
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE

Concurrency Computat.: Pract. Exper. 2011; 00:1–18

Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe

General-Purpose Computation on GPUs for

High Performance Cloud Computing

Roberto R. Expósito∗,†, Guillermo L. Taboada, Sabela Ramos,

Juan Touriño and Ramón Doallo

Computer Architecture Group, Department of Electronics and Systems, University of A Coruña, Spain

SUMMARY

Cloud computing is offering new approaches for High Performance Computing (HPC) as it provides

dynamically scalable resources as a service over the Internet. In addition, General-Purpose computation

on Graphical Processing Units (GPGPU) has gained much attention from scientific computing in multiple

domains, thus becoming an important programming model in HPC. Compute Unified Device Architecture

(CUDA) has established as a popular programming model for GPGPUs, removing the need for using the

graphics APIs for computing applications. OpenCL (Open Computing Language) is an emerging alternative

not only for GPGPU but also for any parallel architecture. GPU clusters, usually programmed with a hybrid

parallel paradigm mixing Message Passing Interface (MPI) with CUDA/OpenCL, are currently gaining high

popularity. Therefore, cloud providers are deploying clusters with multiple GPUs per node and high-speed

network interconnects in order to make them a feasible option for HPC as a Service (HPCaaS). This paper

evaluates GPGPU for High Performance Cloud Computing on a public cloud computing infrastructure,

Amazon EC2 Cluster GPU Instances (CGI), equipped with NVIDIA Tesla GPUs and a 10 Gigabit Ethernet

network. The analysis of the results, obtained using up to 64 GPUs and 256 processor cores, has shown

that GPGPU is a viable option for High Performance Cloud Computing despite the significant impact

that virtualized environments still have on network overhead, which still hampers the adoption of GPGPU

communication-intensive applications. Copyright c© 2011 John Wiley & Sons, Ltd.

KEY WORDS: Cloud Computing; General-Purpose computation on GPU (GPGPU); High Performance

Computing (HPC); 10 Gigabit Ethernet; CUDA; OpenCL; MPI

1. INTRODUCTION

Cloud computing [1] is an Internet-based computing model that enables convenient, on-demand

network access to a shared pool of configurable and virtualized computing resources (e.g., networks,

servers, storage, applications and services) that can be rapidly provisioned and released with

minimal management effort. Public clouds offer access to external users who are typically billed

on a pay-as-you-use basis. With the cloud, and the availability of multiple cloud service providers,

∗Correspondence to: Roberto R. Expósito, Department of Electronics and Systems, University of A Coruña, Campus de
Elviña s/n, 15071, A Coruña, Spain. Tel.: +34 981167000; fax: +34 981167160.
†E-mail: rreye@udc.es

Copyright c© 2011 John Wiley & Sons, Ltd.

Prepared using cpeauth.cls [Version: 2010/05/13 v3.00]

2 ROBERTO R. EXPÓSITO ET AL.

organizations no longer are forced to invest in additional technology infrastructure. They can just

leverage the infrastructure provided by the cloud service provider, or move their own applications to

this infrastructure. Customers can derive significant economies of use by leveraging the pay-by-use

model, instead of upgrading their infrastructure, dimensioned to handle peak requests.

Cloud computing has been driven from the start predominantly by the industry through Amazon,

Google and Microsoft, but due to its potential benefits this model has been also adopted by

academia, as it is well-suited for handling peak demands in resource-intensive applications in

sciences and engineering. Thus, cloud computing is an option for High Performance Computing

(HPC), where the use of cloud infrastructures for HPC applications has generated considerable

interest in the scientific community [2, 3, 4, 5, 6], which has coined the term HPC as a Service

(HPCaaS), an extension of the provision of Infrastructure as a Services (IaaS).

HPC workloads typically require low latency and high bandwidth inter-processor communication

to provide scalable performance. However, the widely extended use of commodity interconnect

technologies (Ethernet and TCP/IP) and the overhead of the virtualized access to the network limits

severely the scalability of HPC applications in public cloud infrastructures.. To overcome these

constraints cloud infrastructure providers are increasingly deploying high-speed networks (e.g., 10

Gigabit Ethernet and InfiniBand), widely extended in HPC environments, where message-passing

middleware is the preferred choice for communications. MPI [7] is the de facto standard in message-

passing interface as it generally provides HPC applications with high scalability on clusters with

high-speed networks.

The advent of many-core accelerators, such as Graphical Processing Units (GPU), to HPC is

already consolidated thanks to the outbreak of General-Purpose computing on GPUs (GPGPU [8,

9]). The massively parallel GPU architecture, together with its high floating point performance

and memory bandwidth is well-suited for many workloads in science and engineering, even

outperforming multicore processors, which has motivated the incorporation of GPUs as HPC

accelerators [10]. As a result, new parallel programming models like Compute Unified Device

Architecture (CUDA) [11] and Open Computing Language (OpenCL) [12] have emerged to expose

the parallel capabilities of GPUs to GPGPU programmers in a productive way [13]. These models

can be combined with well-established HPC programming models such as MPI [14].

Amazon Elastic Compute Cloud (Amazon EC2) [15] is an IaaS service that provides users with

access to on-demand computational resources to run their applications. Amazon EC2 supports the

management of the resources through a Web service or an API which is able, among other tasks,

to boot straight-forwardly an Amazon Machine Image (AMI) into a custom virtual machine (a

VM or “instance”). Amazon EC2 Cluster Compute Instances (CCI) [16]), a resource available

since July 2010, provide a significant CPU power (two quad-core processors), together with a

high performance 10 Gigabit Ethernet network, thus targeting HPC applications. In November

2010 Amazon EC2 introduced Cluster GPU Instances (CGI), which have the same configuration

as CCI plus two NVIDIA Tesla GPUs. HPC applications running on CGI are expected to benefit

significantly from the massive parallel processing power the GPUs provide, as well as from

their full-bisection high bandwidth network (10 Gigabit Ethernet). This is particularly valuable

for applications that rely on messaging middleware like MPI for communications while taking

advantage of GPGPU, such as hybrid MPI/CUDA or MPI/OpenCL codes. This paper evaluates

GPGPU for High Performance Cloud Computing on Amazon EC2 cloud infrastructure, the largest

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 3

public cloud in production, using up to 32 CGIs, demonstrating the viability of providing HPC as a

service taking advantage of GPGPU in a cluster of CGIs.

The structure of this paper is as follows: Section 2 presents the related work. Section 3 introduces

the experimental configuration, both hardware and software, and the methodology of the evaluation

conducted in this work. Section 4 analyzes the performance results obtained by representative

benchmarks on the experimental testbed on Amazon EC2 public cloud. Section 5 summarizes our

concluding remarks.

2. RELATED WORK

There has been a spur of research activity in assessing the performance of virtualized resources in

cloud computing environments [17, 18, 19]. The suitability of these resources for HPC increases as

their performance improves, which has motivated lately several projects on the adoption of cloud

computing for HPC applications. Among them, a popular topic is the feasibility of Amazon EC2 for

HPC applications, which has been discussed in several papers since 2008, next presented.

