1) computes
both mutable and immutable classifications, (2) trades off soundness and precision to improve
overall accuracy, (3) combines dynamic and static stages, (4) includes a novel dynamic mutability
analysis, and (5) permits an analysis to explicitly represent its incompleteness.

Preliminary results of using side effect analysis for optimization-an application that requires
an i-sound analysis-show modest speedups. Le et al. [89] report speedups of 3-5% for a coarse
CHA analysis, and only 1% more for a finer points-to analysis. Clausen [33] reports an average 4%
speedup, using a CHA-like side effect analysis in which each field is marked as side-effected or not.
Razafimahefa [120] reports an average 6% speedup for loop invariant code motion in an inlining
JIT, Xu et al. [159] report slowdowns in a memoization optimization. Le et al. [89] summarize
their own and related work as follows: "Although precision of the underlying analyses tends to
have large effects on static counts of optimization opportunities, the effects on dynamic behavior
are much smaller; even simple analyses provide most of the improvement."

Rountev [124] and Salcianu [130, 131] developed static analyses for determining side-effect-
free methods. Like our static analysis component, they combine a pointer analysis, an intra-
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procedural analysis to determine "immediate" side effects, and inter-procedural propagation to
determine transitive side effects. Salcianu defines a side-effect-free method as one that does not
modify any heap cell that existed when the method was called. Rountev's definition is more re-
stricted and prohibits a side-effect-free method from creating and returning a new object, or cre-
ating and using a temporary object. Sdlcianu's analysis can compute per-parameter mutability
information in addition to per-method side effect information. (A method is side-effect-free if it
modifies neither its parameters nor the global state, which is an implicit parameter.) Rountev's
coarser analysis results are one reason that we cannot compare directly to his implementation.
Rountev applies his analysis to program fragments by creating an artificial main routine that calls
all methods of interest; we adopted this approach in augmenting J (see Section 5.6).

SAlcianu's [130, 131] analysis uses a complex pointer analysis. Its flow-insensitive method
summary represents in a special way objects allocated by the current method invocation, so a side-
effect-free method may perform side effects on a newly-allocated objects. Like ours, Salcianu's
analysis handles code that it does not have access to, such as native methods, by using manually
prepared annotations. Sdlcianu describes an algorithm for computing object immutability and
proves it sound, but his implementation computes reference immutability (not object immutability)
and contains some minor unsoundness. We evaluated our analyses, which also compute reference
immutability, against Salcianu's implementation (Section 5.5). In the experiments, our staged
analyzed achieve comparable or better accuracy and better run-time performance.

Javarifier [38, 118, 119] infers the reference immutability type qualifiers of the Javari extension
of Java [19, 146]. Starting at field reassignments (the source of all object side-effects), Javarifier
flow- and context-sensitively propagates mutation information to all references, including method
receivers. Our case studies using Javarifier (Section 5.7.3.3) show that Javari is sometimes more
restrictive than our formal definition due to the conservative nature of its type rules. JQual [69]
is a framework for inference of type qualifiers. JQual's definition of reference immutability and
inference algorithm are similar to those of Javari.

Porat et al. [18, 117] infer class immutability for global (static) variables in Java's rt.jar,
thus indicating the extent to which immutability can be found in practice; the work also addresses
sealing/encapsulation. Foster et al. [61] developed an inference algorithm for const annotations
using Cqual, a tool for adding type qualifiers to C programs. Their algorithm does not handle
aliasing. Foster et al. also present a polymorphic version of const inference, in which a single
reference may have zero or more annotations, depending on the context.

Other researchers have also explored the idea of dynamic side-effect analysis. Dallmeier and
Zeller developed the JDynPur tool (http://www.st.cs.uni-sb.de/models/jdynpur) for offline dynamic side-
effect analysis (not parameter mutability) but provide no description of the algorithm or experi-
mental results. Xu et al. [159] developed dynamic analyses for detecting side-effect-free methods.
Their work differs significantly from ours. Xu et al. consider only the method's receiver, while
our analyses are more fine-grained and produce results for all formal parameters, including the
receiver. Xu et al. examine only one analysis at a time. In contrast, our framework combines the
strengths of static and dynamic analyses. Xu et al. do not present an evaluation of the effective-
ness of their analyses in terms of precision and recall, they only report the percentage of methods
identified as pure by their analyses. In contrast, we established the immutability of more than 8800
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method parameters by manual inspection and report the results of our 192 analysis combinations
with respect to the established ground truth. Finally, Xu et al.'s dynamic analysis is unsound. In
contrast, our analysis framework is sound and we provide sound analyses, both static and dynamic,
to use in the framework.

5.8.2 Specifying and Checking Mutability

A verification approach enforces reference immutability annotations written in the source code.
Soundness requires that any cannot modify an object that was annotated as immutable. Since the
problem is uncomputable, any static, sound system for checking annotations rejects some programs
that cannot actually violate the immutability specifications at run-time.

Annotation-based approaches include Islands [77], Flexible Alias Protection [104], JAC [86],
C++ const [138], ModeJava [134], Capabilities [22], Javari [19, 146], Universes [49], Relation
types [148], and IGJ [164]. Many of these systems provide features beyond mutability annotations;
for example, problems of ownership and aliasing can contribute to mutation errors, so a type system
may also address those issues.

