
Running Scientific Codes on Amazon EC2: a

Performance Analysis of Five High-end Instances

Roberto R. Expósito∗, Guillermo L. Taboada, Xoán C. Pardo,
Juan Touriño and Ramón Doallo

Computer Architecture Group, Faculty of Informatics, University of A Coruña

Campus de Elviña s/n, 15071 A Coruña, Spain

ABSTRACT
Amazon Web Services (AWS) is a well-known
public Infrastructure-as-a-Service (IaaS) provider
whose Elastic Computing Cloud (EC2) offering
includes some instances, known as cluster in-
stances, aimed at High-Performance Comput-
ing (HPC) applications. In previous work, au-
thors have shown that the scalability of HPC
communication-intensive applications does not
benefit from using higher computational power
cluster instances as much as it could be expected.
Cost analysis recommends using lower computa-
tional power cluster instances unless high memory
requirements preclude their use. Moreover, it has
been observed that scalability is very poor when
more than one instance is used due to network
virtualization overhead. Based on those results,
this paper gives more insight into the performance
of running scientific applications on the Amazon
EC2 platform evaluating five (of which two have
been recently released) of the higher computa-
tional power instances in terms of single instance
performance, intra-VM (Virtual Machine) scala-
bility and cost-efficiency. The evaluation has been
carried out using both an HPC benchmark suite
and a real High-Troughput Computing (HTC)
application.

Keywords: Cloud Computing, High Perfor-
mance Computing, High Throughput Comput-
ing, Amazon EC2, OpenMP

1. INTRODUCTION
Cloud computing [1] is an Internet-based com-
puting model which has gained significant pop-
ularity in the past several years as it provides
on-demand network access to a shared pool of
configurable and often virtualized computing re-
sources typically billed on a pay-as-you-use ba-
sis. Infrastructure-as-a-Service (IaaS) is a ser-
vice model which easily enables users to provi-

∗E-mail addresses: rreye@udc.es (R.R. Expósito),
taboada@udc.es (G.L. Taboada), pardo@udc.es (X.C.
Pardo), juan@udc.es (J. Touriño), doallo@udc.es (R.
Doallo).

sion on-demand virtualized computing resources
(i.e. storage, compute capacity). Amazon Web
Services (AWS) is an IaaS provider whose Elas-
tic Compute Cloud (EC2) is nowadays among
the most used and largest public cloud platforms.
With the reduction of the overhead imposed by
virtualized environments in the last years, cloud
computing is becoming an attractive option for
High Performance Computing (HPC). Some early
studies [2; 3] have evaluated public clouds for
HPC since 2008 and the main conclusion was that
clouds at that time were not designed for running
tightly coupled HPC applications. Since then
Amazon has released instances specifically tai-
lored to HPC applications and other demanding
network-bound applications [4], known as cluster
instances. These instances provide powerful CPU
resources, dedicated physical node allocation and
low latency high-bandwith connectivity (10 Gbps
Ethernet), allowing users to easily set up a cost-
effective virtual cluster for HPC applications.

In recent work [5] authors analyzed the main per-
formance bottlenecks in HPC application scala-
bility on Amazon EC2. A representative body
of the NAS Parallel Benchmarks (NPB) [6]
was executed using an important number of
cores, up to 512, on Amazon EC2 cluster in-
stances. It has been observed that scalability
was severely limited by the lack of proper net-
work virtualization support, specially when exe-
cuting communication-intensive NPB kernels us-
ing more than one cluster instance. Motivated by
those results, this paper further explores the per-
formance of running scientific applications on the
Amazon EC2 platform. Five high-end, both stan-
dard and cluster instances, have been selected for
this evaluation (see Table 1). As multi-instance
executions showed poor scalability, its focus is
on evaluating the performance, intra-VM (Vir-
tual Machine) scalability and cost-efficiency of
single-instance executions. Moreover, both an
HPC benchmark suite (the OpenMP implemen-
tation of the NPB kernels) and a representative
High-Throughput Computing (HTC) application

JCS&T Vol. 13 No. 3 December 2013

153

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Servicio de Difusión de la Creación Intelectual

https://core.ac.uk/display/19972682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

(jModelTest [7]) have been used in the evaluation.

The structure of this paper is as follows: Section 2
presents the related work. Section 3 explains the
virtualization support in the Amazon EC2 plat-
form and introduces the main characteristics of
the five instances evaluated in this paper. Sec-
tion 4 describes the experimental configuration,
both hardware and software, used in the eval-
uation and presents the results that have been
obtained. Section 5 summarizes our concluding
remarks.