Deelman et al. [20] explored the application of cloud computing for science, examining the

tradeoffs of different workflow execution modes and provisioning plans for cloud resources.

In [2], Evangelinos and Hill analyze the performance of HPC benchmarks on EC2 cloud

infrastructure. These authors reveal an important drawback in network performance, as messaging

middleware obtains latencies and bandwidths around one and two orders of magnitude inferior to

supercomputers. In [3], Walker evaluated the performance of Amazon EC2 High-CPU instances for

high-performance scientific applications, reporting significantly lower performance than traditional

HPC clusters. His work also presented the comparative performance evaluation between Amazon

EC2 High-CPU instances and an InfiniBand cluster with similar hardware configuration, reporting

40%-1000% runtime increase on EC2 resources.

Buyya et al. [4] discussed the potential opportunities of high-performance scientific applications

on public clouds through some practical examples on Amazon EC2 assessing that the trade-

offs between cost and performance have to be considered. Ekanayake and Fox [21] compared

applications with different communication and computation complexities and observed that

latency-sensitive applications experience higher performance degradation than bandwidth-sensitive

applications. Ostermann et al. [22] presented an evaluation of the feasibility of Amazon EC2 cloud

computing services for scientific computing. They analyzed the performance of the Amazon EC2

standard and High-CPU instances using representative micro-benchmarks and kernels. The main

conclusion of their work is that Amazon EC2 required, in 2009, an order of magnitude higher

performance in their instances to be feasible its use by the scientific community. Napper and

Bientinesi [5] examined the performance of the Linpack benchmark on several EC2 instance types

(standard and high-CPU instances). They concluded that clouds can not compete conventional HPC

clusters (supercomputers and high-speed clusters) based on the metric GFLOPS/$, since memory

and network performance is insufficient to compete existing scalable HPC systems.

Jackson et al. [6] performed a comprehensive evaluation comparing conventional HPC platforms

to Amazon EC2 standard instances, using real applications representative of the workload at

a typical supercomputing center. Their main conclusion is that the interconnection network

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

4 ROBERTO R. EXPÓSITO ET AL.

of the evaluated instances (Gigabit Ethernet at that time) severely limits performance and

causes significant runtime variability. Wang and Eugene [23] studied the impact of virtualization

on network performance. They presented a quantitative study of the network performance

among Amazon EC2 High-CPU instances, detecting unstable TCP/UDP throughput caused by

virtualization and processor sharing. Rehr et al. [24] confirmed that Amazon EC2, using standard

and High-CPU instance types, is a feasible platform for applications that do not demand high-

performance network performance. He et al. [25] extended previous research to three public clouds

(including Amazon) running a real application in addition to classical benchmarks to compare the

cloud results with those from dedicated HPC systems. Their main conclusion is that public clouds

are not designed for running scientific applications primarily due to their poor network performance.

Iosup et al. [26] investigated the presence of a Many-Task Computing (MTC) component in existing

scientific computing workloads and then they performed an empirical performance evaluation of

this MTC component on four public computing clouds, including Amazon EC2 using standard

and High-CPU instance types. Their main conclusion is that the computational performance of the

evaluated clouds is low, which is insufficient for scientific computing at large, but cloud computing

can be a good solution for instant and temporal resource needs.

The main drawback detected by most of these previous works since 2005 up to 2010, is the

high network overhead due to the use of commodity interconnection technologies (e.g., Ethernet

and TCP/IP) that are not suitable for HPC. In order to overcome this drawback, Amazon EC2

introduce 10 Gigabit Ethernet as interconnection technology together with the launch of its CCI

and CGI instance types, in June and November 2010, respectively. These instances target HPC

applications thanks to its high computational power and the adoption of a high performance

network, 10 Gigabit Ethernet. The CCI instance type has been evaluated in recent related work.

Thus, Regola and Ducom [27] evaluated the suitability of several virtualization technologies for

HPC, showing that operating system virtualization was the only solution that offers near native

CPU and I/O performance. They included in their testbed four Amazon EC2 CCIs, although they

focused more on the overall performance of the several evaluated hypervisors instead of the network

performance and the scalability of HPC applications. Carlyle et al. [28] reported that it is much

more effective in academia operating a community cluster program than providing HPC resources

with nodes using Amazon EC2 CCIs. Sun et al. [29] relied on Amazon EC2 CCIs for running the

Lattice Optimization and some additional performance benchmarks concluding that these instances

suffer from performance degradation for large scale parallel MPI applications, especially network

or memory bound applications. Ramakrishnan et al. [30] analyzed the performance of a number

of different interconnect technologies, including 10 Gigabit Ethernet network from Amazon EC2

CCIs, showing that virtualization can have a significant impact on performance. Zhai et al. [31]

conducted a comprehensive evaluation of MPI applications on Amazon EC2 CCIs, revealing a

significant performance increase compared to previous evaluations on standard and High-CPU

instances. However, the interconnection network overhead, especially the high startup latency (poor

small messages performance), remains as the main MPI scalability limitation.

Additionally, some works have evaluated the performance of other public cloud computing

services, such as a seminal study at Amazon S3 by Palankar et al. [32], which also includes an

evaluation of file transfer between Amazon EC2 and S3.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 5

This exhaustive review of the related works on evaluating Amazon for HPC applications has

revealed the lack, to the best of our knowledge in December 2011, of assessments of Amazon EC2

CGIs performance, as well as analyses on the viability of providing HPC as a service in a public

cloud taking advantage of message-passing and GPGPU.

3. EXPERIMENTAL CONFIGURATION AND EVALUATION METHODOLOGY

The evaluation of GPGPU for High Performance Cloud Computing has been done on a public cloud

computing infrastructure, Amazon EC2, using the Cluster GPU Instances (CGI), which target HPC

applications. This section presents the description of the CGI-based platform used in the evaluation

(Section 3.1), an overview of the virtualization technologies available in Amazon EC2 (Section 3.2),

the description of the GPGPU codes used in the evaluation (Section 3.3) and finally, this section

concludes with the methodology followed in this evaluation (Section 3.4).

3.1. Amazon EC2 CGI Platform

The evaluation of GPGPU on Amazon EC2 has been carried out on a cluster of 32 CGIs, whose

main characteristics are presented in Table I (CGI) and Table II (cluster of CGIs). A CGI node has

8 cores, each of them capable of executing 4 floating-point operations per clock cycle in double

precision (DP), hence 46.88 GFLOPS (Floating-Point Operations per Second) per processor, 93.76

GFLOPS per node and 3000 GFLOPS in the 32 node (256 core) cluster. Moreover, each GPU comes

with 3 GB GDDR5 of memory and has a peak performance of 515 GFLOPS in double precision,

hence 1030 GFLOPS per node and 32960 GFLOPS in the 32 node (64 GPU) cluster. Aggregating

CPU and GPU theoretical peak performances each node provides 1124 GFLOPS, hence the entire

cluster provides 35960 GFLOPS.

