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Abstract

Cloud infrastructures have become indispensable in our daily lives with the rise
of cloud-based services offered by companies like Facebook, Google, Amazon
and many others. The e-mails we receive everyday, the files and pictures we
upload/view to/from social media and all the different market-places through
which we make purchases daily rely in some way on services offered by a cloud
infrastructure somewhere.

These cloud infrastructures use a large numbers of servers provisioned with their
own computing resources. Each of these servers use a piece of software, called
the Hypervisor (“HV”, for short), that allows them to create multiple virtual
instances of a subset of their physical computing resources and abstract them
into “Virtual Machines” (VMs). The hypervisor multiplexes among the VMs
some of the physical resources of the server like CPU and I/O interfaces. But
other resources, like memory, are allocated because they cannot be multiplexed
over time in the same way.

A VM for cloud-based services runs an Operating System (OS), which in turn
runs the applications used by the service consumers. The administrator of the
cloud infrastructure is responsible for managing the VMs. The management tasks
involve determining the resources that the VMs can use, in which physical node
they can execute and any other constraint the administrator deems reasonable
to enforce, such as Service Level Agreements (SLA) [50, 22].

The VMs within the computing nodes generate varying memory demand be-
havior. When memory utilization reaches its limits due to this demand, costly
operations such as (virtual) disk accesses and/or VM migrations can occur. As
a result, it is necessary to optimize the utilization of the local memory resources
within a single computing node.

However, pressure on the memory resources can still increase, making it necessary
to move (migrate) the VM to a different node with larger memory or add more
memory to the same node. At this point, it is important to consider that some of
the nodes in the cloud infrastructure might have memory resources that they are
not using. So, this opens up the possibility of making this memory available to
the nodes that actually need it, avoiding costly migrations or hardware memory
enhancements.

Considering the possibility to have a node’s memory made available to the rest
of the nodes in the infrastructure, new architectures have been introduced that
provide hardware support for a shared global address space across multiple com-
puting nodes. Together with fast interconnects, these architectures enable the



sharing of memory resources across computing nodes while enforcing coherence
locally within nodes. In this context, every node is a coherence island and the
memory is a global resource.

This thesis presents multiple contributions to the memory management problem.
First, it addresses the problem of optimizing memory resources in a virtualized
node through different types of memory abstractions. Two full contributions
are presented for managing memory within a single node called SmarTmem and
CARLEMM (Continuous-Action Reinforcement Learning for Memory Manage-
ment). In this respect, a third contribution is also presented, called CAVMem
(Continuous-Action Algorithm for Virtualized Memory Management), that works
as the foundation for CARLEMM.

SmarTmem is designed to optimize the memory made available through the VMs
through the Transcendent Memory (Tmem) abstraction, while CARLEMM tar-
gets the optimization of memory made available through ballooning. The initia-
tive behind CARLEMM is initially based on a proof-of-concept mechanism called
CAVMem that provided insight on the use of Continuous Action Reinforcement
Learning (RL) algorithms for memory management. To the best of our knowl-
edge, CARLEMM and CAVMem are the first mechanisms to employ CARL for
the problem of memory management within a virtualized node.

Second, this thesis presents two contributions for memory capacity aggregation
across multiple nodes, offering two mechanisms called GV-Tmem (Globally Vis-
ible Transcendent Memory) and vMCA (Virtualized Memory Capacity Aggrega-
tion), this latter being based on GV-Tmem but with significant enhancements.
These mechanisms focus primarily on distributing the memory pool of the infras-
tructure across the computing nodes using a user-space process with high-level
memory management policies.

To summarize, the main contributions of this thesis work are:

• A mechanism called SmarTmem for the optimal allocation of Tmem in a
single virtualized node.

• A mechanism called CAVMem (Continuous Action Algorithm for Virtual-
ized Memory Management) developed as a proof-of-concept for the use of
Continuous-Action Reinforcement Learning for RAM allocation in a simu-
lation of a virtualized node

• A mechanism called CARLEMM (Continuous Action Reinforcement Learn-
ing for Memory Management), based on the proof-of-concept provided by
CAVMem, but enhanced to solve the memory allocation problem in a real
computing node.

• A mechanism called GV-Tmem (Globally Visible Tmem) for remote memory
capacity sharing across multiple computing nodes in a cloud infrastructure

• A mechanism called vMCA (virtualized Memory Capacity Aggregation) for
the sharing of memory capacity across nodes, but enhanced for resiliency
and efficiency in comparison to GV-Tmem.
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Chapter 1

Introduction

This thesis starts off by explaining what Cloud Computing is, how it came to be and its
current state of the art. The purpose of this chapter is to give the reader a clear vision of
the context in which this research was developed, and the background to comprehend the
scope of our contributions, which mainly focus on the problem of memory management.

Cloud Computing is increasingly becoming more relevant, despite its ups and down on
the market and the over-hype that always comes when new technologies get mass adoption.
It is a market that changes rapidly, as new services come and go and as new capabilities get
exploited. However, the fundamental technologies that gave rise to Cloud Computing have
been around for decades and they have steadily evolved to produce the computer landscape
we see today.

In this research, we try to look beneath the surface without losing sight of it, we try to look
past the hype of the markets and dive deeper into the fundamentals of the technology. This
is why we use terms like ”Virtualization Techniques”, ”Coherence Islands” and ”Memory
Resource”, all of which is terminology that will be very unlikely to appear on a presentation
from a motivational speaker or a marketing specialist. But using this terminology already
gives the reader an idea of the issues we are addressing and how they relate to the underlying
technology that enables Cloud Computing.
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1. INTRODUCTION

1.1 Cloud Computing in Context

Cloud Computing infrastructures have become indispensable in our daily lives with the rise of
cloud-based services offered by companies like Facebook, Google, Amazon and many others.
The e-mails and text messages we receive everyday, the files and pictures we upload/view
to/from social media and all the different market-places through which we make purchases
daily rely in some way on services offered by a cloud infrastructure. Figure 1.1 shows the
way cloud computing services market has increased since 2009 until 2018, and it also shows
growth estimations from 2019 until 2022.

Figure 1.1: Yearly Cloud Market Growth since 2009 until 2018, and estimations of growth
from 2019 until 2022. Source of data from [1].

The Cloud Computing market has been growing steadily for the last 10 years, and it is
expected to continue growing in the years to come. Cloud Computing services provide many
advantages, that basically translate in a cost reduction for online service providers and a
better user experience for their consumers. It also makes management of this services and
their data a lot easier, since it allows for a higher level of abstraction and automation.

But the questions remain: what is a Cloud? What is a Cloud Infrastructure? Basically, a
cloud infrastructure is a group of computer servers (nodes) that pool together their hardware
resources (CPU, memory, storage, communication interfaces, etc.) to execute applications
on behalf of the users in a transparent way. The applications are executed as if they were
running on a single computer with monolithic computing resources.

In the cloud infrastructure, every node has a software stack that provides the necessary
software support, not just for the pooling of resources, but also to execute the applications
required by the customers/users. This software stack (also called server stack) has some
similarities with the software stacks used for nodes in other types of distributed systems,
with one fundamental difference: the presence of the Virtualization Layer. Figure 1.2 shows
a common software stack for a computing node in both cases.
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Figure 1.2: Server stack for the cases in which a) there’s no virtualization layer, and b) with
a virtualization layer.

When a node is not virtualized (Figure 1.2(a)), every application executed could po-
tentially access all of the resources of the node. There are ways to manage the resource
allocation among the applications from within the Operating System (OS), but such envi-
ronment does not provide the same runtime flexibility and security that a virtualized node
(Figure 1.2(b)) can. As it will be explained in Section 1.2.2, when the node is virtualized,
its resources can be packed together into Virtual Machines or VMs, that are able to execute
their own OSs and different runtime environments, all within the same physical node. Notice
how every ”Virtual Machine” in Figure 1.2(b) has the same internal software stack of the
non-virtualized node, starting from the ”Operating System”

In a virtualized node, the component tagged as ”Middleware*” is singled out. This is
because in many server stack implementations, one of the VMs may have a middleware with
capabilities to interact with the virtualization layer in order to manage its utilities. This
middleware is also able to interact with other nodes to pool and share resources across the
cloud infrastructures, but this also depends on the type of server stack implemented.

The sharing of resources is achieved through the deployment of virtualization technol-
ogy [113], which consists of a set of specialized hardware and software features present on
each computing node. The computer node needs to have a processor with certain charac-
teristics [85] in order to execute virtualization software, the most important of this software
is commonly known as a Virtual Machine Manager or Hypervisor (HV), also shown in Fig-
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ure 1.2(b).
Computing resource sharing thus occurs among the VMs within a single node of the

infrastructure, as well as across the nodes. There are many mechanisms through which nodes
can share their resources, depending on the hardware capabilities of the node and the details
of the runtime and middleware. There are state-of-the-art server architectures that have
been designed with a share-something design approach, enabling nodes to share computing
resources through their memory address spaces. Such architectures, like Euroserver [26] and
ExaNoDe [89], rely on fast interconnects and fast communication protocols among the nodes
to achieve this. By leveraging the characteristics of these new hardware architectures, it is
possible to disaggregate the memory-mapped resources of every computing node in a cloud,
and make those resources accessible to every other computing node, by allowing the flexible
aggregation of memory to the nodes.

This thesis presents a series of contributions to the memory management problem. First,
this thesis addresses the problem of memory resource allocation in a single virtualized node
through different types of memory abstractions. In this context, two different mechanisms
for managing memory, SmarTmem and CARLEMM, are introduced, the latter using a re-
inforcement learning approach based on the foundation provided by CAVMem, which is
another contribution developed in this thesis.

Second, this thesis goes on to provide contributions for the memory capacity aggregation
problem across multiple virtualized nodes (coherence islands) by providing two different
related mechanisms, called GV-Tmem and vMCA, for cloud environments based on Tmem.
They both distribute and manage the system’s total memory globally across computing nodes
using a user-space process with high-level memory management policies. The difference
between them is the enhancements of vMCA with respect to GV-Tmem for resiliency and
more efficient use of the available memory resources.

The contributions to the memory management problem in this thesis center around the
hardware virtualization layer. Targeting the memory management problem in such a way
makes our solutions relevant for the cloud computing environments.

The rest of this introductory chapter will explain the background on virtualization tech-
nology up to its current state-of-the-art. It will also explain in more detail the problem of
memory management at the virtualization layer and the problem of aggregating memory
across nodes of a cloud infrastructures

1.2 Introduction to Virtualization

1.2.1 Antecedents

The term ”Virtualization Technology” (VT) refers to a set of system features, both in hard-
ware and in software, that allow for subsets of the physical resources of a node to be virtualized
into multiple instances, effectively creating what are known as VMs.

The HV is the component that creates multiple instances of subsets of the computing
resources of the node, and abstracts them in one or more VMs. Each VM is able to execute its
own OS isolated from other VMs, and this OS uses and manages the subset of the resources
made visible to the VM by the HV.

The first implementations of VT were introduced by IBM in the 1970s, when IBM de-
veloped the IBM System 360/67 which introduced the concept of virtual memory and time-
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sharing [38], based on the architectures and concepts outlined by Arden et. al [7].

Subsequently, IBM introduced the CP-40 [73] and the CP-67/CMS [9], the latter being
an OS that exploited the time-sharing and virtual memory capabilities of the System 360/67
to provide all users with a simulated System/360 computer of their own. Around this same
time (1970s), Popek et. al [85] formally defined the features that a computer system should
have in order to support virtualization.

Simultaneously, the MultiCS [20] OS was developed, which became the blueprint for
multi-user OSs like Unix [90]. These OSs were highly successful in the consumer and main-
frame market for a long time. Even though some virtualization technology concepts were
being introduced into Unix-like OSs as time went by, the advances on virtualization technol-
ogy kind of stagnated (1980s and 1990s).

As the computer market started growing, the amount of available computer architectures
increased as well, together with the different OSs available. This presented a problem for
the portability of programs, which usually were written and compiled for specific hardware
and software environments. The software environments are commonly understood to be the
software stack within the OS, including the OS itself, used to support a set of user-space
applications.

Towards the end of 1980s, computer hardware emulators appeared, such as SoftPC. These
emulators enabled the execution of applications developed for other OSs (such as DOS/Win-
dows) to execute in Unix-based workstations. During the 1990s, computer emulators started
to gain more traction, which resulted in the comeback of virtualization technology concepts
and their subsequent refinement.

By the end of the 1990s different types of OSs and hardware architectures were well
established, and virtualization solutions started to appear in order to solve the portability
problem and allow users to run applications across different computer hardware and software
stacks in a simplified and straightforward way.

During this time, the concepts of VT, first introduced by IBM, became relevant once
again. Coupled with this, the widespread use of the Internet and the creation of online
services established VT as one of the cornerstones for the computing landscape as we know
it today. The following section will review the state-of-the-art virtualization concepts.

1.2.2 Fundamentals of Virtualization

In the context of the Cloud Computing industry, it is common to talk about Software Vir-
tualization, which is the ability of a system to execute an OS within another host OS, or the
ability to execute an application abstracted from the rest of the software stack of the node,
as it is the case with the Java Virtual Machine [62]. Another common term is “Data Virtu-
alization”, which refers to a service that allows data manipulation by applications without
having technical details on how data is stored or represented [29], and there’s also a similar
concept called Storage Virtualization [17], which refers to the pooling of persistent storage
devices external to the node.

However, the types of virtualization that are more clearly defined are [86]:

• Application Virtualization: an application is virtualized when it is able to execute in
a node abstracted from the rest of the software stack in that node.
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• Desktop Virtualization: a type of virtualization in which a logical OS instance is iso-
lated from the client that is used to access it.

• Network Virtualization: ability to present logical networking devices and services (log-
ical ports, switches, routers, firewalls, etc) to connected workloads.

• Server or Hardware Virtualization: virtualization in the classical sense, in which the
computing resources of a node are abstracted into one or more virtual instances called
VMs.

Hardware Virtualization is one of the building blocks of Cloud Computing and associated
services, and it is part of what we refer in this thesis as “Virtualization Technology”. This
is where the HV comes into place, of which there are two known types:

• Type 1 Hypervisor: the type that runs directly over the computing hardware and
exploits its virtualization capabilities, first hand. This is the most important and
critical for Cloud Computing support.

• Type 2 Hypervisor: runs inside a host OS, and it is used for a specific type of Software
Virtualization.

When it comes to the Type 1 HV for Hardware Virtualization, currently there are three
known sub-types:

• Full Virtualization: consists on a full binary interface between the VM and the under-
lying host computer to trap sensitive instructions into the HV and emulate them in
software.

• Para-virtualization (PV): a technique in which the HV provides an API and the OS of
each guest VM undergoes certain modifications to make use of the API.

• Hardware-assisted Virtualization or Hardware Virtual Machine (HVM): exploits spe-
cific virtualization features of the processor and requires (ideally) no modifications to
the OS.

The HV (assume Type 1 HV, from now on) creates one or more logical (virtual) instances
of a subset of the physical computing resources of the node, effectively creating VMs. De-
pending on how many VMs and the amount/type of specific resource, it is possible to either
time-share (multiplex in time) the computing resources or have resources assigned to VMs.
This is how CPU resources are managed, as well as I/O interfaces. The mechanisms of time-
multiplexing and assignment of resources is available in most HVs available on the market
(Xen [10], KVM [41, 23], ESXi [74]).

When speaking about time-multiplexing of resources, it refers to a mechanism in which,
in very blunt terms, every VM will take turns on a temporal basis to access a specific resource.
However, it is also possible to give a VM exclusive access to resources, by doing an explicit
resource-to-VM assignment [65].

However, when it comes to managing memory among the VMs, it is not possible to
time-multiplex memory in the same way as CPU or I/O interfaces. This is because it is in
memory where the state of the VM is stored, even if the VM is idle or inactive. As VM
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take turns to execute their instructions in the CPUs and access driver interfaces, all that
input and output data used for the operations of the VM need to be stored somewhere in a
persistent way.

Moving in-memory VMs’ data into a long-term storage like a disk or a storage network
and rotating their data between long-term storage and memory as a way to multiplex memory
is not viable, due to the performance costs related to accesses to persistent storage [116].
Thus, it is necessary for the data to be in memory, which makes memory the main resource
bottleneck in a virtualized computing node.

At this point, the necessity to manage memory becomes evident, and the management
problem for memory is different when compared to the management of CPUs and other
resources. The following section will explain more details about the memory management
in the hypervisor and the core of the management problem.

1.3 Memory Management using Virtualization

The HV distributes the memory capacity among the VMs using a set of mechanisms that
explicitly map memory to the VMs by adding an extra level of address translation. In a
non-virtualized node, when a processor needs to access data from memory, it issues a virtual
memory address, that is translated into a physical address by the page translation mechanism
of the OS.

The addressing is done at a page granularity, where each page is of 4 KB in size. Some-
times, the physical page that results from the translation of a virtual address may not be
found in memory, a situation that generates a page fault. In this case, the page needs to be
fetched from disk and allocated in memory. This procedure, as costly as it is, may result in
another page being deallocated from memory to release space for the new page, increasing
the cost even further.

When virtualization is enabled, the HV adds another level of indirection to the address
translation process. Now, the addresses issued by a processor are translated from a Virtual
Address (VA) to a Physical Address (PA), just as before, but then the PA is translated into
a Machine Physical Address or simply a Machine Address (MA). This process is illustrated
in Figure 1.3. The PAs and the MAs are mapped together when the translation process
occurs, binding the memory to the VM until the memory addressed with the MA becomes
deallocated. When deallocation occurs, it can be remapped to a different PA or to a different
VM altogether.

Depending on the type of virtualization used and the memory abstraction used by the
HV, the MAs are exposed to the VM in order for the VM to access memory directly. Then,
the OS will manage the memory amongst it processes according to its own constraints.

The HV is able to abstract memory in different ways and add/reclaim it to/from the VM
through different mechanisms. Two of the most common mechanisms to add/reclaim memory
from the VM are Memory Ballooning [67, 112] and Memory Hotplug [97, 63]. Memory
Hotplug works using a SPARSEMEM memory model, which is a memory abstraction of
discontinuous memory mapping.

1.3.1 Memory Hotplug

The process of adding memory (hot-add) with Memory Hotplug consists of two phases: 1)
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Figure 1.3: Address translation process in a virtualized node.

notifying the hardware/firmware that new memory will be added, and 2) making the memory
available to different users. The kernel adds then physical pages into its address translation
mechanism and into the memory allocator. Removing pages using Memory Hotplug (hot-
remove) is known to be a complicated process [63], and it usually relies on Memory Ballooning
to carry out memory removal.

1.3.2 Memory Ballooning

Memory Ballooning, on the other hand, relies on a special driver that resides in each guest
OS and cooperates with the HV to dynamically change a VM’s memory capacity, effectively
moving memory back and forth between the HV and the VM [63, 97]. Figure 1.4 illustrates
the way memory ballooning works.

When applications that are running inside a VM (VM1 in Figure 1.4) free up pages they
previously allocated, the OS includes them in a list of free pages, as shown in Figure 1.4(a).
However, the pages still remain allocated by the HV, which is unable to reclaim them since
it has no access to the free list in the OS.

When another VM in the node starts to experience memory pressure, the HV commu-
nicates with the balloon driver in VM1 and tells it to kick back some pages to the HV,
preferrably from the list of free pages. The balloon driver pins these pages inside the VM in
order to prevent them from getting evicted by the VM. This is when the balloon driver is
said to inflate, as shown in Figure 1.4(b). The balloon driver then communicates with the
HV telling it which pages have been pinned, allowing the HV to unmap them from VM1 and
to re-map them to a VM that needs more memory.

These mechanisms to manage and manipulate memory, in particular Memory Ballooning,
make it possible for the HV to overcommit memory, that is, to give the VMs more memory
than the amount available on the node [112]. This allows for a higher degree of server
consolidation (the amount of VMs a single node can handle) than doing static partitioning.

However, Memory Ballooning presents some limitations of its own, some of which are: 1)
a maximum limit is set when configuring the balloon driver at boot time (requires rebooting
if the limit needs to be modified), and 2) the allocation/deallocation process can be time
consuming when large amounts of memory need to be allocated, especially when the memory
is fragmented. Because of the latter case, Memory Ballooning can present some limitations
when memory demand changes in irregular ways: either in spikes or too rapidly.
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Figure 1.4: Graphic illustration for Memory Ballooning, when (a) the free list of the OS gets
populated, and (b) when the balloon driver inflates.

1.3.3 Transcendent Memory

In order to overcome these two limitations of Memory Ballooning, another mechanism called
Transcendent Memory (Tmem) [69] was introduced to add/reclaim memory to a VM. Fig-
ure 5.2 illustrates the way Tmem works.
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Tmem works by pooling together the fallow and idle memory in the node, and uses this
memory pool as a cache between the main memory and the external/persistent storage (disk
or other). This pool of memory is shown as the ”Hypervisor’s Tmem Pool” in Figure 5.2.
When the OS attempts to evict a page from memory, it generates a page fault, a kernel
module traps this fault and generates a hypercall for the HV to handle the eviction attempt.
The hypercall generated corresponds to a PUT operation, as shown in Figure 5.2. The HV
will allocate a new page or set of pages from the Tmem pool, copying the data from the
evicted page(s) into the newly allocated Tmem page(s), and storing it in a key-value store.
In this scheme, the OS ”believes” that the memory it evicted is on a disk device, but it is
fact allocated in a memory section only visible to the HV.

A read from the Tmem pool is triggered when the VM attempts to read a page from
disk that it previously evicted from memory. The read attempt will generate a page fault
as well, but this time the kernel module generates a hypercall that corresponds to a GET
operation, instead of a PUT. The GET operation will copy the data from the Tmem page
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into a page allocated by the OS inside the VM. Depending on the way the Tmem was initially
configured, the GET operation will free up the Tmem page after copying its content back
to the VM, and will make it available once again.

Tmem also supports a FLUSH operation that the OS in the VM uses to maintain coher-
ence between the data in Tmem, the internal data structures of the OS in the VM and the
data stored in disk. A FLUSH operation frees up a Tmem page from the pool, and allows
it to be reallocated when another PUT is issued.

Figure 5.2 shows that Tmem can be used in two modes of operations: Cleancache, which
is used to stored clean pages (not modified) that are backed by the filesystem; and Frontswap,
which is used to store dirty pages that would be otherwise be written to the swap space.
However, in both cases, the idea is for Tmem to act as a cache between memory and persistent
storage, in order to prevent costly accesses to the latter.

One advantage that Tmem possesses over Memory Ballooning is that it can allocate and
reclaim pages at a faster rate than Ballooning, resulting in Tmem being more responsive
to fast changes in memory demand [69]. Another advantage of Tmem is that, given that it
works as a cache between memory and persistent storage, the OS inside the VM really does
not need to know the capacity of the underlying Tmem nor its location. This feature can be
exploited to allow for memory to be disaggregated from the node.

Even though the cost of allocating/deallocating a page is smaller with Tmem when
compared to Ballooning, one important limitation of Tmem is that the cost of accessing a
page through Tmem is higher than the cost of accessing pages that have been previously
allocated through Ballooning. Thus, it is not viable to allocate memory to a VM exclusively
through Tmem.

Given all these mechanisms that allow to move memory among the VMs in the node,
then the problem is to leverage these mechanisms to dynamically reallocate the memory in
order to make efficient use of the available memory resources, first, within one single node
and then, across multiple nodes in the cloud infrastructure.

1.4 The Memory Management Problem with Virtualization
and State-of-the-Art Solutions

The problem of dynamic memory management in a virtualized node appears when different
active VMs executing different applications present different memory utilization behavior
that also changes over time. Then, the problem boils down to the reallocation of memory
dynamically among the VMs such that each VM has all the memory it needs (assuming
there’s enough memory in the node) or that the available memory is dynamically reallocated
proportionally to ensure a performance target (assuming memory pressure in one node). The
reallocation of memory could be made possible through Memory Ballooning, Memory Hot-
plug and/or Tmem, but still it is necessary to control them by designing and implementing
algorithms/mechanisms built for this purpose.

When considering the problem of memory management across multiple nodes, the source
of the problem is the same, but the scope of the possible solutions will include the real-
location of memory capacity across nodes using an appropriate memory abstraction (like
Tmem), and also might include solutions that involve more complex memory architectures
and management schemes.
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When a new VM is created, it is allocated a portion of the physical memory. If the
VM later starts executing applications that need more memory to execute without accessing
persistent storage, then the VM is said to be under-provisioned of memory capacity. In
other cases, some physical memory may still remain in the system, either unallocated by the
hypervisor (fallow) or allocated to another VM that does not need it (idle). A VM with idle
memory is said to be over-provisioned of memory. The occurrence of either or both of these
cases (under- and over-provisioning) implies that the utilization of memory is sub-optimal.

The adequate thing to do in this cases would be to reclaim memory from over-provisioned
VMs and make it available to the VMs that are under-provisioned, by readjusting the memory
allocation of VMs dynamically and improving memory utilization.