All the above approaches, except for Capabilities and C++'s const (which provide only non-
transitive reference immutability), state as their goal the reference immutability described infor-
mally in the Introduction. Boyland [21] also noticed those similarities. In JAC [86], "the declar-
ative definition of read-only types is: for an expression of a read-only type that evaluates to an
object reference r, the full state of the referenced object is protected against changes performed
via r." In ModeJava [134], "a read reference is a reference that is never used for modification of
its referenced object (including retrieval of write references that may in turn be used for modifi-
cation)." In Javari [19], "A read-only reference is a reference that cannot be used to modify the
object to which it refers." In Universes [49], "references [...] must not be used to modify the
referenced object since the reference is not guaranteed to come from the owner or a peer object of
the modified object. Hence, we call these references readonly references."

However, while some of these descriptions are formal by having type rules, none specifies
precisely what it means that a modification happens through the reference. Without a formal
definition of reference immutability, it is not possible to compare different systems for inferring
or checking it, nor is it possible to evaluate the systems' trade-offs between expressiveness and
checkability. Capabilities [22], and Javari [19], do provide a formal definition for their systems,
but do so using the programming language. In Javari (Capabilities are similar), a reference is read-
only if it is possible to annotate it with readonly (i.e., the type system issues no error). In contrast,
this chapter provides a formal definition that is independent of how it is calculated.

Object immutability is a stronger property than reference immutability: it guarantees that a
particular value is never modified, even through aliased parameters. Reference immutability, to-
gether with an alias or escape analysis, is enough to establish object immutability [19]. Pechtchan-
ski [113] allows the user to annotate his code with object immutability annotations and employs
a combination of static and dynamic analysis to detect where those annotations are violated. The
IGJ language [164] supports both reference and object immutability via a type system based on
Java generics.
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Side-effect analysis is different from parameter reference immutability, which is our focus.
Side-effect analysis concerns methods and whether the heap can be modified during the method's
execution. Parameter reference immutability concerns references to method parameters and whether
they can be used to modify the state of objects. Except for very strict definitions of purity (such as
strong purity [159]), method purity can often be computed from parameter reference immutability
information (combined with analysis of globals).

5.9 Conclusion

We formally define parameter reference immutability. Previous work relied mostly on informal
descriptions and type systems, both for inferring immutable references, and for checking anno-
tations. The formal definition in this chapter encompasses those informal notions and enables
unbiased comparisons between different inference and type-annotation approaches.

We have described Pidasa, a staged mutability analysis framework for Java, along with a set of
component analyses that can be plugged into the analysis. The framework permits combinations of
mutability analyses, including static and dynamic techniques. The framework explicitly represents
analysis incompleteness and reports both immutable and mutable parameters. Our component
analyses take advantage of this feature of the framework.

Our dynamic analysis is novel, to the best of our knowledge; at run time, it marks parameters
as mutable based on mutations of objects. We presented a series of heuristics, optimizations, and
enhancements that make it practical. For example, iterative random test input generation appears
competitive with user-supplied sample executions. Our static analysis reports both immutable and
mutable parameters, and it demonstrates that a simple, scalable analysis can perform at a par with
much more heavyweight and sophisticated static analyses. Combining the lightweight static and
dynamic analyses yields a combined analysis with many of the positive features of both, including
both run-time performance and accuracy.

Our evaluation of Pidasa, includes many different combinations of staged analysis, in both
sound and unsound varieties. This evaluation sheds insight into both the complexity of the problem
and the sorts of analyses that can be effectively applied to it. We also show how the results of the
mutability analysis can improve client analyses.

We compared parameter immutability in four systems (a type system Javari, and three anal-
ysis tools: JMH, Pidasa and JQual), on a large set of parameters in several programs. We then
compared the results to the classification based on the formal definition, and analyzed the discrep-
ancies. The results provide insight into the trade-offs each system makes between expressibility
and verifiability. We observed that different systems vary in their approach to that trade-off. Javari
is a type system and its type rules are conservative with respect to immutability, which leads Javari
to mark some parameter references as mutable when in fact they cannot be used in a mutation.
JMH is able to infer more immutable parameters than Javari, but it also is conservative and thus
under-approximates the set of immutable references. Pidasa's inference combines static and dy-
namic analyses and offers both a conservative variant and a non-conservative variant that achieves
the highest recall, with a small loss in precision.

Our case studies show that existing systems for expressing and inferring reference immutability

140



approximate the formal definition we present in this chapter. We hope that future research in this
area finds the formal definition useful as a point of reference for verifying correctness and assessing
expressibility.
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Chapter 6

Conclusions

This chapter summarizes this dissertation and proposes several directions for future work.
This dissertation has demonstrated the how automatic test generation can be applied to address

various issues of software bugs depending on the stake-holder involved with addressing the bugs.
In particular we presented techniques for helping developers prevent new bugs in working func-
tionality, helping testers detect existing bugs, and helping maintainers eliminate manifested bugs in
deployed programs. We also show a mutability inference technique that increases the effectiveness
of the other techniques.

