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Abstract

High-level synthesis (HLS) promises a significant shortening of the digital hardware de-

sign cycle by raising the abstraction level of the design entry to high-level languages such

as C/C++. However, applications using dynamic, pointer-based data structures remain

di�cult to implement well, yet such constructs are widely used in software. Automated

optimisations that leverage the memory bandwidth of dedicated hardware implementa-

tions by distributing the application data over separate on-chip memories and parallelise

the implementation are often ine↵ective in the presence of dynamic data structures, due

to the lack of an automated analysis that disambiguates pointer-based memory accesses.

This thesis takes a step towards closing this gap. We explore recent advances in separation

logic, a rigorous mathematical framework that enables formal reasoning about the memory

access of heap-manipulating programs. We develop a static analysis that automatically

splits heap-allocated data structures into provably disjoint regions. Our algorithm fo-

cuses on dynamic data structures accessed in loops and is accompanied by automated

source-to-source transformations which enable loop parallelisation and physical memory

partitioning by o↵-the-shelf HLS tools.

We then extend the scope of our technique to pointer-based memory-intensive implemen-

tations that require access to an o↵-chip memory. The extended HLS design aid generates

parallel on-chip multi-cache architectures. It uses the disjointness property of memory

accesses to support non-overlapping memory regions by private caches. It also identifies

regions which are shared after parallelisation and which are supported by parallel caches

with a coherency mechanism and synchronisation, resulting in automatically specialised

memory systems. We show up to 15⇥ acceleration from heap partitioning, parallelisation

and the insertion of the custom cache system in demonstrably practical applications.
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1. Introduction

With the increasing demand for performance and e�ciency of computing devices, cus-

tom computing is a growing area in digital computation today, which represents a class

of processing devices that are dedicated to an application or a range of similar appli-

cations. Custom computing devices can achieve higher energy or power e�ciency and

performance with respect to general-purpose microprocessors, which can execute any task

on the same underlying hardware [1, 2, 3, 4, 5, 6, 7, 8]. E�ciency and performance are

gained by avoiding unnecessary circuitry for a specific computing task, and the design

of custom data paths and memory systems. The trade-o↵ between flexibility and perfor-

mance/e�ciency varies across di↵erent classes of specialised computing machines: Digital

signal processors and application-specific instruction set processors (ASIPs) are software-

programmable and provide extended hardware support for domain-specific features. On

the other hand, digital application-specific integrated circuits (ASICs) are fully customised

processors that implement computation based on a digital circuit which is usually dedi-

cated to a single application; once produced, the functionality of an ASIC is hard-wired and

cannot be changed. Field-programmable gate arrays (FPGAs) have a particular role in the

flexibility/performance trade-o↵ in that they combine programmability with an e�cient

dedicated circuit implementation for a particular application. An FPGA consists of con-

figurable logic cells and interconnects and typically can be reprogrammed to implement

di↵erent computing tasks post-fabrication.

The traditional design entries of ASIC and FPGA implementations are largely similar

in the first phases of the design flow. A hardware model is written in a hardware descrip-
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CHAPTER 1. INTRODUCTION

tion language (HDL) such as VHDL [9] or Verilog [10] at the level of abstraction referred

to as register transfer level (RTL). The specification at RTL allows the user to have full

control over the low-level details of the data path and memory system implementations

on the chip and to navigate the implementation through a large design space. However,

producing a manual RTL specification requires significant design and verification e↵ort,

including several iterations of design optimisation and verification phases. The develop-

ment times for complex ASIC implementations may amount to several years until tape-out,

while RTL design and verification dominate the overall development cycle. The design

cycle for FPGA implementations is typically shorter, but the design e↵ort at RTL is sim-

ilar. Long implementation cycles are a hindrance for an adoption of FPGAs as e�cient

yet flexible processing devices: reprogrammability encourages their use in a similar way

as microprocessors are used in that the same hardware can execute di↵erent ‘programs’.

However, prohibitively long development times compared to software implementations

fundamentally limit this versatility. Furthermore, the RTL design entry inevitably requires

familiarity with the low-level details of digital hardware design. The conceptual di↵er-

ence between the application development for FPGAs and for instruction set architectures

hinders the wide adoption of FPGA technology by software developers and application

engineers without experience in circuit design [11].

The low productivity of application development at RTL has encouraged the electronic

design automation (EDA) community to raise the abstraction level of application descrip-

tions from RTL to high-level languages such as C/C++. High-level synthesis (HLS) tools

take these descriptions as input and automatically generate RTL specifications which can

be synthesised and mapped into hardware by standard back-end RTL tool flows. High-

level design entry can significantly shorten the development cycle when compared with

RTL-based specification. Remarkable e↵ort in academia and industry has led to various

HLS tools targeting ASIC and FPGA technology. With C/C++ being one of the most preva-

lent programming languages used to date and with large bases of legacy codes written in

it, RTL compilation from C/C++ and derivatives thereof has a long-standing tradition in
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CHAPTER 1. INTRODUCTION

industrial [12, 13, 14, 15, 16, 17, 18, 19, 20, 21] and academic [22, 23, 24, 25, 26] development.

The admissible source code entry to these tools is restricted to synthesisable subsets of the

C language.

HLS has experienced an increased interest in the last decade, which we believe is due

to two main reasons. Firstly, state-of-the-art tools have increased performance compared

to previous generations of tools developed in the mid 1990s [27]. The performance of an

HLS tool can be measured in the quality of results (QoR) of the resulting RTL description in

terms of execution time and hardware resource utilisation. Recent evaluations [28, 29, 30]

show that state-of-the-art tools, such as Xilinx Vivado HLS [19], can achieve a QoR com-

parable to hand-written HDL code. Secondly, technology scaling has brought the number

of transistors on a chip to point where the RTL design e↵ort required to make e�cient use

this resource is becoming an increasingly severe limitation [11]. On the other hand, the

abundance of hardware resources makes the trade-o↵ between the QoR of hand-written

HDL and generated HLS designs and design times appealing to more and more users, a

fact that is especially true for FPGA implementations whose end-to-end development time

is usually significantly shorter than that of ASIC designs [31, 11].

Despite the encouraging QoR results of FPGA-targeted HLS evaluations for particular

benchmarks [28, 29, 32, 31, 30], there are types of programs that either cannot be syn-

thesised at all, or result in a poor QoR. Applications using dynamic, pointer-based data

structures and dynamic memory allocation are examples of such programs. The objective

of this thesis is to extend the scope of current HLS to such pointer-based programs. Our

work is motivated by the fact that pointer-based memory references and dynamic memory

allocation are well established and widely used features of high-level languages such as

C++. However, their analysis and automated program optimisations resulting from it are

beyond the scope of the overwhelming majority of HLS techniques to date. Although

dynamic memory allocation, an unsupported feature in common HLS flows, can be made

synthesisable with manual source code modifications, pointer-based programs often do
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not result in e�cient hardware implementations. As we shall see in Chapter 2, the HLS

implementation of such a program can be degraded by a factor larger than 26⇥ in terms

of execution time compared to a hand-crafted RTL design if the source code is not further

optimised prior to HLS. The reward for extensive manual code optimisations is shown to

be an 8⇥ improvement of the execution time.

We identify two aspects that are crucial for improving the QoR. The first is the extraction

of parallelism from a pointer-based application while preserving the program semantics,

which is usually based on a dependence analysis. Secondly, computational parallelism

requires that the memory system is not a sequential bottleneck to performance. We aim to

make e�cient use of the customisable memory architecture in FPGAs, which is a key fea-

ture distinguishing FPGAs from microprocessors. Instead of a monolithic memory space,

the application data can be distributed over many small blocks of on-chip memory leading

to a high aggregate memory bandwidth. Consequently, multiple computational units can

be fed in parallel which results in a very e�cient parallelisation if expensive dynamic

interconnects between any memory and any worker in a parallel computational unit can

be reduced to single peer-to-peer connections, i.e. the parallelism is communication-free.

The C model, however, assumes the presence of a heap, a large monolithic memory space in

which a program allocates and frees up portions at run time. The di�culty of parallelisa-

tion and memory partitioning lies in the disambiguation of memory references: regardless

of scope, every two heap-directed pointers potentially alias, i.e. reference the same mem-

ory cell, which leads to dependencies between expressions that are syntactically unrelated.

The di�culty of analysing these programs is exacerbated by linked data structures which

contain pointers in their link fields.

Expanding on the encouraging results in Chapter 2, the scope of this thesis is to auto-

mate source code transformations that enable parallelisation and memory partitioning in

HLS flows. We present a static program analysis which breaks the monolithic heap mem-

ory into several disjoint portions, which we refer to as heaplets in this thesis, and rules out
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dependencies between code fragments that a standard HLS tool must assume potentially

exist. The dependence/disjointness analysis enables automated source-to-source transfor-

mations for parallelisation and data distribution which can be exploited by a back-end

HLS tool. Our departure point from previous work is the use of recent advances in sep-

aration logic [33], a mathematical framework that allows a rigorous formal description of

the program state and reasoning about the resources accessed by a program. Separation

logic extends the classical propositional logic by an operator that explicitly expresses the

separation of resources, i.e. the non-aliasing property of two pointers. This paves the way

for an automated program analysis and can straightforwardly handle dynamic memory

allocation in disjoint heaplets. Separation logic has predominantly been leveraged in mod-

ern software verification tools. To the best of our knowledge, its application in the context

of automated code optimisations for HLS remains largely unexplored. Experiments in

Chapter 4, comparing the automatically parallelised to the direct HLS implementations,

show an average reduction of execution time by a factor of 2.4⇥ across several benchmarks.

Besides the on-chip memory partitioning and parallelisation, our source-to-source trans-

formations ensure the synthesisability of heap-manipulating programs including dynamic

memory allocation by standard HLS tools. The implementations in Chapter 4 are con-

structed under the assumption that the application data fits in the physical on-chip mem-

ory. However, the chances of exhausting the memory resources in an FPGA application

with a large memory footprint are high since the maximum capacity of on-chip memory in

state-of-the-art FPGAs is only in the order of tens of megabytes. We remove the limitation

of being restricted to on-chip memory implementations in Chapter 5 by embedding HLS

kernels in a framework that provides access to an external memory hierarchy consisting

of board-level dynamic random access memory (DRAM) and host machine-level main

memory. Accessing external memory, however, can substantially slow down the FPGA

accelerator due to memory bandwidth limitations and, in the worst case, the contention

on the external memory bus eliminates the gain of parallelisation. The starting point for

our work in Chapter 5 is the insertion of on-chip caches to bu↵er frequently reused data
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and to reduce the number of expensive accesses to the external memory.

Our main contribution in Chapter 5 is the application of an extended version of the base-

line analysis in Chapter 4 to the automatic generation of an application-specific on-chip

multi-cache architecture. Firstly, we extend the analysis such that, at compile time, it pro-

vides precise information about which regions in heap memory will be shared after the

implementation has been parallelised. This extends its scope to programs whose memory

access pattern does not allow a partitioning into fully independent computational units

and therefore broadens the applicability of our technique. Secondly, we use the disjoint-

ness/sharing information to instantiate an application-specific, hybrid multi-cache system

that contains private caches for heap regions known to be private for a computational unit

and caches with an additional (and inherently more expensive) coherence mechanism and

synchronisation service for shared heap regions. In the remainder of this thesis, we distin-

guish between these two modes by referring to private and coherent caches, while the latter

case corresponds to inter-cache coherency. We also extend the multi-cache construction

with a technique for custom sizing so as to maximise the aggregate hit rate in private caches

under a memory resource constraint. We demonstrate a speed-up of up to 15.2⇥ after par-

allelisation and generation of a multi-cache architecture compared to the unparallelised

application and uncached access to the o↵-chip memory. Furthermore, the hybrid system

outperforms a default all-coherent version by 69.3% on average in terms of the area-time

product across our benchmarks.

This thesis moves us towards the goal of supporting full-featured C/C++ code in future

HLS flows by providing a framework that enables e�cient FPGA acceleration of irregular

computation over pointer-based data structures. In Section 4.3, we propose an approach

to integrate this framework into future HLS tools. The overall vision is that ‘standard’ soft-

ware codes, including those from legacy code bases which have not been developed with

HLS in mind, can be equally seamlessly mapped to FPGA accelerators while leaving the

platform-specific optimisations to the compiler. This further raises the level of abstraction
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in digital hardware design and may lead to a wider adoption of FPGA technology in an

extended scope of applications.

1.1. Research Contributions

This thesis makes the following main contributions:

• A separation logic-based parallelisation algorithm for pointer-based programs which

access dynamic data structures. Our static program analysis handles straight-line

code as well as arbitrary while-loops and determines whether communication-free

parallelism can be exposed in the loop execution with respect to the accessed dynamic

data structures. Starting from the C memory model of a global monolithic heap

memory, it determines how to partition the heap and dynamic data structures into

disjoint partitions that can be implemented in separate on-chip memory blocks.

• The implementation of an automated source-to-source transformation infrastructure:

The source translator ensures synthesisability of code containing unsupported con-

structs related to dynamic memory allocation. In a second pass, the disjointness

information provided by our analysis is used to split the synthesised heap memory

into separate blocks and to split a loop into multiple loops so as to obtain a se-

mantically equivalent parallel implementation. The property of communication-free

parallelism ensures that each functional unit only requires access to its own private

memory block.

• In addition to the identification of disjoint heap regions, we extend the baseline heap

analysis by an identification of heaplets that would be shared by the parallel loop ker-

nels after parallelisation. Our analysis inserts additional synchronisation primitives

for program fragments that access shared resources. Even if coherency is ensured,

updates to the shared resource may happen in a di↵erent order after parallelisa-

tion compared to the sequential program. We present a commutativity analysis for the

shared heap update in order to prove that the parallelisation is semantics-preserving.
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• The extended framework targets FPGA accelerators with access to an o↵-chip mem-

ory. The disjointness and sharing information provided by our analyses are used to

break the heap (residing in o↵-chip memory by default) into heaplets, to generate an

application-specific parallel multi-scratchpad architecture containing on-chip caches

and (if needed) coherency mechanisms: we synthesise parallel private scratchpads

for disjoint heap regions and (inherently more expensive) coherent parallel scratch-

pads for shared regions.

• We further extend this framework by automated size scaling of private on-chip

caches that uses spare on-chip memory resources. We generate individual sizing

information for the multi-cache system and find the best size distribution for a user-

provided memory access pattern of a particular application.

1.2. Thesis Outline

Before discussing the background and related work on program analyses, parallelisation

and memory system optimisations in an HLS context in Chapter 3, this thesis begins with

the presentation of a case study in the next chapter. The case study compares RTL and HLS

implementations of two alternative algorithms for the same compute-intensive machine

learning application (clustering) with significantly di↵erent computational properties: a

data-flow centric implementation and a recursive tree traversal implementation that incor-

porates data-dependent control flow and makes use of pointer-linked data structures and

dynamic memory allocation. The reason for this order of Chapters 2 and 3 is two-fold: 1)

It introduces the type of problems this work addresses and provides a motivating example

for mapping an e�cient pointer-based algorithm to an FPGA rather than its pointer-less

brute-force counterpart. 2) It shows the capabilities and limitations of an exemplary state-

of-the-art C-to-FPGA tool when synthesising pointer-based programs and proposes a set

of manual source code alterations that result in a significantly more e�cient HLS design.

Chapter 3, after the discussion of related work, introduces separation logic, the theoretical
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framework that provides the foundation of our program analyses in Chapter 4 and 5. The

analysis in Chapter 4 automates an important part of the code transformations of Chapter 2

that enables memory partitioning and parallelisation. Chapter 5 extends the scope of this

work to the construction of multi-cache systems and shared memory accesses. Chapter 6

concludes this thesis and summarises the key ideas and concepts developed in this work.

It also outlines directions of future research that build on the research contributions made

in this thesis.

1.3. Statement of Originality

This thesis is my own work and all related work is appropriately referenced. The original

contributions made in this thesis have been published in the following peer-reviewed

conference papers and journal articles:

1. F. Winterstein, S. Bayliss and G.A. Constantinides, “Separation Logic for High-Level

Synthesis,” ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol.

9, no. 2, pp. 10:1–10:23, Dec. 2015. [34]

2. F. Winterstein, K. Fleming, H.-J. Yang, J. Wickerson, G. Constantinides, “Custom-

Sized Caches in Application-Specific Memory Hierarchies,” Proceedings of the IEEE

International Conference on Field-Programmable Technology (ICFPT), pp. 144-151, 2015.

[35]

3. F. Winterstein, K. Fleming, H.-J. Yang, S. Bayliss, G. Constantinides, “MATCHUP:

Memory Abstractions for Heap Manipulating Programs,” Proceedings of the ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 136-145, 2015.

[36]

4. F. Winterstein, S. Bayliss, G. Constantinides: “Separation Logic-Assisted Code Trans-

formations for E�cient High-Level Synthesis,” Proceedings of the IEEE International

Symposium on Field-Programmable Custom Computing Machines (FCCM), pp. 1-8, 2014

(best paper nominee). [37]
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5. F. Winterstein, S. Bayliss, G. Constantinides: “High-Level Synthesis of Dynamic Data

Structures: A Case Study Using Vivado HLS,” Proceedings of the IEEE International

Conference on Field-Programmable Technology (ICFPT), pp. 362-365, 2013. [30]

6. F. Winterstein, S. Bayliss, G. Constantinides: “FPGA-based K-means Clustering Us-

ing Tree-Based Data Structures,” Proceedings of the International Conference on Field

Programmable Logic and Applications (FPL), pp. 1-6, 2013. [38]

The C-based HLS and RTL source code developed for the case study in Chapter 2 were

made publicly available in an open source repository1 [39].

Our work on cache architecture specialisation uses the open-source LEAP (Latency-insensitive

Environment for Application Programming) framework [40] to embed the C/C++-based

HLS kernels in an environment that constructs on-chip caches and an interface to external

DRAM and host system main memory. LEAP is developed jointly at the Massachusetts

Institute of Technology (MIT, Computer Science and Artificial Intelligence Laboratory)

and the Intel Software and Services Group. The work in Chapter 5 and the corresponding

publications [36, 34] were done in collaboration with the LEAP developers Kermin Elliott

Fleming from Intel and Hsin-Jung Yang from MIT. Their main contribution was support

for integrating our HLS kernels in the LEAP environment. Furthermore, following discus-

sions about automatic cache scaling (also presented in Chapter 5), they implemented a new

cache micro-architecture in LEAP that uses bu↵ered banks of on-chip memory to support

higher clock rates in large caches, an implementation that is used by our technique. In

turn, our HLS benchmarks have been used to support the cache architecture design space

explorations, which has led to my co-authorship in the following joint publications:

1. H.-J. Yang, K. Fleming, M. Adler, F. Winterstein, J. Emer, “LMC: Automatic Resource-

Aware Program-Optimized Memory Partitioning,” Proceedings of the ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 128-137, 2016.

[41]
1https://github.com/FelixWinterstein/Vivado-KMeans
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2. H.-J. Yang, K. Fleming, M. Adler, F. Winterstein, J. Emer, “Scavenger: Automating

the Construction of Application-Optimized Memory Hierarchies,” Proceedings of the

IEEE International Conference on Field Programmable Logic and Applications (FPL), pp.

1-8, 2015. [42]

The collaboration with Intel/MIT also resulted in a tutorial session jointly held at the In-

ternational Conference on Field Programmable Logic and Applications (FPL) in 2015 [43].

Some of the HLS, RTL and Bluespec System Verilog source code developed within the

scope of Chapter 5 was also made publicly available in an open source repository2 [44].

Finally, the RTL and HLS implementations developed in the scope of Chapter 2 have been

included in other research projects (a case study for dynamic load balancing on FPGAs,

fault mitigation in an FPGA-based space processor, and a hardware compiler for higher

order functional programs). My contribution to these projects resulted in a co-authorship

of the following publications:

1. N. Ramanathan, J. Wickerson, F. Winterstein, G. A. Constantinides, “A Case for

Work-stealing on FPGAs with OpenCL Atomics,” Proceedings of the ACM/SIGDA

International Symposium on Field-Programmable Gate Arrays (FPGA), pp. 48-53, 2016.

[45]

2. S. T. Fleming, D. B. Thomas, F. Winterstein, FPGAs and Parallel Architectures for

Aerospace Applications: Soft Errors and Fault-Tolerant Design. Springer International

Publishing, 2016, ch. “A Power-Aware Adaptive FDIR Framework Using Heteroge-

neous System-on-Chip Modules”, pp. 75–90. [46]

3. E. A. Pelaez, S. Bayliss, A. Smith, F. Winterstein, D. R. Ghica, D. Thomas, G. A. Con-

stantinides: “Compiling Higher Order Functional Programs to Composable Digital

Hardware,” Proceedings of the IEEE International Symposium on Field-Programmable

Custom Computing Machines (FCCM), pp. 234-234, 2014. [47]

2https://github.com/FelixWinterstein/LEAP-HLS
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2. High-level Synthesis of Dynamic Data

Structures

HLS promises significant shortening of the design cycle compared to a design entry at

RTL. However, many HLS implementations require extensive code alterations to ensure

synthesisability and to achieve latency, throughput and resource utilisation comparable

to handwritten RTL designs. These are especially important for programs with ‘irregular

control flow’ and ‘complicated data dependencies’. In this chapter, we describe these terms

in detail and elaborate on their implications for e�cient HLS. To this end, we present a case

study comparing the implementations of two algorithms for a compute-intensive machine

learning application (K-means clustering). Algorithmically, both implementations solve

the same problem, but they di↵er significantly in their computational properties: the first is

a data flow-centric, ‘regular’ implementation with simple control flow, whereas the second

is based on a recursive traversal of a pointer-linked tree data structure and uses dynamic

memory allocation. The latter application thus exhibits highly ‘irregular control flow’ and

‘complicated data dependencies’. Despite this irregularity, software implementations of

this algorithm have been shown to be significantly faster than their data flow-centric coun-

terparts because it e↵ectively reduces the algorithmic complexity of the problem [48].

Our evaluation fits in the line of works that present designer’s experiences with HLS tools.

For example, a broad selection of 12 state-of-the-art HLS tools, academic and commercial, is

evaluated by Meeus et al. [28]. Their overview, attesting Vivado HLS excellent test results,

targets FPGA as well as ASIC flows and is based on a large set of criteria grouped into
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language support, ease of use, QoR and the capability of a rapid design space exploration.

The goal is to perform a broad comparison across di↵erent tools mainly using a Sobel edge

detector [49] as a test case. Sarkar et al. [32] present a more refined designer’s experience

with three HLS tools for ASICs using stream-based video processing applications. Their

conclusion highlights the importance of fine-grained re-architecturing their test cases to

optimise area and power consumption, and an evaluation by experienced users to obtain

solid comparisons. BDTI present an explicit evaluation of AutoPilot (later renamed into

Vivado HLS after the acquisition by Xilinx) [29]. Their evaluation uses video processing

and stream-based wireless communications benchmarks, reporting QoR comparable with

manual RTL implementations. The evaluations above share the commonality that the cho-

sen benchmark cases are data flow-centric stream-based applications with simple control

flow. A recent survey in [31] compares three academic tools and one commercial HLS

tool using and four data-flow centric benchmarks in addition to the CHStone [50] bench-

mark suite, which covers a broader spectrum of applications. Heap-manipulating code,

however, is not included. In contrast to the above evaluations, with our pointer-based

benchmark, we aim to operate the HLS flow on test cases outside its ‘comfort zone’.

The outcome of our case study is three-fold: Firstly, we can show that the performance

result obtained for software implementations can be repeated with hand-optimised RTL

implementations of both algorithms. This result is interesting in that irregular algorithms

are often believed to be ine�cient once mapped into hardware. Furthermore, it shows

that the use of dynamic, pointer-linked data structures, which are central to the second

algorithm, can result in very e�cient FPGA applications if implemented well. Secondly,

we repeat the case study with an HLS implementation using a state-of-the-art HLS tool and

show that our previous result is reversed if the source code is not substantially altered prior

to HLS. Thirdly, we analyse the e�ciency with which the HLS tool maps specific program

features into RTL and propose source-to-source transformations that improve the QoR of

the irregular algorithm by a factor of eight in terms of latency, significantly narrowing the

gap between HLS and hand-written RTL implementations. This chapter describes:
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Figure 2.1.: Design flow of the case study

• An e�cient RTL implementation of the irregular tree-based K-means clustering al-

gorithm which preserves the algorithmic advantage over the conventional regular

implementation. We show how the implementation can e�ciently exploit the dis-

tributed memory architecture in FPGAs.

• A comparative case study using a data-flow centric clustering implementation and an

implementation based on recursive traversal of a pointer-linked tree structure which

incorporates data-dependent control flow. The case study comprises hand-written

RTL and HLS implementations. Code transformations necessary to enable HLS of

unsupported program features are highlighted.

• The use of on-chip dynamic memory allocation which allows us to allocate the aver-

age amount of memory required during runtime instead of statically pre-allocating

the worst-case amount resulting in a 57⇥ reduction of on-chip memory resources.

• An end-to-end QoR comparison between the automatically generated RTL code for

both variants and both functionally equivalent, hand-written RTL implementations.

• An analysis of how e�ciently specific program features are synthesised into RTL.

We propose source-to-source transformations that improve QoR by a factor of eight

in terms of latency.

The two algorithms for K-means clustering form the basis of our case study. Fig. 2.1 shows

our design flow. The initial C++ model is modified in order to include custom precision

for operands of the basic arithmetic operations. From this model, we implement a hand-
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written RTL design written in VHDL (bottom branch, Section 2.3) and a C++-based HLS

design (top branch). The HLS implementation requires further code refactoring which we

discuss in Section 2.4. The generated and hand-crafted RTL design entries are verified using

standard RTL simulation tools. Finally, QoR is compared in terms of latency and resource

usage taken from the placed and routed FPGA designs (Section 2.5). The evaluation flow

in Fig. 2.1 is repeated for both clustering algorithms. The following section discusses both

algorithms.

2.1. Background

The test cases we chose for this case study are two implementations of a clustering ap-

plication, a technique for unsupervised partitioning of a data set commonly used in a

wide range of applications, such as machine learning, data mining, radar tracking, image

colour or spectrum quantisation. A popular technique for finding clusters in a data set is

K-means clustering, which partitions the D-dimensional point set X = {xj}, j = 1, ...,N into

clusters {Si}, i = 1, ...,K, where K is provided as a parameter. The goal is to find the optimal

partitioning which minimises the total sum of squared Euclidean distances (squared-error

distortion) given in (2.1) where µi is the geometric centre (centroid) of Si.

J({Si}) =
KX

i=1

X

xj2Si

���xj � µi
���2 (2.1)

Finding optimum solutions to this problem is NP-hard [51]. A popular heuristic version

uses an iterative refinement scheme. The standard algorithm begins by choosing K initial

centres Z = {µ1, ..., µK} sampled randomly from the point set. The set Z is iteratively re-

fined until it no longer changes. On each iteration, it splits X into K partitions, according

to which is the nearest mean of each partition. These means (geometrical centres) form the

next generation of Z (Z0). Using one algorithm for this problem, which we refer to as Lloyd’s

algorithm, N · K · L distances in D-dimensional space are computed where N is the number

of data points and L, the number of required iterations. Listing 1 shows pseudo code of
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Listing 1 Main kernel of Lloyd’s algorithm (one clustering iteration).
1: Parameters:
2: N, K
3: Input:
4: point set X = {x1, x2, . . . , xN}
5: initial centre set Z = {µ1, µ2, ..., µK}
6: Output:
7: new centre set Z0 = {µ01, µ02, ..., µ0K}
8: Variables:
9: centroid information C = {c1, c2, ..., cK}

10: function lloyds
11: for all xj 2 {x1, x2, ..., xN} do . iterate over all data points
12: i argmini0,µi02Z(||xj � µi0 ||2) . find closest centre to xj among K candidates
13: ci  select ith element in C
14: ci.wgtCent ci.wgtCent + xj
15: ci.count ci.count + 1
16: update ci in C
17: end for
18: for all ci 2 C do . update centre positions
19: µ0i  ci.wgtCent/ci.count;
20: end for
21: end function

the main processing loop for one iteration of Lloyd’s algorithm. Line 12 searches among K

candidate centres for the closest centre to a data point xi. The index i of this centre is used

to update the correct entry in the centroid information table C (Lines 13-16). C contains

K vector sums of data points which we refer to as ‘weighted centroids’ (wgtCent). After

all data points have been processed, the final output centre set {µ01, µ02, ..., µ0K} is computed

from the weighted centroids in C (Lines 18-20).

In contrast to massively parallel hardware implementations, sophisticated software im-

plementations have been proposed which gain speed-up from search space reductions.

Kanungo et al. [48] present one possible implementation. Their filtering algorithm organises

the data points in a multi-dimensional binary search tree, called a ‘kd-tree’, and finds near-

est centres at each iteration using a tree traversal. To this end, the point set is recursively

divided into two subsets. In each step, the axis-aligned bounding box of the subset is

computed and subdivided. This leads to a (generally not perfectly balanced) binary kd-
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tree structure whose root node represents the bounding box of all data points and whose

children nodes represent recursively refined, non-empty disjoint bounding boxes. Each

tree node stores the bounding box (bndBox) information as well as the number (count) and

the vector sum of its associated points (the weighted centroid, wgtCent) which is used to

update the cluster centres when each iteration completes. The weighted centroid of leaf

nodes is the data point itself.

Listing 2 shows a simplified version of the recursive kernel function of the filtering al-

gorithm for one iteration. During clustering, the tree is traversed starting from the root

node. The set of input centres in Lloyd’s algorithm is replaced by sets of candidates for the

closest centre to a subset of data points. The algorithm propagates multiple candidate sets

down the tree. These are of variable size and are created and disposed at run-time. At each

non-terminal visited tree node, the closest candidate centre to the mid point (midPoint) of

the bounding box is found. Some of the remaining candidates are pruned if no part of the

bounding box is closer to them than the closest centre (Line 22). The pruning greatly re-

duces the number of computed distances since the average number of ‘close’ cluster-centre

candidates is significantly smaller than K. Additionally, entire sub-trees can be pruned if

only one candidate remains. As the point set does not change during clustering, the kd-tree

needs to be built up only once and the additional overhead is amortised over all iterations.

In fact, our profiling results show that, on average, the tree construction demands less

than 2% of the total computation required. Therefore, we perform the pre-processing in

software and the FPGA accelerator discussed in the following focuses only on the tree

traversal phase.

In light of this case study, we identify the most important features of both applications.

Because the min-search in Listing 1 (Line 12) is implemented as a for-loop over K cen-

tres, the main kernel of Lloyd’s algorithm consists of two nested for-loops with constant

bounds. The simple control flow and inherent parallelism at the granularity of distance

computations makes the computationally expensive algorithm suitable for hardware im-
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Listing 2 Main kernel of the filtering algorithm (one clustering iteration) [48].
1: Parameters:
2: N,K
3: Input:
4: kd-tree
5: initial centre set {µ1, µ2, ..., µK}
6: Output:
7: new centre set Z0 = {µ01, µ02, ..., µ0K}
8: Variables:
9: node in the kd-tree u

10: multiple sets of candidates for the closest centre to a point cloud (Z)
11: centroid information C = {c1, c2, ..., cK}

12: function filter(u, Z)
13: if u is leaf then
14: i⇤  argmini0,µi02Z(||u.wgtCent � µi0 ||2) . find closest centre to u.wgtCent
15: ci⇤  select i⇤-th element in C
16: ci⇤ .wgtCent ci⇤ .wgtCent + u.wgtCent
17: ci⇤ .count ci⇤ .count + 1
18: update ci⇤ in C
19: else
20: i⇤  argmini0,µi02Z(||u.midPoint � µi0 ||2) . find closest centre to u.midPoint
21: Znew  new centre set . allocate new centre set (empty)
22: for all µ j 2 Z do . prune candidate centres
23: if pruningTest(i⇤, µ j, u.bndBox) is false then
24: Znew  Znew [ {µ j}; . insert surviving candidates into Znew
25: end if
26: end for
27: if |Znew| = 1 then
28: ci⇤  select i⇤-th element in C
29: ci⇤ .wgtCent ci⇤ .wgtCent + u.wgtCent
30: ci⇤ .count ci⇤ .count + u.count
31: update ci⇤ in C
32: delete Znew . immediately delete allocated Znew
33: else . recurse on children
34: FILTER(u.le f t , Znew);
35: FILTER(u.right, Znew);
36: delete Znew . delete allocated Znew on the way back
37: end if
38: end if
39: end function
40: for all ci 2 C do . update centre positions
41: µ0i  ci.wgtCent/ci.count;
42: end for
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plementations so as to accelerate K-means clustering for real-time implementations if N

and K are large. Computational parts of the filtering algorithm in Listing 2 are the closest

centre searches (Lines 14, 20) and the candidate pruning (Line 22, containing two dis-

tance calculations), and the centroid bu↵er update. The loops in the min-searches and

candidate pruning have variable bounds 2  k  K. The implementation uses dynamic

memory allocation (Line 21) and de-allocation (Lines 32, 36) enclosed in data-dependent

conditionals. Memory space is freed upon backward traversal, i.e. after an allocated cen-

tre set has been read twice. The implementation uses recursive function calls (beyond tail

recursion) which requires the presence of a stack. The stack is implicitly handled in the soft-

ware program, but it needs to be explicitly implemented in an FPGA application. The data

passed between recursive instances are the tree node u and the set of candidate centre set Z.