1.4.1 Memory Management in a Virtualized Node

Many research efforts seek to improve main memory management in a single node [120,
12, 13, 15, 27, 51, 63, 72, 80, 95, 101, 105, 125]. For example, Zhao et al. [125] proposed
a mechanism to dynamically adjust the memory allocation by implementing a user-space
program in the Dom0 (using Xen) to trigger inflation and deflation of the balloon driver in
the VMs. This work is particularly interesting because they include predictive capabilities
based on an enhanced reuse distance approach [71]. They design a memory predictor that
predicts the VM’s working set size (WSS) based on Least Recently Used (LRU) histograms.
The predicted working set size determines the target memory allocation, which is enforced,
in each VM by the respective balloon driver. Both Zhao et al. [125] and Liu et al. [63] predict
the memory demands of the VMs. Whereas, Zhao et al. [125] predicts the working set size of
the VMs, Liu et al. [63] predicts the total memory footprint including swap. The approach of
estimating WSS to drive the memory allocation of the VMs has been very common in other
works as well [15, 47, 84]. When estimating the WSS, the objective is to allocate enough
memory to the VMs in order for their working set to fit in.

One problem with WSS estimation is that when applications do not use the whole WSS
during different phases of their execution, it results in memory being overallocated (that is,
misusing memory) during those times when part of the memory is not used. This problem
is exacerbated when there are multiple applications running inside the VMs and variation
on the applications behavior over time start affecting the measurements of the WSS.

In [120], Zhang et al. opted to avoid a WSS estimation approach due to the difficulties of
accurately estimating it at runtime for changing workloads, and instead decided to dynami-
cally allocate memory through a pool of shared memory across the VMs that is managed by
the host. In this scheme, memory is reclaimed from the host in an anticipated way, and made
readily available to the VMs that come under memory pressure in a sudden way. In this
way, the delays associated to the reclaiming of memory by the balloon driver are avoided,
preventing the VMs from evicting pages from memory. This avoids further accesses to per-
sistent storage, since the data would not have to be fetched back from persistent storage
again.

Approaches based on control engineering techniques [45, 83] have also been used to solve
the memory management problem. The main issue with these approaches is their necessity
to develop models of the quantitative relationship between an application’s performance and
its memory allocation. This is very difficult to do accurately, given all the factors that have
an impact on this relationship. The use of reinforcement learning (RL) approaches become
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thus justified when grasping the complexity of the factors involved in this relationship.

Many learning-based solutions have been proposed to solve the resource allocation prob-
lem in cloud infrastructures [13, 87, 124, 21] but so far, there have not been too many efforts
that use RL to exclusive solve the memory management problem. There are some notable
RL-based solutions for the resource allocation problem that targets CPU and memory (and
other resources) within a virtualized node. In [87], the authors implemented a model-based
RL algorithm for VM resource configuration, which included CPU time, virtual CPU and
memory. This algorithm is a Deep Q-learning (DQL) [79] algorithm using a neural network
to approximate the value function.

Motivation for Contributions for the Single-Node Memory Management Problem

The first three chapters of this thesis present solutions to improve the utilization of mem-
ory within a single node. The first solution to achieve this, called SmarTmem, focuses on
improving memory resource utilization through Tmem, by providing a software stack that
allows its user-space control and deploys high-level Tmem management policies.

The motivation behind SmarTmem comes from the remote memory aggregation case,
because increasing the efficiency of Tmem utilization within a single node was a necessary
step in order to make a memory aggregation case work more efficiently.

The results of SmarTmem show that it is possible to improve Tmem utilization for
the cases in which Tmem is deployed in its frontswap/private mode. Future work could
establish whether the approach of SmarTmem could also improve the performance of other
settings in which Tmem is deployed. Settings of this type include cases where Tmem is used
to manage memory in systems with heterogeneous memory hierarchies [110], systems that
expose Tmem to user-space processes directly [107], and virtualized systems that use Tmem
as a hypervisor-level secondary cache [52, 111, 75, 46].

The other two solutions for the memory management problem within a single node are
closely related and are based on Continuous Action RL algorithms. One of these is called
CAVMem (Continuous-Action Algorithm for Virtualized Memory Management) and it is a
proof-of-concept mechanism to solve the memory allocation problem for memory exposed
as RAM, while the other solution, called CARLEMM (Continuous-Action Reinforcement
Learning for Memory Management), builds on the proof-of-concept by CAVMem to provide
a memory allocation solution in an actual virtualized node.

CARLEMM focuses on management of memory through the memory ballooning interface,
which is a standard way to manage memory in cloud infrastructures. Currently, there are
multiple solutions that target the RAM allocation problem, but this problem is difficult to
solve because the memory demand of VMs change continuously. Many solutions for this
problem are limited by the complex relationship between the memory allocated to a VM,
the applications’ behavior and their performance, for which RL provides a good alternative.
By using RL to solve the memory allocation policy, we seek to increase the efficiency of
memory resource utilization in a single node, which would allow for better VM consolidation
and better strategies for the overcommitment of resources [19, 4, 21].

All of these issues (memory utilization efficiency, consolidation, overcommitment) are im-
portant for cloud service providers, because good solutions on memory management provides
them with multiple opportunities to increase their revenue while still providing the desired
QoS for their customers. It has been shown that large production cloud infrastructures of
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service providers, like Google, only use 50% of the memory resources that are allocated [88].
In other cases, the utilization of memory resources can be slightly more than 50% [14], as
the case of Alibaba. This means that there is significant opportunity to increase efficiency
regarding the memory resource utilization. Improving memory management is necessary to
achieve this efficiency, and it also opens the door for better overcommitment policies [52, 21].

1.4.2 Memory Management across Virtualized Nodes

Computing is moving increasingly towards the cloud and to infrastructures that provide
Software-as-a-Service (SaaS) [48], with a larger presence of more data-intensive workloads.
This has caused a shift in the design approach of computing servers, from a ”share noth-
ing” self-contained design, into a ”share something” approach [30]. This implies that the
computing resources of the data center can be pooled across its nodes (totally or partially),
and that different forms of resource disaggregation can take place, allowing for the scaling
process to go at different paces depending on the specific resource [6].

This approach allows for the memory to be scaled out independently of the process-
ing resources, because scaling up the memory within a node is becoming increasingly pro-
hibitive [108]. This ”share something” approach for remote memory targets some of the
challenges that are very relevant in today’s data centers, some of which that are:

• The increasing demand for memory due to the presence of more workloads that use a
large amount of data

• The need to improve memory resource efficiency in the data center [40]

• The need to reduce the data center’s Total Cost of Ownership [55]

• Latency of networks is being reduced as new hardware for networking becomes present,
bringing them closer to the latency of DRAM technology [5, 33, 26, 49]

As more data intensive workloads i.e. applications with large memory footprint, are
deployed in the cloud infrastructure, the computing nodes need to be provisioned with more
cores and more memory capacity to perform their computations and keep performance. Thus,
the core count in the processor of the nodes keeps scaling up, but the memory is unable to
scale-up at the same pace, resulting in a drop of the capacity-per-core of 30% every year,
yielding a compute-to-memory imbalance [61, 117].

However, provisioning nodes in the cloud infrastructure with enough memory to fit the
applications with the largest memory footprints (the worst-case) results in memory being
under-utilized (over-provisioned), because most of the time the nodes execute workloads
that have a considerable smaller memory footprint that would sub-utilize the large memory
capacity [88, 14, 64]. Moreover, provisioning nodes with large amounts of memory implies
a large investment cost, in order to acquire nodes with such large memory capacity. This
over-provisioned nodes result memory being used in an imbalanced [40] way across nodes,
because there will be nodes that have a large amount of memory pressure while the memory
of other nodes remains idle.

In addition to this memory resource inefficiency, it also increases the Total Cost of Own-
ership (TCO) of keeping the cloud data center running with nodes that have a lot of cores
and a lot of memory, a huge amount of memory that is not being used [55]. This means
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more money loss: in paying for the energy to keep the nodes running while they are not
performing any useful work.

Thus, the use of remote memory becomes attractive, because it allows for the memory to
become external to the node, which avoids the presence of memory over-provisioned nodes
and reduces the compute-to-memory imbalance. Even though the idea of using remote
memory has been around for more than 20 years, it was not feasible to deploy because of
the high-latency associated with the communication links of TCP/IP networks over which
the first solutions were tested on: the performance losses were too high [5].

But advances in networking technology have managed to reduce the latency of the com-
munication links across the computing nodes in the cloud data center[33, 5, 26, 49, 6], by
using technologies like Infiniband [40] or other interconnection solutions (backplane-based).
As a result of all of this, remote memory has become attractive once again.

In a cloud data center, remote memory can be implemented either as software-based or
as hardware-based. Sofware-based approaches are simply known as ”remote memory” in the
literature [5], and they are related to a long-line of efforts for distributed shared memory.
These approaches enable the access to remote memory over high-latency off the shelf network
technology, with no hardware extensions, but extending the software stack at every level to
enable remote memory access.

Hardware-based approaches, on the other hand, are referred to as ”disaggregated mem-
ory” and these approaches involves additional hardware support at different architectural
layers. In this thesis work, we focus on this type of approaches. Disaggregated memory can
be implemented as [61]:

• Byte-addressable: requires the remote memory to be attached to the system bus of the
processor.

• Block-device: it is accessed on a per-page basis, and can be accessed using a device
interface like PCIe or similar.

In both cases, it is required that the physical memory address space of the processors is
partitioned in such a way that a subset of the physical addresses maps to regions of remote
memory. The communication mechanisms between the node and the location of the remote
memory can be customizable and is up to the system designers.

When memory is disaggregated and becomes a pooled resource, it is possible to use
different types of memory technologies besides the traditional DRAM, such as Storage-Class
Memories (SCMs) [108], a term that refers generally to Non-Volatile Memories (NVMs) [77].
NVMs provide a good option for pooled disaggregated memory because it is able to provide
higher density and higher capacity than traditional DRAMs, but at a much lower cost [28].
However, NVMs have higher latency than DRAM (but still less latency than Flash or disk
devices), less bandwidth and has endurance limitations [108, 126, 28]. NVMs can be used
as an additional level in the memory hierarchy functioning as a cache between DRAM and
permanent storage (even in cases when it is not pooled) [108, 110], as block-device for
swapped pages [126, 40], or for increasing system resiliency through data replication [122] or
as back-up for system memory [96].

Remote memory capacity aggregation is also relevant for cases in which High-Performance
Computing (HPC) applications are deployed [127], because many of these applications have
a memory footprint well under the amount of memory available in server nodes. By allowing
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remote memory aggregation, it is possible to increase the utilization of memory in nodes
where low-memory footprint HPC applications are running.

Motivation for Contributions for the Muti-Node Memory Capacity Aggregation

The solutions presented in this thesis work for remote memory support, namely GV-Tmem
and vMCA, belong to the disaggregated memory category. In this context, our contributions
have the following characteristics:

• Rely on specialized hardware support that includes an specialized interface on the
system bus as the gateway for remote memory regions.

• The communication fabric consists of a customized high-bandwidth low-latency Network-
on-Chip (NoC) that addresses remote memory regions through a partial global physical
address space

• The nodes make use of the disaggregated memory through the kernel’s swap interface
i.e. disaggregated memory used as a swap device, but byte-addressable features are
still exploited.

• In our solutions, OSs and applications make use of the disaggregated memory in a
transparent way, through a layer of virtualization.

Our contributions for disaggregated memory support use the remote memory regions as
a cache between DRAM and permanent storage for pages what have been swapped out from
a node’s main memory, making use of the remote memory in a similar way to a swap device
(but not entirely, as it will be explained shortly). The kernel decides which pages to swap
out and, since we are using a virtualization layer, every page that gets swapped out belongs
to one VM, which has exclusive access to it.

When a VM swaps out a page, the VM calls on the page fault mechanism of its respective
kernel, which results in the kernel attempting to write the page into permanent storage before
deallocating it. As it will be explained in more detail in Chapters 5 and 6, in our approaches
GV-Tmem and vMCA, the hypervisor intercepts the kernel’s attempts to swap out pages to
permanent storage. The hypervisor then allocates a page in a local or disaggregated memory
region (depending on availability) using hypervisor-level memory allocation constructs which
exploit the byte-addressable capability of the remote memory system architecture, relying
on the presence of a partially global physical address space. In this way, the node is able to
effectively aggregate more memory capacity for itself.

By using disaggregated memory in GV-Tmem and vMCA as a swap device from the
VM/kernel perspective, the disaggregated memory becomes transparent to the OS of the
VMs. It is not necessary for the OSs to know the capacity nor the location of the remote
memory. This means that expensive modifications to the OS or to the applications are
not required to support the disaggregated remote memory regions, that may even include
NVMs [57].

In our contributions, Tmem is the kernel interface used to access the remote memory
regions, and different approaches that exploit Tmem capabilities can be implemented. For
example, Lorrillere et al. [66] proposed a mechanism, called PUMA, to improve memory
utilization based on remote caching to pool VMs memory across a data center. PUMA pools
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VMs’ unused memory for the benefit of other VMs having I/O intensive workloads. PUMA
makes use of an interface very similar to Tmem to access the cache present in a remote
server.

Zcache [68] is a backend for frontswap and cleancache that provides a compressed cache
for swap and clean filesystem pages. Another related mechanism called Zswap has been used
for other state-of-the-art approaches to exploit the presence of remote memory regions in
data centers [55], which is roughly equivalent to using Zswap in frontswap and exclusive
mode, by-passing the virtualization support. RAMster [68] is an extension of zcache that
uses kernel sockets to store pages in the RAM of remote nodes. Similarly, RAMCloud [82]
is a POSIX-like filesystem in which all data is stored in RAM across the nodes.

For GV-Tmem and vMCA, we use Tmem’s interface to provide a new software-stack
to enable a node to aggregate memory capacity to itself, while at the same time providing
mechanisms to make more efficient use of the available memory. In these contributions, the
work is specifically motivated into:

• Improve memory resource efficiency across nodes by aggregating memory dynamically
to the nodes

• Leverage the capabilities of new hardware architectures designed to support partial
global physical address spaces across multiple nodes and fast interconnects [26, 49]

1.5 Contributions and publications

This thesis presents contributions for the memory management problem in a single node and
then across multiple nodes. To summarize, the contributions in this thesis are:

• A mechanism called SmarTmem for more efficient allocation of Tmem in a single
virtualized node.

– A demonstration that the default way of allocating Tmem at the single node level,
used in state-of-the-art hypervisors, is not optimal.

– Development of a high-level memory management policies to manage Tmem
through SmarTmem in a single node.

Luis Garrido, Rajiv Nishtala, and Paul Carpenter. SmarTmem: Intelligent manage-
ment of transcendent memory in a virtualized server. In RADR 2019: 1st Workshop
on Resource Arbitration for Dynamic Runtimes, 2019 [35].

• A mechanism called CAVMem (Continuous Action Algorithm for Virtualized Mem-
ory Management) developed as a proof-of-concept for the use of continuous action
Reinforcement Learning for RAM allocation in a simulation of a virtualized node

– Formulation of the RAM management problem as a Markov Decision Process in
a simulated environment that models memory management constraints.
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– Development of a continuous action off-policy model-free reinforcement learning
algorithm for memory allocation in a simulated environment.

– Comparison of the CARL algorithm in CAVMem with non-continuous action
reinforcement learning algorithms like Q-Learning and Deep Q-Learning in the
context of RAM management within the simulated environment

Luis Garrido, Rajiv Nishtala, and Paul Carpenter. Continuous-Action Reinforcement
Learning for Memory Allocation in Virtualized Servers, In 14th Workshop on Virtual-
ization in High-Performance Cloud Computing (VHPC’19), International Conference
on High Performance Computing, 2019 [37].

• A mechanism called CARLEMM (continuous action Reinforcement Learning for Mem-
ory Management), based on the proof-of-concept provided by CAVMem, but enhanced
to solve the memory allocation problem in a real computing node.

– Formulating the RAM management problem as an MDP for a real virtualized
computing node.

– A continuous action reinforcement algorithm for RAM allocation in a real virtu-
alized node

– A flexible software stack for the implementation of CARLEMM and performance
evaluation.

• A mechanism called GV-Tmem (Globally Visible Tmem) for remote memory capacity
sharing across multiple computing nodes in a cloud infrastructure

– A software architecture to share memory capacity across nodes using Tmem.

– A two-tier mechanism for allocation and management of dis-aggregated memory.

Luis A. Garrido and Paul Carpenter. Aggregating and managing memory across
computing nodes in cloud environments. In 12th Workshop on Virtualization in High-
Performance Cloud Computing (VHPC’17), International Conference on High Perfor-
mance Computing, pages 642–652. Springer International Publishing [36].

• A mechanism called vMCA (virtualized Memory Capacity Aggregation) for the shar-
ing of memory capacity across nodes, but enhanced for resiliency and efficiency in
comparison to GV-Tmem.

– A software stack to aggregate memory capacity across multiple nodes, focused on
resiliency and efficiency.
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Date Description

September 2014 PhD Matriculation
Working with Euroserver Prototype as the experimental platform
(ultimately unsuccessful) and development of our research pro-
posal

20 July 2015 Presentation of thesis plan
Development of a new experimental platform (successful) and the
first mechanism for support of remote memory capacity

22 June 2017 Presentation of GV-Tmem (Chapter 5) at VHPC 2017
16 December 2017 Presentation of vMCA (Chapter 6) at ICPADS 2017
24 May 2019 Presentation of at SmarTmem (Chapter 2) at RADR Workshop
20 June 2019 Presentation of CAVMEM (Chapter 3) at VHPC 2019
17 June 2019 PhD predefence
September 2019 PhD defence

Table 1.1: Thesis timeline

– A multi-level user-space mechanism for allocation management of aggregated
memory capacity, with special considerations for memory allocation within a node
and memory distribution across nodes.

– A more complete analysis of high-level policies for memory aggregation and allo-
cation.

Luis A. Garrido and Paul Carpenter. vMCA: Memory capacity aggregation and
management in cloud environments. In IEEE 23rd International Conference on Par-
allel and Distributed Systems (ICPADS), December 2017 [34].

1.5.1 Thesis outline and Timeline

Table 1.1 shows a rough timeline of the stages of the thesis project. Initially, the scope of
our research was on aggregating memory capacity across nodes. But during the course of
this, it also became evident that to provide an integral solution for memory management,
new approaches for managing memory locally through Tmem and Ballooning would increase
the effectiveness of our remote memory aggregation solutions.

Figure 1.6 shows the structure of the rest of this thesis. Chapter 2 describes SmarTmem,
which uses high-level policies to allocate Tmem inside a virtualized node. Chapter 3 devel-
ops CAVMem, a proof-of-concept Continuous-Action Reinforcement Learning approach for
allocation of RAM via ballooning, again inside a single node. Chapter 4 provides the initial
steps towards a complete implementation of the reinforcement-learning approach on a real
system. Next, Chapter 5 develops GV-Tmem, the first mechanism for the control of memory
capacity sharing across multiple nodes. This is extended, in Chapter 6, to vMCA, which
enhances GV-Tmem for resiliency and efficiency, and solves some the issues that come with
sharing memory across remote nodes. Finally, Chapter 7 concludes the thesis.
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Figure 1.6: Thesis structure
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Chapter 2

SmarTmem: Tmem Management
in a Virtualized Node

Managing memory capacity in virtualized environments is still a challenging problem. Many
solutions have been proposed and implemented that are based on memory ballooning and
memory hotplug. But these mechanisms are slow to respond to changes of the memory de-
mands of VMs. As explained in Section 1.3, Tmem was introduced to improve responsiveness
in memory provisioning, by pooling idle and fallow memory in the HV, and making these
physical pages available as additional memory for the VMs through a key–value store.

However, Tmem presents some limitations of its own. State-of-the-art hypervisors do
not implement any efficient way to manage Tmem capacity, letting VMs compete for it in a
greedy way by default, regardless of their actual memory demand.

In this paper, we demonstrate the need for intelligent memory capacity management
for Tmem, and we present the design and implementation of SmarTmem, a mechanism
that integrates coarse-grained user-space memory management with fine-grain allocation
and enforcement at the virtualization layer. Our results show that our solution can improve
the running time of applications from the CloudSuite benchmarks by up to 35% compared
to the default Tmem allocation mechanism.
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2. SMARTMEM: TMEM MANAGEMENT IN A VIRTUALIZED NODE

2.1 Introduction

Virtualization technology is prevalent across cloud service providers as it reduces capital and
operational costs [8, 119, 18, 81, 123, 39]. As explained before, the HV [85, 94] in every
node of the cloud infrastructure creates VMs within each node, and manages the physical
resources allocated to the VMs. The HV multiplexes the CPUs and I/O devices and it
controls the allocation of the physical memory capacity. In such environments, memory is
often one of the most critical and scarce resources [99, 63].

As it was mentioned in Chapter 1.1, state-of-the-art HVs have multiple mechanisms to
dynamically manage memory capacity [112, 97, 69], and Tmem [69] was introduced to im-
prove memory reallocation responsiveness, since other mechanisms like memory ballooning
are relatively slow to reallocate memory upon changes in memory demand [69]. Tmem has
two modes of operation: 1) frontswap, which serves as a page cache for pages swapped out by
the VMs, and 2) cleancache, which serves as a page cache for clean pages that were fetched
from disk. In either mode of operation, Tmem pools all the idle and fallow memory pages
in the node, and the pages get assigned to the VMs as Tmem when they need it, which then
become accessible through a key-value store. If there are no free pages, any write to a Tmem
page will fail, causing an access to the (virtual) disk device.

When multiple VMs use Tmem, the hypervisor will assign Tmem pages to the VMs in
a greedy manner. By default, the VMs compete for the Tmem capacity, so if some VMs
take a large amount of the available Tmem, the rest of VMs will starve and will generate
a large number of disk accesses, degrading performance across the VMs and the computing
node [59].

This chapter addresses the issue of optimizing VM memory allocation using Tmem in
a single computing node. SmarTmem is introduced here, which is a software stack for
intelligent Tmem allocation in a single node. This chapter analyzes in depth the problem of
Tmem optimization at the single node level. To the best of our knowledge, this is the first
effort to analyze Tmem capacity optimization in a single virtualized computing node.

SmarTmem employs a user-space process executing in Xen’s privileged domain that im-
plements intelligent Tmem management policies based on the memory utilization behavior
of the VMs. Our results show that using high-level policies improves the running time of
applications compared to the baseline implementation of Tmem.

To summarize, the main contributions of this chapter are:

• We demonstrate that the default way of allocating Tmem in a single node, used in
state-of-the-art HVs, is unable to adapt to changes in memory demand and to ensure
fair and proportional allocation of Tmem when multiple VMs are active.

• We propose a software architecture called SmarTmem, for intelligent memory manage-
ment of Tmem in a single virtualized computing node.

• We implement high-level Tmem management policies in SmarTmem and evaluate them
using benchmarks from CloudSuite [31], and our results show up to 35% improvement
over the default greedy approach of allocating Tmem.
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2.2 SmarTmem: memory management policies and architecture

The rest of this chapter is organized as follows. Section 2.2 discusses the SmarTmem
architecture and the high-level Tmem management policies. Section 2.3 describes our ex-
perimental framework. Section 2.4 presents the evaluation results. Section 2.5 expands on
the related work. Finally, Section 2.6 states our conclusions and future work.

2.2 SmarTmem: memory management policies and architec-
ture

This section describes the architecture of SmarTmem, which is a software stack designed
for the intelligent Tmem management in a single virtualized computing node. SmarTmem
divides Tmem management between coarse-grain level memory management in a user-space
process running in a privileged domain and fine-grain allocation and enforcement in the HV.

2.2.1 SmarTmem Architecture

Figure 2.1 shows the architecture of SmarTmem, consisting of three components:

• HV support for SmarTmem

• Tmem Kernel Module (TKM)

• Memory Manager (MM) User-space Process for Tmem Allocation in a Single Virtual-
ized Computing Node
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Figure 2.1: SmarTmem architecture. The Hypervisor layer and the Tmem Kernel Mod-
ule have been extended from state-of-the-art implementations, whereas the Memory Man-
ager (MM) was created from scratch. The MM runs in Xen’s privileged domain.
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Table 2.1: Memory statistics used in SmarTmem. The sampling interval is one second.

Memory Statistics Description

E TMEM Value used in the HV indicating that a put (or other Tmem op.) cannot
succeed.

S TMEM Value used in the HV indicating that a put (or other Tmem op.) has
succeeded.

node info.free tmem Number of free pages available for Tmem. Constant throughout the
lifetime of the node.

node info.vm count Number of VMs registered.

vm datahyp[id].vm id Identifier of the VM within the HV.
vm datahyp[id].tmem used Number of pages of Tmem memory currently used by the VM.
vm datahyp[id].mm target Target number of pages allocated the VM.
vm datahyp[id].puts total Total number of puts issued by the VM in the current sampling interval.
vm datahyp[id].puts succ Total number of successful puts issued by the VM in the current sampling

interval.
memstats Variable storing the last sampled statistics that the HV sent to the MM.
memstats.vm count Amount of active VMs as seen by the MM.
memstats.vm[i].vm id Identifier of the VM within the MM.
memstats.vm[i].puts total Number of puts issued by a VM in the sampling interval.
memstats.vm[i].puts succ Number of puts of a VM that succeeded in the current sampling interval.
mm out Data structure that holds the output parameters of the MM policy.
mm out[i].vm id VM identifier that maps a VM to its target allocation as calculated by

the MM.
mm out[i].mm target Memory allocation target as calculated by the policy in the MM.

2.2.2 HV support for SmarTmem

This section describes the HV support for SmarTmem. A state-of-the-art HV (Xen, in this
case) was extended in order to enable the functionalities for SmarTmem. The extensions
done to the HV have many roles, among these roles are to generate the metrics used by the
high-level policy, enforce target allocations and make the fine-grained Tmem page allocation.
This separation means that only a small amount of common development is needed at the
HV level, which is specialized and intrusive.