2. RELATED WORK

The growing interest in cloud computing has mo-
tivated multiple works assessing the feasibility
of executing HPC applications on public clouds,
among which Amazon EC2 is the most com-
mon used option. Many studies [2; 3; 8; 9]
have shown that computationally-intensive codes
present little overhead when running in virtual-
ized environments, but communication-intensive
(i.e. MPI) applications have poor performance
in public clouds mainly due to their poor net-
work performance, processor sharing and the use
of commodity interconnection technologies (e.g.
Gigabit Ethernet) that limit severely the scala-
bility of HPC applications.

After the release of HPC-targeted Amazon EC2
cluster instances, many recent works have eval-
uated them. Thus, Zhai et al. [10] conducted a
comprehensive evaluation of MPI applications on
Amazon EC2 cluster instances, revealing a signif-
icant performance increase compared with previ-
ous evaluations on standard and High-CPU in-
stances. However, the interconnection network
overhead, especially the high start-up latency
(poor small message performance), remains as the
main MPI scalability limitation. Sun et al. [11]
relied on Amazon EC2 cluster instances for run-
ning the Lattice optimization and some addi-
tional performance benchmarks, concluding that
these instances suffer from performance degrada-
tion for large-scale parallel MPI applications, es-
pecially network-bound or memory-bound appli-
cations. Rehr et al. [12] confirmed that Ama-
zon EC2, using standard and High-CPU instance
types, is a feasible platform for applications that
do not demand high performance network. Fi-
nally, our previous work [5] has shown poor scal-
ability when executing communication-intensive
applications on multiple EC2 cluster instances
due to the network virtualization overhead, but if
hybrid shared/distributed memory programming
paradigms (i.e. MPI+OpenMP) are used in or-
der to minimize network communications, cluster
instances are able to achieve reasonable scalable
performance.

3. OVERVIEW OF THE AMAZON EC2
EVALUATED INSTANCES

Xen [13] is the Virtualization Machine Monitor
(VMM) or hypervisor used in the Amazon EC2
platform. Xen architecture has the hypervisor as
the lowest and most privileged layer and above it
comes one or more guest operating systems (OSs),
which the hypervisor schedules across the phys-
ical CPUs. The first guest OS, called domain 0
(dom0), boots automatically when the hypervi-
sor boots and receives special management priv-
ileges and exclusive direct access to all physical
hardware. This dom0 OS is used to manage any
further guest OS, called domain U (domU). The
virtualization technologies supported for creating
these domU guests are full virtualization assisted
with hardware support (HVM) and ParaVirtu-
alization (PV). On the one hand, HVM allows
the virtualization of proprietary OSs because the
guest systems kernel does not require modifica-
tion, but CPU virtualization extensions in the
host CPU are needed. These extensions allow
the coordination of the VM and the hypervisor,
reducing the use of privileged instructions that
are responsible for the major performance penal-
ties in full virtualization. On the other hand, PV
requires changes to the virtualized OS to be hy-
pervisor aware but no virtualization extensions
in the host CPU are required. Besides that, and
in order to boost performance, fully virtualized
HVM guests can use special PV device drivers to
bypass the emulation for disk and network I/O.

Amazon uses Xen HVM virtualization technol-
ogy for its cluster instances, that are specifically
designed for HPC and other demanding latency-
bound applications. They provide powerful CPU
resources, dedicated physical node allocation (one
VM per physical node) and are interconnected via
a high-speed network (full-bisection 10 Gigabit
Ethernet using placement groups). Furthermore
they have installed paravirtual drivers for improv-
ing network and disk performance, instead of us-
ing I/O device emulation which is the default in
HVM guests. For the rest of EC2 instance types
Xen PV or HVM is used (in fact, for some in-
stance types it is possible to select which one to
use).

For the purposes of this article five high-end, two
standard and three cluster instances, have been
evaluated (their main characteristics are summa-
rized in Table 1):

• The High-CPU Extra Large instance
(c1.xlarge, abbreviated C1) is well suited
for compute-intensive applications if not too
memory demanding. It has one Intel Xeon
E5506 quad-core Nehalem processor with a
total computing power of 20 EC2 Compute

JCS&T Vol. 13 No. 3 December 2013

154

Units (ECUs1) and 7 Gbytes of memory.
It has been considered the inclusion of this
instance in the evaluation because of its low
price but still having memory enough as to
execute NPB kernels of size Class C without
swapping to disk.