Table I. Description of the Amazon EC2 Cluster GPU Instance (CGI)

CPU 2 × Intel(R) Xeon quadcore X5570 @2.93 GHz (46.88 GFLOPS DP each CPU)
EC2 Compute Units 33.5

GPU 2 × NVIDIA Tesla “Fermi” M2050 (515 GFLOPS DP each GPU)
Memory 22 GB DDR3
Storage 1690 GB

Virtualization Xen HVM 64-bit platform (PV drivers for I/O)
API name cg1.4xlarge

Table II. Characteristics of the CGI-based cluster

Number of CGI nodes 32
Interconnection network 10 Gigabit Ethernet
Total EC2 Compute Units 1072

Total CPU Cores 256 (3 TFLOPS DP)
Total GPUs 64 (32.96 TFLOPS DP)
Total FLOPS 35.96 TFLOPS DP

The instances of this GPU cluster have been allocated simultaneously in a single placement group

in order to obtain nearby instances, with full bisection 10 Gbps bandwidth connectivity among them.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

6 ROBERTO R. EXPÓSITO ET AL.

The interconnection technology, 10 Gigabit Ethernet, is a differential characteristic of the Amazon

EC2 cluster instances. Additionally, Amazon EC2 guarantees that the hardware infrastructure of

the cluster instances, both CGI and Cluster Compute Instance (CCI), is not shared with any other

Amazon EC2 instances and at any given time, that each node runs a single virtual machine.

The CentOS 5.5 GPU HVMAMI (ami-aa30c7c3) is provided by AWS for preparing the software

configuration of EC2 GPU-based clusters. However, this AMI comes with CUDA toolkit version

3.1, so it is required its upgrading to CUDA version 4.0, mainly since it comes with some extra

features such as the ability to share GPUs across multiple threads and the control from a single

host thread of all GPUs in the system concurrently. The GNU C/Fortran 4.1.2 compiler was used

with -O3 flag to compile all the benchmarks and applications, except NAMD, which is distributed

in binary form. The Intel compiler version 12.1 and the Intel MKL library 10.3 have been used for

building the HPL benchmark. The message-passing library used for NAMD, MC-GPU y HPL is

OpenMPI [33], version 1.4.4.

3.2. Amazon EC2 Virtualization Technologies Overview

The Virtualization Machine Monitor (VMM), also called hypervisor, used by all Amazon EC2

instances is Xen [34], a high performance VMM quite popular among cloud providers. Xen systems

have the hypervisor at the lowest and most privileged layer. The hypervisor schedules one or

more guest operating systems across the physical CPUs. The first guest operating system, called

in Xen terminology domain 0 (dom0), boots automatically when the hypervisor boots and receives

special management privileges and direct access to all physical hardware by default. The system

administrator can log into dom0 in order to manage any further guest operating systems, known as

domain U (domU) in Xen terminology.

Xen supports two virtualization technologies, Full Virtualization (HVM) and Paravirtualization

(PV). On the one hand, HVM allows the virtualization of proprietary operating systems, since

the guest system’s kernel does not require modification, but guests require CPU virtualization

extensions from the host CPU (Intel VT [35], AMD-V [36]). In order to boost performance fully

virtualized HVM guests can use special paravirtual device drivers to bypass the emulation for disk

and network I/O. On the other hand, PV requires changes to the virtualized operating system to

be hypervisor-aware. This allows the VM to coordinate with the hypervisor, reducing the use of

privileged instructions that are typically responsible for the major performance penalties in full

virtualization. This technology does not require virtualization extensions from the host CPU.

Amazon EC2 CCI and CGI use Xen HVM virtualization technology with paravirtual drivers

for improving network performance, whereas the rest of Amazon EC2 instance types are Xen

PV guests. Therefore, the access to the Network Interface Card (NIC) in Amazon EC2 instances

is paravirtualized. However, a direct access to the underlying NIC (and other PCI cards) is also

possible in virtualized environments using PCI passthrough [37]. This technique consists of isolating

a device in order to be used exclusively by a guest operating system, which eventually achieves

near-native performance from the device. Xen supports PCI passthrough [38] for PV and HVM

guests, but dom0 OS must support it, typically available as a kernel build-time option. Additionally,

the latest processor architectures by Intel and AMD also support PCI passthrough (in addition to

new instructions that assist the hypervisor). Intel calls its approach Virtualization Technology for

Directed I/O (VT-d [39]), while AMD refers to it as I/O Memory Management Unit (IOMMU [40]).

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 7

In both cases the CPU is able to map PCI physical addresses to guest virtual addresses and take care

of access (and protection) to the mapped device, so that the guest OS can use and take advantage of

the device like in a non-virtualized system. In addition to this mapping of virtual guest addresses to

physical memory, isolation is provided in such a way that other guests (or even the hypervisor) are

precluded from accessing it.

Amazon EC2 CGI relies on Xen PCI passthrough for accessing the GPUs using Intel VT-d

technology, so domU OS and applications do direct I/O with the GPUs. Unfortunately, as we

mentioned above, the NIC is not available via PCI passthrough so the access to the network is

virtualized in Amazon EC2 instances. This lack of efficient virtualized network support in Amazon

EC2 explains why previous works using CCIs on Amazon EC2 concluded that the communications

performance remains as the main issue for the scalability of MPI applications in the cloud.

3.3. GPGPU Kernels and Applications

The evaluation of GPGPU on Amazon EC2 has been done using representative GPGPU benchmarks

and applications, several synthetic kernels, two real-world applications and the widely used High-

Performance Linpack (HPL) implementation [41] of the Linpack [42] benchmark.

3.3.1. Synthetic Kernels. They are code snippets which implement either operations that can

take full advantage of the hardware (e.g., a bus speed characterization code) or provide with

widely extended basic building blocks in HPC applications (e.g., a matrix multiplication kernel).

The synthetic kernels used for the evaluation of GPGPU on Amazon EC2 have been selected

from two representative benchmark suites, Scalable HeterOgeneus Computing (SHOC) [43] and

Rodinia benchmark suite [44]. On the one hand, the SHOC suite assesses low level architectural

features through microbenchmarking, as well as determines the computational performance of

the system with the aid of application kernels. Table III presents the 10 SHOC synthetic kernels

selected. Furthermore, these kernels have OpenCL and CUDA implementations, which allows

the comparative analysis of their performance. On the other hand, the Rodinia suite targets the

performance analysis of heterogeneous systems, providing application kernels implemented with

OpenMP, OpenCL and CUDA for both GPUs and multi-core CPUs. Table III also includes 2

synthetic kernels from the Rodinia suite.

3.3.2. Applications in Science and Engineering. Two distributed real-world applications which

support the use of multiple GPUs per node in CUDA, NAMD [45, 46] and MC-GPU [47, 48], have

been selected. Both applications can be executed either using only CPUs or mixing CPUs and GPUs.

On the one hand, NAMD is a parallel molecular dynamics code, based on Charm++ parallel objects,

designed for high-performance simulation of large biomolecular systems. The NAMD suite includes

ApoA1, one of the most used data sets for benchmarking NAMD, which models a bloodstream

lipoprotein particle with 92K atoms of lipid, protein, and water on 500 steps, with 12A cutoff.

