30 research outputs found

    Evaluation of messaging middleware for high-performance cloud computing

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Personal and Ubiquitous Computing. The final authenticated version is available online at: http://dx.doi.org/10.1007/s00779-012-0605-3[Abstract] Cloud computing is posing several challenges, such as security, fault tolerance, access interface singularity, and network constraints, both in terms of latency and bandwidth. In this scenario, the performance of communications depends both on the network fabric and its efficient support in virtualized environments, which ultimately determines the overall system performance. To solve the current network constraints in cloud services, their providers are deploying high-speed networks, such as 10 Gigabit Ethernet. This paper presents an evaluation of high-performance computing message-passing middleware on a cloud computing infrastructure, Amazon EC2 cluster compute instances, equipped with 10 Gigabit Ethernet. The analysis of the experimental results, confronted with a similar testbed, has shown the significant impact that virtualized environments still have on communication performance, which demands more efficient communication middleware support to get over the current cloud network limitations.Ministerio de Ciencia e Innovación; TIN2010-16735Ministerio de Educación y Ciencia; AP2010-434

    On a Catalogue of Metrics for Evaluating Commercial Cloud Services

    Full text link
    Given the continually increasing amount of commercial Cloud services in the market, evaluation of different services plays a significant role in cost-benefit analysis or decision making for choosing Cloud Computing. In particular, employing suitable metrics is essential in evaluation implementations. However, to the best of our knowledge, there is not any systematic discussion about metrics for evaluating Cloud services. By using the method of Systematic Literature Review (SLR), we have collected the de facto metrics adopted in the existing Cloud services evaluation work. The collected metrics were arranged following different Cloud service features to be evaluated, which essentially constructed an evaluation metrics catalogue, as shown in this paper. This metrics catalogue can be used to facilitate the future practice and research in the area of Cloud services evaluation. Moreover, considering metrics selection is a prerequisite of benchmark selection in evaluation implementations, this work also supplements the existing research in benchmarking the commercial Cloud services.Comment: 10 pages, Proceedings of the 13th ACM/IEEE International Conference on Grid Computing (Grid 2012), pp. 164-173, Beijing, China, September 20-23, 201

    General‐purpose computation on GPUs for high performance cloud computing

    Get PDF
    This is the peer reviewed version of the following article: Expósito, R. R., Taboada, G. L., Ramos, S., Touriño, J., & Doallo, R. (2013). General‐purpose computation on GPUs for high performance cloud computing. Concurrency and Computation: Practice and Experience, 25(12), 1628-1642., which has been published in final form at https://doi.org/10.1002/cpe.2845. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions.[Abstract] Cloud computing is offering new approaches for High Performance Computing (HPC) as it provides dynamically scalable resources as a service over the Internet. In addition, General‐Purpose computation on Graphical Processing Units (GPGPU) has gained much attention from scientific computing in multiple domains, thus becoming an important programming model in HPC. Compute Unified Device Architecture (CUDA) has been established as a popular programming model for GPGPUs, removing the need for using the graphics APIs for computing applications. Open Computing Language (OpenCL) is an emerging alternative not only for GPGPU but also for any parallel architecture. GPU clusters, usually programmed with a hybrid parallel paradigm mixing Message Passing Interface (MPI) with CUDA/OpenCL, are currently gaining high popularity. Therefore, cloud providers are deploying clusters with multiple GPUs per node and high‐speed network interconnects in order to make them a feasible option for HPC as a Service (HPCaaS). This paper evaluates GPGPU for high performance cloud computing on a public cloud computing infrastructure, Amazon EC2 Cluster GPU Instances (CGI), equipped with NVIDIA Tesla GPUs and a 10 Gigabit Ethernet network. The analysis of the results, obtained using up to 64 GPUs and 256‐processor cores, has shown that GPGPU is a viable option for high performance cloud computing despite the significant impact that virtualized environments still have on network overhead, which still hampers the adoption of GPGPU communication‐intensive applications. CopyrightMinisterio de Ciencia e Innovación; TIN2010-1673

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ..