It is necessary for the HV to gather information about the Tmem capacity utilization by
the VMs. This information is used by the MM to determine the Tmem dynamic reallocation.
Table 2.1 summarizes the data collected by the HV.

When a VM maxes out its memory, any future access that attempts a swap to disk will
generate a put operation to Tmem. The HV monitors the amount of puts of each VM,
as well as other Tmem operations. The HV also keeps track whenever puts fail, and the
amount of memory used by the VMs. When a put fails, it means that there is no Tmem
capacity to satisfy the request, or that the VM has exceeded the amount of Tmem it can
take. Everytime this happens, the VM that generated the put will swap the page to disk.

The HV gathers and monitors all the memory utilization behavior and sends it to the
TKM in the privileged domain via a virtual interrupt request (VIRQ). The HV gathers
this information through a set of data structures that were added to the section of the HV
that provides Tmem support, and are passed to the user-space process through page-copy
operations that copy the data from the corresponding memory page in the HV into a user-
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space page.

The VIRQ is triggered using a timer in the HV that calls it up every time a fixed amount
of time has passed. Currently, this fixed amount is one second. The timer is only updated
when a Tmem operation takes place (put, get, flush), otherwise no transmission of data from
the HV to the user-space process will occur.

With this information, the MM calculates new target Tmem capacities for every VM and
sends these target capacities or allocations back to the HV again through the TKM, which
generates a specific hypercall for this purpose. The data structures that stored the memory
utilization information in the HV and the data structures that store it in the user-space
process are similar, as well as the data structures that store the memory capacity targets for
each VM.

Algorithm 1 presents the pseudo-code to illustrate the tasks carried out by the HV. When
the target allocations reach the HV, it stores them and keeps them until the MM modifies
them (line 3). Everytime a VM attempts to get a Tmem page (through a put, line 4), the
HV checks if the current amount of Tmem used by the VM is less than its target (line 5). If
so, the VM obtains a page from the Tmem pool, the HV allocates a Tmem page and copies
the data contained in the VM’s page into the Tmem page frame (line 10). SmarTmem only
requires one single allocator, since all the Tmem is owned by the current node and no inter-
node transfer of pages takes place. This is an important difference that needs to be taken into
account when explaining the architecture for inter-node memory capacity sharing presented
in Chapters 5 and 6. SmarTmem does not require any special hardware support and can
be deployed in any computer server available on the market as long as it provides basic
virtualization support, whereas the approaches presented in Chapters 5 and 6 do require
specialized hardware support.

In case there’s no free Tmem or if the amount of Tmem used by the VM is equal or
exceeds its target, then any put will fail (lines 5–8), forcing the VM to swap to disk. Every
put issued by a VM will fail as long as the target is equal or smaller to the current amount of
Tmem in use. The HV can reclaim Tmem pages from a VM very slowly, but pages can also
be released when a VM explicitly flushes a page (line 16). While the target remains smaller
than the Tmem capacity in use, the VM will be unable to acquire more Tmem pages.

The values of vm datahyp[id].tmem used and vm datahyp[id].puts succ are incremented
when a put succeeds (lines 10–13), and a page is allocated for the VM. The parameter
vm datahyp[id].tmem used is decremented when a VM releases pages (flush, lines 16–19),
deallocating a Tmem page. The parameter vm datahyp[id].puts total (line 15) is incremented
when a put occurs, regardless if it succeeds or not.

A similar thing happens to vm datahyp[id].gets total, which is incremented every time a
get occurs. A get attempts to retrieve a page that was previously put into Tmem, but it
can fail to do so, depending on the way Tmem was configured. When using Tmem in its
frontswap mode, a get cannot fail, since it is treated as persistent storage, but when Tmem is
used in its clean-cache mode, pages previously put can be reclaimed by the HV for a different
purpose without any notification. In this case, pages are ephemeral.

It is possible for a VM to use more Tmem than its VM target. This can happen because
the targets are continuously modified, and the target for a VM might be reduced below
the capacity it is using. This might occur because the VM might be temporarily idle, or
executing a phase of the application with reduced memory pressure with respect to previous
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Algorithm 1 Tmem allocation in the HV

1: function hypervisor op(vm datahyp, id, op)
2: tmem used← vm datahyp[id].tmem used
3: mm target← vm datahyp[id].mm target
4: if op == PUT then
5: if tmem used ≥ mm target then
6: return value← E TMEM
7: else if node info.free tmem == 0 then
8: return value← E TMEM
9: else

10: allocate tmem page(id)
11: vm datahyp[id].tmem used← tmem used+ 1
12: vm datahyp[id].puts succ← puts succ+ 1
13: return value← S TMEM
14: end if
15: vm datahyp[id].puts total← puts total + 1
16: else if op == GET then
17: get succ, page got← get page from store()
18: if get succ == 1 then
19: vm datahyp[id].gets succ← gets succ+ 1 return value← S TMEM
20: else if get succ == 0 then return value← E TMEM
21: end if
22: vm datahyp[id].gets total← gets total + 1
23: else if op == FLUSH then
24: deallocate tmem page(id)
25: vm datahyp[id].tmem used← tmem used− 1
26: return value← S TMEM
27: end if
28: return return value
29: end function

ones. However, this VM won’t be able to obtain additional pages until it releases enough
pages below its target or until its target is increased.

2.2.3 Tmem Kernel Module (TKM)

The TKM used in SmarTmem is an extension from the baseline state-of-the-art present in
version of the Linux kernel used (version 3.19). This extended TKM functions as an interface
between user-space processes and the Tmem implementation of the HV. The TKM provides
support for the baseline Tmem interface through a series of hypercalls. It also provides
additional support for special interrupts generated by the HV to initiate communication
with user-space processes, which requires a series of custom-made hypercalls.

The TKM forwards the memory statistics sent by the HV to a user-space process (MM)
through a netlink socket interface. As mentioned before, the MM uses these statistics to
calculate Tmem target allocations, and the TKM forwards this information from the MM
back to the HV, for which a series of custom-made hypercalls were also developed.
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2.2.4 Memory Manager Process for Tmem Allocation in a Virtualized
Computing Node

The MM was created from scratch, and holds the core of the functionality of SmarTmem.
As mentioned in Section 2.2.2, the MM receives information from the HV regarding the way
the VMs make use of their memory. The MM keeps track of this information across time,
generating a historial of how the VMs use Tmem, their Tmem operations and overall system
memory status. The MM uses this information to calculate a Tmem capacity target per VM
according to custom-made high-level policies.

The complexities associated to determine the Tmem allocations for every VM and the
storage of the VM utilization metrics are present in the MM, and not the HV, for the
following reasons:

• The HV has to be kept lightweight, and any modifications to the HV layer have to be
localized in order not to affect its functionality in other respects.

• Maintain the flexibility on implementing high-level tmem management policies. This
allows for more ambitious data analysis strategies on the MM in order to implement
more sophisticated policies, and allows the deployment of the policies without requiring
frequent HV compilations.

• It allows for policies to be deployed into production with ease, either after tuning
policies already implemented or when introducing new ones.

2.2.5 High-Level Tmem Management Policies

Currently, we have implemented three policies in the MM besides the greedy approach used
by default (greedy), which are: 1) single-node static memory capacity allocation, 2) single-
node reconfigurable static capacity allocation, and 3) single-node smart allocation policy.
We will proceed to explain and analyze each of the policies.

Single-node Static Memory Capacity Allocation (sn-static-alloc)

This policy divides the available Tmem capacity equally across all Tmem-capable VMs, as
described by Algorithm 2. This policy secures a fair share of Tmem for every VM, when
each VM has a similar demand for memory.

The MM sends target allocations to the HV when it has calculated a new Tmem target.
This feature is implemented within the send to hypervisor() function. If no changes are
detected, then no transmission takes place, avoiding unnecessary communication overhead.

For the static allocation policy, the targets are only modified when a new VM is created
and registers itself with Tmem or when a VM is destroyed. After that, the targets will
remain the same as long as the number of active VMs does not change, regardless of the
applications they are running. This policy is designed to avoid starvation on the available
Tmem capacity, but it might allocate pages unnecessarily to a VM that does not need them.

Single-node Reconfigurable Static Allocation (sn-reconf-static)

This policy divides the available Tmem capacity equally among the VMs that are actively
using Tmem. That is, the policy monitors the activity of each Tmem-capable VM, and
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Algorithm 2 Single-node Static Allocation Policy

1: function static policy(memstats, node info)
2: num vms← memstats.vm count
3: ms prev ← memstats.prev
4: local tmem← node info.total tmem
5: mm target← local tmem/num vms
6: for i← 1, num vms do
7: mm out[i].vm id← memstats.vm[i].vm id
8: mm out[i].mm target← mm target
9: end for

10: send to hypervisor(mm out)
11: end function

Algorithm 3 Single-node Reconfigurable Static Allocation Policy

1: function reconf static(memstats, node info)
2: num vms← memstats.vm count
3: num active vms← 0
4: for i← 1, num vms do
5: puts failed← memstats.vm[i].cumul puts failed
6: if puts failed > 0 then
7: num active vms← num active vms+ 1
8: end if
9: end for

10: local tmem← node info.total tmem
11: for i← 1, num vms do
12: mm target← local tmem/num active vms
13: mm out[i].vm id← memstats.vm[i].vm id
14: mm out[i].mm target← mm target
15: end for
16: send to hypervisor(mm out)
17: end function

allocates an equal share of the Tmem capacity to each VM that has performed at least one
Tmem put, initially allocating no Tmem capacity to any VM. The pseudocode is given in
Algorithm 3.

If additional VMs start issuing puts, then the Tmem capacity allocation is reconfigured,
and every VM that puts at least once will get an equal amount of the Tmem capacity. This
will remain so during the lifetime of the VMs. The main drawback of this approach is that
it requires for the VM to swap a number of times before getting any Tmem capacity, since
their initial target allocation is equal to zero. This is because the latency between the time
a VM performs its first Tmem operation until the time that the targets are reset is roughly
one second. On the other hand, this policy prevents the HV from allocating memory to a
VM unnecessarily as it might occur for static-alloc.

Single-node Smart Allocation (smart-alloc)

This policy assigns Tmem capacity to each VM depending on the memory demand that is
measured by the HV. It monitors every VM, and when it detects that a VM cannot acquire
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more Tmem because it exceeded its target, the policy increases its target by a percentage P
of the total local Tmem capacity, which is constant. It is possible that all VMs have swapped
during the last interval, needing a target increase by a percentage P to avoid performance
loss. Algorithm 4 shows the pseudo-code for smart-alloc.

Algorithm 4 uses the failed puts that have occurred in the last sampling interval as a
measure of a VM’s swap activity, instead of calculating the corresponding rate, as in [34].
The sampling interval is fixed at one second. In this case, it is not necessary to establish
communication with other nodes, nor to keep track of node IDs, and the total Tmem alloca-
tion of the node does not change (as opposed to [34]). Also, smart-alloc refrains from sending
targets to the HV if they do not change since the last modification, a condition evaluated
by the function send to hypervisor in line 34.

If all the VMs have their allocation increased by a percentage P at every interval, even-
tually the Tmem pages could end up being overallocated i.e. the sum of the targets of every
VM (sum targets, in lines 4 and 25) is larger than the amount of local Tmem pages (line
27). If this happens, it is unlikely that the VMs will be able to meet their targets. To avoid
this, we make sure that the following condition is met:

i=n−1∑
i=0

vm dataMM[i].mm target = local tmem (2.1)

When the pages are over-allocated, we reduce the target of every VM according to the
following equation:

targetvmi =
local tmem× vm dataMM[i].mm target∑i=n−1

i=0 vm dataMM[i].mm target
(2.2)

By enforcing Equations 2.1 and 2.2, the policy ensures that: 1) all local Tmem pages
are always assigned to a VM i.e. there are no Tmem pages that will remain unallocated,
and 2) the total amount of local Tmem pages that are assigned to the VMs does not exceed
the amount of Tmem pages available in the node. If these conditions are not enforced,
and Tmem overallocation occurs, the VMs will compete for the excess pages, overriding the
target allocations and unable to meet their targets. Equation 2.2 is implemented in lines
27–33.

The policy decreases the target of a VM by a percentage P of the amount of Tmem it
has if the policy detects that a VM is using less pages than its target plus a threshold value
(lines 16–21). This avoids premature target decrements which might cause the targets to
oscillate resulting in an unstable policy.

2.3 Benchmarking and Experimental Framework

We tested SmarTmem using nested virtualization. We used a VirtualBox image with Xen
4.5.1, with all VMs running Ubuntu 14.04 with kernel 3.19. The VirtualBox environment
was executed with two processor cores, 6 GB of RAM, 2 GB of swap and a 32 GB hard drive.
The physical system in which VirtualBox was executed had a 4-core Intel Core i7 processor
running at 2.1 GHz with 8 GB of RAM, 4 GB of swap and a 320 GB hard drive. Even though
this is not a server class hardware, it was readily available at the time of the experiments
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and it proved to be enough to test the functionality and effectiveness of SmarTmem for the
workloads and datasets used. The MM was implemented in C language and running in user
space in the privileged domain.

We used the CloudSuite Benchmarks [31] and a micro-benchmark called Usemem to eva-
luate SmarTmem. Usemem is a synthetic micro-benchmark that allocates an incremental
amount of memory as it executes, starting from 128 MB and increasing it by 128 MB incre-
ments. Once it allocates a region of memory, it traverses it linearly performing write/read
operations. Once it completes a run through a region, it then allocates a larger block, un-
til it reaches 1 GB. Once there, Usemem stops increasing the allocation but continues to
write/read on the 1 GB of memory allocated until stopped. All of these benchmarks were
chosen because they generate an important amount of variable memory pressure on the VMs,
which allows to see the evaluation of SmarTmem and the policies implemented.

To demonstrate the effectiveness of SmarTmem and the policies, we ran multiple VMs in
different execution scenarios, described in Table 2.2. This table shows the scenario names,
the VM parameters (CPU and RAM) and a description of the benchmark execution, together
with the datasets used. Every scenario is executed five times with every policy. In every
scenario, the amount of tmem enable was 1 GB, except for the Usemem Scenario in which
only 384 MB was enabled.

The scenarios created, the configurations of the VMs and the datasets were chosen in or-
der to create a reasonable amount of memory pressure over the available hardware, usually
within two or three times the initial memory capacity of the VMs [100]. The use of mi-
crobenchmarks also provides important insight on the allocation capabilities of SmarTmem,
because it provides us with a set of applications with regular access patterns and working
set sizes that create a memory pressure profile that is possible to analyze and correlate with
the allocation behavior of SmarTmem. In this way, it is possible to observe the effectiveness
of SmarTmem in managing the available Tmem.

2.4 Results and Discussion for SmarTmem

2.4.1 Results for Scenario 1

Figure 2.2 shows the average running times (less is better) and standard deviations for
Scenario 1, with the different policies. We vary P for smart-alloc and compare the running
times against the case without Tmem support (no-tmem).

Figure 2.3 shows the amount of Tmem capacity of each VM for (a) greedy and (b) smart-
alloc with P = 0.75%. In Figure 2.3(a), VM3 reaches a Tmem capacity peak during the first
run, while VM1 and VM2 can’t reach a fair share. During the second run, VM2 is unable to
reach a fair share, while the other two VMs take a higher portion of Tmem. Figure 2.3(b)
shows that smart-alloc maintains similar Tmem capacity across VMs with some adaptability,
and it also shows the allocation target for VM3 and the way it is enforced.

In this context, fairness is define qualitatively as being equivalent to a fair proportion of
the available Tmem capacity with respect the memory demand of the application running in
the VM. In the cases analyzed so far, the memory demand of all the VMs exceed the capacity
of the node, which means that is necessary for all the VMs to have an equal proportion of
the available Tmem (or approximate the equality) in order to reach fairness. The better the
equal proportion condition is met, the better fairness is reached.
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Table 2.2: List of scenarios used for benchmarking. In all cases, we deploy 3 VMs.

Scenario
Name

VM Parameters Comments

Scenario 1 VM1, VM2, VM3: 1 GB RAM, 1
CPU

All VMs execute in-memory-analytics once si-
multaneously, sleep for 5 seconds and execute it
again. The data set was taken from [43].

Scenario 2 VM1, VM2, VM3: 512 MB RAM, 1
CPU

All VMs execute graph-analytics once. The first
two VMs launch the benchmarks simultaneously,
and the third one launches it 30 seconds later.
They all use the same dataset provided by [93],
[92], [91].

Usemem
Scenario

VM1, VM2, VM3: 512 MB RAM, 1
CPU

All VMs execute usemem. VM1 and VM2 start
executing usemem simultaneously, and VM3
starts when VM1 and VM2 attempt to allocate
640 MB of memory. From this point on, all VMs
run concurrently and they are stopped simulta-
neously when VM3 attempts to allocate 768 MB.

Scenario 3 VM1, VM2: 512 MB RAM, 1 CPU
VM3: 1 GB RAM, 1 CPU

VM1 and VM2 execute graph-analytics and
VM3 execute in-memory analytics. VM1 and
VM2 launch execution simultaneously, and VM3
launches it 30 seconds later. All VMs use the
dataset from [93, 92, 91].

Figure 2.2: Running times for Scenario 1. SM refers to smart-alloc.

Some policies were not able to obtain performance benefits. reconf-static showed almost
no improvement in most of the VMs. Something similar happens to static-alloc in the first
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b) smart-alloc (P=0.75%)

a) greedy

Figure 2.3: Utilization of the Tmem capacity (nod-tmem) by every VM in number of pages
for Scenario 1. The label target-VM3 refers to the target allocation of the third VM.

run of VM2. The case of smart-alloc with P = 0.25% performed poorly for almost every
case. The lack of improvement shown by some policies can be attributed to their lack of
adaptability to the changes on the memory demand. For example, when using smart-alloc
with P = 0.25%, the allocation targets increase at a slower pace, causing the VMs to swap
more, demonstrating the need for the policy to adapt quickly to the VM’s memory demand,
for which it is necessary to tune the parameters of smart-alloc.

The best runtime performance (fastest) is obtained for smart-alloc (referred to as sm in
Figure 2.2) with P = 0.75%. Its standard deviation barely overlaps with greedy, demonstrat-
ing its clear benefits. smart-alloc with P = 0.75% runs faster than no-tmem by a maximum
of 35.7% (first run of VM3) and by a minimum of 28% (second run of VM2). It also runs
faster than greedy by a maximum of 12.7%, corresponding to the first run of VM3, and by a
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minimum of 7.1%. These results demonstrate the need to manage Tmem with an adequate
management policy.

2.4.2 Results for Scenario 2

The average running times for Scenario 2 are shown in Figure 2.4 and Figure 2.5 shows the
use of Tmem capacity for the VMs. In this case, VM1 and VM2 take a lot of Tmem as they
start executing since their memory demand rapidly increases, putting significant pressure
on the Tmem capacity. This is shown in Figures 2.5(a) and (b), for the case of greedy and
smart-alloc with P = 6%, respectively. In Figure 2.5(a), the third VM is unable to obtain a
fair share of Tmem. But in Figure 2.5(b), when using smart-alloc, despite the fact that the
first two VMs initially take up a large amount of Tmem capacity really fast, the third VM
is able to eventually obtain a fair amount. This shows that smart-alloc is at the same time
adaptive and fair on how it allocates Tmem.

Figure 2.4: Running times for Scenario 2.

In this case, the best performance is obtained with smart-alloc with P = 6%, performing
better than no-tmem by a minimum and a maximum of 21% (for VM3) and 28% (for VM1),
respectively. It performs better than greedy by minimum and a maximum of 4.7% (for VM2)
and 9.6% (for VM3), respectively. This is in contrast to Scenario 1, for which the best
benefit for smart-alloc was obtained with P = 0.75%. The static policies do not present any
improvement in this scenario. These results demonstrate that fairness in Tmem allocation
among VMs and quick adaptiveness to memory demand spikes are necessary to improve
performance. In this scenario, smart-alloc is able to achieve both.
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a) greedy

b) smart-alloc (P=6%)

Figure 2.5: Tmem use of all VMs in Scenario 2 for a) greedy, and b) smart-alloc with P = 6%

2.4.3 Results for the Usemem Scenario

The average running times for the Usemem Scenario are shown in Figure 2.6. The usemem
micro-benchmark is designed to generate a similar memory demand in each VM, giving
insight on how the policies behave.

The running times were approximately equal for all VMs when using static-alloc for the
same amount of memory allocated. Nevertheless, improvements were observed for reconf-
static when allocating 640 MB for VM2 and consistently across all allocations for VM3. In
this case, static-alloc policy ensures fairness (not adaptiveness) on how Tmem is allocated,
regardless of how much a VM is swapping, and reconf-static follows the same behavior
depending how many VMs are actually swapping (limited adaptiveness).
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Figure 2.6: Running times for usemem scenario.

Notice how static-alloc and reconf-static perform worse than greedy for VM1 and VM2,
but performing better for the third VM across all memory allocations. This is because when
VM1 and VM2 are executing, the Tmem capacity is not under pressure, but the policies
are still enforced restricting the access to Tmem unnecessarily. Remarkably, greedy per-
forms significantly worse than no-tmem for the last allocation of usemem in VM3 (640 MB).
However, all the other policies perform better than no-tmem for VM3.

Figure 2.7(a) shows that VM3 struggles to obtain Tmem pages when using greedy as the
Tmem capacity is under pressure. This is similar to the case presented in Figure 2.5(a) for
Scenario 2. However, in Figure 2.7(b) and Figure 2.7(c), corresponding to reconf-static and
smart-alloc with P = 2%, every VM is able to obtain a fair share of memory.

The case of smart-alloc allows for the VM1 and VM2 to take much more memory than
with reconf-static, but still less than what greedy allows, as seen on Figures 2.7(a) and 2.7(c).
In this case, smart-alloc exhibits more adaptiveness. reconf-static performs better for when
VM3 allocates 384 MB and 512 MB, as previously seen. These results demonstrate that
reconf-static and static-alloc, both of which are more oriented towards fairness, despite not
showing the best performance in Scenarios 1 and 2, still present better performance than
smart-alloc for these Usemem cases.

When the third VM starts executing Usemem, smart-alloc achieves fair allocation at a
slower pace. In Figure 2.7(c), the three VMs take more Tmem than the limit imposed by
reconf-static, demonstrating the better adaptiveness of smart-alloc.

These results are interesting because they highlight a trade-off between the adaptiveness
of a policy to quickly respond to changes in memory demand (as smart-alloc) and its ability
to fairly allocate Tmem (as static-alloc and reconf-static). The more responsive a policy
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is, the more Tmem it will let a VM take, but as other VMs come under pressure, it will be
harder to reach fairness.

2.4.4 Results for Scenario 3

The average running times for Scenario 3 are shown in Figure 2.8, and Figure 2.9 show the
Tmem capacity used by the three VMs for greedy, static-alloc, reconf-static and smart-alloc
with P = 4%.

The graph-analytics benchmark starts by making use of a large amount of Tmem. For
greedy, VM1 and VM2 take up half of the available memory each, leaving almost no memory
available for when VM3 increases its demand. This helps explain why VM3 executes very
slow with greedy. Notice the way static-alloc is very rigid (not adaptive), setting an upper-
bound for all three VMs. This seems to benefit VM3 very much and, surprisingly, VM1 and
VM2 also improved.

In Figure 2.9(c), we see the case with reconf-static. This policy allows for VM1 and VM2
to share half of the available capacity until VM3 starts swapping. By this time, the targets
are reconfigured but VM3 is still unable to reach a fair share. because pages are released by
the VM at a slower pace, despite the targets already being modified.

Notice how smart-alloc allows for VM1 and VM2 to take up a similar amount of Tmem
when compared to greedy, but reduces their share as soon as VM3 swaps, but VM3 is unable
to reach a fair share, allowing VM1 and VM2 to have more Tmem. This helps explain the
results observed in Figure 2.8, where VM1 and VM2 run faster for smart-alloc but slower
for static-alloc, while it is the opposite for VM3. Again, this highlights the trade-off between
adaptiveness and fairness.

All the policies improve over greedy consistently, except for reconf-static which fails for
the first two VMs. For VM1 and VM2, smart-alloc with P = 4% performs better than
the other policies. For VM3, the best performance is obtained with static-alloc by a very
significant margin. The maximum and minimum improvements over no-tmem are 40% (in
VM3 for static-alloc) and 22% (in VM for smart-alloc with P = 4%), respectively, while the
maximum and mininum improvements over greedy are 35% (in VM3 for static-alloc) and
10.8% (in VM2 for smart-alloc with P = 4%), respectively.

2.5 Related Work

Many research efforts seek to optimize memory allocation by implementing better control
strategies for memory ballooning [120, 100, 95, 125, 51, 15, 80, 63]. One similarity we have
with respect to Liu et al. [63] is that we also implement a user-space process to manage
the allocation of memory capacity to every VM, albeit their communication mechanisms are
slightly more complicated, since they need to communicate the allocation targets to every
VM. In our case, it is the hypervisor in charge of doing so, which reduces significantly the
memory and communication overheads.

Both Zhao et al. [125] and Liu et al. [63] predict the memory demands of the VMs.
Whereas, Zhao et al. [125] predicts the working set size of the VMs to dictate target memory
allocations to the balloon driver, Liu et al. [63] predicts the total memory footprint including
swap. In contrast, rather than predicting memory requirements, we shift the core of the
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problem into directly reducing the amount of swapping to disk, thus keeping the data in
system memory. In addition, we focus entirely on Tmem instead of memory ballooning.

