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SUMMARY

This dissertation attacks the well-known problem of path-imprecision in static

program analysis. Our starting point is an existing static program analysis that

over-approximates the execution paths of the analyzed program. We then make

this over-approximating program analysis more precise for automatic testing in an

object-oriented programming language. We achieve this by combining the over-

approximating program analysis with usage-observing and under-approximating anal-

yses. More specifically, we make the following contributions.

We present a technique to eliminate language-level unsound bug warnings pro-

duced by an execution-path-over-approximating analysis for object-oriented programs

that is based on the weakest precondition calculus. Our technique post-processes the

results of the over-approximating analysis by solving the produced constraint systems

and generating and executing concrete test-cases that satisfy the given constraint

systems. Only test-cases that confirm the results of the over-approximating static

analysis are presented to the user. This technique has the important side-benefit of

making the results of a weakest-precondition based static analysis easier to under-

stand for human consumers. We show examples from our experiments that visually

demonstrate the difference between hundreds of complicated constraints and a simple

corresponding JUnit test-case.

Besides eliminating language-level unsound bug warnings, we present an additional

technique that also addresses user-level unsound bug warnings. This technique pre-

processes the testee with a dynamic analysis that takes advantage of actual user data.

It annotates the testee with the knowledge obtained from this pre-processing step and

thereby provides guidance for the over-approximating analysis.

xiv



We also present an improvement to dynamic invariant detection for object-oriented

programming languages. Previous approaches do not take behavioral subtyping into

account and therefore may produce inconsistent results, which can throw off auto-

mated analyses such as the ones we are performing for bug-finding.

Finally, we address the problem of unwanted dependencies between test-cases

caused by global state. We present two techniques for efficiently re-initializing global

state between test-case executions and discuss their trade-offs.

We have implemented the above techniques in the JCrasher, Check ’n’ Crash, and

DSD-Crasher tools and present initial experience in using them for automated bug

finding in real-world Java programs.
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CHAPTER I

INTRODUCTION

1.1 My thesis

An existing static program analysis that over-approximates the execu-

tion paths of the analyzed program can be made more precise for au-

tomatic testing in an object-oriented programming language—by com-

bining the over-approximating analysis with usage-observing and under-

approximating analyses.

1.2 Automatic software testing

The software executing around us contains bugs and some pose grave risks to the

public. For example, software bugs continue to kill humans.1 And the situation

is getting worse, because we will rely more on software in the future. Software will

manage all aspects of our lives: our military, transportation systems, general elections,

and even our own bodies. Software will continue to contain bugs, and some will cause

disaster.

Many programs have an infinite number of potential internal execution states, and

bugs are often restricted to very specific execution states. Finding bugs is like finding

a few needles in a haystack of possible program executions. Relatively little research

has focused on finding individual bugs. Instead, much work has centered around

guaranteeing their absence from all possible program executions, mostly using pro-

gram analyses that over-approximate the set of bugs. Compilers and type-systems are

1The Forum On Risks To The Public In Computers And Related Systems is collecting examples
at http://catless.ncl.ac.uk/Risks/

1



examples of over-approximating analyses. But due to fundamental decidability limi-

tations, many bugs in real-world software will remain out of reach of such guarantee-

based approaches. (If guarantee-based approaches were to catch all bugs, guarantee-

based approaches would also produce too many false bug warnings to remain useful

in practice.) Meanwhile, industry (and thereby society as a whole) is spending a lot

of resources on finding individual bugs that are out of reach of guarantee-based ap-

proaches. The ensuing bug-finding activities are often manual and ad-hoc, and there

is little research on finding individual bugs systematically and efficiently.

This dissertation is part of a body of work that tries to advance the state of the art

in automatic bug-finding or automatic testing. Automatic testing employs program

analysis to automatically explore specific program paths. Testing, or bug-finding,

is interested in program paths that lead to a bug. But it seems easy to transfer

the employed analyses to different applications, which may be interested in program

paths that lead to some other program state or property.

1.3 Technical positioning

Following is the technical reasoning for picking the thesis stated in Section 1.1. This

should give an easy technical introduction into the nature of this work.

• “Existing” restricts our scope in a subtle way. As opposed to conducting a

purely theoretical investigation, we implement our solution in a realistic setting.

This leads us to interesting technical problems in existing analyses, which we

address with novel algorithms for dynamic invariant detection and efficiently

re-initializing global program state between test case executions.

• “Static program analysis that over-approximates the execution paths of the ana-

lyzed program” can be read in the narrow sense of static, compiler-like program

analyses that make conservative assumptions about the feasibility of program
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execution paths. But the core problems of these analyses, falsely claiming in-

feasible paths as feasible and producing hard to read reports, are also found in

many other analyses such as model-checking, which may not be strictly over-

approximating and may execute the analyzed program concretely or symbol-

ically. By addressing these common problems, our approach should equally

apply to this broader interpretation.

• “More precise” can be read as relating to each of the two problems of static

analysis that over-approximates execution paths. The first interpretation refers

to the rate of infeasible paths the analysis falsely claims as feasible. The sec-

ond interpretation has a human-computer interaction flavor, since it makes the

results of the over-approximating static analysis more concise and easier to un-

derstand for human users—by complementing huge abstract constraint systems

with concrete and concise test-cases.

• “Automatic” makes clear that we are interested in a fully automated program

analysis. This is meant to complement, but not replace, manually crafted test

cases. To the contrary, our technique relies on an existing test suite or at least

the user manually labeling executions as correct or incorrect.

• “Testing” makes clear that we are analyzing single execution paths to find bugs,

as opposed to verification approaches that analyze all paths. Also, verification

approaches often have access to formal specifications, which is usually not the

case in real-world testing. This poses a significant challenge for testing, in

addition to the common challenge of reasoning about program execution paths.

• “Object-oriented” hints at a technical highlight of this work. In contrast to pre-

vious work, we provide better support for the following programming language

features, which are at the core of object-oriented programming languages and

their specification languages.
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– The ability to redefine or provide multiple implementations of a method

– Subcontracting or behavioral subtyping

These features, together with subtype polymorphism and inheritance, distin-

guish many modern object-oriented programming languages from many tradi-

tional, procedural programming languages, such as Pascal [108, 61], C [62, 63],

and Modula-2 [109, 110].

• “Usage-observing” refers to inferring specifications from actual user data. Many

approaches are commonly labeled as specification inferrence, but some do not

take actual user data into account. Instead, they produce general, usage-

independent program summaries, which are very valuable for many tasks, but

do not give us additional constraints on the expected program usage. Observ-

ing actual program usage is our substitute for formal specifications, which are

usually not available to real-world automatic testing.

1.4 Technical context

We investigate the thesis of Section 1.1 in the context of Java [47, 48], ESC/Java [42],

and detecting runtime exceptions. This is a good context for such an investigation

because of the practical importance, wide availability, and good documentation of

Java, ESC/Java, and runtime exceptions.

• Java [47, 48] is currently one of the most popular object-oriented programming

languages, with wide use in industry, teaching, and research.

• The extended static checker for Java (ESC/Java) is a research tool for rela-

tively deep static analysis of Java programs. While not being strictly over-

approximating (it also misses feasible paths), ESC/Java shares the major prob-

lems of powerful, strictly over-approximating, static analyses—false bug warn-

ings and an overly complicated presentation of bug warnings. ESC/Java is
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well-known in the verification and program analysis research communities. For

example, as of December 2007, Google Scholar lists over 500 citations to the

main ESC/Java paper [42]. ESC/Java is available in binary and source form,

and has so far been actively maintained as ESC/Java2 [20]. The ESC/Java

authors have published multiple research papers on different aspects and appli-

cations of ESC/Java [73, 41, 72, 66], including the underlying constraint-solver

and automated theorem-prover Simplify [33].

• Automatic testing is an important application of program analysis, in which

the analysis tries to find program execution paths that violate a given program

correctness condition. A representative example correctness condition is the

absence of certain runtime exceptions, which often indicate program bugs and

may result in abrupt program termination (“crash”).

Other contexts may be similarily valid and interesting, but it is less likely to gain

significant new insight from replicating the core ideas from one context to another.

1.5 Overview and contributions

This dissertation attacks the well-known problem of path-imprecision in static pro-

gram analysis. Our starting point is an existing static program analysis that over-

approximates the execution paths of the analyzed program. We then make this

over-approximating program analysis more precise for automatic testing in an object-

oriented programming language. We achieve this by combining the over-approximating

program analysis with usage-observing and under-approximating analyses. More

specifically, we make the following contributions.

1. We present a technique to eliminate language-level unsound bug warnings pro-

duced by an execution-path-over-approximating analysis for object-oriented pro-

grams that is based on the weakest precondition calculus. The technique post-

processes the results of the over-approximating analysis by solving the produced

5



constraint systems and generating and executing concrete test-cases that sat-

isfy the given constraint systems. Only test-cases that confirm the results of

the over-approximating static analysis are presented to the user.

2. Our technique of converting constraint systems to concrete test-cases has the

important side-benefit of making the results of a weakest-precondition based

static analysis easier to understand for human consumers. We will show ex-

amples from our experiments that visually demonstrate the difference between

hundreds of complicated constraints and a simple corresponding JUnit test-case.

3. Besides eliminating language-level unsound bug warnings, we present an addi-

tional technique that also addresses user-level unsound bug warnings. This tech-

nique pre-processes the testee with a dynamic analysis that takes advantage of

actual user data. It annotates the testee with the knowledge obtained from this

pre-processing step and thereby provides guidance for the over-approximating

analysis.

4. We present an improvement to dynamic invariant detection for object-oriented

programming languages. Previous approaches do not take behavioral subtyping

into account and therefore may produce inconsistent results, which can throw

off automated analyses such as the ones we are performing for bug-finding.

5. We address the problem of unwanted dependencies between test-cases caused

by global state. We present two techniques for efficiently re-initializing global

state between test-case executions and discuss their trade-offs.

6. We have implemented the above techniques in the JCrasher, Check ’n’ Crash,

and DSD-Crasher tools and present initial experience in using them for auto-

mated bug finding in real-world Java programs.
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CHAPTER II

BACKGROUND AND TERMINOLOGY

At the heart of most program analyses is reasoning about the feasibility of program

states and program execution paths. Automated bug-finding and testing are no excep-

tion. We can always derive execution states from knowledge about execution paths,

so to keep the terminology short and intuitive, we focus it on execution paths. This

chapter aims at clarifying our use of the following program analysis terms.

• “Precise”

• “Over-approximating” and “under-approximating”

• “Sound” and “complete”

• “Language-level” and “user-level”

• “Dynamic” and “static”

Our discussion should not be restricted to our specific investigation in the context

of testing object-oriented programs. Instead, we hope to provide a guide for terms

commonly used in program analysis. When defining a term we try to be careful to

qualify the defined term with our context of analyzing individual execution paths

(which is useful for testing). This should clearly contrast our definitions from often

inverse definitions in the context of analyzing all paths (which is common in the

verification community). After defining the terms we will often omit the explicit

single-path qualification from the text, which then should always be read with an

implicit qualification to our testing context in mind.
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2.1 Program paths, states, and behavior

In this section we clarify our usage of the terms program paths, program states, and

program behavior.

2.2 Program analysis and its fundamental limitations

Recall that general-purpose programming languages are generally Turing-complete,

which makes the halting-problem undecidable for them. All mainstream, imperative,

functional, and object-oriented languages are in this category (such as C, Pascal, Lisp,

ML, Haskell, C++, C#, and Java). For programs written in such languages, there

can be no analysis that determines all feasible execution paths or states, without

marking infeasible ones as feasible. But this does not mean we should give up on

program analysis. To the contrary, there is a large number of valid and interesting

trade-offs that program analyses can implement to achieve different goals.

2.3 Over- and under-approximating program analyses

Due to the fundamental decidability limitations discussed in Section 2.2, program

analyses are really approximation algorithms (for a theoretical exposition, see the rich

literature on abstract interpretation [21, 85, 49, 50]). They typically approximate the

set of feasible program execution paths or the set of feasible program states. Path

feasibility can simulate many additional criteria of interest. E.g., we could translate

many program correctness conditions directly to additional program assertions. So

depending on the context we can read “feasible” as “relevant”, “specified”, or “of

interest”. We adopt the standard precision and recall definitions from the information

retrieval community to classify program analyses. With this basic terminology in

hand we can then easily distinguish over- and under-approximating program analyses.

Following is our precision metric, which, given our testing background, we define as

the precision of reported paths being feasible. The paths reported by a more precise
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Figure 1: Program analysis classification via precision and recall. Different pro-
gram analyses make different trade-offs between reporting many feasible paths (high
recall) and reporting few infeasible ones (high precision). Compilers, testing, and the
extended static checker ESC are three prominent examples for different trade-offs in
this space.

analysis are more likely to be feasible.

Definition (Path precision). “(feasible ∩ reported) / reported” execution paths

For example, a 100% precise analysis ensures that each path it reports is feasible.

Such an analysis reports a subset of the goal set of exactly the feasible paths, which

we call under-approximating, short for under-approximating the set of feasible paths.

Definition (Under-approximating). precision = 1

Testing is the classic example of a 100% precise program analysis; executing the

analyzed program makes it easy for the analysis to ensure that every path reported

to be feasible really is feasible. On the other hand, precision does not talk about

how many feasible paths the analysis reports. To capture “how many” we use our

following recall metric, short for recall of feasible execution paths. An analysis with

a higher recall reports more of the feasible paths.
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Definition (Path recall). “(feasible ∩ reported) / feasible” execution paths

For example, an analysis that has 100% recall reports all feasible paths, and may

report additional non-feasible ones. It therefore reports a superset of our goal set

of exactly the feasible paths. We call such an analysis over-approximating, short for

over-approximating the set of feasible paths.

Definition (Over-approximating). recall = 1

Compilers are the classic example of program analysis that has 100% recall. Com-

pilers do not miss any feasible execution path but may include paths that are not

feasible in their reasoning, and hence claim infeasible ones as feasible, which leads to

false bug warnings in our context.

Figure 1 illustrates that precision and recall are orthogonal, i.e., they are not

the opposite of each other. The unrealistic, perfect program analysis is in the right

upper corner, at the intersection of 100% precision and 100% recall, which makes it

both under- and over-approximating. While many analyses are either over- or under-

approximating, there is a huge area between these two extremes. These analyses are

neither over- nor under-approximating, which means that they combine the concep-

tual problems of both, they may miss feasible paths and report infeasible ones as

feasible. ESC/Java is an example analysis. Note that such analyses are not neces-

sarily bad, since, depending on the task at hand, a small loss of precision may be

tolerable in exchange for higher recall, and vice versa.

2.4 Sound and complete program analyses

The terms “sound” and “complete” are commonly used in logic, verification, and

program analysis to denote the two extremes of a program analysis spectrum. The

“sound” extreme is often intuitively considered to be the most worthy location in

the spectrum. But many well-respected analyses readily admit to be “unsound”.
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ESC/Java, for example, is “unsound” and “incomplete” and therefore somewhere in

between the two extremes.

Compared to the traditional verification and program analysis literature, we are

using a non-standard definition of sound and complete. Much of the previous work,

including the main ESC/Java paper [42], defines sound and complete relative to a

correctness condition and the entire program, meaning all paths of the programs.

Instead, we define sound and complete relative to a predicate and a single path.

All paths are a good fit for proving program correctness, but our focus is program

incorrectness. To prove a program incorrect, we are looking for a counterexample, a

single program path that satisfies the negation of a verification condition. Switching

the focus from all paths to one path leads us to the opposite of the definitions used

by ESC/Java and much prior work. I.e., whenever we refer to a sound system, we

mean a complete correctness proving system, and whenever we refer to a complete

system we mean a sound correctness proving system.

In mathematical logic, a sound inference system is powerful enough that each

statement it infers is true. Whereas a complete system is powerful enough that it

could infer any true statement. A sound system may be incomplete and therefore fail

to infer some true statements. A complete system may be unsound and therefore able

to infer false statements (besides all true ones).1 The following definitions summarize

these notions for a given statement or predicate in our testing context, where we

are interested in single paths that satisfy a given bug property, such as throwing a

runtime exception.

Definition (Path sound). can infer(predicate, path) ⇒ path satisfies predicate

1An inference system in mathematical logic is really just a set of derivation rules (such as the
sequent calculus). Mathematical logic is mainly concerned with the power of these rules and does
not tell us in which order to apply rules in order to derive a given fact. But we can think of a
simple breadth-first search approach that will eventually enumerate all derivable facts, and thereby
implement a slow derivation algorithm that looks more like the program analyses we are used to.
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Definition (Path complete). path satisfies predicate ⇒ can infer(predicate, path)

This makes sound a synonym for 100% precision and for under-approximating, and

unsound a synonym for being less precise. Similarily, complete becomes a synonym

for 100% recall and for over-approximating, and incomplete a synonym for having

less than 100% recall.

2.4.1 Language- and user-level sound bug-finding

In practice, there are two levels of soundness for bug-finding. The lower level is being

sound with respect to the execution semantics. This means we only ask questions or

predicates over the basic feasibility of a path with respect to the execution seman-

tics of the implementation language such as Java. But we do not encode any user

constraints such as user specifications. This means that a language-level sound bug

report corresponds to a feasible execution path of a program module, although the

input that caused this execution may not be one that would arise in normal program

runs. We call this language-level soundness because it can be decided by checking the

language specification alone. Many bug-finding approaches concern themselves only

with this soundness level, and several of them do not achieve it. A stronger form of

soundness consists of also being sound with respect to the intended usage of the pro-

gram. We call this user-level soundness, as it means that a bug report will be relevant

to a real user of the program. This is an important distinction because developers

have to prioritize their energy on the cases that matter most to their users. From

their perspective, a language-level sound but user-level unsound bug report may be

as annoying as one that is unsound at the language level.

Language-level soundness is the lower bar for bug-finding analysis. An analysis

that is unsound with respect to execution semantics may flag execution paths that

can never occur, under any inputs or circumstances. ESC/Java uses such an analysis.

In the absence of pre-conditions and post-conditions describing the assumptions and
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effects of called methods, ESC/Java analyzes each method in isolation without taking

the semantics of other methods into account. For instance, in the following example,

ESC/Java will report potential errors for get0() < 0 and get0() > 0, although

neither of these conditions can be true.

public int get0() {return 0;}

public int meth() {

int[] a = new int[1];

return a[get0()];

}

A user-level sound analysis has to satisfy not only language semantics but also

user-level specifications. Thus, user-level soundness is generally impossible to achieve

for automated tools since user-level specifications are mostly informal. Common forms

of user-level specifications are code comments, emails, or web pages describing the

program. Often these informal specifications only exist in the developers’ minds. It is

clear that user-level soundness implies language-level soundness, since the users care

only about bugs that can occur in real program executions. So the user-level sound

bug reports are a subset of the language-level sound bug reports.

ESC/Java may produce spurious error reports that do not correspond to actual

program usage. For instance, a method forPositiveInt(int i) under test may be

throwing an exception if passed a negative number as an argument. Even if ESC/Java

manages to produce a language-level sound warning about this exception it cannot

tell if this case will ever occur in practice. A negative number may never be passed as

input to the method in the course of execution of the program, under any user input

and circumstances. That is, an implicit precondition that the programmer has been

careful to respect makes the language-level sound warning unsound at the user-level.
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2.5 Static and dynamic program analyses

2.5.1 Common definition

The common usage of the terms dynamic and static is to distinguish testee-executing

and testee-non-executing program analyses. For example, the definition in the popu-

lar Wikipedia archive states that: 2

“Static code analysis is the analysis of computer software that is performed

without actually executing programs built from that software (analysis

performed on executing programs is known as dynamic analysis).”

We adopt this common terminology to avoid confusion, but not without pointing out

conflicting usage of these terms.

2.5.2 Capturing usage data

The standard definition of Section 2.5.1 is not quite satisfying, since it does not

capture the core benefit of executing a program, that is, precisely observing the

program paths executed by actual users. It may therefore be useful to distinguish

analyses based on the data they take into account during their reasoning. Many

analyses execute the program they are analyzing and are therefore dynamic according

to standard terminology, but they only invoke the analyzed program to pass it some

pre-defined, hard-coded data, such as -1, 0, and 1. This may remind us of compile-

time or static constants, in the sense that these analyses ignore which specific usage

scenarios are important to actual users.

Compilers are the classic example of static analysis, both in the common usage

and in the sense of ignoring specific uses of the analyzed program. Compilers make

general judgements about a program that hold for all possible uses. Testing is the

classic example of dynamic analysis, in both contexts, since it usually concentrates on

2http://en.wikipedia.org/wiki/Static code analysis as of December 2007
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the execution paths that are important to the user, and thereby takes user constraints

into account.

2.5.3 Third definition

There is a third interpretation of static and dynamic, which is due to Jackson and

Rinard [59]. They tie static to analyzing all paths and dynamic to analyzing individual

paths.

“Sound static analyses produce information that is guaranteed to hold on

all program executions; sound dynamic analyses produce information that

is guaranteed to hold for the analyzed execution alone.”

Interestingly, all three definitions are orthogonal to each other, and therefore seem

to capture interesting program analysis properties.
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CHAPTER III

THE PROBLEM: FALSE BUG WARNINGS

This chapter describes the first set of problems we want to investigate. These prob-

lems center around the path-imprecision of static program analyses, as defined in

Section 2.3. We are interested in three facets of this problem: language-level impre-

cision, user-level imprecision, and complicated reports. As motivated in Chapter 1,

we investigate these problems in the context of ESC/Java and finding runtime excep-

tions, which is often used to find bugs.1 Related contexts may involve other advanced

programming languages, other kinds of offending behavior, and other static analyses.

We briefly summarize the relevant behavior of ESC/Java and give examples of the

problems investigated. While investigating these issues in the following Chapter 5

and Chapter 6, we will realize two additional problems, which are also not restricted

to our concrete setting of ESC/Java and finding runtime exceptions. We will discuss

these additional problems and our solutions in Chapter 7 and Chapter 8.

3.1 Path-imprecision in static program analysis tools

The path imprecision problem of static analyses has been reported in several stud-

ies [91, 119, 105]. For example, Rutar et al. [91] examine ESC/Java2, among other

analysis tools, and conclude that it can produce many spurious warnings when used

without context information (method annotations). One specific problem, which we

revisit in Chapter 6, is that of ESC/Java’s numerous NullPointerException warn-

ings. For five testees with a total of some 170 thousand non-commented source

statements, ESC/Java warns of a possible null dereference over nine thousand times.

1We use the terms “fault”, “error”, and “bug” interchangeably, similarly the terms “report” and
“warning”.
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Rutar et al., thus, conclude that “there are too many warnings to be easily useful by

themselves.”

The surveys of automated bug-finding tools conducted by Zitser et al. [119] and

Wagner et al. [105] also concur with our estimate that an important problem is not just

reporting potential errors, but minimizing false bug warnings so that inspection by

humans is feasible. [119] evaluate five static analysis tools on 14 known buffer overflow

bugs. They found that the tool with the highest detection rate (PolySpace) suffered

from one false alarm per twelve lines of code. They conclude “[..] that while state-of-

the-art static analysis tools like Splint and PolySpace can find real buffer overflows

with security implications, warning rates are unacceptably high.” [105] evaluates

three automatic bug finding tools for Java (FindBugs [57], PMD, and QJ Pro). They

conclude that “as on average two thirds of the warnings are false positives, the human

effort could be even higher when using bug finding tools because each warning has

to be checked to decide on the relevance of the warning.” [91] evaluates five tools

for finding bugs in Java programs, including ESC/Java2, FindBugs, and JLint. The

number of reports differs widely between the tools. For example, ESC/Java2 reported

over 500 times more possible null dereferences than FindBugs, 20 times more than

JLint, and six times more array bounds violations than JLint. Overall, Rutar et al.

conclude: “The main difficulty in using the tools is simply the quantity of output.”