Previous hardware implementations of Lloyd’s algorithm are proposed in [52, 53, 54, 55, 56].

Pioneering work by Leeser et al. [52] implemented FPGA-clustering for the analysis of

hyperspectral images. Their approach trades clustering quality for hardware resource

consumption by replacing the Euclidean distance norm with multiplier-less Manhattan

and Max metrics. This trade-o↵ is extended to bit width truncations on the input data by

Estlick et al. [53] who report a speed-up of up to 200⇥ over the software implementation.

More recent work in [54] builds on the same framework and extends it by incorporating

a hybrid fixed- and floating-point arithmetic architecture. These approaches aim to gain

acceleration from an increased amount of parallel hardware resources for distance com-

putations and nearest centre search. Contrary to these works, the first contribution in this

thesis chapter is an e�cient implementation of the filtering algorithm, which gains accel-

eration largely from search space pruning. Chen et al. [57] present a VLSI implementations

for K-means clustering which is notable in that it, in line with our approach, recursively

splits the data point set into two subspaces using conventional 2-means clustering. Logi-

cally, this creates a binary tree which is traversed in a breadth-first fashion and results in

computational complexity proportional to log2 K. This approach, however, does not allow

any pruning of candidate centres. Saegusa et al. [58] present a simplified kd-tree-based
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implementation for K-means image clustering. The data structure stores the best candidate

centre (or generally a few ‘best’ candidates) at its leaf nodes and is looked up for each data

point. The tree is built independently of the data points, i.e. the pixel space is subdivided

into regular partitions which leads to ‘empty’ pixels being recursively processed. Other

disadvantages are that the tree needs to be rebuilt at the beginning of each iteration and

that the centre lists are not pruned during tree traversal in the build phase, which are

essential features of the filtering algorithm.

2.2. Analysis of the Filtering Algorithm

We analyse several properties of the filtering algorithm that provide insight into the ad-

vantage over Lloyd’s algorithm. To this end, we profile a software implementation of

the algorithm. The input data sets that we use throughout this chapter are point sets of

N = 16384 three-dimensional real-valued samples. The data points are distributed among

128 centres following a normal distribution with varying standard deviation �, whereas

the centre coordinates are uniformly distributed over the interval [�1, 1]. Finally, the data

points are converted to 16bit fixed-point numbers. We choose K = 128 initial centres sam-

pled randomly from the data set and run the algorithm either until convergence of the

objective function or until a maximum of 30 iterations are reached. In addition to synthetic

input data, we include a working set with N = 16384 randomly sampled pixels from the

well-known Lena benchmark image and quantise the colour space into K = 128 clusters.

Note that the clustering output is exactly the same for both the implementation of Lloyd’s

and the filtering algorithm.

The filtering algorithm can be divided into two phases: building the tree from the point set

(pre-processing), and the repeated tree traversal and centre update (clustering phase). In

order to obtain information about the computational complexity of both parts, we profile

the software implementation of the algorithm using synthetic input data. Here, we chose

the number of Euclidean distance computations performed as our metric for computational
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Table 2.1.: Computational complexity of the filtering algorithm broken down into cluster-
ing and pre-processing phases.
Input data

N = 16384, K = 128
DCEs in

clustering
DCEs in

pre-processing
Contribution of

pre-processing [%]

Synthetic � = 0.05 109207 4963 4.3
Synthetic � = 0.10 156464 4712 2.9
Synthetic � = 0.15 212670 4574 2.1
Synthetic � = 0.20 259146 4494 1.7
Synthetic � = 0.25 294173 4423 1.5
Synthetic � = 0.30 321841 4432 1.4
Synthetic � = 0.35 339831 4424 1.3
Lena benchmark (subset) 224418 4923 2.1

complexity. Since the tree creation phase does not compute any distances but performs

mainly dot product computations and comparisons, we introduce distance computation

equivalents (DCEs) to obtain a unified metric for both parts which combines several op-

erations which are computationally equivalent. Table 2.1 shows the profiling results of

the computational complexity of the filtering algorithm broken down into clustering and

pre-processing phases for di↵erent working sets. The parameter � is varied such that the

synthetic input data ranges from well-distinguished clusters (� = 0.05) to a nearly un-

clustered point set (� = 0.35). For all cases, the number of DCEs performed during tree

creation is only a fraction of the total number of DCEs (2% geometric mean). Because of the

small contribution of the pre-processing, we perform this part in software and the FPGA

implementation described in the following section focuses on the tree traversal phase only.

We also evaluate the search space pruning. The major complexity reduction is due to the

fact that the repeated searches for the closest centre need to consider significantly fewer

centres than Lloyd’s algorithm for which this number is always K. Fig. 2.2 (left) shows the

frequency of candidate centre set sizes averaged over all synthetic cases above. During

tree processing, most sets contain only 2 or 3 centres and the average centre set size is 4.36

(3.78 for the Lena image benchmark), which shows the e↵ectiveness of the search space

pruning. We quantify the overall search complexity of the filtering algorithm in terms of
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Figure 2.2.: Left: Frequency of candidate centre set sizes for synthetic input data. Right:
Computational complexity of the filtering algorithm in terms of node-centre
pairs (Lloyd’s algorithm has a constant complexity of 209.7 ⇥ 104 point-centre
pairs for this data set).

the aggregate number of node-centre pairs, i.e. the cumulative number of candidate centres

processed at the visited tree nodes per clustering iteration. This number is sensitive to the

input data. Fig. 2.2 (right) shows the number of node-centre pairs over di↵erent values of

� in the synthetic data sets. The complexity ranges from 31399 to 94590. We also include

the Lena benchmark with 61230 node-centre pairs for a comparison with real-world data.

For Loyd’s algorithm, an equivalent metric of data point-centre pairs can be defined which

is N ·K = 2097152 for all input sets in Fig. 2.2. Even for unfavourable input data (� = 0.35),

the filtering algorithm thus achieves a 22⇥ reduction of search complexity. In a sequential

software implementation [48], this reduction translates directly into a run-time advantage

of the filtering algorithm. The next sections investigate if, how, and to what extent this

result can be reproduced in hardware implementations.

2.3. RTL Implementations

This section describes e�cient hand-crafted FPGA implementations of Lloyd’s and Ka-

nungo’s filtering algorithm implementations, which will be compared in Section 2.5.1.

Both RTL implementations are fully pipelined designs and their computational parts
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mainly consist of the same basic elements, Euclidean distance and dot product compu-

tations, but their control structures and memory architectures are substantially di↵erent.

We made the source code of the RTL implementations discussed below available in an

open source repository1. The following description motivates later discussion of how we

direct the HLS flow to produce competitive designs from a C description. Specific features

discussed here and implemented later in the HLS flow (Section 2.4) will disclose particular

limitations.

2.3.1. Lloyd’s Algorithm

The implementation consecutively fetches data points from memory, computes the Eu-

clidean distance to each centre µi, 1  i  K, and selects the closest centre before fetching

the next data point. The distance computation is fully parallelised for a parametric data

point dimensionality D. Parallelism is further increased by performing P distance compu-

tations concurrently which reduces the number of sequential steps per iteration from N ·K
to (N · K)/P. A centroid bu↵er stores the centroid information C and maintains the inter-

mediate results during one iteration which are continuously updated. The accumulated

weighted centroids (wgtCent) are then divided by the count value at each index to obtain

the centre positions for the next iteration. The data set memory and centroid bu↵er are

implemented as on-chip block random access memory (BRAM) and distributed look-up

table (LUT) RAM, respectively. The position update uses a pipelined divider core.

2.3.2. Filtering Algorithm

Fig. 2.3 (left) shows a high-level block diagram of our RTL design of the filtering algorithm.

Our RTL implementation contains three computational kernels: 1) The closest centre search

computes Euclidean distances to either the mid point of a bounding box or the tree node’s

weighted centroid, followed by a min-search. 2) The pruning kernel performs two slightly

modified distance computations to decide whether any part of the bounding box crosses

the hyperplane bisecting the line between two centres. A more detailed description of the

1https://github.com/FelixWinterstein/Vivado-KMeans [39]
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Figure 2.3.: Left: FPGA implementation of the filtering algorithm. Right: Read-write
accesses to the scratchpad memory for centre sets during tree traversal.

pruning algorithm is given in [48]. Those centres µi for which the pruning test returns

false are flagged and no longer considered by subsequent processing units. 3) The centroid

bu↵er is updated and used in the same way as for Lloyd’s algorithm. All three sub-kernels

are integrated in a pipelined, stream-based processing core. This core has a hardware la-

tency of 31 clock cycles and can accept a node-centre pair on every other clock cycle. Thus,

if fully utilised, the pipeline is usually filled with several tree nodes and their associated

candidate centre sets.

The heart of the filtering algorithm is the traversal of the kd-tree which is implemented us-

ing the recursive calls shown in Listing 2. Our implementation controls this tree traversal

using a stack which contains pointers to a tree node and to its associated set of candidate

centres as well as the current set size. After fetching the pointers from stack, the data

referenced by them is processed. At the output of the pipeline, we obtain a new traversal

decision which is based on whether we have not yet reached a leaf node and whether there

is more than one centre in the pruned candidate set left. If so, new pointers (left and right

child and a new centre set) and the new set size are pushed onto the stack. Otherwise,

nothing is pushed onto the stack. In the latter case, a pointer to a non-visited node further

up in the tree will be fetched for processing in the next cycle. This process is repeated until

the stack and pipeline are empty which terminates the tree traversal. Because all memories

(tree nodes, centre indices, centre positions, centroid bu↵er, and stacks) are mapped to
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physically disjoint memories, all accesses can be made simultaneously in each clock cycle.

Pipelining and Parallelisation

The profiling results in Section 2.2 show that a candidate set (associated with a tree node

and processed item by item) has an average size of 4.36 centres in the scenarios considered

here, which is smaller than the pipeline depth of 31 stages. In order to hide pipeline latency,

we need to overlap the processing of multiple node-centre set pairs in the pipeline, which

is possible in the absence of feedback dependencies. Fig. 2.3 (right) illustrates the read and

write accesses. Memory accesses are indicated by dashed lines, pointer links are drawn

as solid lines. The diagram shows that a read-write data dependency exists only between

centre sets whose associated tree nodes have a direct parent-child relation. In fact, all

pointers residing on the stack point to data structures that has already been written to and

hence can be processed independently. The scheduler in the stack management fetches

new pointers as described above as soon as the pipeline is ready to accept new data.

Independent centre sets are read and written simultaneously using dual-port memory. For

parallelism beyond pipelining the processing units are duplicated. To process independent

subsets of such pairs, we split the tree into P disjoint sub-trees and distribute them across

several computational units for parallel processing. We note that for both pipelining

and parallelisation, we exploit knowledge about dependencies carried by data structures

accessed through pointers.

Dynamic Memory Allocation

The centre index memory (Fig. 2.3, left) serves as a scratchpad memory for storing centre

sets and retaining them for later usage during the tree traversal. A new set is written when

child nodes are pushed onto the stack and must be retained until both left and right child

nodes have been processed. The memory space then can be freed and reused. The duration

for which a centre set must be retained in memory depends on the shape of the (generally

unbalanced) tree. The results in Section 2.2 are obtained under the assumption that the

application can allocate as much scratchpad memory as needed. However, the requested
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amount may exceed the available on-chip memory resources. The worst-case number of

candidate sets is N � 1 which is required in the case of a degenerate kd-tree where every

internal node’s right child is a leaf and its left child is another internal node. If we consider

an FPGA application supporting Nmax = 16384 data points and a maximum of Kmax = 256

centres, we require (Nmax�1) ·Kmax · log2 Kmax ⇡ 33.6 Mbits worst-case memory space which

consumes 912 on-chip 36k-BRAM resources (⇠89% in a medium-size Virtex 7 FPGA) and

does not leave enough resources for the other memories in the implementation. However,

in the average case, the tree is unlikely to be degenerate as described above and therefore

the lifetime of a centre set is much shorter and the instantaneous memory requirement is

significantly lower.

As a result of this resource advantage, we implement a memory management unit which

dynamically allocates space and frees it once the candidate set has been read for the sec-

ond time, rather than a static allocation. The implementation of the fixed-size allocator

uses a free-list that keeps track of occupied memory space. In our implementation, the

scratchpad memory and free-list are sized to accommodate an ‘average-case’ number of

centre-candidate sets. Our approach is to limit the memory to a size of B ⌧ N � 1 sets.

When inadequate memory is available to service an allocation request, the algorithm al-

lows us to abandon the pruning approach and instead consider all candidate centres. This

modification does not compromise the functionality of the algorithm, but it increases its

run-time (the number of node-centre interactions). Fig. 2.4 shows the result of profiling

the software implementation clustering N = 16384 pixels (RGB vectors) sampled from the

Lena image benchmark and the two extreme cases for synthetic data in Table 2.1. If we

allow the algorithm to allocate memory for only a single centre, the search complexity

degrades to the worst case of (2 · N � 1) · K node-centre pairs to be examined. The search

complexity, however, greatly decreases for B > 10 in all test scenarios. We select a bound

of B = 256 centre sets (16 36k-BRAMs) which practically causes no run-time degradation

in the scenarios considered in this case study.
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Figure 2.4.: Trade-o↵ between heap size and run-time of the filtering algorithm (profiling).

The next section describes the re-implementations of both algorithms using a C-based

HLS tool, which finally allows us to compare the FPGA resource usage and speed of all

four designs.

2.4. HLS Implementations

We choose Vivado HLS for this case study as an exemplary state-of-the-art tool which

shares many similarities with other modern C-to-FPGA flows such as LegUp [22], ROCCC

[24], Dwarv [25] and GAUT [26]. RTL generation is guided by synthesis directives which

are manually invoked and configured. Exploring design options and optimisations using

directives ideally does not require the source code to be altered. The most important

directives we use to control the RTL generation are loop pipelining and loop unrolling

directives. Loop pipelining overlaps loop iterations in the pipeline. The interval between

the start of two iterations is given by the initiation interval (II). Loop unrolling is used

to force parallel instantiations of the loop body. In order to remove the bottleneck of an

insu�cient number of memory ports in a parallelised application, on-chip memories can

be split into multiple banks using an array partitioning directive. As for LegUp, ROCCC,

Dwarv and GAUT, the C-based input is restricted to a synthesisable subset. Vivado HLS

allows pointers to be used as references to statically allocated arrays. However, it does

not synthesise dynamic memory allocation (new, delete) and heap memory. In this thesis,
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we refer to pointer variables which obtain their value from a call to the new function as

heap-directed pointers. Other disallowed features are system calls, arbitrary pointer casting

and arbitrary recursive functions.

Our goal is to bring the generated RTL designs produced by the HLS flow as close as pos-

sible to the highly optimised manual RTL designs in the previous section. We distinguish

between optimisations using synthesis directives and manual source code modifications.

2.4.1. Lloyd’s Algorithm

The C code for Lloyd’s algorithm corresponding to Listing 1 is directly synthesisable and

does not contain any unsupported language features. We unroll all for-loops over the

three dimensions of the input data points which results in a parallel implementation of

the distance computation ||xj � µi0 ||2. Most of the computation is contained within the

inner for-loop which implements the min-search in Line 12 (bound K). Pipelining this

loop (II=1) leads to performance comparable to hand-coded RTL. For acceleration beyond

pipelining, we control the degree of parallelism just as in the case of the manual RTL

design by partially unrolling the outer loop to degree P (replicating pipelines). In order to

match the parallelism of computational units and memory ports, we partition the centre

positions and centroid bu↵er arrays into P banks using the array partitioning directive.

Overall, using synthesis directives and a minor source code modification to ensure correct

indexing of the parallel instances of the centroid bu↵er, we are able to produce an RTL

design which is architecturally similar to its hand-written counterpart.

2.4.2. Filtering Algorithm

The synthesisability of the main kernel as in Listing 2 requires the removal of the recursive

function calls and the calls to new (Line 21) and delete (Lines 32, 36), and code transforma-

tions to improve QoR of the synthesis of the pointer-linked data structures and the circuits

operating on these.
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Listing 3 Iterative replacement for the recursive kernel in Listing 2.
1: push to stack (root, {µ1, µ2, ..., µK}, true);
2: while stack not empty do
3: u, Z, d fetch from head of stack
4: if (d is true) then
5: delete Z
6: end if
7: Znew  new centre set
8: ... . original body in Listing 2 (contains two variable-bound sub-loops)
9: if (u is not a leaf) and (|Znew| > 1) then

10: push to stack (u.right, Znew, true)
11: push to stack (u.le f t, Znew, false)
12: else
13: delete Znew
14: ... . update centroid bu↵er
15: end if
16: end while

Recursive Tree Traversal

Recursion is replaced by a while-loop and a stack data structure. As in the RTL imple-

mentation, our C-based HLS design now contains three heap-allocated data structures: the

pointer-linked kd-tree, the pool of centre sets and the stack. The program accesses these

data structures through pointers. The stack contains the pointers to a heap-allocated tree

node u and a set of candidate centres Z (and its size), as well as a flag d indicating that the

centre set can be de-allocated. Listing 3 shows the rewritten code that avoids recursion.

Dynamic Memory Allocation

We replace the basic C++ routines for dynamic memory allocation to ensure synthesisabil-

ity by o↵-the-shelf HLS tools. Occurrences of new and delete statements are replaced by

calls to custom allocator functions that we provide in an additional header file. The imple-

mentation of the fixed-size allocator is in Line with Section 2.3.2. Heap memory is replaced

by arrays that are mapped to on-chip memory. We translate pointer dereferencing into

array indexing and instantiate an array for each data structure type. We choose the same

heap sizes as in the RTL implementation. The memory for centre sets is limited to the same

bound B as selected in Fig. 2.4. We implement the same fall-back solution when inadequate
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memory is available to service an allocation request as described in Section 2.3.2.

Parallelisation

As in the manual RTL design, we split the tree structure into P independent sub-trees to

parallelise the application by instantiating P parallel processing kernels. Heap memories

for tree nodes and centre set memory are by default monolithic memory spaces which

need to be divided into P disjoint regions (sub-trees, and segments for private centre

sets). The access through (dynamically allocated) pointers, however, hides this disjointness

information, which renders the array partitioning directive ine↵ective and does not lead to

parallel execution. In fact, applying automatic partitioning through HLS directives even

leads to a degradation in latency as we show in the performance comparison in Section 2.5.

Instead, we manually partition the tree node memory and privatise heap space for centre

sets for each instance. This ensures that the scheduler of the HLS tool recognises the

parallelisation opportunity. Automating this step requires a program analysis capable of

identifying disjoint regions (in terms of access patterns) in the monolithic heap memory

space.

Inter-Iteration Dependencies and Pipelining

Apart from replication, acceleration of the manual RTL design is obtained from pipelining

the tree traversal. This corresponds to pipelining the loop nest in Listing 3 which must take

two (potential) inter-iteration dependencies into account. The first occurs between fetching

pointers to data from the stack and pushing new pointers onto the stack, which hinders

pipelining. However, because there are two push statements and one fetch statement, the

items stored on the stack (pointers u and Z, d) accumulate if the condition in Line 9 holds

in several iterations. Once there are multiple pointers on the stack, these do not cause

any read-write dependencies between iterations and hence can be overlapped in pipelined

execution. Listing 4 shows a transformation of the loop in Listing 3 to implement this

schedule. The transformation distributes the execution of the original loop body over two

(pipelineable) inner loops which exchange data via a newly inserted queue. The second in-
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Listing 4 Loop distribution to enable pipelining.
1: while stack not empty do
2: while (stack not empty) and (queue not full) do
3: u, Z, d fetch from head of stack
4: enqueue (u, Z, d) in queue . newly introduced queue
5: end while
6: while queue not empty do
7: u, Z, d dequeue from queue
8: ... . remaining loop body in Listing 3 (Lines 4 - 15)
9: end while

10: end while

ner loop ensures that multiple items on stack will be immediately scheduled for processing.

However, this loop still contains sub-loops with variable bounds which prevents the tool

from pipelining it. An additional manual loop nest flattening transformation is required

to enable pipelining the loop with II=1. Because of the variable bounds of the inner loops,

this loop nest is not a perfectly or semi-perfectly nested loop, which prevents the applica-

tion of Vivados loop flattening directive. Without loop flattening, only the inner loops can

be pipelined, which would result in less speed-up compared to the manually flattened loop.

The other (potential) inter-iteration dependency is due to the pointer references to Z and

Znew in Listing 3. This is a false dependency because, after the loop transformation, the

pointers to Z and Znew never alias across iterations. Inserting a ‘dependence false’ directive

makes Vivado HLS aware of the non-existence of this dependency. Enabling automatic

pipelining for pointer-based programs thus crucially depends on an automated analysis

capturing the semantics of new and delete and reasoning about such ‘pointer-carried’

dependencies which we will explore in Chapter 4.

2.5. Performance Comparison

We evaluate the four implementations (RTL and HLS designs for both algorithms) based

on their execution time (latency) and resource consumption. For a latency comparison,

we ran simulations on the synthetic data described in Section 2.2 for di↵erent values
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Figure 2.5.: Left: Average cycle count per iteration for the manual RTL implementation of
the filtering algorithm (P = 1). Right: Speed-up over an RTL implementation
of Lloyd’s algorithm (P = 1 in both cases).

of �. All hardware implementations produce the same clustering result as a software

implementation that we implemented for validation. The algorithms ran until convergence

or until 30 iterations were reached. All latency results below are per clustering iteration

(average). This section begins with a comparison of the two RTL implementations. The

latter part of the section then shows how close our manually optimised HLS designs can

get to these results.

2.5.1. RTL Designs

Fig. 2.5 shows the average number of clock cycles per iteration of the FPGA-based filtering

algorithm (left) as well as the average speed-up over the FPGA implementation of Lloyd’s

algorithm (right). We synthesise both RTL implementation of the filtering algorithm and

Lloyd’s algorithm for a Xilinx Virtex 7 FPGA (7vx485t↵g-2) for varying degrees of par-

allelism. We use Xilinx Vivado 2014.4 for netlist synthesis, placement and routing. We

report the FPGA resource consumption for the di↵erent design points in terms of look-up

tables (LUTs), flip-flops (FFs), FPGA slices (containing four LUTs and eight FFs), digital

signal processing slices (DSPs) and 36k-BRAM resources. All designs are synthesised for

200 MHz target clock frequency and all results are taken from fully placed and routed
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Figure 2.6.: Mean execution time per iteration over FPGA resources for N = 16384, K = 128,
� = 0.2 (Xilinx Virtex7 7vx485t↵g-2).

designs meeting the timing constraint. For the resource comparison of both implementa-

tions, we select the performance point in Fig. 2.5 with � = 0.2, which lies amid the range

of execution times and is close to the performance measured for the Lena benchmark. The

degree of parallelism we choose in both implementations is given by the target latency

which is expressed as average execution time per iteration. Fig. 2.6 shows the area-time

(AT) diagram, i.e. the amount of FPGA resources required to meet a target throughput. For

ease of comparison of the two algorithms, we draw an area-time frontier with a constant

AT product through the design points with the smallest AT product for each algorithm

(solid blue and dashed red line; note that only the intersections of these lines with the data

points are feasible designs). The inherent run-time advantage of the filtering algorithm
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Table 2.2.: Resource comparison for a 270µs-latency constraint (input parameters: N =
16384, K = 128, � = 0.2).

P: parallelisation degree, R: resource overhead for LLoyd’s algorithm
Lloyd’s algorithm P = 40 Filtering algorithm P = 2 R

LUT 64922 (21.4%) 9148 (3.0%) 7.3⇥
FF 56975 (9.4%) 17397 (2.9%) 3.3⇥
Slices 19843 (26.1%) 4915 (6.5%) 4.0⇥
DSP 120 (4.3%) 40 (1.4%) 3.0⇥
36k-BRAM 83 (8.1%) 478 (46.4%) 0.2⇥

needs to be countered by significantly increased parallelism of computational units in the

implementation of Lloyd’s algorithm (22⇥-70⇥). Table 2.2 shows a resource comparison as

well as the absolute and relative utilisation for a fixed latency constraint of 270 µs (which

corresponds to the latency achieved by the filtering algorithm with P = 2).

For DSP, LUT and FF resources, the e�ciency advantage of the filtering algorithm in hard-

ware is obvious. We also note that the data set used here is relatively unclustered (� = 0.2)

and the performance advantage will be greater for values � < 0.2 as shown in Fig. 2.5.

However, our implementation of the filtering algorithm requires more memory compared

to Lloyd’s algorithm. This is mainly due to the increased memory space required to store

the data points in the kd-tree structure. We can conclude that the availability of on-chip

BRAM resources is the limiting factor in scaling this algorithm through increased paral-

lelism, but the advantage of its RTL implementation in terms of computational resources

is compelling.

2.5.2. HLS Designs

We compare the performance of both HLS to both RTL designs based on di↵erent metrics:

clock cycles count per iteration (through RTL simulations), execution time per iteration

(includes the clock period), resource usage and AT product (in logic slices ⇥ ms). We

implement the HLS designs with Xilinx Vivado HLS 2014.4. As in the previous section,

all designs are synthesised for a 200 MHz target clock rate and all results are taken from

fully placed and routed designs (not all designs meet the timing constraint in which case
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Table 2.3.: Performance comparison using the hand-written RTL designs as reference.
Architecture: Nmax = 32768, Kmax = 256, B = 256; input data (synthetic): N = 16384, K = 128, � = 0.2

Lloyd’s algorithm Filtering algorithm

RTL
(reference)

HLS RTL
(reference)

HLS
(directives only)

HLS
(manual

partitioning)

HLS
(manual loop

transformation)

P 40 40 2 2 2 2
Slices 19843 22711 (⇥1.1) 6950 5263 (⇥0.8) 5161 (⇥0.7) 6540 (⇥0.9)
LUT 64922 68484 (⇥1.1) 10418 12865 (⇥1.2) 12717 (⇥1.2) 15046 (⇥1.4)
FF 56975 47895 (⇥0.8) 19008 11517 (⇥0.6) 11293 (⇥0.6) 13612 (⇥0.7)
DSP 120 120 (⇥1.0) 40 36 (⇥0.9) 36 (⇥0.9) 36 (⇥0.9)
36k-BRAM 83 75 (⇥0.9) 448 506 (⇥1.1) 506 (⇥1.1) 507 (⇥1.1)
Clock period 5.0 ns 8.4 ns (⇥1.7) 5.0 ns 5.0 ns (⇥1.0) 5.0 ns (⇥1.0) 5.5 ns (⇥1.1)
Cycles/iteration 53 k 66 k (⇥1.2) 54 k 1440 k (⇥26.6) 583 k (⇥10.8) 165 k (⇥3.0)
Time/iteration 264 us 555 us (⇥2.2) 270 us 7200 us (⇥26.6) 2915 us (⇥10.8) 902 us (⇥3.3)
AT product 5243 12594 (⇥2.4) 1880 37892 (⇥20.2) 15043 (⇥8.0) 5899 (⇥3.1)

we report the best achievable clock period). The input data set to all implementations is

the same data set as used above (� = 0.2). In order to account for the inherent runtime

advantage of the filtering algorithm due to search space pruning and to compare all four

designs on a common basis, we increase the parallelisation degree for the final implemen-

tations of Lloyd’s algorithm to P = 40, which equalises the cycle count of the hand-written

RTL designs.

Table 2.3 shows the performance comparison based on the metrics above. The resource

consumption of both HLS designs compared to their RTL counterparts is remarkably sim-

ilar. The utilisation of flip flops is notable in that it is substantially lower in both HLS

designs. There is only a 20% overhead in terms of cycle count for both implementations

of Lloyd’s algorithm which indicates similar scheduling of operations. However, the HLS

implementation has a significantly longer critical path (8.4 ns compared to 5.0 ns) which

results in a performance gap of a factor of 2.1⇥ in terms of latency and 2.4⇥ in terms

of AT product. The BRAM utilisation of the HLS design is lower because the synthesis

tool decides to map some of the memories into LUT RAM. The last three columns show

di↵erent variants of the HLS designs for the filtering algorithm. The design in Column 5

includes only code alterations that enable synthesisability and only uses Vivado’s synthesis
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directives to improve QoR which results in a 20.2⇥ degradation in terms of the AT product

compared to the manual RTL design. Columns 6 and 7 show the importance of additional

source-to-source transformations as discussed in Section 2.4.2. The manual partitioning

of the heap memory narrows the performance gap from 20.2⇥ to 8.0⇥ (Column 6). The

loop distribution in Listing 4 that enables pipelining in the tree traversal loop in addition

to manual memory partitioning further improves the AT product to a factor of 3.1⇥ larger

than that of the manual RTL design (Column 7). The final AT product is more than two

times smaller than that for Lloyd’s algorithm.

2.6. Summary

This chapter presents a comparative case study for a C-to-FPGA flow using Xilinx Vivado

HLS as an exemplary state-of-the-art tool. Our test cases are two alternative algorithms

for K-means clustering, referred to as Lloyd’s algorithm and the filtering algorithm. The

former is a data flow-centric brute-force approach and has regular control flow and regular

memory accesses, whereas the implementation of the filtering algorithm uses dynamic

memory management and is based on recursive traversal of a pointer-linked tree struc-

ture. The search space pruning applied by the latter algorithm translates into a substantial

run-time advantage in sequential software implementations. We first investigate the practi-

cality of the algorithm in the context of an FPGA implementation and show that a carefully

optimised parallel RTL implementation achieves the same execution time with four times

fewer logic slices and three times fewer DSP slices. We also show how a custom implemen-

tation of dynamic memory allocation greatly reduces the on-chip memory consumption

for the filtering algorithm. The implementations and evaluations of this part of the study

were first published in [38].

The second part of this case study repeats the comparison for HLS designs of both al-

gorithms. The performance gap between the HLS and hand-written RTL implementations

of Lloyd’s algorithm is approximately a factor of two in terms of area-time product, which
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is a remarkable result given the enormous di↵erence in design time. The HLS design of

the filtering algorithm also consumes a ‘close-to-hand-written’ amount of FPGA resources,

but latency is initially degraded by a factor of 26.6⇥. The limited acceleration gained

from semi-automatic design optimisations with synthesis directives results in a reversal

of the previous finding: the AT product of the initial HLS implementation of the filter-

ing algorithm is larger than that for Lloyd’s algorithm. We subsequently apply manual

code transformations to partition and privatise data structures accessed through pointers

in order to promote parallelisation and to enable pipelining of the loop traversing the

pointer-linked data structure which results in an overall 8⇥ improvement of latency. The

code transformations ultimately narrow the performance gap in terms of the AT product

from 20.2⇥ to 3.1⇥ larger than that of the hand-crafted RTL design. The results of the

HLS-based case study and guidelines for source code refactoring were first published in

[30].

The AT product results in Table 2.3 show that both a carefully designed RTL and HLS

implementation of the filtering algorithm outperform the respective implementation of

the data flow-centric brute-force algorithm. This case study quantifies the benefits of hard-

ware implementations of a sophisticated algorithm that uses structured data. We argue

that this algorithm is representative of many other benchmarks that operate on tree struc-

tures, linked lists or graphs in general and common implementations of these algorithms

are based on dynamically allocated data structures and pointer chasing. Due to the signif-

icant amount of source code refactoring in the implementation of the filtering algorithm,

we conclude from this case study that the current generation of HLS tools lack support

for e↵ective design automation optimisations for this type of code. In particular, our code

transformations enable memory partitioning, parallelisation and pipelining - optimisa-

tions that are essential for e�cient FPGA designs. These optimisations require knowledge

about data dependencies carried by data structures accessed through pointers.