Smith et. al [100] designed a system for memory resource management that includes an
OS daemon that implements memory management policies, that includes important modifi-
cations to the balloon driver in order for the memory allocations dictated by the daemon are
executed in an efficient way, and also includes modifications to the paging mechanism of the
hypervisor. SmarTmem uses a similar evaluation methodology used in [100], in the types of
benchmarks we use and the amount of memory pressure we generate in the node in order
to evaluate the effectiveness of our mechanism. However, our work differs from the work in
[100] because SmarTmem focuses on memory optimization through Tmem, which is a mech-
anism for hypervisor-level caching, and the policies in [100] do not focus in hypervisor-level
caching.

Zhang et al. [120] also exploit the capabilities of ballooning and they enhance some of its
functionalities in order to prevent paging by the VMs. They note the significant time delays
necessary to trigger the balloon driver and to reclaim idle memory before reallocation takes
place, during which swap operations occur. In order to solve this situation, they introduce
the presence of a host memory region shared across the VMs within the node, and they
provide a mechanism to allocate and deallocate memory that takes or releases memory from
the shared memory pool. In our work, we leverage the concept of a shared memory pools
through the use of Tmem, which is designed to pool all idle and fallow memory in the
computing node. However, we differ from [120] because we explicitly leverage the available
Tmem capacity as a cache for pages that have been swapped out once the VM becomes
under memory pressure, effectively using Tmem as a hypervisor-level cache. Our approach
also prevents swap operations from taken place, but still leveraging the paging mechanism of
the kernel, whereas the mechanism in [120] avoids it. Our approach is particularly relevant
for Chapters 5 and 6, in which Tmem is used to access remote memory resources [36, 34] in
cases which the remote memory is not available to the VMs as traditional DRAM.

Venkatesan et al. [110] use Tmem, in both cleancache and frontswap mode, in a computer
node with non-volatile memory (NVM) alongside traditional DRAM. They use Tmem to
access the NVM where the disk device would have normally been used. They divide the
NVM space into a clean region (for clean cache pages) and a swap region (for processes that
attempt to swap to disk). They implement a two-level cache for clean pages: the first level
cache is implemented in DRAM and the second-level cache is located in the NVM space,
and they implement cache strategies to manage pages across these two levels.

One difference between SmarTmem and Venkatesan et al. [110] is that we only make
use of Tmem on its frontswap mode. The type of applications we run from CloudSuite
are memory intensive, and the processes of these applications dynamically allocate memory
pages that are not backed by the filesystem. Thus, when data is evicted from memory, those
pages have to be stored in frontswap.

2.6 Conclusions and Future Work

This chapter introduced a mechanism to manage efficiently memory resources through Tmem
in a virtualized computing node executing multiple applications and VMs. Our results
demonstrate the need to intelligently and efficiently allocate Tmem capacity to VMs in a
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single node, showing significant performance improvements, of up to 35%, over the default
greedy policy with which Tmem is currently managed. At the same time, we identified a
trade-off between the policy’s adaptiveness and its fairness. These results will be relevant
also for Tmem-based memory disaggregation solutions and for other systems in which Tmem
is deployed. [110, 34].

We demonstrated that the policies implemented in SmarTmem ensure fair capacity al-
location in different scenarios, while being able to adapt to the changing memory demand
of the VMs. The main and singular contribution of this work is to provide a framework (ar-
chitecture of the software stack) to optimize Tmem capacity, and the management policies
implemented so far were designed to demonstrate the performance improvements that can
be obtained when optimizing Tmem.

Considering this, for future work it would be necessary to develop policies that can have a
better balance between adaptiveness and fairness in order to better balance the performance
of the applications inside VMs. This implies using policies from other research works that
implement some form of memory management, even for cases in which other memory ab-
stractions different to Tmem are implemented (ballooning, for example). However, porting
policies in this way makes it necessary to make a thorough analysis on the dependency of
those policies in the specific memory abstraction. Moreover, it is also of great interest to
enhance SmarTmem to include the management of memory exposed to the VM as RAM.

It will also be necessary to analyze its effectiveness with a larger set of workloads in cloud
data centers such as data caching frameworks and web search. In this context, it will be
necessary to implement ways for SmarTmem to optimize other performance metrics such as
energy costs, cost of ownership, to define the concept of fair allocation in a quantitative way
and to evaluate tail latency, which is particularly relevant for workloads such as Web Search.
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Algorithm 4 Smart Allocation Policy

1: function smart-alloc policy(memstats, node info, P )
2: local tmem← node info.total tmem
3: num vms← memstats.vm count
4: sum targets← 0
5: for i← 1, num vms do
6: put total← memstats.vm[i].puts total
7: put succ← memstats.vm[i].puts succ
8: failed puts← put total − put succ
9: if failed puts > 0 then

10: curr tgt← memstats.vm[i].mm target
11: incr ← (P × local tmem)/100
12: mm target← curr tgt+ incr
13: else
14: curr tgt← memstats.vm[i].mm target
15: curr use← memstats.vm[i].tmem used
16: difference← curr tgt− curr use
17: if difference > threshold then
18: mm target← ((100− P )× curr tgt) /100
19: else
20: mm target← curr tgt
21: end if
22: end if
23: mm out[i].vm id← memstats.vm[i].vm id
24: mm out[i].mm target← mm target
25: sum targets← sum targets+mm target
26: end for
27: if sum targets > local tmem then
28: factor ← local tmem/sum targets
29: for i← 1, num vms do
30: new ← factor ×mm out[i].mm target
31: mm out[i].mm target← new
32: end for
33: end if
34: send to hypervisor(mm out)
35: end function
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a) greedy

b) reconf-static

c) smart-alloc (P=2%)

reconf-static 
ends sm-2p ends

Figure 2.7: Tmem use of all VMs in usemem for a) greedy, b) reconf-static and c) smart-alloc
with P = 2%. The vertical lines in a) show the time when usemem completes execution.
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Figure 2.8: Running times for Scenario 3.
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a) greedy

b) static-alloc

c) reconf-static

d) smart-alloc (P=4%)

Figure 2.9: Tmem use of all VMs in Scenario 3 for a) greedy, b) static-alloc, c) reconf-static
and d) smart-alloc with P = 4%.
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Chapter 3

Using continuous action
Reinforcement Learning for
Dynamic RAM allocation

The main focus of the previous chapter was to optimize memory through Tmem within a
single node. This is a relevant solution for systems in which Tmem is deployed, as in cases
in which Tmem is used to aggregate memory across nodes, as we shall see in Chapters 5
and 6, or when it is deployed in systems with heterogeneous memory hierarchies [110].

But optimizing memory in a single node also requires the optimization of the memory
given to the VMs as RAM. The memory that becomes accessible to the VMs in this way
has a different set of constraints and thus it is managed using a different set of mechanisms
and variables. In these cases, it is very common to drive the management policy by running
a time-consuming memory footprint analysis or by wastefully overallocating memory and
running fewer VMs. In many cases, this is done only considering the memory demand of
each VM without having a node-wide view.

Ideally, a high-level control mechanism would dynamically find the best memory alloca-
tion for the VMs. There are many solutions for the dynamic memory allocation problem,
some of which use machine learning in some form.

This chapter introduces CAVMem (continuous action Algorithm for Virtualized Memory
Management), a proof-of-concept mechanism for a decentralized dynamic memory allocation
solution in virtualized nodes that applies a continuous action RL algorithm called Deep
Deterministic Policy Gradient (DDPG).
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3.1 Introducing CAVMem

In a virtualized node inside a cloud infrastructure, resource manamagent is critical to drive
performance. When multiple VMs are active in a node, its physical memory is allocated
among the VMs in order to optimize throughput and prevent memory starvation. This me-
mory allocation problem is difficult to solve because the memory demand of a VM changes
continuously. Many solutions for this problem are limited by the complex relationship be-
tween the memory allocated to a VM, the applications’ behavior and their performance, for
which RL provides a good alternative.

Different approaches of RL have been applied to the resource management problem in vir-
tualized nodes [87] which rely on both the discretization of states and actions. Discretization
introduces some limitations, mainly combinatorial explosion: as the number of states/action
grows, the problem becomes unsolvable [60]. In the context of memory allocation, discretiza-
tion restricts the granularity at which memory can be allocated, limiting the opportunities for
better optimization. Another limitation of current RL approaches for resource management
is that they deploy a single agent responsible for re-allocating memory. Such a centralized
approach has scalability and flexibility restrictions, since it introduces a traffic bottleneck
and a single point of failure.

CAVMem, presented in this chapter, provides a distributed continuous action RL for-
mulation, avoiding the limitations of discretization and centralization. To the best of our
knowledge, this is the first such formulation of the memory allocation problem.

CAVMem is initially designed with DDPG, but other RL algorithms were also imple-
mented, namely Q-Learning [114] (QL) and Deep Q-Learning [79] (DQL). These are com-
pared in a model environment that simulates certain aspects of a virtualized computing node.
Application traces taken from SPEC benchmarks were used to model the memory demand
of applications, assuming uniform distribution of memory access across the memory capacity
used by the application model.

In summary, the contributions of this chapter are:

1. Formulation of the memory management problem as a distributed continuous action
MDP. This formulation supports an unlimited and variable number of VMs.

2. Development of a continuous action off-policy model-free reinforcement learning algo-
rithm for dynamic memory allocation

3. Comparison between three reinforcement learning approaches: a) CAVMem with DDPG
(continuous action space), b) CAVMem with QL (tabular, non-continuous action) and
c) CAVMem with DQL (non-continuous action). We also compare against the static
policy that divides memory equally.

In order to obtain linear scaling and be able to dynamically add and remove VMs,
CAVMem has one agent per VM connected via a lightweight coordination mechanism. The
agents learn how much memory to bid for or return, in a given state, so that each VM obtains
a fair level of performance subject to the available memory resources. Our results in this
chapter show that CAVMem with DDPG performs better than QL and a static allocation
case, but it is competitive with DQL. However, CAVMem incurs significant less training
overheads than DQL, making the continuous action approach a more cost-effective solution.
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3.2 The Context for CAVMem: Memory Management and
Reinforcement Learning

3.2.1 Memory Management in Virtualized Nodes

The dependence of Cloud services on virtualization technology and the way virtualization
is used to share a node’s resources among VMs were clearly explained in Chapter 1. For
the particular case of memory, when a VM is created, it is allocated a portion of the node’s
memory. If the applications executing inside the VM increase their aggregated memory de-
mand, it is very possible that this changing and increasing memory demand exceeds the VMs
initial memory allocation. In this case, the VM may swap data to its (virtual) disk device(s),
suffering a significant performance loss. Thus, it is necessary to rebalance the memory al-
location and optimize overall system performance, minimizing the overall amount of swap
operations that take place. This can be achieved by observing application performance in
each VM and re-allocate memory for them to reach a performance objective.

Analytical solutions for this problem require the analysis of many VM–application sets
and combinations. The number of possibilities is huge, making it intractable to obtain
solutions in this way. Instead, heuristics are designed to exploit optimal allocations for
known sets. Heuristics are also limited since sometimes they do not generalize well for all
possible combinations.

3.2.2 Reinforcement Learning Concepts

Reinforcement learning problems are those in which an agent acts in an environment (usually
stochastic) by choosing one or more actions in a sequences of time steps. The objective of the
agent is to maximize the reward it accumulates over time. These problems can be modeled
as a MDP, which have the following elements:

• A state space, denoted by set S, which are the possible states in which the environ-
ment/agent can be in.

• An action space, denoted by the set A, which are the possible actions that the agent
can take.

• A transition probability function, denoted by P : S × A × S → R. The number
Pi→i+1 ∈ [0, 1] represents the probability of an agent transitioning from a state si, by
doing an action ai in the current timestep i, to a state si+1 in the following timestep
(i+ 1). The probability function is totally dependent on the environment and satisfies
the Markov property [115].

• A reward function, denoted by R : S × A × S → R. This function serves to offer an
inmediate evaluation of how good or bad is the action ai in timestep i. The source of
the reward function, as the probability function, is the environment in which the agent
is in.

The objective of the agent is to learn an optimal policy π : S → A for which the
discounted reward rγt = Σ∞k=tγ

k−tr(sk, ak), starting from timestep t with discount factor γ,
is maximized. There are many different ways for the agent to learn the optimal policy to
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take the right actions (value-based or policy-based) [109], one of the most widely used value-
based approaches rely on maximizing the (expected) state-action value function Qπ(s, a),
expressed by the Bellman equation [109, 25]:

Qπ(st, at) = E[r(st, at) + γQπ(st+1, π(st+1))] (3.1)

Equation 3.1 is the expected reward starting from a given state st and taking an action
at, and then continue to accumulate the rewards choosing actions following the policy π from
the next time step. The idea is to estimate the state-action value function (or Q-function
for short) through Equation 3.1 as an iterative update, as shown in equation 3.2, which will
drive the sequential decision-making process.

Qi+1(st, at) = E[r(st, at) + γQi(st+1, π(st+1))] (3.2)

In [78], the Q-function is estimated through a parametrized neural network (NN) function
approximator because the original approach [114] of updating the values of the Q-function
iteratively is impractical. This is because in many cases it takes too much time for the
Q-function to converge to the optimal values. As a result, the Q-function can then be
represented as Q(s, a; θ) ≈ Q∗(s, a), where Q∗(s, a) is the optimal Q-function.

By approximating the Q-function through a neural network, it is possible to train the
neural network by minimising a sequence of loss functions given by [60, 78, 79]:

Li(θi) = Es,a∼ρ(·)[(yi −Q(st, at; θi))
2] (3.3)

in which st and at denote the state and action at the current timestep t, ρ(s, a) is a
probability distribution over sequences of states s and actions a, and yi is given by:

yi = E[r(st, at) + γQπ(st+1, π(st+1); θi−1)] (3.4)

The approach of using function approximators also presented some limitations, and was
generally avoided because of the lack of theoretical performance guarantees and instability
issues [60].

In order to overcome these limitations (instability and performance guarantees), the Q-
learning algorithm in [79] was further extended with two additional features: 1) experience
replay buffer and, 2) iterative update to adjust the values of the Q-function to target values
that are updated periodically i.e. a separate target network for yi. This is represented in
equations 3.3 and 3.4, where the NN function approximator is trained (updated) every B
timesteps.

This value-based method of learning has been successfully used for problems in which
the action space of the agent is discretized [79, 60]. By using the optimal values of the
Q-function, it is then possible to have an agent that chooses its actions (use a policy π) in
a greedy way relative to the value function. Such policy π would be represented by:

πQ = arg max
a∈A

Q(s, a) (3.5)

But when applied to continuous action spaces, equation 3.5 cannot be applied in a
straightforward way and the whole value-based approach requires additional modifications.
This consideration is particularly important for our RAM allocation problem because the
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Figure 3.1: Diagram of the actor–critic architecture for the DDPG.

allocation of memory pages in computing nodes using virtualization software needs to be
done continuously.

Deep Reinforcement Learning for Continuous Action spaces

Some solutions for continuous action spaces that use RL algorithms rely on some form of
discretization of the action space [87, 118] an approach that can sometimes be justified. But
in general, discretization reduces greatly the applicability of these algorithms [56, 60]. In the
current work, we have not to discretized the action space by allowing the MM to allocate
memory continuously at the page granularity.

In our case, we implemented Deep Reinforcement Learning (DRL) algorithms for contin-
uous action spaces. One of the most popular of algorithms for these type of problems are the
policy gradient algorithms. Concretely, we implemented the Deep Deterministic Policy Gra-
dient (DDPG) [60] algorithm which uses an actor–critic architecture [54, 53] as the basis of
the Deterministic Policy Gradient (DPG) [98] algorithm. Figure 3.1 shows the architecture
of a single DDPG learning agent.

The DPG algorithm [98] makes use of a parametrized actor function µ(s;ϑµ) which
specifies the current policy by deterministically mapping states to specific actions to drive
the decision making process, instead of using equation 3.5. A performance objective is defined
as in the discrete action space for Q-learning, in this case denoted by [103]:

J(µϑ) = Q(st, µϑ) (3.6)

The main idea is then to adjust the parameters µϑ of the deterministic policy in the
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direction of the performance gradient ∇ϑJ(µϑ) expressed as [103], [60], [98]:

ϑk+1 = ϑk + α∇ϑJ(µϑ) (3.7)

where α is a real number such that α ∈ [0, 1]. In this approach, the state-action value
function Q(s, a) is also approximated through a neural network function approximator (
Q(s, a; θ) ) in a similar way to [79], represented in the critic network in the actor-critic
architecture (Figure 3.1).

However, the critic network are updated in a different way, by making use of “soft” target
updates [60], rather than doing a straight-forward copy of the weights. It is important to
note that the target networks have the same architecture identical to their correspondent
original ones. Thus, the update of the target networks is performed as:

ϑtarget = τϑcurrent + (1− τ)ϑtarget (3.8)

θtarget = τθcurrent + (1− τ)θtarget (3.9)

where θ and ϑ are the parameters of the critic (Q-function) and the actor (policy) networks,
respectively.

To the best of our knowledge, there is not a published work that uses RL algorithms for
continuous action spaces to solve memory allocation problems in this way.

3.2.3 Employing DDPG for Memory Capacity Management in Virtualized
Environments

Designing a high-level memory management policy that is both optimal and responsive is a
challenging task. This is because choosing general heuristics or analytical models to design
a policy in a node that runs a very complicated software stack, with different VMs, with
different users, applications, datasets and performance metrics requires analyzing a huge
amount of data. By using a RL algorithm, we expect that an optimal policy for memory
management can be obtained (or approximated) by the learning agent(s).

3.3 CAVMem: Algorithm for Virtualized Memory Manage-
ment

In this section, we introduce CAVMem, a mechanism using continuous action RL for memory
management in virtualized nodes. We formulate the problem as a Markov Decision Process.
The MDP is formulated such that it does not impose limits on the number of VMs the system
can manage. It creates a RL agent per VM which has both a local view of the VM state and
a node-wide view of the node’s state, indirectly passing to a VM information on the behavior
of other VMs. The reward is set to optimize system-wide performance while ensuring fairness
with respect to the memory usage among the VMs. In the following subsections, we detail
how the MDP is formulated, its advantages and the learning mechanism.
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3.3.1 Decentralized Strategy for Memory Management

Determining a priori the memory demands of VMs in virtualized servers is complicated
because the nodes seldom have prior knowledge of applications on each VM or the number
of concurrently active VMs. Memory demand can be estimated by carrying out analyses of
the resource utilization in the node over time, but it is difficult to rely on this estimations
because:

1. Traffic pattern across data centers implies VMs are added and removed continuously,
making it is difficult to anticipate the number of active VMs and the respective memory
signatures of their applications.

2. Applications have different execution phases at runtime and obtaining precise applica-
tion signatures is difficult;

3. Combinatorial complexity of aggregated signatures of different (or same) application
complicates the matter even more;

Instead, another approach is to let the VMs ask for the memory they need. In this case,
each VM monitors its own resource utilization and bids for memory independently, resulting
in a decentralized solution.

Pros and Cons of Decentralized vs. Centralized

CAVMem introduces a de-centralized approach to the dynamic memory allocation. The
de-centralized approach has a learning agent for each VM on the node allowing for a VM to
have its own individual state-space. The state space for each VM includes state of the node
to determine memory availability and some other variables that summarize the state of the
node itself (see table 3.1).

The singular advantage that the decentralized approach provides over a centralized ap-
proach is scalability, that expresses itself in multiple ways. First, CAVMem is designed to
adjust itself to the dynamic behavior related to the activation and deactivation of the VMs,
since it enforces no constraints on the amount of VMs that can be present in the node. In
most centralized approaches, the state space is defined in such a way that the addition of
VMs becomes problematic after a certain amount. But in reality, this depends on how the
MDP model is defined. Second, CAVMem removes a single point of control, which allows to
scale even beyond a single computing node.

3.3.2 Formulating the problem as an MDP

Defining the State space, S

Table 3.1 lists the five state variables for each agent, two of which belong to the VM and
the other three are common to all VMs on the node. This state space definition allows the
agent to have some information about the other active VMs through the information related
to the node.
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State information from computing node and VMs

Name Range Description

perVM msr
VMj

t [-1, 1] RAM miss rate of VMj , rescaled to range
[-1, 1]; i.e. a value of -1 means zero miss
rate.

perVM M
VMj

t [0, 1] Fraction of total RAM allocated to VMj .
Node avgMsrnodet [-1, 1] Average RAM miss rate across all VMs,

equal to 1
N

∑
jmsr

VMj

t .

Node msrTgtnodet [-1, 1] Target RAM miss rate for all VMs given
by Equation 3.11.

Node totalMemUsenodet [0, 1] Fraction of the node’s physical RAM that

is allocated to VMs, equal to
∑

jM
VMj

t .

Table 3.1: State inputs to the actor and critic networks of the DDPG learning agents.

Defining the Action space, A

The action a
VMj

t chosen for VMj in timestep t is referred to as the VM’s memory bid,
which ranges from -1.0 to 1.0. A positive bid is a request for more memory and a negative
bid is an action to release memory. Concretely, the VM agent requests a total memory

allocation equal to (1 + a
VMj

t )×MVMj

t . As discussed later, it may not be possible to fully
satisfy the request, for instance when there is insufficient memory for all requests or the
memory allocation for the VM would become too small.

Defining the Reward function, R

The reward function encourages a fair level of performance across the VMs by encouraging
all VMs to suffer the same level of swapping over the time step. This is done through a
penalty (negative reward) proportional to the absolute difference between the RAM miss

rate of the VM, given by msr
VMj

t+1 and the miss rate target, msrTgtnodet+1 :

(3.10)r
VMj

t = −|msrVMj

t −msrTgtnodet |×k

The parameter k, which we set to 1, affects the learning rate. The miss rate target for
the next timestep is given by:

(3.11)msrTgtnodet+1 = avgMsrnodet ×
√
totalMemUsenodet

Here, avgMsrnode is the average RAM miss rate across all active VMs, defined in Ta-
ble 3.1. When it is non-zero and there is free memory, the factor totalMemUsenode encour-
ages the VMs to use more memory, via a well-known square-root rule of thumb.

Environment Constraints for Decentralized Control

Figure 3.2 shows a high-level view of our system, which include the VMs, the learning agents
of each VM and an additional module called the Bid Analyzer (BA). The BA performs a
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Figure 3.2: Diagram of the DDPG learning Agents, one per VM.

series of high-level control tasks. First, it prevents VMs for bidding less than the minimum
amount they need to function (set manually at 384 MB), as well as preventing the VMs to
bid more than the actual memory available in the node. Additionally, it also performs a bid
arbitration process to prevent aggregated overallocation of memory. The BA also enforces
bid prioritization for VMs that issue negative bids.

Action Space Exploration

A classic problem in RL is the exploration–exploitation dilemma [102], which captures the
need to exploit the “optimal” solution obtained so far but also explore potential better ac-
tions. To explore in continuous action domains, the common approach is to use an Ornstein–
Uhlenbeck process [11, 58]. This process is a noise signal that creates a Brownian motion
around the deterministic action generated by the DDPG agent. At every timestep, a noise
signal is added to the action with a probability of ε. In our implementation, initially there’s
a phase of aggressive exploration in which ε = 1. This probability reduces over time until it
reaches ε = 0.001. This process is called epsilon annealing, and it is used to transition from
explorative policy to an exploitative one [102].

3.4 Experimental Framework

CAVMem was implemented in Python 3.6 with Tensorflow 1.12 [3] on a system with a 2.3 GHz
Intel Core i7 processor and 16 GB of RAM. CAVMem is designed with an underlying DDPG
implementation, but we also tested DQL and QL implementations for comparison, and a
static allocation policy that divides memory equally among VMs. Whenever CAVMem is
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mentioned, it is assumed that the agents are DDPG implementations (continuous action).
The neural networks for DDPG are fully-connected with two hidden layers of 64 units

with ReLU activation functions, while the output layers use Tanh. The learning rates for the
actor and critic networks are 0.0001 and 0.001, respectively, using the Adam optimizer. The
exploration phase lasts for 200 episodes, where each episode has 100 steps. All experiments
run for 1000 episodes.

DQL has similar parameters, but it only has one learning rate of 0.001 for the Q-function
approximator for 3 discrete actions. The QL implementation also consists of 3 actions, and
it has each state space variable quantized in 10 discrete values. This results in a state-action
matrix of 300,000 entries.

The learning agents are deployed in an environment that simulates a virtualized node,
which include models of VMs and some aspects of system memory (capacity, RAM misses,
utilization). This evaluation methodology allows to see the effectiveness of the MDP formu-
lation, without intervention of specific hardware.

We evaluate CAVMem in runtime scenarios consisting of different combinations of SPEC
CPU 2006 benchmarks [44] and benchmarks from Cloudsuite [31]. All of these scenarios
are summarized in Table 3.2. Every scenario that uses SPEC benchmarks runs two VMs
with 6 GB of RAM, and each VM starts with 1 GB of RAM. We decided to use SPEC and
Cloudsuite benchmarks in this case in order to expose CAVMem to a wider set of workloads
that present an increased variability in their memory demand profiles. This allows us to
evaluate the effectivness of CAVMem in more different scenarios.