3.2 Example static program analysis: ESC/Java

The Extended Static Checker for Java (ESC/Java) [42] is our representative static

program checker. It searches the analyzed code for potential invariant violations.

ESC/Java compiles the Java source code under test to a set of predicate logic for-

mulae. ESC/Java checks each method m in isolation, expressing as logic formulae the

properties of the class to which the method belongs, as well as Java semantics. Each

method call or invocation of a primitive Java operation in m’s body is translated to
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a check of the called entity’s precondition followed by assuming the entity’s post-

condition. ESC/Java recognizes invariants stated in the Java Modeling Language

(JML) [71]. (We consider the ESC/Java2 system [20]—an evolved version of the

original ESC/Java, which supports Java 1.4 and JML specifications.) In addition to

the explicitly stated invariants, ESC/Java knows the implicit pre- and postconditions

of primitive Java operations—for example, array access, pointer dereference, class

cast, or division. Violating these implicit preconditions means accessing an array

out-of-bounds, dereferencing null pointers, mis-casting an object, dividing by zero,

etc. ESC/Java uses the Simplify theorem prover [33] to derive error conditions for a

method. We use ESC/Java to derive abstract conditions under which the execution of

a method under test may terminate abnormally. Abnormal termination means that

the method would throw a runtime exception because it violated the precondition of

a primitive Java operation. In many cases this will lead to a program crash as few

Java programs catch and recover from unexpected runtime exceptions.

Like many other static analysis based bug finding systems, ESC/Java is language-

level unsound (and therefore also user-level unsound): it can produce spurious error

reports because of inaccurate modeling of the Java semantics. ESC/Java is also

incomplete: it may miss some errors—for example, because ESC/Java ignores all

iterations of a loop beyond a fixed limit. Being incomplete, ESC/Java is therefore

not over-approximating, strictly speaking, according to our definition in Section 2.3.

While this shortcoming of ESC/Java may be problematic for real-world use, it is less

of a problem for our investigation, since ESC/Java shares the conceptual problem of

over-approximating analyses we want to address: path-imprecision and the resulting

false bug warnings. The ESC/Java authors assess the problem of “warnings about

non-bugs” (false bug warnings) produced by their ESC/Java tool as follows:

“[T]he tool has not reached the desired level of cost effectiveness. In

particular, users complain about an annotation burden that is perceived
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Figure 2: Overview of the Java exception terminology. An arrow is drawn
from super-type to direct or transitive subtype. Error, (checked) Exception,
RuntimeException, and the depicted subclasses of RuntimeException are, like
Throwable, found in package java.lang. JVM is a Java virtual machine.

to be heavy, and about excessive warnings about non-bugs, particularly

on unannotated or partially-annotated programs.”

3.3 Investigated paths: Exceptions and errors in Java

While our observation of imprecision and our solution concepts apply to static analysis

in general, for this investigation we concentrate on a path subset. We focus on paths

that lead to runtime exceptions, which in Java often indicates a potential bug in

the caller, callee, or the specification. In this section we review the Java exception

terminology to avoid confusions with similar terminology used in other contexts.

Figure 2 illustrates the Java exception terminology, which is organized as a sub-

type hierarchy. Each exception type is a subtype of Throwable. At a high level,
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Java distinguishes serious problems the user is not supposed to handle (Error) and

problems the user is supposed to handle (Exception).

• Java suggests throwing an Error in case of a serious problem. For example, the

Java virtual machine throws an OutOfMemoryError if it runs out of memory.

Many of these problems are only indirectly related to the currently executing

code, and often relate more to the particular execution environment (such as

the virtual machine being restricted to a small amount of heap memory). Most

applications are not supposed to catch errors, and ESC/Java does not search

for potential errors.

• Checked exceptions can only be thrown or passed on by methods or constructors

that declare to throw them. While checked exceptions are important in practice,

we do not concern ourselves with them in this investigation.

• Unchecked exceptions are of type RuntimeException. Each method and con-

structor may throw an unchecked exception, regardless of whether this has been

declared in the method’s signature or not. There seem to be the following two

kinds of unchecked exceptions.

• An exception of the first group of unchecked exceptions is typically thrown by

low-level functions implemented by the Java virtual machine (and we ignore

cases in which some user code explicitly throws an exception from this group.)

For primitive language operations no user method is called and therefore no

function frame is put onto the execution stack. Therefore the user method pro-

viding the wrong precondition is on top of the execution stack. These runtime

exceptions often indicate a bug in the caller, who triggered this exception in the

Java virtual machine. ESC/Java searches for these runtime exceptions and we

concentrate our investigation on them.
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• An exception from the second group of unchecked exceptions usually indicates

that the precondition of the called method or constructor has been violated.

These runtime exceptions are explicitly thrown by regular Java code. Such

exceptions include IllegalArgumentException and IllegalStateException.

Here the method whose preconditions have been violated is the top stack ele-

ment. For this investigation, we do not concern ourselves with such explicitly

thrown exceptions.

3.4 Path-precise analysis and automated bug finding

Testing and automated bug-finding are very popular applications of path-precise pro-

gram analysis. Clearly, testing is very important in practice, as briefly described in

Section 1.2. While having a path-precise analysis is good for testing, it is certainly

not enough. More important is knowing what constitutes a bug and what not, ideally

in the form of a formal specification. A big problem, which we cannot solve either,

is that real-world testing usually has no access to formal specifications. If there is

any specification, it is often incomplete or may contain errors itself. In Chapter 6 we

will try to mitigate this problem by inferring specification from existing test cases,

but this can only be a best-effort heuristic. We therefore cannot reach our ultimate

goal in automated testing, which is a fully automated tool for modern object-oriented

languages that finds bugs but produces no false bug warnings. A fully automated

bug finding tool should require zero interaction with the software developer using the

tool. In particular, using the bug-finding tool should not require any manual efforts to

write additional specifications or test cases. The tool should also not require manual

inspection of the produced bug warnings.

Initially, no program behavior constitutes a bug. Only specifications (implicit or

explicit) allow us to distinguish expected and buggy behavior. Implicit specifications

are common. For example, program comments typically consist of informally stated
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pre- and postconditions. A common precondition of object-oriented programs is that

null is never a legal input value, unless explicitly stated in a code comment. A

common postcondition is that a public method should not terminate by throwing a

class cast exception. Beyond such general properties, most specifications are very

specific, capturing the intended semantics of a given method. In the following we use

pre and post when referring to satisfying pre- and postcondition, respectively.

1. pre AND post is the specified behavior: the method is working in the intended

input domain as expected by the postcondition.

2. pre AND NOT post is a bug: the method deviates from the expected behavior

in the intended input domain.

3. NOT pre is a false bug report, since it reports behavior outside the intended

input domain of the method.

For our investigation, we treat every public method as a library method, that

is, we assume it can be called in any context. This assumption may be too liberal

for production use of our solutions as automated bug-finding tools, but it should

suffice for this investigation. This means that we consider an input to be valid if

manual inspection reveals no program comments prohibiting it, if invariants of the

immediately surrounding program context (e.g., class invariants) do not disqualify

the input, and if program values produced during actual execution seem (to the

human inspector) consistent with the input. We do not, however, try to confirm

the validity of a method’s input by producing whole-program inputs that give rise

to it. In other words, we consider the program as a library : We assume that its

public methods can be called for any values not specifically disallowed, as opposed to

only values that can arise during whole-program executions with valid inputs to the

program’s main method. This view of “program as library” is common in modern

development environments, especially in the Java or .Net world, where code can be
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dynamically loaded and executed in a different environment. Coding guidelines for

object-oriented languages often emphasize that public methods are an interface to

the world and should minimize the assumptions on their usage.2 Furthermore, this

view is convenient for experimentation, as it lets us use modules out of large software

packages, without worrying about the scalability of analyzing (either automatically or

by hand) the entire executable program. Finally, the per-method checking is defensive

enough to withstand most changes in the assumptions of how a class is used, or what

are valid whole-program inputs. Over time such assumptions are likely to change,

while the actual method implementation stays the same. Examples include reusing a

module as part of a new program or considering more liberal external environments:

buffer overflows were promoted in the last two decades from obscure corner case to

mission-critical bugs.

3.5 Problem 1: Language-level path-imprecision

Following we list some of the sources of language-level path imprecision, as exhibited

by ESC/Java. These cases are typical, in the sense that increasing precision in these

cases would often require prohibitively expensive reasoning.

3.5.1 Intra-procedurality

In the absence of pre-conditions and post-conditions describing the assumptions and

effects of called methods, ESC/Java analyzes each method in isolation without taking

the semantics of other methods into account. In the following example, ESC/Java

will report potential errors for get0() < 0 and get0() > 0, although neither of these

conditions can be true.

2For instance, Code Complete 2 [77, chapter 8] states “The class’s public methods assume the
data is unsafe, and they are responsible for checking the data and sanitizing it. Once the data has
been accepted by the class’s public methods, the class’s private methods can assume the data is
safe.” Similarly, Meyer [79, chapter 23] explicitly bases his guidelines of class design on the design
of libraries.
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public int get0() {return 0;}

public int meth() {

int[] a = new int[1];

return a[get0()];

}

3.5.2 Floating point arithmetic

ESC/Java does not have good handling of floating point values. Consider the following

simple example method.

int meth(int i) {

int res = 0;

if (1.0 == 2.0) res = 1/i;

return res;

}

ESC/Java will produce a spurious error report suggesting that with i == 0 this

method will throw a divide-by-zero exception. If integer constants (i.e., 1, 2 instead

of 1.0, 2.0) had been used, no error would have been reported.

3.5.3 Big Integers

ESC/Java has similar imprecisions with respect to big integer numbers. Big integers

are represented as symbols and the theorem prover cannot infer that, for instance,

the following holds: 1000001 + 1000001 != 2000000.

3.5.4 Multiplication

ESC/Java has no built-in semantics for integer multiplication. For input variables i

and j, ESC/Java will report spurious errors (division-by-zero) both for the line:
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if ((i == 1) && (j == 2)) res = 1/(i*j);

and also for:

if ((i != 0) && (j != 0)) res = 1/(i*j);

Note that the latter case is interesting because the possibility of error cannot

be eliminated by testing only a small number of values for i and j. This is one

example where generating a large number of test cases automatically with JCrasher

can increase the confidence that the error report is indeed spurious.

3.5.5 Reflection

ESC/Java does not attempt to model any Java reflection properties, even for constant

values. For instance, the following statement will produce a spurious error report for

division-by-zero with input i being 0:

if (int.class != Integer.TYPE) res=1/i;

3.5.6 Aliasing and data-flow incompleteness

ESC/Java models reference assignments incompletely—e.g., type information is lost

for elements stored in arrays. For classes A and B, with B a subclass of A, the following

code will produce a spurious error report (for a class-cast-exception error):

A[] arr = new A[]{new B(), new A()};

B b = (B) arr[0];

3.6 Problem 2: User-level path-imprecision

Section 2.4.1 has already described the problem of user-level path-imprecision. We

would just like to recall that user-level precision is strictly stronger and harder than

language-level precision. It is stronger since user-level precision implies language-

level precision, but not vice versa. It is harder to obtain as the criteria for user-level

25



1

User-level
Guided 
testingESC+spec

Language-level
precision

0
10

User-level
precision

testing

Random
testingCompilers

ESC+spec

ESC alone

Figure 3: Program analysis classification via user- and language-level path-precision.
Like the related precision-recall classification in Figure 1, this figure does not carry
quantitative results, but should only provide an approximate, qualitative overview.

precision are seldomly available in real-world settings, i.e., for testing. To address

this additional problem, we must revert to heuristic or other means of obtaining user

specifications. Figure 3 summarizes our observations.

3.7 Problem 3: Results can be hard to understand

When an error is reported by a program analysis system, it is generally desirable to see

not just where the error occurred but also an example showing the error conditions.

Musuvathi and Engler [82] summarize their experiences (in a slightly different domain)

as:

“A surprise for us from our static analysis work was just how important

ease-of-inspection is. Errors that are too hard to inspect might as well not

be flagged since the user will ignore them (and, for good measure, may

ignore other errors on general principle).”

ESC/Java can optionally emit the counterexamples produced by the Simplify

theorem prover. Yet these counterexamples contain just abstract constraints instead

of specific values. Furthermore, there are typically hundreds of constraints even for a

small method. For instance, for a 15-line method (from one of the programs examined

later in Section 5.6) ESC/Java emits a report that begins:
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P1s1.java:345: Warning: Array index possibly too large (IndexTooBig)

isTheSame(list[iList+1],pattern[iPatte ...

^

Execution trace information:

Reached top of loop after 0 iterations in

"P1s1.java", line 339, col 4.

Executed then branch in "P1s1.java", line 340, col 59.

Reached top of loop after 0 iterations in

"P1s1.java", line 341, col 6.

Counterexample context:

(patternNum@340.9-339.4#0-340.9:360.52 <= intLast)

(intFirst <= tmp2:342.26)

(tmp2:342.26 <= intLast)

(arrayLength(pattern:334.53) <= intLast)

...

(113 lines follow.) The first few lines are part of the standard ESC/Java report,

while the rest describe the counterexample. If the error conditions are clear from the

location and path followed to reach the error site, then the report is quite helpful.

If, however, the counterexample needs to be consulted, the report is very hard for

human inspection. See Appendix A for a full example.
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CHAPTER IV

THE JCRASHER AUTOMATIC RANDOM TESTING

SYSTEM

This chapter presents JCrasher [23], which is our representative testing tool. Testing

implements an extreme trade-off in the program analysis spectrum between precision

and recall, trading recall for full precision, as shown in Figure 1 of Chapter 1. We

include JCrasher for three reasons. First, it provides a fully precise dynamic baseline

analysis against which we can evaluate our solutions for imprecise static analyses in

Chapter 5 and Chapter 6. Second, our solutions presented in those chapters re-use

several aspects of JCrasher. Finally, evaluating JCrasher will lead us to a conceptual

problem in automated test execution, which we will explore in Chapter 8.

For conciseness, we describe here and later use a simplified version of JCrasher,

which just covers the aspects that are useful for our investigation. I.e., we do not

cover or use the following aspects.

• Taking into account the time allocated for testing

• Heuristics for determining whether a Java exception should be considered a

program bug or that the inputs supplied by JCrasher have violated the code’s

preconditions

• Integration into the Eclipse IDE

These aspects support JCrasher’s use as an independent stand-alone testing tool, but

are less interesting for our investigation. The full JCrasher version with the above

features is still available in the standard JCrasher distribution and is described in the

JCrasher paper [23].
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Certainly, JCrasher is not the first or only tool for automatic random testing. Sev-

eral research tools [58, 70, 18, 43, 78] and commercial products [90, 94] employ some

of the same ideas in their testing. Nevertheless, JCrasher offers some features that are

unique—to different extents compared to different alternatives. JCrasher constructs

test-cases at random, through the tested methods’ parameter-spaces. Unlike other

tools—Enhanced JUnit [94], for example—JCrasher takes the Java type system into

account when constructing random inputs, so that well-formed inputs are constructed

by chaining program methods. JCrasher produces test files for JUnit [8], which is a

popular framework for test automation in the Java language. This has the following

three advantages. First, there is significant ease of use and inspection of tests. Sec-

ond, test plans are reified in code, so that if a developer decides that a test is good

enough, he/she can permanently integrate it in a regression test-suite. Third, exter-

nalizing generated test-cases eases debugging and development, being important to

the tool developer. Tomb et al., in recent related work [101], confirm our argument:

“[..] JCrasher, for instance, creates external files containing JUnit test

cases. In retrospect, JCrasher’s approach seems more robust, and we plan

to adopt it in the future.”

4.1 Overview

JCrasher takes as input a program in Java bytecode form and produces a series of

test-cases for the popular JUnit unit test framework. Random testing can be seen as

a search activity: JCrasher is searching for inputs that will cause the target program

to crash. The search is exhaustive under user-specified or inferred constraints, such

as the maximum depth of method chaining. These user-level parameters induce the

search space of a specific method. The different points represent value assignments

of the formal parameters of the method’s signature. We also refer to these values as

the method’s parameter-space.
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the analyzed class T and writes them to TTest.java. Second, the test-cases can be
executed with JUnit, and third, the JCrasher runtime allows exceptions filtering. The
star * applied to some P stands for “zero or more of P”.

The representation and traversal of the parameter-space in JCrasher is type-based.

To test a method, JCrasher examines the types of the method’s parameters and

computes the possible ways to produce values of these types. JCrasher keeps an

abstract representation of the parameter-space in the form of a mapping from types

to either pre-set values of the type or methods that return a value of the type. This

mapping is the data structure that lets JCrasher estimate how many different tests

it can produce for a certain method.

Figure 4 illustrates the context for which JCrasher was originally developed. The

user wants to check a Java class T.class for robustness. In a first step he/she

invokes the JCrasher application and passes it the name T of the class to be tested.

The JCrasher class loader reads the T.class bytecode from the file system, analyzes

it using Java reflection [15], and finds for each of the methods declared by T and

by their transitive parameter types P a range of suitable parameter combinations.

It selects some of these combinations and writes these as TTest.java back into the

file system. After compiling TTest.java the test-cases can be executed with JUnit.
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Exceptions thrown during test-case execution are caught by the JCrasher runtime.

Only exceptions found to violate the robustness heuristic are passed on to JUnit.

JUnit collects these exceptions and reports them as errors to the user. The above

process generalizes to multiple classes straightforwardly. If the user passes a set

of classes as input to JCrasher, the analysis will examine combinations of all their

methods in order to construct testing inputs. In this way, the class can be tested

within its current application environment instead of being tested in isolation.

By producing JUnit test-cases, JCrasher enables human inspection of the auto-

generated tests. Particularly successful auto-generated tests can then be kept as

part of a regression test-suite. Additionally, JUnit has an active community and

integrating with it enables mutual benefit. For instance, a number of extensions1 to

JUnit already exist.

4.2 Test-case generation

In this section we describe in detail the test-case generation logic of JCrasher. Note

that this part of the system has engineering novelty but little conceptual novelty:

similar ideas have been used in different settings—scenarios for testing GUIs [78],

for example. Nevertheless, this section is necessary for a complete description of

the system, and we will re-use the discussed technique for our solutions presented in

Chapter 5 and Chapter 6.

For each method f declared by a given class T, JCrasher generates a random sample

of suitable test-cases. Each test-case passes a different parameter combination to f.

This generation is done by the following steps. First, JCrasher uses Java reflection to

identify method parameter types, types returned by methods, subtyping relations and

visibility constraints—private, for example. JCrasher adds each accessible method

to an in-memory data-structure mapping a type to some pre-set values and methods

1See JUnit’s web-site, http://www.junit.org
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returning the type. Second, using the above mapping, JCrasher determines for each

method f how many and which test-cases to generate and writes them as a JUnit

test-class TTest.java into the file system.

The remainder of this section introduces the JCrasher representation of the parameter-

space, followed by the JCrasher test-case selection algorithm.

4.2.1 Parameter-graph

To start with an example, imagine that JCrasher analyzes a method f of a class C

with signature f(A1, A2, ..., AN) returns R. From this, JCrasher infers that in

order to test this method it has to know how to construct values of types C, A1, A2,

. . . , AN. Additionally, JCrasher infers that it can construct an object of type R or any

of R’s supertypes—the classes R extends and the interfaces it implements, as long as

it can construct a C and an A1 and an A2, etc.

Additionally, JCrasher has implicit knowledge of how to create certain well-known

values of different types. For instance, JCrasher knows that it can use the null value

for any object type. Similarly, a few pre-set values are used to test primitive types—

for example, 1.0, 0.0, and -1.0 for double.

One way to encode the above knowledge is as Prolog-like inference rules. Ev-

ery method and every well-known way to construct values of a type can be seen to

correspond to such an inference rule. For instance, a method f(A1, A2, ..., AN)

returns R in class C corresponds to a rule R ← C, A1, A2, . . . , AN. Constructing the

well-known value 1.0 of type double corresponds to the rule double← 1.0. Creating

test-cases corresponds to a search action or Prolog-like inference in the space induced

by these inference rules.

Instead of storing such inference rules in text form, we represent them as a graph

data structure that we call the parameter-graph. This representation is convenient

both for computation and for illustration. The parameter-graph is computed by
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Figure 5: Left: JCrasher’s internal representation of the potential test cases for a
method f(A, int) under test. Right: Key. JCrasher has found A-returning methods
A(B) and B.m(int), and the B-returning method B(). For int JCrasher uses the
predefined values -1, 0, and 1; null is predefined for reference types such as A and
B. JCrasher derives test-cases for f from such a parameter-graph by choosing param-
eter combinations, for example, f(null, -1), f(null, 0), f(null, 1), f(new

A(null), -1), ..., f(new B().m(1), 1).

examining the methods of the current program under test. Figure 5 illustrates the

concept of test-case generation from a parameter-graph. A node f(A,int) in this

graph means that to test method f we need both a value of type A and a value of

type int. An edge in the graph goes from a type to a method or a well-known value

and reflects an inference rule, or a way to get a value of the type. So there is an edge

from type A to method m if m can be used to produce a value of type A. Multiple edges

with the same source node are alternative ways to create a value of this type.

The parameter-graph is an abstract representation of the parameter-space of the

program’s methods. Creating different parameter combinations for a method under

test can be done by traversing the graph. As discussed in the next section, the

representation is useful because it allows us to easily bound the depth of method

chaining. The following properties of this approach are worth noting.

• Ideally, each test-case should provide a method with a different combination of

its parameter-types’ value-range. In our approach it is possible that two or more

test-cases produce the same value. This can happen if a T-returning method
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returns the same value for different parameter combinations, or two T-returning

methods have overlapping return-value ranges.

• If test-cases are picked at random then a method with more parameter combi-

nations is tested more often. This is advantageous, as more parameter combi-

nations tend to produce a bigger variety of parameter state. It can be assumed

that the method is more complicated as it needs to handle more cases. It is

good to generate more test-cases for a more complicated method.

• Possible side-effects of methods via variables are ignored in test-case selection.

JCrasher does not attempt to deliberately search the space of possible side-

effects by exploring all possible combinations of method calls. For this reason

void-returning methods are currently excluded from the parameter-graph. This

limitation is entirely pragmatic: if void-returning methods are considered, the

test parameter space becomes huge very quickly. The issue of side-effects be-

tween test cases is discussed separately in Chapter 8.

4.2.2 Test-case selection

By representing the parameter-space implicitly—via the parameter-graph—we can

efficiently compute the number of test-cases for a given search depth, that is, compute

the size of the parameter-space. Similarly, we can have random access to the test

cases. Figure 6 illustrates the size computation of a sub-parameter-space.

Computing the size of the parameter-space without creating all possible tests is

important because we typically do not have enough resources to generate and execute

all the test cases we could generate. This means we have to restrict ourselves to a

subset or sample of all the test cases we could generate. Knowing the total size of

the parameter-space, JCrasher can select to output randomly a certain percentage of

the test-cases.
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Figure 6: JCrasher calculating the maximum number of test cases it can generate
for a method f(A, int) under test. The size of a sub-parameter-space is calculated
bottom up by adding the sizes of a type’s value and method spaces and multiplying
the sizes of a method’s parameter type spaces. Left: example continued from Figure 5.
Right: key.

4.3 Runtime support

4.3.1 Test-case execution and exception filtering

Each test-case consists of one or more method or constructor invocations contained

in a single try block:

public void test1() throws Throwable {

try {

//test-case

}

catch (Exception e) {

dispatchException(e);

}

}
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Each Exception thrown by a test-case is caught and passed to the JCrasher runtime.

JCrasher supports different heuristics for filtering exceptions. In this context, we will

not use the default JCrasher heuristic described in the JCrasher paper [23], which

takes into account the type of the exception and the method call history that led to

the exception. All heuristics have in common that they either consider an exception

worth reporting to the user and therefore pass it on to JUnit, or bogus, possibly due

to an ill-formed generated test case, and therefore suppress the exception.