NAMD is a communication-intensive iterative application. On the other hand, MC-GPU is an X-

ray transport simulation code that can generate clinically-realistic radiographic projection images

and computed tomography (CT) scans of the human anatomy. It uses an MPI library to address

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

8 ROBERTO R. EXPÓSITO ET AL.

Table III. Selected Synthetic Kernels

Kernel Suite Performance Unit Description

BusSpeedDownload SHOC GB/s PCIe bus bandwidth (host to device)

BusSpeedReadback SHOC GB/s PCIe bus bandwidth (device to host)

MaxFlops SHOC GFLOPS Peak floating-point operations per second

Device Memory SHOC GB/s Device memory bandwidth

SPMV SHOC GFLOPS Multiplication of sparse matrix and vector

GEMM SHOC GFLOPS Matrix multiplication

FFT SHOC GFLOPS Fast Fourier Transform

MD SHOC GFLOPS Molecular dynamics

Stencil2D SHOC Time(s) A two-dimensional nine point stencil calculation

S3D SHOC GFLOPS Computes the rate of various chemical reactions
across a regular 3D grid.

CFD Rodinia Time(s) Grid finite volume solver for the three-dimensional
Euler equations for compressible flow

Hotspot Rodinia Time(s) Estimate processor temperature based on an architec-
tural floorplan and simulated power measurements

multiple nodes in parallel during the CT simulations. It is a computation-intensive code with little

communication.

3.3.3. High-Performance Linpack Benchmark. The High-Performance Linpack (HPL) bench-

mark [42] solves a random dense system of linear equations. The solution is computed by an LU

decomposition with partial pivoting followed by backsubstitution. Dense linear algebra workloads

are pervasive in scientific applications, especially in compute-intensive algorithms, so HPL provides

a good upper bound on the expected performance of scientific workloads. In addition, TOP500 [49]

list is based on HPL. The HPL implementation used in this work is the hybrid MPI/CUDA [50], not

publicly available but provided to academia, research centers and registered CUDA developers by

NVIDIA.

3.4. Evaluation Methodology

The 15 codes selected for the GPGPU evaluation, 12 synthetic kernels (10 from SHOC and 2 from

Rodinia), the 2 applications (NAMD and MC-GPU) and the HPL, have been initially executed both

in a single CPU core and a single GPU of an Amazon EC2 CGI VM. Additionally, these codes

have been also executed both in a single CPU core and a single GPU of a non-virtualized node with

the same CPU and GPU in order to assess the overhead of the virtualization on the CPU and GPU

computational power. This physical node from our cluster has been denoted from now on as CAG

(Computer Architecture Group) testbed.

Once the performance of a single core and GPU has been measured, the evaluated codes have

been executed from 1 up to 32 CGI VMs, using all the available CPU cores (8) and the available

GPUs (2) per node. This is the most efficient configuration as the virtualized network imposes a

significant overhead con communications performance, which motivates the minimization of the

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 9

use of the network. Except special notice, all the codes use double precision (DP) floating point

arithmetic.

Furthermore, both the CPU and GPU speedups have been computed taking as baseline the

performance of a single CPU core. Thus, the performance of the GPUs is significantly higher than

the performance of a single CPU core for the evaluated codes. For example, NAMD is able to

achieve a speedup of 34 using the 2 GPUs of a VM, whereas the speedup achieved with the 8 CPU

cores is 8.

Finally, both the GNU and the Intel compilers have been considered for the CPU code used in

this performance evaluation, showing little performance differences between them, never exceeding

4%. As the Intel compiler was generally the best performer, the reported results have been obtained

from binaries compiled with this compiler.

4. ASSESSMENT OF GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING

This section assesses the performance of GPGPU for High Performance Cloud Computing on a

public cloud infrastructure, Amazon EC2, using the selected benchmarks/applications presented in

the previous section. Two features of the CGI VMs used are key for the analysis of the obtained

performance results, the high penalty of the virtualized access to the high-speed 10 Gigabit Ethernet

network and the low overhead of the direct access to the GPUs through Xen PCI passthrough using

Intel VT-d hardware.

4.1. Synthetic Kernels Performance with CUDA and OpenCL

Figures 1 and 2 present the performance results obtained by the selected synthetic kernels listed in

the Table III using their CUDA and OpenCL implementations on a single NVIDIA Tesla “Fermi”

M2050, both on Amazon EC2 and CAG testbeds.

Regarding Figure 1, analyzing the results from left to right and top to bottom, the PCIe Bus

Bandwidth benchmark shows similar results for CUDA and OpenCL, both from host to device as

well as from device to host. Moreover, the results reported on Amazon EC2 are similar to those

obtained on CAG.

The Peak Floating Point benchmark presents a similar behavior, with insignificant differences

between Amazon and CAG both for single and double precision tests. Here CUDA and OpenCL

also achieve a similar peak performance (to be more precise, OpenCL outperforms CUDA slightly),

which supports the conclusion that OpenCL has the same potential as CUDA to take full advantage

of the underlying hardware. In fact, the observed performance results are very close to the theoretical

peak performance on its GPU (NVIDIA Tesla C2050), 1030 GFLOPS for single precision (SP) and

515 GFLOPS for double precision (DP).

Next two graphs in Figure 1 present the Device Memory Bandwidth tests, both for read and

write operations. On the one hand, the left graph shows the device global memory bandwidth,

measured by accessing global memory in a coalesced manner, where CUDA and OpenCL obtain

similar results. However, for these tests the difference between Amazon EC2 and CAG performance

is significant, especially for read operations. The main reason for this performance gap is the ECC

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

10 ROBERTO R. EXPÓSITO ET AL.

 0

 2

 4

 6

 8

 10

Device->HostHost->Device

B
a

n
d

w
id

th
 (

G
B

/s
)

PCIe Bus Bandwidth

6.01 6.01 6.02 6.01

6.52 6.63 6.61 6.63

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 200

 400

 600

 800

 1000

 1200

Double PrecisionSingle Precision

G
F

L
O

P
S

Peak Floating Point Execution Rates

1003 1007 1003 1005

503 509 503 506

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

WriteRead

B
a

n
d

w
id

th
 (

G
B

/s
)

Device Global Memory Bandwidth

93.2 94.9

133 135.3

103 102.2

127.3 125.6

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 100

 200

 300

 400

 500

 600

WriteRead

B
a

n
d

w
id

th
 (

G
B

/s
)

Device Local Memory Bandwidth

359.3

390.4

359.9

391.9

439.5
456.4

439.4
459

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 2

 4

 6

 8

 10

 12

 14

Double PrecisionSingle Precision

G
F

L
O

P
S

SpMV BLAS Routine Performance

9.90

4.52

9.93

4.55

8.74

3.63

8.78

3.63

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 100

 200

 300

 400

 500

 600

 700

Double PrecisionSingle Precision

G
F

L
O

P
S

GEMM BLAS Routine Performance

599

412

602

413

298

169

297

180

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

Figure 1. SHOC synthetic benchmarks performance on Amazon EC2 and CAG testbeds

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 11

memory error protection which is enabled in Amazon EC2, whereas it is disabled in CAG. With

ECC memory error protection activated, a portion of the GPU memory is used for ECC bits, so

the available user memory is reduced by 12.5% (3 GB total memory yields 2.625 GB of user

available memory). The overhead associated with the handling of these ECC bits represents an

important performance penalty. On the other hand, the right graph shows the device local memory

bandwidth, where OpenCL outperforms CUDA, especially for read operations with up to 8% more

bandwidth. In this case, there are no significant performance differences between Amazon EC2 and

CAG testbeds.