In every scenario, three metrics are evaluated: 1) the average miss rate (pages/second),
2) the average miss rate deviation, and 3) the overhead (time spent in seconds) associated
to the training of each agent. Every metric is measured over the last 100 episodes of each
experiment. It is desirable that the average miss rate is minimized by the agent, since this
would avoid disk accesses on a real system. The simulated environment does not model
execution time, but it does model miss rates on RAM, which on a real system translates to
swap operations. In current systems, as the swap operations increase, it implies a perfor-
mance degradation on the use of memory resources [42], which have an adverse impact on
the execution time on the applications running. Since the agents are constrained to reduce
the memory misses/swap operations, it would imply an improvement on the execution time
of the applications [120]. The miss rate deviation is to compare how well the agent learns the
desired behavior according to the reward function. And the overhead allows us to estimate
the cost to the deployment of each agent.

3.5 Results for Evaluation

3.5.1 Results for Scenario 1

Figure 3.3 shows the average miss rates for Scenario 1. CAVMem with DDPG has a miss
rate 10% larger than static, while DQL and QL are higher by 14.7% and 13.9% respectively.
Since the VMs are executing the same benchmark, an equal memory allocation is optimal
resulting in static being the best in this case. Nevertheless, we see that CAVMem performs
the best.

Figure 3.4 shows the average miss rate deviations for Scenario 1. CAVMem tracks the
target better than all other approaches. CAVMem has a miss rate deviation 82.2% smaller
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Label Benchmark Name Description

Scenario 1 VM1, VM2: perlbench Both VMs run perlbench repeatedly.
Scenario 2 VM1, VM2: gcc Both VMs run gcc repeatedly.
Scenario 3 VM1: perlbench; VM2:

gcc
VM1 runs perlbench repeatedly, VM2 runs gcc.

Scenario 4 VM1: gcc; VM2: bzip2 VM1 runs gcc repeatedly, VM2 runs bzip2.
Scenario 5 VM1:soplex ;

VM2:perlbench
VM1 runs soplex repeatedly while VM2 runs perl-
bench.

Scenario 6 VM1:web-search client ;
VM2:in-memory analyt-
ics; VM3: web-search
server

VM1 runs the Cloudsuite’s web-search client, VM2
runs Cloudsuite’s in-memory analytics and VM3
runs web-search server. All VMs run the benchmark
trace repeatedly.

Scenario 7 VM1:web-search client ;
VM2:graph analytics;
VM3: web-search server

VM1 runs the Cloudsuite’s web-search client, VM2
runs Cloudsuite’s graph analytics and VM3 runs web-
search server. All VMs run the benchmark trace
repeatedly.

Scenario 8 VM1:data-caching
client ; VM2:graph
analytics; VM3: data-
caching server

VM1 runs the Cloudsuite’s data-caching client, VM2
runs Cloudsuite’s graph analytics and VM3 runs
data-caching server. All VMs run the benchmark
trace repeatedly.

Scenario 9 VM1:graph analyt-
ics; VM2:in-memory
analytics

VM1 runs the Cloudsuite’s graph analytics and VM2
runs in-memory analytics. Both VMs run the bench-
mark trace repeatedly.

Scenario 10 VM1:in-memory analyt-
ics; VM2:in-memory an-
alytics

VM1 and VM2 run in-memory analytics. Both VMs
run the benchmark trace repeatedly.

Scenario 11 VM1:graph analytics;
VM2:graph analytics

VM1 and VM2 run graph analytics. Both VMs run
the benchmark trace repeatedly.

Table 3.2: List of scenarios used for evaluation

Figure 3.3: Average Miss Rate for Scenario 1. Less is better.

than static, and 66.1% and 75.4% smaller than DQL and QL, respectively.

Figure 3.5 shows the overheads for Scenario 1. DQL presents an overhead 10.64 and
15.0 times larger than CAVMem and QL respectively, a major consideration when deploying
DQL. QL presents the smallest overhead, while CAVMem’s is 37% larger than QL’s.
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Figure 3.4: Average Miss Rate Deviation for Scenario 1. Less is better.

Figure 3.5: Overhead (in seconds) for each agent in Scenario 1. Less is better.

3.5.2 Results for Scenario 2

Figure 3.6: Average Miss Rate for Scenario 2

Figure 3.6 shows the average miss rate for each agent in Scenario 2. The results here are
similar to Scenario 1. CAVMem has a miss rate 12.55% than static, while DQL and QL are
higher by 17.8% and 82.04% respectively. CAVMem performs the best among the learning
agents, but still static outperforms them all.

Figure 3.7 shows the miss rate deviation for Scenario 2. QL performs the worst, while
CAVMem performs slightly better than all of them but not by muc, except for QL, that
performs badly.

Figure 3.8 shows the overhead of the agents for Scenario 2. The results are very similar
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Figure 3.7: Average Miss Rate Deviation for Scenario 2. Less is better

Figure 3.8: CAVMem: Average Overhead (in seconds) for each agent in Scenario 2. Less is
better

to those of Scenario 1.

3.5.3 Results for Scenario 3

Figure 3.9: Average Miss Rate for Scenario 3. Less and equal is better.

Figure 3.9 shows the average miss rates for Scenario 3. QL and static fail to balance the
miss rates, which is an undesirable result, since they both benefit one VM while harming the
other. CAVMem and DQL maintain the miss rate balanced to a better degree by increasing
the miss rate of both VMs. CAVMem minimizes the miss rate 6.41% below DQL for VM1 and
5.81% above DQL for VM2. Seemingly, CAVMem and DQL are competitive in performance.
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Figure 3.10: Average Miss Rate Deviation for Scenario 3. Less is better.

Figure 3.10 shows the miss rate deviations for Scenario 3. Here, static is further away
from the target, while CAVMem deviates by 67.6% more than DQL, even though they both
minimize the miss rate to similar values.

Figure 3.11: Overhead (in seconds) for each agent in Scenario 3. Less is better.

Figure 3.11 shows the overhead of the agents for Scenario 4. DQL maintains an overhead
5.44 and 9.96 times larger than CAVMem and QL, respectively. CAVMem’s overhead is
70% larger than QL’s but performs similar to DQL. Thus far, CAVMem provides the best
performance-overhead trade-off.

3.5.4 Results for Scenario 4

Figure 3.12: Average Miss Rate for Scenario 4. Less and equal is better.
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Figure 3.12 shows the average miss rates for Scenario 4. DQL and static DQL present
imbalanced miss rates for the VMs, while CAVMem and DQL yield similar values, with
CAVMem being 5.96% larger than DQL.

Figure 3.13: Average Miss Rate Deviation for Scenario 4. Less is better.

Figure 3.13 shows the miss rate deviations for Scenario 4. DQL tracks the miss rate
targets better being 65.92% more accurate than CAVMem, while QL and static fail to do so.

Figure 3.14: Overhead (in seconds) for each agent in Scenario 4. Less is better.

Figure 3.14 shows the overhead of the agents for Scenario 4. The experiments show that
DQL’s overhead is 10.9 and 14.2 times larger than CAVMem’s and QL’s, respectively.
CAVMem’s overhead is larger than QL’s by 28%, still maintaining the cost-effectiveness of
CAVMem.

3.5.5 Results for Scenario 5

Figure 3.15 shows the average miss rate achieved for each agent in Scenario 5. This results
show a similar behavior to Scenarios 3 and 4: static maintains unbalanced miss rates among
the VMs, CAVMem and DQL have similar performance with DQL being better by a small
percentage (CAVMem achieves 3.62% higher miss rate).

Figure 3.16 shows the miss rate deviation for Scenario 5. The behavior is very similar
to Scenarios 3 and 4, with DQL still managing to track the miss rate target better than
CAVMem. The mean deviation of CAVMem is 62.2% larger when compared to DQL, while
QL and static present high inaccuracies with respect to the desired target.

Figure 3.17 shows the overhead of the agents for Scenario 5. These experiments show
consistently the enormous overhead incurred by DQL, and the cost-effectiveness of CAVMem.
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Figure 3.15: Average Miss Rate for Scenario 5. Less is better

Figure 3.16: Average Miss Rate Deviation for Scenario 5. Less is better

Figure 3.17: Overhead (in seconds) for each agent in Scenario 5. Less is better.

3.5.6 Results for Scenario 6

Figure 3.18 shows the average miss rate achieved for each agent in Scenario 6. This results
show a similar behavior to Scenarios 4 and 5: static maintains unbalanced miss rates among
the VMs, CAVMem and DQL have similar performance. But in this case, it is harder to
establish which one of the two performs better, because VM1 and VM3 with CAVMem have
a 3.2% and 2.5% smaller average miss rate when compared to DQL, respectively, while VM2
has a larger average miss rate by 4.8% when compared to DQL.

Figure 3.19 shows the miss rate deviation for Scenario 6. The behavior is very similar
to Scenarios 4 and 5, with DQL still managing to track the miss rate target better than
CAVMem. The mean deviation of CAVMem is 57.9% larger when compared to DQL across
all three VMs, while QL and static present high inaccuracies with respect to the desired
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Figure 3.18: Average Miss Rate for Scenario 6. Less is better

Figure 3.19: Average Miss Rate Deviation for Scenario 6. Less is better

target.

Figure 3.20: Overhead (in seconds) for each agent in Scenario 6. Less is better.

Figure 3.20 shows the overhead of the agents for Scenario 6. The overhead associated to
DQL is 6.1 times larger than the one associated to CAVMem.

3.5.7 Results for Scenario 7

Figure 3.21 shows the average miss rate achieved for each agent in Scenario 7. This results
show again the inability of QL and static to minimize the miss rates in a balanced way. These
results also show the competitiveness between DQL and CAVMem: for VM1 and VM2 DQL
is able to minimize the miss rate by 2.3% and 8.1% lower than CAVMem, respectively, while
for VM3 CAVMem minimizes the miss rate by 1.3% less than DQL.
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Figure 3.21: Average Miss Rate for Scenario 7. Less is better

Figure 3.22: Average Miss Rate Deviation for Scenario 7. Less is better

Figure 3.22 shows the miss rate deviation for Scenario 7. QL and static deviate very
significantly from the desired targets during the execution, but DQL and CAVMem are able
to approximate it much better. DQL gets the better part, by keeping the miss rate deviation
46.2% smaller than CAVMem across the three VMs.

Figure 3.23: Overhead (in seconds) for each agent in Scenario 7. Less is better.

Figure 3.23 shows the overhead of the agents for Scenario 7, which shows that DQL has
an overhead that is 6.8% times larger than the one associated to CAVMem, consistently
high-lighting the cost-effectiveness of CAVMem.
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Figure 3.24: Average Miss Rate for Scenario 8. Less is better

3.5.8 Results for Scenario 8

Figure 3.24 shows the average miss rate achieved for each agent in Scenario 8. In this case,
CAVMem performs slightly better than DQL by a 0.45% in average across the three VMs.
Moreover, QL is in fact more competitive in this case, and it is able to balance the miss
rates of the three VMs, but it is unable to minimize it in a similar way to CAVMem or DQL.
Quantitatively, QL has a miss rate above that of CAVMem by 14,8%, 18,3% and 25,3% for
VM1, VM2 and VM3, respectively.

Figure 3.25: Average Miss Rate Deviation for Scenario 8. Less is better

Figure 3.25 shows the miss rate deviation for Scenario 8. In this case, CAVMem is able to
track the miss rate targets better than DQL, by an average of 17.1% across all VMs: 23,2%
and 28.7% smaller for CAVMem in VM2 and VM3, but in VM1 the miss rate deviation is
0.6% smaller for DQL. The deviation of QL is significantly higher, by 77.2% in average, when
compared to CAVMem.

Figure 3.26 shows the overhead of the agents for Scenario 8. In this case, the results show
that DQL’s overhead is 6,9 and 50,2 times larger than CAVMem’s and QL’s, respectively,
while CAVMem’s overhead is 5.5 times larger than QL’s. Even though QL is able to
balance out the miss rates in this case with some limitations, still is not able to obtain the
same performance than CAVMem or DQL. Even though CAVMem has a higher overhead
than QL in this case, overall CAVMem remains potentially the best cost-effective solution.
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Figure 3.26: Overhead (in seconds) for each agent in Scenario 8. Less is better.

Figure 3.27: Average Miss Rate for Scenario 9. Less is better

3.5.9 Results for Scenario 9

Figure 3.27 shows the average miss rate achieved for each agent in Scenario 9. Interestingly,
in this case DQL is unable to balance the performance of the VMs and maintains a miss rate
difference of 45.6% between VM2 and VM1, which is very undesirable. On the other hand,
CAVMem is able to keep the performance difference among the VMs within a 14%, both
miss rate minimization and balancing.

Figure 3.28: Average Miss Rate Deviation for Scenario 9. Less is better

Figure 3.28 shows the miss rate deviation for Scenario 9. Considering already that DQL
is unable to balance the miss rates (performance), figure 3.28 shows that it is not as effective
as CAVMem to track the miss rate targets. In this case, DQL has a miss rate target deviation
of 55.8% and 38.9% for VM1 and VM2, respectively. So far, CAVMem has out-performed
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significantly the other agents and static for Scenario 9.

Figure 3.29: Overhead (in seconds) for each agent in Scenario 9. Less is better.

Figure 3.29 shows the overhead of the agents for Scenario 9. This figure shows that. in
addition to the under-performance presented by DQL for miss rate balancing and minimiza-
tion, and miss rate target tracking, DQL also presents an overhead that is 4.6 times larger
than the overhead associated to CAVMem.

3.5.10 Results for Scenario 10

Figure 3.30: Average Miss Rate for Scenario 10. Less is better

Figure 3.30 shows the average miss rate achieved for each agent in Scenario 10. The best
performing allocation strategy is static. All of the other agents, namely CAVMem, DQL and
QL, generate average miss rates larger than static by 9.5%, 9.7% and 25.3%, respectively,
across all of the VMs. In this case, CAVMem performs slightly better among the learning
agents.

However, the VM1 and VM2 have unbalanced miss rates when running with CAVMem
even though their average is slightly better (lower). With CAVMem, VM1 and VM2 has
miss rates larger than static by 13.1% and 5.9%, whereas with DQL they have 8.7% and
10.8%. In this case, DQL is able to keep the performance balanced among the VMs better
than CAVMem in this scenario.

Figure 3.31 shows the miss rate deviation for Scenario 10. In this case DQL is able to
track the miss rate targets better than all the allocation strategies. As expected, static is not
designed to track miss rate targets, but it still able to minimize the miss rates better than
DQL and CAVMem for this scenario. However, DQL is able to track the miss rate targets
by 14.1% in average across all the VMs when compared to static. On the other hand, the
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Figure 3.31: Average Miss Rate Deviation for Scenario 10. Less is better

deviation of CAVMem is larger than static by 21.0% in average across all the VMs, showing
the effectivness of DQL in this case. As can be seen in figure 3.31, QL performs the worst
out of all the learning agents.

Figure 3.32: Overhead (in seconds) for each agent in Scenario 10. Less is better.

Figure 3.32 shows the overhead of the agents for Scenario 10. As it has been consistently
shown so far, the performance overhead associated to DQL is extremely large when compared
to CAVMem and the other approaches, an important factor that has to be considered when
deploying DQL. In this case, the overhead associated to DQL is 8.6 and 63.9 times larger
than the one associated to CAVMem and QL, respectively. Any deployment of DQL has to
consider the trade-off between performance gains and its significant overhead.

3.5.11 Results for Scenario 11

Figure 3.33 shows the average miss rate achieved for each agent in Scenario 11. Similarly
as with Scenario 10, the best performing allocation strategy is static again. All of the other
agents, namely CAVMem, DQL and QL, generate average miss rates larger than static by
11.8%, 12.0% and 39.9%, respectively, across all of the VMs. In this case, CAVMem performs
slightly better among the learning agents.

However, the VMs slightly more unbalanced miss rates when CAVMem compared to
DQL. For example, VM1 with CAVMem has a miss rate larger than the one corresponding
to VM1 when running static by 6,9%, while VM2’s miss rate is 16.7% larger. In the case
of DQL, the miss rates for VM1 and VM2 are 12.5% and 11.5%, respectively. Notice that
in average CAVMem reduces the miss rate better across all the VMs, but DQL keeps them
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Figure 3.33: Average Miss Rate for Scenario 11. Less is better

better balanced.

Figure 3.34: Average Miss Rate Deviation for Scenario 11. Less is better

Figure 3.34 shows the miss rate deviation for Scenario 11. In this case, the learning
agents are not able to track the miss rate targets any better than static, despite the fact
that static is not really attempting to do so. In this scenario, QL have a very significant
miss rate target deviation of 188.4% and 299.8% with respect to static for VM1 and VM2,
respectively.

DQL and CAVMem perform better than QL in this case. VM1 and VM2 for DQL have a
larger miss rate target deviation of 18.8% and 12.9%, respectively, when compared to static.
On the other hand, VM1 and VM2 for CAVMem have a larger miss rate target deviation of
7.9% and 43.7%, respectively, when compared to static. Notice that DQL is able to keep a
better balancing on the miss rate deviation for the VMs when compared to CAVMem, but
still performs slightly worst than static.

Figure 3.35 shows the overhead of the agents for Scenario 11. Yet again, the overhead
for DQL is massive, being at 4.9 times the overhead associated to CAVMem and 67.5 when
compared to QL.

3.5.12 Discussion

We can summarize the findings as follows: 1) CAVMem with DDPG and DQL are able
to minimize and balance the miss rates in a comparable way, better than static in most
cases, while QL consistently fails to do so, 2) DQL tracks the performance target better than
CAVMem with DDPG, while static and QL fail in most instances, 3) DQL has extremely
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Figure 3.35: Overhead (in seconds) for each agent in Scenario 10. Less is better.

high learning overheads when compared to CAVMem with DDPG and DQL, highlighting a
performance-cost trade-off.

3.6 Related Work

Many solutions have been proposed to solve the resource allocation problem for cloud infras-
tructures [105, 101, 72, 27, 13]. However, the memory management problem has different
constraints than a general resource allocation problem, due to the way memory is shared
among applications/VMs. Whereas CPU can be time-multiplexed and scheduled, memory
cannot be scheduled in a fine-grained way [76]. Instead it has to be allocated over a large
period of time ensuring the integration of applications’ data. Resource allocation schemes
for the cloud need a different approach for memory allocation within each individual node.

Some common approaches for the memory allocation problem in virtualized computing
servers include working set size (WSS) estimation [15, 47, 125, 84]. When estimating the
WSS, the objective is to allocate enough memory to the VMs in order for their working set
to fit in.

The main problem with WSS estimation becomes evident when applications do not use
the whole WSS during different phases of their execution, therefore overallocating memory
(that is, misusing memory) during those times when part of the memory is not used. This
problem is exacerbated when there are multiple applications running inside the VMs and
temporal variation on the applications behavior start affecting the measurements of the WSS.

The authors in [121] took a different approach by implementing a tax system that would
increase the cost of a VM with idle memory, in order for this VM to release the memory is
not using. This approach works by calculating the tax based on the measure of idle memory,
which is a measure of the memory unallocated in the VM. The problem here is that once
the application allocates all the memory it needs (its WSS), the memory will not be idle
as long as it remains allocated even if it is unused. Thus, it will still overallocate memory
unnecessarily at some phases of execution. One advantage of this approach is that it is very
adaptable, since it does not try to predict the WSS before hand.

Approaches based on control engineering techniques [45, 83] have also been used to solve
the memory management problem. The main issue with these approaches is their need to
develop models of the quantitative relationship between an application’s performance and
its memory allocation. This very difficult to do accurately, given all the factors that have an
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impact on this relationship. The use of RL approaches become thus justified when grasping
the complexity of the factors involved in this relationship.

Many RL-based solutions have been proposed to solve the resource allocation problem
in cloud infrastructures [13, 87] but so far, there have not been too many efforts that use
RL to exclusive solve the memory management problem, and much less continous-action RL
solutions. But there are some notable RL-based solutions for the resource allocation problem
that targets CPU and memory (and other resources) within a virtualized node. In [87], the
authors implemented a model-based RL algorithm for VM resource configuration, which
included CPU time, virtual CPU and memory. This algorithm is a DQL algorithm using a
neural network to approximate the value function.

CAVMem differs from these RL-based solutions in three ways: 1) CAVMem uses con-
tinuous action RL exclusively for memory management, 2) CAVMem avoids discretization,
and 3) it is decentralized.

3.7 Conclusions for this Chapter and Future Work

This paper proposes CAVMem as a proof-of-concept of a distributed MDP formulation for
the memory allocation problem in virtualized nodes. Moroever, CAVMem also offers a
continuous action RL agent to solve the allocation problem, avoiding discretization and
exploiting de-centralization. Our results show that the DDPG agent of CAVMem performs
similar to the well-known DQL but with much less learning overhead, making it a very cost
effective solution.

For future work, CAVMem should be deployed in a real computing node, and an exhaus-
tive search of the parameter space of the learning agents is also necessary. Likewise, it is
necessary to test CAVMem with more combinations of benchmarks and scenarios.
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Chapter 4

Deploying a Reinforcement
Learning in a Virtualized Node for
Dynamic Memory Management

The previous chapter gave us a strong footing to use a continuous action RL approach to
solve the memory allocation problem in a distributed way, even though it was tested in a
simulation environment that only modeled certain memory behavior of a virtualized node.

The most important conclusion from CAVMem is that the formulation of the memory
allocation problem as a distributed MDP is actually capable of learning and achieving the
desired performance for all the learning agents we tried. In addition, CAVMem also demon-
strated that using the continuous action RL that we used (DDPG) is able to perform well
with a significant less amount of computational overhead.

Taking into account all the conclusions from CAVMem, the next step is to deploy
CAVMem in a real virtualized node, and do the necessary enhancements and modifications
to adapt it to the real environment.

This chapter introduces CARLEMM, which is a continuous action RL approach based
largely on CAVMem, but with significant enhancements for it to be deployed in a real
virtualized node. So far, we have been only able to get it to work for synthetic workloads
and for very specific use cases, so it is difficult to assess at this point its effectiveness to solve
the RAM allocation problem in a more definite way. At the end of the chapter, we show the
results we have obtained so far and demonstrate its usability and limitations for the cases
analyzed.
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4.1 Introduction to CARLEMM

A cloud infrastructure will have virtualized nodes running multiple virtual machines (VMs).
The physical memory of each node must be dynamically reallocated among the VMs it is
running in order to optimize throughput and maintain fairness. This is a difficult problem be-
cause VMs are continually being started, migrated or stopped, and because the applications
within them are also changing over time.

The most straightforward way to manage memory capacity is for the users/managers
of the infrastructure to specify in advance the amount of memory to allocate to each VM.
However, users/managers seldom know exactly how much memory to request, which results
either in over-provisioning of memory, which wastes resources, or under-provisioning it, re-
sulting in poor application performance. Moreover, such a static request-based policy is
unable to adapt to changes in memory demand over time.

There are previous research efforts that have provided solutions for this. For instance, the
proposal of Chiang et al. estimates the working set size of the applications in each VM [15].
Much of the prior work along these lines is limited by the complexity of the relationship
between the allocation of physical memory to a VM and is performance.

Major advances have recently been made in RL, which demonstrate RL to be a powerful
method to solve many types of complex problems without having to build a precise model
of the problem to solve. In Chapter 3, we explained the main two limitations with these
current state-of-the-art approaches, namely discretization and centralization, and why the
continuous action RL approach formulated in this chapter and the previous one provide a
good solution to overcome those limitations.

This chapter presents CARLEMM (Continuous Action Reinforcement LEarning for Mem-
ory Management), which addresses once again both of these limitations by formulating the
memory allocation problem as a distributed continuous action RL problem, following up the
work presented in Chapter 3, but this time deploying the learning agents in a real virtual-
ized node. Similar to Chapter 3, the learning agent at the core of CARLEMM is a DDPG
agent [60]. To the best of our knowledge, this is the first time that a continuous action
algorithm has been deployed in a real virtualized node for dynamic memory management.
In summary, this chapter makes the following contributions:

1. We deploy a continuous action off-policy model-free RL algorithm in a real virtualized
node to solve the memory allocation problem.

2. We develop a flexible software stack to implement CARLEMM and evaluate its per-
formance and fairness using synthetic benchmarks.

4.2 Understanding the Context for CARLEMM

As it has been explained in previous chapters, the HV running in every virtualized node of
the cloud infrastructure distributes the memory capacity among the VMs it executes, but
often tends to over-commit memory. Potentially, this can lead to a misuse of memory by a
single VM and thereby, leading to memory pressure for the other VMs [67]. For this reason,
memory management becomes an important problem, making research on dynamic memory
management still a relevant field. The most commonly deployed mechanisms to manage
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and reallocate memory are memory ballooning [67], memory hotplug [97] and Transcendent
memory [69], in which the latter allows the aggregation of capacity across multiple computing
nodes [36, 34]. In this chapter, we focus on memory reallocation via memory ballooning.

As explained in Section 1.3, memory ballooning [67] is a technology to enable the hy-
pervisor to inflate or deflate the memory on a per-page basis across VMs using a balloon
driver. However, the balloon driver makes the reallocation considering only local (per-VM)
information, and it is unable by itself to make optimal decisions on when and for how much
to reallocate memory in a system with multiple VMs with different memory requirements.

As we explained in Section 3.2.1 the problem really becomes how to drive the inflation/de-
flation mechanism i.e. allocation/deallocation, of ballooning to allocate memory to the VMs
in order to prevent misuse of memory resources (over- or under-provisioning of memory).
As we explained, this can be done by estimating the working set size of the applications
running inside a VM, by overallocating memory, by modifying the allocations manually of
the balloon driver or using automated high-level policies to drive the balloon driver.