Our goal in the following chapters of this thesis is to automate the memory partition-
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ing and parallelisation in HLS flows targeting heap-manipulating programs. The di�cult

part of the automation of these optimisations is the program analysis: regardless of scope,

every two heap-directed pointers could potentially reference the same memory cell and

hence could create a data dependency. We propose an automated analysis of dependencies

carried by data structures accessed through pointers, and an automated analysis to identify

and privatise disjoint regions in the monolithic heap memory as the key features to im-

prove the HLS support for (widely used) programs operating on dynamic, pointer-based

data structures. Chapter 4 presents our approach to automatic heap partitioning and par-

allelisation. The HLS design aid in Chapter 4 automates the related code transformations

that were applied manually in this chapter.

The synthesis of heap memory from on-chip BRAM in this case study and in Chapter 4

imposes a tight constraint on the working set size. For example, the RTL and HLS im-

plementations in Sections 2.3 and 2.4 use nearly 50% of the on-chip memory resources

on the device. Chapter 5 removes this limitation by extending the technique in Chap-

ter 4 to the automatic generation of application-specific parallel multi-cache systems in a

framework where the heap resides in o↵-chip memory by default and only a fraction of

it is held on-chip. This extension enables the HLS implementation of heap-manipulating

programs with large memory footprints and alleviates the performance penalty due to the

drop of memory bandwidth. Before describing the two core contributions of this thesis in

Chapter 4 and 5, we discuss related research in the following chapter.
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Besides the basic HLS steps, resource allocation (the assignment of hardware components

to operations), scheduling (the assignment of program operations to time slots), binding

(assigning scheduled operations to functional units in the data path) and the generation of

control circuits, an HLS tool usually performs several transformations of the input code.

Many recent C-to-RTL flows build on standard compiler frameworks such as the Low-Level

Virtual Machine (LLVM) compiler infrastructure [59] (e.g. Vivado HLS [19], ROCCC [24],

LegUp [22], SDAccel [21] and the Altera SDK for OpenCL [20]) or GCC [60] (e.g. GAUT [26]

and Bambu [23]). Especially recent HLS tools make use of the LLVM infrastructure, a pop-

ular framework which is used in many optimising software compilers. Within this frame-

work, an input program is compiled into the LLVM intermediate representation (LLVM IR),

an assembly-like language. Several high-level languages such as C/C++ or Java bytecode

can be compiled into the IR using readily available front-ends such as Clang [61]. LLVM

uses the single static assignment (SSA) form, i.e. every program variable is assigned exactly

once. The SSA form results in explicit definition-usage (DEF-USE) chains in the IR, which

simplifies some compiler optimisations. In an HLS tool, the IR passes through several stan-

dard compiler optimisations, for example dead-code elimination, constant propagation,

loop unrolling, before hardware synthesis. The e↵ect of standard LLVM optimisations on

the QoR is explored in [62], where a 16% average improvement is reported.

This thesis o↵ers a source-to-source compiler to improve the QoR of standard HLS tools

that applies advanced HLS-specific code optimisations beyond standard software com-

piler optimisations. A crucial task during mapping a sequential program description into
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hardware is the extraction of parallelism while preserving the program semantics, which

requires a dependence analysis. HLS flows usually apply standard compiler techniques to

determine dependencies between program variables. However, detecting the absence data

dependencies caused by aliasing of references to memory locations is a significantly more

challenging task which is not supported for heap-directed pointers in standard HLS flows,

as we demonstrated in the previous chapter. Additionally, parallelisation requires the

memory system to match the computational parallelism. Compared to microprocessors,

the distributed memory architecture in FPGAs provides an impressive memory bandwidth

if the program data is partitioned and distributed over multiple on-chip memory blocks.

Advanced C-to-FPGA compilers thus require a memory disambiguation for both paral-

lelisation and memory partitioning. The objectives in this thesis are to implement a static

program analysis and automated code transformations that enable automatic parallelisa-

tion, the distribution of data over separate blocks of on-chip memory, and the generation

of parallel interfaces to external memory and parallel on-chip bu↵ers.

The following literature review discusses two distinct approaches in an HLS context: unau-

tomated approaches which rely on run-time profiling or manual source code annotations

to determine data-level parallelism and approaches which use an automated framework

for a static analysis, parallelisation and memory architecture generation. What follows is

the discussion of limitations of these related approaches with respect to heap-manipulating

programs as well as an introduction to separation logic, the theoretical framework lever-

aged in this thesis.

3.1. Profiling and User Annotation-Based Approaches

Cheng et al. [63] propose an HLS design aid targeting a hardware/software partitioned

system consisting of a CPU and an FPGA accelerator which have both access to an external

memory. Their technique generates an on-chip cache interface to an external memory us-

ing runtime profiling information. It consists of three phases. Firstly, the target application
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is profiled to identify independent partitions of memory accesses. Based on the profiling

information, program operations accessing the same memory addresses are grouped into

partitions and separate on-chip caches are assigned to disjoint on-chip memory regions

accessed by the groups in a second step. Finally, a C-to-RTL flow generates the FPGA

implementation of the accelerator with each program partition having access to its private

cache. A fundamental advantage of the profiling-based approach is its versatility. How-

ever, runtime profiling requires a simulation environment on top of the HLS flow and a

representative working set provided by the user to generate useful information. Further-

more, corner cases may be missed during simulation, i.e. identified partitions might still

access memory addresses from other partitions and the generated hardware must be able

to support these corner cases. Our approach in Chapter 5 is based on a static program

analysis and therefore does not require simulation data.

Compiling C code to hardware targeting a CPU-FPGA architecture is also addressed in the

CHiMPS framework [64]. The idea is similar in that it generates a parallel on-chip multi-

cache (many-cache) architecture in order to feed parallel data paths. However, as opposed

to the previous case, the identification of independent memory regions does not rely on

profiling information but mainly on source code annotations with the restrict-keyword

which states that two pointers do not access the same memory location. The fact that this

aliasing information can be assumed to be exact ensures cache coherency among on-chip

caches since a separate cache is created for any unique range of memory addresses. The

exactness of the dependence information is thus beneficial in that it sidesteps coherency

issues and additional overhead necessary to support corner cases. However, user inter-

vention with manual source code annotations is required. As we shall see in the next

chapter, many benchmarks with graph-traversing loops reach a state in which several loop

iterations are independent of each other with respect to their memory accesses. This paral-

lelisation opportunity firstly di�cult to predict without a program analysis and secondly

di�cult to specify with code annotations. Another di↵erence to our work is that shared

memory regions are not supported by caches within the CHiMPS framework. We auto-
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matically insert a coherency network when it is required as we will describe in Chapter 5.

Furthermore, the key di↵erence to CHiMPS is our automated program analysis which

allows our tool to parallelise the implementation make decisions as to when an expensive

coherency mechanism is required and when it can be avoided.

While memory disambiguation is the main goal in this thesis, Section 5.4 of Chapter 5 de-

scribes application-specific cache sizing as an extension of our cache synthesis CAD flow.

Recent related work has also explored the design space of the cache micro-architecture

[65, 66, 42] beyond inter-cache coherency. Matthews et al. [65] explore the e�ciency in

terms of speed-up versus area increase of parallel coherent L1 caches with respect to size,

associativity and replacement rule in an FPGA-based soft multi-core processor. Similarly,

Choi et al. [66] compare di↵erent configurations of cache size, line size and associativity of

shared on-chip caches, in addition to two approaches for increasing the number of access

ports of the shared cache. The goal in this work is di↵erent: we infer cost/performance

estimates prior to implementation and devise an automated cache system construction for

a given application instead of exploring the cache micro-architecture. Automatic cache siz-

ing from high-level specifications has been addressed in [67, 64]. Wingbermuehle et al. [67]

implement a method similar to ours in that left-over memory resources are used to enhance

the memory sub-system of stream-based kernels. Their work explores more parameters

than our current technique (size, associativity, replacement rule and write policy), but the

search in the parameter space is based on a simulated annealing-like technique. Another

major di↵erence to our work is that we target HLS applications without any assumption

on the compute paradigm. CHiMPS’ many-cache system [64] is notable in that it also con-

structs parallel caches based on left-over BRAM, clock rate degradation and predicted miss

rate, although the prediction is not described in detail in the paper. The key di↵erence of

our work is the non-uniform sizing, which is realised by solving an optimisation problem

to find the best assignment of cache sizes subject to a resource constraint.
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3.2. Automated Static Analyses for Static Control Parts

Significant advancements in the direction of automated static analyses have been made for

a specific type of loop kernels. Computation kernels in signal and image processing or sci-

entific computing applications are often captured by for-loops or nests of for-loops. Their

parallelisation therefore is a natural source for throughput improvement, which requires

the memory system to support enough parallel data accesses. Many automated optimisa-

tions of the memory system in HLS literature focus on such loop-level optimisations and

borrow many techniques originally developed for software compilers. In particular, they

focus on a subclass of general loop nests, referred to as static control parts (SCoPs), where

loop bounds and conditionals inside the loop are a�ne functions of the surrounding loop

indices and constants (and possibly parameters). Array accesses within the loop body are

likewise made through a�ne functions of the loop iterator variables. Due to the precise,

static data dependence analysis that is possible for SCoPs, various transformations, such as

loop tiling, loop splitting or merging, loop interchange or loop skewing, can be e�ciently

employed to promote loop- and memory-level parallelism or memory access optimisations

in general. An underlying theoretical framework, which describes such an analysis and

transformations in a unified mathematical abstraction, is referred to as the polyhedral model

[68]. Because optimisations based on the polyhedral model are among the most popular

advanced compiler techniques that have made their way into HLS CAD flows to date, we

give a brief introduction here.

The polyhedral model is an algebraic representation of the execution of a program state-

ment S which is enclosed by an n-dimensional for-loop nest and conditionals. Such exe-

cutions (in successive loop iterations) are denoted as dynamic instances of S. The bounds

for the iteration variables of all enclosing loops as well as enclosing conditionals are a�ne

functions of surrounding iterators, constants, and parameters. The iteration vector x is an

n-dimensional vector containing all surrounding loop iterators and each dynamic instance

is associated with such an iteration vector. The set of all valid iteration vectors of a state-
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ment during execution of the loop nest spans a polytope (a bounded polyhedron) in Zn.

This polytope can be represented by the set of m linear inequalities describing the a�ne

loop bounds and conditionals, i.e.

D = {x 2 Zn|Ax  b}, (3.1)

where A is an m ⇥ n matrix, b is an m-dimensional vector, m is the number of inequalities

given by the loop bounds and conditionals, and the vector inequality Ax  b is represented

by the component-wise inequalities. If a loop nest depends on parameters which are mod-

ified by the program but remain constant during execution of the SCoP, a parameter vector

can be added to the inequality in (3.1).

We assume memory accesses made by statement S to be performed by references to an

array H. For a precise analysis of these memory accesses, the array subscripts are usually

an a�ne function of the iteration vector x, i.e.

g(x) = Fx + f , (3.2)

where g(x) and f are d-dimensional vectors, F is a d⇥ n matrix, and d is the dimensionality

of array H. The data access function g represents memory accesses at the granularity of

array cells. Two statements are considered to be in dependence if both access the same

memory cell (aliasing) and at least one of them performs a write access.

In addition to the iteration domain D and the data access g, an ordering of executions

of S must be modelled as a third aspect. Such an ordering is represented by the scheduling

function, which associates each dynamic instance of S with a logical date:

⇥(x) = Tx + t, (3.3)
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where⇥(x) and t are k-dimensional vectors, T is a k⇥ n matrix, and k is the dimensionality

of the logical date (time stamp). The ordering of logical dates is given by the lexicographic

ordering (denoted as�) of t, i.e. ⇥(x1) � ⇥(x2) means that dynamic instance x1 is scheduled

before x2. In general, the ordering is not limited to temporal ordering but can also have a

spatial meaning (e.g. scheduling iterations on di↵erent processors or di↵erent functional

units on a chip) which is why the scheduling function is also referred to as the scattering

function [69]. The scattering function ⇥ can apply a new lexicographic ordering to the

original polyhedronD. A description of such a transformation framework is given in [69].

These transformations, which represent a mathematical abstraction of loop transforma-

tions, are performed to improve performance, for instance to exhibit parallelism or im-

prove data locality. Due to the possibility of statically analysing memory accesses, data

dependencies between statements or loop iterations can be accounted for in the scheduling

and it can be ensured that the program semantics are preserved.

There is a large body of work on code optimisations leveraging the polyhedral model

in the domain of software compilers. The polyhedral model also became popular in an

HLS context within the past decade. Liu et al. [70] have pioneered the use of the polyhedral

model for inserting on-chip reuse bu↵ers into the interface of an FPGA accelerator to an

external memory. These reuse bu↵ers hold data which are accessed by the loop kernel

multiple times in order to reduce the number of slow accesses to the external memory.

The polyhedral model is used to determine data reuse opportunities and to calculate the

reuse volume at compile time. In [71], loop transformations are explored automatically in

order to find a sequence of transformations that maximises parallelism and data locality.

SCoPs are also targeted in [72] for an FPGA system which accesses data from an external

synchronous DRAM (SDRAM). The memory architecture is optimised in two respects:

in addition to the insertion of data reuse bu↵ers, the number of unfavourable address

sequences that cause time-consuming SDRAM row swaps is reduced by reordering the

original address sequence. Data reuse and transaction reordering are based on data access
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analysis using the polyhedral model. The on-chip bu↵ers in both cases di↵er from standard

caches that are designed to work with arbitrary address sequences which are unknown

at compile time. In SCoPs, exact compile-time knowledge about the data volume that is

loaded into and fetched from a bu↵er in each iteration is available.

Cong et al. [73] implement bandwidth optimisations through memory partitioning based

on a dependence analysis using an integer linear programming (ILP) formulation over the

polyhedral model. Bondhugula et. al. [74] describe a scalable ILP-based technique for the

aggregation of sets of loop iterations into tiles so as to maximise loop-level parallelism and

data locality. Their technique is implemented in a source-to-source translator targeting

code optimisations for FPGA-directed HLS [75].

3.3. Limitations and Extensions of the Polyhedral Framework

The polyhedral model is a powerful framework for automatic optimisation due its rep-

resentation of optimisation sequences in a unified algebraic framework. It is, however,

restricted to statically analysable loop-based program kernels as described in the previous

section. This is a strong limitation as, in general, many programs do not strictly fulfil

these requirements. There are several approaches aiming to remove this limitation in the

context of the polyhedral model, most of which originate from the software compiler com-

munity. Relaxing the constraints of SCoPs mainly involves modelling loops other than

for-loops with statically determinable bounds (such as while-loops), modelling arbitrary

conditionals (such as data-dependent conditionals), analysing arbitrary memory accesses

(such as indirect array references or heap-directed pointer accesses), or modelling loop

nests depending parameters whose values are determined at run-time.

An approach to fit the polyhedral model to kernels with while-loops, arbitrary (non-

statically determinable) conditionals in the loop body, and indirect array references is

described by Benabderrahmane et al. [76]. A while-loop is transformed into a for-loop
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iterating from 0 to infinity, that is the iteration domain D of a loop becomes N. The

loop bound check is implemented with an exit predication which encloses the loop body

statement and terminates the infinite loop with a break-statement. Arbitrary conditionals

are implemented using control predications which individually predicate each statement

enclosed by the conditional. Both exit and control predications are added to the iteration

domain of a statement as additional constraints and predication evaluations are added to

the loop body as additional statements. Benabderrahmane et al.’s analysis is a conservative

over-approximation in that it assumes control predications to be true in all cases. Further-

more, if a statement contains an indirect array reference (such as a subscript of subscript)

their dependence analysis conservatively assumes a dependency between this statement

and every other statement accessing the same array. That is an array with such an access

is considered a single scalar variable. The same holds for heap-manipulating statements.

The extended framework allows them to perform a subset of standard code optimisations

based on the polyhedral model on more irregular kernels than SCoPs. However, the ap-

proach is not suitable for the disambiguation of heap-directed pointer accesses.

Handling arbitrary loop bounds and conditionals, irregular memory accesses and run-

time parameters in software compiler optimisations is also addressed by Jimborean et

al. [77]. Instead of conservatively adapting the polyhedral model to fit to general loop

kernels and performing static analysis, the assumption is that some dependence informa-

tion, for instance in the case of indirect array references or pointer accesses, is not available

at compile time. Thus the analysis phase is divided into a static and a dynamic part,

while the latter fills in missing information after an online profiling phase. The run-time

profiling monitors the first iterations of a loop nest and determines dependencies in a dy-

namic dependence analysis. The information is used to speculatively parallelise the loop

nest by performing transformations based on the polyhedral model at runtime. The opti-

mistic optimisation framework is based on a thread level speculation system which executes

speculatively transformed code and provides a ‘roll-back’ mechanism in case of a wrong

prediction. The technique can optimise loop kernels containing indirect array accesses,
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pointer-linked data structures (linked lists), arbitrary conditionals and while-loops. The

heavy-weight online optimisation shares the same drawbacks with profiling-based mem-

ory architecture optimisation discussed in Section 3.1 in that the speculative optimisation

has to account for mispredictions.

3.4. HLS Support for Pointers and Dynamic Memory Allocation

As discussed in the previous section, the polyhedral framework can be extended to support

irregular control structures. The static analysis resorts to the overly pessimistic assumption

that an indirect memory reference aliases with every other statement accessing the same

array or every two pointers referencing a location in the heap alias. In addition, pointer-

manipulating programs often use dynamic allocation and de-allocation of memory space

during run-time. Dynamic memory allocation allows an application to request just enough

memory required for its execution, leaving the remaining heap free. We have shown in

Chapter 2 that the just-enough portion is up to 57⇥ smaller than the worst-case. Dynamic

memory allocation and heap-directed pointers are ‘standard’ features in software, includ-

ing large bases of legacy codes. We argue that extending current HLS flows in order to

support these is a large step towards HLS for full-featured C code.

The generation of currently available HLS tools [13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 26],

including Vivado HLS, avoid the issue of synthesising heap-directed pointers into hard-

ware. There are several related research activities that seek to extend the support for

heap-manipulating programs with dynamic memory allocation in contemporary FPGA-

targeted HLS flows. Simsa et al. [78] describe a technique in which all heap operations

(new, delete and pointer dereferencing) are translated into operations on a pre-allocated

shared array and a global controller is included which keeps track of the free entries in the

array. The size of this array is determined by static analysis by Cook et al. [79] that attempts

to compute a parametric expression describing the maximum heap memory consumption.

The parameters in this expression are program variables, so once their values are known,
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an absolute heap bound can be determined. Our approach in Chapter 4 implements heap

memory in the same way (instantiating arrays and turning pointer dereferencing into array

accesses). However, the main di↵erence is that our analysis breaks the monolithic heap

into many disjoint portions that can be accessed in parallel. Furthermore, our extension

in Chapter 5 places the heap in external memory (board-level DRAM and host-level main

memory), supported by on-chip caches. This avoids the need for a compile-time analysis to

determine heap bounds, which is not always possible. In addition, pre-allocating the max-

imum amount of memory can be a very conservative over-approximation of the amount

required in the average case as we show in the previous chapter. Bambu [23], an academic

HLS tool, uses a similar approach in that the program data is pre-characterized and the

tool automatically decides for each data item whether it is stored in on-chip memory or

whether an external memory interface is generated for it. Although not explicitly pointed

out, we believe that this framework can also support dynamically allocated data.

The implementation of dynamic memory allocation is part of the necessary infrastructure

of our work. However, the main contribution of this thesis is the automatic parallelisation

of pointer-based programs and the partitioning of heap-allocated data structures across

physically disjoint on-chip memories and bu↵ers. Alias analyses have a long-standing

tradition research on optimising software compilers [80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90],

the majority of which collect a set of alias pairs, i.e. a pair of two pointer variables referring

to the same location. Flow-sensitive analyses (taking the order of instruction executions

into account) [80, 81, 90, 85, 82] provide better accuracy than flow-insensitive analyses

[84, 86, 87, 89]. Accuracy can be measured in terms of the ability to rule out aliasing

pairs that do not exist in reality but that an analysis must conservatively assume exist.

Context-sensitivity in interprocedural analyses (taking the individual call-site information

of a sub-routine into account) [82, 85, 90] further improves the analysis accuracy. The

LLVM infrastructure also includes several such ‘standard’ alias analyses (including [87]).

Heap-allocated recursive data structures are especially challenging for the analyses above

because of the potentially unbounded number of aliases through the link fields and many
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of the techniques above cannot handle them. In [85], recursive data structure are treated

as single cells, which excludes the possibility of partitioning. A technique called k-limiting

[80, 89] determines the aliasing properties of the first k elements of a linked structure (k

access paths), where k is an arbitrary constant. However, this approximation provides no

knowledge beyond the depth k.

The techniques in [83, 88] implement ‘precise’ analyses of the aliasing properties of re-

cursive structures. Deutsch [83] uses a symbolic representation of access paths to reason

about all elements in a data structure. The work by Ghiya and Hendren [88], in line

with this work, uses a shape analysis of the heap layout to establish disjointness of heap-

allocated recursive data structures for parallelising software compilers. This information

is used to parallelise loops traversing these data structures, which is similar to one of our

objectives. Their analysis classifies data structures into trees, lists, and general graphs and

looks up the known aliasing properties of the link fields. Separation logic provides a more

canonical approach to encoding the aliasing properties of data structures. For example, a

separation logic-based analysis is aware that the memory portions allocated by two calls

to new are disjoint and propagates this information through the execution trace of the pro-

gram because the semantics of new and other heap-manipulating commands is embedded

in the analysis. In principle, separation logic avoids the need for classifying data structures

according to their aliasing properties. As we shall see in Section 3.5, our analysis also uses

predicates for trees and linked list segments and other data structures in order to be able

to analyse loops with unknown iterations count. If such a data structure is built up from

data in disjoint memory portions, the aliasing properties can be automatically inferred as

demonstrated by Guo et al. [91]. However, the key di↵erence of our work to [88] is that

we implement a heap memory footprint analysis which, besides proving the absence of

data dependencies for program parallelisation, guides a hardware compiler to synthesise

a distributed on-chip memory system, where data structure partitions reside in physically

disjoint memory spaces. As we will discuss in Chapter 5, such a fine-grain footprint anal-

ysis is crucial when an implementations accesses a mixture of disjoint and shared memory
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resources.

Séméria et al. [92] present an approach for mapping C code with pointers and malloc/free

operations into hardware and implement a distributed memory system. Similar to our

work they instantiate on-chip allocator blocks using standard allocation schemes and use

a pointer analysis to safely map the monolithic heap space to distributed on-chip memory

banks. Their approach is based on a pointer analysis by Wilson and Lam [85] that uses

a summary of di↵erent aliasing cases of the pointer arguments passed to a procedure to

identify pointer-induced data dependencies. A fundamental di↵erence to our approach

is their approximate representations of data structures (location sets [85]), which can dis-

ambiguate accesses to di↵erent data structures, but does cannot partition recursive data

structures. Our analysis precisely describes the shape of the heap layout. The approach to

synthesis of pointer-based C code programs by Babb et al. [93] also uses an analysis based

on location sets. In contrast to both, our approach allows us to partition recursive data

structures, such as linked lists and trees, to increase parallelism.

The key di↵erences of our work in the following Chapter 4 to the related above is the

automated heap footprint analysis combined with the synthesis of a distributed memory

architecture and automatic parallelisation of heap-manipulating code for hardware imple-

mentations. Our departure point from previous work on heap partitioning above is the

use of recent advances in separation logic [33] which allows a formal description of the

program state and reasoning about the resources accessed by a program. Because separa-

tion logic forms the central theoretical framework for this thesis, we give an introduction

in the following section.

3.5. Static Analysis Based on Separation Logic

The introduction in this section discusses the fundamentals of separation logic and pri-

marily targets readers who are non-experts in theoretical computer science. A more formal
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introduction to separation logic is given in [33].

The objective of our analysis is to identify disjoint regions in the heap memory that are

accessed by di↵erent fragments of the program code so as to declare these code fragments

as independent (given that no other dependencies exist). In our static analysis, we describe

the layout of the heap with a formula at each point of program execution: Informally, it

steps through the source code and maintains a formula describing the heap-allocated data

structures as well as all points-to information at each program statement. While stepping

(symbolically) from one statement to the next, the formula is modified reflecting the heap

manipulation, for example a statement may allocate new data, dispose data, or change the

data content. The formula maintains information about the layout of the data structure

and ignores other properties such as their size. Thus, we refer to this type of analysis as

shape analysis. Separation logic allows us to express the heap layout in concise formulae

and to identify precisely what program statement accessed what part of the formula. The

following sub-sections describe the required components of this analysis: the syntax of

separation logic formulae (Section 3.5.1), the formal specification of program statements

(Section 3.5.2), symbolically stepping through the source code (Section 3.5.3), and theorem

proving in separation logic (Section 3.5.4), which informs us about the ‘accessed’ portion

of the formula.

3.5.1. Modelling Program State in Separation Logic

A program modifies the values of program variables and the content of memory cells

during execution. The assignment of values to variables and memory cells is referred to as

program state. Separation logic is an extension of the Hoare logic [94]. It formally describes

the program state with two components. The store describes the values assigned to vari-

ables (e.g. x = 3 means that variable x currently holds the value 3) and the heap describes the

values assigned to addressable memory locations (e.g. y 7! 4 means that pointer variable

y points to a memory cell containing the value 4). Note that y 7! 4 implies that the mem-

ory location at y is allocated. A program may start with an empty heap memory where
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nothing is allocated, which is denoted by the emp keyword in separation logic formulae.

In addition to program variables, the formulae may use auxiliary primed variables which

only exist in formulae, not in the program code. For example, z01 = 4 ^ y 7! z01 means that

there is some heap cell, containing the value 4 and y points to that cell here, where ‘^’ is

the classical ‘and’-conjunction. The scope of z01 is bounded to the formula. The equation

above is an abbreviation of 9z01. z
0
1 = 4 ^ y 7! z01. A primed variable is thus a placeholder

for some value. For ease of readability, we omit the existential quantification (9) for primed

variables in the remainder of this thesis.

Pointer variables can have a special value nil that corresponds to the NULL expression

in C/C++. In addition to describing that a memory cell holds a scalar value, we can

also use records (structs in C/C++): y 7! [f1 : x01, .., fn : x0n] means that y points to a heap-

allocated record containing fields with x01, ..., x
0
n as content. f1, ..., fn are the field names.

Separation logic formulae are generally of the form ⇧ ^ ⌃, where ⇧ is the pure part de-

scribing the store (e.g. x = 3) and ⌃ is the spatial part describing the heap (e.g. y 7! 4). We

define Val the set of values, Var the set of program variables, and Var0 the set of auxiliary

primed variables. Def. 3.1 defines the baseline syntax of the formulae used in our analysis.

Definition 3.1 (Baseline syntax of separation logic formulae).

E, F ::= v 2 Val | x 2 Var | x0i 2 Var0 expressions

⇧ ::= true | E = F | E , F | ⇧ ^⇧ pure formulae

⌃ ::= E 7! [f1 : x01, .., fn : x0n] | emp | ⌃ ⇤ ⌃ spatial formulae

Pure formulae contain (dis-) equalities and the classical conjunction (^). Spatial formulae

express the following:

• E 7! [f1 : x01, .., fn : x0n] describes a heap-allocated record as discussed above. We use

the abbreviation E 7! to denote that E points to ‘some’ record.

• emp denotes an empty heap where nothing is allocated.
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• The separating conjunction (⇤) is the core element of separation logic: The for-

mula ⌃0 ⇤ ⌃1 means that the heap is split into two disjoint portions h0 and h1,

where ⌃0 holds for h0 and ⌃1 holds for h1. Disjoint heap portions are referred

to as heaplets. The ⇤-connective embeds the non-aliasing property of pointers, i.e.

E 7! [f : x01] ⇤ F 7! [f : y01] implies E , F by definition. Hence, the content of the first

heaplet can be modified by a program without any side e↵ects for the second one.

The usefulness of the separating conjunction becomes obvious when considering the

counterexample in classical logic, E 7! [f : x01] ^ F 7! [f : y01]: E and F may or may

not alias, and expressing the non-aliasing property requires adding the constraint

E , F to the formula. These constraints are required for each pair of pointers in the

program and quickly render an automated analysis unwieldy, especially in the case

of pointer-linked data structures.

We refer to ‘formula’ as ‘predicate’ in the following. Def. 3.1 allows us to describe single,

heap-allocated data records. To describe more sophisticated data structures such as linked

lists or trees, we need to build additional predicates using the ⇤-connective. For example,

E 7! [n : x01] ⇤ x01 7! [n : x02] states that there exists a value x01 which occurs both in the n-field

of the first record and is the address of the second record. Primed variables (x01 and x02) are

useful here because they express the pointer link between two records without the need for

knowing the physical address value of the link field (x01). A naive approach of describing a

linked list is to mention all nodes in the list: E 7! [n : x01] ⇤ x01 7! [n : x02] ⇤ ... ⇤ x0m 7! [n : nil].

This, however, is problematic as the length m of a dynamically allocated linked list is

usually unknown at compile time. Instead, we use recursive predicates that describe data

structures without knowing their size:

Definition 3.2 (Example: List segment).

ls(E, F)()(E = F ^ emp) _ (E , F ^ E 7! [n : x01] ⇤ ls(x01, F) ) (3.4)

i.e. there is a list segment between pointer E and F if and only if the following condition

holds. If E = F this heap portion is empty. Otherwise E points to an element which, in
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turn, points to a list segment between itself and F.

Definition 3.3 (Example: Tree).

tree(E)()(E = nil ^ emp) _ (E 7! [l : x01, r : y01] ⇤ tree(x01) ⇤ tree(y01) ) (3.5)

i.e. there is a tree pointed to by E if and only if the following condition holds. If E , nil it

points to an element which contains pointers to left and right sub-tree.

Definition 3.4 (Example: List with pointers to other heaplets).

pls(E, F)()( E = F ^ emp ) _

( E , F ^ E 7! [u : u01, c : c01, n : n01] ⇤ tree(u01) ⇤ c01 7! ⇤ pls(n01, F) ) (3.6)

i.e. there is a list segment as in (3.4) whose elements also point to a tree and a heap-allocated

record.

Note that we omitted additional data fields in the records above for ease of illustration. The

above examples demonstrate the ability to describe common data structures; automatic

inference of such definitions has been demonstrated by Guo et al. in [91].

3.5.2. Programming Language

The next step is to define how program state, expressed in separation logic formulae,

is modified during program execution. For didactic purposes, we consider a simple

programming language with heap-manipulating commands and loops:

Definition 3.5 (Programming language).

b ::= E = F | E , F boolean expressions

A ::= x := E | x := [E].f | [E].f := F | new(x) | delete(E) atomic commands

C ::= A | if b C1 C2 | while b C | C1; C2 commands
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E and F are arbitrary expressions containing program variables and values (e.g. E ::= x,

E ::= nil, or E ::= y + 1). The term [E].f denotes pointer dereferencing of E and accessing

field f of the heap-allocated record pointed to by E.

The program statements (commands) modify the state. The transition of state upon ex-

ecution of a command is specified by the triple {P}C{Q}. P is the formula describing the

pre-condition the state must satisfy for the command to run. If C runs and halts then the

post-condition formula Q for the program state is true after execution [33]. For example,

if C is a command that writes the value 5 to the memory cell referenced by y this heap cell

must be allocated (pre-condition) and must contain 5 after successful command execution

(post-condition): {y 7! [f : x01]} [y].f := 5 {y 7! [f : 5]}. Def. 3.6 specifies a triple for each

atomic command of our programming language:

Definition 3.6 (Specifications for atomic commands [95]).

{ x = y01 } x := E { x = E[y01/x] }
{ E 7! [f : y01] } [E].f := F { E 7! [f : F] }

{ x = y01 ^ E 7! [f : z01] } x := [E].f { x = z01 ^ E[y01/x] 7! [f : z01] }
{ emp } new(x) { x 7! z01 }

{ E 7! y0 } delete(E) { emp }

The term E[y01/x] denotes expression E with all occurrences of x replaced by y01. Note

that specifying pointer-manipulating commands in this way is only possible thanks to

separation logic’s frame rule. We discuss the frame rule in Section 3.5.3 below.

3.5.3. Symbolic Execution of Programs

Our static analysis ‘symbolically’ executes the program by propagating the program state,

expressed in separation logic formulae, from one program statement to the next, thereby

updating it using the specifications for single commands in Def. 3.6. We build our auto-

mated analysis on coreStar [96], which, in its original form, is a separation logic-based

software verification tool. The tool includes a symbolic execution engine and a theorem
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prover. We discuss both components in this and the following section.