• The second generation Double Extra Large
instance (m3.2xlarge, abbreviated M3) has
been recently released (November 2012) and
is the highest processing power standard in-
stance. It has one Intel Xeon E5-2670 octa-
core Sandy Bridge processor with a total
computing power of 26 ECUs and 30 Gbytes
of memory. According to Amazon ”second
generation standard instances are ideal for
applications that require higher absolute CPU
and memory performance”.

• The Quadruple Extra Large cluster instance
(cc1.4xlarge, abbreviated CC1) is the small-
est of the HPC-aimed instances. CC1 in-
stances have two Intel Xeon X5570 quad-core
Nehalem processors, hence 8 cores per in-
stance with a total computing power of 33.5
ECUs and 23 Gbytes of memory.

• The Eight Extra Large cluster instance
(cc2.8xlarge, abbreviated CC2) has two Intel
Xeon E5-2670 octa-core Sandy Bridge pro-
cessors, hence 16 cores per instance with a
total computing power of 88 ECUs and 60.5
Gbytes of memory.

• The High Memory Eight Extra Large in-
stance (cr1.8xlarge, abbreviated CR1), a re-
cently released (January 2013) instance that
mimics CC2 processor architecture and pro-
vides 244 Gbytes of memory and 240 Gbytes
of SSD instance storage. Among the char-
acteristics of this instance Amazon indicates
that it provides Intel Turbo and NUMA op-
timizations, but does not give any details.

4. EVALUATION OF AMAZON EC2
INSTANCES

This section describes the configuration and
benchmarks used to evaluate the Amazon EC2
instances presented in the previous section and
analyzes the evaluation results in terms of perfor-
mance, intra-VM scalability and cost-efficiency.

Experimental Configuration
The performance evaluation has been conducted
on single C1, M3, CC1, CC2 and CR1 instances of
the Amazon EC2 platform. These resources have
all been allocated in the US East (North Virginia)

1According to Amazon one ECU provides the equiva-
lent CPU capacity of a 1.0-1.2 GHz 2007 Opteron or 2007
Xeon processor.

region and the executions have been carried out
mostly during the night, which can be relevant
in the results of C1 and M3 instances as they
are not dedicated instances. The Amazon Linux
2012.09.1 AMI with kernel 3.2.39 was used in all
cases. Finally, the performance results are the
mean of several measurements, generally five.

Regarding the software, two different experiments
were carried out to evaluate both HPC and HTC
codes. For the HPC performance and intra-
VM scalability the NAS Parallel Benchmarks
(NPB) [6] version 3.3 have been assessed using the
official NPB-SER implementation for the serial
execution and the NPB-OMP implementation for
the OpenMP parallel execution. NPB Class C
size problems have been selected because they are
the largest workloads that can be executed in all
the instances under evaluation without swapping
to disk. All the kernels (C/C++ and Fortran)
have been compiled with the GNU 4.7.2 com-
piler and -O3 -march=native flags. The metrics
considered for the NPB kernels are: (1) MOPS
(Millions of Operations Per Second), which mea-
sures the operations performed in the benchmark
(that differ from the CPU operations issued); and
(2) MOPS per US$, which measures the cost-
efficiency, that is the number of operations di-
vided by the cost per hour of each instance.

For the HTC evaluation JModelTest [7] version
2.1.3 has been selected. This is a real Java appli-
cation commonly used in bioinformatics to carry
out statistical selection of best-fit models of nu-
cleotide substitution using up to five different
model selection strategies. In a shared memory
architecture it works by distributing tasks among
a pool of Java threads that are initiated and man-
aged by the application. The Java Virtual Ma-
chine (JVM) used was the OpenJDK Runtime
Environment version 1.7.0 09.