Many automated solutions have been proposed, but there are very little (close to none)
efforts that have focused on the memory allocation problem using RL. As explained in Sec-
tion 3.2.1, the RL approaches becomes particularly attractive due to complexity associated
to develop analytical models of performance to drive the memory ballooning mechanism in
a node with multiple VMs.

In Section 3.2.2, the theoretical work and background necessary to understand the RL
concepts (MDPs, continuous action, DDPG) employed for the development of CARLEMM
were already explained. In general, CARLEMM builds on the RL concepts used to de-
velop CAVMem, but with some important modifications on the definition of the state space,
the reward function and the control flow of the memory allocation mechanism. All these
modifications are introduced in order to make it work in a real virtualized node.

4.3 CARLEMM: Continuous Action Reinforcement Learning
for Memory Management

In this section, we introduce CARLEMM, a continuous action RL algorithm for memory
management in virtualized computing servers. We formulated the memory allocation prob-
lem as an MDP that allows for one learning agent to be bounded to a VM, where the VM
instances can be spawned at arbitrary time frames. Specifically, we instantiate a neural
network per VM and allow it to have both a local view (itself) and a view of the node (based
on an approximate understanding of the behavior of other VMs in the system).

As with CAVMem, each learning agent bound to a VM monitors its resource utilization,
the state of the VM and bids for memory independently of the rest of the VMs, resulting in a
decentralized solution for memory management. The advantages of having such a distributed
and decentralized formulation where analyzed in Section 3.3.1.

In the following subsections, we explain how CARLEMM builds on CAVMem, how the
MDP is formulated for this case and how the RL mechanism works in a real virtualized node.
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4.3.1 Formulating the Memory Management Problem in Virtualized Node
as an MDP

Every problem formulated as an MDP requires the definition of the state space together with
their respective variables and domains. The state space is defined in such way that part of
the variables define the state of the VM (local) and another part define the state of the node
(node, global). The partitioning of the state space in local and global variables follows the
same scheme used for CAVMem, but for CARLEMM we have used a set of different variables
to define the state space.

State information from computing node and VMs

Variable Name Range Description

perVM usrtimeVMj [0, 1] The percentage of time spent by the pro-
cessor of VMj executing user space pro-
cesses in relation to the sampling interval.

perVM M
VMj

t [0, 1] Fraction of total RAM allocated to VMj .
perVM swap usedVMj [0, 1] The amount of swap space used by VMj .
Node avgUsrtime [0, 1] The average percentage of time spent by

all VMs in the node executing user user
space processes.

Node usrtimeTgt [0, 1] Target percentage of time spent executing
user space processes for all VMs given by
Equation 4.2.

Node totalMemUse [0, 1] Fraction of the node’s physical RAM that

is allocated to all VMs, equal to
∑

jM
VMj

t

Table 4.1: State inputs to the actor and critic networks of the DDPG learning agents.

State space, S

Table 3.1 lists the six state variables for each learning agent, three of which belong to the VM
and the other three are common to all VMs on the node. This state space definition allows
the agent to have some information about the other active VMs through the information
related to the node.

Notice that the variables used in this case are different than the ones used for CAVMem,
even though the MDP formulation follows the same general principle. When comparing
Table 4.1 to Table 3.1, it is clearly shown that some variables have changed in Table 4.1

for CARLEMM. For the current case, the variable msr
VMj

t was replaced by usrtimeVMj ,
avgMsrnodet was replaced by avgUsrtime, msrTgtnodet was replaced with usrtimeTgt and
swap usedVMj was added as a new state variable.

The variables used to define the state of CAVMem were defined around the miss rate
in RAM of a specific VM. Even though we still believe this is an attractive approach, it
presented some limitations once we started developing CARLEMM. When attempting to

measure the msr
VMj

t on RAM in real virtualized node, we find that this measurement is
analogous to measuring the swap out rate and the swap in rate of the VM.
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For example, in the case where a VM does not have enough memory to fit its data, it
will start swapping out data from memory to the disk device, increasing the swap out rate
of the VM. In this situation, the swap in rate increases if new data is brought in from disk,
either because it is reading data from the filesystem or bringing in data that was previously
swapped out. Therefore, the VM is unable to use its memory capacity to allocate the data
that it will swap out, thus missing on a write access to memory, and then missing to find
the data in memory when it tries to read it, resulting in a read from disk i.e. swap in. Thus,

the msr
VMj

t variable used in CAVMem can be analogous to the swap out rate and/or swap
in rates of the VM.

The main problem with using msr
VMj

t or a related swap out or swap in rate relates to
their extremely noisy characteristic. Figure 4.1 shows the way the swap out rate looks for a
VM in a system running a synthetic benchmark (explained in Section 4.7) that needs 1.2GB
of memory to fit its data set in the VM. The benchmark reads and writes to this chunk of
memory, while the VM is only given 1GB of memory.

Notice that the in the plot for the Swap Out Rate in Figure 4.1, the measurements
go across the whole domain of possible values for a static allocation of memory, meaning
that the standard deviation for the noise of this signal is extremely high. This behavior
shown for the Swap Out Rate is consistent with different memory allocations and different
benchmark/memory allocations as well. On the other hand, for the Percentage of User Space
Time the standard deviation is way more controlled for a given allocation of memory, making
it possible to correlate easier the values of a given Percentage of User Space time to memory
allocations using a specific benchmark.

Using a signal with noisy characteristics makes it problematic for a RL agent to generate
a state-action mapping i.e. an action policy, that is stable and meets the desired objectives
specified in the reward function. In order to solve this problem during the development of
CARLEMM, we evaluated the implementation of digital filters, starting with an straightfor-
ward implementation of a moving average that used a window of variable samples.

The moving average improved the quality of the signal, but still not enougt to cancel out
the noise or even to generate a stable policy. Using the moving average approach presented
some limitations as well, because its window size could not increase too much because the
responsiveness of the state variable to the actions issued by the agent would be significantly
delayed (as well as the reward), introducing a whole new set of problems. Opting to use
more sophisticated filtering, like FIR filters, also entailed similar problems.

It became evident that using msr
VMj

t as a state variable in a virtualized node had
significant limitations. For this reason, it was necessary to introduce usrtimeVMj , which
presented much less noise when measured and presented a better correlation with the memory
allocation.

In order to support this view, we ran several experiments to understand the relationship
between the memory allocation and usrtimeVMj , which resulted in Figure 4.2. This figure
was obtained by running a synthethic benchmark (explained in Section 4.7) with constant
memory allocation and evaluate the Percentage of User Space Time. After evaluating this
chart, there was a strong motivation to replace miss rate related metrics with those related
with Percentage of User Space Time.
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Figure 4.1: Visualizing the noise for the swap out rate measured from a VM with 1GB of
RAM running an application that needs 1.2GB of memory (above), and the Percentage of
User Space Time for the same VM and the same application (below).

Action space, A

The action a
VMj

t chosen for VMj in timestep t is referred to as the VM’s memory bid,
which ranges from -1.0 to 1.0. This definition is identical to the one used for CAVMem. A
positive bid is a request for more memory and a negative bid is to release memory. The

74



4.3 CARLEMM: Continuous Action Reinforcement Learning for Memory
Management

Figure 4.2: Plotting the relationship between memory allocations in MB and the Percentage
of time spent by the processor a VM executing user space processes.

learning agent of a VM requests a total memory allocation equal to (1 + a
VMj

t ) ×MVMj

t .
In many cases, it may not be possible to fully satisfy the request, for instance when there is
insufficient memory for all requests or the memory allocation for the VM would become too
small.

Action Space Exploration

To explore the continuous action domain in CARLEMM, the same approach than CAVMem
was used: implement a Ornstein–Uhlenbeck process [11, 58] to create a noise signal that in
turn generates a Brownian motion around the deterministic action generated by the DDPG
agent. At every timestep, a noise signal is added to the action with a probability of ε.
Similarly to CAVMem, initially there’s a phase of aggressive exploration in which ε = 1.
This probability is annealed [102] until it reaches ε = 0.001 over 18000 steps, whereas in
CAVMem it was reduced over 38000 steps.

Reward function, R

To ensure a balance between the memory usage among the VMs and the memory bid, the
reward function (shown in Equation 4.1) has two parts: (1) the absolute difference between
the Percentage of User Space Time of the VM (usrtimeVMj ) and the target percentage
(usrtimeTgt) and (2) a penalty for making bids of large magnitudes. The first part ensures
that the bids generated by the agent make the Percentage of User Space Time usrtimeVMj

converge to a consistent percentage value (usrtimeTgt) across all VMs, and the latter part
ensures that the agent does not generate large bids in order to improve bidding behavior
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Figure 4.3: Plot of Equation 4.1 showing the the reward as a function of the user space time
percentage and memory bid (both values normalized) of VMj for β = 1.0, k = 1.0.

stability.

(4.1)r
VMj

t+1 = −|usrtimeVMj

t+1 − usrtimeTgtt+1|×k − β × |at|

Both parameters k and β where made equal to 1.0. The target percentage is defined as:

(4.2)usrtimeTgtt+1 =
avgUsrtimet

avgUsrtimet + (1.0− avgUsrtimet) ∗ totalMemUset

In Equation 4.2, totalMemUse determines the total amount of memory used by all VMs
in the node. In turn, the average user space time percentage across all active VMs is defined
as avgUsrtime = 1

N

∑N
j=1 usrtime

VMj .

Figure 4.3 shows the plot for Equation 4.1 for a target percentage value of usrtimeTgt =
0.5. Notice that the maximum value of Equation 4.1 is zero, and it occurs when both
usrtimeVMj = 0.5 and aVMj = 0.0.

4.4 Environment Constraints for Decentralized Control

Figure 4.4 shows a high-level view of the learning agents for the memory management prob-
lem, including the computing node, a module called Bid Analyzer (BA) and the VMs. The
high-level view of the learning agents still remains valid as the one corresponding to CAVMem
in Section 3.3.2.
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Figure 4.4: Diagram of the DDPG learning agents in the Memory Management Problem,
with one learning agent per VM. The real implementation still looks identical to th

4.4.1 Pre-processing Bids for Memory

For the case of CARLEMM, the BA is looked at more closely. The BA checks the bids
coming from the actor neural network of every learning agent before sending them to the
balloon driver. The BA performs a series of high-level control tasks. First, it prevents VMs
for bidding less than the minimum amount they need to function, as well as preventing the
VMs to bid more than the actual memory available in the node. The BA also enforces bid
prioritization for VMs that issue negative bids as an additional optimization.

The BA also performs a bid arbitration process to prevent aggregated overallocation of
memory. Since the learning agents bid for memory independently, this may lead to cases
where one or more agents bid for more memory than the amount available. To prevent
overallocation, we first check if the requested bids exceed the total memory available in the
node using Equation 4.3 (values are not normalized in this equation), where the subscript t
is used to represent a respective variable in a specific timestep.

j=N∑
j=1

[(a
VMj

t + 1)×MVMj

t ] = totalMemUse <= Total Mem (4.3)

In case equation 4.3 is not met when the bids are analyzed by the BA, then an arbitration
process is called to adjust the bids for memory. This process is triggered whenever the
amount of memory available for reallocation i.e. the amount of spare memory in the node
plus the aggregated memory of the current of VMs that will release memory (negative bids),
is smaller than the amount of aggregated memory needed by a subset of VMs that are asking
for memory, then the bids of all VMs that are asking for memory will be readjusted.
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Intuitively, the arbitration process is only required for the VMs bidding positively, as the
remaining VMs either don’t change their memory allocation (zero bid case) or are bidding
negatively. Concretely, equation 6.2 summarizes the arbitration process and the proportional
adjustment process, at time t, for the positive bids.

ā
VMj

t = a
VMj

t × SpareMemoryk∑j=P−1
j=1 (a

VMj

t ×MVMj

t−1 )
(4.4)

where P is the number of VMs that are bidding positively in timestep t, and SpareMemoryk
represents the memory available in the node after processing the negative bids, and is defined
as follow:

SpareMemory = Total Mem−
i=N∑
i=1

M
VMj

t +

j=L∑
j=1

(a
VMj

t )×MVMj

t ) (4.5)

in which L is the number of VMs that are bidding negatively and N is the total number
of VMs..

All the tasks of the BA so far are illustrated in Algorithm 5. In Lines 12–13, the positive
bids and negative bids are separated. The functions responsible of doing so generate two
lists that are keyed with the IDs of each VM. In Lines 15–25, Algorithm 5 calculates first the
de-allocations resulting from the negative bids first in order to obtain the amount of memory
that will be freed. It also checks that the a VMs do not bid less than the minimum allowed,
modifying the potentially offending bids (originally obtained from the Actor neural network
of the DDPG agent) in order to meet this constraint

In Lines 27–33, Algorithm 5 calculates how much additional memory the positive bids
are requesting for. In other words, how much memory is necessary to satisfy all the bids for
memory. Lines 34 and 35 calculate the amount of spare memory in the system (memory that
remains unallocated) and the amount of memory that is possible to reallocate, calculated as
the sum of the spare memory and the memory that has been freed by negative bids.

In Lines 36–38, Algorithm 5 checks if the amount of requested memory exceeds the
amount of re-allocatable memory. In case it does, the Arbitration process is called that
readjusts the positive bids proportionally to the amount of memory in excess, in order to
distribute more fairly the available memory for reallocation. In this way, a degree of fairness
is provided for the memory distribution among the VMs.

Lines 39 and 40 then issue the bids to the Memory Manager (MM, as in previous chap-
ters), so that it can pass it on the balloon driver and the HV. Notice that the negative bids
are issued first, in order for the memory to be released before attempting to request more
memory through the positive bids. It is not necessary to add synchronicity in this step, but
it is an optimization that allows the balloon driver to respond faster.

4.4.2 Heuristic for Assisted Learning

Even though it was shown there is a good correlation between the memory allocations and the
Percentage of User Space Time for cases in which the allocation remains static, the Percentage
of User Space Time still presented responsiveness issues when the memory allocations vary.
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Algorithm 5 Bid Analyzer (BA)

1: Let state be defined as state[VMID] = State, where State is defined as in Section 4.3.1
2: Let actions be a list of the form actions[VMID] = bid, where bid ∈ [−1.0, 1.0]
3: Let pos bids be a list of the form pos bids[VMID] = bid, where bid ∈ [−1.0, 1.0]
4: Let neg bids be a list of the form neg bids[VMID] = bid, where bid ∈ [−1.0, 1.0]
5: procedure Arbitration(actions, spare mem, requested mem)
6: for each vm id ∈ actions do
7: actions[vm id] = actions[vm id]× spare mem

requested mem
8: end for
9: return actions

10: end procedure
11: function bid analyzer(actions, state)
12: pos bids← get positive bids(actions)
13: neg bids← get negative bids(actions)
14: mem to release = 0
15: for vm id ∈ neg bids do
16: bid← neg bids[vm id]
17: Mvm id ← state[vm id].M
18: new alloc← calc new alloc(bid, state[vm id])
19: if new alloc < min alloc then
20: bid← adjust bid(bid, state[vm id])
21: neg bids[vm id]← bid
22: new alloc← min alloc
23: end if
24: mem to release←Mvm id − new alloc
25: end for
26: sum allocs← 0
27: for vm id ∈ pos bids do
28: bid← pos bids[vm id]
29: Mvm id ← state[vm id].M
30: new alloc← calc new alloc(bid, state[vm id])
31: sum allocs← sum allocs+ new alloc
32: requested mem← new alloc−Mvm id

33: end for
34: spare mem← Total Mem− sum allocs
35: realloc mem← spare mem+mem to release
36: if requested mem > realloc mem then
37: pos bids← Arbitration(pos bids, spare mem, requested mem)
38: end if
39: issue bid(neg bids)
40: issue bid(pos bids)
41: end function

This highlighted other problems when attempting to correlate the memory allocations to the
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Percentage of User Space Time. This is analyzed in more detail in Section 4.8.1.
In order to deal with the responsiveness behavior of the Percentage of User Space Time,

a heuristic was introduced to assist the learning agent. This heuristic, which we call Heuris-
tic for Assisted Learning (HAL), was included as part of the action policy of the agent.
Algorithm 6 shows the details of the heuristic.

Algorithm 6 Heuristic for Assisted Learning (HAL)

1: reward array ← []
2: window size← 10
3: function heur learning(reward

VMj

t , stateVMj )
4: usrtimeVMj ← stateVMj .usrtime
5: usrtimeTgt← stateVMj .usrtimeTgt

6: reward← reward
VMj

t

7: action← 0.0
8: if |reward array|== window size then
9: reward array.pop(0)

10: end if
11: reward array.append(reward)
12: avgReward← sum(reward array)/|reward array|
13: if avgReward < −usrtimeTgt/2.0 then
14: if thenusrtimeVMj < usrtimeTgt
15: action← 4.0%
16: else if usrtimeVMj > usrtimeTgt then
17: action← −4.0%
18: end if
19: else
20: action← actor inference(stateVMj )
21: end if
22: return action
23: end function

HAL starts by calculating the average reward obtained in the last ten timesteps of the
execution (lines 7–11), which it accumulates on an array. Once the average reward is calcu-
lated, HAL checks if the avgReward is smaller (that is, more negative) than the negative
of the half of the current User Space Time Target (line 12). This condition means that the
reward is too far away from its maximum, which implies a large deviation from the perfor-
mance target. If such condition occurs, then it proceeds to check if the usrtimeVMj of that
VM is smaller (line 13) or larger (line 15) than the current target, and then generates an
action of 4.0% or -4.0%, respectively (lines 12–18). However, if the avgReward is not in fact
smaller, then the action is generated from the actor neural network of the learning agent
using the state of the VM.

4.5 The Control Flow for CARLEMM

As explained in Section 4.3.1, CARLEMM instantiates a learning agent for each VM, allowing
each learning agent to bid for memory such that the Percentage of User Space Time of its
VM is equal to the target percentage value. Figure 4.5 shows the control flow of CARLEMM
considering all of its building blocks: MM, balloon driver, the bid analyzer, the HV and the
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Figure 4.5: Diagram of the DDPG learning agents in a virtualized node deployed to manage
memory, where each VMj is bound to one learning agent. LA stands for ”learning agent”
in this figure.

learning agents. The learning agent of each VM is implemented as a Deep Deterministic
Policy Gradient (DDPG) algorithm [60].

The state variables for each agent are obtained from the VM it is bound to and the node
in which it is executed. All the values of these variables are obtained through a specialized
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HV interface. The HV used in this implementation of CARLEMM is Xen, which provides a
specialized interface called Xenstore [2], that allows the exchange of information among all
the VMs in the node.

In CARLEMM, every VM runs a process that monitors the state of the VM and outputs
the state information through a location in Xenstore. The MM reads the information from
Xenstore through an API provided by Xen, does some pre-processing on this information
and then sends it to the DDPG learning agents.

Each bid generated by the learning agent is sent to the balloon driver to allocate memory
to the VM. The bid frequency for each agent is constrained by the reaction time of the
balloon driver. This is because the balloon driver is relatively slow to allocate or deallocate,
as explained in Section 1.3 of Chapter 1. To ensure that the requested bid is satisfied, the
MM periodically checks the memory allocated to each VM every time it reads the memory
statistics from Xenstore. In every cycle, the MM makes sure that the last memory allocations
that were issued are met before sending the state information back to the learning agents.
If these target allocations are not met, the MM will count the amount of cycles in which the
target allocations and the real allocations are not met, and after a certain amount of cycles
have gone through, it will transmit the state information back to the learning agents.

This is done so to allow the balloon driver to meet the target allocations before receiving
new targets from the learning agents and issuing them to the balloon driver. It counts the
cycles in order to prevent deadlock, and change the targets in case the balloon driver is
unable to meet them after a certain amount of time. Experimentally, we found that when
the target allocations for the balloon driver are modified too frequently, faster than the time
necessary for the balloon driver to converge to an allocation target, the balloon driver turns
unstable and presents an erratic behavior.

Additionally, the MM also checks the updates done in Xenstore by the monitoring process
inside the VM. This process also generates a field for timestamps, that provides information
on the current and last times that the status information was updated. When the MM reads
the information from Xenstore, it checks whether if the timestamps have increased with the
respect to the previous read before sending the information to the learning agents. This
timestamp verification mechanism is used to guarantee that a state transition has occurred
with respect to the previous timestep, preventing the sampling of the same state multiple
times.

The MM thus implements two control flow mechanisms in the inner loop of the system:
awaiting convergence of the balloon driver and ensuring state transitions by the VMs. Both of
these features are indeed necessary to ensure a correct learning process, but in turn increase
the running time of our experiments significantly.

4.6 Software Stack for CARLEMM

CARLEMM acquires the necessary memory statistics from the Xenstore API [2] provided
by the Xen HV. The software stack for CARLEMM, shown in Figure 4.6, consists of the
HV, the MM and the learning agents which are inside a separate Python process, all within
the privileged domain of Xen. The DDPG learning agents are all implemented using Python
Tensorflow. The communication between the MM and Python process is built using POSIX
sockets.
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Figure 4.6: Diagram of the software stack of CARLEMM in a virtualized computing node.

The interface with the balloon driver is done through the MM, which is written in C. The
MM uses Libxl tools to change VMs’ memory allocation through balloon driver interface.
The Libxl tools are used to send target allocations to the HV layer. To gather the memory
utilization statistics for every VM and other metrics from the HV, the MM periodically reads
data from the Xenstore interface in the HV, for which it used the appropriated API provided
by Xen.

4.7 Experimental Framework for CARLEMM

We evaluated CARLEMM in a platform consisting of one computing node with Xen 4.5
running Ubuntu 14.04 with Linux kernel 3.19 as the OS in every VM. The node has an Intel
i7 QuadCore Processor, 16 GB of RAM memory and 500 GB of storage.

Up until now, we have evaluated the effectiveness of CARLEMM running a series of
experiments with a synthetic benchmark we called ”Constant Memory Stress” (CMS) inside
a VM. This benchmark is designed to stress the memory subsystem by allocating a fixed
amount of memory and periodically performing writes and reads to the allocated blocks.

CMS performs the reads and writes following a Normal distribution across the address
space of the allocated blocks. The parameters of the Normal distribution are specified when
launching CMS. When specifying the mean and the standard deviation of the Normal dis-
tribution, it translates into the CMS process generating memory accesses around an address
that corresponds to the mean with accesses around that region consistent with the standard
deviation. If the memory accesses generated try to access an address beyond the largest or
the smallest addresses, the access is clipped to the corresponding largest or smaller value,
respectively.

In the experiments that we have analyzed so far, we launch one VM running CMS and
setting the usrtimeTgt to a constant value. At this stage, what we are more interested

83



4. DEPLOYING A REINFORCEMENT LEARNING IN A VIRTUALIZED
NODE FOR DYNAMIC MEMORY MANAGEMENT

to see is if the learning agent can learn to meet the performance target as intended, how
long does it take to converge to the target and how well does it achieve this objective. The
experiments were executed for 2000 episodes, where each episode has a 100 steps. The real
time it took for such an experiment to run was of 60 to 72 hours.

The parameters used for the learning agents are shown in Table 4.2. The values used
were the ones who yielded the best results after a series of experiments.

Parameter Value

Actor Learning Rate 0.0001
Critic Learning Rate 0.001
Size of Experience Replay Buffer 10000
Annealing Episodes 180
Hidden Layers 2
Size of First Hidden Layer 64
Size of Second Hidden Layer 64
Activation function of Hidden Layers Relu
Activation function of output layer tanh
Total Episodes 2000
Timesteps per Episode 100

Table 4.2: Parameters for the neural networks of the actor and critic in every learning agent.

For the parameters k and α of Equation 3.10, we have used a value of 1.0 for both of
them, which yielded the best results experimentally. The parameter β is used to drive the
agent into avoiding actions that allocate or deallocate large amounts of memory in a single
timestep. The parameter k acts as a gain factor to the difference between the VMs swap
rate and the target swap rate. This last parameter is used to drive the agent into minimizing
this difference.

4.8 Experimental Results for CARLEMM

4.8.1 Experiments without Using HAL

As explained in Section 4.7, most of the experiments we have run so far using CARLEMM
consisted on running CMS in one single VM with a fixed usrtimeTgt that is equal to 32.5.

The first experiments were run without HAL as described in Section 4.4.2. These first
results showed that the learning agent by itself was not able to learn a good policy, and
would instead get stuck on the minimum and/or maximum values (in this case, maximum),
generating a large percentage of error and failing to learn how to generate useful actions.
Figure 4.7 shows the Percentage of User Space Time and the Memory Allocation for the last
250 episodes of the experiment.

Figure 4.7 shows that the memory remains at its maximum, with a Percentage of User
Space equal to 50.0 (its maximum as well), and it does not adjust whatsoever. The plot
for the reward is also shown, which shows that the agent is unable to maximize the reward
(bring it closer to 0.0) in the timesteps presented.
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(a) Percentage of User Space Time at every Timestep

(b) Memory Allocation at every Timestep

(c) Reward at every Timestep

Figure 4.7: Visualizing the behavior of the Percentage of User Space Time, memory allocation
and the Reward at each Timestep according to Equation 4.1, for a VM running CMS over
the last 250 epidodes.
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In order to provide more insight on the behavior of the learning agents of CARLEMM,
Figure 4.8 shows four histograms in which the bins are the values of the Percentage of User
Space Time rounded to the nearest integer. The bins are generated by sampling data ga-
thered from CARLEMM in five consecutive episodes at different stages during the execution.
The first histogram is taken around the 500th episode, the second is taken around the 1000th
episode, the third one is taken around the 1500th and the fourth one is taken a bit before
the 2000th episode, which is near the end of the experiment.