The symbolic execution propagates the state formula through all control flow paths of

the program (branching and loops create multiple control flow paths). At each node in

the control flow graph (CFG), coreStar determines the part of the formula describing

the current state which matches the pre-condition of the current program statement, and

replaces that part with the post-condition in Def. 3.6. The other parts, F, of the state for-

mula remain untouched. Formally, before executing the program statement C, it breaks

the current program state⇧1 ^ ⌃ into⇧1 ^ P ⇤ F, where P is the pre-condition of C and F is

called the frame. The symbolic execution of C then updates the program state to⇧2 ^Q ⇤ F

by replacing P by Q and leaving the frame F untouched. The central idea of a separation

logic-based symbolic execution is thus to consider a heap portion separately from its frame.

Separation logic’s frame rule formalises this behaviour. The frame rule is an inference rule of

the form
premise

conclusion
.

An inference rule asserts that “if the premise holds then the conclusion holds”. The frame

rule defines the invariance of the unmodified frame F using the separating conjunction:

{P}C{Q}
{P ⇤ F}C{Q ⇤ F} , if C does not modify any free variables in F. (3.7)

Separation logic thus provides a mechanism for a fine-grain analysis of the heap layout

and to reason locally about the portion manipulated by a command while declaring the

remaining memory cells unchanged. As opposed to classical program proving, local rea-

soning makes the analysis of pointer-manipulating programs tractable. Note that, in a

‘correct’ program, the symbolic execution always finds a suitable P, whereas failure to do

so allows a software verification tool (e.g. [97]) to find a potential pointer-related bug.

Here, we use separation logic for proving parallelisability instead of correctness, but, as a

side e↵ect, our tool also reports a failure in this case.

72



CHAPTER 3. BACKGROUND

Our analysis in Chapter 4 uses our version of coreStar that we have modified to in-

clude an extension of the standard symbolic execution called labelled symbolic execution

by Raza et al. [95]. This technique assigns a unique label to Q, the spatial part of the

state formula that was modified, i.e. ⇧2 ^ ⌃ ⌘ ⇧2 ^ hQi{l2Lab} ⇤ F, with Lab being the set of

all labels. In the original work in [95], each program statement Ci is assigned a unique

label li 2 Lab. The technique solves the problem that a state formula only describes the

instantaneous state at a given point of execution, but does not describe the relations with

formulae at other points of execution. The labels attached to the heaplets provide this link.

For example, consider three program statements [x].f := 4, [y].f := 5 and [z].f := [x].f in

the toy language from Def. 3.5 which are executed in sequence. The state formula at each

point of labelled symbolic execution is shown in blue and, at the start, all label sets are

empty:

hx 7! [f : x01]i{ } ⇤ hy 7! [f : y01]i{ } ⇤ hz 7! [f : z01]i{ }
1 : [x].f := 4;

hx 7! [f : 4]i{1} ⇤ hy 7! [f : y01]i{ } ⇤ hz 7! [f : z01]i{ }
2 : [y].f := 5;

hx 7! [f : 4]i{1} ⇤ hy 7! [f : 5]i{2} ⇤ hz 7! [f : z01]i{ }
3 : [z].f := [x].f;

hx 7! [f : 4]i{1,3} ⇤ hy 7! [f : 5]i{2} ⇤ hz 7! [f : 4]i{3}

The unique labels li are the code lines of the statements here. The label sets are filled once

a statement accessed the respective heaplet. The final label sets tell us that statements 1

and 3 accessed the same memory location, while the access of statement 2 is independent

of the others. Raza’s technique thus propagates the ‘heap footprint’ of each statement

through the CFG. This tracks the memory accesses made by di↵erent parts of the program,

a prerequisite for detecting heap-carried dependencies.

As we will describe in Chapter 4, our heap access analysis is a modified version of Raza’s

labelled symbolic execution. The main di↵erence is that we embed di↵erent information
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in the label sets in order to detect the presence of communication-free parallelism in loops

and to generate an assignment of heap partitions to physically distributed memories.

3.5.4. Theorem Proving

Automated theorem proving is the work horse in our tool flow. The symbolic execution

engine uses it to infer the frame portion F at each CFG node as described above. A detailed

description of frame inference is beyond the scope of this introduction, but is given in

[98]. It is also used to prove implications described in the next chapter. In all cases, the

theorem prover tries to verify an entailment of the form S1 ` S2 which is interpreted as

“S1 entails S2” or “from S1 I can derive S2”, with S1 and S2 being formulae in separation

logic of the form ⇧ ^ ⌃. The theorem prover in coreStar builds on the proof technique in

[98]. The basic idea is to reduce an entailment S1 ` S2 to an axiom ⇧ ^ emp ` true ^ emp,

with an arbitrary pure formula ⇧. The proof of the original entailment is successful if the

reduction is successful. The entailment reduction is performed by applying a sequence of

inference rules. Besides the frame rule, a separation logic theorem prover ‘knows’ a set

of other inference rules. The proof engine in coreStar is generic in that it, except for the

basic terms true, false and emp, (dis-) equalities, the separating conjunction and some

general basic rules, no predicates are pre-defined; the user defines the underlying proof

logic in a set of inference rules. The prover processes two types of rules: proof rules and

abstraction rules. The former are used during the proof search for confirming the validity

of an entailment: the theorem prover applies its proof rules upwards, i.e. the premise of

the previous rule application becomes the conclusion of the current rule application until

an axiom is reached or a contradiction is found. A proof rule modifies an entailment. For

example, we can inform the prover that the following entailment is valid:

x 7! [n : x01] ⇤ ls(x01, nil) ` ls(x, nil) (3.8)
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(i.e. if x points to the first element in a linked list, then x itself points to a linked list).

To this end, the prover needs two proof rules:

ls(E, F) ` ls(E, F)
E 7! [n : x01] ⇤ ls(x01, F) ` ls(E, F)

Q1 ` Q2

Q1 ⇤ S ` Q2 ⇤ S
(3.9)

The first rule simplifies the entailment by ‘rolling up’ the first element and the tail of a

list segment into a list segment. The second is a ‘subtraction rule’ that removes identical

heaplets on both sides of the entailment. Given these rules, the theorem prover will derive

emp ` emp
ls(x, nil) ` ls(x, nil)

subtraction

x 7! [n : x01] ⇤ ls(x01, nil) ` ls(x, nil)
roll � up (3.10)

Starting from the initial state E 7! [n : x01] ⇤ ls(x01, F) ` ls(E, F) in the bottom row, (3.10)

shows the application of both inference rules in (3.9) from bottom to top. The top row is

equivalent to true ^ emp ` true ^ emp which is an axiom. Hence, (3.10) tells us that (3.8)

can be derived from an axiom and therefore is a valid entailment.

The second class of rules are abstraction rules. The purpose of abstraction rules is to

syntactically rewrite the current state formula ⇧ ^ ⌃ that is propagated from statement to

statement during the symbolic execution. Abstraction absorbs singleton heaplets in recur-

sive predicates such as those in Def. 3.2-3.4. For example, a formula can be rewritten so that

the head node of a linked list and the tail list can be merged into one linked list. Formally,

in s 7! [n : x01] ⇤ ls(x01, nil), we can fold s 7! [n : x01] into the ls predicate resulting in ls(s, nil).

This rewrite step is called abstraction because we lose some information here: Instead of

knowing that the heap contains a linked list with at least one entry, we now know that it

contains a linked list which possibly can be empty. However, the information of having at

least one node in the list is not required by our analysis because we are interested in the

shape of the heap layout only. As we shall see in Chapter 4, abstraction plays a critical

role in our loop analysis. We maintain a set of abstraction rules which we provide to the

theorem prover and which define what is a valid abstraction. Abstraction rules are of the
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form:

condition
⌃0 { ⌃00

(3.11)

The rule is applied as soon as the condition holds and rewrites the spatial part of a formula

⇧ ^ ⌃ with ⌃ ⌘ ⌃0 ⇤ ⌃F. ⌃0 is replaced by ⌃00. ⌃F is an arbitrary context in ⌃ which is

preserved by the rewrite rule. Our abstraction rules define when the analysis is allowed to

fold singleton heaplets into the recursive predicates of Def. 3.2-3.4. We adopt the approach

of Magill et al. [99] for defining the condition as to when folding occurs: Our abstraction

rules allow folding across primed variables, but forbid folding across program variables,

e.g. s 7! [n : x01] ⇤ ls(x01, nil) is folded into ls(s, nil), but s 7! [n : x] ⇤ ls(x, nil) does not get

merged into ls(s, nil) because x is a program variable. The following abstraction rules for

ls, tree and pls predicates formalise this condition. In addition to Magill’s technique, our

rules define how heap footprint labels are a↵ected by the folding operation:

Definition 3.7 (Basic abstraction rules for ls predicates).

x01 < context [ {E}
hE 7! [n : x01]iLab1 ⇤ hx01 7! [n : F]iLab2 { hls(E, F)iLab1[Lab2

x01 < context [ {E}
hE 7! [n : x01]iLab1 ⇤ hls(x01, F)iLab2 { hls(E, F)iLab1[Lab2

x01 < context [ {E}
hls(E, x01)iLab1 ⇤ hls(x01, F)iLab2 { hls(E, F)iLab1[Lab2

i.e. two list nodes, a list node and a list tail, or two list segments are folded into a single list,

respectively. The rule fires if the linking pointer is a primed variable and appears nowhere else in

the current state formula. The set of footprint labels attached to a predicate resulting from merging

two predicates is the union of both original label sets (Lab1 [ Lab2).

Definition 3.8 (Basic abstraction rule for tree predicates).

x01, y
0
1 < context [ {E}

hE 7! [l : x01, r : y01]iLab1 ⇤ htree(x01)iLab2 ⇤ htree(y01)iLab3 { htree(E)iLab1[Lab2[Lab3
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i.e. a tree node and both sub-trees are folded into a single tree. The rule fires if the linking pointers

are primed variables and appears nowhere else in the current state formula. The set of footprint

labels attached to a predicate resulting from merging two predicates is the union of both original

label sets (Lab1 [ Lab2 [ Lab3).

Definition 3.9 (Basic abstraction rules for pls predicates).

u01, c
0
1, n
0
1 < context [ {E}

hE 7! [u : u01, c : c01, n : n01]iLab1 ⇤ htree(u01)iLab2 ⇤ hc01 7! iLab3 ⇤ hpls(n01, F)iLab4 { hpls(E, F)iLab1[
Lab2[
Lab3[
Lab4

x01 < context [ {E}
hpls(E, x01)iLab1 ⇤ hpls(x01, F)iLab2 { hpls(E, F)iLab1[Lab2

i.e. a list node and a list tail, or two list segments are folded into a single list, respectively. The

rule fires if the linking pointers are primed variables and appear nowhere else in the current state

formula. The set of footprint labels attached to a predicate resulting from merging two predicates

is the union of all original label sets. The folding of two list nodes and their linked predicates is

omitted here for ease of readability, but is analogous to the first rule of Def. 3.7.

Note that, for ease of explanation, Def. 3.7-3.9 only show a subset of the abstraction rules

used by our analysis.

3.5.5. Application to HLS

Formal software verification has been the main application of separation logic. Only

recently, its scope has been extended to data dependence analyses for automatic paralleli-

sation. Raza et al. [95] use their labelled symbolic execution and heap footprint analysis

for an analysis of pointer-induced dependencies enabling the parallelisation of software

programs. We build on the labelled symbolic execution framework, but our analysis em-

beds di↵erent information in the heaplet label sets as we shall see in the next chapter.

We also extend their method by allowing the analysis to perform semantics-preserving

modifications to the program state until the partitioning goal can be proven. Another

di↵erence is that we propose an analysis tailored to loop parallelisation and the inference
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of loop-invariant state descriptions which is not covered in [95]. In contrast, our analysis

searches eagerly for parallelisation opportunities in the iteration space of pointer-chasing

loops and makes code transformations on-the-fly to achieve its goal.

The work in [100] is notable in that it also takes Raza’s method into an HLS context.

The parallelisation transformations, however, are not automated and memory partitioning

is not addressed. Furthermore, determining disjointness in our tree-based benchmarks re-

quires successive unrollings of loop iterations before disjointness can be established, which

is not implemented in their technique. Finally, concurrent work by Botinčan et al. [101]

describes a technique for separation logic-based parallelisation of software threads. Their

work is interesting in that they automatically insert synchronisation to preserve depen-

dencies in addition to a dependence analysis, a feature that we also add to the extension

of our baseline technique (Chapter 5). Their work, however, focuses on the theoretical

framework whereas we use the theoretical foundations in a demonstrably practical imple-

mentation. Furthermore, our tool seamlessly connects to existing HLS flows because the

analysis and code transformation operates on LLVM IR. Villard develops llstar [102], a

tool that uses similar specifications of LLVM bitcode instructions in separation logic. The

major di↵erence to our work is that llstar is a software verification tool that aims to find

pointer-related bugs (e.g. NULL-dereferencing) in a program, whereas we link our heap

analysis and bitcode specifications with source-to-source transformations for memory par-

titioning in hardware implementations. To the best of our knowledge, our work is the first

separation logic-inspired tool that automatically synthesises a distributed memory system

and parallel hardware implementations form heap-manipulating code in the context of

state-of-the-art HLS flows.
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A crucial task in HLS of source code written in programming languages such as C/C++ is

the extraction of parallelism from a sequential program description while preserving the

program semantics. Additionally, parallelisation requires the memory system to match the

computational parallelism. A fundamental di↵erence of custom hardware implementa-

tions compared to microprocessors is the application-specific memory architecture. Instead

of a monolithic memory space, the application data can be distributed over many small

blocks of on-chip memory leading to a high aggregate memory bandwidth. Consequently,

multiple computational units can be fed in parallel, which results in a very e�cient par-

allelisation if expensive dynamic interconnects between any memory and any piece of

computation can be eliminated, i.e. if the parallelism is communication-free. Automatic

parallelisation for HLS compilers therefore requires a memory access and dependence

analysis so as to detect parallelisation opportunities and partition the memory space ac-

cordingly. The objective in this chapter is to implement a static program analysis and

automated code transformations that enable automatic parallelisation and distribution of

data over separate blocks of on-chip memory.

Our program analysis and code transformations explicitly target programs that use point-

ers to heap-allocated data and dynamic memory allocation, a powerful and widely used

feature of high-level programming languages such as C/C++. Automated program trans-

formations that break the monolithic heap memory space into several portions (heaplets)

and parallelise pointer-manipulating programs are beyond the scope of most current HLS

techniques as we demonstrate in Chapter 2 and discuss in Chapter 3. This gap is mainly
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Figure 4.1.: High-level compilation tool flow.

due to the di�culty of disambiguating pointer aliases and breaking the monolithic heap

memory (implicit in the programming model) into small fragments. This thesis makes

a step towards closing this gap and presents in this chapter a static analysis for pointer-

manipulating programs which determines dependencies between loop iterations accessing

heap memory and splits dynamic data structures into disjoint, independent regions. Our

tool connects to the LLVM compiler infrastructure. The dependence/disjointness informa-

tion provided by the analysis is passed to a source-to-source translator which modifies the

code in such a way that a commercial-o↵-the-shelf HLS tool can parallelise the implemen-

tation and instantiate parallel memory blocks for the partitioned heap. Fig. 4.1 summarises

the high-level tool flow.

The main contribution of this work is the heap analyser in Fig. 4.1. The departure point

from previous work is the use of recent advances in separation logic which extends clas-

sical logic by an operator that explicitly expresses the separation of resources, i.e. the

non-aliasing property of two pointers. This paves the way for an automated program

analysis and can straightforwardly handle dynamic memory allocation in disjoint heaps.

The contributions of this chapter are:

• A separation logic-based parallelisation algorithm for pointer-manipulating pro-

grams that access dynamic data structures. Our static program analysis handles

straight-line code as well as arbitrary while-loops and determines whether there is

communication-free parallelism in the loop with respect to the accessed dynamic data

structures. Starting from the C memory model of a global monolithic heap memory,

it determines how to partition the heap and dynamic data structures into disjoint
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partitions that can be implemented in separate on-chip memory blocks (Section 4.2).

• The implementation of an automated source-to-source transformation infrastructure:

The source translator ensures synthesisability of code containing unsupported con-

structs related to dynamic memory allocation (an unsupported feature in all common

HLS tools). In a second pass, the disjointness information provided by our analysis

is used to split the synthesised heap memory into separate blocks and to split a loop

into multiple loops so as to obtain a semantically equivalent parallel implementa-

tion. The property of communication-free parallelism ensures that each functional

unit only requires access to its own private memory block (Section 4.3).

• The demonstration of our tool flow using four real-life applications as test cases

which build, traverse, update and dispose dynamically allocated data structures.

The transformations at source code level allow us to stay as independent of a specific

HLS tool as possible. We use Xilinx Vivado HLS as an exemplary back-end tool in

our case studies. We also include hand-written HLS and RTL implementations for

comparison (Section 4.4).

4.1. Motivating Example

Our running example, which we use throughout to illustrate the problem and our approach

to solve it, is taken from the high-performance implementation of the tree-based K-means

clustering algorithm discussed in Chapter 2. Listing 4.1 shows C-like pseudo code of the

main kernel of the iterative filtering algorithm, the only di↵erence from Chapter 2 being

that the tree traversal here is destructive. Fig. 4.2 shows the three heap-allocated data

structures accessed by the loop: the tree, the centre sets, and the stack. The stack is im-

plemented as a pointer-linked list whose head is modified by ‘push’ and ‘pop’ operations.

The stack contains pointers to the tree nodes and centre sets. In Line 8, pointers to a centre

set and tree node are fetched from the stack, and pointers to left and right child node as

well as a newly allocated centre set (Line 13) are pushed onto the stack at the end of the

loop body (Lines 16 - 17) - preceded by a data-dependent conditional (Line 15). The kd-tree
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1 //main kernel function

2 void filter(treeNode *root, centreSet cinit) {

3 centreSet* c0 = new centreSet;

4 *c0 = cinit;

5 stackRecord *s = push(root, c0, true, NULL);

6 while (s != NULL) {

7 treeNode *u; centreSet *c; bool d;

8 s = pop(&u, &c, &d, s);

9 centreSet cs = *c;

10 if (d) {

11 delete c;

12 }

13 centreSet *cnew = new centreSet;

14 *cnew = subfunction1(cs);

15 if (u->left!=NULL) && (u->right!=NULL) && (subfunction2(cs

)) {

16 s = push(u->left, cnew, true, s);

17 s = push(u->right, cnew, false, s);

18 } else {

19 delete cnew;

20 }

21 delete u;

22 }

23 }

24

25 //auxiliary function push (create new list entry at head)

26 inline stackRecord* push(treeNode *u, centreSet *c, bool d,

stackRecord *s){

27 stackRecord *t = new stackRecord;

28 t->u=u; t->c=c; t->d=d; t->n=s;

29 return t;

30 }

31

32 //auxiliary function pop (delete list head)

33 inline stackRecord* pop(treeNode **u, centreSet **c, bool *d,

stackRecord *s){

34 *u=s->u; *c=s->c; *d=s->d; stackRecord *t=s->n;

35 delete s;

36 return t;

37 }

Listing 4.1: C-like pseudo code of the (modified) main kernel of the filtering algorithm.
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Figure 4.2.: Snapshot of the linked data structures accessed by the loop in Listing 4.1.

is traversed in a pre-order fashion and visited nodes are deleted (Line 21).

The static program analysis presented in Section 4.2 aims to determine the heap-carried

data dependencies between loop iterations. Assuming that Fig. 4.2 describes the current

state of the program, we can apply the following program transformations: 1) The re-

maining tree data structure (dark grey nodes) can be split into two sub-structures (two

sub-trees labelled with a, one sub-tree labelled with b). 2) The linked list can be split into

the uppermost node (pointing into the right sub-tree) and the nodes below (pointing into

the left sub-tree). The same partitioning is applicable for the pool of centre sets. 3) The

loop can be split into two loop kernels, each accessing one sub-tree, list segment and group

of centre sets. The pointers dereferenced in any iteration of a loop will never access the

data structures used by the other loop. Hence, once we have established that the loops are

‘communication free’ with respect to each other, we can split the heap memories into two

banks of on-chip memory, each assigned to one loop as shown in Listing 4.2. A standard

HLS tool can use the independence information to instantiate parallel hardware blocks for

the loops without the need for arbitration of accesses to a global memory. Fig 4.3 shows

the hardware implementation that an HLS tool can synthesise from the modified code

in Listing 4.2 using the memory partitioning and parallelisation information generated

by our analysis. Without this analysis, state-of-the-art HLS tools, such as Vivado HLS,
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1 //main kernel function

2 void filter(treeNode *root, centreSet cinit) {

3

4 ...preamble (pointers access partitions a and b)
5

6 while (s != NULL && s != sb) {

7 // ... loop body (pointers access heap partition a only)
8 }

9

10 s = sb;

11 while (s != NULL ) {
12 // ... loop body (pointers access heap partition b only)
13 }

14 }

Listing 4.2: Transformed program from Listing 4.1 (two parallel loop kernels).

Loop kernel bLoop kernel a
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Figure 4.3.: Synthesised hardware from the transformed code in Listing 4.2.

instantiate only one memory for the data types centreSet, stackRecord and treeNode,

respectively. Furthermore, these tools are not able to detect that the loop kernels a and b

can be scheduled for parallel execution as we have shown in Chapter 2.

The di�cult part of the above optimisation is the program analysis: regardless of scope,

every two heap-directed pointers could potentially reference the same memory cell. The

di�culty of analysing these programs increases with linked data structures which contain

pointers in their link fields as discussed in Chapter 3. Ruling out aliasing requires an

examination of the values that pointer variables hold during program execution. Sepa-

ration logic addresses exactly this issue and provides a formalism for straightforwardly

expressing the heap layout and alias information at each point of the program execution
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as described in the next sections.

4.2. Program Analysis

Our semantics-preserving parallelisation is based on the rationale that two program frag-

ments can run in parallel if they access disjoint regions in memory (global variables being

a special case of memory resources). We can then place each of these regions in physi-

cally separated on-chip memory banks without the need for cross-communication between

functional units and each bank. Our memory partitioning and parallelisation analysis is

hypothesis-based. The user specifies a value P. This value corresponds to the hypothesis

that the heap accessed by the loop kernel can be split into P disjoint parts and the loop can

be split into P parallel loops. The algorithm then tries to verify the hypothesis.

Proving the hypothesis is implemented in two main phases: searching for a necessary

condition for the hypothesis to be true and, starting from the program state satisfying this

condition, proving that the hypothesis is valid in all iterations. In the first phase, our tool

symbolically executes the loop preamble and a finite number of loop iterations. During this

process, it examines the separation logic formulae describing the accessed heap to deter-

mine whether the heap can be split into P parts of identical shape, which is our necessary

condition for partitioning. If such an initial partitioning can be established, the tool instru-

ments the formulae with cut-points (markers) that mark the beginning of each partition.

After the initial partitioning and instrumentation, the second phase is to prove that this

partitioning is maintained not only in a finite number of iterations at loop start-up but in

all loop iterations. Maintaining the partitioning in this case means that loop iterations (or

parts of the loop body) are assigned to a heap partition and no iteration accesses the heap

associated with a di↵erent partition than its ‘own’. We use cut-points and heap footprint

labels to assign heap partitions to loop iterations. Failing to prove the partitioning property

in all iterations restarts the first phase. Generally, there are multiple options for the initial

partitioning of the program state into P portions. If the first option failed, the analysis
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Listing 5 Symbolic execution of the loop preamble in Listing 4.1 (Lines 3-5).

tree(root)
1 : new(c0);

tree(root) ⇤ c0 7!
2 : [c0] := cinit;

tree(root) ⇤ c0 7! cinit
3 : new(t);

tree(root) ⇤ c0 7! cinit ⇤ t 7! [u : , c : , d : , n : ]
4 : [t].u := root;

tree(root) ⇤ c0 7! cinit ⇤ t 7! [u : root, c : , d : , n : ]
5 : [t].c := c0;

tree(root) ⇤ c0 7! cinit ⇤ t 7! [u : root, c : c0, d : , n : ]
6 : [t].d := true;

tree(root) ⇤ c0 7! cinit ⇤ t 7! [u : root, c : c0, d : true, n : ]
7 : [t].n := nil;

tree(root) ⇤ c0 7! cinit ⇤ t 7! [u : root, c : c0, d : true, n : nil]
8 : s := t;

s = t ^ tree(root) ⇤ c0 7! cinit ⇤ t 7! [u : root, c : c0, d : true, n : nil]
9 : . . .

tries the next one until we either obtain a successful proof or all options have been tested.

Using the motivating example from Section 4.1, we first describe the initial partitioning

and cut-point insertion followed by the proof of disjointness in all iterations.

A key building block of our analysis is the symbolic execution of a program. Section 3.5.3

introduced the general concept, Listing 5 gives a concrete example of the symbolic execu-

tion of the program fragment before the loop (loop preamble) in Listing 4.1 (Lines 3-5). For

didactic reasons, we show pseudo code of this code section in the toy language defined

in Def. 3.5 (Section 3.5.2, page 70), interspersed with the separation logic formula (blue)

describing the program state that is propagated from one statement to the next. The ef-

fect of each (atomic) command on the state formula is specified in Def. 3.6 (Section 3.5.2,

page 71) and the frame inference (Section 3.5.4, page 74) ensures that only the part of the

formula that is ‘touched’ by the command is updated. We furthermore assume that the

sub-function push was inlined. The final state formula in Line 9 describes the pre-state of

the while-loop, i.e. the state just before entering the loop body. Our analysis begins by
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ndc u

s ... ...
ndc u

Stack (linked list)Centre sets Tree

... ...

(deleted)ndc u

s ... ...

Stack (linked list)Centre sets Tree root

c0

Figure 4.4.: Pre-state before execution of the first (left) and the second loop iteration (right).

instrumenting the loop pre-state as explained below.

4.2.1. Inserting Cut-points

Our analysis tries to split up spatial formulae at cut-points:

Definition 4.1 (Cut-point). A cut-point is a program variable pointing to a heaplet in the

program state formula.

The program can only interact with heap-allocated data via pointers (program variables).

Useful heap partitioning requires the program to have access to each partition via pointers,

e.g. given ls(u, x01) ⇤ ls(x01, v) ⇤ ls(v, nil), the program can access the first and third list seg-

ment via cut-points u and v, as opposed to the second list segment since x01 is not a cut-point

(recall that a primed variable in a separation logic formula is not a program variable). The

goal in this sub-section is to obtain P cut-points in the pre-state of a loop iteration (i.e. the

state before the loop body executes). This set of cut-points must satisfy certain conditions

as we describe below. After the symbolic execution of the loop preamble as above, the

program state is:

s = t ^ tree(root) ⇤ c0 7! cinit ⇤ t 7! [u : root, c : c0, d : true, n : nil] (4.1)

Fig. 4.4, left, depicts (4.1), which contains the stack record (pointed to by s), the tree,

and a centre set (pointed to by c0). Each heap predicate in (4.1) is also referenced by a

cut-point. The cut-point insertion algorithm considers the program variable s first and

select the predicate m1 ⌘ s 7! [u : root, c : c0, n : true, n : nil]. Next, we try to find another
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predicate m2 of the same shape as m1 in the formula. To this end, we create a tem-

plate m2 ⌘ t00 7! [u : t01, c : t02, d : t03, n : t04] and set A ⌘ (4.1). We then ask coreStar’s theorem

prover whether it can match two predicates in A with m1 ⇤m2. If the prover is successful,

A contains the desired second predicate m2 and we can extract it from the proof. If it is

unsuccessful, we modify A by symbolically executing the next iteration, which is the case

in this example. The loop pre-state after ‘peeling o↵’ one loop iteration is (depicted in

Fig. 4.4, right):

s = s02 ^ tree(u01) ⇤ tree(u02) ⇤ c01 7! (4.2)

⇤ s02 7! [u : u01, c : c01, d : false, n : s01] ⇤ s01 7! [u : u02, c : c01, d : true, n : nil]

Now the matching is successful. We introduce a second cut-point sb and let it point to

the only possible candidate m2 by adding a conjunction to (4.2): sb = s01 ^ (4.2). The new

formula satisfies the necessary condition for partitioning: sb = s01 ^ (4.2) contains P = 2

heaplets m1 and m2, of the same shape and referenced by cut-points. Next, we ask our

proof engine described in the next section to prove that, in all subsequent loop iterations,

the spatial part of the state can be split into P = 2 partitions, each of which being assigned

either to cut-point s or sb. As explained in the next section, this proof fails here because of

the lack of a second predicate cx 7! (the pointer aliasing is illustrated in Fig. 4.4, right).

This means that this loop pre-state cannot be fully partitioned into two disjoint portions.

Hence, we abandon the inserted cut-point, peel o↵ another loop iteration, and reach the

pre-state of the third iteration:

s = s04 ^ tree(u03) ⇤ tree(u04) ⇤ tree(u02) (4.3)

⇤ c02 7! ⇤ c01 7! ⇤ s04 7! [u : u03, c : c02, d : false, n : s03]

⇤ s03 7! [u : u04, c : c02, d : true, n : s01] ⇤ s01 7! [u : u02, c : c01, d : true, n : nil]

The formula describes the program state shown in Fig. 4.2. We repeat the cut-point insertion

as described above. Our tool explores all possible cut-point assignments (there are now
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multiple options now) and launches the proof engine in the next section for each candidate

assignment. Assume we have assigned the second cut-point to the heaplet pointed to by s01:

sb = s01^ (4.3). Starting from this pre-state, our proof engine can now successfully prove the

parallelisation hypothesis of P = 2, because we have two valid cut-points s = s04 and sb = s01,

and the spatial part of the instrumented formula can be fully partitioned into two disjoint

portions. These portions are independent in the sense that, starting from this pre-state,

there is no subsequent loop iteration that accesses both portions. The next section explains

how our analysis generates a proof of this fact. Note that, for other programs, we may not

find a successful proof in which case we abort after Lmax unrollings.

4.2.2. Proving Communication-free Parallelism

The starting point for the proof engine is the program state obtained after the initial un-

rolling of a finite number of loop iterations above. In our example, we start with (4.3) and

the two cut-points s and sb, and aim to split the heap accessed during the loop iterations into

two portions a and b. During symbolic execution of the loop body, we distinguish between

two ‘cut-point states’ depending on whether we are currently accessing data structures

‘belonging’ to cut-point s (portion a) or sb (portion b). Our tool constantly tracks the cur-

rent cut-point state during symbolic execution of loop iterations. We switch to a di↵erent

cut-point state once we have accessed a heaplet pointed to by a di↵erent cut-point variable

as the one assigned to the current state. We assign label a 2 Lab to all heaplets accessed

during execution in cut-point state a (cut-point s), and similarly for b (cut-point sb). We

count pointer dereferencing and delete operations as an access. Our label assignment and

cut-point state propagation through the program’s CFG are implemented as add-ons to

coreStar. Tracking the cut-point state together with footprint label assignment to heaplets

allows the analysis to assign heap partitions to loop iterations.

The parallelisation goal is to partition the loop iteration space into two groups labelled

a and b, and we try to establish the fact that a heaplet accessed by an iteration in cut-point

state a (of group a) is never accessed by another iteration of group b. In other words, we try
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to prove that the separation of the accessed heap into a and b is invariant in each subsequent

loop iteration. If the number of iterations was known at compile time, we could symboli-

cally execute all iterations to prove this property. However, in general, this number is not

statically determinable because of the data dependent loop condition (Listing 4.1, Line 15).

Hence, we perform a fix-point calculation [99] for proving that the separation property is

loop invariant.

The fix-point calculation performs a symbolic execution of a sequence of loop iterations.

Doing so, it aims to find a generalised formula that describes the program state in all loop

iterations. Once such as formula has been constructed, we say the fix-point calculation

has converged and terminates. The fix-point calculation consists of two main components:

1) rewriting the state formula in the quest for a generalised state representation while

it symbolically executes loop iterations, and 2) deciding when the fix-point iteration has

converged. The former part is based on abstracting the current state formula, which folds

singleton heaplets in recursive predicates such as those in Def. 3.2-3.4 (page 69) using the

abstraction rules described in Section 3.5.4 (pages 76-77). In line with [99], our abstrac-

tion rules forbid folding across program variables. Note that this also prevents folding

across cut-points. The abstraction step prevents accumulating singleton heaplets such as

s 7! [n : x01] during repeated execution of the loop body and is crucial for convergence

of the fix-point calculation. Our fix-point calculation adopts and modifies the technique

described by Magill et al. [99] and works as follows:

1. Start with the pre-state of the loop Mpre
0 equal to (4.3) with cut-points s and sb inserted.

2. Symbolically execute {Mpre
i ^ b} ‘loop body’ {Mpost

i+1 }, b is the loop condition, i is the

iteration counter and Mpost
i+1 describes the program state after the loop body in iteration

i has been executed. We attach labels a or b to heaplets corresponding to the current

cut-point state. If we find both labels a and b on a heaplet, it means that this heaplet

has been accessed by at least one iteration of cut-point state a and one of state b;

the separation into disjoint partitions is not maintained and we abort, report a failed
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proof and restart the cut-point insertion to obtain a di↵erent initial partitioning. If

only either a or b are attached to any heaplet we continue with the next step.