* For developers we presented a technique for preventing new bugs in working programs tar-
gets object-oriented programs with constrained APIs. For these types of programs it is hard
to generate legal instances and exercise method functionality without understanding the im-
plicit constraints each method is making on its arguments.

Our technique automatically generates structurally complex inputs in two phases. First, it
creates models that describe the behavior of objects in given example executions. Second, it
generates regression tests by exploring the space described by these models.

Our tool Palulu implements our technique for Java. Palulu effectively generates unit-level
regression tests with high coverage, and is capable of creating instances with highly complex
structure that would require significant effort to create manually.

* For testers we presented a technique for detecting bugs in existing programs targets dy-
namic web applications, where bugs result from low testing standards, the dynamicity of the
programming languages, and the effects of user interaction on executed functionality and
output.

Our technique creates test that expose failures in web-applications. In particular it attempts
to find execution failures and malformed output. The technique iteratively executes the pro-
gram while learning (and using) the relations between inputs and execution paths. Our tech-
nique simulates user input interactions, and checks the output using oracles. For each found
failure, our technique localizes failures to code statements, and minimizes the inputs for each
detected failure.
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Our tool Apollo implements our technique for PHP and uses HTML validators as oracles.
Apollo found 302 faults in 6 open-source PHP web applications. Out of these, 84 were
execution problems and 218 malformed HTML.

* For maintainers we presented a technique that is helpful in eliminating bugs found in de-
ployed object-oriented programs. Our technique captures partial snapshots of the state of
method's arguments. When the program fails, the technique uses the captured state to create
a test suite, where each test deterministically reproduces the failure.

Our tool ReCrashJ implements our technique for Java. ReCrashJ is scalable, effective, and
generates helpful test cases. ReCrashJ was able to reproduce real crashes from several pro-
grams with low overhead.

* Mutability inference allows a client analysis to avoid unnecessary work. Our prevention
technique uses this information to prune the generated models. Our elimination technique
uses this information to reduce the amount of information that needs to be copied and stored.

We have formally defined parameter reference immutability, since previous work relied
mostly on informal descriptions and type systems. The definition allows us to compare
the immutability characteristics of inference tools and type-annotation approaches.

We compared parameter immutability in four systems on a large set of parameters in several
programs. The results provide insight into the trade-offs each system makes between ex-
pressibility and verifiability. Our results shows that most existing systems approximate our
formal definition.

Our technique infers the mutability of methods' arguments using a staged mutability analysis
framework. The framework allows for a combination of component analyses, where each
component in the pipeline explicitly represents its imprecision, and targets the imprecision
of the previous analyses. We showed that the mutability inference analysis combining both
static and dynamic analysis components in the staged analysis is scalable and accurate.

Our tool Pidasa implements our technique for Java. Pidasa implements the framework, a
static intra-procedural analysis, a static inter-procedural analysis, a novel dynamic analysis,
as well as several heuristics for each analysis. We have tried different combinations of the
components analyses and heuristics in Pidasa, with both sound and unsound varieties. Our
evaluation shows that Pidasa allows for a very accurate and scalable solution.

6.1 Future Work

Enhancing Palulu models Methods in object-oriented programs expect arguments to be in a cer-
tain states in order to exercise functionality. Currently, Palulu models do not store any constraints
on the state of methods' arguments, and rely on the generation phase to randomly use instances
in different states as arguments to methods. A possible extension to Palulu will explore the rela-
tionship between the expressiveness of models with constraints on methods' arguments, and the
practicality of exploring these models.
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Effectiveness of Palulu technique We have evaluated Palulu on four subject programs. Palulu's
effectiveness differed greatly between the subject programs. It would be interesting to understand
the program characteristics for which our technique works best, or to improve its performance on
the other subject programs.

Improving fault localization in Apollo Apollo localizes faults by combing the oracle output error
positions with a mapping of the code statements to output. We can improve Apollo's fault local-
ization by comparing executed statements in faulty and correct execution in a similar way to [83].

Client-side analysis in Apollo Apollo learns the connections between input and execution paths
by analyzing scripts executed on the server, and HTML output. As a result, Apollo's coverage is
limited on applications that process scripts on the client-side (e.g., using JavaScript). It would be
valuable to adapt Apollo's technique to the challenges of analyzing client scripts, and combine it
with the current server-side scripts analysis done in Apollo to improve coverage.

ReCrash state capture ReCrash is limited in reproducing failures that depend on concurrency,
randomization, and external resources. ReCrash might be able to reproduce failures in cases where
the failure source is incorrect handling of information that was generated (and stored) due to one
of these reasons. We can increase ReCrash's effectiveness in reproducing this types of failures by
storing relevant parts of the environment, and thread context switching information for methods
accessing shared resources.

Fault localization using ReCrash ReCrash generates tests whenever a failure is detected. Thus,
if ReCrash is used by multiple users the same failure may be exposed by several ReCrash-enabled
applications. Thus, we can combine ReCrash with existing fault localization techniques (e.g.,
Tarantula [83]) that correlate code statements with faults by crossing coverage information between
passing and failing tests.
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