(a) Histogram sampled from the initial stage of
learning.

(b) Histogram sampled from the second stage of
learning.

(c) Histogram sampled from the third stage of
learning.

(d) Histogram sampled from the last stage of learn-
ing.

Figure 4.8: Histograms for the Percentage of User Space Time without HAL sampled at 500
episode intervals from the beginning until the end of the execution.

Notice that in Figure 4.8(a), the Percentage of User Space Time is mostly at zero, and in
the subsequent histograms it moves toward the maximum value, which corresponds to the
results observed in Figure 4.7. Different targets were tried and different parameters for CMS
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inside the VM, but the results were fairly similar and consistent.

(a) Percentage of User Space Time corresponding to specific memory
allocations

(b) Memory Allocations Decreasing at very controlled intervals

Figure 4.9: Analyzing the temporal response of the Percentage of User Space Time to vari-
ations in Memory Allocations.

The reason why the agent failed to learn in these circumstances is related to the way
the Percentage of User Space Time responds to the variations on the memory allocation.
Figure 4.9 illustrates this, by plotting in Figure 4.9(a) the time response of the Percentage
of User Space Time to the corresponding variation of the Memory Allocation, shown in
Figure 4.9(b), for the same timestep.

Notice that the memory allocated is reduced twice very slightly. During the first reduc-
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tion, around 300th timestep, the Percentage of User Space Time remains at its maximum,
meaning that the VM is executing its applications without any interruptions. But in the
second reduction, at the 400th timestep, which is not a very significant drop, the Percentage
of User Space Time drops to zero and then it increases slowly until it becomes stable around
a value of 35%.

The second reduction of memory created a situation in which data previously allocated
by a process inside the VM had to evicted from memory, because the new allocation was
not enough to fit all the data in. This situation triggered an I/O operation to the swap
device, which interrupted the execution of the application, thus reducing the Percentage of
User Space Time abruptly. This abrupt reduction occurs even if the amount of data evicted
was not very significant or even if the data evicted did not belong to CMS (a possibility, if
there are other processes inside the vM).

However, the Percentage of User Space Time regains slowly in value as the data it gener-
ated starts to be read from disk replacing data that is accessed with less frequency, allowing
the Percentage of User Space Time to adjust to a value that is better correlated to the
memory allocation. The main problem with this behavior, is that it takes more than 600
timesteps to reach the stable value, which makes it difficult for the learning agent to capture
the correlation between the Percentage of User Space Time, the memory allocation and the
rest of the state variables.

Therefore, we concluded that we needed to add some heuristic to compensate for the
behavior of the Percentage of User Space Time, and assist the learning process to prevent
the agents from getting stuck on extreme values and approximate better the relationship
between the Percentage of User Space Time and the rest of the state variables.

4.8.2 Experiments Using HAL

Figure 4.10 shows the same experiment, where there is one VM executing CMS with usrtimeTgt =
32.5, but this time enabling HAL, which is described in Section 4.4.2.

Notice that in the case of Figure 4.10(c), the values of the reward are able to reach their
maximum towards the end of the run, but with some instability in the way the allocations
are issued, as shown in Figure 4.10(b). Notice the Percentage of User Space Time presents
the behavior explained in the previous section, but with the help of HAL, the agent is able
to approximate its value to the desired target.

To reinforce this claim, Figure 4.11 shows four histograms in which the bins are the
values of the Percentage of User Space Time rounded the nearest integer, and notice how
the values approximate the desired target. This is clear proof that CARLEMM is able to
learn to approximate the desired performance target, but does not do it perfectly.

Notice that in the last histogram shown in Figure 4.11(d), the agent is able to approximate
the desired performance target very closely towards the end of the experiment, but with still
some inaccuracies and instability.

The results with HAL work better because HAL prevents the learning agent to contin-
uously bid around values that keep Percentage of User Space Time away from its extreme
values. Due to the lack of immediate correlation between the Percentage of User Space Time
and the memory allocation, it is necessary to ensure that the memory allocations remain
around certain values that allow for Percentage of User Space Time to become more re-
sponsive, thus improving the correlation relationship with respect to the memory allocated,

88



4.8 Experimental Results for CARLEMM

(a) Percentage of User Space Time at every
Timestep

(b) Memory Allocation at every Timestep

(c) Reward at every Timestep

Figure 4.10: Visualizing the behavior of the Percentage of User Space Time, memory allo-
cation and the Reward at each Timestep according to Equation 4.1, for a VM running CMS
over the last 250 episodes with HAL enabled.

therefore improving the learning possibilities of the agent.

Even with the introduction of HAL and the improvements of the learning agent, it still
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(a) Histogram sampled from the initial stage of
learning.

(b) Histogram sampled from the second stage of
learning.

(c) Histogram sampled from the third stage of
learning.

(d) Histogram sampled from the last stage of learn-
ing.

Figure 4.11: Histograms for the Percentage of User Space Time with HAL enabled, sampled
at 50 episodes interval from the beginning until the end of the execution.

presents some instability and it takes around 72 hours just to learn to approximate the
scenario with a constant target of usrtimeTgt = 32.5. Arguably, by letting the learning
process run for longer, it is possible that it could have been refined and approximate the
value better. However, more experiments are still pending, specially those with variable
target.

4.9 Related Work

Many RL-based solutions have been proposed to solve the resource allocation problem in
cloud infrastructures [13, 87] but so far, there have not been too many efforts that use
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RL to exclusive solve the memory management problem, and much less continuous action
RL solutions. Many of the related work for CARLEMM overlaps with the related work
CAVMem [37].

As explained in the beginning of this chapter, the design or CARLEMM is based on
the conclusions obtained from CAVMem [37]. However, when deploying a continuous action
RL agent in a real virtualized node, different constraints have to be considered due to the
dynamics of the computing node. For example, some of the constraints that can be mentioned
are the responsiveness of the balloon driver, the times of convergence and state transitions
for the VMs, the definition of the state of a VM (that can be defined with different sets of
variables) and other issues related to control flow of the computer system.

4.10 Conclusions for this Chapter and Future Work

This chapter proposed a method for dynamic memory allocation for virtual machines (VMs)
called CARLEMM that applies continuous action RL, based on the proof-of-concept pro-
vided by CAVMem [37]. As it was the case with CAVMem, CARLEMM addresses two key
drawbacks of prior work. Firstly, it uses continuous action RL, which avoids the unnecessary
limitations introduced by discretization. Second, it formulates the problem in a distributed
way, i.e. with one agent per VM, which supports an arbitrary number of VMs as well as the
starting and stopping of VMs.

The most important contribution of CARLEMM presented in this chapter is that it is the
first known attempt to deploy a continuous action RL agent to solve the memory allocation
problem. The constraints and the limitations of the real system are way more compli-
cated than in the simulated environment used in Chapter 3, but our experiments showed
an important progress in CARLEMM’s to approximate the performance targets somewhat
reasonably. However, for future work, more experimentation and revision is necessary to
make CARLEMM work for more general cases and more reliably.
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Chapter 5

Aggregating and Managing
Memory Across Computing Nodes
in Cloud Environments

In the chapters so far, this thesis has focused on the memory management problem within a
single virtualized node. Some mechanisms were developed for RAM and Tmem, but still the
mechanisms for cross-node memory aggregation have not been described, which was initially
the main purpose of this thesis work.

In this chapter, we introduce the first of two mechanisms that were developed to achieve
this. The first of these mechanisms is called GV-Tmem (acronym for Globally Visible Tran-
scendent Memory, as previously stated), which was the first effort to enable remote memory
capacity sharing across a cloud infrastructure. GV-Tmem provides a more simplified version
of a more thoroughly designed mechanism called vMCA, introduced in Chapter 6

When a cloud infrastructure is able to support sharing of memory capacity across nodes,
memory becomes a global resource, enabling the accessibility of each node to a large pool
of memory that could be instrumental to avoid costly swaps or VM migrations. GV-Tmem
achieves this by exploiting Tmem and uses a user-space process to manage the memory
available to a node. This user-space process is also in charge of distributing the aggregated
memory across the computing infrastructure.
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5.1 Introduction to GV-Tmem

Current data centres use large numbers of servers provisioned with their own computing
resources. These servers are designed to share none of their resources, and they communicate
over an Ethernet (or similar) network. Newer system architectures, such as Euroserver [26]
try to improve over this resource isolation approach, allowing servers to share their resources
through the memory address space. These systems provide a shared global physical address
space, accessing memory at low latency using very fast interconnects. In these systems, the
computing nodes of the infrastructures are seen as coherence islands, and each of these have
their own cache coherency enforced locally, with no global hardware coherence.

Even in infrastructures with these features, each node has its own HV which distributes
the node’s memory among one or more VMs. The demand for memory resources generated
by the VMs varies over time due to the different workloads they execute. To improve uti-
lization of the memory capacity of the node, physical memory is often overcommitted, which
causes a VM to have less memory than the amount it was configured with at boot time. As
in mentioned in Chapter 1.1, the physical memory given to a VM is usually adjusted using
memory ballooning, memory hotplug or Tmem [69].

This chapter presents a mechanism, called GV-Tmem, that illustrates the first extensions
to a state-of-the-art hypervisor to enable the sharing of memory capacity across nodes in a
cloud computing infrastructure. GV-Tmem introduces changes to the hypervisor, keeping it
small and self-contained. Most of the complexity is in a user-space memory manager process
running in the privileged domain that supports memory management policies and inter-node
communication. Our main contributions in this chapter are:

1. A software architecture to aggregate memory across nodes using Tmem.

2. A two-tier mechanism for allocation and management of aggregated memory.

The rest of the sections in this chapter are organized as follows. Section 5.2 gives the
necessary background to give a sound context to GV-Tmem. Section 5.3 explains GV-
Tmem. Section 5.4 describes the experimental methodology and Section 5.5 shows our
results. Section 5.6 compares with related work and Section 5.7 concludes the paper and
outlines future work.

5.2 Background for Remote Memory Aggregation

This section recaps on virtualization and memory management in cloud data centers, high-
lighting the most relevant aspects of each to build GV-Tmem. It also recaps on Xen’s Tmem
and outlines the hardware characteristics that GV-Tmem exploits. This section is important
to understand both the contributions of this chapter and the next.

5.2.1 Virtualization In Cloud Computing Infrastructures

There are many cloud service models available in the industry, such as SaaS (Software-as-
a-Service), PaaS (Platform-as-a-Service) and IaaS (Infrastucture-as-a-Service). Considered
one of the most important, IaaS allows users to dynamically access a configurable (seemingly

94



5.2 Background for Remote Memory Aggregation

unlimited) pool of computing resources. In IaaS, the customers share the underlying hard-
ware computing resources of the cloud infrastructure in a transparent way. These sharing of
resources is possible by deploying commercially available HVs such as Xen [10], KVM [41]
or VMWare [74].

As explained in previous chapters, the HV virtualizes the computing resources of the
node, creates VMs and allocates memory for them. The HV is able to overcommit memory,
and there are cases in which a VM may be over-provisioned or under-provisioned with mem-
ory, both conditions which are undesireable. To prevent these cases, HVs have mechanisms,
like ballooning, hotplug and Tmem, that enable it to reallocate memory using high-level
policies [35, 15, 37].

However, when the memory demand keeps increasing, at some point the memory available
on the node won’t be enough to ensure an acceptable performance for the applications
running inside the VMs. When this occurs in a cloud infrastructure, some of the VMs that
are creating the memory load in a node will either face a large performance drop (because
they are blocked from execution or they are generating a large amount of swap operations)
or will be migrated to a different node that can handle the memory load better. Even
though migration will be preferred in most cases, the reality is that both of these situations
(swapping or migration) compromise the performance of the applications inside the VMs
and consume a significant amount of energy.

Another alternative to migration or costly swap operations, would be to allow for the
nodes to pool their memory resources (at least partially) through their address space, dis-
aggregating the memory from a node and allowing it to be aggregated to any node in the
infrastructure in a more flexible way.

As we have mentioned, the HVs provide mechanisms for dynamic memory management,
like memory ballooning and memory hotplug, but the interfaces provided by these mecha-
nisms are not very well-suited for aggregation of memory capacity across nodes, because the
memory that is made available to the VMs as RAM (as it would be through ballooning or
hotplug) imposes important constraints on the coherency and consistency of that memory.
On the other hand, Tmem provides a more flexible interface to aggregate memory across
nodes and even for its use in heterogeneous memory hierarchies. However, for a mechanism
to aggregate memory across nodes to become viable and more attractive than just letting a
VM do swap operations or migrate, the hardware needs to have certain features.

5.2.2 Hardware Support in Virtualized Nodes for Remote Memory Ag-
gregation

In systems such as Venice [24] and EUROSERVER [26] (based on ARM processors), the
processors in each node are connected in clusters via a local cache-coherent interconnect to
local resources. In particular, the Euroserver architecture implements the UNIMEM (Unified
Memory) model [26]. Figure 5.1 illustrates how UNIMEM works.

Systems that are based on UNIMEM usually consist of N processor cores (6 to 8 in cur-
rent implementations), grouped in clusters connected via a local cache-coherent interconnect
to local DRAM and I/O devices. Remote memory is visible through the global physical
address space, and the inter-node interface together with the global interconnect supports
communication among the nodes, routing the remote memory accesses to the appropriate
node.
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Processor N
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Figure 5.1: UNIMEM architecture with two nodes i.e. two coherence islands

There are other architectures that are also based on similar principles to UNIMEM but
using different memory models, such as dRedBox [49] and Beehive [106]. The essential
characteristics of all of these architectures are:

• Each node executes its own server stack, including hypervisor and OSs.

• Global physical memory address space with low-latency access.

• Routing is based on the global physical address (e.g. high-order bits).

• Fast communication is provided across the nodes of the system, bypassing traditional
network protocols (e.g. TCP/IP).

5.3 GV-Tmem Design

The GV-Tmem stack consists of three software components:

• Extended Xen HV for GV-Tmem (Section 5.3.1)

• Tmem Kernel Module in the kernel of all domains to support GV-Tmem (Section 5.3.2)

• Memory Manager (MM) in user space in Dom0 for GV-Tmem (Section 5.3.3)

5.3.1 Xen Hypervisor with Extensions for GV-Tmem

As was the case for SmarTmem in Chapter 2, it was necessary to extend a state-of-the-
art VH (Xen in this case as well) in order to support GV-Tmem. The HV extensions for
GV-Tmem are minimum and localized in the Tmem subsystem. First, the HV enforces the
memory allocation constraints determined by the MM. Second, it allocates and deallocates
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physical pages and passes ownership of blocks of pages in and out of the HV. Third, it collects
information of Tmem utilization that it sends to the MM, similar to SmarTmem presented
in Chapter 1.1.

Enforcing Local per-VM Memory Constraints

The HV constrains the local and remote Tmem consumption of its VMs, based on the
allocation determined by the MM. The MM specifies the maximum number of pages a VM
can use, but it does not differentiate between the amount of local or remote Tmem pages.

Page Allocation and Transfer of Ownership

GV-Tmem ensures that each physical page is owned by at most one HV. Tmem pages owned
by a HV are allocated using a zoned Buddy allocator, with a zone for each node from which
it has ownership of at least one page.

A Tmem put operation allocates the closest free page from the allocators. Thus, it will
preferably allocate a local page to a remote page. A Tmem flush operation causes a page to
be returned to the corresponding Buddy allocator, regardless if the page is remote or local.
In order words, a flush of any kind does not change the ownership of the page.

A Grant hypercall is used when the MM receives ownership of a list of blocks, where
each block is appropriately-aligned to power-of-two number of pages. These are added as
free blocks to the appropriate Buddy allocator. In contrast, a Request hypercall is used to
release ownership of pages on behalf of another node.

Memory Statistics Gathered in GV-Tmem

The HV collects information about the Tmem utilization of the VMs. More specifically, the
HV monitors:

• Number of active VMs

• Amount of total Tmem capacity available to the HV

• Amount of Tmem capacity in use by each VM

• Number of put, get and flush operations of each VM

• Number of failed put operations of each VM

The information gathered needs to be minimized in order to avoid excessive communica-
tion overheads between different contexts of execution, which result when multiple page-copy
operations take place from the HV to the user-space MM. The HV sends this information to
the MM approximately every second by issuing a custom virtual interrupt request (VIRQ)
to the privileged domain. The TKM (Section 5.3.2) captures the interrupt and forwards the
information to the MM
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5.3.2 Tmem Kernel Module (TKM) for GV-Tmem

The TKM in this case performs a similar function as its counterpart for SmarTmem in
Chapter 2.2.3, and it is also an extension of the baseline state-of-the-art TKM present in
current Linux kernels which only provide basic support Tmem. In most of the VMs, the
TKM acts as an interface between the VM and the underlying Tmem support in the HV.
But in the privileged domain (Dom0), the TKM acts as an interface between the HV and
the node’s MM using netlink sockets.

The TKM needs to be extended with respect to the case of SmarTmem to support the
different commands configured and implemented in the MM and the different hypercalls in
the HV.

5.3.3 Dom0 User-space Memory Manager for GV-Tmem

The MM was created from scratch, as it was the case for SmarTmem in Chapter 2, and
bears most of the functionalities to support GV-Tmem. Each node has a user-space MM in
Dom0. The MMs perform most of the work of GV-Tmem by cooperating to:

1. Distribute memory owned by each node among its guests

2. Distribute global memory capacity among nodes

3. Implement the flow of page ownership among nodes

4. Enable nodes to join and leave, and handle failures

Most of the complexity of GV-Tmem has been kept in the MM. This has been designed
in this way for the same reasons explained in Section 2.2.4 for the case of SmarTmem.
Moreover, there is an additional restriction for the case of GV-Tmem (and for vMCA as
well): GV-Tmem has to support communication with different MMs across remote nodes,
which is implemented as TCP/IP sockets (not through the partial global physical address
space). Adding socket communication support in the HV entails a series of complications,
which may yield an over-grown and insecure HV.

Joining the GV-Tmem System

There is one MM Master (MM–M) that controls the system and distributes the global mem-
ory capacity. The messages passed among the MMs are listed in Table 5.1. Every node
requires a configuration file, which provides the network addresses of all nodes, their map-
pings to a node ID and credentials to establish secure connections. When a node R wishes
to join the GV-Tmem system, it sends Register to the MM–M (see Table 5.1), which enables
the node to partake in the memory resource pool created across the infrastructure.

Distributing Memory Owned by a Node Among Guests

The local MM determines the maximum number of pages for each VM. This is done using
a policy that determines this maximum based on the statistics received from the HV. This
is the first tier of the memory management strategy. Pages are distributed subject to a
memory consumption limit, set by the MM–M using the Mem-Limit hypercall.
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Command Direction Description Slave
state

Distribution of global memory capacity
Statistics(S) SL→MT Send node statistics S to Master A
Grant-Any(n, x) SL→MT Request grant of n pages to slave x A
Grant-Fwd(n, x) MT→SL Forward request of n pages to y from x A
Force-Return(x) MT→SL Return pages located at x and disable it A
Mem-Limit(n) MT→SL Limit allocated pages to store local data A

Flow of page ownership
Grant(b, · · ·) SL/MT→SL Transfer ownership of blocks of pages A

Node state changes
Register SL→MT Register a new node I→A
Leave-Req SL→MT Node requests to leave or shutdown A→L
Leave-Notify MT→SL MM–M notifies that the recipient has left L→I
Enable-Node(x, e) MT→SL Accept (e = 1) or reject (e = 0) pages at x A

Table 5.1: MM message types. SL: slave, MT : master, I: Inactive, A: Active, R: Recovery,
L: Leaving

Distributing Global Memory Capacity Among Nodes

Nodes in the Active state, regularly send Statistics messages to the MM–M. These messages
consist of the statistics gathered by the HV of each node and information regarding the
utilization and requests for remote memory of the node. In this way, the MM–M has a
general view of the status of each node from a perspective of memory utilization.

Based on these statistics and the global memory policy, the MM–M redistributes the
memory among nodes when it receives a new Grant-Any message, which is a request to
transfer ownership of a number of free physical pages to a node that requested memory. The
MM–M can forward the request to another node by sending a Grant-Fwd message or give
some of its pages to the requesting node. This is the second tier of the memory management
strategy.

Implementing Flow of Page Ownership

The MM–M rebalances Tmem capacity, without knowing the physical addresses of the pages.
Ownership of physical pages is transferred in a peer-to-peer way using Grant messages, which
passes a list of blocks of addresses, each an appropriately-aligned power-of-two number of
addresses of physical pages.

Once a node is granted ownership of remote pages, it has exclusive access to them, and
it is free to allocate these pages to store data on behalf of its VMs. The other nodes in the
system, including the donor node, will not perform any reads or writes to those pages, since
a page can be owned by only one node at a time. Thus, there is no need to order writes
among multiple nodes.

With this way of distributing memory, the OS inside VMs is oblivious to the amount
and location of the Tmem pages, only the HV has a clear view of these details. The VMs
are able to store any data that its VMs attempt to swap to disk, without any constraints
regarding the nature of the data.
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Leaving the GV-Tmem System

To cleanly shutdown a node R that is in GV-Tmem, the following procedure must be followed.

1. Node R sends a Leave-Req message to the MM–M.

2. Upon receiving the Leave-Req, the MM–M sets the node to Leaving state and sends
Force-Return(R) to all nodes. The nodes return the pages at R that they own and will
reject any pages received in future Grant messages.

3. Node R frees all pages used by Tmem and returns ownership of all remote pages to
their home nodes.

4. Periodically, each node sends Grant messages to node R to return ownership of the
pages that it had borrowed.

5. Once the MM–M has received Statistics messages from all nodes indicating that R is
disabled and that it owns no pages at R, the MM–M moves R to Inactive and sends
Leave-Notify to R.

6. At this point, the node R may shutdown.

5.3.4 Hardware Support for Memory Aggregation

As it was explained in Section 5.2.2, GV-Tmem is suitable to exploit the functionalities of
UNIMEM-based architectures such as Euroserver [26], that possess certain hardware char-
acteristics. Coupling these hardware features, with a virtualization layer and the software
stack provided by GV-Tmem, we can enumerate in a clearer way the requirements that the
underlying virtualized node needs to provide in order fo fully support GV-Tmem:

1. A fast interconnect, providing a synchronous interface across the system.

2. Direct memory access from the HV to all the memory available. Memory accesses from
the HV could be either through load/store instructions or RDMA, bypassing TCP/IP
or similar protocols that require OS functionality.

3. Remote access to a node’s pages is disabled on hardware boot. Access is enabled only
when the node joins GV-Tmem by sending the Register message.

4. Given a physical address, it must be possible to extract the Node ID i.e. identify each
node and route packets toward it.

5.3.5 Putting Everything Together

So far we have described the elements of the software stack of GV-Tmem and the hardware
features it exploits for its correct functionality. We have described the message passing
between the nodes and the procedures necessary to enable the pooling of memory resources.

Once every node inside the infrastructure implements the GV-Tmem software stack, they
will be able to take part in the pooling of memory capacity. Figure 5.2 shows the architecture
of a GV-Tmem system fully deployed.
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Figure 5.2: A diagram of the architecture of a GV-Tmem system fully deployed.

Figure 5.2 presents nodes ”i”, ”j”, ”k”, where node ”k” has the MM–M, with the respec-
tive communication links across the privileged VMs of every node, in which the corresponding
MM is running. Every node implements the software stack and the functionalities for every
component. The software stack for node ”k” was omitted only on the figure for simplicity.

As it can be seen, this is very complex architecture with a lot of moving parts. It also
has similarities with the architecture presented in Chapter 2 for SmarTmem. Even though
the building blocks (HV support, a specialized kernel module and a user-space process) are
seemingly common components between SmarTmem and GV-Tmem, the design of the func-
tionalities and interfaces within each component vary dramatically, enabling the architectures
to solve different issues, making them into totally different contributions altogether.
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Node CPU Frequency Memory

Node 1 AMD FX Quad-Core 1.4 GHz 6 GB
Node 2 Intel Core i7 2.10 GHz 8 GB
Node 3 Intel Xeon 2.262 GHz 64 GB

Table 5.2: Hardware characteristics of the nodes used to evaluate GV-Tmem

Scns. VM Parameters Description

Scn. 1 VM1, VM2: 768 MB RAM, 1
CPU; VM3: 1 GB RAM, 1
CPU

All VMs execute in-memory-analytics, sleep 5
seconds and then execute it again.The data set
used is from [43].

Scn. 2 VM1, VM2, VM3: 512 MB
RAM, 1 CPU

VM1 and VM2 execute usemem, and VM3 starts
when VM1 allocates 640 MB.

Scn. 3 VM1, VM2: 512 MB RAM, 1
CPU

Every VM executes graph-analytics once. They use
the dataset provided by [93], [92], [91].

Table 5.3: List of scenarios used to evaluate GV-Tmem

5.4 Experimental Methodology

We tested GV-Tmem in a platform consisting of three nodes, which is consistent with
UNIMEM-based architectures that currently have 4 to 8 nodes, with 6 to 8 processor cores
per node [26].

Every VM runs Ubuntu 14.04 with Linux kernel 3.19.0+ as the OS, and Xen 4.5. The
MMs in the nodes communicate using Ethernet TCP/IP sockets. Node 2 acts as the Master
node and executes no VMs. Table 5.2 summarizes the hardware properties of the nodes.