4.3.2 Grouping similar exception together

An important issue is the grouping of exceptions. Since JCrasher can produce many

isomorphic test cases, thousands of exceptions could be caused by the same error—or

non-error. We currently have a heuristic way to group exceptions before presenting

them to the user. The grouping is done according to the contents of the call-stack

when the exception is thrown. Grouping is significant from the usability standpoint

because it eliminates many of the complexities of dealing with false positives during

the automatic testing process. For a hypothetical scenario, imagine that 1 million

tests are run and 50,000 of them fail. It is likely that the independent causes of failure

are no more than a handful of value combinations. By grouping all exceptions based

on where they were thrown from and what other methods are on the stack, we offer

the user a scalable way of browsing the results of JCrasher and separating errors from

false positives.

4.4 Experience

In this section we discuss practical considerations concerning the use of JCrasher, as

well as some experiments and results. We conduct these experiments with the full

version of JCrasher, using its default filtering heuristics, to provide examples of the

capabilities of a dynamic baseline analysis, and as context for the experiments in

Chapter 5 and Chapter 6.
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4.4.1 Pragmatics

JCrasher can easily produce large amounts of file system data. For 1 million tests the

disk space occupied is 200-300 MB for source code and another 100 to 150 MB for

bytecode. Also, compiling the test cases is expensive—about 7 ms per test case on

average in our environment. One could argue that the JCrasher batch mode could

have higher performance if it avoided the explicit use of JUnit and did not store

the test cases as files. If, instead, the testing was done by JCrasher while the test

cases are being produced and only the failed test cases were exported as JUnit files,

then performance could increase significantly. Although for inspection reasons it is

beneficial to reify all test cases as files, we plan to explore the above alternative in

future work. Note that a faster runtime would make our fast static state resetting

techniques discussed in Chapter 8 even more important.

4.4.2 Use of JCrasher

This section presents experiments on the use of JCrasher. We demonstrate the types

of problems that JCrasher finds, the problems it does not find, its false positives, as

well as performance metrics on the test cases.

In our experiments, we tried JCrasher 0.27 on the Raytracer application from

the SPEC JVM benchmark suite, on homework submissions for an undergraduate

programming class, and on the uniqueBoundedStack class used previously in the

testing literature [97, 113]. Xie and Notkin refer to this class as UB-Stack, a name

that we adopt for brevity. We have changed all methods of UB-Stack from package-

visible to public as JCrasher only tests public methods. Besides this, we did not

modify the testees for our experiments. JCrasher 0.27 and the selected test cases are

available on the JCrasher project web site.

As described previously, JCrasher attempts to detect robustness failures, but ro-

bustness failures do not always imply bugs. Hence, the user needs to inspect the
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JCrasher output and determine whether the test input was valid, whether the pro-

gram behavior constitutes a robustness failure, and whether the program behavior

constitutes a bug. We present next selected instances of robustness failures, although

not all are bugs. In the case of student homeworks, we had access to many more

submissions but we limited the number of testees to a small set that covers all the

different exception types reported, but did not otherwise bias the selection, which

should be fairly representative. By picking only a few testees we could easily exam-

ine the JCrasher reports and determine whether they constitute bugs. In general,

JCrasher detected a few shallow problems in the testees. These problems can usually

also be found during unstructured testing or by running simple test cases. The value

of JCrasher is that it automatically detects these shallow problems and therefore

allows the developer to concentrate on interesting problems.

Table 1 and Table 2 give program and testing performance metrics for the testees.

We have conducted our experiments in the testing environment described in Sec-

tion 8.6. The numbers shown are for the JUnit text interface—which gives faster test

execution than the graphical interface. We show how many tests JCrasher generates,

how long it takes to generate these tests, how much disk space they occupy, how long

it takes to execute them, how many problems are reported to the user, how much

disk space these reports occupy, how many of these reports we consider redundant,

and how many reports can reasonably be considered bugs.

To enhance readability we have condensed the layout of the source code shown in

this section. Omitted code is represented by //[..].

4.4.3 Raytrace benchmark

We ran JCrasher on the Raytracer benchmark of the SPEC JVM suite. This experi-

ment was not primarily intended to find errors since the application is very mature.

Instead, we wanted to show the number and size of test cases (see Table 1 and Table 2)
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Table 1: JCrasher results on several smaller testees. Test cases gives the total
number of test cases generated for a testee when searching up to a method-chaining
depth of three. Crashes denotes the number of errors or exceptions thrown when
executing these test cases. Problem reports denotes the number of distinct groups
of robustness failures reported to the user—all crashes in a group have an identical
call-stack trace. Redundant reports gives the number of problem reports we have
manually classified as redundant. Bugs denotes the number of problem reports that
reveal a violation of the testee’s specification.

Testee Tests
Class Author Public Test Crashes Problem Redundant Bugs
name methods Cases reports reports
Canvas SPEC 6 14382 12667 3 0 1?
P1 s1 16 104 8 3 0 1 (2?)
P1 s1139 15 95 27 4 0 0
P1 s2120 16 239 44 3 0 0
P1 s3426 18 116 26 4 0 1
P1 s8007 15 95 22 2 0 1
BSTree s2251 24 2000 941 4 2 1
UB-Stack Stotts 11 16 0 0 0 0

Table 2: JCrasher’s resource consumption in our experiments. The execution time
and disk space required for generated test cases. Report is the output of the JUnit
text interface redirected to a text file.

Testee Tests
Class Author Test Creation Source Execution Report
name Cases time [s] size [kB] time [s] size [kB]
Canvas SPEC 14382 5.0 6000 14.9 30
P1 s1 104 0.3 20 1.0 1
P1 s1139 95 0.3 19 0.7 2
P1 s2120 239 0.3 55 1.3 2
P1 s3426 116 0.3 23 0.6 2
P1 s8007 95 0.3 19 0.5 1
BSTree s2251 2000 0.9 564 3.4 6
UB-Stack Stotts 16 0.3 4 0.5 0
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generated for a class in a realistic application, where a lot of methods can be used

to create type-correct data. Since we have no specification for the application, we

cannot tell what behavior constitutes a bug, but we try to make reasonable estimates.

In the Canvas class of the Raytracer, we found a constructor method that is par-

ticularly interesting. The constructor below throws a NegativeArraySizeException

when passed parameters (-1, 1).

/* spec.benchmarks._205_raytrace */

public Canvas(int width, int height) {

Width = width; Height = height;

if (Width < 0 || Height < 0) {

System.err.print("Invalid window size!" + "\n");

//System.exit(-1);

}

Pixels = new int[Width * Height];

}

In this example, it is clear that passing in a negative width would be an erroneous

input. Indeed, the original developer of this code agreed that it would be an error

to continue after this input—a line to exit the program existed. Nevertheless, the

exit command is now commented out, possibly because the Raytracer is used as

part of a larger program. But it is clear that continuing with a negative width or

height is a robustness error. It is not even necessarily the case that the error will

be caught during the allocation of the Pixels array: if both height and width are

negative, their product will be positive and the allocation will succeed, letting the

error propagate further in the program.

The test case below generated by JCrasher calls the following Write method of

Canvas, which in turn calls its private SetRed method. But the SetRed methods

throws an ArrayIndexOutOfBoundsException because of the -1 and 0 values passed

40



to Write.

public void test93() throws Throwable {

try {

Color c4 = new Color(-1.0f, -1.0f, -1.0f);

Canvas c5 = new Canvas(-1, -1);

c5.Write(-1.0f, -1, 0, c4);

} // [..]

}

public void Write(float brightness, int x, int y, Color color) {

color.Scale(brightness);

float max = color.FindMax();

if (max > 1.0f) color.Scale(1.0f / max);

SetRed(x, y, color.GetRed() * 255); //[..]

}

private void SetRed(int x, int y, float component) {

int index = y * Width + x;

Pixels[index] = Pixels[index] & 0x00FFFF00 | ((int) component);

}

This is a case of a robustness failure that probably does not represent a bug—it

can be argued that the input violates the preconditions of the routine. Nevertheless,

it would be a good programming practice to use the new Java assertion facility to

enforce the preconditions of method Write.
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4.4.4 Student Homeworks

We applied JCrasher in testing homework submissions from a second-semester Java

class. This is a good application domain, as beginning programmers are likely to

introduce shallow errors in their programs. Furthermore, since the tasks required

are small, self-contained, and strictly specified—the homework handout describes in

detail the input assumptions—it is easy to distinguish bugs from normal behavior.

On the other hand, these student programs are usually too small to exhibit interesting

constructor nesting depth or a large number of test cases for a single program.

We next describe a few selected cases of robustness failures. One task in homework

assignment P1 required the coding of a pattern-matching routine. Given a pattern

and a list of integers, both represented as arrays, the routine should attempt to find

the pattern in the list. Passing ([0], [0]) to the following method findPattern by

programmer s1 causes an ArrayIndexOutOfBoundsException, although the input is

perfectly valid. The cause is a badly coded routine:

public static int findPattern(int[] list, int[] pattern) {

int place = -1; int iPattern = 0; int iList;

for (iList = 0; iList < list.length; iList++)

if (isTheSame(list[iList], pattern[iPattern]) == true)

for (iPattern = 0;

((iPattern <= pattern.length)

&& (isTheSame(list[iList], pattern[iPattern]) == true));

iPattern++)

{ place = iList + 1;

isTheSame(list[iList + 1],pattern[iPattern + 1]);

}

}
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A similar error is reported in a different statement when the input is ([0], []),

which is also a bug, but can be argued to violate the programmer’s understood pre-

condition.

Another robustness failure that can be considered a bug is programmer s3426’s

testee P1 throwing a NumberFormatException when passing String " " to the fol-

lowing main method.

public static void main(String[] argv) {

int tests = Integer.parseInt(argv[0]); //[..]

}

This is a common case of receiving unstructured input from the user, without checking

whether it satisfies the programmer’s assumptions.

Another bug consists of a NegativeArraySizeException reported for program-

mer s8007’s testee P1 when passing -1 to the following method getSquaresArray.

public static int[] getSquaresArray(int length) {

int[] emptyArray = new int [length]; // [..]

}

This is a programmer error since the homework specification explicitly states “If the

value passed into the method is negative, you should return an empty array.”

An interesting case of error is exhibited in programmer s2251’s BSTree homework

assignment. The BSTNode class contains code as follows:

public BSTNode(Object dat){

setData(dat); //[..]

}

public void setData(Object dat){

data = (Comparable) dat;

}
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That is, the constructor checks at run-time that the data it receives support the

Comparable interface. This caused an exception for a JCrasher-generated test case.

Changing the signature of the above BSTNode constructor from BSTNode(Object dat)

to BSTNode(Comparable dat) fixes the problem. As a result of this change, JCrasher

produces only 332 test cases (instead of 2000 before), detects 60 crashes (941), and

reports three problems (four). The reason is that JCrasher finds fewer possibilities

to create a Comparable than an Object. The remaining three reported problems for

the BSTNode program are caused by passing a null reference to a method that does

not expect it. Hence, two of the problem reports are redundant and none of the three

are bugs.

The rest of our tests from Table 1 and Table 2 reported similar robustness failures—

due to negative number inputs, null pointer values, etc.—that did not, however, con-

stitute bugs.

4.4.5 UB-Stack

We finally tested JCrasher with the UB-Stack class, previously used as a case study in

the testing literature. JCrasher does not report any problems for UB-Stack. Stotts,

Lindsey, and Antley have hand-coded two sets of eight and 16 test cases, respectively.

The smaller set does not reveal any bugs but the bigger set reveals a bug [97]. The

bug occurs when executing a sequence of the testee’s methods. JCrasher cannot

detect this bug since it currently does not produce test cases that explore executing

different methods in sequence, just for their side-effects. Xie and Notkin [113] have

presented an iterative invariant and test case generation technique, and used the two

hand-coded sets as initial sets. For both initial sets they generate test cases that

reveal at least one bug in UB-Stack.

44



CHAPTER V

SOLUTION BACK-END: BUG WARNINGS TO TEST

CASES

In this chapter we address the language-level imprecision of a static analysis tool

like ESC/Java. The following chapter will address user-level imprecision. Here, we

combine static checking and concrete test-case generation in the Check ’n’ Crash

tool [24]. The approach consists of taking the abstract error conditions inferred

using theorem proving techniques by a static checker (ESC/Java), deriving specific

error conditions using a constraint solver, and producing concrete test cases (with

the JCrasher tool) that are executed to determine whether a path truly exists. The

combined technique has advantages over both static checking and automatic testing

individually. Compared to ESC/Java, we eliminate spurious path reports and improve

the ease-of-comprehension of reports through the production of Java counterexamples.

Compared to JCrasher, we eliminate the blind search of the input space, thus reducing

the testing time and increasing the test quality.

5.1 Overview

Check ’n’ Crash [24] is a tool for automatic bug finding. It combines ESC/Java and

the JCrasher random testing tool [23]. Check ’n’ Crash takes error conditions that

ESC/Java infers from the testee, derives variable assignments that satisfy the error

condition (using a constraint solver), and compiles them into concrete test cases that

are executed with JCrasher to determine whether the error is language-level sound.

Figure 7 shows the elements of Check ’n’ Crash pictorially. Compared to ESC/Java

alone, Check ’n’ Crash’s combination of ESC/Java with JCrasher eliminates spurious
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Static

Search

for bug

Run test: 

Confirm

Dynamic

New test:

{m(-1);}

New result:
m crash

Testee:

m(int p)

Figure 7: Check ’n’ Crash workflow: From Java testee source file input to test
case source file and exception report output. Check ’n’ Crash uses ESC/Java to
statically check the testee for potential bugs. In this example, ESC/Java warns
about a potential runtime exception in the analyzed method when passing a negative
parameter (the ESC/Java warning is not shown). Check ’n’ Crash then compiles
ESC/Java’s bug warnings to concrete test cases to eliminate those warnings that
cannot be reproduced in actual executions. In this example, Check ’n’ Crash produces
a test case that passes -1 into the method and confirms that it throws the runtime
exception ESC/Java has warned about.

warnings and improves the ease of comprehension of error reports through concrete

Java counterexamples.

Check ’n’ Crash takes as inputs the names of the Java files under test. It invokes

ESC/Java, which derives error conditions. Check ’n’ Crash takes each error condition

as a constraint system over a method m’s parameters, the object state on which m is

executed, and other state of the environment. Check ’n’ Crash extends ESC/Java by

parsing and solving this constraint system. A solution is a set of variable assignments

that satisfy the constraint system. [24] discusses in detail how we process constraints

over integers, arrays, and reference types in general.

Once the variable assignments that cause the error are computed, Check ’n’ Crash

uses JCrasher to compile some of these assignments to JUnit [8] test cases. The test

cases are then executed under JUnit. If the execution does not cause an exception,

then the variable assignment was a false warning: no error actually exists. Similarly,

some runtime exceptions do not indicate errors and JCrasher filters them out. For

instance, throwing an IllegalArgumentException exception is the recommended
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Java practice for reporting illegal inputs. If the execution does result in one of the

tracked exceptions, an error report is generated by Check ’n’ Crash.

5.2 Benefits relative to ESC/Java

Check ’n’ Crash has two advantages over using ESC/Java alone. First, Check ’n’ Crash

ensures that all errors it reports are indeed reproducible: they are possible for some

combination of values. Second, Check ’n’ Crash offers ease of inspection of error cases

and concrete test cases that can be integrated in a regression test suite.

5.2.1 Guaranteeing language-level soundness

Every case reported by Check ’n’ Crash is guaranteed to be language-level sound.

This is guaranteed by observing concrete test case executions in a standard execution

environment (such as a production-level Java virtual machine). Only cases that could

be confirmed by such concrete executions are reported to the user.

5.2.2 Improving the clarity of reports

Check ’n’ Crash reduces all constraints to a small test case. In the above case, the

generated test method is just 10 lines long. Furthermore, users are likely to be more

familiar with Java syntax than with the conditions produced by Simplify. Finally,

having a concrete test case gives the user the option to integrate it in a regression

test suite for later use.

5.3 Example

To see the difference between an error condition generated by ESC/Java and the con-

crete test cases output by Check ’n’ Crash, consider the following method swapArrays,

taken from a student homework solution. The method’s informal specification states

that the method swaps the elements from fstArray to sndArray and vice versa. If the

arrays differ in length the method should return without modifying any parameter.
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public static void swapArrays(double[] fstArray, double[] sndArray)

{ //..

for(int m=0; m<fstArray.length; m++)

{ //..

fstArray[m]=sndArray[m]; //..

}

}

ESC/Java issues the following warning, which indicates that swapArrays might

crash with an array index out-of-bounds exception.

Array index possibly too large (IndexTooBig)

fstArray[m]=sndArray[m];

^

Optionally, ESC/Java emits the error condition in which this crash might occur.

This condition is a conjunction of constraints. For swapArrays, which consists of

five instructions, ESC/Java emits some 100 constraints. 0 < fstArray.length and

sndArray.length == 0 are the most relevant ones (formatted for readability).

Check ’n’ Crash parses the error condition generated by ESC/Java and feeds the

constraints to its constraint solvers. In our example, Check ’n’ Crash creates two inte-

ger variables, fstArray.length and sndArray.length, and passes their constraints

to the POOC integer constraint solver [92]. Then Check ’n’ Crash requests a few

solutions for this constraint system from its constraint solvers and compiles each so-

lution into a JUnit [8] test case. For this example, the test case will create an empty

and a random non-empty array. This will cause an exception when executed and

JCrasher will process the exception according to its heuristics and conclude it is a

language-level sound failure and not a false bug warning.
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5.4 Structure

Check ’n’ Crash combines ESC/Java and JCrasher. Check ’n’ Crash takes as input

the names of the Java files under test. It invokes ESC/Java 2.07a, which compiles

the Java source code under test to a set of predicate logic formulae [42, 72]. ESC

compiles each method m under test to its weakest precondition wp(m, true). This

formula specifies the states from which the execution of m terminates normally. We

use true as the postcondition, as we are not interested in which state the execution

terminates as long as it terminates normally. The states that do not satisfy the

precondition are those from which the execution “goes wrong”.

We are interested in the following specific cases of the execution going wrong [73,

Chapter 4].

• Assigning a supertype to an array element.

• Casting to an incompatible type.

• Accessing an array outside its domain.

• Allocating an array of negative size.

• Dereferencing null.

• Dividing by zero.

These cases are statically detected using ESC/Java but they also correspond to Java

runtime exceptions (program crashes) that will be caught during JCrasher-initiated

testing.

A state from which the execution of m goes wrong is also called a “counterexam-

ple”. ESC uses the Simplify theorem prover [33] to derive counterexamples from the

conjunction of wp(m, true) and additional formulae that encode the class to which m

belongs as well as Java semantics.
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We view such a counterexample as a constraint system over m’s parameters, the ob-

ject state on which m is executed, and other state of the environment. Check ’n’ Crash

extends ESC by parsing and solving this constraint system. A solution is a set of

variable assignments that satisfy the constraint system. Section 5.5 shows examples

of constraints and discusses in detail how we process constraints over integers, arrays,

and reference types in general.

Once the variable assignments that cause the error are computed, Check ’n’ Crash

uses JCrasher to compile some of these assignments to JUnit test cases. The test

cases are then executed under JUnit. If the execution does not cause an exception,

then the variable assignment was a false positive: no error actually exists. Similarly,

some runtime exceptions do not indicate errors and JCrasher filters them out. For

instance, throwing an IllegalArgumentException exception is the recommended

Java practice for reporting illegal inputs. If the execution does result in one of the

tracked exceptions, an error report is generated by Check ’n’ Crash.

5.5 Constraint solving

Constraint solving is the Check ’n’ Crash glue that keeps together ESC/Java and

JCrasher. We next discuss how we solve the abstract constraints extracted from

ESC/Java counterexamples to generate values that are used in JCrasher test cases.

Note that all constraint solving is by nature a heuristic technique: we are not always

able to solve constraints, even if they are indeed solvable.

5.5.1 Primitive types: Integers

We first discuss our approach for integer numbers.1 Check ’n’ Crash uses the inte-

ger constraint solver included in the POOC platform for object-oriented constraint

programming [92]. As an example, consider the following method under test.

1Floating point constraints are currently not supported in Check ’n’ Crash (random values are
used, just as in JCrasher) but would be handled similarly.
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public int m1(int a, int b, int c) {

if (0<=a && a<b && a!=c && c>=0) {

return (a+b)/c;

}

else {return 0;}

}

ESC/Java correctly detects a division by zero and returns the following constraint

system for explanation, which we have pruned and simplified for readability.

a<b; 0<=a; c==0; c!=a

The first solution POOC returns for the above constraint system is (1, 2, 0).

Check ’n’ Crash outputs a corresponding JUnit test case that first creates an instance

of the class defining m1 and then calls m1 with parameters (1, 2, 0). The test case

catches any exception thrown during execution and, if the exception indicates an error

(as in this case), a report is produced.

5.5.2 Complex types: Objects

Constraints in abstract counterexamples may involve aliasing relations among object

references. We solve these with a simple equivalence-class-based aliasing algorithm,

similar to the well-known alias analysis by Steensgard [96].

Our implementation maintains an equivalence relation on reference types. For

each reference type we keep a mapping from field identifier to variable. This allows

us to store constraints on fields. A reference constraint a=b specifies that a and b

refer to the same object. We model this by merging the equivalence classes of a and b,

creating a new equivalence class that contains both. After processing all constraints

we generate a test case by creating one representative instance per equivalence class.

This instance will be assigned to all members of the class.

For an example, consider the following method.
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public class Point{public int x;}

public int m2(Point a, Point b) {

if (a==b) {return 100/b.x;}

else {return 0;}

}

ESC/Java generates a counterexample from which we extract the following con-

straint system.

a.x=0, a=b

After the two constraints are processed, a and b are in the same equivalence class.

A single Point object needs to be created, with both a and b pointing to it and its x

field equal to 0. (In this case, the integer constraint is straightforward but generally

the integer constraint solver will be called to resolve constraints.) We use reflection

to set object fields in the generated test case. In our example:

Point p1 = new Point();

Point.class.getDeclaredField("x").set(p1, new Integer(0));

Point p2 = p1;

Testee t = new Testee();

t.m2(p1, p2);

5.5.3 Complex types: Arrays

Check ’n’ Crash uses a simple approach to deal with arrays. Array expressions with

a constant index (such as a[1]) are treated as regular variables. Array expressions

with a symbolic index (such as a[b] or a[m()]) are replaced with a fresh variable

and the resulting constraint system (with regular references and primitives) is solved.

The solutions returned are used one-by-one to turn array expressions with symbolic
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indices into array expressions with constant indices. If the resulting constraint system

is solvable (i.e., has no contradictory constraints) then the solution is appropriate for

the original constraint system.

An example illustrates the approach. Consider the method:

public int m3(int[] a, int b) {

if (a[a[b]] = 5) {return 1/0;}

else {return 0;}

}

For the case of division by zero, Check ’n’ Crash extracts the following constraint

system from the ESC/Java counterexample report:

0 <= b

a[b] < arrayLength(a)

0 <= a[b]

b < arrayLength(a)

a[a[b]] = 5

Check ’n’ Crash then rewrites the constraint system as follows, using the names

x:=b, y:=a[b], and z:=a[a[b]].