The last two graphs at the bottom in Figure 1 present the results for two widely used Basic Linear

Algebra Subprograms (BLAS) subroutines: the level 2 operation Sparse Matrix-Vector (SpMV)

multiplication and the level 3 operation General Matrix Multiplication (GEMM), both for single

and double precision. Regarding the testbed, these routines obtain practically the same performance

results in Amazon and CAG. However, CUDA significantly outperforms OpenCL, even doubling

its performance in some cases (SpMV in single and double precision).

Regarding Figure 2, analyzing the results from left to right and top to bottom, CUDA outperforms

significantly OpenCL for the Fast Fourier Transform (FFT) and Molecular Dynamics (MD) kernels.

This confirms that the OpenCL SHOC kernels are less optimized for this GPU architecture (Tesla

“Fermi”) than the CUDA kernels. Moreover, these CUDA codes achieve the highest performance on

CAG, mainly due to its superior memory performance thanks to have deactivated the ECC memory

correction.

Next graph in Figure 2 presents the Stencil2D kernel, whose OpenCL implementation shows

quite poor performance on Amazon EC2, whereas on CAG has a runtime slightly higher than

CUDA. Next graph corresponds to S3D kernel, where OpenCL is the best performer in CAG with

single precision, whereas in Amazon EC2 OpenCL and CUDA results are similar.

The last two graphs at the bottom in Figure 2 present the results for the two selected kernels from

Rodinia suite, the Computational Fluid Dynamics (CFD) and the Hotspot kernels. These kernels

have an OpenMP version, in addition to the OpenCL and CUDA versions, which has been executed

using the 8 CPU cores available in a Amazon EC2 VM and in the CAG node. The CFD results

show that the GPUs are able to speedup around 5.2-8.6 times the CPU performance, thanks to

the implementation in CFD of an algorithm that is suitable for its execution on a GPU. The GPU

runtime of the Hotspot kernel also outperforms the CPU runtime, achieving around 6.4-9.3 times

higher performance. Finally, there are no significant differences in the performance of the CUDA

and OpenCL versions.

4.2. Distributed CUDA Applications Scalability

Figure 3 presents the performance of the ApoA1 benchmark executed with NAMD 2.8 and up to 32

Amazon EC2 CGIs. The left graph shows the achieved simulation rate measured in days/ns, whereas

the right graph presents their corresponding speedups. This benchmark has been executed using the

two implementations of NAMD, the only CPU version and the CPU+GPU (CUDA) implementation.

Regarding the results obtained, using a single VM the CPU+GPU version outperforms clearly the

only CPU version, achieving around 4 times higher performance. However, the CPU+GPU version

can not take advantage of running on two or more VMs, in fact it obtains lower performance,

especially using 8 or more VMs, than using a single VM. This behavior contrasts with the only

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

12 ROBERTO R. EXPÓSITO ET AL.

 0

 50

 100

 150

 200

 250

 300

 350

 400

Double PrecisionSingle Precision

G
F

L
O

P
S

FFT Kernel Performance

298

63.8

353

61.6

140

30.4

183

32.6

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 10

 20

 30

 40

 50

 60

Double PrecisionSingle Precision

G
F

L
O

P
S

MD Kernel Performance

38.6

31.1

46.9

31.6

27.4

18.1

30.8

19.8

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 2

 4

 6

 8

 10

 12

 14

Double PrecisionSingle Precision

R
u

n
ti

m
e

 (
s

)

Stencil2D Kernel Performance

3.85

6.02

3.4
3.69

5.37

9.90

4.86
5.15

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 10

 20

 30

 40

 50

 60

 70

Double PrecisionSingle Precision

G
F

L
O

P
S

S3D Kernel Performance

44.8 44.9

53.4

61.3

25.4

22.1

31.6

28.4

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

CUDA (CAG)
OpenCL (CAG)

 0

 20

 40

 60

 80

 100

R
u

n
ti

m
e

 (
s

)

CFD Kernel Performance

10.96 12.47

64.26

9.57
7.01

60.31

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

OpenMP-CPU (Amazon EC2)
CUDA (CAG)

OpenCL (CAG)
OpenMP-CPU (CAG)

 0

 5

 10

 15

 20

 25

 30

 35

R
u

n
ti

m
e

 (
s

)

Hotspot Kernel Performance

3.34
2.49

23.26

3.55
2.49

22.87

CUDA (Amazon EC2)
OpenCL (Amazon EC2)

OpenMP-CPU (Amazon EC2)
CUDA (CAG)

OpenCL (CAG)
OpenMP-CPU (CAG)

Figure 2. SHOC and Rodinia kernels performance on Amazon EC2 and CAG testbeds

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 13

CPU version which is able to scale moderately using up to 16 VM, almost reaching the performance

results achieved by the CPU+GPU version.

This poor scalability of the NAMD ApoA1 Benchmark on Amazon EC2 is explained by

the moderately communication-intensive nature of this benchmark, which suffers a significant

performance penalty caused by the overhead of the virtualized access to the network. This

performance bottleneck is especially important for the CPU+GPU implementation as it computes

faster than the only CPU version and therefore its communication requirements are higher. In fact,

NAMD developers recommend the use of low latency interconnects (e.g., InfiniBand) for CUDA-

accelerated NAMD executions across multiple nodes [46].

 0

 0.5

 1

 1.5

 2

 2.5

 3

32168421

S
im

u
la

ti
o

n
 r

a
te

 (
d

a
y
s
/n

s
)

Number of Instances

NAMD ApoA1 Benchmark on Amazon EC2

 CPU
 CPU+GPU (CUDA)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

32168421

S
p

e
e
d

u
p

Number of Instances

NAMD ApoA1 Benchmark Scalability on Amazon EC2

 CPU
 CPU+GPU (CUDA)

Figure 3. Performance of NAMD ApoA1 benchmark on Amazon EC2 CGIs

Figure 4 presents the performance of MC-GPU using up to 32 Amazon EC2 CGIs. The left

graph shows the runtime measured in seconds, whereas the right graph depicts their corresponding

speedups. This code is a massively MPI Monte Carlo simulation that has been executed with

OpenMPI using only CPU computation as well as CPU plus GPU computation with CUDA. Unlike

NAMD, this is a computation-intensive code with little communication, which eventually is able to

achieve almost linear speedups using up to 32 instances. Thus, a speedup of almost 220 over 256

cores is achieved by the only CPU version whereas the CPU+GPU version gets a speedup of around

1700 thanks to the use of 64 GPUs, almost 8 times the speedup of the only CPU version.