    On Evaluating Commercial Cloud Services: A Systematic Review

    Full text link
    Background: Cloud Computing is increasingly booming in industry with many competing providers and services. Accordingly, evaluation of commercial Cloud services is necessary. However, the existing evaluation studies are relatively chaotic. There exists tremendous confusion and gap between practices and theory about Cloud services evaluation. Aim: To facilitate relieving the aforementioned chaos, this work aims to synthesize the existing evaluation implementations to outline the state-of-the-practice and also identify research opportunities in Cloud services evaluation. Method: Based on a conceptual evaluation model comprising six steps, the Systematic Literature Review (SLR) method was employed to collect relevant evidence to investigate the Cloud services evaluation step by step. Results: This SLR identified 82 relevant evaluation studies. The overall data collected from these studies essentially represent the current practical landscape of implementing Cloud services evaluation, and in turn can be reused to facilitate future evaluation work. Conclusions: Evaluation of commercial Cloud services has become a world-wide research topic. Some of the findings of this SLR identify several research gaps in the area of Cloud services evaluation (e.g., the Elasticity and Security evaluation of commercial Cloud services could be a long-term challenge), while some other findings suggest the trend of applying commercial Cloud services (e.g., compared with PaaS, IaaS seems more suitable for customers and is particularly important in industry). This SLR study itself also confirms some previous experiences and reveals new Evidence-Based Software Engineering (EBSE) lessons

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ...Postprint (published version

    Virtualization techniques for memory resource exploitation

    Get PDF
    Cloud infrastructures have become indispensable in our daily lives with the rise of cloud-based services offered by companies like Facebook, Google, Amazon and many others. These cloud infrastructures use a large numbers of servers provisioned with their own computing resources. Each of these servers use a piece of software, called the Hypervisor (``HV''), that allows them to create multiple virtual instances of the server's physical computing resources and abstract them into "Virtual Machines'' (VMs). A VM runs an Operating System, which in turn runs the applications. The VMs within the servers generate varying memory demand behavior. When the demand increases, costly operations such as (virtual) disk accesses and/or VM migrations can occur. As a result, it is necessary to optimize the utilization of the local memory resources within a single computing server. However, pressure on the memory resources can still increase, making it necessary to migrate the VM to a different server with larger memory or add more memory to the same server. At this point, it is important to consider that some of the servers in the cloud infrastructure might have memory resources that they are not using. Considering the possibility to make memory available to the server, new architectures have been introduced that provide hardware support to enable servers to share their memory capacity. This thesis presents multiple contributions to the memory management problem. First, it addresses the problem of optimizing memory resources in a virtualized server through different types of memory abstractions. Two full contributions are presented for managing memory within a single server called SmarTmem and CARLEMM. In this respect, a third contribution is also presented, called CAVMem, that works as the foundation for CARLEMM. Second, this thesis presents two contributions for memory capacity aggregation across multiple servers, offering two mechanisms called GV-Tmem and vMCA, this latter being based on GV-Tmem but with significant enhancements. These mechanisms distribute the server's total memory within a single-server and globally across computing servers using a user-space process with high-level memory management policies.Las infraestructuras para la nube se han vuelto indispensables en nuestras vidas diarias con la proliferación de los servicios ofrecidos por compañías como Facebook, Google, Amazon entre otras. Estas infraestructuras utilizan una gran cantidad de servidores proveídos con sus propios recursos computacionales. Cada unos de estos servidores utilizan un software, llamado el Hipervisor (“HV”), que les permite crear múltiples instancias virtuales de los recursos físicos de computación del servidor y abstraerlos en “Máquinas Virtuales” (VMs). Una VM ejecuta un Sistema Operativo (OS), el cual a su vez ejecuta aplicaciones. Las VMs dentro de los servidores generan un comportamiento variable de demanda de memoria. Cuando la demanda de memoria aumenta, operaciones costosas como accesos al disco (virtual) y/o migraciones de VMs pueden ocurrir. Como resultado, es necesario optimizar la utilización de los recursos de memoria locales dentro del servidor. Sin embargo, la demanda por memoria puede seguir aumentando, haciendo necesario que la VM migre a otro servidor o que se añada más memoria al servidor. En este punto, es importante considerar que algunos servidores podrían tener recursos de memoria que no están utilizando. Considerando la posibilidad de hacer más memoria disponible a los servidores que lo necesitan, nuevas arquitecturas de servidores han sido introducidos que brindan el soporte de hardware necesario para habilitar que los servidores puedan compartir su capacidad de memoria. Esta tesis presenta múltiples contribuciones para el problema de manejo de memoria. Primero, se enfoca en el problema de optimizar los recursos de memoria en un servidor virtualizado a través de distintos tipos de abstracciones de memoria. Dos contribuciones son presentadas para administrar memoria de manera automática dentro de un servidor virtualizado, llamadas SmarTmem y CARLEMM. En este contexto, una tercera contribución es presentada, llamada CAVMem, que proporciona los fundamentos para el desarrollo de CARLEMM. Segundo, la tesis presenta dos contribuciones enfocadas en la agregación de capacidad de memoria a través de múltiples servidores, ofreciendo dos mecanismos llamados GV-Tmem y vMCA, siendo este último basado en GV-Tmem pero con mejoras significativas. Estos mecanismos administran la memoria total de un servidor a nivel local y de manera global a lo largo de los servidores de la infraestructura de nube utilizando un proceso de usuario que implementa políticas de manejo de ..