0 <= x < arrayLength(a)

0 <= y < arrayLength(a)

z = 5

For the rewritten constraint system our first solution candidate is x:=0, y:=0,

and z:=5. But this causes a conflict in the array as b=0 and a[b]=a[0]=0 but

a[a[b]]=a[0]=5. Therefore we discard this solution and query the integer constraint

solver for another solution. The next solution x:=0, y:=1, z:=5 satisfies the constraint

system. So we generate the corresponding test case, which passes the parameter values

(0, new int[]{1,5}) to m3.
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5.6 Benefits relative to JCrasher

Check ’n’ Crash is a strict improvement over using JCrasher alone for automatic

testing. By employing the power of ESC/Java, Check ’n’ Crash guides the test case

generation so that only inputs likely to produce errors are tested. Thus, a small

number of test cases suffice to find all problems that JCrasher would likely find. To

confirm this claim, we reproduced the experiments from the JCrasher paper [23] using

Check ’n’ Crash. The programs under test include the Raytracer application from

the SPEC JVM 98 benchmark suite, homework submissions for an undergraduate

programming class, and the uniqueBoundedStack class used previously in the testing

literature [97, 113]. (Xie and Notkin refer to this class as UB-Stack, a name that we

adopt for brevity.) These testees are mostly small and occasionally have informal

specifications. For instance, in the case of homework assignments, we review the

homework handout to determine what kinds of inputs should be handled by each

method and how. Thus, we can talk with some amount of certainty of bugs instead

of just error reports and potential bugs.

Table 3 summarizes the results of running JCrasher 0.2.7 and Check ’n’ Crash

0.4.10 on the set of testees. The bugs are reported as a range containing some uncer-

tainty, as occasionally it is clear that a program fragment represents a bad practice,

yet there is a possibility that some implicit precondition makes the error scenario

infeasible. Check ’n’ Crash has more flexibility than JCrasher in its settings, there-

fore for these tests we chose the Check ’n’ Crash settings so that they emulate the

default JCrasher behavior. Specifically, Check ’n’ Crash parameterizes ESC so that

it searches for the potential problems listed in Section 5.4, other than dereferencing

null. ESC unrolls each loop 1.5 times. We use no JML specifications of the Java class

libraries. Using these JML specifications included in the ESC distribution does not

change the reports Check ’n’ Crash produces or the bugs it finds for this experiment.

We use the runtime heuristics reported in the JCrasher paper [23] for both JCrasher
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and Check ’n’ Crash. These heuristics determine which exceptions should be ignored

because they probably do not constitute program errors. For identical exceptions

produced with the same method call stack, only one error report is output.

As can be seen in the table, Check ’n’ Crash detects all the errors found by

JCrasher with only a fraction of the test cases (except for UB-Stack, where JCrasher

found few opportunities to create random data conforming to the class’s interface)

and slightly fewer reports. This confirms that the search of Check ’n’ Crash is much

more directed and deeper, yet does not miss any errors uncovered by random testing.

(Note: The numbers reported for JCrasher are identical to those in reference [23]

with two exceptions. First, the bug count for s1139 and s3426 is increased by one,

since on further review two more reports were shown to be bugs. Second, for the

Binary Search Tree homework submission, we run both programs on the BSTNode

class, which contains the error, instead of on the BSTree front-end class.)

For a representative example of a reported bug, the following getSquaresArray

method of user s8007’s testee P1 causes a NegativeArraySizeException. (We have

formatted the testees for readability, “//..” indicates code we have omitted.)

public static int[] getSquaresArray(int length) {

int[] emptyArray = new int [length]; //..

}

This is a bug, since the homework specification explicitly states “If the value passed

into the method is negative, you should return an empty array.” The constraints

reported by ESC/Java for this error essentially state that length should be negative.

Our constraint solving then produces the value -1000000 and uses JCrasher to output

a test case to demonstrate the error.

In addition to JCrasher’s results, Check ’n’ Crash also found the example bug of

Section 5.3, in all P1 testees except s8007’s. When passing arrays of different lengths
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(e.g., ([1.0], [])) to the swapArrays method, these testees crash by accessing an

array out of bounds. We classify this as a bug, since the homework specification allows

arrays of different lengths as input. JCrasher did not discover this error because its

creation of random array values is limited.

5.7 Experience

We next describe our experience in using Check ’n’ Crash on complete applications

and our observations on the strengths and weaknesses of the tool.

5.7.1 JABA and JBoss JMS

To demonstrate the uses of Check ’n’ Crash in practice, we applied it to two realistic

applications: the JABA bytecode analysis framework2 and the JMS module of the

JBoss3 open source J2EE application server. The latter is an implementation of

Sun’s Java Message Service API [53]. Specifically, we ran Check ’n’ Crash on all

the jaba.* packages of JABA, which consist of some 18 thousand non-comment

source statements (NCSS), and on the JMS packages of JBoss 4.0 RC1, which consist

of some five thousand non-comment source statements. We should note that there

is no notion of testing the scalability of Check ’n’ Crash since the time-consuming

part of its analysis is the intra-procedural ESC/Java analysis. Hence, in practice,

the Check ’n’ Crash running time scales roughly linearly with the size of the input

program.

We tested both applications without any annotation or other programmer inter-

vention. None of the tested applications has JML specifications in its code. This is

indeed appropriate for out test, since JML annotations are rare in actual projects.

Furthermore, if we were to concentrate on JML-annotated programs, we would be

unlikely to find interesting behavior. JML-annotated code is likely to have already

2http://www.cc.gatech.edu/aristotle/Tools/jaba.html
3http://www.jboss.org/
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Table 4: Check ’n’ Crash results on JABA and JBoss JMS.

Testee CnC
Package Size Creation Test Crashes Reports

[NCSS] [min:s] Cases
jaba 17.9 k 25:58 18.3 k 4.4 k 56
jboss.jms 5.1 k 1:35 3.9 k 0.6 k 95

been tested with ESC/Java and have the bugs that Check ’n’ Crash detects already

fixed.

Table 4 presents statistics of running Check ’n’ Crash on JABA and JBoss JMS.

The analysis and test creation time was measured on a 1.2 GHz Pentium III-M

with 512 MB of RAM. We use the Check ’n’ Crash configuration from the previous

experiment (Section 5.6), but also search for null dereferences.

Since we are not familiar with the internal structure of either of these programs,

we are not typically able to tell whether an error report constitutes a real bug or some

implicit precondition in the code precludes the combination of inputs that exhibit a

reported crash. Exhaustive inspection of all the reports by an expert is hard due

to the size of the applications (especially JABA) and, consequently, the number of

Check ’n’ Crash reports. For instance, Check ’n’ Crash (and ESC/Java) may report

that a method can fail with a null pointer exception, yet it is not always clear whether

the input can occur in the normal course of execution of the application. For this

reason, we selected a few promising error reports and inspected them more closely to

determine whether they reveal bugs. In the case of JBoss JMS, it is clear on a couple

of occasions (see below) that a report corresponds to a bug. Similarly, we discussed

five potential errors with JABA developers and two of them entered their list of bugs

to be fixed.
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For example, one of the constructors of the ClassImpl class in the JABA frame-

work leaves its instance in an inconsistent state—the name field is not initialized. Dis-

covering this error is not due so much to ESC/Java’s reasoning capabilities but rather

to the random testing of JCrasher, which explores all constructors of a class in order

to produce random objects. ESC/Java directs Check ’n’ Crash to check methods of

this class, and calling a method on the incorrectly initialized object exposes the error.

In a similar case, a method of the concrete class jaba.sym.NamedReferenceTypeImpl

should never be called on objects of the class directly—instead the method should

be overridden by subclasses. The superclass method throws an exception to indicate

the error when called. This is a bad coding practice: the method should instead have

been moved to an interface that the subclasses will implement. Although the offend-

ing method is protected, it gets called from a public method of the class, through a

call chain involving two more methods. Check ’n’ Crash again discovers this error

mostly due to JCrasher creating a variety of random values of different types per

suspected problem.

For an error that is caught due to the ESC/Java analysis, consider the following

illegal cast in method writeObject of class org.jboss.jms.BytesMessageImpl:

public void writeObject(Object value) throws JMSException

{

//..

if (value instanceof Byte[]) {

this.writeBytes((byte[]) value);

} //..

}

The type of value in the above is Byte[] and not byte[]. Check ’n’ Crash finds

this error because ESC/Java reports a possible illegal cast exception in the above.
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Similarly, the potential of a class cast exception reveals another bad coding practice in

method getContainer of class org.jboss.jms.container.Container. The formal

argument type should be specialized to Proxy.

public static Container getContainer(Object object) throws Throwable

{

Proxy proxy = (Proxy) object; //..

}

5.7.2 Check ’n’ Crash usage and critique

In our experience, Check ’n’ Crash is a useful tool for identifying program errors.

Nevertheless, we need to be explicit about the way Check ’n’ Crash would be used in

practice, especially compared to other general directions in software error detection.

Check ’n’ Crash’s strengths and weaknesses are analogous to those of the tools it

is based on: ESC/Java and JCrasher. The best use of Check ’n’ Crash is during

development. The programmer can apply the tool to newly written code, inspect

reports of conditions indicating possible crashes, and possibly update the code if the

error condition is indeed possible (or update the code preconditions if the inputs

are infeasible and preconditions are being maintained). Generated tests can also be

integrated in a JUnit regression test suite.

A lot of attention in the error checking community has lately focused on tools

that we descriptively call “bug pattern matchers” [51, 116, 57]. These are program

analysis tools that use domain-specific knowledge about incorrect program patterns

and statically analyze the code to detect possible occurrences of the patterns. Ex-

ample error patterns include uses of objects after they are deallocated, mutex locks

without matching unlocks along all control flow paths, etc. We should emphasize that

Check ’n’ Crash is not a bug pattern matcher: it has only a basic preconceived notion

of what the program text of a bug would look like. Thus, the domain of application
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of Check ’n’ Crash is different from bug pattern matchers, concentrating more on

numeric properties, array indexing violations, errors in class casting, etc. Further-

more, Check ’n’ Crash is likely to find new and unusual errors, often idiomatic of a

programming or design style. Thus, it is interesting to use Check ’n’ Crash to find a

few potential errors in an application and then search for occurrences of these errors

with a bug pattern matcher. A practical observation is that bug pattern matchers

may not need to be very sophisticated in order to be useful: the greater value is often

in identifying the general bug pattern, rather than in searching the program for the

pattern.

We have already mentioned the strengths of Check ’n’ Crash. It is a sound tool

at the language level: any error reported can indeed happen for some combination

of method inputs. It searches for possible error-causing inputs much more efficiently

than JCrasher. It gives concrete, easy-to-inspect counterexamples. Nevertheless,

Check ’n’ Crash also has shortcomings. Although it is sound with respect to program

execution semantics, it still suffers from false positives when the inputs are precluded

by an unstated or informal precondition (e.g., JavaDoc comments), which we will

address in Chapter 6. But, as we mentioned earlier, no automatic error checking

system can solve this problem fully. Nevertheless, Check ’n’ Crash possibly suffers

more than bug pattern matching tools in this regard because it has no domain-specific

or context knowledge. In contrast, a bug pattern matcher can often discover errors

that are bugs with high probability: e.g., the use of an object after it has been

freed. Nevertheless, due to the complexity of common bug patterns (e.g., needing

to match data values and to recognize all control flow paths), bug pattern matchers

typically suffer in terms of soundness. We speculate that users may be more willing to

accept false positives due to unstated preconditions than due to unsoundness in the

modeling of program execution. Another weakness of Check ’n’ Crash is that it is less

complete than ESC/Java because it cannot always derive concrete test cases from the
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Simplify counterexamples. We have found that in practice we still prefer the higher

incompleteness of Check ’n’ Crash to the many spurious warnings of ESC/Java.
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CHAPTER VI

SOLUTION FRONT-END: OBSERVE USAGE

INVARIANTS TO FOCUS THE BUG SEARCH

After addressing language-level path imprecision in Chapter 5, we now turn to user-

level path imprecision in this chapter. One might argue that a language-level precise

analysis can always simulate a user-level precise analysis—when expressing the ad-

ditional user-level constraints as explicit program assertions. If this were feasible

in practice, we would be done with precision after Chapter 5. The reason why we

need to separately address user-level precision is that user specifications are typically

not available in a formal form in most of real-world software engineering. This is in

sharp contrast with the specification of the host language itself. Java, for example,

has a somewhat formal and fixed specification, which is therefore available to static

analysis tools such as ESC/Java. ESC/Java can take advantage of much formal user

specification, if it were available, in the form of JML specifications. In this chapter

we attack this dilemma by trying to milk existing test cases for user specifications

via dynamic invariant inference. We implement this technique in the DSD-Crasher

tool [25, 95, 25]. Implementing this in the context of the object-oriented program-

ming language Java will lead us to an interesting problem, which we will describe and

address in the following chapter.

6.1 Overview

Dynamic program analysis offers the semantics and ease of concrete program execu-

tion. Static analysis lends itself to obtaining generalized properties from the program

text. The need to combine the two approaches has been repeatedly stated in the
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software engineering community [9, 24, 39, 113, 118]. Here, we describe DSD-Crasher

[25, 95, 27]: a bug-finding tool that uses dynamic analysis to infer likely program

invariants, explores the space defined by these invariants exhaustively through static

analysis, and finally produces and executes test cases to confirm that the behavior is

observable under some real inputs and not just due to overgeneralization in the static

analysis phase. Thus, our combination has three steps: dynamic inference, static

analysis, and dynamic verification (DSD).

More specifically, we employ the Daikon tool [40] to infer likely program invari-

ants from an existing test suite. The results of Daikon are exported as JML anno-

tations [71] that are used to guide our Check ’n’ Crash tool [24]. Daikon-inferred

invariants are not trivially amenable to automatic processing, requiring some filtering

and manipulation (e.g., for internal consistency according to the JML behavioral sub-

typing rules, as discussed in Chapter 7). Check ’n’ Crash employs the ESC/Java static

analysis tool [42], applies constraint-solving techniques on the ESC/Java-generated

error conditions, and produces and executes concrete test cases. The exceptions pro-

duced by the execution of generated test cases are processed in a way that takes into

account which methods were annotated by Daikon, for more accurate error report-

ing. For example, a NullPointerException is not considered a bug if thrown by an

un-annotated method, instead of an annotated method; otherwise, many false bug

reports would be produced: ESC/Java produces an enormous number of warnings for

potential NullPointerExceptions when used without annotations [91].

Several past research tools follow an approach similar to ours, but omit one of the

three stages of our analysis. Check ’n’ Crash is a representative of a static-dynamic

(SD) approach. There are several representatives of a DD approach, with the closest

one (because of the concrete techniques used) being the Eclat tool [88]. Just as our

DSD approach, Eclat produces program invariants from test suite executions using

Daikon. Eclat also generates test cases and disqualifies the cases that violate inferred
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preconditions. Nevertheless, there is no static analysis phase to exhaustively attempt

to explore program paths and yield a directed search through the test space. Instead,

Eclat’s test case generation is largely random. Finally, a DS approach is implemented

by combinations of invariant detection and static analysis. A good representative,

related to our work, is the Daikon-ESC/Java (DS) combination of [86].

The benefit of DSD-Crasher over past approaches is either in enhancing the abil-

ity to detect bugs, or in limiting false bug warnings. For instance, compared to

Check ’n’ Crash, DSD-Crasher produces more precise error reports with fewer false

bug warnings. Check ’n’ Crash is by nature local and intra-procedural when no pro-

gram annotations are employed. As the Daikon-inferred invariants summarize actual

program executions, they provide assumptions on correct code usage. Thus, DSD-

Crasher can disqualify illegal inputs by using the precondition of the method under

test to exclude cases that violate common usage patterns. As a secondary benefit,

DSD-Crasher can concentrate on cases that satisfy called methods’ preconditions.

This increases the chance of returning from these method calls normally and reaching

a subsequent problem in the calling method. Without preconditions, Check ’n’ Crash

is more likely to cause a crash in a method that is called by the tested method be-

fore the subsequent problematic statement is reached. Compared to the Eclat tool,

DSD-Crasher can be more efficient in finding more bugs because of its deeper static

analysis, relative to Eclat’s mostly random testing.

To demonstrate the potential of DSD-Crasher, we apply it to medium-size third-

party applications (the Groovy scripting language and the JMS module of the JBoss

application server). We show that, under controlled conditions (e.g., for specific

kinds of errors that match well the candidate invariants), DSD-Crasher is helpful in

removing false bug warnings relative to just using the Check ’n’ Crash tool. Over-

all, barring engineering hurdles, we found DSD-Crasher to be an improvement over
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Figure 8: Overview of DSD-Crasher’s three-stage program analysis in terms of
program values and execution paths. The goal of the first dynamic step is to infer
the testee’s informal specification. The static step may generalize this specification
beyond possible executions, while the final dynamic step will restrict the analysis to
realizable problems. Each box represents a program domain. An arrow represents a
mapping between program domains performed by the respective analysis. Shading
should merely increase readability.

Check ’n’ Crash, provided that the application has a regression test suite that exer-

cises exhaustively the functionality under test. At the same time, the approach can

be more powerful than Eclat, if we treat the latter as a bug finding tool. The static

analysis can allow more directed generation of test cases and, thus, can uncover more

errors in the same amount of time.

6.2 Dynamic-static-dynamic analysis pipeline

We use a dynamic-static-dynamic combination of analyses in order to increase the

confidence in reported faults—i.e., to increase soundness for incorrectness. The main

idea is that of using a powerful, exhaustive, but unsound static analysis, and then

improving soundness externally using dynamic analyses.

Figure 8 illustrates the main idea of our DSD combination. The first dynamic
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analysis step generalizes existing executions. This is a heuristic step, as it involves in-

ferring abstract properties from specific instances. Nevertheless, a heuristic approach

is our only hope for improving soundness for incorrectness. We want to make it more

likely that a reported and reproducible error will not be dismissed by the programmer

as “outside the intended domain of the method”. If the “intended domain” of the

method (i.e., the range of inputs that constitute possible uses) were known from a

formal specification, then there would be no need for this step.

The static analysis step performs an exhaustive search of the space of desired

inputs (approximately described by inferred properties) for modules or for the whole

program. A static analysis may inadvertently consider infeasible execution paths,

however. This is a virtually unavoidable characteristic of static analyses—they can-

not be sound both for correctness and for incorrectness; therefore they will either miss

errors or overreport them. Loops, procedure calls, pointer aliasing, and arithmetic

are common areas where analyses are only approximate. Our approach is appropri-

ate for analyses that tend to favor exhaustiveness at the expense of soundness for

incorrectness.

The last dynamic analysis step is responsible for reifying the cases reported by

the static analysis and confirming that they are feasible. If this succeeds, the case is

reported to the user as a bug. This ensures that the overall analysis will only report

reproducible errors.

Based on our earlier terminology, the last dynamic step of our approach addresses

language-level soundness, by ensuring that executions are reproducible for some in-

put. The first dynamic step heuristically tries to achieve user-level soundness, by

making sure that the input “resembles” other inputs that are known to be valid.
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6.3 Tool background: Daikon

Daikon [40] tracks a testee’s variables during execution and generalizes their observed

behavior to invariants—preconditions, postconditions, and class invariants. Daikon

instruments a testee, executes it (for example, on an existing test-suite or during

production use), and analyzes the produced execution traces. At each method entry

and exit, Daikon instantiates some three dozen invariant templates, including unary,

binary, and ternary relations over scalars, and relations over arrays (relations include

linear equations, orderings, implication, and disjunction) [40, 87]. For each invariant

template, Daikon tries several combinations of method parameters, method results,

and object state. For example, it might propose that some method m never returns

null. It later ignores those invariants that are refuted by an execution trace—for

example, it might process a situation where m returned null and it will therefore ignore

the above invariant. So Daikon summarizes the behavior observed in the execution

traces as invariants and generalizes it by proposing that the invariants might hold in

all other executions as well. Daikon can annotate the testee’s source code with the

inferred invariants as JML preconditions, postconditions, and class invariants [71].

6.4 Design and scope of DSD-Crasher

DSD-Crasher works by first running a regression test suite over an application and

deriving invariants using a modified version of Daikon. These invariants are then used

to guide the reasoning process of Check ’n’ Crash, by influencing the possible errors

reported by ESC/Java. The constraint solving and test case generation applied to

ESC/Java-reported error conditions remains unchanged. Finally, a slightly adapted

Check ’n’ Crash back-end runs the generated test cases, observes their execution, and

reports violations. Figure 9 illustrates this process with an example.

The scope of DSD-Crasher is the same as that of its component tools. In brief,

the tool aims to find errors in sequential code, with fixed-depth loop unrolling used
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Figure 9: DSD-Crasher workflow: From Java testee and test case source file input
to test case source file and exception report output. DSD-Crasher adds a dynamic
analysis step at the front of the pipeline, to infer the intended program behavior from
existing test cases. It feeds inferred invariants to Check ’n’ Crash by annotating the
testee. This enables DSD-Crasher to suppress bug warnings that are not relevant to
the intended uses of the program. In this example, the inferred invariant excludes
negative input values. DSD-Crasher therefore does not produce a warning about -1
causing an exception as Check ’n’ Crash did in Figure 7.

to explore infinite loop paths. The errors that can be detected are of a few specific

kinds [24]:

• Assigning an instance of a supertype to an array element.

• Casting to an incompatible type.

• Accessing an array outside its domain.

• Allocating an array of negative size.

• Dereferencing null.

• Division by zero.

These cases are statically detected using ESC/Java [73, Chapter 4] but they also

correspond to Java runtime exceptions (program crashes) that will be caught during

JCrasher-initiated testing.
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6.4.1 Treatment of inferred invariants as assumptions or requirements

Daikon-inferred invariants can play two different roles. They can be used as assump-

tions on a method’s formal arguments inside its body, and on its return value at

the method’s call site. At the same time, they can also be used as requirements

on the method’s actual arguments at its call site. Consider a call site of a method

int foo(int i) with an inferred precondition of i != 0 and an inferred postcondi-

tion of \result < 0 (following JML notation, \result denotes the method’s return

value). One should remember that the Daikon-inferred invariants are only reflecting

the behavior that Daikon observed during the test suite execution. Thus, there is

no guarantee that the proposed conditions are indeed invariants. This means that

there is a chance that Check ’n’ Crash will suppress useful warnings (because they

correspond to behavior that Daikon deems unusual). In our example, we will miss

errors inside the body of foo for a value of i equal to zero, as well as errors inside

a caller of foo for a return value greater or equal to zero. We are willing to trade

some potential bugs for a lower false positive rate. We believe this to be a good

design decision, since false bug warnings are a serious problem in practice. In our

later evaluation, we discuss how this trade-off has not affected DSD-Crasher’s bug

finding ability (relative to Check ’n’ Crash) for any of our case studies.

In contrast, it is more reasonable to ignore Daikon-inferred invariants when used

as requirements. In our earlier example, if we require that each caller of foo pass it

a non-zero argument, we will produce several false bug warnings in case the invariant

i != 0 is not accurate. The main goal of DSD-Crasher, however, is to reduce false bug

warnings and increase soundness for incorrectness. Thus, in DSD-Crasher, we chose to

ignore Daikon-inferred invariants as requirements and only use them as assumptions.

That is, we deliberately avoid searching for cases in which the method under test

violates some Daikon-inferred precondition of another method it calls. [113] partially

follows a similar approach with Daikon-inferred invariants that are used to produce
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test cases.

6.4.2 Inferred invariants excluded from being used

DSD-Crasher integrates Daikon and Check ’n’ Crash through the JML language.

Daikon can output JML conditions, which Check ’n’ Crash can use for its ESC/Java-

based analysis. We exclude some classes of invariants Daikon would search for by

default as we deemed them unlikely to be true invariants. Almost all of the invariants

we exclude have to do with the contents of container structures viewed as sets (e.g.,

“the contents of array x are a subset of those of y”), conditions that apply to all

elements of a container structure (e.g., “x is sorted”, or “x contains no duplicates”),

and ordering constraints among complex structures (e.g., “array x is the reverse of

y”). Such complex invariants are very unlikely to be correctly inferred from the hand-

written regression test suites of large applications, as in the setting we examine. We

inherited (and slightly augmented) our list of excluded invariants from the study of

the Jov tool [113]. The Eclat tool [88] excludes a similar list of invariants.