3. Absorb singleton heaplets in Mpost
i+1 in recursive predicates such as those in Def. 3.2-

3.4 (Section 3.5.1) using the abstraction rules defined Section 3.5.4. This results in a

rewritten form of Mpost
i+1 if an abstraction rule can be applied.

4. The fix-point calculation terminates if Mpost
i+1 implies a post-state of one of the previous

iterations Mpost
k , k = 0, ..., i. Formally, we ask coreStar’s theorem prover to decide

Mpost
i+1 `

W
k=0..i Mpost

k (the right hand side is the disjunction of all previous post-states).

If the implication could not be shown to hold we set Mpre
i+1 :=Mpost

i+1 and continue with

step 2).

For our example, we reach a fix-point after 7 iterations of steps 1) to 4). Note that, for

another candidate for the cut-point assignment in (4.3) (sb = s03 instead of sb = s01) as

discussed above, the fix-point calculation would have been aborted because we had even-

tually reached the state hc02 7! i{a,b} (the label set {a, b} denotes sharing between functional

unit a and b).

The successful fix-point calculation tells us that the heap accessed by the loop, after peeling

o↵ a finite number of initial loop iterations, can be partitioned into two disjoint regions

labelled a and b. Furthermore, it tells us that the partitioning will be maintained for all

following loop iterations, each of which will either access heap portion a or b, but not

both. A code transformation can now split the original code into two code fragments, each

having access to its own heap partition as shown in Listing 4.2. What remains is to assign

all heap-manipulating program statements in the loop preamble and initially unrolled

iterations to the correct partitions. This is described in the following section.

4.2.3. Assigning Heap Partition Information to Statements

After the analysis has determined that the loop can be split into two loops with access

to their private heap partitions, we must ensure that the pointers used in the preamble
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and unrolled iterations refer to the correct memory partition. For example, the predi-

cate s04 7! [u : u03, c : c02, d : false, n : s03] in (4.3) obtains the partition label a during the loop

analysis: hs04 7! [u : u03, c : c02, d : false, n : s03]i{a}. The heaplet described by this predicate,

however, was allocated (new statement, Listing 4.1, Line 17) and written to (pointer deref-

erencing, also Line 17) in the second iteration that was peeled o↵ during the cut-point

insertion. Consequently, we must attach the partition information to these program state-

ments as well.

We link the partition assignment to heap-manipulating program commands with a combi-

nation of our labelled symbolic execution (footprint labels according to the cut-point state)

with the standard labelled symbolic execution in [95] (a unique footprint label for each

program statement). Recall that (4.3) describes the program state just before launching

the fix-point calculation. During the fix-point calculation, we record each heaplet the first

time it gets assigned a label. Recording on first label assignment is necessary because, for

instance, we may lose track of the predicate c02 7! in (4.3) as it will be disposed (Listing 4.1,

Line 11) during the course of fix-point calculation before we even access c01 7! for the first

time. After a successful fix-point calculation, we stitch together all snapshots, resulting in

a labelled version of (4.3):

s = s04 ^ sb = s01 ^ htree(u03)i{a} ⇤ htree(u04)i{a} ⇤ htree(u02)i{b} (4.4)

⇤ hc02 7! i{a} ⇤ hc01 7! i{b} ⇤ hs04 7! [u : u03, c : c02, d : false, n : s03]i{a}

⇤ hs03 7! [u : u04, c : c02, d : true, n : s01]i{a} ⇤ hs01 7! [u : u02, c : c01, d : true, n : nil]i{b}

During the symbolic execution of the loop preamble and iteration unrolling prior to the fix-

point calculation, we also record the program statements that accessed each of the heaplets

in (4.4) by assigning a second set of footprint labels (FT) as in the standard label assignment

in [95]. This set contains a unique label for each accessing statement, e.g. FT = {l2, l3, l7} for
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statements 2, 3 and 7. With these two label sets we obtain a mapping

m : Lab! {a, b} (4.5)

where Lab is the set of all unique labels assigned to heap-manipulating program com-

mands in the loop preamble and unrolled iterations. This mapping allows us to assign the

correct heap partition information to each pointer access. This information is used by the

source-to-source transformation for correct code instrumentation.

The above analysis provides both memory partitioning information (by labels assigned

to heaplets) and the legality of parallelisation (by a successful fix-point calculation). Al-

gorithm 6 summarises our heap analysis. The heap analysis in this section focuses on

the function under test (filter in our motivating example) in isolation. However, some

data structures used by the function under test may have been built up by di↵erent parts

of the program that are external to this function. We call such data structures the context

of the function under test. Our loop analysis generates partitioning information for all

heap-allocated data structures it uses. In some cases, after the heap partitioning by the

loop analysis above, we may wish to transfer the partitioning information to the enclosing

program. In the appendix A, we describe an approach that can be used to extend our

technique above to a context-aware analysis.

The next section explains how the partitioning information and the legality of parallelisa-

tion are used in a source-to-source translator for automated code optimisation.

4.3. Implementation

Our tool flow consists of three main parts: the heap analyser, a source-to-source compiler,

and a set of third-party tools (back-end HLS and RTL synthesis tools). Fig. 4.5 shows the

complete tool flow.
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Algorithm 6 Heap partitioning analysis
1: Input:
2: loop body specification (code)
3: initial state formula (⇧ ^ ⌃{FT})initial (from symbolic execution of loop preamble)
4: parallelisation hypothesis P
5: Output:
6: validity of parallelisation hypothesis (success)
7: number of initial unrollings required (it)
8: label mapping: program statement identifiers to heap partitions (m)
9: Variables:

10: it . Iteration counter (number of iterations to be unrolled)
11: C . set of cut-points
12: Scutpoints . set of cut-point states
13: ⇧ ^ ⌃{FT} . state formula in separation logic (attached footprint label set FT)
14: ⇧ ^ ⌃{CS} . state formula in separation logic (attached cut-point state set CS)
15: m . label mapping m: FT! CS

16: function heap-partitioning
17: it 0
18: C ;
19: ⇧ ^ ⌃{FT}  (⇧ ^ ⌃{FT})initial

20: success false
21: repeat
22: while not checkIfValidCutpInsertion(⇧ ^ ⌃{FT},C) do
23: ⇧ ^ ⌃{FT}  SymbExec(⇧ ^ ⌃{FT}, it) . peel o↵ it iterations (Section 4.2.1)
24: ⇧ ^ ⌃{FT},C CutpInsert(⇧ ^ ⌃{FT},P) . insert P cut-points (Section 4.2.1)
25: it it + 1
26: end while
27: Scutpoints  AssignCPStates(C) . assign states to cut-points (Section 4.2.2)
28: ⇧ ^ ⌃{CS}, success FixpCalc(⇧ ^ ⌃{FT},C, Scutpoints) . fix-point calculation

(Section 4.2.2)
29: m GetLabelMapping(⇧ ^ ⌃{CS},⇧ ^ ⌃{FT}) . label mapping (Section 4.2.3)
30: until success or it � Lmax
31: end function
32: return success, it, m
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Figure 4.5.: LLVM-based CAD flow including the heap analyser, source translator and third
party tools for HLS and RTL implementation.

4.3.1. Heap Analyser

Our heap analyser connects to the analysis interface of the source translator and imple-

ments the two-step analysis described above. It is written in OCaml and is based on our

modified version of coreStar. We we extended coreStar to include labelled symbolic ex-

ecution and cut-point processing and modified it to generate the disjointness proofs based

on non-overlapping footprint label sets as described in Section 4.2.2. Our heap analyser

currently uses 122 logic rules as described in Section 3.5 which define pure and spatial

predicates, such as those in Def. 3.2-3.4 (page 69), and how footprint labels are propagated.

These rules also define, for example, under what conditions a points-to predicate describ-

ing a singleton list node can be ‘gobbled up’ by an existing linked list predicate in order to

ensure convergence of the fix-point calculation as described in Section 4.2.2.

The symbolic execution is performed on the control flow graph of the program which

is built internally by coreStar. It operates on a representation of the input program in the

coreStar intermediate language (coreStarIL) [96]. This language consists of Hoare triple-like

statements which specify the e↵ect of program commands on the program state (using

separation logic specifications). It also contains constructs for control flow in order to im-

plement branching and loops. Real-world input code must be translated into coreStarIL

before the program can be analysed. Translating C/C++ code directly into coreStarIL is

a complex task. Our approach is to first compile the C/C++ input into the LLVM IR using

third-party front-ends and then derive a specification in coreStarIL from the LLVM code.

We choose the LLVM IR as the input language to our tool because many state-of-the-art
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HLS tools [19, 24, 22, 21, 20] compile the input code into the LLVM IR prior to RTL gen-

eration. This choice greatly improves the level of automation and paves the way for the

integration of our technique into existing HLS flows.

The LLVM IR code style in this thesis is that of the IR generated by Clang [61] from

C++ code. LLVM IR is a typed assembly-like language with an unbounded number of

virtual registers [59]. The types are arbitrary-width integers (iN for N bits), standard

floating-point types (half, float, double), pointers, function and array types, and struc-

tures (struct in C). We denote a type as t and t* is the corresponding pointer type. The

type is always attached to a value that appears in an LLVM instruction. We denote a value

as v. Instructions are grouped into basic blocks. Each basic block has a label (denoted by l).

For brevity, we do not discuss the whole LLVM instruction set, but focus on a subset:

I ::= x = load t* v

| store t v1, t* v2

| x = icmp cond, t v1, v2

| br i1 v, label lT, label lF

| br label l

| x = getelementptr t v*, t1 v1, . . ., tn vn

| x = phi t [v1, l1], . . ., [vn, ln]

| x = call t f(t1 v1, . . ., tn vn)

The load instruction dereferences the pointer v and loads the memory content into the

variable (register) x. Similarly, store dereferences v2 for a write access. The icmp instruc-

tion checks if v1 and v2 satisfy the condition cond and returns a boolean value (type i1).

This result can be used by the conditional branch instruction which directs the control

flow to the basic blocks lT (true) or lF (false), respectively, based on the value v. The

getelementptr instruction returns a pointer to an element inside a data structure (array or

structure). The returned address is calculated by adding several o↵sets (v1, . . . , vn) to the

base pointer v. For example, the pointer to the 4th field of a structure called S is returned
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by getelementptr %struct.S* %y, i32 0, i32 4, where %y is the base pointer (the first

o↵set is set to 0 by default if a field in a singleton structure is referenced). A phi node is a

standard component of a program in the single static assignment form. The variable x is

assigned one of the values v1, . . . , vn depending on from which of the basic blocks l1, . . . , ln

the control flow arrives at the current block.

The following sections describe how we translate the LLVM instructions above into ax-

iomatic specifications in separation logic, expressed in coreStarIL.

4.3.2. Memory Access

The LLVM instructions load and store are pointer-dereferencing commands and are

straightforwardly translated into Hoare triples using the specifications in Def. 3.6 (Sec-

tion 3.5.2, page 71). Access to fields in structures is implemented as a pair of agetelementptr

and a load/store instruction and is specified in the same way. For example, a write access

to the i-th field of a structure (1 < i < n) is a getelementptr/store pair:

x = getelemtptr t⇤ v, i32 0, i32 i; store ti vi, ti⇤ x

Our source code processor looks for such getelementptr-load/store patterns creates a

pointer-dereferencing specification for them.

4.3.3. Dynamic Memory Allocation

Heap allocation and deallocation (new/delete) are implemented with calls to standard

library functions in LLVM: @ Znwj / @ Znwm for new and @ ZdlPv for delete. Calls to library

functions for new and delete are specified at the call site as described in Def. 3.6 with the

emp predicate in the pre- or post-condition, respectively.
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4.3.4. Control and Data Flow

Branching and loops are implemented with br instructions in LLVM. Branch instructions

target labelled basic blocks and each block is usually terminated by a br instruction.

Our symbolic execution engine constructs a control flow graph of the program using the

same concept of labelled blocks and unconditional goto statements of the coreStarIL.

Unconditional br instructions straightforwardly translate into goto statements:

br label l { goto l

The goto statement causes our symbolic execution to jump and process the Hoare triples

below the label l. If multiple labels are given to goto, the analysis explores each control

flow path. Conditional branching in LLVM IR consists of an icmp1-br pair. We translate it

as follows:

x = icmp cond, t v1, v2; goto lT, lF;

br i1 x, label lT, label lF; lT:

lT: { } . { cond(v1, v2) }
. . . { . . .

lF: lF:

. . . { } . { ¬cond(v1, v2) }
. . .

The expression ’{ } . { cond(v1, v2) }’ means that the analysis adds the condition cond(v1, v2)

to the control flow path of lT. This is equivalent to an assume statement. The condition en-

codes (dis)equality, less or greater relations between v1 and v2 (¬cond(v1, v2) is the negated

condition). In general, v1 and v2 are symbolic values and the analysis cannot decide in

which of the two control flow paths the condition is satisfied: it explores both paths in

this case. However, in some cases, some information about the values of v1 and v2 may be

available in the current state formula and the analysis may be able to terminate the path

1We omit fcmp for floating-point comparisons here.
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that is inconsistent with the branch condition.

If a variable is assigned di↵erent values based on the flow of control, the LLVM IR uses

phi nodes. We show an example of a specification of the phi node with two source blocks,

l1 and l2, below. Whether the variable x receives the value v1 or v2 depends on the block

from which the jump to l0 is made.

l0: l0:

x = phi t [v1, l1], [v2, l2] . . .

. . . l1:

l1: . . .

. . . {x = y01} . { x = v1 }
br label l0 { goto l0

l2: l2:

. . . . . .

br label l0 {x = y01} . { x = v2 }
goto l0

We treat phi nodes in a similar way as conditional branches in that we add artificial as-

signment specifications in the source blocks. An assignment is represented by the triple

’{x = y01} . { x = v1 }’. The assignments are placed at the bottom of the blocks just before the

terminator instruction.

The above definitions show how we represent a heap-manipulating program in LLVM

IR with Hoare triples using separation logic formulae. This representation is directly en-

coded in a coreStarIL representation of the input program and can thus be processed by

the symbolic execution engine in our version of coreStar in order to implement the heap

analysis in Section 4.2. The output of this analysis is a flag indicating the successful heap

partitioning (success), the number of initially unrolled iterations (it), and a table assigning

program statement identifiers to heap partitions (m). The next section describes how our
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source-to-source transformation uses this information.

4.3.5. Source-to-Source Compiler

A previous version [34] of our source translator was built on the C-based ROSE source

compiler infrastructure [103]. In a later refinement of our tool, we moved the source-to-

source transformations entirely to LLVM IR in order to ensure a tighter integration with

the program analysis and to canonicalise the code transformations. Our code transforma-

tion works on the LLVM IR generated from C/C++ code using the Clang front-end and is

implemented as a custom LLVM pass [59].

After parsing in the LLVM code, the source transformation first replaces the basic routines

for dynamic memory allocation with custom implementations to ensure synthesisability

by an o↵-the-shelf HLS tool. The heap is replaced by arrays, which will be synthesised

into on-chip block RAM by the HLS tool, and the corresponding pointers are converted to

integer variables (i32). Occurrences of new and delete operations are grouped according

to the type of their operand and custom allocator functions are instantiated for each type as

a replacement. Dynamic type casts are currently not supported. Our fixed-size allocator is

a standard implementation using a free-list which keeps track of occupied memory space.

It is implemented in a file which contains template LLVM functions for dereferencing,

allocation and disposal and which is automatically included by our tool. We stress that

this work focuses on memory partitioning and parallelisation and is therefore orthogonal

to work that determines a bound on the amount of allocated heap memory. Cook et al. [79]

describe a technique for finding parametric worst-case bounds on the heap consumption

based on a separation logic-driven analysis which could be used for this purpose in our

benchmarks. However, as we shall see in the next chapter, we approach this issue in a

di↵erent way by moving the heap memory space into o↵-chip DRAM and host system

main memory.

In the last step of the transformation, the memory partitioner/paralleliser receives in-
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1 / / t�>u = u ; o r i g i n a l LLVM code
2 %1 = gete lementptr inbounds %s t r u c t . s tackRecord ⇤ %t , i 3 2 0 , i 3 2 0
3 s t o r e %s t r u c t . treeNode ⇤ %u , %s t r u c t . treeNode ⇤ ⇤ %1

Listing 4.3: Original LLVM IR of the statement t->u = u.

1 / / t�>u = u ; transformed LLVM code
2 % aux1 = c a l l %s t r u c t . s tackRecord ⇤ @auxMakePointer 0(% s t r u c t . s tackRecord ⇤

gete lementptr inbounds ( [ 6 5 5 3 6 x %s t r u c t . s tackRecord ] ⇤ @heap part i t ion0 ,
i 3 2 0 , i 3 2 0 ) , i 3 2 %t )

3 %1 = gete lementptr inbounds %s t r u c t . s tackRecord ⇤ % aux1 , i 3 2 0 , i 3 2 0
4 s t o r e i 3 2 %u , i 3 2 ⇤ %1

Listing 4.4: Transformed LLVM IR (dereferencing in heap partition 0).

formation from the heap analyser that a parallelisation is legal and how the heap arrays

have to be partitioned. The heap partition information is passed to the code transforming

pass via LLVM metadata, additional information that can be attached to an LLVM instruc-

tion. The arrays representing the heap memory are partitioned according to the metadata

information. Dereferencing of heap-directed pointers is substituted using an auxiliary

pointer variable indexing the heap array. Listings 4.3 and 4.4 show an example for the

dereferencing t->u = u in heap partition 0. The auxiliary pointer variable in this case

is aux1. The calls to (de-) allocation functions must be customised similarly: the scope

of new/delete operations is restricted to its heap array partition and we instantiate an

allocator, including the free-list, for each partition.

The parallelisation analysis, if successful, has divided the loop iterations into P independent

groups, where P is the degree of parallelisation. Additionally, several loop iterations may

have been peeled o↵ by the analysis as it is the case in our motivating example described

above. Our source transformation removes the original loop and inserts two sections of

code: 1) The original loop body guarded by an if conditional with the loop condition rep-

resenting the iterations that have been unrolled during the analysis. 2) P loops of the same

type and with the same loop condition as the original one, each containing the fragment

of the loop body which accesses one of the independent groups. We must also ensure

that the cut-point insertion is reflected in this code transformation. In (4.4), we added the
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additional conjunction forcing sb = s01, which means that the code transformer must add

an assignment instruction to the new variable sb somewhere in the loop preamble or the

unrolled iteration. We obtain the information as to where to insert this instruction from the

set of instruction identifier labels above which is attached to each heaplet. From (4.4), we

can easily find the heaplet referenced by sb (in this case s01 7! [u : u02, c : c01, d : true, n : nil]).

We take the first identifier label from the label set attached to this heaplet and obtain the

LLVM instruction after which the assignment should be placed. The last step is to ex-

tract the pointer operand of this instruction and add metadata information that sb must

be assigned this value after the instruction. The bitcode instrumentation is responsible for

embedding the heap partition and cut-point insertion data in the LLVM metadata.

The LLVM IR of the input code is finally restructured in a way that exposes parallelism and

ensures the correct assignment of heap partitions to parallel on-chip memory banks. The

generated LLVM IR is then passed to a down-stream HLS tool as shown in Fig. 4.5. The

next section describes the evaluation of our memory partitioning and loop parallelisation

tool flow on four pointer-chasing benchmarks applications. It also give insights into the

analysis complexity and tool run-time.

4.4. Experiments

We test the tool flow in Fig. 4.5 using C++ implementations taken from real-world ap-

plications. We use Xilinx Vivado HLS 2014.4 as a back-end HLS tool and Xilinx Vivado

2014.4 for RTL synthesis. However, since our optimisations are at source code level, our tool

can be also used in combination with a di↵erent HLS tool. Our benchmark applications are:

Merger. The program maintains four linked lists whose nodes are sorted according to

a key. It repetitively reads four key-value pairs from its interface and performs a sorted

insertion in each list for each pair. After a constant number of pairs has been received,

it repeatedly deletes the head node of that list which contains the smallest key until all

102



CHAPTER 4. HEAP PARTITIONING AND PARALLELISATION

lists are empty. The output is a sorted sequence of all key-value pairs. A distinguishing

feature of this applications is that the loop under analysis contains a sub-loop. During each

symbolic execution of an outer loop iteration the proof engine requires a few inner itera-

tions to converge to a loop invariant for the inner sub-loop. We consider this benchmark a

representative example from the class of list processing programs.

Tree Deletion. This application performs a full traversal of a pointer-linked tree data

structure and deletes the visited tree nodes after some computation using the node data.

Filter. This is the motivating example in Section 4.1 which is taken from the direct imple-

mentation of the filtering algorithm for e�cient K-means clustering [48]. Our tool splits

the loop in Listing 4.1 and partitions the heap memory with degree P. The code fragment is

embedded in a larger program which includes tree build-up and centre processing to form

a complete clustering application. This example is interesting in that it is more compli-

cated than a usual toy example: loop iterations allocate and dispose centre sets, preceded

by a data-dependent conditional, which carry a heap dependence between some iterations.

Our analysis detects that there are no heap-carried dependencies between iterations which

access tree nodes without a parent-child relation.

Reflect Tree. The application traverses a binary tree in pre-order fashion and recursively

swaps the left and right child pointer of each node, thus producing a mirrored tree. It also

performs some computation at each node and updates the data fields of the tree nodes.

The target device is a Virtex 7 FPGA (Xilinx VC707 evaluation board, xc7vx485t↵g1761-2)

and all results are taken from placed and routed designs. We report resource utilisation

in LUTs, FFs, DSP slices and 36k-BRAMs. We also report the achieved clock speed (target

200 MHz) and the time required for task completion (latency) which we derive from the

achieved clock rate and the clock cycle count determined via simulations of the generated

RTL designs. The RTL test benches for the benchmarks are fed with application-specific in-
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Table 4.1.: Implementation results and comparison.
P: parallelisation degree; PF: peeling factor (number of initially unrolled iterations); S: speed-up over baseline

P PF LUT FF DSP BRAM Clock rate Latency S

Merger (4 ⇥ 2048 random input key-value pairs)
Base line (reference) 1 0 1644 1547 0 96 143 MHz 88.8 ms 1.00
Blind unrolling 4 0 1969 1957 0 96 141 MHz 90.4 ms 0.98
Autom. parallelisation (this work) 4 0 2012 1901 0 82.5 198 MHz 16.7 ms 5.31

Tree Deletion (16383 tree nodes)
Base line (reference) 1 0 3016 4139 9 515 193 MHz 9827.2 us 1.00
Blind unrolling 2 0 3818 5478 12 515 190 MHz 9798.4 us 1.00
Autom. parallelisation (this work) 2 1 6802 10508 27 515 192 MHz 5353.3 us 1.84

Filter (16384 3-dimensional data points, 32767 tree nodes, K = 128 clusters)
Base line (reference) 1 0 8387 4981 18 609.5 181 MHz 5390.6 us 1.00
Blind unrolling 2 0 9746 6832 36 609.5 179 MHz 5718.0 us 0.94
Autom. parallelisation (this work) 2 2 14197 12145 72 614.5 200 MHz 2860.3 us 1.88

Reflect Tree (16383 tree nodes)
Base line (reference) 1 0 1942 2576 12 291 200 MHz 3768.2 us 1.00
Blind unrolling 2 0 2191 2987 21 291 200 MHz 3809.4 us 0.99
Autom. parallelisation (this work) 2 1 4256 6472 36 291 200 MHz 2037.0 us 1.85

put data. For each test case, Table 4.1 shows the implementation results for three cases: The

baseline case shows the implementation if the tool only ensures synthesisability (syntactical

substitution of dynamic memory allocation and heap-directed pointers, no heap analy-

sis) without parallelisation. The second case shows the results of ‘blind’ loop unrolling.

Instead of using our source-to-source compiler, we use the standard Vivado directive for

partial loop unrolling here which instantiates P parallel loop kernels. We call this case

‘blind parallelisation’ because it is not guided by our heap analysis and no heap parti-

tioning is performed by Vivado HLS. The third row shows results if the tool flow uses

the heap analyser for memory partitioning and parallelisation using our source transfor-

mation (automatic parallelisation with degree P), an optimisation that cannot be done by

Vivado HLS itself as shown in the previous case and as explained in Chapter 2. The loop

peeling factor PF indicates the number of loop iterations that were peeled o↵ during the

cut-point insertion as described on Section 4.2.1. The speed-up S relates the latency of the

automatically parallelised benchmarks to that of the base line case.

Vivado HLS is unable to parallelise any of the benchmarks in the blind unrolling case,
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Table 4.2.: Comparison with hand-written HLS/RTL designs.
P: parallelisation degree; PF: peeling factor (number of initially unrolled iterations); S: speed-up over baseline

P LUT FF DSP BRAM Clock rate Latency S

Merger (4 ⇥ 2048 random input key-value pairs)
Baseline (reference) 1 1644 1547 0 96 143 MHz 88.8 ms 1.00
Autom. parallelisation (this work) 4 2012 1901 0 82.5 198 MHz 16.7 ms 5.31
Hand-written HLS (Chapter 2) 4 1392 1253 0 60 173 MHz 19.3 ms 4.59
Hand-written RTL (Chapter 2) 4 1462 1833 0 52 200 MHz 11.0 ms 8.08

Filter (16384 3-dim. data points, 32767 tree nodes, K = 128 clusters)
Baseline (reference) 1 8387 4981 18 609.5 181 MHz 5390.6 us 1.00
Autom. parallelisation (this work) 2 14197 12145 72 614.5 200 MHz 2860.3 us 1.88
Hand-written HLS (Chapter 2) 2 15046 13612 36 507 182 MHz 902.0 us 5.98
Hand-written RTL (Chapter 2) 2 10418 19008 40 448 200 MHz 270.5 us 19.93

i.e. without explicit heap partitioning. Including a directive for implementing dual-port

memories to increase the number of access ports did not have any influence on the schedul-

ing in our cases. Blind unrolling consumes more resources at the same execution time as

the baseline. On the other hand, our heap analysis detects the independence of the four

linked lists in the Merger benchmark and parallelises the application. The speed-up in

terms of cycle count is close to the maximum speed-up of P = 4 and the automatically

memory partitioned design achieves a higher clock rate than the baseline and blind un-

rolling case, resulting in a run-time advantage of 5.31⇥ over the base case. The analysis

also partitions the data structures of Filter, Tree Deletion and Reflect Tree which enables

successful parallelisation (speed-up S � 1.84 compared to the base case). As opposed to

the Merger benchmark, the tree-based applications require unrolling of one or two loop

iterations (PF) until disjointness of sub-structures can be determined (Section 4.2.1) which

explains the resource overhead compared to the base case (especially noticeable in DSP

slice consumption). All other tree-based benchmarks require one loop iteration to be peeled

o↵ before the parallelisation is successful.

For the benchmarks Merger and Filter, we include an additional case study by adding

two reference designs for comparison shown in Table 4.2: hand-optimised HLS designs

using Vivado HLS and hand-written RTL designs in VHDL. For Filter, these are the op-

timised HLS and RTL designs in Chapter 2. The manual HLS design of Merger achieves
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Table 4.3.: Tool execution time.

Fix-point
iterations

Average number of
disjunctive clauses

per iteration

Cut-point
insertion

Fix-point
calculation

Total
(analysis)

HLS + RTL
Implementation

Merger 2 1.0 1.6 s 1544.5 s 1546.1 s 300.0 s
Tree Deletion 3 3.3 2.2 s 4.0 s 6.2 s 543.1 s
Filter 7 10.3 23.5 s 322.1 s 345.6 s 1006.3 s
Reflect Tree 3 3.3 2.3s 4.2 s 6.5 s 353.6 s

a slightly lower cycle count, but only a slightly lower clock rate. This results in a faster

design for the automatically parallelised case. The manual RTL design has the lowest

cycle count and execution time. Comparing resources, clock frequency and cycle count for

Filter, we observe further improvements obtained from manual source code refactoring

(⇠ 2.5⇥ faster): in the hand-optimised HLS design, we manually flattened loop nests in

order to enable e�cient pipelining of the tree traversal loop (Section 2.4.2), an optimisation

beyond the scope of our automated transformation. This loop contains two sub-loops with

variable bounds and code at each loop-level. It is not a perfectly or semi-perfectly nested

loop, which prevents the application of the Vivado HLS loop flattening directive. With-

out loop flattening, only the inner loops can be pipelined, which results in less speed-up

compared to the manually flattened loop. The manual HLS design remains more than 3⇥
slower than the RTL implementation because the tree traversal must be distributed over a

producer and a (flattened) consumer loop, while it is implemented in a single pipeline in

the RTL design (Section 2.3.2). Furthermore, the use of bit width customisations of data

items and pointers in the manual designs, which reduces the memory consumption, is

beyond the scope of this work.

We perform an evaluation of the tool execution time on a machine with an Intel i7-3770

processor (3.40GHz) and 16 GB memory. The heap analyser consumes the majority of the

overall execution time, which varies significantly across our benchmarks. Table 4.3 shows

the analysis time broken down into cut-point insertion and fix-point calculation. The latter

dominates the run-time and is very sensitive to the number of disjunctive clauses in our

state formulae that arise from branching instructions in the program. Columns 2 and 3
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Figure 4.6.: Analysis complexity for Filter. Left: number of disjunctive clauses (total and
removed). Right: tool execution time per fix-point iteration.

show the number of fix-point iterations required for a disjointness proof and the average

number of disjunctive clauses per iteration, respectively. The analysis time for Tree Dele-

tion and Reflect Tree is short because a fix-point is reached quickly. Merger does not need

more fix-point iterations, but a single symbolic execution of the loop body is slow because

each symbolic execution of an outer loop iteration must converge to a fix-point for the

inner loop. Filter requires 7 fix-point iterations with an average number 10.3 disjunctive

clauses per iteration. Fig. 4.6 (left) shows the total (net) number of clauses per iteration

and the number of removed clauses due to merging for Filter. The right figure shows the

execution time per fix-point iteration.

4.5. Performance and Robustness of the Heap Analysis

The heap analysis is the core element of our framework. We discuss its performance and

its relation to previous work, and identify weaknesses which motivate future research. An

advantage of our technique is that it can, beyond straight-line code and deterministic static

control parts such as unrollable for-loops, handle while-loops enclosing data-dependent

conditionals, and with data-dependent loop condition and unknown iterations count.

This feature distinguishes our analysis from the polyhedral model which is based on a

full enumeration of the iteration space at compile time. On the other hand, this feature

requires us to describe data structures of unknown size to ensure convergence of the fix-
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...
as bs

...a a a b b b

Figure 4.7.: Punctured linked list.

point calculation. We achieve this with recursive predicates in separation logic discussed

in Sections 3.5.1 and 4.2.2, which allow us to describe pointer-linked data structures with

a compact formula. Describing binary trees in classical logic is much more long-winded.

For example, if one was to describe the tree predicate from Def. 3.3

tree(E) () ( E = nil ^ emp) _ (E 7! [l : x01, r : y01] ⇤ tree(x01) ⇤ tree(y01) )

in classical logic, one must explicitly encode the sharing patterns by imposing conditions

on which nodes are reachable from each node:

tree0(E) () ( E = nil) _ ([E] = (x01, y
0
1) ^ tree0(x1) ^ tree0(y01) ^

E < reachable(x01) [ reachable(y01) ^

reachable(x01) \ reachable(y01) = ; )

where

reachable(E) =

8>>>>><>>>>>:

{} if E = nil

{E} [ reachable(x01) [ reachable(y01) if [E] = (x01, y
0
1).

In contrast to a reachability analysis [104], the separation logic-based heap footprint analysis

can also partition cyclic data structures, such as non-nil-terminated list segments or dou-

bly linked lists because it is based on symbolic execution which mimics the actual program

execution and heap accesses. For example, for a program accessing a linked list punctured

by two cut-points sa and sb as in Fig. 4.7, our analysis determines the disjointness of the

list segments labelled a and b, which cannot be determined with a reachability analysis

as all nodes reachable from sb are also reachable from sa. The strength of Raza’s labelled
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symbolic execution [95], which our analysis builds on, is thus the detection of the actually

accessed heap portions, not the portions that may possibly be accessed.