4.3. HPL Linpack Benchmark Performance

Figure 5 depicts the performance achieved by the HPL benchmark using up to 32 Amazon EC2

CGIs. The left graph shows the GFLOPS obtained by the resolution of the dense system of linear

equations, whereas the right graph presents their corresponding speedups. This MPI application

has been executed with the OpenMPI implementation using only CPU as well as using CPU

plus GPU computation with CUDA. The analysis of the breakdown of the runtime has revealed

that most of the HPL runtime is spent in matrix-matrix multiplications in the update of trailing

matrices. The bigger the problem size N is, the more time is spent in this routine, so optimization

of DGEMM is critical to achieve a high score. Thus, the performance of HPL depends on two

main factors, basically on the GEMM subroutine performance in double precision (DGEMM), but

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

14 ROBERTO R. EXPÓSITO ET AL.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

32168421

R
u

n
ti

m
e
 (

s
)

Number of Instances

MC-GPU Execution Time on Amazon EC2

 CPU
 CPU+GPU (CUDA)

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

32168421

S
p

e
e
d

u
p

Number of Instances

MC-GPU Scalability on Amazon EC2

 CPU
 CPU+GPU (CUDA)

Figure 4. Performance of MC-GPU on Amazon EC2 CGIs

also on network performance, especially as the number of nodes increases. We ran many different

configurations to find the best HPL settings (problem size, number of rows and columns, partitioning

block size, panel factorization algorithm, and broadcast algorithm among others) and report the peak

for each number of instances used.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

32168421

G
F

L
O

P
S

Number of Instances

HPL Performance on Amazon EC2

 CPU
 CPU+GPU (CUDA)

 0

 200

 400

 600

 800

 1000

 1200

 1400

32168421

S
p

e
e
d

u
p

Number of Instances

HPL Scalability on Amazon EC2

 CPU
 CPU+GPU (CUDA)

Figure 5. HPL (Linpack) performance on Amazon EC2 CGIs

The measured HPL performance results show a moderate scalability limited severely by the poor

virtualized network support in CGI VMs. Thus, the ratio between the achieved HPL performance

and the theoretical peak performance decreases significantly as the number of instances increases,

limiting the scalability of Amazon EC2 CGIs. Regarding the CPU+GPU (CUDA) implementation of

HPL, using one CGI VM a 59% of efficiency is obtained (655 GFLOPS out of 1124 peak GFLOPS

are achieved), but when using 32 CGI VMs the efficiency drops below 40% (14.23 TFLOPS out

of 35.96 peak TFLOPS are achieved). Although 14.23 TFLOPS represents a speedup of 1290 with

respect to the baseline HPL execution on a single CPU core, an efficiency of the CPU+GPU version

below 40% with only 32 instances is quite poor.

The only CPU version presents a similar scalability behavior although the efficiencies are higher.

Thus, running HPL on one instance the efficiency obtained is relatively high 88% (82.39 GFLOPS

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 15

out of 93.76 peak GFLOPS are achieved), whereas the efficiency on 32 instances drops belows 68%

(2.035 TFLOPS out of 3 peak TFLOPS are achieved). The speedup obtained, 185 on 256 cores,

represents a moderate scalability.

Figure 6 and Table IV show the achieved efficiency in terms of percentage of the theoretical peak

performance in GFLOPS for each number of instances considered. To the best of our knowledge,

this is the first time that HPL performance results on Amazon EC2 GPIs are reported, obtaining

more than 14 TFLOPS. Amazon EC2 cluster instances have been reported to obtain 240 TFLOPS

Rmax (354 TFLOPS Rpeak), ranked #42 in the last TOP500 list (November 2011), with 17024 cores

(1064 nodes, each with 16 cores), showing an efficiency of 67.80%, a performance that could only be

obtained running HPL on a non virtualized infrastructure. The previous appearance of Amazon EC2

on TOP500 list was on November 2010, with a cluster ranked #233, which obtained 41.8 TFLOPS

Rmax (82.5 TFLOPS Rpeak) with 7040 cores (880 nodes, each comprising 8 cores), reporting an

efficiency of 51%, in tune with our measured results. As the last system (ranked #500) in the current

TOP500 list has 51 TFLOPS Rmax, it would be expected that a system with around 150 CGIs could

have entered in the last TOP500 list. The cost of the access to such an infrastructure would be barely

300 USD$ (2.10 USD$) per hour.

 0

 20

 40

 60

 80

 100

32168421

%
 T

h
e

o
re

ti
c

a
l

P
e

a
k

Number of Instances

HPL Efficiency on Amazon EC2

 CPU
 CPU+GPU (CUDA)

Figure 6. HPL (Linpack) efficiency as percentage of peak GFLOPS on Amazon EC2 CGIs

Table IV. HPL (Linpack) efficiency on Amazon EC2 CGIs

instances # cores # GPUs
CPU GFLOPS
(Rpeak)

CPU GFLOPS
(Rmax)

CPU+GPU
TFLOPS
(Rpeak)

CPU+GPU
TFLOPS
(Rmax)

1 8 2 93.76 82.39 (87.87%) 1.124 0.655 (59.27%)

2 16 4 187.52 152.2 (81.16%) 2.248 1.233 (54.85%)

4 32 8 375.04 295.5 (78.71%) 4.496 2.120 (47.15%)

8 64 16 750.08 594.2 (79.21%) 8.992 4.096 (45.55%)

16 128 32 1500.16 1144 (76.26%) 17.984 7.661 (42.60%)

32 256 64 3000.32 2035 (67.83%) 35.968 14.23 (39.66%)

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

16 ROBERTO R. EXPÓSITO ET AL.

The performance evaluation presented in this section has shown that computationally intensive

applications with algorithms which can be efficiently exploited in GPGPU can take full advantage

of their execution in CGI VMs from Amazon EC2 cloud. In fact, the applications can benefit

from the use of GPUs without any significant performance penalty, except when accessing memory

intensively, where a small penalty can be observed as Amazon EC2 CGIs have ECC memory error

protection enabled, which slightly limits the memory access bandwidth. Communication intensive

applications suffer from the overhead of the virtualized network access, which can reduce scalability

significantly.

5. CONCLUSIONS

GPGPU is attracting a considerable interest, especially in the scientific community, due to its

massive parallel processing power. Another technology that is receiving an increasing attention

is cloud computing, especially in enterprise environments, for which cloud services represent a

flexible, reliable, powerful, convenient, and cost-effective alternative to owning and managing their

own computing infrastructure. Regarding HPC area, cloud providers, such as Amazon public cloud,

are already providing HPC resources, such as high-speed networks and GPUs.