6.4.3 Adaptation and improvement of tools being integrated

To make the Daikon output suitable for use in ESC/Java, we also had to provide

JML specifications for Daikon’s Quant class. Methods of this class appear in many

Daikon-inferred invariants. ESC/Java needs the specifications of these methods in

order to reason about them when used in such invariants.

DSD-Crasher also modifies the Check ’n’ Crash back-end: the heuristics used dur-

ing execution of the generated test cases to decide whether a thrown exception is a

likely indication of a bug and should be reported to the user or not. For methods

with no inferred annotations (which were not exercised enough by the regression test

suite) the standard Check ’n’ Crash heuristics apply, whereas annotated methods

are handled more strictly. Most notably, a NullPointerException is only consid-

ered a bug if the throwing method is annotated with preconditions. This is standard
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Check ’n’ Crash behavior [24] and doing otherwise would result in many false error

reports: as mentioned earlier, ESC/Java produces an enormous number of warnings

for potential NullPointerExceptions when used without annotations [91]. Never-

theless, for a Daikon-annotated method, we have more information on its desired

preconditions. Thus, it makes sense to report even “common” exceptions, such as

NullPointerException, if these occur within the valid precondition space. There-

fore, the Check ’n’ Crash runtime needs to know whether or not a method was anno-

tated with a Daikon-inferred precondition. To accomplish this we extended Daikon’s

Annotate feature to produce a list of such methods. When an exception occurs at

runtime we check if the method on top of the call stack is in this list. One problem

is that the call stack information at runtime omits the formal parameter types of

the method that threw the exception. Thus, overloaded methods (methods with the

same name but different argument types) can be a source for confusion. To disam-

biguate overloaded methods we use BCEL [1] to process the bytecode of classes under

test. Using BCEL we retrieve the start and end line number of each method and use

the line number at which the exception occurred at runtime to determine the exact

method that threw it.

6.5 Benefits

The motivation applies to the specific features of our tools. DSD-Crasher yields the

benefits of a DSD combination compared to just using its composite analysis. This

can be seen with a comparison of DSD-Crasher with its predecessor and component

tool, Check ’n’ Crash. Check ’n’ Crash, when used without program annotations,

lacks interprocedural knowledge. This causes the following problems:

1. Check ’n’ Crash may produce spurious error reports that do not correspond to

actual program usage. For instance, a method forPositiveInt under test may

throw an exception if passed a negative number as an argument: the automatic
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testing part of Check ’n’ Crash will ensure that the exception is indeed possible

and the ESC/Java warning is not just a result of the inaccuracies of ESC/Java

analysis and reasoning. Yet, a negative number may never be passed as input to

the method in the course of execution of the program, under any user input and

circumstances. That is, an implicit precondition that the programmer has been

careful to respect makes the Check ’n’ Crash test case invalid. Precondition

annotations help Check ’n’ Crash eliminate such spurious warnings.

2. Check ’n’ Crash does not know the conditions under which a method call within

the tested method is likely to terminate normally. For example, a method under

test might call forPositiveInt before performing some problematic operation.

Without additional information Check ’n’ Crash might only generate test cases

with negative input values to forPositiveInt. Thus, no test case reaches

the problematic operation in the tested method that occurs after the call to

forPositiveInt. Precondition annotations help Check ’n’ Crash target its

test cases better to reach the location of interest. This increases the chance of

confirming ESC/Java warnings.

Integrating Daikon addresses both of these problems. The greatest impact is with

respect to the first problem: DSD-Crasher can be more focused than its predecessor

Check ’n’ Crash and issue many fewer false bug warnings because of the Daikon-

inferred preconditions.

6.6 Metrics for evaluating dynamic-static hybrid tools

An interesting question is how to evaluate hybrid dynamic-static tools. We next

discuss several simple metrics and how they are often inappropriate for such evalua-

tion. This section serves two purposes. First, we argue that the best way to evaluate

DSD-Crasher is by measuring the end-to-end efficiency of the tool in automatically

discovering bugs (which are confirmed by human inspection), as we do in subsequent
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sections. Second, we differentiate DSD-Crasher from the Daikon-ESC/Java combina-

tion [86].

The main issues in evaluating hybrid tools have to do with the way the dynamic

and static aspects get combined. Dynamic analysis excels in narrowing the domain

under examination. In contrast, static analysis is best at exploring every corner of

the domain without testing, effectively generalizing to all useful cases within the

domain boundaries. Thus it is hard to evaluate the integration in pieces: when

dynamic analysis is used to steer the static analysis (such as when Daikon produces

annotations for Check ’n’ Crash), then the accuracy or efficiency of the static analysis

may be biased because it operates on too narrow a domain. Similarly, when the static

analysis is used to create dynamic inputs (as in Check ’n’ Crash) the inputs may be

too geared towards some cases because the static analysis has eliminated others (e.g.,

large parts of the code may not be exercised at all).

We discuss three examples of metrics that we have found to be inappropriate for

evaluating DSD-Crasher.

6.6.1 Formal specifications and non-standard test-suites

DSD-Crasher aims at finding bugs in current, medium-sized, third-party software.

These testees consist of thousands of lines of code and come with the original de-

velopers’ test-suites. They have been developed and are used by people other than

us. The open-source programs we are aware of do not contain formal specifications.

So for classifying bugs we are mainly relying on our subjective judgement, source

code comments, and some external prose. This approach is explicitly dissimilar from

previous evaluations such as the ones performed on Eclat [88], which mainly use text

book examples, student homeworks, or libraries for which formal specifications were

written or already existed. Some of these testees seem to have large non-standard

test suites, e.g., geared towards finding programming errors in student homework
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submissions. In contrast, typical third-party software is not formally specified and

often comes with small test suites.

6.6.2 Coverage

Coverage metrics (e.g., statement or branch coverage in the code) are often used to

evaluate the efficiency of analysis and testing tools. Nevertheless, coverage metrics

may not be appropriate when using test suites automatically generated after static

analysis of the code. Although some static analysis tools, such as Blast [9] and

SLAM [5], have been adapted to generate tests to achieve coverage, static analysis

tools generally exhaustively explore statements and branches but only report those

that may cause errors. ESC/Java falls in this class of tools. The only reported

conditions are those that may cause an error, although all possibilities are statically

examined. Several statements and paths may not be exercised at all under the con-

ditions in an ESC/Java report, as long as they do not cause an exception.

Consider test cases generated by Check ’n’ Crash compared to test cases gener-

ated by its predecessor tool, JCrasher. JCrasher will create many more test cases

with random input values. As a result, a JCrasher-generated test suite will usually

achieve higher coverage than a Check ’n’ Crash-generated one. Nevertheless, this is

a misleading metric. If Check ’n’ Crash did not generate a test case that JCrasher

would have, it is potentially because the ESC/Java analysis did not find a possible

program crash with these input values. Thus, it is the role of static analysis to intel-

ligently detect which circumstances can reveal an error, and only produce a test case

for those circumstances. The result is that parts of the code will not be exercised by

the test suite, but these parts are unlikely to contain any of the errors that the static

analysis is designed to detect.
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6.6.3 Invariant precision and recall

Nimmer and Ernst have performed some of the research closest to ours in combining

Daikon and ESC/Java. Reference [87] evaluates how well Daikon (and Houdini) can

automatically infer program invariants to annotate a testee before checking it with

ESC/Java. Reference [86] also evaluates a Daikon-ESC/Java integration, concentrat-

ing more on automatically computed metrics.

In contrast to our path precision and recall metrics of Section 2.3, the main metrics

used by Nimmer and Ernst are the precision and recall of invariants. These are

computed as follows. First, Daikon is used to produce a set of proposed invariants

for a program. Then, the set of invariants is hand-edited until (a) the invariants are

sufficient for proving that the program will not throw unexpected exceptions and (b)

the invariants themselves are provable (“verifiable”) by ESC/Java. Then “precision”

is defined as the proportion of verifiable invariants among all invariants produced by

Daikon. “Recall” is the proportion of verifiable invariants produced by Daikon among

all invariants in the final verifiable set. Nimmer and Ernst measured scores higher

than 90% on both precision and recall when Daikon was applied to their set of testees.

We believe that these metrics are perfectly appropriate for human-controlled en-

vironments (as in the Nimmer and Ernst study) but inappropriate for fully automatic

evaluation of third-party applications. Both metrics mean little without the implicit

assumption that the final “verifiable” set of annotations is near the ideal set of in-

variants for the program. To see this, consider what really happens when ESC/Java

“verifies” annotations. As discussed earlier, the Daikon-inferred invariants are used

by ESC/Java as both requirements (statements that need proof) and assumptions

(statements assumed to hold). Thus, the assumptions limit the space of possibilities

and may result in a certain false property being proven. ESC/Java will not look

outside the preconditions. Essentially, a set of annotations “verified” by ESC/Java

means that it is internally consistent: the postconditions only need to hold for inputs
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that satisfy the preconditions.

This means that it is trivial to get perfect “precision” and “recall” by just doing

a very bad job in invariant inference! Intuitively, if we narrow the domain to only

the observations we know hold, they will always be verifiable under the conditions

that enable them. For instance, assume we have a method meth(int x) and a test

suite that calls it with values 1, 2, 3, and 10. Imagine that Daikon were to do

a bad job at invariant inference. Then a possible output would be the precondition

x=1 or x=2 or x=3 or x=10 (satisfied by all inputs) and some similar postcondition

based on all observed results of the executions. These conditions are immediately

verifiable by ESC/Java, as it will restrict its reasoning to executions that Daikon has

already observed. The result is 100% precision and 100% recall.

In short, the metrics of precision and recall are only meaningful under the assump-

tion that there is a known ideal set of annotations that we are trying to reach, and the

ideal annotations are the only ones that we accept as verifiable. Thus, precision and

recall will not work as automatable metrics that can be quantified for reasonably-sized

programs.

6.6.4 Goals

We want to explore two questions.

1. Can DSD-Crasher eliminate false bug warnings produced by Check ’n’ Crash?

Reducing false bug warnings with respect to a static-dynamic tool such as

Check ’n’ Crash was the main goal of DSD-Crasher.

2. Does DSD-Crasher find deeper bugs than similar approaches that use a light-

weight bug search?

This evaluation will not establish that DSD-Crasher is generally better than its com-

petition (in all dimensions). DSD-Crasher trades improvements along the above di-

mensions with disadvantages on other dimensions, such as the number of bugs found
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or execution time. Instead, we would like to find evidence that a dynamic-static-

dynamic approach such as DSD-Crasher can provide improved results in some sce-

narios. Our goal is to provide motivation to use DSD-Crasher as part of a multi-tool

approach to automated bug-finding. To investigate the first question, we are looking

for cases in which Daikon-inferred invariants help DSD-Crasher rule out cases that

likely violate implicit user assumptions. To investigate the second question, we are

looking for bugs DSD-Crasher finds that elude a lightweight static analysis such as a

mostly random bug search.

6.7 Experience

JBoss JMS is the JMS module of the JBoss open-source J2EE application server

(http://www.jboss.org/). It is an implementation of Sun’s Java Message Service

API [53]. We used version 4.0 RC1, which consists of some five thousand non-comment

source statements (NCSS).

Groovy is an open-source scripting language that compiles to Java bytecode. We

used the Groovy 1.0 beta 1 version, whose application classes contain some eleven

thousand NCSS. We excluded low-level AST Groovy classes from the experiments.

The resulting set of testees consisted of 34 classes with a total of some 2 thousand

NCSS. We used 603 of the unit test cases that came with the tested Groovy version,

from which Daikon produced a 1.5 MB file of compressed invariants. (The source

code of the testee and its unit tests are available from http://groovy.codehaus.org/)

We believe that Groovy is a very representative test application for our kind of

analysis: it is a medium-size, third-party application. Importantly, its test suite was

developed completely independently of our evaluation by the application developers,

for regression testing and not for the purpose of yielding good Daikon invariants.

JBoss JMS is a good example of a third-party application, especially appropriate

for comparisons with Check ’n’ Crash as it was a part of Check ’n’ Crash’s past
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evaluation [24]. Nevertheless, the existing test suite supplied by the original authors

was insufficient and we had to supplement it ourselves to increase coverage for selected

examples.

All experiments were conducted on a 1.2 GHz Pentium III-M with 512 MB of

RAM. We excluded those source files from the experiments which any of the tested

tools could not handle due to engineering shortcomings.

6.7.1 More precise than the static-dynamic Check ’n’ Crash

The first benefit of DSD-Crasher is that it produces fewer false bug warnings than

the static-dynamic Check ’n’ Crash tool.

6.7.1.1 JBoss JMS

Check ’n’ Crash reported five cases, which include the errors reported earlier [24].

Two reports are false bug warnings. We use one of them as an example on how DSD-

Crasher suppresses false bug warnings. The setBytes method of the testee class

org.jboss.jms.util.JMSMap uses the potentially negative parameter length as the

length in creating a new array. Calling setBytes with a negative length parameter

causes a NegativeArraySizeException.

public void setBytes(String name, byte[] value, int offset, int length)

throws JMSException

{

byte[] bytes = new byte[length];

//..

}

We used unit tests that (correctly) call setBytes three times with consistent

parameter values. DSD-Crasher’s initial dynamic step infers a precondition that

includes requires length == daikon.Quant.size(value). This implies that the
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Table 5: Groovy results: The dynamic-static-dynamic DSD-Crasher vs. the static-
dynamic Check ’n’ Crash.

Runtime Exception NullPointer
[min:s] reports reports

Check ’n’ Crash classic 10:43 4 0
Check ’n’ Crash relaxed 10:43 19 15
DSD-Crasher 30:32 11 9

length parameter cannot be negative. So DSD-Crasher’s static step does not warn

about a potential NegativeArraySizeException and DSD-Crasher does not produce

this false bug warning.

6.7.1.2 Groovy

As discussed and motivated earlier, Check ’n’ Crash by default suppresses most

NullPointerExceptions because of the high number of false bug warnings for actual

code. Most Java methods fail if a null reference is passed instead of a real object,

yet this rarely indicates a bug, but rather an implicit precondition. With Daikon, the

precondition is inferred, resulting in the elimination of the false bug warnings.

Table 5 shows these results, as well as the runtime of the tools (confirming that

DSD-Crasher has a realistic runtime). All of the tools involved are based on the

current Check ’n’ Crash implementation, which in addition to the published de-

scription [24] only reports exceptions thrown by a method directly called by the

generated test case. This restricts Check ’n’ Crash’s reports to the cases investi-

gated by ESC/Java and removes accidental crashes inside other methods called be-

fore reaching the location of the ESC/Java warning. Check ’n’ Crash classic is the

current Check ’n’ Crash implementation. It suppresses all NullPointerExceptions,

IllegalArgumentExceptions, etc. thrown by the method under test. DSD-Crasher

is our integrated tool and reports any exception for a method that has a Daikon-

inferred precondition. Check ’n’ Crash relaxed is Check ’n’ Crash classic but uses the
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same exception reporting as DSD-Crasher.

Check ’n’ Crash relaxed reports the 11 DSD-Crasher exceptions plus 8 others.

(These are 15 NullPointerExceptions plus the four other exceptions reported by

Check ’n’ Crash classic.) In 7 of the 8 additional exceptions, DSD-Crasher’s ESC/Java

step could statically rule out the warning with the help of the Daikon-derived invari-

ants. In the remaining case, ESC/Java emitted the same warning, but the more

complicated constraints threw off our prototype constraint solver. In this case,

(-1 - fromIndex) == size has an expression on the left side, which is not yet

supported by our solver. The elimination of the 7 false error reports confirms the

benefits of the Daikon integration. Without it, Check ’n’ Crash has no choice but

to either ignore potential NullPointerException-causing bugs or to report them,

resulting in a high false bug warning rate.

6.7.2 More efficient than the dynamic-dynamic Eclat

We compare DSD-Crasher with Eclat [88], since it is the most closely related tool

available to us. Specifically, Eclat also uses Daikon to observe existing correct exe-

cutions and employs random test case generation to confirm testee behavior. This

is not a perfect comparison, however: Eclat has a broader scope than DSD-Crasher

(Section 6.4). So our comparison is limited to only one aspect of Eclat.

6.7.2.1 ClassCastExceptions in JBoss JMS

For the JBoss JMS experiment, the main difference we observed between DSD-Crasher

and the dynamic-dynamic Eclat was in the reporting of potential dynamic type errors

(ClassCastExceptions). The bugs reported [24] were ClassCastExceptions. (Most

of the other reports concern NullPointerExceptions. Eclat produces 47 of them,

with the vast majority being false bug warnings. DSD-Crasher produces 29 reports,

largely overlapping the Eclat ones.)

Table 6 compares the ClassCastExceptions found by DSD-Crasher and Eclat.
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Table 6: JBoss JMS results: ClassCastException (CCE) reports by the dynamic-
static-dynamic DSD-Crasher and the dynamic-dynamic Eclat. This table omits all
other exception reports as well as all of Eclat’s non-exception reports.

CCE Runtime
reports [min:s]

Eclat-default 0 1:20
Eclat-hybrid, 4 rounds 0 2:37
Eclat-hybrid, 5 rounds 0 3:34
Eclat-hybrid, 10 rounds 0 16:39
Eclat-exhaustive, 500 s timeout 0 13:39
Eclat-exhaustive, 1000 s timeout 0 28:29
Eclat-exhaustive, 1500 s timeout 0 44:29
Eclat-exhaustive, 1750 s timeout 0 1:25:44
DSD-Crasher 3 1:59

As in the other tables, every report corresponds to a unique combination of exception

type and throwing source line. We tried several Eclat configurations, also used in

our Groovy case study later. Eclat-default is Eclat’s default configuration, which

uses random input generation. Eclat-exhaustive uses exhaustive input generation

up to a given time limit. This is one way to force Eclat to test every method.

Otherwise a method that can only be called with a few different input values, such

as static m(boolean) is easily overlooked by Eclat. Eclat-hybrid uses exhaustive

generation if the number of all possible combinations is below a certain threshold;

otherwise, it resorts to the default technique (random).

We tried several settings trying to cause Eclat to reproduce any of the cases

in which DSD-Crasher has observed a ClassCastException. With running times

ranging from eighty seconds to over an hour, Eclat was not able to do so. (In gen-

eral, Eclat does try to detect dynamic type errors: for instance, it finds a potential

ClassCastException in our Groovy case study. In fairness, however, Eclat is not a

tool tuned to find crashes but to generate a range of tests.)

DSD-Crasher produces three distinct ClassCastException reports, which include
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Table 7: Groovy results: The dynamic-static-dynamic DSD-Crasher vs. the
dynamic-dynamic Eclat. This table omits all of Eclat’s non-exception reports.

Exception Runtime
reports [min:s]

Eclat-default 0 7:01
Eclat-hybrid, 4 rounds 0 8:24
Eclat-exhaustive, 2 rounds 2 10:02
Eclat-exhaustive, 500 s timeout 2 16:42
Eclat-exhaustive, 1200 s timeout 2 33:17
DSD-Crasher 4 30:32

the two cases presented in the past [24]. In the third case, class JMSTypeConversions

throws a ClassCastException when the following method getBytes is called with

a parameter of type Byte[] (note that the cast is to a “byte[]”, with a lower-case

“b”).

public static byte[] getBytes(Object value)

throws MessageFormatException

{

if (value == null) return null;

else if (value instanceof Byte[])

{

return (byte[]) value;

} //..

}

6.7.2.2 Groovy

Table 7 compares DSD-Crasher with Eclat on Groovy. DSD-Crasher finds both of

the Eclat reports. Both tools report several other cases, which we filtered manually

to make the comparison feasible. Namely, we remove Eclat’s reports of invariant

violations, reports in which the exception-throwing method does not belong to the
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testees under test specified by the user, etc.

One of the above reports provides a representative example of why DSD-Crasher

explores the test parameter space more deeply (due to the ESC/Java analysis). The

exception reported can only be reproduced for a certain non-null array. ESC/Java

derives the right precondition and Check ’n’ Crash generates a satisfying test case,

whereas Eclat misses it. The constraints are: arrayLength(sources) == 1, as well

as sources:141.46[i] == null and i == 0. Check ’n’ Crash generates the input

value new CharStream[]{null} that satisfies the conditions, while Eclat just per-

forms random testing and tries the value null.

6.7.3 Summary of benefits

The main question of our evaluation is whether DSD-Crasher is an improvement

over using Check ’n’ Crash alone. The answer from our experiments is positive,

as long as there is a regression test suite sufficient for exercising large parts of the

application functionality. We found that the simple invariants produced by Daikon

were fairly accurate, which significantly aided the ESC/Java reasoning. The reduc-

tion in false bug warnings enables DSD-Crasher (as opposed to Check ’n’ Crash) to

produce reasonable reports about NullPointerExceptions. Furthermore, we never

observed cases in our experiments where false Daikon invariants over-constrained a

method input domain. This would have caused DSD-Crasher to miss a bug found

by Check ’n’ Crash. Instead, the invariants inferred by Daikon are a sufficient gen-

eralization of observed input values, so that the search domain for ESC/Java is large

enough to locate potential erroneous inputs.

Of course, inferred invariants are no substitute for human-supplied invariants. One

should keep in mind that we focused on simple invariants produced by Daikon and

eliminated more “ambitious” kinds of inferred invariants (e.g., ordering constraints

on arrays), as discussed in Section 6.4. Even such simple invariants are sufficient
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for limiting the false bug warnings that Check ’n’ Crash produces without any other

context information.

6.8 Applicability and limitations

Our experience with DSD-Crasher yielded interesting lessons with respect to its ap-

plicability and limitations. Generally, we believe that the approach is sound and has

significant promise, yet at this point it has not reached sufficient maturity for broad

practical use. This may seem to contradict our previously presented experiments,

which showcased benefits from the use of DSD-Crasher. It is, however, important to

note that those were performed in a strictly controlled, narrow-range environment,

designed to bring out the promise of DSD-Crasher under near-ideal conditions. The

environment indirectly reveals DSD-Crasher’s limitations.

6.8.1 Test suite

An extensive test suite is required to produce reliable Daikon invariants. The user

may need to supply detailed test cases with high coverage both of program paths

and of the value domain. We searched open-source repositories for software with

detailed regression test suites, and used Groovy partly because its suite was one of

the largest. A literature review reveals no instance of using Daikon on non-trivial,

third-party open-source software to infer useful invariants with the original test suite

that the software’s developers supply.

6.8.2 Scalability

The practical scalability of DSD-Crasher is less than ideal. The applications we

examined were of medium size, mainly because scaling to large applications is not

easily possible. For instance, Daikon can quickly exhaust the heap when executed on

a large application. Furthermore, the inferred invariants slow down the ESC/Java

analysis and may make it infeasible within reasonable time bounds.
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These shortcomings should be largely a matter of engineering. Daikon’s dynamic

invariant inference approach is inherently parallelizable, for instance. This is a good

property for future architectures and an easy way to eliminate scalability problems

due to memory exhaustion. By examining the invariants of a small number of methods

only, memory requirements should be low, at the expense of some loss in efficiency,

which can be offset by parallelism.

6.8.3 Kinds of bugs caught

As discussed earlier, DSD-Crasher is a tool that aims for high degrees of automation.

If we were to introduce explicit specifications, the tool could target any type of error,

since it would be a violation of an explicit specification. Explicit specifications require

significant human effort, however. Therefore, the intended usage mode of the tool

limits its attention to violations of implicit preconditions of language-level operations,

which cause run-time exceptions, as described in Section 6.4. Thus, semantic errors

that do not result in a program crash but produce incorrect results stay undetected.

Furthermore, the thorough (due to the static analysis) but relatively local nature

of DSD-Crasher means that it is much better for detecting violations of boundary

conditions, than it is for detecting “deep” errors involving complex state and multiple

methods.