While Raza’s technique is excellent for proving the independence (with respect to heap-

carried data dependencies) between program statements, our analysis is able to reveal

more parallelisation and partitioning opportunities. This is because it examines the loop

iteration space, peels o↵ a finite number of loop iterations until disjointness can be proven,

and generates this proof for the remaining subset of loop iterations. This parallelisation

opportunity is not visible to Raza’s technique which does not apply this type of combined

loop analysis and code transformation.

Folding singleton heaplets into recursive predicates is essential for the successful ter-

mination of the loop analysis. For example, our analysis automatically folds

s 7! [n : s01] ⇤ s01 7! [n : s00] ⇤ s00 7! [n : nil]

into ls(s, nil). The recursive predicates are defined in logic rules used by the built-in theo-

rem prover which automatically searches for applicable rules. We define a set of predicates

for common data structures such as trees, lists, lists with additional pointers to singleton

heaplets and sub-trees. These allow us to cover a large range of pointer-based programs.

However, we may find applications using more exotic structures for which no folding rule

in our current set applies. This limitation can be removed by integrating algorithms for au-

tomatic inference of recursive predicates, such as [91], in our tool. The decision under what

conditions the folding is triggered builds on a heuristic [99] which ‘gobbles up’ heaplets

by recursive predicates if their pointers are primed variables which do not appear in any

other part of the formula except of the predicates involved in the folding. The heuristic

works well in practice and we are not aware of a theorem prover implementing a more

robust technique. However, in general, we cannot rule out situations where the folding

fails due to the incompleteness of the heuristic. A code example where this is the case in
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given in [99]. In cases where the fix-point calculation does not converge after a pre-defined

number of iterations, our tool reports a failed proof and continues the implementation

with automatic parallelisation and memory partitioning.

Missing a parallelisation opportunity due to incompleteness also applies for Algorithm 6

itself which uses a heuristic to distinguish private from shared heap regions. Our analysis

may thus indicate sharing of a heaplet which in reality is private to a particular code sec-

tion. In this case, the current analysis aborts. However, in the next chapter, we include the

possibility of sharing in our analysis such that this does not result an abortion, but causes

the tool to simply instantiate an unnecessary coherency mechanism in this case.

The scalability of the analysis is determined by the fix-point calculation which performs

repeated symbolic executions of the loop body until convergence. Non-deterministic

branching (e.g. data dependent conditionals) in the loop body results in several disjunctive

clauses describing the loop state as all control flow paths must be analysed. In the worst

case the number of these clauses can grow exponentially with the number of fix-point

iterations. However, we do not see an exponential growth in our case studies as shown in

Fig. 4.6 because our analysis merges equivalent clauses at the end of each iteration.

4.6. Summary

This chapter presents a tool flow that automatically parallelises loops in heap-manipulating

C/C++ programs and distributes heap-allocated, pointer-linked data structures over sep-

arate banks of on-chip block memory in order to leverage the memory-level parallelism in

FPGAs. The core of our tool flow is the heap analyser for proving communication-free par-

allelism in loops. We develop and implement an algorithm for the disjointness/dependence

analysis which draws on several existing techniques developed in the separation logic

framework: symbolic execution, heap footprint analysis and loop invariant synthesis. The

outcome of the analysis is information about the legality of parallelisation and an assign-
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ment of heaplets to on-chip memory partitions. The analysis is accompanied by automated

code transformations which ensure the synthesisability of the pointer-manipulating pro-

gram by standard HLS tools, and implement the parallelisation and memory partitioning.

Our implementation takes LLVM IR as input, which is generated from a C/C++ program

using readily available third-party tools, and produces modified LLVM IR. This output

can be used by o↵-the-shelf LLVM-based HLS tools to generate a hardware description.

We demonstrate the successful parallelisation and memory partitioning by our tool flow

using four real-life applications and using Xilinx Vivado HLS as an exemplary back-end

tool. The HLS implementations parallelised by our tool achieve the expected acceleration

by a factor of 1.8⇥ to 5.3⇥ in terms of execution time compared to the non-parallelised

implementations. The work discussed above was first published in [37] and [34].

The CAD flow described in this chapter performs code optimisations that target the parti-

tioning of on-chip memory resources. However, applications with large memory footprints

quickly exceed the on-chip memory capacity and therefore require access to external mem-

ory. O↵-chip memory access can substantially slow down an FPGA accelerator due to

bandwidth limitations. Bu↵ering frequently reused data on chip is a common approach

to address this problem and the optimisation of the cache architecture introduces yet an-

other complex design space. The next chapter extends the automatic parallelisation and

memory space partitioning technique above to an HLS design aid that generates parallel

application-specific multi-cache architectures, hence enabling e�cient hardware imple-

mentations from memory-intensive pointer-based C/C++ programs.

Apart from the focus on on-chip memories, the above analysis successfully optimises

an implementation only if the accessed address space can be fully partitioned into disjoint

regions. This excludes applications that inherently share data between parallel functional

units. The next chapter also addresses this limitation in that the extended analysis decides

whether the parallelisation is legal in the presence of shared resources and guides source

code transformations to automatically insert the required synchronisation primitives.
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The extraction of parallelism is crucial for achieving good quality of results. Compu-

tational parallelism also requires that the memory system is not a sequential bottleneck

to performance. The distributed memory architecture in FPGAs can provide enormous

memory bandwidth if the program data can be partitioned and distributed over multiple

on-chip memory banks. Parallel on-chip memory capacity remains a scarce resource and

many FPGA applications that process large data sets require access to a large o↵-chip mem-

ory. The bandwidth limitations of external memory can significantly slow down an FPGA

accelerator and potentially eliminate the gain of parallelisation. An application-specific

optimisation of the on-chip/o↵-chip memory architecture is thus crucial for mapping a

program to an e�cient FPGA implementation.

Caching frequently reused data is a common approach to reduce the number of expensive

accesses to an external memory. FPGAs allow the implementor to tailor such a memory

interface according to the requirements of the application. An application-specific opti-

misation of this architecture introduces yet another complex design space and remains a

complex task for a developer. Furthermore, automatic cache design in an HLS context

requires the extraction of application-specific properties from program descriptions and

remains foreign to most HLS flows. The work presented in this chapter seeks to bridge this

gap. We present an HLS design aid that inserts multiple on-chip caches into the interface

to an o↵-chip memory, which results in an application-specific high-performance memory

hierarchy. Our technique leverages recent memory abstractions [105, 106], which build an

on-chip/o↵-chip memory hierarchy underneath a uniform interface and which we refer to
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Figure 5.1.: Summary of the extended tool flow presented in this chapter.

as scratchpads (SPs) in this chapter. Each single SP contains an optional on-chip cache and

automatically ensures coherency between the cache contents and data in o↵-chip memory

for an arbitrary memory access pattern [105]. SPs also provide an optional mechanism

to maintain coherency between the on-chip caches in multiple, parallel SPs [106]. In this

work, we leverage our program analysis to determine whether or not and for which caches

an inter-cache coherency mechanism is required in the generated multi-cache architecture.

In the following discussion, we refer to caches which require such a coherency network as

coherent caches.

This work builds on the static program analysis presented in the previous chapter that

extracts memory access information. The applicability of the baseline technique is limited

to cases where the on-chip memory capacity is su�cient and the accessed memory space

can be split into independent, private partitions. Here, we extend it to shared resources

and apply it to the synthesis of e�cient interfaces to an o↵-chip memory. To the best

of our knowledge, this is the first application of a separation logic-based analysis to an

automated optimisation of the on-chip/o↵-chip memory hierarchy for FPGA accelerators.

Fig. 5.1 shows the high-level overview of the extended tool flow described in this chapter.

The contributions made in this chapter are:

• In addition to the identification of disjoint heap regions, we extend the baseline

analysis in Chapter 4 by an identification of heaplets that would be shared by the

parallel loop kernels after parallelisation by the source-to-source translator. Our

analysis inserts additional synchronisation primitives for program parts that access
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shared resources (Section 5.2).

• Even if coherency is ensured, updates to the shared resource may happen in a dif-

ferent order after parallelisation compared to the sequential program. This chapter

presents a commutativity analysis for the shared heap update in order to prove that

the parallelisation is semantics-preserving (Section 5.2.2).

• The framework targets FPGA accelerators with access to an o↵-chip memory. The dis-

jointness and sharing information provided by our analyses is used to break the heap

(residing in o↵-chip memory by default) into heaplets, to generate an application-

specific parallel multi-cache architecture containing on-chip caches and (if needed)

coherency mechanisms; we synthesise parallel private scratchpads for disjoint heap

regions and (inherently more expensive) coherent parallel scratchpads for shared

regions (Section 5.3).

• We extend the cache compilation framework by a dynamic (input data dependent)

program analysis to implement an automated size scaling of private caches using

spare on-chip memory resources. We include a cache hit rate estimator based on the

memory reference trace of the program under test and find the best size distribution

across multiple caches for a user-provided memory access pattern of a particular

application (Section 5.4).

• We demonstrate the e↵ectiveness of our technique using three applications as test

cases which dynamically allocate memory and traverse and update heap-allocated

data structures. We use Xilinx Vivado HLS as an exemplary back-end HLS tool in

our case studies. We use the open-source LEAP infrastructure [40] and implement

our test cases on a Virtex 7 FPGA connected to a DDR3 memory (Section 5.5).

5.1. Motivating Example

This section reviews a motivating example in the context of the previous chapter and ex-

plains how the extensions of the baseline analysis are applied to generate a multi-cache
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architecture for both private and shared heap regions. Listing 5.1 shows a modified ver-

sion of the tree-based K-means clustering implementation in the previous chapter. The

while-loop in filter2 accesses four heap-allocated data structures: the binary tree (type

TR), the sets of candidate centres (type CS), the stack (type ST) and the centroid informa-

tion (type CI). Tree nodes, centre sets and stack record are the same data structures as in

Chapter 4 (we abbreviate their type identifiers for ease of illustration here). The tree has

been built up from the data set to be clustered. The centre sets are intermediate solutions

propagated through the call graph. The stack data structure stores the pointers to left and

right sub-trees and to the centre sets. The auxiliary functions push (Lines 5, 16 and 17)

and pop (Line 8) are equivalent to the previous example. The di↵erence to Chapter 4 is the

centroid information. If the data-dependent conditional (Line 15) evaluates to false (dead

end of the tree traversal) the centroid data structure is updated (Lines 22 and 23) which

contains the information from which the final clustering result is calculated. As we shall

see below, adding this code fragment results in a shared resource after parallelisation of

the application.

All data structures accessed by this program are created at run-time using dynamic mem-

ory allocation. Allocating memory at run-time results in e�cient memory usage if the

average-case amount of required memory is much smaller than the worst-case amount.

An e�cient memory architecture for this program provides fast access to this small amount

of memory space and, at the same time, supports worst-case allocation by providing a large

memory as a backup. Hence, our approach is to place, by default, all heap-allocated data

in a large o↵-chip memory connected to the FPGA accelerator and to insert scratchpads

including on-chip caches which mirror parts of the o↵-chip data and provide fast data

access. We describe the extensions of our baseline analysis below.

5.1.1. Memory Partitioning and Parallelisation

Fig. 5.2 shows an example of the data structures allocated in the heap after executing two

while-loop iterations. The data structures are grouped according to their types. The loop is
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1 //main kernel function

2 void filter2(TR *root, CS cinit, CI *z) {

3 CS* c0 = new CS;

4 *c0 = cinit;

5 ST *s = push(root, c0, true, NULL);

6 while (s != NULL) {

7 TR *u; CS *c; bool d;

8 s = pop(&u, &c, &d, s);

9 CS cs = *c;

10 if (d) {

11 delete c;

12 }

13 CS *cnew = new CS;

14 *cnew = subfunction1(cs);

15 if (u->left!=NULL) && (u->right!=NULL) && (subfunction2(cs

))) {

16 s = push(u->left, cnew, true, s);

17 s = push(u->right, cnew, false, s);

18 } else {

19 delete cnew;

20 // update centroid information

21 CI w = u->wgtCent;

22 CI wprev = z->wgtCent;

23 z->wgtCent = wprev+ w;

24 }

25 delete u;

26 }

27 }

28

29 //auxiliary function push (create new entry)

30 inline ST* push(TR *u, CS *c, bool d, ST *s){

31 ST *t = new ST;

32 t->u=u; t->c=c; t->d=d; t->n=s;

33 return t;

34 }

35

36 //auxiliary function pop (delete list head)

37 inline ST* pop(TR **u, CS **c, bool *d, ST *s){

38 *u=s->u; *c=s->c; *d=s->d; ST *t=s->n;

39 delete s;

40 return t;

41 }

Listing 5.1: C-like pseudo code of the K-means clustering kernel.
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Figure 5.2.: Snapshot of the pointer-linked dynamic data structures accessed by the loop
in Listing 5.1.

split into parallel sub-loops as shown in Listing 5.2 (two in this example). If we ignore the

centroid data structure (type CI) in the heap layout in Fig. 5.2 for a moment, the baseline

method in Chapter 4 can prove that the pointers dereferenced in any iteration of a sub-

loop never refer to the data structures used by the other loop. Hence, we call these loop

kernels ‘communication free’ with respect to each other, which satisfies the independence

condition that two parts of a program can operate in parallel if they access di↵erent data.

The analysis partitions the remaining tree data structure (dark grey nodes, type TR) into

two sub-trees labelled with {a} and {b}. It splits the linked list (type ST) into the uppermost

node and the nodes below, and the pool of centre sets (type CS) is partitioned accordingly.

The generation of the multi-cache architecture in this chapter uses the heap partitioning

information from the baseline analysis. Each of the parallel sub-loops obtains its own

interfaces to o↵-chip memory and the fact that the memory regions can be proven to be

non-overlapping allows our setup to instantiate private SPs for each partition without the

need to ensure coherency between them, greatly reducing hardware implementation cost:

private caches are faster and cheaper (in terms of FPGA resources) than coherent memory

interfaces as ensuring consistency between parallel units with a coherent cache protocol

and synchronisation primitives is not required.
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1 //main kernel function

2 void filter2(TR *root, CS cinit, CI *z) {

3

4 ...preamble (pointers access partitions a and b)
5

6 while (s != NULL && s != sb) {

7 //parallel loop kernel a
8 ... access private scratchpad for CS, partition a
9 ... access private scratchpad for ST, partition a

10 ... access private scratchpad for TR, partition a
11 acquireLock();

12 ... access coherent scratchpad for CI, partition a
13 releaseLock();

14 }

15

16 s = sb;

17 while (s != NULL) {
18 //parallel loop kernel b
19 ... access private scratchpad for CS, partition b
20 ... access private scratchpad for ST, partition b
21 ... access private scratchpad for TR, partition b
22 acquireLock();

23 ... access coherent scratchpad for CI, partition b
24 releaseLock();

25 }

26 }

Listing 5.2: Transformed program from Listing 5.1.

5.1.2. Parallel Access to Shared Resources

Our baseline analysis in the previous chapter cannot handle situations including the shared

centroid information in Fig. 5.2. Our extended analysis marks it as a shared resource,

indicated by the label {a, b}, as both sub-loops would update it after parallelisation. After

the detection of a shared heap region, our framework instantiates a coherent memory

interface [106] to this region in each of the sub-loops. The coherent interface consists of two

parts: SPs with caches and a coherence mechanism that ensures data coherency between

them, and locks which enable atomic updates of the shared resource in the presence

of multiple accessors. The detection of a shared resource triggers a second analysis as

sharing invalidates the independence assumption that parallel units access di↵erent data.
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Assuming that coherency is ensured between parallel units, it remains to prove that the

modified order in which the shared resource is updated after parallelisation does not alter

the program semantics. The centroid information is updated in Line 23 of Listing 5.1:

z! wgtCent = wprev + w;

where w is the contribution of the tree nodes. In the original, sequential program, z receives

the contributions of all nodes in the right sub-tree (labelled with a) before it receives the

first contribution from the left sub-tree (labelled with b in Fig. 5.2). However, in the par-

allelised version z may be updated with data from left and right sub-tree in an arbitrarily

interleaved fashion. Even if atomicity of the update is ensured, we must also ensure that

this new update order is legal. In this example, the parallelisation is legal because of the

commutativity and associativity of the addition1. In general, we address this question with

a commutativity analysis of the update function.

Listing 5.2 shows the final result of a source code transformation based on the result

of all analyses above. The transformed source code, when run through a back-end HLS

tool and RTL implementation, results in a custom configuration of multiple private/co-

herent scratchpads with a custom degree of parallelism. The on-chip memory blocks in

the FPGA are aggregated accordingly in order to construct the application-specific parallel

caching scheme.

5.1.3. Custom Cache Sizing

The above identification of disjoint and shared heap regions and the legality of paralleli-

sation are based on an extension of the static program analysis in Chapter 4. This analysis

provides information about the type of the inserted caches, but no information about their

size. Hence, all caches inserted by the tool flow above have the same size by default. How-

ever, we synthesise a cache for each data structure partition, so the access patterns to these

1We focus on integer or fixed-point systems and ignore non-associativity caused by floating-point represen-
tations.
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memory regions may be very di↵erent: For example, the stack data structure in Listing 5.1

is usually small compared to the tree structure and has high access locality at the head of

the stack. In this case, using the available on-chip memory to build a small cache for the

stack and a large cache for the tree is more beneficial than both caches having the same

size. In addition to the static analysis above, we extend our tool flow by a profiling-based

program analysis in Section 5.4 that aims to construct custom-sized caches to maximise the

aggregate hit rate of the multi-cache system. In contract to the static counterpart, we refer

to this type of analysis as dynamic analysis.

5.2. Extended Static Program Analysis

This section describes the extension of the baseline program analyses enabling source code

transformations that turn a sequential heap-manipulating program into a parallelised HLS

implementation with an application-specific o↵-chip memory interface. The baseline anal-

ysis for identifying private heap regions and memory partitioning is the starting point for

all subsequent analyses related to parallelisation, shared resources and commutativity of

shared resource updates. Loop parallelisation and its follow-up analyses are only triggered

if (at least parts of) the heap-allocated data structures accessed by the loop can be split into

P partitions, where P is the desired degree of parallelism.

The inner repeat-until-loop in Algorithm 7 corresponds to the baseline analysis in Chap-

ter 4. It starts with a symbolic execution of the loop preamble and a finite number of the

first loop iterations (function SymbExeLoopBody). In each step, it explores the separation

logic formula describing the pre-state of the loop (⇧ ^ ⌃{FT}), i.e. the program state before

executing the loop body. The algorithm inserts cut-points into the loop pre-state formulae

(function CutpInsert) while it peels o↵ loop iterations so as to find a valid cut-point as-

signment. A valid cut-point assignment is found if the built-in proof engine, performing

the fix-point calculation for the loop-under-analysis (function FixpCalc) proves that the

initial partitioning of the heap-allocated data structures is maintained for all subsequent

120



CHAPTER 5. CUSTOM MULTI-CACHE ARCHITECTURES

Algorithm 7 Detecting Private and Shared Resources.
1: Input:
2: loop body specification (code)
3: initial state formula (⇧ ^ ⌃{FT})initial (from symbolic execution of loop preamble)
4: parallelisation hypothesis P
5: Output:
6: number of initial unrollings required (it)
7: label mapping: program statement identifiers to heap partitions (m)
8: set of statement sets accessing shared heaplets (StmtS) from which private/shared

predicates of memory interfaces can be derived
9: Variables:

10: it . Iteration counter (number of iterations to be unrolled)
11: C . set of cut-points
12: Cshared . set of cut-points referencing shared heaplets
13: Scutpoints . set of cut-point states
14: ⇧ ^ ⌃{FT} . state formula in separation logic (attached footprint label set FT)
15: ⇧ ^ ⌃{CS} . state formula in separation logic (attached cut-point state set CS)
16: m . label mapping m: FT! CS
17: StmtS . set of statement sets accessing shared heaplets

18: function heap-analysis
19: Cshared  ;
20: repeat
21: it 0
22: C ;
23: ⇧ ^ ⌃{FT}  (⇧ ^ ⌃{FT})initial

24: StmtsS ;
25: success false
26: repeat
27: while not checkIfValidCutpInsertion(⇧ ^ ⌃{FT},C) do
28: ⇧ ^ ⌃{FT}  SymbExec(⇧ ^ ⌃{FT}, it) . peel o↵ it iterations
29: ⇧ ^ ⌃{FT},C CutpInsert(⇧ ^ ⌃{FT},P,Cshared) . insert P cut-points
30: it it + 1
31: end while
32: Scutpoints  AssignCPStates(C) . assign states to cut-points
33: ⇧ ^ ⌃{CS}, success, Stmtsshared  FixpCalc(⇧ ^ ⌃,C, Scutpoints,Cshared)
34: m GetLabelMapping(⇧ ^ ⌃{CS},⇧ ^ ⌃{FT}) . label mapping
35: StmtsS StmtsS [ {Stmtsshared} . collect shared accesses
36: until success or it � Lmax
37: if it = Lmax then
38: Cshared  ExtrctCutp( argmin

Stmts2StmtsS
|Stmts|)

39: end if
40: until success
41: return StmtsS, it, m
42: end function
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loop iterations.

The proof of loop-invariant resource separation is generated by assigning a state to each

inserted cut-point (function AssignCPStates). The fix-point calculation assigns footprint

labels to the accessed heaplets according to the current cut-point state, which changes

once a heaplet referenced by a di↵erent cut-point is accessed during the symbolic execu-

tion. Complete partitioning of the heap accessed by the loop-under-test is proven by the

absence of non-singleton label sets attached to the heaplets in the state formulae. If we

ignore the centroid information in the motivating example, starting from the pre-state in

Fig. 5.2 and with a second cut-point sb (in addition to s) referencing the uppermost stack

record in Fig. 5.2, the proof of complete separability is generated by our baseline analysis,

a prerequisite for parallelisation.

5.2.1. Detecting Private and Shared Resources

The baseline analysis is aborted reporting a failed proof after a fixed parameter of Lmax

unrollings if the program state cannot be completely partitioned. Here, we relax the con-

straint that the inherent parallelism of the application needs to be communication-free.

Algorithm 7 shows the extended analysis to identify disjoint and shared resources. If we

include the centroid information in our motivating example and run the disjointness anal-

ysis, the proof engine always finds a non-singleton label set attached to it and never reports

a valid proof. Our goal is to mark this heaplet as a shared resource. The shared resource

analysis requires two extensions of the baseline analysis: 1) identifying shared heaplets

and 2), once marked as shared, re-running the cut-point insertion and proof-engine invo-

cations while excluding them from the search for separable heap regions.

In the first phase, we turn a failed proof of complete separability into the detection of

shared resources. We run the cut-point insertion and fix-point calculation with the objec-

tive of splitting the heap into P partitions, as shown in the inner repeat-until-loop. After

peeling o↵ the first loop iteration of the motivating example, the function FixpCalc termi-
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nates unsuccessfully because it finds non-singleton label sets attached to a centre set and

the centroid information. After unrolling two iterations, the sharing of a centre set disap-

pears and the centroid information remains as the only shared resource. We use a heuristic

approach to filter shared resources by declaring all heaplets having a non-singleton label

set after Lmax unrollings as shared. The fix-point calculation is modified in that whenever

it detects sharing on a heaplet, it collects the set of program statements that accessed the

shared heaplet (each statement in the control flow graph has a unique identifier). During

the course of the alternating iteration unrolling, cut-point insertion and fix-point calcula-

tion, the analysis builds a set of statement sets accessing shared heaplets (StmtsS).

After termination of the inner repeat-until-loop, the analysis is reset. From StmtsS,

we pick the set Stmts containing the fewest statements accessing shared resources, from

which the function ExtrctCutp extracts all cut-points mentioned in at least one of these

program statements (Cshared). The second phase begins by relaunching the analysis. We

pass the set Cshared to the modified function CutpInsert which excludes these cut-points

during the search for cut-points in the loop pre-state. Similarly during the fix-point cal-

culation we prevent the analysis from adding a partition label to a heaplet if the current

program statement has been marked as excluded. Finally, we obtain a proof of separability

for the tree, the stack and the pool of centre sets, and the centroid heaplet is marked as a

shared resource. The interface to the shared heap region residing in o↵-chip memory is

then supported by a coherency protocol. The corresponding program statements accessing

the shared resource are in Lines 22 and 23. Our analysis extracts these statements and the

source code transformation inserts acquireLock and releaseLock commands before and

after the critical statements as shown in Listing 5.2 in order to ensure atomic updates of

the shared heap region.

5.2.2. Commutativity Analysis

Parallelisation in the presence of shared resources requires a second analysis step after

detection of a shared heap region. We must verify that, after parallelisation, the program
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semantics are not altered as a results of the order in which the updates of the shared

resource are made by the parallel version being altered. For example, during the execution

of the original (unparallelised) loop in Listing 5.1, the shared centroid information receives

all contributions from the right sub-tree before it receives any contribution from the left

sub-tree, while it may be updated with data from left and right sub-tree in an arbitrarily

interleaved fashion in the parallelised version. Enforcing the original order with barrier

synchronisation means re-sequentialising the parallelised implementation and is not a

viable solution. Instead we want to determine whether the modified order of state updates

is legal. In the following walk-through, for ease of explanation, we define the function F

which reads and writes the shared state (Lines 22 and 23 in Listing 5.1):

Definition 5.1 (Update function).

function F(w)

wprev = z! wgtCent;

z! wgtCent = wprev + w;

end function

A commutativity analysis was proposed by Rinard and Diniz [107] and our approach builds

on the same basic idea: we say two operations on the program state are commutable if

their execution in sequence results in the same program state regardless of their execution

order. In our case, F is commutable if 8w1,w2, F(w1); F(w2) results in the same program

state as F(w2); F(w1). From the symbolic execution and detection of the shared resources as

above, we extract the pre- and post-conditions on the program state:

{w = w00 ^ z 7! [wgtCent : w01]} (5.1)

F

{w = w00 ^ w02 = w01 + w00 ^ z 7! [wgtCent : w02]}

The extraction phase brings the pre- and post-specification of F into a canonical form⇧^⌃,
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where⇧ are the pure formulae and ⌃ are the spatial formulae referring to the shared heap

resource. For example, the built-in symbolic execution engine ensures that arithmetic

operations in the state formulae appear only in the pure part by creating a fresh primed

variable w02. We test whether F is commutable by symbolically executing two sequences of

two calls to F:

w = w00,1; F(w); w = w00,2; F(w); w = w00,3; (5.2)

w = w00,2; F(w); w = w00,1; F(w); w = w00,3; (5.3)

Note the permuted assignment of symbolic values to w in (5.3). In order to show that F is

commutable, we must prove that the post-states of the sequences in (5.2) and (5.3) describe

the same program state. Their post-state formulae are:

w = w00,3 ^ w03 = w01 + w00,1 + w00,2 ^ z 7! [wgtCent : w03] (5.4)

w = w00,3 ^ w04 = w01 + w00,2 + w00,1 ^ z 7! [wgtCent : w04] (5.5)

The updated shared resource in (5.4) and (5.5) is described by z 7! [wgtCent : w03] and

z 7! [wgtCent : w04], respectively. We want to prove that these predicates describe the same

state. We first ask a separation logic theorem prover whether they match which recognises

their equality in shape and creates a new proof obligation:

w03 = w04 (5.6)

Next, we combine the verification condition (5.6) with the remaining pure parts of the

formulae and aim to prove:

8w00,2,w
0
0,1. (5.7)

w = w00,3 ^ w03 = w01 + w00,1 + w00,2 ^

w = w00,3 ^ w04 = w01 + w00,2 + w00,1 ) (w03 = w04)

In the actual verification step, we use satisfiability modulo theories (SMT) solving [108] to
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decide (5.7). However, an SMT solver cannot deal with the universal quantification (8), so

we rephrase (5.7) by negating the verification condition:

9w00,2,w
0
0,1. (5.8)

w = w00,3 ^ w03 = w01 + w00,1 + w00,2 ^

w = w00,3 ^ w04 = w01 + w00,2 + w00,1 ^ (w03 , w04)

The solver returns one of three possible results: 1) If (5.8) is satisfiable, we can find an

assignment to the input variables w00,2,w
0
0,1 of F that makes the program states after execut-

ing both sequences di↵erent: F is not commutable. 2) If (5.8) is not satisfiable, there is no

such assignment: F is commutable. 3) The solver may not be able to decide the question in

which case we conservatively assume that F is not commutable. For the running example

and with the theory of linear arithmetic of integers it decides that F is commutable. Com-

mutativity has been shown to be an undecidable problem in general [109]. However, it can

still be shown for many cases that arise in practice.

The next section describes our compilation flow that uses the information provided by

the above program analyses to generate application-specific multi-cache architectures.

5.3. Code Generation

The tool flow implementation of the multi-cache synthesis consists of three main parts:

1) The analysis extension builds on the baseline heap analyser from Chapter 4. It also

interfaces the Z3 SMT solver [108]. 2) The modified source-to-source translator builds

on the baseline infrastructure which implements the loop parallelisation and pointer ac-

cess transformations. The code generation now includes directives for instructing Vivado

HLS to generate bus interfaces for memory access. 3) We leverage the open-source LEAP

(Latency-insensitive Environment for Application Programming) framework [40] to em-

bed the C/C++-based HLS kernels in an environment that provides access to a physical
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Figure 5.3.: Parallelised HLS implementation of the filtering algorithm with a hybrid cache
architecture.

FPGA device and memory.

Like an operating system, LEAP provides a unified layer of abstraction on top of device-

specific drivers that interface the underlying FPGA device, on-board memory and the host

system into which an FPGA card is plugged. In particular, our setup uses LEAP’s scratch-

pads (SPs), a memory interface abstraction for FPGA applications. SPs provide a simple

read-request, read-response and write memory interface to the connected application. In-

ternally, LEAP scratchpads instantiate a memory hierarchy: an optional on-chip cache,

board-level o↵-chip memory and finally the main memory of the attached host system as

shown in Fig. 5.3. SPs without on-chip caches forward all requests to o↵-chip memory

which results in longer response times. The same applies for cache misses. Evicted items

are automatically flushed to the next memory level. The framework provides two types of

SPs: 1) Private scratchpads [105] are instantiated when memory spaces are known to be dis-

joint from all regions accessed by other memory interfaces. 2) If several memory interfaces

refer to a shared memory region we instantiate coherent scratchpads [106]. The latter fea-
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1 requestLock(access_critical_region0);

2 waitForLock(); //stalls until lock has been acquired

3 ...issueMemoryRequest //set memory fence

4 releaseLock(access_critical_region0);

Listing 5.3: Lock-synchronised shared memory access.

ture consists of distributed caches backed by a coherence protocol. Multiple coherent SPs

appear as independent interfaces to the application, while they are internally connected

via a ring network that ensures inter-cache coherency. The shared memory abstraction by

coherent scratchpads hides the internals of the coherency mechanism. Coherent SPs are

more expensive (in terms of FPGA resources) and slower (in terms of response time) than

their private counterparts.

The source-to-source transformation replaces heap memory with arrays located in o↵-

chip memory by default (a portion of them then resides on-chip via caches) and each

heap access becomes an access to the external memory bus. The translator turns pointer

dereferencing into array-based bus accesses and instantiates a memory interface for each

data structure type and each of the P heap partitions (private and shared). The extended

heap analyser provides information on whether the memory bus points to a private or a

shared heap region. We insert a generic Verilog wrapper for each interface which acts as

a bridge between Vivado’s native bus protocol and the LEAP memory interface. Vivado’s

scheduler ensures that, when the HLS kernel issues a memory request, it stalls execution

until the memory request has been serviced by the SP.

Fig. 5.3 shows the integration of our running example after heap partitioning and par-

allelisation with P = 2 into the LEAP framework and memory hierarchy. Each loop kernel

(we omit the preamble here) has an interface to the memory system for each type of heap-

allocated data-structure: centre sets (CS), stack records (ST), tree nodes (TR) and centroid

information (CI). An additional coherency network is instantiated for the CI ports (shared

memory). For shared heap regions, the source translator inserts synchronisation signals
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in order to ensure fine-grain atomic updates to the shared heap cell. Listing 5.3 shows

an example. The pass-by-reference argument access critical region0 translates into a

Boolean signal in the generated RTL code and triggers lock acquisition and release. The

lock service provided by LEAP ensures that no access to heap region 0 is granted before

the lock is acquired (only one requestor can own the lock). The memory fence instruction

ensures that the memory transaction has been completed before releasing the lock.