This paper has evaluated GPGPU for High Performance Cloud Computing on a public cloud

computing infrastructure, using 32 Amazon EC2 Cluster GPU Instances, equipped with 10 Gigabit

Ethernet and two NVIDIA Tesla GPUs each instance. The analysis of the performance results

confirms that GPGPU is a feasible option in a public cloud due to the efficient access to the

GPU accelerator in virtualized environments. However, our research has also detected that the

virtualized network overhead limits severely the scalability of the applications, especially those

sensitive to communication start-up latency. Therefore, more efficient communication middleware

support is required to get over current cloud network limitations, with appropriate optimizations

on communication libraries and OS virtualization layers. Thus, a direct access to the NIC through

a device assignment to the virtual machine is the key to reduce the network overhead in cloud

environments and make HPC on demand a widespread option for GPGPU.

ACKNOWLEDGEMENT

This work was funded by the Ministry of Science and Innovation of Spain under Project TIN2010-16735

and by an Amazon Web Services (AWS) research grant.

REFERENCES

1. Buyya R, Yeo CS, Venugopal S, Broberg J, Brandic I. Cloud computing and emerging IT platforms: Vision, hype,

and reality for delivering computing as the 5th utility. Future Generation Computer Systems 2009; 25(6):599–616.

2. Evangelinos C, Hill CN. Cloud Computing for parallel Scientific HPC Applications: Feasibility of running Coupled

Atmosphere-Ocean Climate Models on Amazon’s EC2. Proceedings of 1st Workshop on Cloud Computing and Its

Applications (CCA’08), Chicago, IL, USA, 2008; 1–6.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

GPGPU FOR HIGH PERFORMANCE CLOUD COMPUTING 17

3. Walker E. Benchmarking Amazon EC2 for High-Performance Scientific Computing. LOGIN: The USENIX

Magazine 2008; 33(5):18–23.

4. Vecchiola C, Pandey S, Buyya R. High-Performance Cloud Computing: A View of Scientific Applications.

Proceedings of 10th International Symposium on Pervasive Systems, Algorithms, and Networks (ISPAN’09),

Kaoshiung, Taiwan, ROC, 2009; 4–16.

5. Napper J, Bientinesi P. Can cloud computing reach the top500? Proceedings of Combined Workshops on

UnConventional High Performance Computing Workshop Plus Memory Access Workshop (UCHPC-MAW’09),

Ischia, Italy, 2009; 17–20.

6. Jackson KR, Ramakrishnan L, Muriki K, Canon S, Cholia S, Shalf J, Wasserman HJ, Wright NJ. Performance

Analysis of High Performance Computing Applications on the Amazon Web Services Cloud. Proceedings of 2nd

IEEE International Conference on Cloud Computing Technology and Science (CloudCom’10), Indianapolis, USA,

2010; 159–168.

7. MPI: A Message Passing Interface Standard. http://www.mcs.anl.gov/research/projects/mpi/ [Last visited:

December 2011].

8. Leist A, Playne DP, Hawick KA. Exploiting graphical processing units for data-parallel scientific applications.

Concurrency and Computation: Practice and Experience 2009; 21(18):2400–2437.

9. Pagès G, Wilbertz B. GPGPUs in computational finance: massive parallel computing for American style options.

Concurrency and Computation: Practice and Experience 2011 (In Press); doi:10.1002/cpe.1774.

10. Fan Z, Qiu F, Kaufman A, Yoakum-Stover S. GPU Cluster for High Performance Computing. Proceedings of 16th

ACM/IEEE Conference on Supercomputing (SC’04), Pittsburgh, PA, USA, 2004; 47.

11. Nickolls J, Buck I, Garland M, Skadron K. Scalable Parallel Programming with CUDA. Queue 2008; 6:40–53.

12. Stone JE, Gohara D, Guochun S. OpenCL: A Parallel Programming Standard for Heterogeneous Computing

Systems. Computing in Science and Engineering 2010; 12(3):66–73.

13. Malik M, Li T, Sharif U, Shahid R, El-Ghazawi T, Newby G. Productivity of GPUs under different programming

paradigms. Concurrency and Computation: Practice and Experience 2011; 24(2):179–191.

14. Karunadasa NP, Ranasinghe DN. Accelerating high performance applications with CUDA and MPI. Proceedings of

4th International Conference on Industrial and Information Systems (ICIIS’09), Sri Lanka, India, 2009; 331–336.

15. Amazon Inc. Amazon Elastic Compute Cloud (Amazon EC2). http://aws.amazon.com/ec2 [Last visited: December

2011].

16. Amazon Inc. High Performance Computing Using Amazon EC2. http://aws.amazon.com/ec2/hpc-applications/

[Last visited: December 2011].

17. Luszczek P, Meek E, Moore S, Terpstra D, Weaver VM, Dongarra JJ. Evaluation of the HPC Challenge

Benchmarks in Virtualized Environments. Proceedings of 6th Workshop on Virtualization in High-Performance

Cloud Computing (VHPC’11), Bordeux, France, 2011; 1–10.

18. Younge AJ, Henschel R, Brown JT, von Laszewski G, Qiu J, Fox GC. Analysis of Virtualization Technologies

for High Performance Computing Environments. Proceedings of 4th IEEE International Conference on Cloud

Computing (CLOUD’11), Washington, DC, USA, 2011; 9–16.

19. Gavrilovska A, Kumar S, Raj H, Schwan K, Gupta V, Nathuji R, Niranjan R, Ranadive A, Saraiya P. High-

Performance Hypervisor Architectures: Virtualization in HPC Systems. Proceedings of 1st Workshop on System-

level Virtualization for High Performance Computing (HPCVirt’07), Lisbon, Portugal, 2007; 1–8.

20. Deelman E, Singh G, Livny M, Berriman B, Good J. The cost of doing science on the cloud: the Montage example.

Proceedings of 20th ACM/IEEE Conference on Supercomputing (SC’08), Austin, TX, USA, 2008; 1–12.

21. Ekanayake J, Fox GC. High Performance Parallel Computing with Clouds and Cloud Technologies. Proceedings of

1st International Conference on Cloud Computing (CLOUDCOMP’09), Munich, Germany, 2009; 20–38.

22. Ostermann S, Iosup A, Yigitbasi N, Prodan R, Fahringer T, Epema D. A Performance Analysis of EC2 Cloud

Computing Services for Scientific Computing. Proceedings of 1st International Conference on Cloud Computing

(CLOUDCOMP’09), Munich, Germany, 2009; 115–131.

23. Wang G, Eugene Ng TS. The Impact of Virtualization on Network Performance of Amazon EC2 Data Center.

Proceedings of 29th IEEE Conference on Computer Communications (INFOCOM’10), San Diego, CA, USA, 2010;

1163–1171.

24. Rehr JJ, Vila FD, Gardner JP, Svec L, Prange M. Scientific Computing in the Cloud. Computing in Science and

Engineering 2010; 12(3):34–43.

25. He Q, Zhou S, Kobler B, Duffy D, McGlynn T. Case study for running HPC applications in public clouds.

Proceedings of 19th ACM International Symposium on High Performance Distributed Computing (HPDC’10),

Chicago, IL, USA, 2010; 395–401.