To illustrate this, we analyzed different versions of a subject (the Apache Xml

Security module) from the software-artifact infrastructure repository (SIR), which

is maintained by Do et al. [35]. The repository contains several versions of a few

medium-sized applications together with their respective test suites and seeded bugs.

Several other research groups have used subjects from this repository to evaluate

bug-finding techniques. Our results are summarized in Table 8. We found that most

of the seeded bugs are too deep for DSD-Crasher to catch. Indeed, about half of

the seeded bugs do not even affect ESC/Java’s internal reasoning, independently of
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Table 8: Experience with SIR subjects. SIR contains three bug-seeded versions of
the Apache Xml Security distribution. NCSS are non-commented source statements.
For all analyzed subject versions, ESC/Java (with the usual DSD-Crasher settings)
produces the same warnings for the unseeded and seeded classes. (For the last version
we excluded the one seeded fault labelled “conflicting” from our analysis.) Seeded
methods are testee methods that contain at least one SIR seed. Note that this includes
cases where the ESC/Java warning occurs before a seeded change, so the seeded bug
may not necessarily influence the ESC/Java warning site. “ESC/Java wp” stands for
ESC/Java’s internal weakest precondition computation when running within DSD-
Crasher. The last column gives the number of seeded bugs that change the local
backward slice of an ESC/Java warning.

Analyzed Size ESC/Java Seeded bugs
version of [kNCSS] warnings total affecting in slice of
Apache total in seeded ESC/Java ESC/Java
Xml Security methods wp warning
1.0.4 12.4 111 2 20 10 1
1.0.5 D2 12.8 104 3 19 10 1
1.0.71 10.3 120 5 13 7 2

whether this reasoning leads to a bug warning or not. For instance, for version 1.0.4 of

our subject, only 10 of the 20 seeded bugs affect at all the logical conditions computed

during ESC/Java’s analysis. The eventual ESC/Java warnings produced very rarely

have any relevance to the seeded bug, even with a liberal “relevance” condition (local

backward slice). DSD-Crasher does not manage to produce test cases for any of these

warnings.

It is worth examining some of these bugs in more detail, for exposition purposes.

An example seeded bug that cannot be detected consists of changing the initial value

of a class field. The bug introduces the code

boolean _includeComments = true;

when the correct value of the field is false. However, this does not affect ESC/Java’s

reasoning, since ESC/Java generally assumes that a field may contain any value.

ESC/Java maps the unseeded and the seeded versions of this field to the same ab-

stract value. Hence the result of ESC/Java’s internal reasoning will not differ for the
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unseeded and the seeded versions.

As another example, one of the seeded bugs consists of removing the call

super(doc);

from a constructor. Omitting a call to a method or constructor without specifica-

tions does not influence ESC/Java’s weakest precondition computation, since current

ESC/Java versions assume purity for methods without specifications.

The next case is interesting because the bug is within the scope of DSD-Crasher,

yet the changed code influences the weakest precondition produced by ESC/Java only

superficially. In the following code, the seeded bug consists of comparing the node

type to Node.ELEMENT_NODE instead of the correct Node.TEXT_NODE.

for (int i = 0; i < iMax; i++) {

Node curr = children.item(i);

if (curr.getNodeType() == Node.ELEMENT_NODE) {

sb.append(((Text) curr).getData());

} ...

The ESC/Java analysis of the call to (specification-free) method getNodeType

results in a fresh unconstrained local variable. This local variable will not be used

outside this if test. Hence, in both the original and the seeded version, we can

simplify the equality tests between an unspecified value and a constant to the same

abstract unspecified value. The weakest precondition does not change due to this

seeded bug. Nevertheless, the test lies on an intraprocedural path to a warning.

ESC/Java warns about a potential class cast exception in the statement under the

if. Despite the warning, the original method is correct: the path to the cast exception

is infeasible. For the erroneous version, DSD-Crasher does not manage to reproduce

the error, since it involves values produced by several other methods.
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CHAPTER VII

ADDING BEHAVIORAL SUBTYPING TO

USAGE-OBSERVING PROGRAM ANALYSIS

When implementing DSD-Crasher in Chapter 6, we realize a problem in the first

analysis step, which dynamically detects program invariants from existing executions.

This problem is caused by behavioral subtyping and object-oriented programming and

is exhibited by current versions of the popular Daikon invariant detection system.

This chapter describes the problem and proposes a novel algorithm [26] to address

the problem.

7.1 Overview

Several recent tools dynamically infer program invariants from existing executions.

Ernst et al. have pioneered the field with Daikon [40], which has prompted follow-

up work such as DIDUCE [52] or our own DySy tool [28]. Such tools attempt to

monitor a large number of program executions and heuristically infer abstract logical

properties of the program. Empirically, the invariant detection approach has proven

effective for program understanding tasks. Nevertheless, the greatest value of program

specifications is in automating program reasoning tasks. Indeed, Daikon produces

specifications in several formal specification languages (e.g., in JML [71] for Java)

and the resulting annotations have been used to automatically guide tools such as

test case generators [113, 88].

Using inferred invariants automatically in other tools places a much heavier burden

on the invariant inference engine. Treating inferred invariants, which are heuristics,

as true invariants means that they need to be internally consistent. Otherwise a single

89



contradiction is sufficient to throw off any automatic reasoning engine (be it a theorem

prover, a constraint solver, a model checker, or other) that uses the invariants. Here,

we discuss how an invariant detection tool can produce consistent invariants in a

language that allows indirection in the calling of code. Object-oriented languages are

good representatives, as they allow dynamically determining called code through the

mechanism of method overriding. The problem has two facets:

• When a method is called on an object with a different static and dynamic type,

should inferred invariants be attributed to the static type, the dynamic type,

or a combination?

• How can inferred invariants be consistent under the rule of behavioral subtyping,

which states that the overriding method should keep or weaken the precondition

and keep or strengthen the postcondition of each method it overrides.

We discuss these issues in the context of Java, the JML specification language, and

the Daikon invariant inference tool. Similar observations apply to different contexts.

We describe a solution and our in-progress implementation of a dynamic invariant

inference tool that supports it.

7.2 The Java modeling language JML and behavioral sub-
tying

For realistic applications, JML preconditions exist very rarely. JCrasher does not even

consider JML preconditions. The tool’s ideal area of application is in code currently

being developed, which is highly unlikely to have preconditions specified.

JML enforces the principle of behavioral inheritance or behavioral subtyping [71]

for overriding methods. Informally, behavioral subtyping is the requirement that the

overriding method should be usable everywhere the method it overrides can be used.

This is a common concept, employed also in program analyzers (e.g., ESC/Java2 [20])

and design methodologies (e.g., “subcontracting” in Design by Contract [79]). To
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see behavioral subtyping more formally, consider the following Java code with JML

annotations:

public class Super {

//@ requires P;

//@ ensures Q;

public void m() {...} }

JML requires that a subclass’s preconditions and postconditions be specified with the

also keyword, to denote behavioral subtyping:

public class C extends Super {

//@ also

//@ requires R;

//@ ensures S;

public void m() {...} }

R and S are not the precondition and postcondition of method C.m, however. Instead,

JML derives the preconditions and postconditions from the also clauses and the

behavior of the overridden method Super.m:

• C.m’s precondition is P | R (read “P or R”)

• C.m’s postcondition is (P ==> Q) & (R ==> S) (read “if P holds as a precon-

dition, Q holds as a postcondition and if R holds as a precondition, S holds as

a postcondition”).

This is exactly the formal embodiment of behavioral subtyping: the precondition of

the subtype method allows all the preconditions of the methods it overrides, plus

possibly some more. The postcondition of the subtype method is at least that of the

overridden method if the precondition falls inside the original domain, and may also

have more constraints.
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7.3 Problem 4: Need to support behavioral subtyping in dy-
namic invariant detection

The first issue is whether a precondition or postcondition is really a property of the

static or the dynamic type of an object. Daikon associates any method execution

with the executed method body, not with the method definition of the call’s static re-

ceiver. It then infers invariants from the execution trace, maintaining the association

with the executed method. According to this behavior, Daikon never infers pre- or

postconditions of methods defined by a Java interface, since interface methods do not

have a body. Yet, this behavior is counter-intuitive: even though postconditions are a

property of the called code, preconditions are established by the calling environment.

When these are inferred by actual program behavior, they should also be associated

with the type known to the caller, regardless of the actual type of an object.

In the following example, the Client class was written against interface I. Method

Client.foo calls I.m, so foo has to honor all preconditions of I.m. (These might be

specified informally in the Javadoc comments of I.m or elsewhere.) The conditions

that hold when method m gets called reflect the preconditions of the abstract method

I.m, and not just those of the called method Impl.m.

public interface I {

public void m(int arg); }

class Client {

void foo(I i) { //called with i = new Impl()

i.m(...); } }

public class Impl implements I {

public void m(int arg) {...} }
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The second issue with invariant inferencing and overriding is thornier. Since invari-

ant inference is heuristic, it is easy to derive invariants that do not respect behavioral

subtyping and, thus, lead to a contradiction. Consider a method m defined in a class

Super and overridden in a subclass C. Assume a scenario where, under the observed

program behavior, Super.m is consistently called with an input value of 1 and always

returns (in the observed executions) the output value 1. It is reasonable to infer pre-

condition i == 1 and postcondition \result == 1 for Super.m. At the same time, if

C.m is also consistently called with input value 1 and always returns (in the observed

executions) the output value 0, then it is reasonable to infer precondition i == 1 and

postcondition \result == 0 for C.m. Daikon just outputs the invariants for both

methods, with the also clause used for the invariants of C.m, as dictated by JML for

overriding methods:

public class Super {

//@ requires i == 1;

//@ ensures \result == 1;

public int m(int i) {...} }

public class C extends Super {

//@ also

//@ requires i == 1;

//@ ensures \result == 0;

public int m(int i) {...} }

Then, according to the JML rules discussed earlier, the complete invariants for C.m

become:

• Precondition: i == 1

• Postcondition:
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((i==1) ==> (\result==1)) &

((i==1) ==> (\result==0)).

We can simplify this to:

((i==1) ==> (\result==1) & (\result==0)),

which is equivalent to: i != 1.

The derived precondition means that calling C.m(1) is legal. It is impossible for the

method to reach its postcondition, though, since the method cannot change the state

(i == 1) that existed before its own execution. (Any method parameter appearing

in a postcondition is evaluated to its value before method execution—it is implicitly

enclosed by \old). So the method cannot terminate normally without violating its

postcondition. But it cannot go into an infinite loop or terminate abnormally by

throwing an exception either, since such behavior is ruled out in JML when left

unspecified. Thus, every possible implementation of method C.m (including the actual

implementation observed by Daikon) violates the derived specification.

This contradictory postcondition is very undesirable for any automatic use of the

derived specifications. The problem is that the behavior of the overriding method,

C.m, indirectly reveals that there is more behavior of the overridden method, Super.m,

than seen during the execution of the test suite.1 Nevertheless, there is no easy way

to take this into account during the inference of the invariants for method Super.m.

It is tempting to think that there may be a different set of conditions that can be

output for C.m so that no contradiction occurs. While we could explicitly manipulate

the C.m invariants to narrow the precondition (in this case to false) to address the

contradiction, this would also render the invariants of C.m useless. The problem is

fundamentally with the invariants of Super.m and not C.m.

1The implicit assumption for every dynamic invariant detection tool is that the derived invariants
have to be consistent with the observed behavior. So a future execution of the observed behavior
should pass any invariant checks compiled from the derived invariants.
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7.4 Solution design

To solve both problems described earlier, we design a general algorithm that invari-

ant detection tools can follow. The algorithm is oblivious to the actual strategy of

the tool for deriving invariants from executions, and instead concentrates on what

method observes which execution (i.e., which input and output values). The algo-

rithm can be described informally as follows: values at input are used for computing

the precondition of the method executed (dynamic receiver) and all methods it over-

rides up to and including the static receiver. Values at output are used to compute

the postcondition of the method executed and all methods it overrides as long as the

values satisfy the methods’ preconditions.
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Figure 10: Overview of the proposed two-stage algorithm for dynamic invariant
inference. Phase A (left) and Phase B (right).

Figure 10 illustrates the algorithm, which has the following two phases:

• Phase A: the test suite is run and values at the beginning of each call are

registered for the dynamic receiver of a method call and for all methods it

overrides up to and including the static receiver. Preconditions are inferred from
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these values, in the same way as they would be otherwise. No postconditions

are inferred. The phase completes with all preconditions computed.

• Phase B: the test suite is run again (or a trace is replayed) and for a call to

method C.m with inputs i1..iN we find all methods (including C.m itself) that

C.m overrides. For each such method, S.m, if the inputs i1..iN satisfy the

inferred precondition of S.m then the execution of the method is used in the

computation of the postcondition of S.m.

This approach solves both problems identified earlier. First, preconditions are

computed for both the static and the dynamic receiver of a method call. Second,

an execution of an overriding method is also used to compute postconditions for all

its overridden methods, as long as the inputs do not fall outside the domain of the

overridden method. Since that domain is fixed (from Phase A), we are guaranteed

that no contradictory postconditions can be computed (because the overriding and

overridden methods have seen the same behavior for all inputs in their common

domain).

Note that there are several other ways to remove the symptoms of the second

problem (i.e., the derivation of a contradiction). Generally, we can strengthen (i.e.,

narrow) the inferred precondition of the overriding method or weaken its postcondi-

tion until the contradiction disappears. Nevertheless, all such approaches result in

artificial overapproximations. In contrast, our above algorithm solves the problem

by ensuring that we take into account all relevant behavior for every method when

computing its pre- and postcondition.

7.5 Solution implementation

We are in the process of implementing a variant of Daikon using the above algorithm

to guide the invariant inference logic. There are several implementation complications

in adopting our approach. First, we need to efficiently carry information about the
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Figure 11: Static receiver problem: The static receiver type I is not readily available
during the execution of the dynamic receiver Impl.

static type used to call a method during method execution. Then, we need to compile

inferred JML preconditions into actual runtime checks that we will perform during

Phase B of our algorithm to determine which methods’ postconditions may be affected

by a given execution.

7.5.1 Keeping track of static receivers

For the first issue, consider a method Impl.m dynamically dispatched through an

interface I.m. The problem is that the executed method (Impl.m) does not have

direct access to the static receiver type (I) against which the method was called

(Figure 11).

We could rewrite the call site to observe the entry values and possibly update

the static receiver’s preconditions. Nevertheless, this is awkward, since a similar

task also needs to be performed inside the body of the dynamic receiver. Instead,

we want to pass the static receiver type information to the dynamic receiver body

to use its existing invariant inference routines. To avoid synchronization problems

with centralized data stores we transform methods to pass the static receiver type

information with the method call (Figure 12). That is, a call to method m in class

Impl will be transformed to calling the jump-through method m___I for all its calls

through a reference with static type I:

public interface I {

public void m(int arg);

public void m___I(int arg); }
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Figure 12: Static receiver solution: Encode the static receiver type I in the method
name, for example: m I

class Client {

void foo(I i) { //called with i = new Impl()

i.m___I(...); } }

public class Impl implements I {

public void m___I(int arg) {

trace.add(I);

return m(arg);

}

public void m___Impl(int arg) {

return m(arg);

}

public void m(int arg) {...} }

We use BCEL [1] for the program transformation at the bytecode level.

7.5.2 Checking invariants during execution

After Phase A we add the derived preconditions as special checks to the application.

At the beginning of each method body we add instructions that check if the precon-

dition of any overridden method holds as well. We associate the traced values with

every so determined method.

Up front we determine all method definitions that are overridden by a given
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method D.m. Note that m may override methods in more than one direct super-

types (e.g., in interfaces) and in transitive super-types. If m has a method body (is

not abstract), we compile the precondition derived for every overridden method into

a separate runtime check and add it to the beginning of m. If a runtime check succeeds

then the current invocation also satisfies the precondition of the overridden method

and we associate the invocation with this method definition. In the following exam-

ple, an invocation of method D.m may contribute to the postconditions of C.m, B.m,

and A.m, in addition to D.m.

public interface A {

public void m(int i); }

public interface B extends A {

public void m(int i); }

public class C {

public void m(int i) {...} }

public class D extends C implements B {

public void m(int i) {

if A.m.pre(i) {trace.add(A);}

if B.m.pre(i) {trace.add(B);}

if C.m.pre(i) {trace.add(C);} ... } }
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CHAPTER VIII

RESETTING CLASS STATE BETWEEN TEST

EXECUTIONS

When implementing our first automated testing tool, JCrasher, in Chapter 4, we

realize the following problem. JCrasher can generate and execute a huge number

of test cases, which may all operate on the same small set of classes, reading and

updating fields as implemented in the tested methods and the code called by those

methods. This can lead to un-expected dependencies between test cases. While this

problem is most prominent for a mass-producer of test cases such as JCrasher, it still

applies to any other test case generation tool, such as our Check ’n’ Crash and DSD-

Crasher tools. But since this problem is most pressing for JCrasher, we investigate it

in the context of JCrasher.

8.1 Overview

Most of the JCrasher tests are very short in practice—they consist of a method call

with arguments that are returned by other method calls, etc., but typically only up

to a depth of three to five. More complex tests are not too meaningful due to the

enormous size of the test space for all but the simplest classes.

To enable different test cases to execute without interference in a single virtual

machine instance, we explore two main ideas: using a different class loader for each

test and modifying the code under test at the bytecode level to expose static re-

initialization routines, which get called after the end of each test case. Both techniques

aim at re-initializing all static data in the classes under test. That is, our techniques

reset the in-memory, user-level state introduced by previous tests. A limitation is
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that external state—files or data stored in a database, for example—or static state in

system classes cannot be reset. Nevertheless, methods that are sensitive to external

or system state are typically too complex to benefit by a random testing approach.

The problem of resetting static state is interesting for applications very differ-

ent from testing. Although, as we argue later, the case of JCrasher is unusual in

that it does not require full correctness: a minor relaxation of correctness only risks

introducing some false positives and may be desirable if it yields much better per-

formance. For instance, Reference [34] proposes a Java virtual machine design that

allows fast re-initialization without process creation overhead for server applications.

In our setting, working with an unmodified, general purpose virtual machine is a huge

advantage for the ease of deployment of JCrasher. To our knowledge, the comparative

merits of the approaches described here have not been discussed before. Resetting

static state for testing scalability is one of the novelties of JCrasher.

8.2 Tool background: JUnit

We first describe the JUnit machinery very briefly. Both of our approaches to resetting

static state require minor modifications to JUnit. This is somewhat undesirable

since it means that a patched version of JUnit is needed during JCrasher testing.

Nevertheless, the changes are very small—a few lines patched—and the main benefits

of using JUnit as the JCrasher back-end are preserved: generated test cases remain

in JUnit format and if they prove to be interesting for regression testing they can be

used with an unmodified version of JUnit.

JUnit automates the execution of test cases and facilitates the collection of test

case results, but does not offer any assistance in implementing test cases. The JU-

nit user provides a test class—a subclass of junit.framework.TestCase—with test

methods that exercise the functionality of different classes. Figure 13 illustrates how

JUnit works. In this example, JUnit represents a test case through a method test1
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class T {

static int i=0;

void m(int) {}

}

TestRunner.classclass TTest extends TestCase {

void test1() {new T().m(0);}

void test2() {new T().m(1);}

}

Class Under Test Two JUnit Test-Cases Execution

compiler, compiler,

TestRunner

Object class
instance

of

T TTest
1. Load „TTest“

test1T

2. Ask for methods

3. Execute methods

compiler,

jvm

uses

jvm
compiler,

jvm

heap

T test2

Figure 13: Overview of JUnit’s internal data-structures at runtime, when testing
testee class T with two test cases test1, test2 of a JUnit test-class TTest. JUnit
loads TTest by name via a class loader and retrieves and executes its test cases via
reflection. Class T is loaded on test case execution as instances of T are created. JVM
is a standard Java virtual machine.

of a test-class TTest. The predefined JUnit code uses reflection to find methods

whose name begins with “test” and executes them. JCrasher test cases correspond

to individual “test” methods as described in Section 4.3.1.

8.3 Problem 5: Need to reset static state during long-running
test executions

Since we test small units of functionality for relatively “shallow” errors, it makes sense

to perform all its tests in a single instance of the Java Virtual Machine, thus avoiding

the expensive tasks of process creation, loading of Java virtual machine classes, etc.

Nevertheless, this raises the problem of dependencies among test cases. Without

special care, a test case will end up setting the static state on which subsequent test

cases will execute. This interference is undesirable: ideally, we would like to know

whether a method fails in a well-defined initial state. Otherwise it would be hard to
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TestRunnerT TTest

test1T

TestRunnerT TTest

test1T

JUnit

All test-cases test1(), test2() share the 

same environment, i.e. static state of T

Modified JUnit – junitMultiCL

Each test-case test1(), test2() has its 

own environment, i.e. class T

test1T

T test2

test1T

T TTest

test2T

Figure 14: Using multiple class loaders to undo class state change. Left: Original
JUnit. Right: Modified JUnit that uses multiple class loaders.

detect the real cause for the violation of a program’s invariants.

8.4 First solution: Multiple class loaders

The first option offered by JCrasher for resetting static state consists of loading each

test case with a different class loader. Using multiple class loaders is a Java technique

for integrating the same code multiple times, with different copies of its static state.

In essence, the same class bytecode loaded twice with different class loaders results

in two entirely different classes inside a Java VM.

Figure 14 illustrates the concept. It would seem that the modifications to JUnit for

integrating the multiple class loaders idea are very minimal and localized. Indeed, our

first JUnit patch with early versions of JCrasher consisted of about 10 lines of source

code. Nevertheless, we quickly found out that this version was not scalable: due

to the JUnit representation of test cases and their interdependencies, older classes

never became unreferenced and thus could not be garbage collected. This limited

the scalability of JCrasher to a few hundreds of test cases, well below our goal of
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JUnit

1. One classloader loads all test-

cases and all used classes

2. One suite-hierarchy is executed

Modified JUnit – junitMultiCL

1. Each test-case is loaded by a new 

classloader

2. The hierarchy is split up into a 

set of suites

3. The garbage collector can free 

the heap from executed suitesXSuite the heap from executed suitesXSuite

X.m1

ClassLoader

YSuite

Y.m1 Y.m2

X

Y

Suite

X.m1 Y.m1X Y

CL1 CL2

Suite

…

Figure 15: Adapted execution model for using multiple class loaders.

many hundreds of thousands of test cases per Java virtual machine process. Of

course, multiple virtual machine instances could be used in sequence, in order to

cover all test cases, but this would require more complex coordination outside the

JUnit framework—an executable program or script that starts virtual machines, for

example—which is an undesirable solution for deployment/portability purposes.

Our final solution changes the JUnit execution model more substantially, as shown

in Figure 15. Instead of having a single “Test Suite” object that recursively points

to all the tests to be executed, our modified version of JUnit has independent suites,

each supporting a small fixed number of test cases—we have been using a single test

case per suite. Once a suite gets executed, all memory it occupies—together with

loaded classes—can be garbage collected. The only exception is for test cases that

actually resulted in errors. In that case, JUnit stores a reference to the offending test

case in its error report and the garbage collector cannot reclaim that memory.

The multiple class loader approach is a reasonable compromise between concise-

ness and efficiency. Nevertheless, it is still rather inefficient since all user classes need

to be re-loaded every time just to execute a new test method on a clean slate.
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8.5 Second solution: Load-time class re-initialization

A second alternative for resetting static state is to imitate the class initialization al-

gorithm of the Java virtual machine in user space. This will allow re-initializing the

same set of classes, existing from previous test cases. This gives much better perfor-

mance as it saves the time needed for loading and unloading classes. Furthermore,

it yields better scalability in terms of memory requirements in the case of test cases

resulting in errors. Recall that with multiple loaders, multiple copies of the same

classes have to be kept for executions that did cause an error.