The on-chip caches of the private and coherent scratchpads are direct-mapped with write-

back policy. The presence of a coherency mechanism is the only variable parameter in our

cache architecture implementation above. In particular, we fixed the cache size to 1 kB

with 64 bit line size by default. The next section describes an extension of the work above,

which replaces the default cache sizing by variable, custom cache sizing.

5.4. Custom Cache Sizing

In applications with large memory footprints, such as the application this chapter targets,

the bulk of the data necessarily resides o↵-chip. In these cases, the HLS core often keeps

only small data structures on-chip. Consequently, the amount of on-chip BRAM used by

the core is often smaller than the amount of the BRAM available. We extend the cache com-

pilation flow in the previous sections by an add-on that automatically uses up the left-over

BRAM and enlarges the private on-chip caches. Secondly, the size of each private cache

is set individually in order to obtain a size distribution across the parallel caches that is

tailored to the memory access pattern of a particular application. For example, the accesses

to some data structures of an application may have good locality and increasing the cache

size may therefore improve performance. On the other hand, some memory access traces

in an application may have very little locality or access small data structures, so scaling up

the cache beyond a certain size is of no use. In such a case, an application-specific cache

sizing will very likely have superior performance compared to a one-size-fits-all solution.
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It is important to note that our technique does not rely on successive synthesis and place-

and-route cycles, but instead estimates the cache performance for di↵erent sizes with a

pre-RTL, dynamic program analysis of the input code to an HLS tool. Our approach

relies on a prediction of the performance of each cache from the application’s reference

stream, and finds a size configuration that maximises the aggregate performance subject

to a resource constraint. Although statically determining the cache size requirements and

hence the size of the data structures is possible in some corner cases [79], we adopt here a

run-time profiling approach for capturing the memory reference trace in order to ensure

wide applicability. Especially in heap-manipulating programs, the absolute data struc-

ture size is often unknown at compile time. Our dynamic analysis can handle this type

of program at the expense of relying on a representative input data set provided by the user.

To give a more concrete motivating example of our technique, we consider a two-cache

system consisting of private caches. Our compilation flow above generates such a system,

for example, from applications which use a tree data structure and a stack to implement

a depth-first tree traversal. The Reflect Tree benchmark from Chapter 4 is an example of

such an application. Assuming we have only run the transformation of pointer references

and cache insertion for Reflect Tree without asking for additional parallelisation, the hard-

ware implementation has a private cache for stack records (ST) and tree nodes (TR). The

RTL design for the modified source code is generated with an HLS tool, for example Xilinx

Vivado HLS, which also provides information of the BRAM resources consumed by the

HLS core itself. In this case, the core uses 112 36k-RAM blocks which leaves 918 left-over

blocks in a Virtex 7 device (xc7vx485t↵g1761-2) to be used by the platform surrounding the

HLS core. With a conservative 40%-margin, 550 RAM blocks (2200 kB2) can be repurposed

as cache memories.

Our technique then estimates the performance of the caches from the memory reference

trace, which is obtained from running the HLS input program with a representative input

2we use 32 kbits in a Xilinx 36K-RAM block to store user data
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Figure 5.4.: Aggregate hit rate estimate for a two-cache system with an 2200 kB on-chip
memory constraint.

data set provided by the user. The reference stream, together with the knowledge of the

cache type (direct-mapped, set-associative, fully associative) allows us to model the aggre-

gate hit rate of the multi-cache system. For K = 2 private caches as in this example, there

is no interaction between the caches and the aggregate hit rate is given by:

⌘ =

PK�1
i=0 hi(Bi)
PK�1

i=0 ti
, (5.9)

where hi is the number of hits in cache i of size Bi, ti is the total number of accesses to cache

i. Fig. 5.4 shows the aggregate hit rate for the two direct-mapped caches over di↵erent

feasible size configurations. The design space spans hit rates from 79% to 97%. The hit

rate of Cache 0 (for stack records of type ST) reaches its maximum at a size of 32 kB and

then plateaus. The reason for the steep improvement with low sizes and early saturation

is the high locality of the memory accesses made to the stack-like linked list and the fact

that just 32 kB of cache memory is su�cient to keep the entire data structure on-chip. For
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tree nodes (Cache 1), a 2 MB cache is needed to fit all tree data. Clearly, spending the same

amount of memory resources on both caches is sub-optimal.

The advantage of our technique over a one-size-fits-all cache scaling becomes obvious

when we take the memory resource constraint of 2200 kB into account. With a fixed size

for all caches, on this grid, we could implement caches with a maximal capacity of 1024 kB

each, which corresponds to the bar marked with the solid-line blue ellipse in Fig. 5.4. A

cache sizing tailored to the access pattern of the application allows us to decide that a size

of 32 kB for Cache 0 and 2048 kB for Cache 1 maximises the hit rate while still satisfying the

resource constraint. This design point is marked with the dashed blue ellipse in Fig. 5.4.

In general, implementations (including those parallelised by our CAD flow) will use more

than two parallel caches, and the disparity between fixed-size and application-specific

cache sizing will be larger.

Replacing a fixed-size scaling with a specific size distribution relies on the ability to predict

the performance of each cache from the application’s reference stream, and to find a cache

size configuration maximising the aggregate performance subject to a memory resource

constraint. Our cache sizing flow has three components: 1) It first determines unused

BRAM resources, which requires an estimation of the memory resources used by the HLS

core itself. 2) We predict the hit/miss counts of each cache for di↵erent sizes. 3) The amount

of spare BRAM and the cache performance estimates are combined into an optimisation

problem which finds a variable size configuration in the multi-cache system that maximises

the aggregate hit rate.

5.4.1. On-chip Memory Utilisation Estimation

We obtain high level estimates of the BRAM consumption from the HLS tool to determine

the left-over RAM resources. Here, we use Vivado HLS, which provides estimates of the

number of LUTs, FFs, DSP slices and RAM blocks consumed by the HLS core. Compared to

LUTs, FFs and DSP slices, the predicted amount of memory is relatively accurate. The only
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cases where the high-level prediction deviates from the implementation post placement and

routing were observed when the down-stream RTL synthesis tool performed bit truncations

that a↵ected operands stored in memory. However, in these cases, the high-level estimate

is always higher than the actual usage, which results in a slightly over-conservative but

safe estimate. A potential clock rate degradation due to large on-chip RAMs is alleviated

with memory banking in combination with pipeline bu↵ers, which was implemented by

the LEAP developers in the context of this work and is described in a joint publication [42].

5.4.2. Cache Performance Estimation

We build our sizing technique on top of the multi-cache generator above. We instrument

the transformed program with profiling instructions that fill trace bu↵ers, which maintain

the memory reference trace for each bus interface to external memory. We expect the user

to provide a representative input data set for the profiling run. Hence, we may miss corner

cases with this dynamic program analysis. However, since cache size is only a performance-

related parameter, the functional correctness of the optimisation is not compromised. The

trace bu↵ers are empty at program start-up. On each access to external memory in the

program, the instrumentation code adds the memory address. In this way, we build up

reference streams of length Mi:

( a0,i, ..., aMi�1,i ), (5.10)

where i is the index of the memory interface. The memory is divided up into blocks, some

of which will have copies in the cache. The block width L is equal to the cache line size.

For a data width smaller than L the block reference streams

( b a0,i
L c, ..., b

aMi�1,i

L c ) (5.11)

give us the dynamic trace of memory accesses at the granularity of the cache line size.

The cache line size is a fixed parameter in our analysis. If the user data width is larger, a

cache access is split into multiple sequential chunks in our implementation. We model this

by expanding the block reference stream (5.11) accordingly in a post-processing step. The
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cache size remains the only variable parameter in the hit rate estimation. Other parameters

such as associativity and support for disjoint/shared memory accesses are fixed but must

be taken into account. Our current cache sizing flow targets private caches only and we

discuss the extension to coherent caches in the outlook section of this thesis.

The hit rate of fully associative caches can be precisely determined using the stack dis-

tance metric [110, 111, 112, 113], which counts the number of unique references ‘between’

accesses to the same address. A cache with B lines then filters out references with stack

distance larger than B. The stack distance distribution of a reference stream allows us to

count cold misses (cache misses due to empty cache at program start-up) and capacity

misses (misses due to line eviction because the cache is full) in fully associative caches.

In lower-associativity caches, additional conflict misses occur (eviction due to intervening

references although the cache is not full) which the stack distance approach can only ap-

proximate [112, 113]. The prediction accuracy worsens with decreasing associativity.

Because we target direct-mapped caches and because our goal is an accurate prediction, we

devise a precise hit rate determination for direct-mapped caches. For each reference r and

the previous reference r0 to the same block address, we examine the intervening references

made between r0 and r. A conflict miss occurs if at least one intervening reference accesses

the same cache line, which is determined with a modulo operation using the cache size

B as divisor. Algorithm 8 shows Matlab-like pseudo code of the hit rate estimator for

direct-mapped caches of size B. It predicts the the number of hits (nhit) and misses (nmiss)

of the cache dependent on its size, which allows us to compare the performance of cached

memory interfaces with di↵erent block reference streams) relative to the other caches and

select a configuration of cache sizes that maximises the aggregate hit rate. The next section

describes how our technique finds such a configuration.
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Algorithm 8 Hit rate of a private, direct-mapped cache.
1: Input:
2: Block reference stream S
3: Number of cache lines B
4: Output:
5: Miss count nmiss
6: Hit count nhit
7:
8: function estimate hitrate(S)
9: Su  unique(S) . keep unique block references

10: nmiss, nhit  0
11: for all r 2 Su do
12: I findAll(S = r) . get indices of entries equal to r
13: c r mod B . cache line accessed by r
14: nmiss  nmiss + 1 . first access is always a cold miss
15: for j = 1 . . . length(I) � 1 do . loop over remaining accesses
16: R0  S(I( j � 1) + 1 : I( j) � 1) . intervening refs
17: C0  R0 mod B . intervening cache line refs
18: if find(C0 = c) = ; then
19: nhit  nhit + 1 . hit
20: else
21: nmiss  nmiss + 1 . conflict miss
22: end if
23: end for
24: end for
25: return nmiss, nhit
26: end function
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5.4.3. Optimisation Strategy

Our compiler generates K caches as described above. With Algorithm 8, we can estimate

the performance of each independent cache hi(B), i = 0 . . .K � 1 once we have obtained

the corresponding reference streams. We assign di↵erent sizes to the caches in such a way

that the aggregate hit rate is maximised. To this end, we assign to each cache a set of N

cache sizes Bi = {B0,B1, . . . ,BN�1} and compute the hit rate relative to the total number of

accesses for each size. We cast the search for the best size assignment for each cache into

an optimisation problem and define the following variables:

pij = hi(Bj) the profit (hit rate of cache i)

wij = brami(Bj) the cost (block RAM consumption

of cache i)

C the global constraint on the available

block RAM resources

xij 2 {0, 1} a binary variable,

where i = 0 . . .K�1 iterates over caches and j = 0 . . .N�1 iterates of cache sizes. We phrase

the maximisation problem as a Multiple-Choice Knapsack Problem (MCKP) [114] as follows:

maximise
PK�1

i=0
PN�1

j=0 pijxij

subject to
PK�1

i=0
PN�1

j=0 wijxij  C

and
PN�1

j=0 xij = 1, i = 0 . . .K � 1

(5.12)

The objective in (5.12) maximises the aggregate hit rate of K caches. The first constraint

enforces memory resource limits and the second constraint ensures that, for each cache,

exactly one size from the setBi is selected by the algorithm. We solve the Knapsack problem

with an algorithm by Pisinger et al. [114] based on dynamic programming. The next section

describes the code generation and transformations before and after cache sizing.
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5.5. Experiments

We run our experiments with the four C++ applications from Chapter 4 that traverse,

update, allocate and dispose dynamic data structures in heap memory. In contrast to

Chapter 4, the parallelised implementations of Reflect Tree and Filter contain interfaces to

shared memory. All applications perform pointer-chasing and are therefore very sensitive

to the memory access latency. For brevity, we omit Tree deletion benchmark from the

previous chapter in this evaluation.

Merger. The program builds up four linked lists from scratch performing a sorted in-

sertion of input values, and subsequently merges and disposes the four lists to produce

a single sorted output stream. The linked lists are disjoint, the parallelised program does

not access shared heap memory as determined by our analysis. Four private scratchpads

are inserted in the parallelised implementation.

Reflect tree. The application traverses a binary tree and recursively swaps the left and right

child pointer of some nodes to produce a partially mirrored tree. The HLS core consists

of P parallel units, each of which has two private memory interfaces and one interface

to shared memory which holds a running minimum. P coherent scratchpads and a lock

service are instantiated for the shared heap region.

Filter. This is our running example. The tree, centre sets and linked list data structures

are partitioned and supported by private caches and the traversal loop is parallelised.

The shared heap-allocated running sum is supported by coherent scratchpads and a lock

service.

We use Xilinx Vivado HLS 2014.1 as a back-end C-to-FPGA tool. As of writing of this

thesis, LEAP supports Altera FPGA boards as well as several boards with Xilinx FPGAs

(Nallatech ACP, XUPV5, HTG-V5, ML605, VC707). Recently, support has been added
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for Xilinx VC709 boards with two board-level DDR3 memory modules. Here, we imple-

ment our benchmarks on a VC707 evaluation board (Virtex 7 FPGA, xc7vx485t↵g1761-2,

1GB on-board DDR3 SDRAM). We build the Bluespec-based LEAP framework with Blue-

spec 2014-07-A. The generated RTL code is integrated into the framework with Bluespec’s

import BVI statement. The complete FPGA designs are implemented in a hybrid flow

with Synopsys Synplify Premier 2014.03.1 for logic synthesis and Xilinx Vivado 2014.4 for

placement and routing. We report FPGA slices, DSP slices, 36k-BRAMs (18k-blocks count

as 0.5 36k-blocks), achieved clock period and total latency (cycle count ⇥ clock period)

for the complete FPGA designs (HLS core and multi-cache architecture). The latency is

normalised di↵erently depending on the benchmark: latency per input sample for Merger,

latency per full tree traversal for Reflect Tree, and latency per clustering iteration for Filter.

We separate this evaluation into two parts: The first part focuses on the performance

gained by inserting our multi-cache system and the benefits of specialising it by inserting

coherent caches only if necessary. The second part of this evaluation section discusses the

automatic scaling of private caches.

5.5.1. Hybrid Multi-Cache Architectures

Table 5.1 quantifies the acceleration and resource consumption of parallelisation and the

multi-cache architecture Nc is the number of inserted caches. The default size of all caches

is 1 kB. For each benchmark, we set the unparallelised (P = 1) design with no caches as

a baseline reference (top row for each benchmark). The ratio S is the speed-up of each

configuration compared to the baseline reference case (S = 1).

Adding single caches to the unparallelised implementations (P = 1) brings a speed-up

of 1.71⇥ and 1.44⇥ for Reflect tree Filter, respectively. Parallelisation with P = 4 results

in 2.16⇥ to 2.82⇥ speed-up over the unparallelised baseline if the memory interface is not

supported by caches. We observe further latency improvements when these parallelised

applications are supported by multiple caches, which provides an overall acceleration of
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Table 5.1.: Parallelisation and caching (cache size 1 kB).
P: parallelisation degree; Nc: number of caches; S: speed-up over baseline

P Nc Slices LUT FF DSP BRAM Clock rate Latency S

Merger (250000 random input key-value pairs)
scratchpads without on-chip caches
1 0 22993 58709 59029 21 571.5 100 MHz 18.0 ms 1
4 0 24242 67867 67130 19 586.5 100 MHz 5.9 ms 3.08
scratchpads with on-chip caches (1 kB)
1 1 24885 64860 64820 24 583.5 100 MHz 19.4 ms 0.93
4 8 34184 91401 88830 38 634.5 100 MHz 6.4 ms 2.82

Reflect Tree (36862 tree nodes)
scratchpads without on-chip caches
1 0 24944 64471 65953 37 231.5 100 MHz 547.5 ms 1
2 0 27188 74820 77230 57 248.5 100 MHz 344.9 ms 1.59
4 0 35891 95483 99269 97 360.5 100 MHz 194.0 ms 2.82
scratchpads with on-chip caches (1 kB)
1 3 27844 70662 72437 46 243.5 100 MHz 320.6 ms 1.71
2 6 32238 88010 89730 73 278.5 100 MHz 153.7 ms 3.56
4 12 43747 118226 123215 129 408.5 100 MHz 79.9 ms 6.85

Filter (32767 kd-tree nodes, 128 clusters)
scratchpads without on-chip caches
1 0 26249 72980 74050 57 275 100 MHz 897.3 ms 1
2 0 32253 91518 91964 97 347.5 100 MHz 594.5 ms 1.51
4 0 42636 128163 128587 179 486.5 100 MHz 415.8 ms 2.16
scratchpads with on-chip caches (1 kB)
1 4 29518 83077 83493 67 296 100 MHz 464.7 ms 1.44
2 8 39284 110179 110419 132 383.5 100 MHz 240.5 ms 3.73
4 16 54736 163849 164620 218 558.5 100 MHz 145.6 ms 6.16
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6.16⇥ to 6.85⇥ for the tree-based benchmark. The small caches mostly reduce the memory

access time for the stack and centre set data structures, as opposed to the tree data structures

which are substantially larger. As we shall see in Section 5.5.4, the system performance is

further improved by cache scaling. Merger is an extreme case in this evaluation because

inserting the small 1 kB caches slightly slows down the implementations for both P = 1

and P = 4. The reason is the size of the data structures: only 2048 list elements fit in the

caches, which is a small fraction of the entire data structure, resulting in a poor hit rate.

The improvement of the memory access latency by the caches thus does not outweigh the

small overhead in terms of cycle count because of the bu↵ered banked cache memories

[42]. Parallelisation improves the net speed-up, but we shall see in the next sections that

scaled-up caches further improve the overall latency significantly.

In addition to aggregate latency, we evaluate the benefit of cache architecture speciali-

sation. Our analysis determines that Merger requires P private SPs, while Reflect Tree and

Filter require a hybrid architecture consisting of private and coherent SPs. We compare

the implementation results of our application-specific architectures to an ‘all-coherent’ sce-

nario where no knowledge of disjoint heap regions is available to generate the multi-cache

system. Firstly, such a scenario requires a commutativity analysis for safe parallelisation

for all heap updates which significantly increases the burden of analysis. Secondly, all SPs

must be supported with a coherency network by default. We focus on the second aspect

here and quantify the additional cost of such an all-coherent architecture in terms of loss of

e�ciency: Table 5.2 lists the implementation results for the designs with all-coherent SPs.

Each row also shows the increase in resource consumption, latency and the slices-latency

product of the all-coherent (AC) default compared to the corresponding hybrid (HY) SP

architecture in Table 5.1 which uses knowledge of private and shared heap regions ( AC�HY
HY

in %).

The AC versions use more logic and have longer latencies. The resource overhead is

especially noticeable for DSP slices (43.9% up to 281.6%), but is also substantial for logic
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Table 5.2.: Cost increase of all-coherent default compared to application-specific hybrid
scratchpad architectures.

P: parallelisation degree; Nc: number of caches
P Nc Slices DSP BRAM Clock period /ns Latency /ms Area � time product

Merger (250000 random input key-value pairs)
4 8 42875 (25.4%) 145 (281.6%) 642 (1.2%) 10.0 (0.0%) 7.83 (22.6%) 335.7 slices · s (53.8%)

Reflect Tree (36862 tree nodes)
2 6 35683 (10.7%) 122 (67.1%) 330 (18.5%) 10.0 (0.0%) 220.0 (43.1%) 7850.1 slices · s (58.4%)
4 12 52665 (20.4%) 220 (70.5%) 504 (23.4%) 10.2 (2.2%) 128.5 (60.7%) 6765.5 slices · s (93.5%)

Filter (32767 kd-tree nodes, 128 clusters)
2 8 45579 (16.0%) 190 (43.9%) 367 (�4.3%) 10.0 (0.0%) 366.1 (52.2%) 16687.8 slices · s (76.6%)
4 16 65412 (19.5%) 375 (72.0%) 644 (15.3%) 10.1 (0.9%) 208.2 (43.0%) 13615.8 slices · s (70.9%)

slices (10.7% to 25.4%). The area overhead is particularly large for Merger, because the

application-specific SP architecture does not use a coherency network at all, so the di↵er-

ence is larger. The access latencies due to the additional coherency network are notably

longer. Finally, we compare the e�ciency of the implementations by the area-time prod-

uct. For P = 4, our disjointness analysis and the ability to instantiate cheap private caches

whenever possible brings an overall improvement of the slices-latency product of 53.8%

to 93.5% (69.3% on average).

The results above quantify the advantage of a specialised application-specific multi-cache

system. The following sections discuss the validation of the resource and hit rate estima-

tion and the performance improvements and trade-o↵s by scaling up the private caches in

the above hybrid multi-cache system.

5.5.2. Validating the BRAM Estimation for Automated Cache Scaling

Our automatic cache scaling relies on the ability to estimate the amount of BRAM used by

the HLS implementation for core-internal storage. Once the tool decided which variables

in the code go into BRAM, a conservative estimate can be easily made. Vivado HLS,

for example, provides such an estimate after RTL generation. For brevity, we only show

the validation for a parallelisation degree of P = 2. Table 5.3 compares the high-level

BRAM estimation of 36k-RAM blocks with post placement-and-routing (PAR) results.

141



CHAPTER 5. CUSTOM MULTI-CACHE ARCHITECTURES

Table 5.3.: High-level BRAM estimation accuracy (results in 36k-RAM blocks).
Design component Estimate Post-PAR

Merger (P = 4, 8 scratchpads)
HLS core 512 512
Interface wrapper 12 12
Scratchpad internal FIFOs 12 12
LEAP platform (without scratchpads, fixed) 50.5 50.5
Total consumption without caches 586.5 586.5
Unused left-over blocks (xc7vx485t↵g1761-2) 340.5 340.5

Reflect tree (P = 2, 6 scratchpads)
HLS core 208 158
Interface wrapper 21 21
Scratchpad internal FIFOs 19 19
LEAP platform (without scratchpads, fixed) 50.5 50.5
Total consumption without caches 298.5 248.5
Unused left-over blocks (xc7vx485t↵g1761-2) 628.5 678.5

Filter (P = 2, 8 scratchpads)
HLS core 275 241
Interface wrapper 32 32
Scratchpad internal FIFOs 24 24
LEAP platform (without scratchpads, fixed) 50.5 50.5
Total consumption without caches 381.5 347.5
Unused left-over blocks 545.5 579.5

Additional BRAM is used in FIFOs of the wrappers connecting HLS bus interfaces to

LEAP scratchpad ports. Similarly, our scratchpad interfaces (scratchpads without caches)

contain some FIFOs as well. The RAM usage of these FIFOs can be precisely determined

from the Verilog/Bluespec System Verilog code. The LEAP-based framework uses a fixed

amount of RAM. The only uncertainty are the estimates made by the HLS tool, but these

are always higher than the post-PAR consumption because of bit truncations made by the

RTL synthesis tool. We also include a 10% security margin in the left-over portion that

will be used for the cache implementations, i.e. we scale the cache sizes up such that the

estimated memory consumption of the HLS core and its interface wrappers, the platform

and the caches reaches at most 90% of the BRAM resources available on the chip.
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Table 5.4.: Cache hit/miss count estimation for two private caches in Reflect tree.
Cache size hmeas hest error hSD

est errorSD

Cache 0
1024 86.46% 86.46% 0.00% 84.71% �2.06%
8192 87.44% 87.44% 0.00% 87.12% �0.36%

32768 87.49% 87.49% 0.00% 87.42% �0.08%
65536 87.50% 87.50% 0.00% 87.87% 0.42%

262144 95.83% 95.83% 0.00% 91.43% �4.82%

Cache 1
1024 86.35% 86.35% 0.00% 84.44% �2.26%
8192 87.03% 87.03% 0.00% 87.12% 0.11%

32768 95.68% 95.68% 0.00% 91.04% �5.09%
65536 95.68% 95.68% 0.00% 92.94% �2.94%

262144 95.68% 95.68% 0.00% 94.90% �0.82%

5.5.3. Validating Cache Performance Estimation

We validate our cache model with measurements of the actual hit/miss rates. LEAP

Scratchpads collect the number of hits and misses for each cache during execution of the

application. Table 5.4 compares the measured individual hit rate hmeas for di↵erent cache

sizes with the estimated values hest from Algorithm 8. The hit rates are calculated with

h = nhit/(nhit + nmiss) and the cache sizes are given in terms of 64bit lines. We also include

the relative error. Additionally, we compare the stack distance-based approximation in

[112] (hSD
est , errorSD) with our estimator. For brevity, we show results only for two private

caches of the Reflect tree benchmark and for P = 2. Our estimation matches exactly the

measured hit/miss counts, i.e. Algorithm 8 models our direct-mapped caches perfectly.

The approximation by Brehob and Enbody [112] tends to underestimate the hit rate of

direct-mapped caches, an observation also made in [112].

5.5.4. Latency and Resource Utilisation after Custom Cache Scaling

Our technique improves the aggregate hit rate of the multi-cache architecture. The follow-

ing results show the impact of the custom cache sizing on the overall execution latency

and on the FPGA resource usage once we scale the hybrid multi-cache systems. All results
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are obtained from a physical implementation on the VC707 board. For ease of compari-

son, we include the uncached case and the case with small default size caches (both from

Section 5.5.1). We compare four cases:

Case 1. An implementation without any caches (as in Table 5.1)

Case 2. An implementation with a small fixed cache size of 1024 lines (as in Table 5.1)

Case 3. An implementation with a fixed size for all caches but scaled up to the maximum

possible size

Case 4. A variably-sized multi-cache system as delivered by our technique in Section 5.4

The clock frequency target is set to 100 MHz in all cases and all designs meet this clock

constraint. All caches have a line width of 64 bits. Table 5.5 shows the timing as well as the

utilisation of LUTs, FFs, DSP slices and 36k-RAM blocks. We also show the aggregate hit

rate (measured) of all private caches and the execution latency. We compare the speed-up

S with respect to the base case in Section 5.5.1 (P = 1, no caches).

In addition to more BRAM, we observe a sudden increase in LUT, FF and DSP utilisa-

tion once caches are included in the scratchpads. LUTs and FFs increase only marginally

when scaling the caches up, leaving the BRAM usage as the limiting factor. The hit rate

and latency improvements for Merger are substantial and grow steadily with larger cache

sizes. There is a significant asymmetry between the linked lists in the application and

the large improvement of the variable sizing over a fixed sizing (Cases 3 and 4) is due to

the fact that larger caches support longer lists. The overall speed-up after parallelisation,

private cache insertion and custom cache sizing is S = 15.22 over the baseline.

For the tree-based benchmarks, we see a di↵erent characteristic of the latency improve-

ment. Even small caches lift the aggregate hit rate above 90%. This reflects the behaviour

in Fig. 5.4: the stack data structures are very small (but heavily accessed) compared to the

tree structure in the average case and a small cache is su�cient to keep all data on-chip.
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Table 5.5.: Latency and resource utilisation after custom cache scaling.
S: speed-up over unparallelised, uncached baseline in Table 5.1
P Case LUT FF DSP BRAM Hit rate Latency S

Merger (250000 random input values, baseline latency: 18.0 ms)

4

1 67867 67130 19 586.5 0 5.9 ms 3.08
2 91401 88830 38 634.5 5.31% 6.4 ms 2.82
3 93528 89184 38 858.5 79.24% 2.4 ms 7.39
4 92871 89064 39 874.5 99.12% 1.2 ms 15.22

Reflect tree (36863 tree nodes, baseline latency: 547.5 ms)

2

1 74820 77230 57 248.5 0 344.9 ms 1.59
2 88010 89730 73 278.5 90.36% 153.7 ms 3.56
3 88204 89989 73 862.5 95.69% 138.4 ms 3.95
4 88193 89855 73 944.5 99.97% 112.4 ms 4.87

4

1 95483 99269 97 360.5 0 194.0 ms 2.82
2 118226 123215 129 408.5 90.12% 79.9 ms 6.85
3 136087 125046 126 743.5 95.50% 68.7 ms 7.97
4 119284 123253 128 736.5 98.27% 57.4 ms 9.54

Filter (32767 kd-tree nodes, 128 clusters, baseline latency: 897.3 ms)

2

1 91518 91964 97 347.5 0 594.5 ms 1.51
2 110179 110419 132 383.5 93.52% 240.5 ms 3.73
3 111459 110806 116 807.5 95.95% 234.9 ms 3.82
4 110423 110448 117 711.5 98.76% 229.3 ms 3.91

4

1 128163 128587 179 486.5 0 415.8 ms 2.16
2 163849 164620 218 558.5 94.12% 145.6 ms 6.16
3 168416 165278 221 886.5 96.19% 140.4 ms 6.39
4 164818 164168 219 878.5 98.72% 138.2 ms 6.49

Consequently, the optimisation algorithm in Section 5.4.3 opts to use more memory re-

sources for the large tree structure. For Reflect tree, this improves the aggregate hit rate

by 3% to 4% compared to a homogeneous maximum sizing. Although the hit rates for

Filter and Reflect tree are similar, the latency improvement from cache scaling for Filter

is small. This is mainly due to high core-internal computation between memory accesses,

which makes the e↵ect of a shorter access time to the tree data less significant. The overall

improvement execution time after parallelisation with P = 4, hybrid cache insertion and

custom cache scaling is 9.54⇥ and 6.49⇥ over the unparallelised and uncached baseline
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implementation for Reflect tree and Filter, respectively.

5.5.5. Energy Consumption

We quantify the impact of our cache insertion and scaling on the overall energy consump-

tion. To this end, we measure the instantaneous power consumption of the FPGA and

the board-level SDRAM while the applications are running. We collect power figures for

three out of the 12 power rails on the VC707 board: VCCINTFPGA is the main supply of

the FPGA and VCCBRAM is an additional block RAM supply. We combine both to obtain

the main supply of the FPGA. The third rail is VCC1V5, a supply of the SDRAM. No other

rail notably changes its power levels during execution of our applications. We integrate

power over the three latencies defined in the previous section; we show the energy per

input value for Merger, the energy per completed tree traversal for Reflect tree and the

energy per clustering iteration for Filter. Table 5.6 shows the main energy consumption of

the FPGA (EFPGA), the energy attributed to the SDRAM (ESDRAM) and the total energy for

the four cases above. We also show the energy improvement R compared to Case 1 (un-

cached parallel implementation). The instantaneous power consumption is steady during

the execution, so Table 5.6 also shows the mean power consumptions PFPGA and PSDRAM.

Including caches always comes along with an increased power consumption of the FPGA.

For large caches, the extra power consumption is significant (up to 102%). The latency

reduction must be large enough to counter this e↵ect and improve EFPGA and Etotal. Large

caches always improve the energy consumption with respect to a cacheless memory in-

terface in our implementations. In all benchmarks, the application-specific cache sizing

outperforms fixed sizing in terms of energy reduction. Interestingly, small caches (Case 2)

in the Reflect tree and Filter benchmark (P = 2) have the best performance in terms of en-

ergy. The trade-o↵s when optimising for energy instead of hit rate are di↵erent because the

increased power consumption of large caches is not always compensated by the reduction

of execution time.
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Table 5.6.: Power and energy measurements.
R: energy reduction compared to Case 1
P Case PFPGA /W PSDRAM /W EFPGA /mJ ESDRAM /mJ Etotal /mJ R

Merger (250000 random input values)

4

1 1.78 1.11 10.40 6.40 16.88 1
2 2.13 1.09 13.61 6.99 20.60 0.82
3 2.58 1.05 6.30 2.55 8.85 1.91
4 2.57 1.01 3.05 1.19 4.24 3.99

Reflect tree (36863 tree nodes)

2

1 1.85 1.16 638.23 401.11 1039.34 1
2 2.00 1.16 307.51 177.68 485.19 2.14
3 3.38 1.07 467.59 148.23 615.82 1.69
4 3.73 1.00 419.01 112.23 531.24 1.96

4

1 2.13 1.15 412.30 222.46 634.76 1
2 2.34 1.04 186.68 83.24 269.92 2.35
3 3.06 1.07 210.40 73.37 283.77 2.24
4 3.26 1.14 187.09 65.56 252.64 2.51

Filter (32768 kd-tree nodes, 128 clusters)

2

1 1.96 1.16 1166.57 691.28 1857.85 1
2 2.15 1.01 517.59 243.88 761.47 2.71
3 3.16 1.03 742.82 241.43 984.25 1.89
4 2.93 1.02 671.32 234.77 906.09 2.05

4

1 2.25 1.31 936.46 542.55 1479.01 1
2 2.77 1.05 402.50 152.94 555.44 2.66
3 3.27 1.03 459.55 144.19 603.74 2.45
4 3.53 1.08 488.11 148.73 636.84 2.32
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5.6. Summary

Mapping dynamic memory operations to FPGAs is di�cult, both in terms of analysis

and implementation. In this chapter, we present an HLS design aid for synthesising

pointer-based C/C++ programs into e�cient FPGA applications. We target applications

that perform computation on large heap-allocated data structures and that require access

to an o↵-chip memory. We leverage and extend the separation logic-based static program

analysis in Chapter 4 to determine whether di↵erent program parts access disjoint, non-

overlapping regions in the monolithic heap space in which case we trigger automated

source-to-source transformations that automatically parallelise the application. Our ex-

tended analyser also detects heap regions that are shared by multiple accessors in the

parallelised implementation. An additional commutativity analysis decides whether the

parallelisation in the presence of shared memory regions is semantics-preserving. The

information provided by the heap analyses is used to optimise the interface between the

parallelised HLS kernel and an o↵-chip memory: we generate an application-specific

multi-cache architecture where disjoint heap partitions are mirrored in private, indepen-

dent on-chip caches and interfaces to shared heap regions are supported where necessary

with on-chip caches backed by (inherently more expensive) coherency mechanisms and a

synchronisation service.