26. Iosup A, Ostermann S, Yigitbasi N, Prodan R, Fahringer T, Epema D. Performance Analysis of Cloud Computing

Services for Many-Tasks Scientific Computing. IEEE Transactions on Parallel and Distributed Systems 2011;

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

18 ROBERTO R. EXPÓSITO ET AL.

22:931–945.

27. Regola N, Ducom JC. Recommendations for Virtualization Technologies in High Performance Computing.

Proceedings of 2nd IEEE International Conference on Cloud Computing Technology and Science (CloudCom’10),

Indianapolis, USA, 2010; 409–416.

28. Carlyle AG, Harrell SL, Smith PM. Cost-Effective HPC: The Community or the Cloud? Proceedings of 2nd IEEE

International Conference on Cloud Computing Technology and Science (CloudCom’10), Indianapolis, USA, 2010;

169–176.

29. Sun C, Nishimura H, James S, Song K, Muriki K, Qin Y. HPC Cloud Applied to Lattice Optimization. Proceedings

of 2nd International Particle Accelerator Conference (IPAC’11), San Sebastian, Spain, 2011; 1767–1769.

30. Ramakrishnan L, Canon RS, Muriki K, Sakrejda I, Wright NJ. Evaluating Interconnect and Virtualization

Performance for High Performance Computing. Proceedings of 2nd International Workshop on Performance

Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS’11), Seattle, WA, USA,

2011; 1–2.

31. Zhai Y, Liu M, Zhai J, Ma X, Chen W. Cloud versus in-house cluster: evaluating Amazon cluster compute instances

for running MPI applications. Proceedings of 23th ACM/IEEE Conference on Supercomputing (SC’11, State of the

Practice Reports), Seattle, WA, USA, 2011; 1–10.

32. Palankar MR, Iamnitchi A, Ripeanu M, Garfinkel S. Amazon S3 for science grids: a viable solution? Proceedings

of 1st International Workshop on Data-aware Distributed Computing (DADC’08), Boston, MA, USA; 55–64.

33. Gabriel E, Fagg GE, Bosilca G, Angskun T, Dongarra JJ, Suyres JM, Sahay V, Kambadur P, Barrett B, Lumsdaine

A, et al.. Open MPI: Goals, Concept, and Design of a Next Generation MPI Implementation. Proceedings of 11th

European PVM/MPI Users’ Group Meeting (EuroPVM/MPI’04), Budapest, Hungary, 2004; 97–104.

34. Barham P, Dragovic B, Fraser K, Hand S, Harris T, Ho A, Neugebauer R, Pratt I, Warfield A. Xen and the art of

virtualization. Proceedings of 19th ACM Symposium on Operating Systems Principles (SOSP’03), Bolton Landing,

NY, USA, 2003; 164–177.

35. Intel Virtualization Technology (Intel VT). http://www.intel.com/technology/virtualization/technology.htm?

iid=tech vt+tech [Last visited: December 2011].

36. AMD Virtualization Technology (AMD-V). http://sites.amd.com/us/business/it-solutions/virtualization/Pages/

amd-v.aspx [Last visited: December 2011].

37. Jones, T. Linux virtualization and PCI passthrough. http://www.ibm.com/developerworks/linux/library/

l-pci-passthrough/ [Last visited: December 2011].

38. Xen PCI Passthrough. http://wiki.xensource.com/xenwiki/XenPCIpassthrough [Last visited: December 2011].

39. Abramson D, Jackson J, Muthrasanallur S, Neiger G, Regnier G, Sankaran R, Schoinas I, Uhlig R, Vembu B,

Wiegert J. Intel Virtualization Technology for Directed I/O. Intel Technology Journal 2006; 10(3):179–192.

40. AMD I/O Virtualization Technology (IOMMU) Specification. http://support.amd.com/us/Processor TechDocs/

34434-IOMMU-Rev 1.26 2-11-09.pdf [Last visited: December 2011].

41. Petitet, A and Whaley, RC and Dongarra, JJ and Cleary, A. HPL: A Portable Implementation of the High-

Performance Linpack Benchmark for Distributed-Memory Computers. http://www.netlib.org/benchmark/hpl/ [Last

visited: December 2011].

42. Dongarra JJ, Luszczek P, Petitet A. The LINPACK Benchmark: past, present and future. Concurrency and

Computation: Practice and Experience 2003; 15(9):803–820.

43. Danalis A, Marin G, McCurdy C, Meredith JS, Roth PC, Spafford K, Tipparaju V, Vetter JS. The Scalable

Heterogeneous Computing (SHOC) benchmark suite. Proceedings of 3rd Workshop on General-Purpose

Computation on Graphics Processing Units (GPGPU-3), Pittsburgh, PA, USA, 2010; 63–74.

44. Che S, Boyer M,Meng J, Tarjan D, Sheaffer JW, Lee SH, Skadron K. Rodinia: A benchmark suite for heterogeneous

computing. Proceedings of IEEE International Symposium on Workload Characterization (IISWC’09), Austin, TX,

USA, 2009; 44–54.

45. Phillips JC, Braun R,WangW, Gumbart J, Tajkhorshid E, Villa E, Chipot C, Skeel RD, Kalé L, Schulten K. Scalable

molecular dynamics with NAMD. Journal of Computational Chemistry 2005; 26(16):1781–1802.

46. NAMD: Scalable Molecular Dynamics. http://www.ks.uiuc.edu/Research/namd/ [Last visited: December 2011].

47. Badal A, Badano A. Accelerating monte carlo simulations of photon transport in a voxelized geometry using a

massively parallel graphics processing unit. Medical Physics 2009; 36(11):4878–4880.

48. MC-GPU: Monte Carlo simulation of x-ray transport in a GPU with CUDA. http://code.google.com/p/mcgpu/ [Last

visited: December 2011].

49. TOP500 Org. Top 500 Supercomputer Sites. http://www.top500.org/ [Last visited: December 2011].

50. Fatica M. Accelerating LINPACKwith CUDA on Heterogenous Clusters. Proceedings of 2nd Workshop on General

Purpose Computation on Graphics Processing Units (GPGPU-2), Washington, DC, USA, 2009; 46–51.

Copyright c© 2011 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2011)

Prepared using cpeauth.cls DOI: 10.1002/cpe

	1 Introduction
	2 Related Work
	3 Experimental Configuration and Evaluation Methodology
	3.1 Amazon EC2 CGI Platform
	3.2 Amazon EC2 Virtualization Technologies Overview
	3.3 GPGPU Kernels and Applications
	3.3.1 Synthetic Kernels.
	3.3.2 Applications in Science and Engineering.
	3.3.3 High-Performance Linpack Benchmark.

	3.4 Evaluation Methodology

	4 Assessment of GPGPU for High Performance Cloud Computing
	4.1 Synthetic Kernels Performance with CUDA and OpenCL
	4.2 Distributed CUDA Applications Scalability
	4.3 HPL Linpack Benchmark Performance

	5 Conclusions

