68 research outputs found

    Pléiades project: Assessment of georeferencing accuracy, image quality, pansharpening performence and DSM/DTM quality

    Get PDF
    Pléiades 1A and 1B are twin optical satellites of Optical and Radar Federated Earth Observation (ORFEO) program jointly running by France and Italy. They are the first satellites of Europe with sub-meter resolution. Airbus DS (formerly Astrium Geo) runs a MyGIC (formerly Pléiades Users Group) program to validate Pléiades images worldwide for various application purposes. The authors conduct three projects, one is within this program, the second is supported by BEU Scientific Research Project Program, and the third is supported by TÜBİTAK. Assessment of georeferencing accuracy, image quality, pansharpening performance and Digital Surface Model/Digital Terrain Model (DSM/DTM) quality subjects are investigated in these projects. For these purposes, triplet panchromatic (50 cm Ground Sampling Distance (GSD)) and VNIR (2 m GSD) Pléiades 1A images were investigated over Zonguldak test site (Turkey) which is urbanised, mountainous and covered by dense forest. The georeferencing accuracy was estimated with a standard deviation in X and Y (SX, SY) in the range of 0.45m by bias corrected Rational Polynomial Coefficient (RPC) orientation, using ~170 Ground Control Points (GCPs). 3D standard deviation of ±0.44m in X, ±0.51m in Y, and ±1.82m in Z directions have been reached in spite of the very narrow angle of convergence by bias corrected RPC orientation. The image quality was also investigated with respect to effective resolution, Signal to Noise Ratio (SNR) and blur coefficient. The effective resolution was estimated with factor slightly below 1.0, meaning that the image quality corresponds to the nominal resolution of 50cm. The blur coefficients were achieved between 0.39-0.46 for triplet panchromatic images, indicating a satisfying image quality. SNR is in the range of other comparable space borne images which may be caused by de-noising of Pléiades images. The pansharpened images were generated by various methods, and are validated by most common statistical metrics and also visual interpretation. The generated DSM and DTM were achieved with ±1.6m standard deviation in Z (SZ) in relation to a reference DTM.Airbus Defence and SpaceBEU/2014-47912266-01TÜBİTAK/114Y38

    Open source tool for DSMs generation from high resolution optical satellite imagery. Development and testing of an OSSIM plug-in

    Get PDF
    The fully automatic generation of digital surface models (DSMs) is still an open research issue. From recent years, computer vision algorithms have been introduced in photogrammetry in order to exploit their capabilities and efficiency in three-dimensional modelling. In this article, a new tool for fully automatic DSMs generation from high resolution satellite optical imagery is presented. In particular, a new iterative approach in order to obtain the quasi-epipolar images from the original stereopairs has been defined and deployed. This approach is implemented in a new Free and Open Source Software (FOSS) named Digital Automatic Terrain Extractor (DATE) developed at the Geodesy and Geomatics Division, University of Rome ‘La Sapienza’, and conceived as an Open Source Software Image Map (OSSIM) plug-in. DATE key features include: the epipolarity achievement in the object space, thanks to the images ground projection (Ground quasi-Epipolar Imagery (GrEI)) and the coarse-to-fine pyramidal scheme adopted; the use of computer vision algorithms in order to improve the processing efficiency and make the DSMs generation process fully automatic; the free and open source aspect of the developed code. The implemented plug-in was validated through two optical datasets, GeoEye-1 and the newest Pléiades-high resolution (HR) imagery, on Trento (Northern Italy) test site. The DSMs, generated on the basis of the metadata rational polynomial coefficients only, without any ground control point, are compared to a reference lidar in areas with different land use/land cover and morphology. The results obtained thanks to the developed workflow are good in terms of statistical parameters (root mean square error around 5 m for GeoEye-1 and around 4 m for Pléiades-HR imagery) and comparable with the results obtained through different software by other authors on the same test site, whereas in terms of efficiency DATE outperforms most of the available commercial software. These first achievements indicate good potential for the developed plug-in, which in a very near future will be also upgraded for synthetic aperture radar and tri-stereo optical imagery processing

    Use of multi-angle high-resolution imagery and 3D information for urban land-cover classification: a case study on Istanbul

    Get PDF
    The BELSPO-MAMUD project focuses on the use of Remote Sensing data for measuring and modelling urban dynamics. Remote sensing is a wonderful tool to produce long time-series of high resolution maps of sealed surface useful for this purpose. In the urban context of Istanbul, a very dynamic city, recent high resolution satellite images and medium resolution images from the past have been exploited to calibrate and validate a regression-based sub-pixel classification method allowing this production. In this context it’s a tricky task for several reasons: prominent occurrence of shadowed and occluded areas and urban canyons, spectral confusions between urban and non-urban materials at ground and roof levels, moderately hilly relief ... To cope with these difficulties the combined use of three types of data may be helpful: diachronic (i), multi-angle and 3D data. A master multispectral and panchromatic QuickBird image and a panchromatic Ikonos stereopair, all acquired in March 2002, were used in combination with a multispectral and panchromatic Ikonos image of May 2005. A DSM was generated from the Ikonos stereopair and building vector file. It was used for orthorectification, building height estimation and classification procedure. The area covered by the high resolution products was divided in 3 partitions and each one was classified independently. This application demonstrates that recent high resolution land-cover classification produced using multi-date, multi-angle and DSM can be used to produce sealed surface maps from longer timeseries of medium resolution images over large urban areas enabling so the analysis of urban dynamics