    Running scientific codes on amazon EC2: a performance analysis of five high-end instances

    Get PDF
    Amazon Web Services (AWS) is a well-known public Infrastructure-as-a-Service (IaaS) provider whose Elastic Computing Cloud (EC2) o ering includes some instances, known as cluster instances, aimed at High-Performance Computing (HPC) applications. In previous work, authors have shown that the scalability of HPC communication-intensive applications does not bene t from using higher computational power cluster instances as much as it could be expected. Cost analysis recommends using lower computational power cluster instances unless high memory requirements preclude their use. Moreover, it has been observed that scalability is very poor when more than one instance is used due to network virtualization overhead. Based on those results, this paper gives more insight into the performance of running scienti c applications on the Amazon EC2 platform evaluating ve (of which two have been recently released) of the higher computational power instances in terms of single instance performance, intra-VM (Virtual Machine) scalability and cost-e ciency. The evaluation has been carried out using both an HPC benchmark suite and a real High-Troughput Computing (HTC) application.Facultad de Informátic

    vMCA: Memory Capacity Aggregation and Management in Cloud Environments

    Get PDF
    In cloud environments, the VMs within the computing nodes generate varying memory demand profiles. When memory utilization reaches its limits due to this, costly (virtual) disk accesses and/or VM migrations can occur. Since some nodes might have idle memory, some costly operations could be avoided by making the idle memory available to the nodes that need it. In view of this, new architectures have been introduced that provide hardware support for a shared global address space that, together with fast interconnects, can share resources across nodes. Thus, memory becomes a global resource. This paper presents a memory capacity aggregation mechanism for cloud environments called vMCA (Virtualized Memory Capacity Aggregation) based on Xen's Transcendent Memory (Tmem). vMCA distributes the system's total memory within a single node and globally across multiple nodes using a user-space process with high-level memory management policies. We evaluate vMCA using CloudSuite 3.0 on Linux and Xen. Our results demonstrate a peak running time improvement of 76.8% when aggregating memory, and of 37.5% when aggregating memory and implementing our policies.This research has received funding from the European Union’s Seventh Framework Programme for research, technological development and demonstration under grant agreement number 610456 (Euroserver). The research was also supported by the Ministry of Economy and Competitiveness of Spain (TIN2012-34557 and TIN2015-65316), HiPEAC Network of Excellence (ICT-287759 and ICT-687698), the FI-DGR Grant Program (2016FI-B-00947) of the Government of Catalonia and the Severo Ochoa Program (SEV-2011-00067) of the Spanish Government.Peer ReviewedPostprint (author's final draft
    corecore