Results of the Evaluation
In Figure 1 the performance and cost-efficiency of
the serial execution of all the NPB kernels for each
of the evaluated instances is shown. For the EP
(Embarrassingly Parallel) and IS (Integer Sort)
kernels there are not significative differences on
the MOPS obtained. For all the other kernels
the C1 instance has obtained the lowest result,
not surprisingly as it is the instance with the less
powerful CPU, and the M3 instance has the best
results, beating the cluster instances in all cases.
The reason for this remains unclear for us, as this
instance seems to have the same CPU as CC2 and
CR1 cluster instances have and it is executed in
non-dedicated hardware. Regarding the cluster
instances, the newest CR1 instance outperforms
slightly CC1 and CC2 instances, which could be
explained by the Amazon support to the Intel

JCS&T Vol. 13 No. 3 December 2013

155

High-CPU
Extra Large

Double
Extra Large

Quadruple
Extra Large

Eight
Extra Large

High-Memory Eight
Extra Large

Instance type High-CPU
Standard
(second generation)

Cluster Cluster High-Memory Cluster

CPU
Intel Xeona

E5506 @2.13GHz
Nehalem

Intel Xeona

E5-2670 @2.60GHz
Sandy Bridge

2 × Intel Xeon
X5570 @2.93GHz
Nehalem

2 × Intel Xeon
E5-2670 @2.60GHz
Sandy Bridge

2 × Intel Xeon
E5-2670 @2.60GHz
Sandy Bridge
Intel Turbo, NUMA

ECUs 20 26 33.5 88 88

#Cores 8b 8 8 (16 with HTc) 16 (32 with HTc) 16 (32 with HTc)

Memory 7 GB 30 GB 23 GB 60.5 GB 244 GB

Storage 1690 GB EBS only 1690 GB 3370 GB 240 GB (SSD)

API name c1.xlarge m3.2xlarge cc1.4xlarge cc2.8xlarge cr1.8xlarge

Price (Linux) $0.58 per hour $1.00 per hour $1.30 per hour $2.40 per hour $3.50 per hour

Interconnect 1 Gigabit Ethernet 1 Gigabit Ethernet
10 Gigabit Ethernet

(full-bisection bandwidth with placement groups)

Virtualization Xen PV 64-bit
Xen PV/HVM 64-bit
(HVM was used)

Xen HVM 64-bit (PV drivers for I/O)

b For C1 instances the number of physical cores reported by Amazon (8) does not match the information in /proc/cpuinfo (4)

a As reported by /proc/cpuinfo since Amazon does not provide that information

c HT: Hyper-Threading

Table 1: Description of the high-end EC2 instances evaluated in this paper

Turbo technology in this type of instance, as this
technology gets its best performance when only
one core is used. Having costs per hour into ac-
count, results for all kernels show that it is not
worth using cluster instances. Having the best
performance and lower prices, the M3 instance is
the best option in almost all the cases, being C1
also an instance with a great cost-performance
ratio.

Results from the execution of some of the NPB
kernels are shown in Figure 2. Four represen-
tative kernels from the OMP implementation of
the NPB have been selected and executed on the
evaluated instances: CG (Conjugate Gradient),
EP (Embarrassingly Parallel), FT (Fast Fourier
Transform) and LU (Lower-Upper Gauss-Seidel
solver). Executions have been done varying the
number of threads until the maximum number
of virtual cores of the instance, as reported by
Amazon, was reached. The tendency observed for
all the kernels is that, as the number of threads
increases, cluster instances get the best perfor-
mance and high speedup results, being the dif-
ferences among them significative only for some
kernels when the number of threads approaches
the maximum. The newest CR1 instance out-
performs CC1 and CC2 instances for 8 and 16
threads for all the kernels except LU, where CC2
instance is slightly better. Although Amazon
does not give any details, this better behavior
of CR1 if compared to CC2, that has the same
CPU, could be explained by the NUMA optimiza-

tions support included in this type of instance. It
is also worth noting that the CC1 instance has
the worst results among the cluster instances al-
though they are close to those of CC2 for some
of the NPB kernels (e.g. CG and EP). The sec-
ond generation standard instance M3 gets worst
results than cluster instances with poor parallel
efficiency (around 50% for 8 threads) but it ex-
hibits a very regular performance behavior for all
kernels. Special mention must be made for the re-
sults of the C1 instance, although it obtains bad
results in some kernels (e.g. FT or LU), for the
EP kernel it obtains figures similar to those of M3
and an speedup near to ideal, making it an eco-
nomical option for Monte Carlo-type simulations
when 8 threads or less are used.

With regard to cost-efficiency, results show that
M3 and CC1 instances have in general the best
cost-performance ratio when using 8 threads or
less. For some kernels (i.e. CG end EP) the
C1 instance shows even best figures when us-
ing 4 threads or less, but the variability of its
results does not make it the best choice. The
worst results in all cases have been those of CC2
and CR1 cluster instances, being CC2 best than
CR1. These are the only instances evaluated us-
ing 16 threads and it can be concluded that it is
not worth using the newest CR1 instance unless
high-memory capacity requirements are a must.