    Analyzing satellite-derived 3D building inventories and quantifying urban growth towards active faults: a case study of Bishkek, Kyrgyzstan

    Get PDF
    Earth observation (EO) data can provide large scale, high-resolution, and transferable methodologies to quantify the sprawl and vertical development of cities and are required to inform disaster risk reduction strategies for current and future populations. We synthesize the evolution of Bishkek, Kyrgyzstan, which experiences high seismic hazard, and derive new datasets relevant for seismic risk modeling. First, the urban sprawl of Bishkek (1979–2021) was quantified using built-up area land cover classifications. Second, a change detection methodology was applied to a declassified KeyHole Hexagon (KH-9) and Sentinel-2 satellite image to detect areas of redevelopment within Bishkek. Finally, vertical development was quantified using multi-temporal high-resolution stereo and tri-stereo satellite imagery, which were used in a deep learning workflow to extract buildings footprints and assign building heights. Our results revealed urban growth of 139 km2 (92%) and redevelopment of ~26% (59 km2) of the city (1979–2021). The trends of urban growth were not reflected in all the open access global settlement footprint products that were evaluated. Building polygons that were extracted using a deep learning workflow applied to high-resolution tri-stereo (Pleiades) satellite imagery were most accurate (F1 score = 0.70) compared to stereo (WorldView-2) imagery (F1 score = 0.61). Similarly, building heights extracted using a Pleiades-derived digital elevation model were most comparable to independent measurements obtained using ICESat-2 altimetry data and field-measurements (normalized absolute median deviation < 1 m). Across different areas of the city, our analysis suggested rates of building growth in the region of 2000–10,700 buildings per year, which when combined with a trend of urban growth towards active faults highlights the importance of up-to-date building stock exposure data in areas of seismic hazard. Deep learning methodologies applied to high-resolution imagery are a valuable monitoring tool for building stock, especially where country-level or open-source datasets are lacking or incomplete

    On the Use of Tri-Stereo Pleiades Images for the Morphometric Measurement of Dolines in the Basaltic Plateau of Azrou (Middle Atlas, Morocco)

    Get PDF
    Hundreds of large and deep collapse dolines dot the surface of the Quaternary basaltic plateau of Azrou, in the Middle Atlas of Morocco. In the absence of detailed topographic maps, the morphometric study of such a large number of features requires the use of remote sensing techniques. We present the processing, extraction, and validation of depth measurements of 89 dolines using tri-stereo Pleiades images acquired in 2018–2019 (the European Space Agency (ESA) © CNES 2018, distributed by Airbus DS). Satellite image-derived DEMs were field-verified using traditional mapping techniques, which showed a very good agreement between field and remote sensing measures. The high resolution of these tri-stereo images allowed to automatically generate accurate morphometric datasets not only regarding the planimetric parameters of the dolines (diameters, contours, orientation of long axes), but also for what concerns their depth and altimetric profiles. Our study demonstrates the potential of using these types of images on rugged morphologies and for the measurement of steep depressions, where traditional remote sensing techniques may be hindered by shadow zones and blind portions. Tri-stereo images might also be suitable for the measurement of deep and steep depressions (skylights and collapses) on Martian and Lunar lava flows, suitable targets for future planetary cave exploration

    Review and critical analysis on digital elevation models

    Get PDF
    Nowadays, digital elevation model (DEM) acts as an inevitable component in the field of remote sensing and GIS. DEM reflects the physical surface of the earth helps to understand the nature of terrain by means of interpreting the landscape using modern techniques and high-resolution satellite images. To understand and analyze the nature of the terrain, DEM is required in many fields in the improvement of developing the product and decision making, mapping purpose, preparing 3D simulations, estimating river channel and creating contour maps to extract the elevation and so on. DEM in various applications will be useful to replicate the overall importance of the availability of worldwide, consistent, high-quality digital elevation models. The present article represents the overall review of DEMs, its generation, development using various techniques derived from topographic maps and high-resolution satellite images over a decade to present. It is useful to understand the nature of topography, address the practical problems and fix them by applying innovative ideas, upcoming high-resolution satellite images and techniques.Danas, digitalni model uzdizanja (DEM) djeluje kao neizbježna komponenta u području daljinskog istraživanja i GIS-a. DEM reflektira fizičku površinu zemlje pomaže pri razumijevanju prirode terena pomoću tumačenja krajolika pomoću suvremenih tehnika i satelitskih slika visoke razlučivosti. Za razumijevanje i analizu prirode terena, DEM je potreban u mnogim područjima poboljšanja razvoja proizvoda i odlučivanja, svrhe mapiranja, pripreme 3D simulacija, procjene riječnog kanala i stvaranja konturnih karata za izdvajanje visine i tako dalje. DEM u raznim aplikacijama bit će korisno za repliciranje sveukupne važnosti dostupnosti svjetskih, dosljednih i visokokvalitetnih modela digitalnih elevacija. Ovaj članak predstavlja cjelokupni pregled DEM-ova, njegovog stvaranja, razvoja pomoću različitih tehnika izvedenih iz topografskih karata i satelitskih snimaka visoke razlučivosti tijekom desetljeća do danas. Korisno je razumjeti prirodu topografije, rješavati praktične probleme i popraviti ih primjenom inovativnih ideja, nadolazećih satelitskih slika i tehnika visoke razlučivosti

    Very High Resolution (VHR) Satellite Imagery: Processing and Applications

    Get PDF
    Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing
    corecore