A significant insight for the rest of this section is that our solution does not need

to be fully correct with respect to the semantics of Java VM initialization, as long

as it is correct for the vast majority of test cases. Testing with JCrasher is an opti-

mistic, “nothing-to-lose” approach. The system picks some test inputs randomly and

attempts to discover robustness errors. As long as the vast majority of the test cases

execute with correct Java semantics, it should not matter if a few false positives—

failed tests that do not correspond to errors—are introduced. False negatives matter

even less as they are inherent in the random input approach anyway. Thus, it is

often preferable to have a very fast but not fully accurate solution. Indeed, the cur-

rent JCrasher implementation does not perform fully correct static re-initialization

although it works correctly for the vast majority of programs. At the end of this

section we will discuss how its correctness can be improved.

The key idea is to implement a load-time class initialization algorithm—similar to

the one performed by the Java virtual machine [75, Section 2.17.5]—in the JCrasher

runtime. Executing this procedure before each test case execution re-initializes the

static state of all previously loaded classes each time to the same value. The required

elements of such a load-time initialization algorithm are the following. First, a list

of the classes in the order in which they should be initialized. Second, the ability

to reset the values of the static fields of each of these classes to the default before
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each test case execution. All zero bits represents the default value: null, zero, or

false. Finally, the ability to execute the variable initializer of each static field before

each test case execution. The variable initializer of a static field is compiled into the

<clinit>() method of the class declaring the field. The <clinit>() method cannot

be called by Java code as its name is not a valid method name.

In order to implement class re-initialization, JCrasher again makes some modifi-

cations to JUnit. The JUnit class loader is replaced by a special class loader that

performs modifications of the class bytecode before loading it—we use BCEL [1] for

bytecode engineering. Classes belonging to the Java platform, JUnit, or JCrasher are

excluded from the following treatment by the class loader.

• If the class has a <clinit>() method, this is copied to methods clreinit()

and clinit(). The former method is the re-initializer, while the latter will be

used as the original initializer. If no static initializer exists, empty clreinit()

and clinit() methods are added to the class.

• The clreinit() method is modified to differ from the original static initializer

to avoid attempting to reset final fields.

• A static initializer, <clinit>(), method is added to the class. This static

initializer calls the original static initialization code, clinit(). On return

from that code, the static initializer registers the fact that static initialization

ended for this class in a JCrasher-maintained data structure. The ending order

of initializations will be the same as the order of re-initializations before future

tests.

The re-initialization occurs after the end of each test case execution. JUnit calls

via TestCase.setup() a JCrasher-runtime function. This function first sets the

static fields of the registered classes to all zero bits using Java reflection. Then the

clreinit() method of each class is executed. The classes are re-initialized in the
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order their original initializations finished in previous tests. This is not correct Java

initialization, for two reasons: first because of the possibility of cyclic dependencies

between classes and second because this re-initialization is eager—it happens up front.

In the case that static data among classes have cyclic dependencies, the order of

re-initialization could be incorrect. In some cases, the loading order of classes could

affect the result of static initialization. Thus different test cases could need to be

initialized with different static data although they use exactly the same classes—

but the code is such that they are loaded in different order. For a standard cyclic

dependency example [67], consider the following classes:

class A {static int a = B.b + 1;}

class B {static int b = A.a + 1;}

In a regular execution, if the initialization of A is started before the initialization

of B, then B is initialized before A and a=2, b=1; else a=1, b=2. So if B has been

loaded before A and the JCrasher-runtime would run the B-initializer, then the A-

initializer: a=1, b=2. Code with cyclic static dependencies is extremely rare—the

study of Kozen and Stillerman [67] examined a few libraries and found no examples,

and such code should be avoided anyway.

The eager character of the JCrasher re-initialization represents a more serious

departure from the Java initialization semantics. The Java semantics enforces the lazy

loading of classes. Static data get initialized as classes get loaded. Furthermore, static

data can be initialized to values dependent on dynamic data computed by the code

of previously loaded classes. Thus, eager re-initialization—before other computation

has taken place—may yield different values. Nevertheless, most Java programs do

not rely on the timing of class loading, so we expect such errors to be rare.

For correct execution semantics, we could simulate the JVM class initialization

procedure exactly. This would require extensive bytecode modification, which will
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introduce significant overhead. For instance, the event that will trigger the initializa-

tion of a class may be the creation of an instance, meaning that all object creations

throughout the program under test need to be rewritten to first check whether the

instantiated class has been re-initialized. We believe that this approach would be

overkill in terms of implementation complexity and overhead, for very little practical

benefit. As discussed earlier, the lack of full support for the Java semantics is not a

big problem in practice for an optimistic testing approach such as the one of JCrasher.

The performance advantages of the re-initialization approach far outweigh the small

danger of false positives in the testing process. Furthermore, in practice, it is unlikely

that such false positives will be introduced during regular development.

8.6 Experience

We have conducted preliminary experiments on the performance of the different static

state resetting techniques. Roughly speaking, the multiple class loading approach is

more than twice as fast as re-starting the entire Java VM if only a couple of classes

are being reloaded. In contrast, the less safe re-initialization approach of Section 8.5

is over 20 times faster than multiple loading, making the resetting time be negligible

with respect to other overheads.

Of course, whether the resetting overhead matters depends on the time that each

test takes. Most tests executed when testing an actual application are very brief—

each lasts on average a few milliseconds with some being significantly shorter and a

few happening to “go deep” in application functionality and take much longer. Of

course, the user can select to test the top-level classes of an application, in which case

even a single test may take arbitrarily long to complete.

Additionally, the current implementation of our tools is relatively heavyweight.

We output all test cases as files on the disk, JUnit has to load each test file and

execute it, etc. For efficiency, we produce test files that contain no more than 500
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test cases each. One can easily imagine a more specialized, tuned to batch execution

runtime, where test cases will be executed with less overhead. Nevertheless, even

in the current, heavyweight execution model, the relative overhead of re-initializing

classes can be significant. This relative overhead would only be more significant with

a faster runtime.

More specifically, in our testing environment—a 1.2 GHz Intel mobile Pentium

3 processor with 512 MB RAM running Windows XP and a 12 ms avg., 100 MB/s

hard disk—the average time taken to execute a test with JUnit is a little below 5 ms.

Starting a Java VM that will execute a trivial class takes 170 ms. Starting a VM and

executing a trivial JUnit test takes 270 ms—that is, loading the JUnit classes, the test

class and one application class under test and running the JUnit testing code. With

the multiple loading approach, using a new loader to re-load a single application class

takes 120 ms. That is, the multiple class loaders approach saves the 270 ms of Java

virtual machine startup time and JUnit re-loading time. Nevertheless, even going to

disk and reloading a single class file introduces enough overhead to reduce the overall

benefit to about 150 ms. Still, the multiple class loading approach is more than twice

as fast as restarting the Java virtual machine.

The re-initialization approach through calling the static initialization code, dis-

cussed in Section 8.5, is significantly faster. The time taken by the JCrasher runtime

machinery for re-initializing a class with 10 static fields is 0.06 ms, which is negligible.

Although this number depends on the complexity of static initializers, the approach is

clearly one of minimal overhead and the time savings are dramatic with respect to the

5 ms it takes JUnit to execute a simple test. Overall, the re-initialization approach

enabled the latest version of JCrasher (which generates the most test cases of all our

tools) to execute tests an order of magnitude faster than previous versions.
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CHAPTER IX

LESSONS LEARNT AND FUTURE WORK

We now take a step back and reflect upon the work described in the previous chapters.

First, we highlight some of the trade-offs encountered during the design of the DSD-

Crasher program analysis pipeline. Then we look beyond the particular technical

context explored by this work. Chapter 1 and Chapter 2 hint at a broader applicability

of the core ideas of this work. We outline how these ideas can be generalized to related

contexts, that is, programming languages, static analyses, and program properties of

interest. Finally, we analyze the different evaluations performed throughout this

work. We make several observations that lead us to suggesting future directions in

automatic bug finding.

9.1 Design trade-offs

DSD-Crasher is our implementation of the proposed dynamic-static-dynamic program

analysis pipeline. Figure 16 gives a high-level overview of the major components of

DSD-Crasher. This figure is similar to the earlier overview in Figure 9, but also

shows the internals of the static analysis component. This detailed view will serve

as illustration for the remainder of this section, where we discuss a few of the design

trade-offs that are characteristic of DSD-Crasher.

9.1.1 Low-level interfaces between analysis stages

Figure 16 illustrates that DSD-Crasher consists of a sequence of analysis stages. Each

analysis stage takes some data as input, performs its analysis, produces some new

data, and passes it on to the following stage. What is characteristic of DSD-Crasher

is that it does not pass its data in its internal, high-level representation. Instead,
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Figure 16: DSD-Crasher design overview: Each bubble represents data, and each
box stands for a stage of the analysis pipeline. The static analysis stage is broken out
to show its component stages.

each analysis stage in DSD-Crasher uses additional resources to map its data into a

low-level format before passing it on to the subsequent analysis stage. The subsequent

stage uses a reverse mapping to reconstruct a high-level representation of the data.

This is a classic design trade-off between speed and program decomposition. By using

separate, low-level data representations for communication, we get a cleaner interface

between analysis stages. This makes it easier for us to inspect the data that is passed

between the different analysis stages, which eases our development and debugging

efforts. It also makes it easier for us to share our intermediate data with third-party

analyses.

The interface between the static analysis and the final dynamic analysis is a good

example of our low-level interfaces between analysis stages. In the static analysis,

DSD-Crasher builds complex in-memory graphs, as described in Section 4.2, and
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derives its test cases from these graphs. Now we could just pass these in-memory data-

structures to the subsequent dynamic analysis, whose job is to execute and filter the

derived test cases. This would have the advantage of fast, in-memory communication

between these two analysis stages. Tomb et al. built a related two-stage analysis

pipeline for Java programs that uses such a fast, high-level communication between

their static and dynamic analysis stages [101]. In contrast, the static analysis stage of

DSD-Crasher exports all derived test cases to Java source files that contain JUnit test

cases. In the following dynamic stage, DSD-Crasher reads the test cases from the files

and rebuilds many of the data structures to execute the test cases. There is no other,

more direct, high-level communication between the static and the following dynamic

analysis stage in DSD-Crasher. One could argue that the extra effort DSD-Crasher

spends on exporting and later re-importing the test cases is wasteful overhead. But

we found this hard separation between analysis stages to be very helpful in testing

and debugging. It helped us to clearly separate the static analysis stage from the

dynamic execution stage. I.e., bugs in the dynamic execution of generated test cases

could not affect the static analysis. Tomb et al. [101] arrive at a similar conclusion:

“The process just described occurs within the same virtual machine as the

analysis, and test cases are generated and executed using reflection. On

the other hand, JCrasher, for instance, creates external files containing

JUnit test cases. In retrospect, JCrasher’s approach seems more robust,

and we plan to adopt it in the future.”

9.1.2 Generating test cases inside the Simplify automated theorem prover

The previous Section 9.1.1 argues for low-level interfaces between the different stages

of a program analysis pipeline. It is not immediately clear, though, how to decompose

a complex program analysis pipeline into the right component analyses. For example,

we refer to DSD-Crasher as a three-stage program analysis pipeline. But the current
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DSD-Crasher implementation could also be described as a five-stage analysis pipeline.

Figure 16 shows both the three main stages and the three sub-stages of the static

analysis stage. So at the implementation level, we may also talk of a dynamic-static-

static-static-dynamic program analysis pipeline, DSSSD for short.

The current DSD-Crasher design applies the low-level interface strategy described

in the previous Section 9.1.1 not only to the three main stages, but also to the three

sub-stages of the static analysis pipeline. I.e., the Simplify theorem prover generates

counter-examples to the verification conditions generated by the ESC/Java front-end.

Our subsequent test case generation sub-stage parses these counter-examples. Here

we encounter a similar design trade-off between communication speed and separation

of analysis sub-stages. An alternative strategy would be to integrate the test case

generation logic directly into the Simplify theorem prover. Our main reason for not

extending the Simplify theorem prover was that Simplify is implemented in Modula-

3 [84]. Modula-3 is a good programming language, but the community has largely

abandoned it. This means that there is little support for writing Modula-3 code,

both in available tools and expertise. Beyond these implementation issues, it would

be an interesting direction for future work to extend a traditional automated theorem

prover such as Simplify, by adding a full test case generator for an object-oriented

programming language such as Java.

9.1.3 Integration into an integrated development environment

Integration into the Eclipse integrated development environment (IDE) was an early

goal of the JCrasher random testing system. Early versions of JCrasher provided

extensions that enabled this integration. Figure 17 shows a screenshot of the JCrasher

integration into the Eclipse IDE. But during the development of JCrasher and the

remaining stages of DSD-Crasher, the costs of maintaining this integration into a

complex and evolving IDE outweighed the perceived benefits of easier usage. This
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Figure 17: Integration into the Eclipse IDE
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view seems to be supported by our users. I.e., several research groups use JCrasher

[112, 114, 88, 115, 111, 89, 76], but we are not aware of any researchers using the

integration into the Eclipse IDE. Therefore we discontinued the integration into the

Eclipse IDE and now consider it a failed experiment. This conclusion should be seen

in our context of focusing on usage by researchers, though. We leave it to future

work to determine the usefulness of integrating an automated bug finding tool into

an integrated development environment for a more representative set of end-users.

9.2 Applying this work to related contexts

Section 1.4 describes the environment of this work, a triple consisting of the Java

object-oriented programming language, the ESC/Java static program analysis, and

searching for runtime exception bugs. Now we argue that this environment is repre-

sentative of a wide range of related environments. We briefly describe such related

environments and discuss how to generalize our techniques to these environments. We

treat each dimension of our environment in turn, first the program properties of in-

terest, then the static program analysis used, and, finally, the programming language

analyzed.

9.2.1 Program properties of interest beyond runtime exceptions

The current DSD-Crasher implementation focuses on finding abnormal terminations

caused by runtime exceptions. The following describes how we can generalize from

finding runtime exceptions to discovering other kinds of problematic behavior.

At a high level, abnormal termination by throwing a runtime exception is just a

special case of a program path that violates some correctness condition. For example,

dereferencing null violates the correctness condition “variable 6= null” at the time of

the dereference. Internally, a program analysis tool such as ESC/Java can model this

check for a violation as an assertion that has to hold before the dereference happens.

Indeed, ESC/Java translates a pointer dereference to an assertion statement such
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as “assert (variable 6= null)” followed by the actual dereference. Similarly, ESC/Java

maps the other sources of runtime exceptions in Java to assertion statements, followed

by a statement that models the normal behavior of the operation. Besides runtime

exceptions, the program analysis may map additional correctness conditions to asser-

tion statements, for example the violation of user-defined correctness conditions.

ESC/Java implements more checks than we are using in the current implementa-

tion of DSD-Crasher. For example, ESC/Java can search for potential violations of

general, user-defined correctness conditions [42]. The user can annotate the program

text with invariants and pre- and post-conditions on the methods and constructors

of the analyzed program. These annotations may be expressed in the Java Model-

ing Language (JML) [71]. Given the imprecise reasoning of ESC/Java, ESC/Java

may produce many false warnings on the violation of invariants, pre-conditions, and

post-conditions. Now we could use the same machinery of DSD-Crasher to make

this search for specification violations more precise. I.e., we could transform the user

specification into executable assertions, using JML’s specification to assertion trans-

lator [16], convert the ESC/Java warnings to test cases using DSD-Crasher, and use

the remaining parts of the DSD-Crasher pipeline to execute the generated test cases,

to distinguish actual assertion violations from cases that did not violate the user’s

program specification.

9.2.2 Program analysis: From ESC/Java to FindBugs and Java PathFinder

DSD-Crasher uses the ESC/Java static program analysis tool. But ESC/Java is not

the only option to implement a three-stage dynamic-static-dynamic program analy-

sis pipeline such as DSD-Crasher. Many other static program analysis tools exist.

Some of them are similar to ESC/Java in that they use weakest precondition cal-

culations at their core. Other tools use different program analysis techniques. In

this section we outline how to transfer our approach from a weakest precondition

116



based technique such as ESC/Java to different techniques, based on dataflow frame-

works or model checking approaches. For illustration, we pick representative tools

that implement these alternative techniques and outline how we could use them in a

three-stage dynamic-static-dynamic program analysis pipeline such as DSD-Crasher.

For dataflow based tools we use the FindBugs [57] bug pattern detector, and for

model checking techniques we pick Java PathFinder [54, 103, 64, 104, 13].

FindBugs is a bug detection system for Java programs [57]. At its core, FindBugs

provides a library of several standard program analyses, including control flow and

dataflow analyses. In addition to these basic facilities, FindBugs includes many clients

of these program analyses. Each client implements a detector of a specific bug pattern.

One example is a detector that checks if a method just calls itself. A call to such a

method at runtime will result in an infinite recursive loop, ending in a stack overflow

and a program crash. Other detectors look for null pointer dereferences, deadlocks,

violations of Java-specific coding standards, and other problems.

The focus of FindBugs is to provide a useful tool for real-world programs. To

achieve this goal, Findbugs uses several heuristics to minimize the number of false

bug warnings it produces. From our experience, it seems that FindBugs is indeed

much better at suppressing false bug warnings than ESC/Java. But, still, FindBugs

is not a sound tool and does not guarantee the absence of false bug warnings. To

address the problem of false warnings in FindBugs, we can adopt the ideas of this

work. I.e., by combining the static analysis of FindBugs with dynamic analyses, we

can reduce the number of false bug warnings produced by FindBugs.

We have a prototype, named FB-Crasher, which implements a combination of

the static analysis of FindBugs with the dynamic analysis of JCrasher, to implement

a two-stage static-dynamic analysis pipeline. FB-Crasher is most closely related to

our two-stage analysis pipeline Check ’n’ Crash, which is described in Chapter 5.

FB-Crasher, like Check ’n’ Crash, takes each warning produced by the static analysis
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and generates test cases, using JCrasher, to test if the warning of the static analysis

can be confirmed with an actual test execution. The current implementation of

FB-Crasher differs from Check ’n’ Crash in that it is not as tightly integrated with the

static analysis stage as Check ’n’ Crash is. I.e., FB-Crasher does not get a constraint

system from the FindBugs static analysis that would describe the suspected bug in

detail. ESC/Java does provide Check ’n’ Crash with such constraint systems, which

helps Check ’n’ Crash to generate test cases that are better targeted than those of

FB-Crasher. Still, in very preliminary, non-representative experiments with FindBugs

1.0.0 and FB-Crasher 0.0.1, FB-Crasher was able to reproduce some of the null pointer

exception warnings produced by FindBugs. These experiments were conducted on a

subset of the regression test suite of FindBugs 1.0.0, which triggered 21 FindBugs

warnings. The FB-Crasher generated test cases reproduced 17 of these 21 warnings.

FB-Crasher misses two of the 21 warnings, as they require very specific inputs to be

reproduced. The remaining two FindBugs warnings, on manual review, proved to be

false warnings, warning about null pointer dereferences in dead code. This means

that in this small experiment we traded in a relatively small portion of the bug recall

of the FindBugs results. For more realistic subjects, we expect that the loss of recall

will be higher. But this small experiment also confirms that we can improve the

language-level precision of a dataflow based program analysis tool such as FindBugs

to 100 percent.

Java PathFinder (JPF) is a well-known program analysis tool for Java [54, 103,

64, 104, 13]. It uses model checking techniques to explore different execution paths

of the analyzed program. At the core, JPF uses a static analysis, since it explores a

model of the analyzed program, without actually executing the program on a full Java

virtual machine, thus omitting native calls and other low-level execution semantics.

Given this inaccurate modelling of the Java execution semantics, JPF suffers from

similar imprecision problems as ESC/Java. Khurshid et al. showed how to create
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test cases from the results of the JPF model checker [64, 104]. This is very similar to

the last part of our three-stage pipeline, as implemented in Check ’n’ Crash. They

take into account preconditions on the programs they analyze. Thus, it seems like a

straightforward approach, to extend their current two-stage static-dynamic analysis to

a three-stage dynamic-static-dynamic analysis, by adding a usage-oberving dynamic

analysis that produces preconditions, as implemented in DSD-Crasher and described

in Chapter 6.

9.2.3 Programming language: From Java to C# and C++

C# and C++ are currently the other major object-oriented programming languages,

with wide use in practice and research. We argue that the main ideas of this work

apply to both C# and C++ and that we expect similar benefits when applied to

these languages.

C# [36, 55] and Java are very similar. Both compile to similar bytecode for

similar virtual machines [74, 75, 37, 81, 38]. For C#, the term Common Interme-

diate Language (CIL) is used as a synonym for bytecode, and the term Common

Language Runtime (CLR) is used as a synonym for the respective virtual machine

implementation by Microsoft. The CLR is an implementation of the Common Lan-

guage Infrastructure (CLI) virtual machine specification [37, 81, 38]. The virtual

machines for Java and C# provide similar services such as enforcing a similar set of

type rules and automatic garbage collection. There are no big conceptual differences

between program analyses for Java and C#, and our techniques developed in the

context of Java should directly apply to C# and similar languages.

C++ [98, 99] is a predecessor of both Java and C#. It is generally considered

much more complex than most other languages, including Java and C#. For ex-

ample, C++ programs are notoriously hard to even parse correctly [107]. A more
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fundamental source of additional complexity is that C++ gives the programmer com-

plete freedom to manipulate arbitrary memory locations. But arbitrary changes to

memory can circumvent any safety rules programmers are used to from strongly typed

languages such as Java and C#. An automatic program analysis that wants to over-

approximate program behavior will need to make vast over-approximations in order

to remain sound. This results in less precise program analyses. Our techniques make

existing program analyses more precise, so we expect an even bigger demand for these

techniques for C++ and similar unsafe languages.

A complex feature that may make dynamic invariant detection significantly harder

is the C++ template system, which is Turing complete. It is not clear how to map

runtime observations back to the original source code in the presence of complex

templates.

Implementing our techniques for C++ will also be more challenging because C++

programs are usually compiled to binaries. Binaries are significantly harder to analyze

than Java bytecode, since they contain less type information than bytecode does.

Implementing our techniques for C++ would therefore require additional techniques

to reconstruct type information from binaries [4, 17]. An alternative approach would

be for our different analysis steps to work on the source code, as opposed to our

current Java implementation, which works mostly on bytecode.

But beyond any such complicating factors, the basic premise remains unchanged.

An existing static analysis that over-approximates program behavior will benefit from

our technique of combining it with usage-observing and under-approximating ones.

9.3 Critical review of the performed evaluation

A significant portion of this work is dedicated to evaluating the proposed analysis

pipeline. Different components of the pipeline are evaluated separately, they are

compared to other subsets of the pipeline, and the entire analysis pipeline is compared
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Table 9: Overview of the performed evaluations. Every row represents a set of ex-
periments, evaluating one or more tools. Analysis refers to our tools, D = JCrasher,
S-D = Check ’n’ Crash, and D-S-D = DSD-Crasher. Compare is the tool we are
comparing against, if any. This column uses the same abbreviations as the Analysis
column, except here D-S-D = Eclat. Subjects distinguishes small from medium-
sized subject programs. Spec distinguishes exceptional, good, cases where we have a
fairly complete, but still informal, specification from the usual case of sparse informal
specifications. Section and Table refer to the respective sections and tables in this
document.

Analysis Compare Subjects Spec Section Table
D small good 4.4.2 1

S-D D small good 5.6 3
S-D medium 5.7 4

D-S-D S-D medium 6.7.1 5
D-S-D D-S-D medium 6.7.2 6,7
D-S-D medium good 6.8.3 8

to the most closely related work. Table 9 summarizes the performed evaluations. This

highlights a few interesting properties of the performed evaluation, which we discuss

in the remainder of this section.