Finally, for the HTC evaluation two of the models
that come with the JModelTest distribution has
been selected: aP6.fas and wormsCOI.mafft.fas.

JCS&T Vol. 13 No. 3 December 2013

156

 0

 100

 200

 300

 400

 500

 600

 700

C
G

E
P

IS

M
O

P
S

NPB-SER Kernels Performance (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

C
G

E
P

IS
 0

 100

 200

 300

 400

 500

 600

 700

M
O

P
S

 p
e
r

U
S

$

NPB-SER Kernels Productivity (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

F
T

L
U

M
G

M
O

P
S

NPB-SER Kernels Performance (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

F
T

L
U

M
G

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

M
O

P
S

 p
e
r

U
S

$

NPB-SER Kernels Productivity (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

Figure 1: NPB-SER kernels performance and productivity

These are two representative models with very
different execution times. They have been exe-
cuted using the suggested values for the parame-
ters and varying the number of threads until the
maximum number of logical cores, as reported
by the instance, was reached (i.e. using Hyper-
Threading when available). Execution times are
shown in Figure 3. Not surprisingly cluster in-
stances get the best results for both models when
using 8 threads and M3 slightly outperforms C1.
Among the cluster instances CC1 obtains the
worst results and there are no significative differ-
ences between CC2 and CR1. Note that for the
second model when the number of threads is dou-
bled from 8 to 16 the execution time is reduced
near to the half, but when Hyper-Threading is
used (32 threads instead of 16) the execution time
does not improve too much.

5. CONCLUSIONS

Motivated by previous results that have shown
that the scalability of HPC communication-
intensive applications is very poor when using
more than one EC2 cluster instance and that,
from an economical point of view, is better to
use EC2 lower computational power cluster in-
stances, this paper has further evaluated the

single-instance execution of scientific codes on
some of the most computationally powerful EC2
instances. In the evaluation two high-end stan-
dard instances (C1 and M3) and three cluster in-
stances (CC1, CC2 and the newest CR1) have
been compared in terms of single instance per-
formance, intra-VM scalability and cost-efficiency
using both an HPC benchmark suite (the NPB
kernels) and a real HTC application (JModel-
Test).

From the results the following conclusions can be
drawn: (1) in terms of performance and intra-
VM scalability, cluster instances obtain the best
results both for HPC and HTC codes; (2) in
terms of cost-efficiency, M3 and CC1 instances
have in general the best cost-performance ratio
when using 8 threads or less; (3) due to its higher
costs and similar performance it is not worth us-
ing the newest CR1 instance as a substitute for
the CC2 instance unless high-memory capacity
requirements are a must; (4) unless the require-
ments of the application in number of threads and
memory capacity preclude their use, non-cluster
instances (M3 and, in some cases, C1) and less
powerful cluster instance CC1 are an economical
alternative despite their worst performance and
speedup results.

JCS&T Vol. 13 No. 3 December 2013

157

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 2 4 8 16

M
O

P
S

Number of Threads

NPB-OMP CG Performance (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

1 2 4 8 16

 0

 500

 1000

 1500

 2000

 2500

M
O

P
S

 p
e
r

U
S

$

Number of Threads

NPB-OMP CG Productivity (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

1 2 4 8 16

M
O

P
S

Number of Threads

NPB-OMP EP Performance (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

1 2 4 8 16

 0

 50

 100

 150

 200

 250

 300

M
O

P
S

 p
e
r

U
S

$

Number of Threads

NPB-OMP EP Productivity (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

1 2 4 8 16

M
O

P
S

Number of Threads

NPB-OMP FT Performance (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

1 2 4 8 16

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

M
O

P
S

 p
e
r

U
S

$

Number of Threads

NPB-OMP FT Productivity (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

1 2 4 8 16

M
O

P
S

Number of Threads

NPB-OMP LU Performance (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

1 2 4 8 16

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

M
O

P
S

 p
e
r

U
S

$

Number of Threads

NPB-OMP LU Productivity (Class C)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

Figure 2: NPB-OMP kernels performance and productivity

JCS&T Vol. 13 No. 3 December 2013

158

 0

 1

 2

 3

 4

 5

 6

8 threads
16 threads

32 threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

jModelTest 2 (aP6.fas)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

8 threads
16 threads

32 threads

E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
o

n
d

s
)

jModelTest 2 (wormsCOI.mafft.fas)

 c1.x

 cc1.4x

 cc2.8x

 cr1.8x

 m3.2x

Figure 3: jModelTest 2 execution time

ACKNOWLEDGMENT
This work was funded by the Ministry of Science
and Innovation of Spain and FEDER funds of the
EU under Project TIN2010-16735, an FPU Grant
AP2010-4348, and by an Amazon Web Services
(AWS) LLC research grant.