In our experiments with three heap-manipulating C++ benchmark applications, we ob-

serve a speed-up of up to 6.9⇥ after parallelisation and generation of a multi-scratchpad

architecture compared to the unparallelised application and uncached access to the o↵-

chip memory. We also quantify the benefit of extracting application-specific knowledge

about disjoint and shared heap memory regions: our hybrid multi-scratchpad architecture

consisting of private and coherent scratchpads outperforms a default all-coherent version

by 69.3% on average in terms of the area-time product.

We extend the hybrid cache synthesis from generating caches with a default size to custom
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cache sizing. The add-on automatically uses up the left-over BRAM to scale up the size of

the private on-chip caches. Secondly, the size of each cache is set individually in order to

reach a size distribution across the parallel caches that maximises the aggregate hit rate of

the multi-cache architecture. The pre-synthesis cache performance estimation is based on a

high-level cache model and on the memory reference trace of the application obtained from

automated profiling. We cast the cache size assignment into a Multiple-Choice Knapsack

Problem to find the best size distribution for a given reference trace.

We evaluate the left-over BRAM and cache hit rate estimation, and we demonstrate the

latency improvements obtained from our technique using three benchmarks with irregu-

lar memory access patterns running on a VC707 FPGA board. We observe up to a 4.9⇥
speed-up compared to a cacheless memory interface when scaling each on-chip cache to

the same maximal size. Our variably-sized multi-cache system also delivers up to a 2.1⇥
latency improvement (1.3⇥ on average) compared to the one-size-fits-all solution. The

overall reduction of execution time after parallelisation with P = 4, insertion of the hy-

brid multi-cache system and custom cache scaling is up to 15.2⇥ (9.8⇥ on average) over

an unparallelised and uncached implementation. Although the insertion of large on-chip

caches has a significant impact on the power consumption of the FPGA, we show that

our variably-sized multi-cache configuration reduces the total energy by 2.5⇥ (on average)

compared to a cacheless memory interface. The work discussed in this chapter was first

published in [36] and [35].
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This thesis extends the scope of high-level synthesis to e�cient hardware implementations

from heap-manipulating programs. This research direction is motivated by the fact that

hardware synthesis and design optimisations for heap-manipulating code are beyond the

scope of state-of-the-art HLS tools and most HLS techniques to date. We underpin this

motivation with a case study in Chapter 2 which compares the performance gap between

HLS and hand-written RTL implementations of a data flow-centric K-means clustering al-

gorithm and an algorithm for the same problem that uses dynamic memory management

and is based on the traversal of a pointer-linked tree data structure. Our results show that

both a carefully designed RTL and HLS implementation of the latter algorithm results in

faster and more e�cient hardware implementations. We furthermore quantify the bene-

fits of hardware implementations of a sophisticated algorithm that uses structured data,

organised in dynamically allocated, irregular, pointer-linked data structures.

The direct HLS implementation of the pointer-based filtering algorithm requires code

transformations to enable synthesisability. Furthermore, the latency is initially degraded

by 26.6⇥ compared to the hand-crafted RTL implementation. We narrow this significant

performance gap and improve the former latency by 8⇥with source code transformations

that partition and privatise data structures accessed through pointers to enable paral-

lelisation and pipelining of the loop traversing the pointer-linked data structure. Our

case study exposes the lack of support for e↵ective design automation optimisations for

codes containing heap-allocated data structures and pointer chasing in the tool under test

which we consider a representative example of current generation HLS tools. However,
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these limitations can be removed with extensive code refactoring that draws on mem-

ory disambiguation and data dependence information, which is not provided in current

state-of-the-art HLS flows if the memory accesses are made through heap-directed pointers.

In Chapter 4, we address the automation of two key code optimisations. The goal is to

automate the memory partitioning and semantics-preserving parallelisation, which were

performed manually in our case study. We develop an automated analysis of data depen-

dencies carried by pointer-based data structures, which identifies disjoint regions in the

monolithic heap memory space. Chapter 4 contains the key enabling research contribution

in this thesis: the application and extension of a static program analysis framework based

on separation logic, a logic for e�cient reasoning about programs that dynamically allo-

cate and dispose memory space and access data in heap memory. Separation logic arose

in the context of formal software verification and recently made its way into commercial

verification tools [97].

The potential of separation logic, which has made it a widely used framework in the

verification domain, remains largely unexplored in an HLS context to date. This thesis

provides a deep investigation of separation logic-based program analyses for code op-

timisations in hardware compilers. We show how existing techniques in the separation

logic framework, symbolic execution and loop invariant synthesis, which were originally

developed in a verification context, can be modified and extended so as to repurpose the

analysis for ruling out heap-carried data dependencies between di↵erent execution phases

of a program. We also extend an existing approach to a heap footprint analysis, which

allows us to partition the monolithic heap space into disjoint fragments (heaplets), a pre-

requisite for distributing heap-allocated data across physically separated memory banks.

A key advantage of our technique is its ability to handle while-loops with data-dependent

loop condition, enclosed data-dependent conditionals and unknown iteration count. This

feature and the ability to reason about dynamically allocated data structures distinguishes

our analysis from the polyhedral model, the most powerful and widely used loop optimi-
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sation framework to date.

The information provided by the static program analysis, the legality of parallelisation

(delivered by proving the absence of heap-induced data dependencies) and an assignment

of heaplets to on-chip memory partitions, is used by automated source-to-source transfor-

mations that ensure the synthesis of parallel loop kernels and parallel banks of on-chip

memory. The distribution of data across memory banks is specific to the application and

is guided by the assignment of heap partitions to memories delivered by our analysis, re-

sulting in a specialised on-chip memory architecture. The fact that our analysis can prove

the absence of communication between the parallel loop kernels and the disjointness of

the heap portions mapped to di↵erent memory banks allows us to avoid the synthesis

of unnecessary interconnects and synchronisation hardware between parallel functional

units. To the best of our knowledge, this work is the first application of separation logic

in the context of an automated memory optimisation tool flow for HLS. In Section 4.4, we

evaluate our technique with Xilinx Vivado HLS as an exemplary state-of-the-art HLS tool

for FPGAs. Using several pointer-chasing benchmarks, we firstly show that the use of

native optimisation directives of the tool does not result in physical heap memory parti-

tioning and parallelisation. Secondly, we show that the HLS implementations parallelised

by our tool achieve the expected acceleration by a factor of 1.8⇥ - 5.3⇥ compared to the

direct HLS implementations.

In Chapter 5, we remove the restriction that the application data must fit in on-chip mem-

ory and that the heap-allocated data structures must be fully partitionable into disjoint

portions to trigger parallelisation. We address the first restriction by synthesising memory

architectures which, by default, place all heap-allocated data in a large o↵-chip memory

and insert a parallel on-chip multi-cache system which mirrors parts of the o↵-chip data

and provides fast data access. We then extend the program analysis from Chapter 4 to

allow sharing: parallelising source transformations are triggered if some parts of the data

structures in the heap can be partitioned into disjoint portions and the data structures
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for which this disjointness proof fails are marked as shared. We include an additional

commutativity analysis to determine whether the parallelisation in the presence of shared

memory regions is legal.

We use the disjointness / sharing information to automatically generate cheap private,

independent on-chip caches whenever possible and, for shared memory access, to instan-

tiate more expensive caches that are backed by a coherency network and a lock-based

synchronisation. Our results show a speed-up of up to 6.9⇥ after parallelisation and cache

insertion compared to the unparallelised application and cache-less memory interfaces.

Without the assistance of our disjointness / sharing analysis, a CAD flow may instantiate

coherent caches by default. We compare this solution with our hybrid cache system and

show that the specialisation of the multi-cache architecture, enabled by our static analysis,

results in an average improvement of the overall area-time product (and hence architecture

e�ciency) by 69.3% across our benchmarks.

In addition to automatically deciding about the type of the synthesised caches, we add

automatic cache scaling using spare on-chip memory resources in an extension of the cache

synthesis flow in Section 5.4. We use pre-synthesis profiling information to predict the hit

rate of private caches in the memory hierarchy. Each private cache is then assigned an

individual size and the cache sizes are automatically distributed across the multi-cache

system such that the predicted aggregate hit rate is maximised. Compared to the small de-

fault size for all caches as in Section 5.3, the variably-sized, scaled multi-cache architecture

improves execution time by 1.6⇥ on average.

In summary, the hardware implementations that arise from our pointer-chasing HLS

benchmarks, which were parallelised with the technique in Chapter 4 and connected

to a cacheless o↵-chip memory interface, run 2.1⇥ faster (on average) than the direct HLS

implementations. This gain is due to the fact that the HLS tool does not detect the paralleli-

sation opportunity if the source code is not altered prior to RTL generation. The insertion
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of the application-specific multi-cache system from Chapter 5, utilising private caches with

custom scaling whenever possible, further accelerates these implementations, resulting in

an end-to-end gain of 7.1⇥ speed-up on average and up to 15.2⇥ speed-up for a particular

application.

We end this summary with a discussion of some directions for future research. The

planned extensions of the program analysis and code generation infrastructure developed

in this thesis target both the performance of the analysis and the extension of the scope of

our technique to further applications.

6.1. Outlook

Higher parallelisation degrees. Future work will extend the analysis to scale the designs

to higher parallelisation degrees, which requires our analysis to decide between several

alternatives as to how the heap can be partitioned. Our current cut-point insertion in

Section 4.2 greedily searches for an initial partitioning solution and then attempts to prove

its validity. If we were to parallelise the motivating example in Section 4.1 with a higher

degree, several valid alternatives for the cut-point assignment would arise and our analysis

would choose the first one (splitting the left sub-tree twice instead of splitting each left

and right sub-tree once). However, without further guidance, it cannot guarantee that the

work load is distributed uniformly across parallel workers and hence the selected alterna-

tive results in the best acceleration. In the experiment section in Chapter 5 we scale our

tree-based benchmarks to a parallelisation degree of four and manually guide the anal-

ysis to select the best cut-point assignment. Future work can address the automation of

fair work load distribution either by including the ability of comparing valid partitioning

alternatives in the analysis or by automatically synthesising an additional run-time load

balancing network such as that proposed by Ramanathan et al. [45].

Inferring recursive heap predicates. The ability of our technique to analyse while-loops
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with data-dependent iteration count relies on the convergence of the fix-point calculation

as discussed in Section 4.2.2. The fix-point calculation uses a pre-defined set of recursive

predicates for common data structures such as trees, lists, lists with additional pointers to

singleton heaplets and sub-trees, which allow us to cover a large range of pointer-based

programs. However, we may find applications which use more exotic data structures for

which no heap predicate in our current set applies. Future work will address the integra-

tion of techniques for automatic inference of recursive heap predicates, such as the work

by Guo et al. [91], which further broadens the applicability of our heap analyser.

Extending the code support. The fact that our analysis and code transformations are made

at the level of LLVM IR allows the seamless integration of our technique into many state-of-

the-art HLS flows. The analysis builds an internal representation of the program from the

LLVM IR as described in Section 4.3.1. Our tool supports a range of Clang-generated LLVM

IR codes. However, the translation current into the internal representation does not sup-

port full-featured LLVM code. For example, instructions related to exception handling are

not supported. More importantly, our current analysis requires that all sub-functions in the

loop-under-analysis that contain heap-manipulating code be ‘inlined’. Future work will

extend the coverage to full-featured LLVM code and include the analysis of a call graph.

The latter can be addressed with a compositional bottom-up analysis which computes pro-

cedure summaries by inferring the pre- and post-condition specifications of sub-functions

in separation logic and which can be implemented using a technique called bi-abduction

[115]. We plan to adopt the compositional approach using bi-abduction in future work.

Pipelining. Our analysis identifies disjoint heap regions accessed by the program to

rule out data dependencies and to enable spatial parallelisation. The scope of this depen-

dence analysis can be extended to promote the automatic construction of pipelined data

paths from loops. HLS tools allow the user to construct custom pipelines in hardware,

where the tool relies on a dependence analysis to decide in which intervals subsequent

loop iterations can be scheduled for execution in the pipeline. As we discuss in Chapter 2,
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the lack of the ability to reason about heap-carried dependencies prevents current tools

from pipelining loops traversing heap-allocated data structures. Furthermore, additional

loop transformations, such as loop flattening and loop distribution, may be required to

expose the possibility of e�cient pipelining to an HLS tool as described in Section 2.4.2.

Future work in the area comes in two parts: Firstly, the analysis will be extended to mark

the absence and potential presence of dependencies between loop iterations. This exten-

sion requires including a notion of time in our analysis which we plan to address with a

combination of separation logic formulae and temporal operators. Secondly, we plan to

extend our code transformation framework to support loop transformations.

Prefetching. The automatic cache insertion in Chapter 5 can be further extended by

synthesising application-specific prefetching units which fetch data from o↵-chip memory

and store it in the on-chip caches in advance. Prefetching in microprocessors is usually

based on ‘learning’ memory access patterns while the program executes and then spec-

ulatively prefetching data accordingly. In custom hardware implementation, a tool can

build a specialised prefetcher which can prefetch data more accurately. In order to enable

the automated synthesis of such units, we plan to extend our heap footprint analysis to

provide information about when data is available for prefetching and when it is used by

the application. The approach to describe when heap-allocated data is used will also be

based on the combination of separation logic formulae and temporal operators.

Recursion. The tree-based benchmarks in Chapters 4 and 5 implement the tree traver-

sal with a while-loop and an explicit stack. Programmers may opt to write such programs

using recursion instead of explicitly describing a stack. However, similar to dynamic mem-

ory allocation, synthesisable recursion is a feature missing from all common HLS flows.

Recent work [116] presents a canonical scheme for translating recursive programs into

synthesisable code by automatically constructing a stack and the required control flow.

We believe that our HLS design aid for memory hierarchy synthesis, memory partitioning

and parallelisation is a natural fit for such a translator in that our tool can be added as a
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back-end to it. Future work will explore the automatic optimisation of recursive programs

in an HLS context using the techniques developed in this thesis.

Modelling coherency networks. The application-specific multi-cache system can be fur-

ther extended by including cache size scaling for coherent caches. The current framework

in Section 5.4 only models and scales private, independent caches. Future work will focus

on a model of the coherency protocol in a cache architecture consisting of coherent caches.

The cache hit rate estimation of such a coherent cache network must, in addition to cold,

conflict and capacity misses, take additional invalidation and owner misses due to inter-

fering accesses by other caches into account. An accurate prediction of this new class of

cache misses relies on the knowledge of the exact interleaving of memory accesses by the

parallel units, which is contradictory to our approach of modelling the cache performance

before RTL generation.

Modelling energy consumption. Our current cache sizing framework aims at hit rate

maximisation. The majority of our experiments in Section 5.5.5 show that maximally

scaled caches also result in the lowest overall energy consumption because the run-time

reduction outweighs the increased on-chip power consumption due to cache insertion.

However, in one benchmark we observe that small caches are more beneficial than large

caches in terms of energy consumption, which suggests that the optimal cache sizing

changes when we optimise for energy instead of aggregate hit rate. Future work will

address the development of an energy model that can be used to minimize the energy

consumption of our multi-cache system.

6.2. Final Remarks

This thesis o↵ers a program analysis and code transformation infrastructure that enables

parallelisation and hardware-specific optimisations of the memory sub-system for the syn-

thesis of e�cient hardware implementations from heap-manipulating codes, extending
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the scope of state-of-the-art HLS tools to this type of programs. We view this extension as

an important step towards the support of full-featured C/C++ code in future HLS flows

and we envisage pointer-based codes gaining importance in future hardware designs. As

a particular example, we believe that the techniques developed in this thesis are useful

in future programming environments that target tightly coupled microprocessor-FPGA

systems which have great potential to arise in data centre applications [3] in the future.

In particular, the C-based OpenCL 2.0 standard [117] that targets such programming en-

vironments allows developers to write accelerator codes that directly share dynamically

allocated pointer-linked data structures with the software executing on the host micropro-

cessor. The automated analyses developed in this thesis enable e�cient implementations

of accelerator kernels that process such data structures and thus have potential to improve

the programmability and e�cient use of these hybrid systems.
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A. Context-Aware Heap Analysis

This section extends the heap analysis of Section 4.2 to a context-aware analysis. As

above, we use a running example to explain our approach. Listing A shows the func-

tion reflectTree which traverses a heap-allocated tree structure. The traversal is not

destructive as opposed to the motivating example in Listing 4.1. The auxiliary functions

push and pop are equivalent to the ones in Listing 4.1. We first explain the problem that

occurs when extending our heap analysis to the context.

The program state right before entering the loop in Line 6 is:

s 7! [u : root, n : nil] ⇤ tree(root) (A.1)

Fig. A.1 shows snapshots of the heap-allocated data structures and pointer assignment dur-

ing the execution of four iterations of the loop. Our symbolic execution analyses all control

flow paths, but here we show a specific path only: Fig. A.1a corresponds to (A.1), Fig. A.1b-

e show the program state after iteration 1 to 4 (at the end of the loop body). The conditional

in Line 13 evaluates to true in all four iterations. Note that for a di↵erent control flow path

the pointer u in Fig. A.1 can point to a di↵erent sub-tree. The first challenge is to describe

Fig. A.1f with recursive predicates (required for convergence of the fix-point calculation).

We need an analysis that ensures fix-point convergence and maintains a correct description

of the function’s the context tree(root), and how the loop statements modify the context. If

we were to run our standard loop analyis on the Reflect tree example above without the

requirement to take the function’s context into account, we could ensure convergence of

the fix-point iteration with a garbage predicate. Since here we want to take the context into
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1 //main traversal function

2 void reflectTree(treeNode *root) {

3 // loop preamble

4 stackRecord *s = push(root, NULL);

5 // loop-under-test

6 while (s != NULL) {

7 treeNode *u;

8 s = pop(&u, s);

9 treeNode *l = u->left;

10 treeNode *r = u->right;

11 u->left = r;

12 u->right = l;

13 if (u->left!=NULL && u->right!=NULL) {

14 s = push(u->right, s);

15 s = push(u->left, s);

16 }

17 }

18 }

Listing A.1: C-like pseudo code for a tree reflection.

account, we could fold the linked list and sub-trees (grey-shaded rectangle and triangles)

into a pls predicate: pls(E, F) () E 7! [u : u01, n : n01] ⇤ tree(u01) ⇤ pls(n01, F). However, the

remaining dark grey tree nodes from root to u cannot be absorbed in any recursive pred-

icate available in our standard analysis: we cannot use the tree predicate because 1) this

would mean losing track of the u pointer, and 2) the sub-trees would be shared between

the pls and the tree predicate, a fact that is ruled out by the ⇤-operator. Note that this prob-

lem does not occur in the previous example filter because the tree traversal is destructive.

Our first step to solve this problem is to introduce a new predicate to describe the tra-

versed tree segment. We use a tree segment predicate to specify structures like the segment

from root to u:
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Figure A.1.: Heap layout and pointer assignment during the first four iterations of the loop
in Listing A.

Definition A.1 (Tree segment).

tseg(E, F)()(E , F ^ E 7! [l : t0, r : n0] ⇤ tree(t0) ⇤ tseg(n0, F) ) _ (A.2)

(E , F ^ E 7! [l : n0, r : t0] ⇤ tree(t0) ⇤ tseg(n0, F) ) _

(E = F ^ emp)

i.e. a list segment with an additional pointer to a sub-tree at each node. Each list node connects to

its successor either via the left or right pointer field of the original tree node.

Def. A.1 allows us to describe the segment tseg(root, u). However, we must find a way

how pls and tseg can ‘co-exist’ in a state formula. The formula tseg(root, u) ⇤ pls(s, nil) does
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not express the correlation between pls and tseg: the nodes of both data structures contain

pointers to the sub-trees and these sub-trees are shared by both. The ⇤-operator enforces

disjointness of these sub-trees, which is wrong in this case. Replacing ‘⇤’ by ‘^’ is no viable

solution either, because it states potential overlapping of nodes (list nodes and traversed

tree nodes) that are disjoint in reality. The next section describes a modified analysis that

can combine pls and tseg to correctly describe the program state of our motivating example.

A.1. Overlaid Sub-Analyses

Our goal is to construct a state formula that allows us to use both the pls and tseg predicates

and correctly express the heaplets shared by these predicates. We borrow and modify a

technique developed for overlaid data structures [118] for this purpose. The approach is to

split the analysis into two sub-analyses. The separation logic formulae in this analysis are of

the form C ^ �L, where C generates the partitioning information for the program context

and �L describes the state manipulated by the function under test which contains the loop

invariant after fix-point convergence. For ease of explanation, we label the context (C)

analysis with  C and the loop (L) analysis with �L. The classical conjunction (‘^’) between

these sub-analyses allows sharing, i.e. both analyses can describe the same heap-allocated

objects (in contrast to predicates connected by ‘⇤’ which strictly requires that the described

objects be disjoint). The formulae in C and�L focus on di↵erent objectives and parts of the

program, but the combined formula  C ^ �L is always a valid and accurate assertion for

the program state. By dividing the problem into  C and �L we are able to simultaneously

use the tseg and pls predicates. As in [118], we transfer information from the loop analysis

to the context analysis about the e↵ect of the loop body on the context. A di↵erence is

that we need to transfer information only in one direction: from the loop analysis �L

to the context analysis  C. As described above, the call-site predicate of the function

reflectTree is tree(root). At the start, we include this predicate in both sub-analyses and
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enter the symbolic execution of the function with the state formula:

⇣
tree(root)↵ ⇤ true�

⌘
^
⇣
tree(root)↵ ⇤ true↵

⌘
(A.3)

In the following discussion, we call the left (right) side of the conjunction the left (right)

hand side. The state formula on the right hand side evolve in the same way as the loop

analysis in Section 4.2 (with a slight modification discussed below). The left hand side

receives state updates that are transferred from the loop analysis to the context analysis;

in the end it contains the partition information provided to the program context. We

introduce the true predicate on both sides. This assertion always holds and allows us to

absorb (‘remove’) predicates that are not relevant for the respective sub-analysis without

falsifying the overall state assertion. Absorbing predicates in true can be viewed as

‘weakening’ the formula, i.e. making it less precise. The idea, however, is that the ‘missing’

information in one sub-analysis is preserved on the other side and vice versa. As in [118],

we assign region variables ↵ and � to the predicates. We use them to express what

predicates belong to the context data and what predicates belong to heaplets that are only

used during function execution. The predicate tree(root)↵ states that the addresses of the

tree nodes form the set ↵. The region variables can be straightforwardly integrated in

our heaplet label sets in Section 4.2. However, ↵ and � should not be confused with heap

footprint labels (we omit footprint labels in the following equations for ease of readability).

In the following discussion, we repeat parts of the description of the cut-point insertion and

fix-point calculation for the extended analysis. In the case of the reflectTree example,

we require one loop iteration to be peeled o↵ in order to prove a valid partitioning. We

execute the loop preamble and obtain:

⇣
tree(root)↵ ⇤ true�

⌘
^ (A.4)

⇣
tree(root)↵ ⇤ s 7! [u : root, n : nil]� ⇤ true↵

⌘
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......
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Figure A.2.: Program state described by the two sub-analyses �L and  C in (A.4).

We have not accessed the tree, i.e. the context, yet. The linked list node has been created by

the preamble, i.e. by the function under test itself and is therefore automatically assigned

to region �. Fig. A.2 shows the program state described by the two sub-analyses in (A.4).

For ease of explanation, we assume that the sequence of evaluations of the conditional in

Line 13 is the same as in Fig. A.1. We unroll the first iteration and, at the end of the loop

body, we get:

⇣
tree(root)↵ ⇤ true�

⌘
^ (A.5)

⇣
root = u ^ u 7! [l : u00, r : u01]↵ ⇤ tree(u00)↵ ⇤ tree(u01)↵ ⇤

s 7! [u : u00, n : s00]� ⇤ s00 7! [u : u01, n : nil]� ⇤ true↵
⌘

The right hand side of (A.5) shows that we have accessed the context because predicates

of region ↵ have been modified (the root record was accessed by a program command):

tree(root)↵ was transformed into root = u ^ u 7! [l : u00, r : u01]↵ ⇤ tree(u00)↵ ⇤ tree(u01)↵. How-

ever, the left hand side still has no knowledge of this change. We transfer this information

to the context sub-analysis by applying the same state transition in  C:

⇣
root = u ^ u 7! [l : u00, r : u01]↵ ⇤ (A.6)

tree(u00)↵ ⇤ tree(u01)↵ ⇤ true�
⌘
^

⇣
root = u ^ u 7! [l : u00, r : u01]↵ ⇤ tree(u00)↵ ⇤ tree(u01)↵ ⇤

s 7! [u : u00, n : s00]� ⇤ s00 7! [u : u01, n : nil]� ⇤ true↵
⌘
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The cut-point insertion now finds a valid cut-point pair s and sb = s00 (it inserts sb). At this

point, our tool submits the instrumented program state to the fix-point calculation. After

the fix-point calculation executed the second iteration, at the end of the loop body and after

all sub-analysis synchronisation, we obtain (sb inserted for s00):

⇣
root 7! [l : u, r : u01]↵ ⇤ u 7! [l : u02, r : u03]↵ ⇤ (A.7)

tree(u02)↵ ⇤ tree(u03)↵ ⇤ tree(u01)↵ ⇤ true�
⌘
^

⇣
root 7! [l : u, r : u01]↵ ⇤ u 7! [l : u02, r : u03]↵ ⇤

tree(u02)↵ ⇤ tree(u03)↵ ⇤ tree(u01)↵ ⇤ s 7! [u : u02, n : s01]� ⇤

s01 7! [u : u03, n : sb]� ⇤ sb 7! [u : u01, n : nil]� ⇤ true↵
⌘

In contrast to the ‘standard’ symbolic execution of loop iterations, we can now steer the two

sub-analyses towards a di↵erent objectives. The sub-analysis �L focuses on the fix-point

calculation for the loop only and hence needs to consider only those program variables

that are ‘used’ by the loop. On the other hand, the sub-analysis  C focuses on the context

predicates only and must consider program variables whose scope extends to the program

context. Before launching the analysis, partition the set of program variables (PV) in

the two groups: loop variables (LV) and context variables (CV). We obtain the former

group by running a definition-usage (DEF-USE) analysis, a standard LLVM analysis, that

lists all pointer variables read or written to within the scope of the loop. In this case,

LV = {s, u, l, r}. The latter group consists of pointer variables that are not declared within

the function body. In this case, CV = {root}. We use this information about program

variables to absorb predicates that arise in the loop analysis in the true assertion. To

this end, the analysis applies ‘absorption rules’ that are specifically designed for the sub-

analysis �L. The following example shows a rule for a tree node predicate. The rule is

analogously defined for nodes in ls and pls predicates.
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Definition A.2 (Absorption rule for a tree node predicate in �L).

E 2 PV ^ E < LV ^ E 2 CV
E 7! [l : F, r : G]↵ { true↵

(A.8)

i.e. the predicate is absorbed if the predicate describes context data (region ↵), and the pointer

expression E referencing it is a program variable, and is not read or written within the loop under

test, and is declared in the program context. Note that a predicate cannot be recovered after it has

been absorbed by the true assertion.

The predicate root 7! [l : u, r : u01]↵ on the right hand side satisfies the condition of Def. A.2

and is absorbed by true↵:

⇣
root 7! [l : u, r : u01]↵ ⇤ u 7! [l : u02, r : u03]↵ ⇤ (A.9)

tree(u02)↵ ⇤ tree(u03)↵ ⇤ tree(u01)↵ ⇤ true�
⌘
^

⇣
u 7! [l : u02, r : u03]↵ ⇤

tree(u02)↵ ⇤ tree(u03)↵ ⇤ tree(u01)↵ ⇤ s 7! [u : u02, n : s01]� ⇤

s01 7! [u : u03, n : sb]� ⇤ sb 7! [u : u01, n : nil]� ⇤ true↵
⌘

The fix-point calculation proceeds in the same way as described in the previous section:

symbolic execution of loop iterations and abstraction. The latter requires a small modifi-

cation which is explained in the next section.

A.2. Abstraction and Fix-point Convergence

The fix-point calculation for the extended analysis uses a slightly modified set of abstraction

rules. When folding singleton heaplets into recursive predicates, the new abstraction rules

ensure that the information about region variables↵ and � is not lost. To this end, the region

variables attached to predicates are assigned in the same order to the recursive predicate.

We implement this behaviour in a modification to our standard set of abstraction rules.

The following example shows a folding operation using the new abstraction rule for the
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pls predicate:

E 7! [u : u01, n : n01]r1 ⇤ tree(u01)r2 ⇤ n01 7! [u : u02, n : F]r1 ⇤ tree(u02)r2⇤{ pls(E, F)r1,r2

The region variables r1 and r2 are placeholders and can each take the value ↵ or �. Note

that we omit the additional footprint labels here for clarity. When a node in the list is

accessed by the symbolic execution, pls(E, F)r1,r2 unfolds to

E 7! [u : u01, n : n01]r1 ⇤ tree(u01)r2 ⇤ pls(n01, F)r1,r2

Abstraction is performed in both sub-analyses  C and �L which are both required to

converge in order to generate a valid proof. The abstraction rules for both analyses only

di↵er in the way heap footprint labels are treated: In  C, we do not merge predicates

with di↵erent footprint labels, i.e. hu 7! [l : u01, r : u02]↵i{} ⇤ htree(u01)↵i{a} ⇤ htree(u02)↵i{b} gets

folded into htree(u)↵i{a,b} in the loop analysis �L, but not in the context analysis  C. This is

necessary because we may lose the partitioning information for the context otherwise. In

our reflectTree example, we reach the following loop-invariant state:

⇣
hroot 7! [l : u06, r : u07]↵i{} ⇤ htseg(u06, u)↵i{a}⇤ (A.10)

htree(u)↵i{a} ⇤ htree(u07)↵i{a} ⇤ true� _

hroot 7! [l : u06, r : u07]↵i{} ⇤ htseg(u07, u)↵i{b}⇤

htree(u)↵i{b} ⇤ htree(u06)↵i{b} ⇤ true�
⌘
^
⇣
�
⌘

Due to space limitations, we write out the context assertion  C only. At this point, the

fix-point calculation terminates with the usual partition label assignment and our analysis

‘leaves’ the loop. The left hand side of (A.10) contains the information we provide to the

program context. Because the program variable u is local to the function reflectTree

and is not defined outside its scope (u < CV), the analysis replaces it with a fresh primed

variable v01. This automatically triggers a last abstraction step in the context assertion after
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the fix-point calculation terminated and results in:

⇣
hroot 7! [l : u06, r : u07]↵i{} ⇤ (A.11)

htree(u06)↵i{a} ⇤ htree(u07)↵i{b} ⇤ true�
⌘
^
⇣
�
⌘

The disjunctive clauses in (A.10) became equivalent after the abstraction and were auto-

matically conjoined by the tool. As in Section 4.2, (A.11) tells us that the heap accessed by

the loop can be partitioned into two disjoint regions labelled a and b. Furthermore, it tells

us how the algorithm partitioned the heap that is accessed not only by the function itself

but also by other parts of the program (the context). For example, the source code trans-

formation in a function that builds the tree data structure can use this context information

to assign the correct memory bank to each partition.

182