9.3.1 Evaluation on large subjects

Table 9 lists several evaluations on small and medium-sized subjects. But we do

not have an evaluation on a large subject. The main reason for excluding large

subjects from our evaluations are engineering shortcomings in the different stages of

the current implementation of the DSD-Crasher analysis pipeline. Section 6.8.2 lists

some of the existing engineering shortcomings in DSD-Crasher and ways to address

them in future work.

9.3.2 Definite results for medium-sized or large subjects

Table 9 shows only one set of experiments with non-toy subjects that have good spec-

ifications. The core problem here is that we are not aware of many realistic, medium-

sized or large Java applications that have easily accessible and definite specifications
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or bug lists. A notable exception is the software-artifact infrastructure repository

(SIR) [35], and we draw from it for one set of experiments. SIR has many good

properties, such as good availability and documentation of definite versions of several

open-source programs together with seeded bugs. In our case, many of these seeded

bugs are unfortunately too subtle for the current DSD-Crasher implementation, as

discussed in Section 6.8.3.

The remaining evaluations on non-toy subjects in Table 9 draw subject programs

directly from the open source community. Open source software development provides

us with good access to source code, which is a great improvement over proprietary

software development. But some problems remain. I.e., early versions are often

not exposed publically, many interesting bugs may be omitted from public forums

because they are handled informally, and specifications are often left unclear and

sparse. For these experiments we rely on our own judgement and mainly appeal

to intuition to distinguish bugs from other behavior. Making these judgements on

demand is one of the most time-consuming aspects of the entire work, since it requires

the experimenters to understand a third-party application with all its source code and

informal specifications.

It would be beneficial for both current and future experimenters to have access to

realistic subjects with definite specifications or sets of bugs. These subjects should

include many different versions of a program, including early versions, containing

clearly marked bugs of a wide range of complexity. I.e., besides subtle and hard to

find bugs they should contain a variety of bugs that are easy to identify for both

human consumers and automated program analyses.

9.3.3 Standard benchmark

One interesting property of the evaluations summarized in Table 9 that is not ob-

vious from the table is that several of the experiments reuse subjects from earlier
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experiments. I.e., some of the subjects of the JCrasher experiments have been used

in related work before and the later Check ’n’ Crash and DSD-Crasher experiments

reuse subjects from previous evaluations. Using the same subjects for many exper-

iments has the big advantage that it is easier to relate the experiments with each

other.

Related research communities, such as the programming language implementation

community, have developed a sequence of standard benchmark suites, for example the

DaCapo benchmarks by Blackburn et al. [10]. The testing research community, on the

other hand, unfortunately, seems less eager to agree upon and later evolve standard

benchmarks. The software-artifact infrastructure repository (SIR) [35] could evolve

into a standard benchmark for the testing community. It is not yet clear, though,

if the testing community will develop and evolve standard benchmark suites with

agreed-upon, definite specifications or bug lists, following the pioneering work of SIR.

An existing suite of subjects could be complemented by an agreed-upon random

program generator, similar to the ones proposed for evaluating just-in-time (JIT)

compilers [46, 117]. Randomly generated programs could be used to evaluate tools

that search for runtime exceptions, under the assumption that any runtime excep-

tion of a certain type constitutes a bug. This is a common assumption in systems

programming (for example, when searching for bugs in the Linux kernel). In our

case, we have argued that the user is often only interested in the subset of runtime

exceptions that violate some additional, user-defined, correctness condition. There-

fore, such randomly generated subject programs should only complement a manually

selected and specified corpus of subject programs.

9.3.4 Bug finding competition

A standard benchmark as discussed in Section 9.3.3 would allow the testing com-

munity to hold testing competitions, much like other research communities do [83,
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29, 7, 6, 3]. The testing community could hold a few, tightly specified competitions,

possibly co-located with an existing international conference on testing and program

analysis.

The verification community seems to have great success with their annual compe-

titions, e.g., the annual Satisfiability Modulo Theories Competition (SMT-COMP) [7,

6]. They provide a large body of benchmark formulas, in a standard notation, to-

gether with a comprehensive set of rules that specify the execution environment and

how the results will be interpreted and counted. Several different teams compete each

year and their respective tools run on a selected subset of the standard benchmark.

The rules imply the results, which are summarized in a quantitative ranking of the

contestants.

The cryptography community has used a related form of competition to rank a set

of algorithms in the AES competition [83, 29]. The contestants were judged manually

by a group of experts, but the competition still had a precise set of rules to guide the

evaluation. The programming language research community is currently pursuing a

similar competition in the PoplMark challenge [3].

A bug finding competition could focus the community and give us more insight into

the comparative strengths of different approaches. Most likely different approaches

will have different strengths and weaknesses. Having multiple competition categories

could highlight such trade-offs between tools. For example, a given tool may be

superior for programs that use complex data, where another tool may be superior for

programs that mainly use simple data. For each competition category, the rules should

be as specific as possible, defining programming languages, the body of subjects the

competition will use, the way results will be interpreted, how to count precision,

recall, time and space usage. The rules of the related competitions [83, 29, 7, 6, 3]

could serve as a good starting point in developing such a competition.
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CHAPTER X

RELATED WORK

There is an enormous amount of work on automated bug-finding tools. We discuss

representative recent work below. We deliberately include approaches from multiple

research communities in our discussion. Particularly, we compare DSD-Crasher with

tools from the testing, program analysis, and verification communities. We believe

this is a valuable approach, since many tools produced by these closely related com-

munities have overlapping goals, i.e., to find bugs. We also discuss our choice of com-

ponent analyses from which we constructed DSD-Crasher. This should highlight that

other analysis combinations are possible and may provide superior properties than

our concrete instantiation in the DSD-Crasher tool. For the subsequently encoun-

tered problems of behavioral subtyping and dynamic invariant detection (Chapter 7)

and efficient state resetting (Chapter 8) we have already mentioned the little related

work we are aware of in the respective chapters.

10.1 Improving path precision at the language level

Tools in this category use an overapproximating search to find as many bugs as

possible. Additionally, they use some technique to reduce the number of false bug

warnings, focussing on language-level unsound bug warnings. Our representative of

this category is Check ’n’ Crash [24].

Tomb et al. [101] present a direct improvement over Check ’n’ Crash, by making

their overapproximating bug search interprocedural (up to a user-defined call depth).

The tool otherwise closely follows the Check ’n’ Crash approach by generating test

cases to confirm the warnings of their static analysis. On the other hand, their tool

neither seems to incorporate pre-existing specifications (which provides an alternative

125



source of interprocedurality) nor address user-level unsound bug warnings.

Kiniry et al. [66] motivate their recent extensions of ESC/Java2 similarly: “User

awareness of the soundness and completeness of the tool is vitally important in the ver-

ification process, and lack of information about such is one of the most requested fea-

tures from ESC/Java2 users, and a primary complaint from ESC/Java2 critics.” They

list several sources of unsoundness for correctness and incorrectness in ESC/Java2 in-

cluding less known problems such as Simplify silently converting arithmetic overflows

to incorrect results. They propose a static analysis that emits warnings about poten-

tial shortcomings of the ESC/Java2 output, namely potentially missing bug reports

and potentially unsound bug reports. On the bug detection side their analysis is

only concerned with language-level soundness and does not worry about soundness

with regard to user-level (and potentially informal) specifications as DSD-Crasher

does. DSD-Crasher also provides a more extreme solution for language-level unsound

bug reports as it only reports cases that are guaranteed to be language-level sound.

We believe our approach is more suitable for automated bug finding since it pro-

vides the user with concrete test cases that prove the existence of offending behavior.

On the other hand, DSD-Crasher only addresses the unsoundness of ESC/Java2 bug

reports. On the sound-for-correctness side, DSD-Crasher would greatly benefit from

such static analysis to reduce the possibility of missing real errors. DSD-Crasher needs

such analysis even more than ESC/Java2 does, as it may miss sound bug reports of

ESC/Java2 due to its limited constraint solving.

Several dynamic tools generate candidate test cases and execute them to filter out

false error reports. For example, Xie and Notkin [113] present an iterative process for

augmenting an existing test suite with complementary test cases. They use Daikon to

infer a specification of the testee when executed on a given test suite. Each iteration

consists of a static and a dynamic analysis, using Jtest and Daikon. In the static

phase, Jtest generates more test cases, based on the existing specification. In the
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dynamic phase, Daikon analyzes the execution of these additional test cases to select

those which violate the existing specification—this represents previously uncovered

behavior. For the following round the extended specification is used. Thus, the

Xie and Notkin approach is also a DSD hybrid, but Jtest’s static analysis is rather

limited (and certainly provided as a black box, allowing no meaningful interaction

with the rest of the tool). Therefore this approach is more useful for a less directed

augmentation of an existing test suite aiming at high testee coverage—as opposed to

our more directed search for fault-revealing test cases.

Concolic execution [45, 93, 14, 44], uses concrete execution to overcome some of the

limitations of symbolic execution [65, 19]. This makes it potentially more powerful

than static-dynamic sequences such as Check ’n’ Crash. But unlike DSD-Crasher,

concolic execution alone does not observe existing test cases and therefore does not

address user-level soundness.

SMART, systematic modular automated random testing [44], makes concolic exe-

cution more efficient by exploring each method in isolation. SMART summarizes the

exploration of a method in pre- and postconditions and uses this summary information

when exploring a method that calls a previously summarized method. DSD-Crasher

also summarizes methods during the first dynamic analysis step in the form of in-

variants, which ESC/Java later uses for modular static analysis. DSD-Crasher would

benefit from SMART-inferred method summaries for methods that were not covered

by our initial dynamic analysis. SMART seems like a natural replacement for the SD-

part (ESC/Java and JCrasher) of DSD-Crasher. Designing such a dynamic-concolic

tool (“DC-Crasher”) and comparing it with DSD-Crasher is part of our future work.

The commercial tool Jtest [90] has an automatic white-box testing mode that

generates test cases. Jtest generates chains of values, constructors, and methods in

an effort to cause runtime exceptions, just like our approach. The maximal supported
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depth of chaining seems to be three, though. Since there is little technical documen-

tation, it is not clear to us how Jtest deals with issues of representing and managing

the parameter-space, classifying exceptions as errors or invalid tests, etc. Jtest does,

however, seem to have a test planning approach, employing static analysis to identify

what kinds of test inputs are likely to cause problems.

10.2 Improving path precision at the language level and the
user level

Tools in this category are most similar to DSD-Crasher in that they attack false bug

warnings at the language level and at the user level. The common implementation

techniques are to infer program specifications from existing test executions and to

generate test cases to produce warnings only for language level sound bugs.

Symclat [30] is a closely related tool that, like DSD-Crasher, uses the Daikon

invariant detector to infer a model of the testee from existing test cases. Symclat

uses Java PathFinder for its symbolic reasoning, which has different tradeoffs than

ESC/Java, e.g., Java PathFinder does not incorporate existing JML specifications

into its reasoning. Unlike our tools, Symclat has a broader goal of discovering general

invariant violations. It appears to be less tuned towards finding uncaught exceptions

than our tools since it does not seem to try to cover all control flow paths implicit in

primitive Java operations.

Palulu [2] derives method call sequence graphs from existing test cases. It then

generates random test cases that follow the call rules encoded in the derived call

graphs. Such method call graphs capture implicit API rules (e.g., first create a

network session object, then send some initialization message, and only then call the

testee method), which are essential in generating meaningful test cases. It would be

interesting to integrate deriving such API rules into our first dynamic analysis step.
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10.3 Component analyses

DSD-Crasher integrates the dynamic Daikon, the static ESC/Java, and the dynamic

JCrasher component analyses. But these are certainly not the only component anal-

yses suitable for an automated bug-finding tool like DSD-Crasher. Future variants of

DSD-Crasher could be constructed from different components. The following moti-

vates our choice of component analyses and compares them with competing ones.

10.3.1 Inferring specifications to improve user-level path precision

Daikon is not the only tool for invariant inference from test case execution, although

it has pioneered the area and has seen the widest use in practice. For instance, the

DIDUCE invariant inference tool [52] is optimized for efficiency and can possibly al-

low bigger testees and longer-running test suites than Daikon. Agitar Agitator [11],

a commercial tool, also uses Daikon-like inference techniques to infer likely invariants

(termed “observations”) from test executions and suggests these observations to de-

velopers so that they can manually and selectively promote observations to assertions.

Then Agitator further generates test cases to confirm or violate these assertions. Ag-

itator requires manual effort in promoting observations to assertions in order to avoid

false warnings of observation violations, whereas our tools concentrate on automated

use. Our DySy tool [28] represents a new approach to dynamic invariant detection,

which we plan to incorporate in future work. DySy uses the Pex concolic exploration

system to track all execution decisions in full detail, via a symbolic shadow state. This

enables much more precise invariant inference than current template-based tools can

provide.

Inferring method call sequence rules is another valuable approach for capturing

implicit user assumptions. For example, [106] presents static and dynamic analy-

ses that automatically infer over- and underapproximating finite state machines of

method call sequences. [2] used such finite state machines to generate test cases. [56]
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automatically infers algebraic specifications from program executions, which addition-

ally include the state resulting from method call sequences. Algebraic specifications

express relations between nested method calls, such as pop(push(obj)) == obj, which

makes them well-suited for specifying container classes. It is unclear, though, how

this technique scales beyond container classes. Yet it would be very interesting to

design an automated bug-finding tool that is able to process algebraic specifications

and compare it with DSD-Crasher.

Taghdiri et al. [100] describe a recent representative of purely static approaches

that summarize methods into specifications. Such method summaries would help

DSD-Crasher perform deeper interprocedural analysis in its overapproximating bug

search component. Summarization approaches typically aim at inferring total specifi-

cations, though. So they do not help us in distinguishing between intended and faulty

usage scenarios, which is key for a bug-finding tool as DSD-Crasher. Related work

by Kremenek et al. [68] infers partial program specifications via a combination of

static analysis and expert knowledge. The static analysis is based on the assumption

that the existing implementation is correct most of the time. The thereby inferred

specifications helped them to correct and extend the specifications used by the com-

mercial bug finding tool Coverity Prevent [22]. Expert knowledge is probably the

most important source of good specifications, but also the most expensive one, be-

cause it requires manual effort. An ideal bug finding tool should combine as many

specification sources as possible, including automated static and dynamic analyses.

10.3.2 The core bug search component: Overapproximating analysis for
bug-finding

The Check ’n’ Crash and DSD-Crasher approach is explicitly dissimilar to a common

class of static analysis tools that have received significant attention in the recent

research literature. We call these tools collectively “bug pattern matchers”. They are

tools that statically analyze programs to detect specific bugs by pattern matching the
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program structure to well-known error patterns [51, 116, 57]. Such tools can be quite

effective in uncovering a large number of suspicious code patterns and actual bugs

in important domains. But the approach requires domain-specific knowledge of what

constitutes a bug. In addition, bug pattern matchers often use a lightweight static

analysis, which makes it harder to integrate with automatic test case generators. For

example, FindBugs does not produce rich constraint systems (like ESC/Java does)

that encode the exact cause of a potential bug.

Model-checking techniques offer an alternative approach to overapproximating

program exploration and therefore bug searching. Recent model-checkers directly

analyze Java bytecode, which makes them comparable to our overapproximating bug

search component ESC/Java. Well-known examples are Bogor/Kiasan [31] and Java

PathFinder with symbolic extensions [64]. Building on model-checking techniques

is an interesting direction for bug-finding and is being explored in the context of

JML-like specification languages [32].

Verification tools are powerful ways to discover deep program errors [9, 69]. Nev-

ertheless, such tools are often limited in usability or the language features they sup-

port. Related tools enable automatic checking of complex user-defined specifica-

tions [60, 102]. Counterexamples are presented to the user in the formal specification

language. Their method addresses bug finding for linked data structures, as opposed

to numeric properties, object casting, array indexing, etc., as in our approach.

10.3.3 Finding feasible executions

AutoTest [80] is a closely related automatic bug finding tool. It targets the Eiffel

programming language, which supports invariants at the language level in the form

of contracts [79]. AutoTest generates random test cases, like JCrasher, but uses more

sophisticated test selection heuristics and makes sure that generated test cases satisfy

given testee invariants. It can also use the given invariants as its test oracle. Our tools
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do not assume existing invariants since, unlike Eiffel programmers, Java programmers

usually do not annotate their code with formal specifications.

Korat [12] generates all (up to a small bound) non-isomorphic method parameter

values that satisfy a method’s explicit precondition. Korat executes a candidate

and monitors which part of the testee state it accesses to decide whether it satisfies

the precondition and to guide the generation of the next candidate. The primary

domain of application for Korat is that of complex linked data structures. Given

explicit preconditions, Korat will generate deep random tests very efficiently. Thus,

Korat will be better than DSD-Crasher for the cases when our constraint solving

does not manage to produce values for the abstract constraints output by ESC/Java

and we resort to random testing. In fact, the Korat approach is orthogonal to DSD-

Crasher and could be used as our random test generator for reference constraints

that we cannot solve. Nevertheless, when DSD-Crasher produces actual solutions

to constraints, these are much more directed than Korat. ESC/Java analyzes the

method to determine which path we want to execute in order to throw a runtime

exception. Then we infer the appropriate constraints in order to force execution

along this specific path (taking into account the meaning of standard Java language

constructs) instead of just trying to cover all paths.
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CHAPTER XI

CONCLUSIONS

We have attacked the well-known problem of path-imprecision in static problem analy-

sis. Our starting point was an existing static program analysis that over-approximates

the execution paths of the analyzed program. We have made this over-approximating

program analysis more precise for automatic testing in an object-oriented program-

ming language. We have achieved this by combining the over-approximating program

analysis with usage-observing and under-approximating analyses. More specifically,

this dissertation has made the following contributions.

1. We have presented a technique to eliminate language-level unsound bug warn-

ings produced by an execution-path-over-approximating analysis for object-

oriented programs that is based on the weakest precondition calculus. Our

technique post-processes the results of the over-approximating analysis by solv-

ing the produced constraint systems and generating and executing concrete

test-cases that satisfy the given constraint systems. Only test-cases that con-

firm the results of the over-approximating static analysis are presented to the

user.

2. Our technique of converting constraint systems to concrete test-cases has the

important side-benefit of making the results of a weakest-precondition based

static analysis easier to understand for human consumers. We have shown

examples from our experiments that visually demonstrate the difference between

hundreds of complicated constraints and a simple corresponding JUnit test-case.

3. Besides eliminating language-level unsound bug warnings, we have presented
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an additional technique that also addresses user-level unsound bug warnings.

This technique pre-processes the testee with a dynamic analysis that takes

advantage of actual user data. It annotates the testee with the knowledge

obtained from this pre-processing step and thereby provides guidance for the

over-approximating analysis.

4. We have presented an improvement to dynamic invariant detection for object-

oriented programming languages. Previous approaches do not take behavioral

subtyping into account and therefore may produce inconsistent results, which

can throw off automated analyses such as the ones we are performing for bug-

finding.

5. We have addressed the problem of unwanted dependencies between test-cases

caused by global state. We have presented two techniques for efficiently re-

initializing global state between test-case executions and have discussed their

trade-offs.

6. We have implemented the above techniques in the JCrasher, Check ’n’ Crash,

and DSD-Crasher tools and have presented initial experience in using them for

automated bug finding in real-world Java programs.
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APPENDIX A

EXAMPLE OUTPUT OF ESC/JAVA

For the swapArrays example shown in Section 5.3, ESC/Java produces the following

list (conjunction) of over 100 constraints, which we have minimally formatted for

readability.

(arrayLength(firstArray:294.43) <= intLast)

(firstArray:294.43 < longFirst)

(tmp0!new!double[]:297.27 < longFirst)

(secondArray:295.43 < longFirst)

(longFirst < intFirst)

(vAllocTime(tmp0!new!double[]:297.27) < alloc<1>)

(0 < arrayLength(firstArray:294.43))

(null <= max(LS))

(vAllocTime(firstArray:294.43) < alloc)

(alloc <= vAllocTime(tmp0!new!double[]:297.27))

(eClosedTime(elems@loopold) < alloc)

(vAllocTime(out:6..) < alloc)

(vAllocTime(secondArray:295.43) < alloc)

(intLast < longLast)

(1000001 <= intLast)

((intFirst + 1000001) <= 0)

(out:6.. < longFirst)

arrayLength(tmp0!new!double[]:297.27) ==

arrayLength(firstArray:294.43)
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typeof(0) <: T_int

null.LS == @true

typeof(firstArray:294.43[0]) <: T_double

isNewArray(tmp0!new!double[]:297.27) == @true

typeof(arrayLength(firstArray:294.43)) <: T_int

T_double[] <: arrayType

typeof(firstArray:294.43) == T_double[]

T_double[] <: T_double[]

elemtype(T_double[]) == T_double

T_double <: T_double

typeof(secondArray:295.43) <: T_double[]

typeof(secondArray:295.43) == T_double[]

arrayFresh(tmp0!new!double[]:297.27 alloc alloc<1>

elems@loopold arrayShapeOne(arrayLength(firstArray:294.43))

T_double[] F_0.0)

typeof(firstArray:294.43) <: T_double[]

typeof(tmp0!new!double[]:297.27) == T_double[]

(null <= max(LS))

tmp0!new!double[]:297.27[0] == firstArray:294.43[0]

arrayLength(secondArray:295.43) == 0

elems@loopold == elems

elems@pre == elems

state@pre == state

state@loopold == state

m@loopold:299.12 == 0

out@pre:6.. == out:6..

EC@loopold == EC

alloc@pre == alloc
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!typeof(out:6..) <: T_float

!typeof(out:6..) <: T_byte

!typeof(secondArray:295.43) <: T_boolean

!typeof(firstArray:294.43) <: T_double

!typeof(secondArray:295.43) <: T_short

!typeof(tmp0!new!double[]:297.27) <: T_boolean

!typeof(tmp0!new!double[]:297.27) <: T_short

!typeof(firstArray:294.43) <: T_boolean

!typeof(out:6..) <: T_char

!typeof(secondArray:295.43) <: T_double

!typeof(firstArray:294.43) <: T_float

!typeof(out:6..) <: T_int

!isAllocated(tmp0!new!double[]:297.27 alloc)

!typeof(secondArray:295.43) <: T_long

!typeof(firstArray:294.43) <: T_char

!typeof(tmp0!new!double[]:297.27) <: T_double

!typeof(tmp0!new!double[]:297.27) <: T_long

T_double[] != T_boolean

T_double[] != T_char

T_double[] != T_byte

T_double[] != T_long

T_double[] != T_short

T_double[] != T_int

T_double[] != T_float

!typeof(firstArray:294.43) <: T_byte

!typeof(out:6..) <: T_boolean

!typeof(secondArray:295.43) <: T_float

!typeof(out:6..) <: T_short

!typeof(secondArray:295.43) <: T_byte
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!typeof(tmp0!new!double[]:297.27) <: T_float

!typeof(firstArray:294.43) <: T_long

!typeof(tmp0!new!double[]:297.27) <: T_byte

!typeof(out:6..) <: T_double

!typeof(firstArray:294.43) <: T_short

!typeof(out:6..) <: T_long

typeof(out:6..) != T_boolean

typeof(out:6..) != T_char

typeof(out:6..) != T_byte

typeof(out:6..) != T_long

typeof(out:6..) != T_short

typeof(out:6..) != T_int

typeof(out:6..) != T_float

!typeof(secondArray:295.43) <: T_char

!typeof(secondArray:295.43) <: T_int

!typeof(tmp0!new!double[]:297.27) <: T_char

!typeof(firstArray:294.43) <: T_int

!typeof(tmp0!new!double[]:297.27) <: T_int

bool$false != @true

secondArray:295.43 != null

firstArray:294.43 != null

T_double != typeof(out:6..)

T_double != T_double[]

tmp0!new!double[]:297.27 != null
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