REFERENCES
[1] R. Buyya, C. S. Yeo, S. Venugopal,

J. Broberg, and I. Brandic, “Cloud Com-
puting and Emerging IT Platforms: Vision,
Hype, and Reality for Delivering Computing
as the 5th Utility,” Future Generation Com-
puter Systems, vol. 25, no. 6, pp. 599–616,
2009.

[2] C. Evangelinos and C. N. Hill, “Cloud Com-
puting for Parallel Scientific HPC Appli-
cations: Feasibility of Running Coupled
Atmosphere-Ocean Climate Models on Ama-
zon’s EC2,” in Proc. 1st Workshop on Cloud
Computing and Its Applications (CCA’08),
(Chicago, IL, USA), pp. 1–6, 2008.

[3] E. Walker, “Benchmarking Amazon EC2 for
High-Performance Scientific Computing,”
LOGIN: The USENIX Magazine, vol. 33,
no. 5, pp. 18–23, 2008.

[4] Amazon Web Services LLC, “High Perfor-
mance Computing on AWS.” http://aws.

amazon.com/hpc-applications/. Last vis-
ited: Apr 2013.

[5] R. R. Expósito, G. L. Taboada, S. Ramos,
J. Touriño, and R. Doallo, “Performance
Analysis of HPC Applications in the
Cloud,” Future Generation Computer Sys-
tems, vol. 29, no. 1, pp. 218 – 229, 2013.

[6] D. H. Bailey et al., “The NAS Parallel
Benchmarks,” International Journal of High
Performance Computing Applications, vol. 5,
no. 3, pp. 63–73, 1991.

[7] D. Darriba, G. L. Taboada, R. Doallo, and
D. Posada, “jModelTest 2: More Models,

New Heuristics and Parallel Computing,”
Nat Meth, vol. 9, p. 772, Aug. 2012.

[8] K. R. Jackson, L. Ramakrishnan, K. Muriki,
S. Canon, S. Cholia, J. Shalf, H. J. Wasser-
man, and N. J. Wright, “Performance Analy-
sis of High Performance Computing Applica-
tions on the Amazon Web Services Cloud,”
in Proc. 2nd IEEE Intl. Conference on Cloud
Computing Technology and Science (Cloud-
Com’10), (Indianapolis, USA), pp. 159–168,
2010.

[9] P. Luszczek, E. Meek, S. Moore, D. Terpstra,
V. M. Weaver, and J. J. Dongarra, “Eval-
uation of the HPC Challenge Benchmarks
in Virtualized Environments,” in Proc.
6th Workshop on Virtualization in High-
Performance Cloud Computing (VHPC’11),
(Bordeux, France), pp. 1–10, 2011.

[10] Y. Zhai, M. Liu, J. Zhai, X. Ma, and
W. Chen, “Cloud Versus In-House Clus-
ter: Evaluating Amazon Cluster Compute
Instances for Running MPI Applications,”
in Proc. 23th ACM/IEEE Conference on
Supercomputing (SC’11, State of the Prac-
tice Reports), (Seattle, WA, USA), pp. 1–10,
2011.

[11] C. Sun, H. Nishimura, S. James, K. Song,
K. Muriki, and Y. Qin, “HPC Cloud Applied
to Lattice Optimization,” in Proc. 2nd Intl.
Particle Accelerator Conference (IPAC’11),
(San Sebastian, Spain), pp. 1767–1769, 2011.

[12] J. J. Rehr, F. D. Vila, J. P. Gardner, L. Svec,
and M. Prange, “Scientific Computing in
the Cloud,” Computing in Science and En-
gineering, vol. 12, no. 3, pp. 34–43, 2010.

[13] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt,
and A. Warfield, “Xen and the Art of Vir-
tualization,” in Proc. 19th ACM Symposium
on Operating Systems Principles (SOSP’03),
(Bolton Landing, NY, USA), pp. 164–177,
2003.

JCS&T Vol. 13 No. 3 December 2013

159