The shared global address space was emulated using the node’s local memory. Remote
access emulation was the best choice in order to offer the possibilty to analyze the impact of
the latency of the interconnect on the memory aggregation and management mechanisms.
However, the analysis of the impact of latency and non-uniform latencies is out of the scope
of GV-Tmem for now. We modified Xen to start up using a portion of the physical memory
capacity, equalling the emulated memory capacity of the node. The rest of the node’s
memory capacity was reserved to emulate remote data storage. Whenever the HV performs
an emulated remote access after remote memory becomes available, we add a delay in the
HV lasting 50 µs to model hardware latency.

We evaluate GV-Tmem using CloudSuite 3.0 [31] and a microbenchmark we designed
called usemem that was also used for the evaluation of SmarTmem, as mentioned in Sec-
tion 2.3. We execute at most three DomUs simultaneously, and refer to each set of DomUs
as a scenario (or Scn). Table 5.3 shows the scenarios used. For Scenarios 1 and 3, all nodes
have 1 GB of Tmem capacity. For Scn. 2, Node 2 has 1 GB of Tmem, while Nodes 1 and 3
have 384 MB.

As it was with the case of SmarTmem in Chapter 2, the scenarios created here, the
configurations of the VMs and the datasets were chosen in order to generate a considerable
amount of memory pressure within the VMs, generating memory footprints two or three
times of their initial memory capacity [100].
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5.5 Results

This paper uses three memory management policies:

• greedy-local: Default policy used in Tmem with only local memory, which gives
memory away on demand. No maximum values are set to limit the amount of memory
taken by a VM.

• greedy-remote: An extended version of greedy-local using remote memory.

• TTM: A two-tier memory management strategy that allocates memory locally for each
VM (first-tier) depending on the node’s statistics, and issues requests for remote mem-
ory (second-tier) depending on the perceived memory pressure. The pages allocated
and deallocated to a VM are increased by a percentage %P of the pages owned by the
node (local or remote).

5.5 Results

5.5.1 Results for Scenario 1

Figure 5.3 shows the average running times of each VM for Scn. 1. The running time
improves by an average of 19.4% and 23.5% in nodes 1 and 3, respectively, when going from
greedy-local to greedy-remote. When implementing TTM with P = 2.0%, there is further
improvement of 6.0% and 4.0% over greedy-remote, demonstrating the need to implement
memory management policies when there is significant memory pressure.

a) Node 1 b) Node 3

Figure 5.3: Running time for Scn. 1 in nodes 1 and 3. Time is in seconds (less is better).

Figure 5.4 shows the amount of Tmem capacity that each VM is able to use for the three
policies mentioned in node 3. With greedy-local (Figure 5.4(a)), VM3 in both iterations can-
not obtain a fair share of the available Tmem capacity. With greedy-remote (Figure 5.4(b)),
the VMs are able to get more total Tmem, but because of the lack of memory management
policies, some VMs are unable to obtain a fair share of Tmem. With TTM (Figure 5.4(c)),
every VM is ensured a fair amount of the available Tmem, demonstrating that TTM is able
to ensure fairness regarding the VMs’ allocation of Tmem, improving the running times.

Similar as it was defined in Section 2.4, fairness is define qualitatively as being equivalent
to all the VMs having an equal proportion of the available Tmem because of the amount of
memory pressure they impose on the node.
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c) TTM (P=2.0%)b) greedy-remotea) greedy-local

Figure 5.4: Tmem capacity (nod-tmem) obtained by every VM in node 3 for Scn. 1. The
label target-VM3 refers to the target allocation of VM3.

a) Node 1 b) Node 3

Figure 5.5: Running time for Scn. 2 for nodes 1 and 3.

5.5.2 Results for Scenario 2: the Usemem Scenario

The average running times for Scn. 2 are shown in Figure 5.5. When enabling greedy-remote,
VM3, VM2 and VM1 reach an average performance improvement of 63%, 20% and 13%
respectively. When TTM is enabled, VM3 shows a maximum and minimum improvement of
27% and 5.5% in node 1, respectively, and a maximum and minimum improvement of 51%
and 9.3%, respectively, in node 3. However, VM1 and VM2 both experience a performance
loss.

Figure 5.6 shows the remote memory capacity that each VM is using for the three policies.
Figure 5.6(a) shows that VM3 struggles to obtain memory pages using greedy-remote. This
is similar to the case in Figure 5.4(a), in which the VM3 was unable to reach its fair share
of Tmem. With TTM, VM3 obtains a larger amount of Tmem, improving its performance.
Here, VM3’s improvement comes at the expense of VM1 and VM2, balancing the Tmem
pages every VM can have.

5.5.3 Results for Scenario 3

The average running times for Scn. 3 are shown in Figure 5.7. In this case, node 1 improves
by a maximum and a minimum of 92.3% and 92.1%, respectively, when comparing greedy-
local to greedy-remote. When enabling TTM, it improves by a maximum and a minimum
of 6.0% and 0.9%.
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5.6 Related Work

c) TTM (P=2.0%)a) greedy-local b) greedy-remote

Figure 5.6: GV-Tmem: Tmem capacity (nod-tmem) obtained by every VM in node 3 for
Scenario 2.

a) Node 1 b) Node 3

Figure 5.7: Running time for Scn. 3 for nodes 1 and 3.

In node 3, there’s a maximum and mininum improvement of 84.4% and 83.1% when
comparing greedy-local to greedy-remote. However, performance degrades by 10% with
TTM compared to greedy-remote. When enabling TTM, the VMs require more memory but
TTM enforces limits, although flexible, on the memory they can take, similar to what occurs
in Scn. 2 for VM1 and VM2. When disabling TTM, the VMs take memory unrestrained thus
performing slightly better than TTM. This highlights the need for more adaptive memory
management policies.

5.6 Related Work

Zcache [68] is a backend that provides a compressed cache for swap and clean filesystem
pages. RAMster [68] is an extension of zcache that uses kernel sockets to store pages in
the RAM of remote nodes. In contrast, GV-Tmem grants and releases blocks of pages at
greater granularity, reducing the amount of software communication between nodes, since
we exploit the shared global address space. RAMster is implemented in the kernel whereas
our approach uses a user-space process in a privileged VM, providing greater flexibility for
memory management.

RAMCloud [82] is a POSIX-like filesystem in which all data is stored in DRAM across
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nodes, placing the data in one or more nodes, introducing issues of global coherency and
exclusivity of access. GV-Tmem aggregates memory exploiting a global shared address space,
without requirements for global coherency. Hecatonchire [104] achieves resource aggregation
by decoupling virtual resource management from physical resources. It uses a mediation layer
that arbitrates how applications access resources. We differ from [104] by making memory
available to the hypervisor through a user-space process.

In [12], Bielski et al. propose a mechanism to extend the amount of memory of the
VMs without relying on the ACPI standard support. They use a custom driver to allocate
memory buffers for the VMs that abstracts the actual memory locations, allowing for memory
to be provided by a local or remote node, allowing the VMs to access disaggregated memory
transparently. They exploit memory ballooning capabilities and to increase the memory
limits beyond the upper-bounds, they employ memory hotplug. Our work differs from [12]
mainly in the fact that our mechanism for memory addressing memory remote (or even
locally) relies on the shared address space and the additional level of indirection provided by
the HV, which means that we don’t require a special allocator to address remote memory.

In [40], Gu et al. proposed a mechanism called INFINISWAP that works as a remote
memory paging mechanism by introducing a custom block device that is used as swap space.
It devides the swap space of each machine into many slabs and distributing them across many
machines’ remote memory, and it relies on RDMA network for low-latency networking. This
approach is somewhat similar to GV-Tmem in which our work accesses remote memory
through the block device interface of the kernel, but it leverages Tmem (hypervisor-level
caching) instead of implementing a customized block device exposed to the HV.

5.7 Conclusions for this Chapter and Future Work

This chapter introduced GV-Tmem, a method that exploits Tmem to share memory capacity
across multiple nodes. We evaluated GV-Tmem using CloudSuite, obtaining up to 51% per-
formance improvement using simple memory management policies. The results demonstrate
the effectiveness of GV-Tmem.

Future work will investigate how to integrate GV-Tmem with other resource management
mechanisms of other cloud software. It is also necessary to develop more sophisticated two-
tier global memory management policies, in order to improve adaptability and responsiveness
to changes in memory demand. Aspects of resiliency fault tolerance also need to be addressed
and aspects regarding the efficiency and optimal use of the available Tmem capacity. Both
of these issues will be addressed on Chapter 6
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Chapter 6

vMCA: Memory Capacity
Aggregation and Management in
Cloud Environments

The problem of aggregating memory across nodes has a lot of implications. Besides exploit-
ing the interconnection infrastructure and the capabilities of Tmem, it is also necessary to
address issues related to the status of each node, the potential of memory leaks, the efficient
use of Tmem capacity, among other issues.

This chapter presents a memory capacity aggregation mechanism for cloud environments
called vMCA (Virtualized Memory Capacity Aggregation) based on Xen’s Tmem. This
solution is an an extension of GV-Tmem presented in Chapter 5.

vMCA distributes the system’s total memory globally across multiple nodes with special
considerations to the distrubtion of Tmem within a node, similar to SmarTmem presented
in Chapter 2, but extended as well to consider the presence of remote memory.
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6.1 Introduction

As explained in Section 5.1, cloud data center environments are built using “share nothing”
servers, each provisioned with their own computing resources, communicating over a TCP/IP
(or similar) network. New system architectures [70, 24, 49], however, have been proposed that
present a shared global physical address space and use a fast interconnect to share physical
resources through the memory hierarchy. An example is the UNIMEM (Unified Memory)
memory model, which is an important feature of the “EuroEXA” family of projects [70, 89].
In such systems, remote memory is addressable at low latency using Remote DMA and/or
load/store instructions. Cache coherency is only enforced inside a node (a coherence island),
which avoids global coherence traffic and enables scalability to large numbers of nodes.

GV-Tmem and vMCA are developed considering this same framework related to the
hardware architectures of the node. Both of these contributions are designed using Tmem
in order to exploit two key capabilities of UNIMEM-like architectures: the shared global
(across the cloud infrastructure) physical address space and the fast interconnects. In the
contributions presented in this and Chapter 5, we have added the virtualization layer (the
HV, basically) to leverage these hardware capabilities in a more flexible way, without requir-
ing modifications to the commercially available OSs and runtime systems. In this way, the
new hardware architectures can be used and different OSs can be deployed in a transparent
way to the application and kernel developers. However, there are some important differences
between GV-Tmem and vMCA.

This chapter describes vMCA (virtualized Memory Capacity Aggregation), an extension
of Xen’s Tmem that leverages virtualization software and a global address space to allow the
whole system’s memory capacity to be shared among nodes. vMCA extends and improves
upon an earlier proposal known as GV–Tmem [36], in order to handle resiliency, and with
a deeper discussion and improvements of the memory aggregation and allocation policies.
Like GV–Tmem, vMCA introduces minimal changes to the hypervisor to enforce constraints
on local and remote page allocation. The complexity is situated in a user-space Memory
Manager (MM) process that runs in the privileged domain of the nodes, which implements
a resilient and reliable mechanism for distributing memory capacity across nodes according
to a high-level memory management policy. The main contributions of this chapter are:

1. An extended software stack to aggregate memory capacity across multiple nodes in a
resilient and efficient way.

2. An extension of the multi-level user-space mechanism for allocation/management of
aggregated memory capacity developed for GV-Tmem, with special considerations for
memory allocation within a node and memory distribution across nodes.

3. A more complete analysis of high-level policies for memory aggregation and allocation.

This chapter is organized as follows. Section 6.2 presents vMCA and its components,
explaining its resiliency to failures and the necessary hardware support. Section 6.3 describes
the experimental methodology and Section 6.4 shows the evaluation results. Section 6.5
compares with related work. Finally, Section 6.6 outlines future work and provides some
conclusions.
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6.2 Design of vMCA

The vMCA stack consists of three components:

• Hypervisor support for vMCA (Sect. 6.2.1)

• Tmem Kernel Module (TKM) in Dom0 for vMCA (Sect. 6.2.2)

• Memory Manager (MM) in Dom0 for vMCA (Sect. 6.2.3)

6.2.1 Hypervisor Support for vMCA

The Xen HV has been extended to support vMCA, and all extensions are localized in the
Tmem subsystem, which originally supports the necessary features to allocate and deallocate
local Tmem pages on behalf of the VMs.

Page ownership

Each HV owns a subset of the physical pages in the system, which constitutes the pool of
memory that it can use and allocate to its VMs. When a HV boots and first joins the vMCA
system, it owns all of its local physical memory; i.e. all pages whose home node is that node.
If it needs additional memory, it may request ownership of additional remote memory pages.
Conversely, it may release ownership of some of its local or remote pages, so that they can be
granted to another node that needs them. As described in Sect. 6.2.3, the MMs collectively
ensure that each physical page in the system is owned by at most one HV. The only times
when a page is not owned by any HV are when the page is in transit between HVs, and,
rarely, following a memory leak caused by a failed node (Sect. 6.2.3).

Page allocation

The pages owned by a HV are allocated using a zoned Buddy allocator, with a zone for each
node, including itself, from which it has ownership of at least one page, similar to the case
of GV-Tmem.

One improvement done in vMCA done with respect to GV-Tmem is in the way the
allocators are configured and ordered in the HV in order to optimize the allocation of pages.
In vMCA, the allocators are designed and arranged in a tree data structure corresponding to
the hierarchy of the system, in which the nodes are at the leaves, then, e.g. boards, chasses
and racks. This design is thought to somewhat optimize the accesses by ensuring that remote
pages are taken from the closest node possible when a Tmem put occurs.

In this scheme, a Tmem put will traverse the tree to find the closest non-empty allocator,
and take a page from it. In this arrangement, the preferred nodes (the closest nodes) is one
that has a common parent with the node that issues the put. At this point, it is assumed
that the local HV has ownership of the page. This implies that every node in the system
implements a similar tree structure. When a tmem flush operation frees a page, returning it
to the corresponding Buddy allocator.
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Transfer of page ownership

In order to minimize communication overheads, page ownership is transferred with hypercalls
in blocks of addresses, each an appropriately-aligned power-of-two number of pages. The HV
supports four hypercalls in order to transfer page ownership. The Grant hypercall is used to
receive ownership of a list of blocks, which are added to the appropriate Buddy allocator. In
contrast, a Request hypercall requests that the HV releases ownership of a number of pages
on behalf of another node. In response, the HV takes the necessary blocks from its allocators
using a simple heuristic (see Page allocation) to prefer large blocks located physically close
to the target node. The Return hypercall is issued when another node wishes to shut down
or leave vMCA. It asks the HV to release ownership of all pages that are physically located
on that node. It returns free pages, and, executing asynchronously, searches for pages in use
by the Tmem clients and migrates their contents to free pages. Finally, the Invalidate-Xen
hypercall is used if a remote node fails: it discards all free or allocated pages located in that
node, and terminates all VMs that were using that data.

Enforcing local per-VM Tmem constraints

The HV enforces the Tmem allocations determined by the MM. Algorithm 7 illustrates this
mechanism. The do tmem put function is called when a VM attempts to store a page in
Tmem through the corresponding hypercal. The HV checks the amount of Tmem the VM
has (line 4), and returns −ENOMEM , denying the request, if the VM is already at the
limits of its allocation. If not (lines 9–11), the Tmem page will be given to the VM and the
necessary data structures are updated.

The mechanism to enforce the Tmem allocations of each VM as defined by the high-level
policies in concept is very similar to the one used in Algorithm 1 developed for SmarTmem,
but the one developed for vMCA has important design enhancements. Mainly, the alloca-
tion mechanism is more complex for the case of vMCA (details omitted in Algorithm 7 for
simplicity), as well as an additional mechanism to keep track of the location of the remote
memory in use by each node. Even though this information is not visible to the MM, it is
highly critical to shutdown a node in a control way and for the resiliency mechanism that
allow the node and memory to be restored in case it fails. The details of this will be explain
in Sections 6.2.3 and 6.2.3.

Tmem Statistics

Table 6.1 presents the most relevant Tmem statistics gathered by the HV and kept by
the MM. The HVs send statistics to their respective MMs every second, and their size is
minimized to prevent large communication overheads.

It is possible to see that Table 6.1 presents some similarities with Table 2.1 for the
SmarTmem design. However, there are a more fields that needed to be added to implement
vMCA, and we enumerate some of the most important modifications:

1. In the case of vMCA, we have used put rates instead of number of puts

2. We have added additional fields in the information gathered by the HV that allows to
identify the node
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Algorithm 7 Enforce memory allocation in the HV

1: function do tmem put(vm datahyp, id)
2: tmem used← vm datahyp[id].tmem used
3: mm target← vm datahyp[id].mm target
4: if tmem used ≥ mm target then
5: return value← −ENOMEM
6: else if node info.free tmem == 0 then
7: return value← −ENOMEM
8: else
9: vm datahyp[id].tmem used += 1

10: vm datahyp[id].puts succ += 1
11: return value← 1
12: end if
13: vm datahyp[id].puts total += 1
14: return return value
15: end function

3. A variable to keep track of the variable amount of total Tmem owned by the node was
also added. The update process of this variable is more complex than the one designed
for SmarTmem.

6.2.2 Dom0 Tmem Kernel Module (TKM)

The Tmem client interface requires a kernel module in each guest domain. vMCA needs
a kernel module in the privileged domain Dom0 that acts as an interface between the HV
(using hypercalls) and the node’s MM.

6.2.3 Dom0 User-space Memory Manager

Each node has a user-space MM in its privileged domain, Dom0. The MMs cooperate to:

• Distribute memory owned by each node among its VMs

• Distribute global memory capacity among nodes

• Implement the flow of page ownership among nodes

• Enable nodes to join/leave vMCA, and handle failures

In the current design, one of the MMs is designated to be the Memory Manager Mas-
ter (MM–M), which is responsible for system control and global memory capacity distribu-
tion. The MMs communicate using a secure and reliable packet transport such as SSL/TLS.
The commands passed among the MMs are listed in Table 6.2.

In general, the inter-node messages used to support the functionalities of vMCA are fairly
similar to the ones used to support GV-Tmem presented in Table 5.1. However, additional
messages have been added to the repertoire of vMCA in order to support the resiliency
features offered in this case.
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Memory Statistics Description

ENOMEM Code used in the HV to signify that a put failed due to a lack of Tmem capacity

node info Data structure that holds general status information of the computer host.
node info.total tmem Total number of pages available to Tmem (free or allocated). It varies depend-

ing on how the specific node gains ownership or relinquish ownership of Tmem
pages.

node info.id Identifier of the node inside vMCA-supported system
vm datahyp Data structure that holds the parameters of all of the VMs within the HV
vm datahyp[id].vm id Identifier of the VM within Xen
vm datahyp[id].tmem used Number of Tmem pages currently used by the VM
vm datahyp[id].mm target Target number of pages for the VM, held by the HV and previously sent by

the MM
vm datahyp[id].puts total rate Total number of puts issued by the VM in the most recent period
vm datahyp[id].puts succ rate Total number of successful puts issued by the VM in the most recent period

memstats Data structure that holds the last sampled statistics that the HV sent to the
MM.

memstats.vm count Amount of active VMs as seen by the MM.
memstats.vm Array where each entry holds statistics about an active VM
memstats.vm[i].vm id Identifier of the VM within the MM, as received from the HV
memstats.vm[i].puts total rate Total number of puts that a VM has issued to the HV in the recent period
memstats.vm[i].puts succ rate Total number of successful puts that a VM has issued to the HV in the recent

period
memstats.total alloc pages Total number of pages available in every zoned buddy allocator of the HV

mm out Pointer to a data structure that holds the output parameters of the MM policy
mm out[i].vm id VM identifier that maps a VM to its target allocation as calculated by the MM
mm out[i].mm target Memory allocation target as calculated by the policy in the MM

Table 6.1: Summary of memory statistics used in the MM for vMCA

Joining the vMCA system

In order to join vMCA, a node requires a configuration file, which provides the network
address of all the nodes, security credentials for secure connections, and the mapping for all
nodes from node ID to network address. For managing locality, it also needs to know the
location of each node in the NUMA hierarchy, so that this information can also be passed to
the allocators and the mechanisms to keep track of the locations of used Tmem in the HV.

When a node R wishes to join vMCA, it first sends a message with a Register command
to the MM–M (Table 6.2). The MM–M sets its state to Active (Figure 6.1) and sends an
Enable-Node(R,1) command to all the registered nodes. Each node maintains a bitmap of
the enabled nodes, in order to keep track of which nodes are active. When a node receives
such a message, it checks whether it already has ownership of any pages with from node R,
which would be a fatal error. This mechanism is necessary to prevent data reads to nodes
that just entered the system, which would read garbage data that could compromise the
functionality of the node performing the reads.

Distributing ownership of memory

The flow of memory pages across vMCA considers many aspects.
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Command Direction Description Slave state

Distribution of global memory capacity
Statistics(S) S→M Send node statistics S to Master Active
Grant-Any(n, x) S→M Request n pages to slave x Active
Grant-Fwd(n, x, y) M→S Forward request of n pages coming from

y to slave x
Active

Force-Return(n, x) M→S Disable node and return all pages located
at slave x (for leaving)

Active

Flow of page ownership
Grant(b, · · ·) S/M→S Transfer ownership of blocks of pages Active

Node state changes
Register S→M Register a new node Inactive→Active
Leave-Req S→M Node requests to leave the system (e.g.

for shutdown)
Active→Leaving

Leave-Notify M→S MM–M notifies that the recipient has left
the system

Leaving→Inactive

Enable-Node(x, e) M→S Inform slave to accept (e = 1) or reject
(e = 0) pages at node x

Active

Resiliency support
Invalidate S→M Invalidate all pages located at sending

node
Active/Leaving→Re-
covery

Invalidate(x) M→S Request recipient to invalidate pages at
node x

Active

Invalidate-
Notify(x)

M→S MM–M notifies that the recipient has
been invalidated

Recovery→Inactive

Table 6.2: MM message types. In the table, “S” stands for Slave and “M” for Master.

Distributing memory owned by a node among its local VMs: Each node’s MM
determines the maximum Tmem allocation for each VM, using a policy (Sect. 6.2.4) that
uses the Tmem statistics gathered by the HV. Pages are dynamically allocated to every VM
subject to total (local plus remote) consumption limits, which are sent to the HV using a
Mem-Limit hypercall.

For every policy, the following condition must be met:

i=m∑
i=1

vm dataMM[i].mm target = total tmem(ti) (6.1)

Eq. 6.1 means that at time ti, the amount of total Tmem pages available to the node
(total tmem = local tmem + remote tmem) is equal to the sum of the allocations of all
m active VMs. This implies that every Tmem page must be used, and that Tmem pages
are not overallocated. However, when calculating the allocation limits for every VM, it is
possible that the sum of the allocations exceeds total tmem(ti). Representing total tmem as
a function of time ti implies that the amount of total Tmem of a node changes as it requests
or gives away ownership of Tmem pages. This is a fundamental difference when compared
to SmarTmem, that only considers constant local Tmem, a difference that has important
implications on the design of the software stack (hypercalls to support, data that needs to
be stored, allocation mechanisms, etc).
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Overallocation of pages causes VMs to compete for the available Tmem capacity, de-
feating the purpose of the management policies. When over-allocation occurs, the MM
recalculates the target of the VMs as follows:

tgtvmi =
total tmem× vm dataMM[i].mm target∑i=m

i=1 vm dataMM[i].mm target
(6.2)

Eq. 6.2, where tgtvmi is an abbreviated form of vm dataMM[i].mm target shown in
Table 6.1, ensures that the proportional allocation of each VM follows the policy’s desired
proportion while also satisfying Eq. 6.1.

Distributing global memory capacity among nodes: All nodes in the Active state
send statistics to the MM–M using the Statistics command. A node that needs memory sends
a Grant-Any command to the MM–M, which then decides which of the nodes in the vMCA
realm is best suited to satisfy the request for memory of the node. The MM–M makes this
decision based on the amount of available memory the possible candidate node has.

In this scheme, the MM–M redistributes the memory based on the statistics and the
global memory policy. The MM–M then sends Grant-Fwd commands, forwarding requests to
a donor node to transfer ownership of a number of free physical pages to a requesting node.

Flow of page ownership: Conceptually, the flow of pages ownership looks identical
both in GV-Tmem and vMCA. The MM–M rebalances memory capacity without specific
knowledge of the physical addresses, but the HV in vMCA needs to keep track of which
nodes are borrowing pages from the local node and from which remote nodes the local node
is borrowing pages from.

Ownership of global physical addresses is transferred peer-to-peer using Grant commands,
after the MM–M has allowed for the remote node to give page ownership to the node that
has requested the memory. A Grant command passes a list of blocks, each an appropriately-
aligned power-of-two number of physical pages. The MM–M can also satisfy the request for
memory of another node, for which it will send a Grant command itself to the requesting
node.

To avoid race conditions during node shutdown/failure, the recipient checks the home
node of each received block against the bitmap of enabled nodes (Sect. 6.2.3). If the home
node of a block is disabled, then ownership is returned back to its home using a new point-
to-point Grant.

Leaving the vMCA system

Shutting down a node of vMCA requires the following procedure, which has a similar proce-
dure to GV-Tmem, but with one additional step that checks that the page ownership of the
pages of the node that wants to shut down have been returned to it.. Note that if a node
fails to retrieve the ownership of its pages or it shuts down in an unexpected way, then the
procedure in Sect. 6.2.3 is followed. We reproduce the process for node shutdown in vMCA
similar to the one for GV-Tmem, with the additional step(s):

1. The node R that wishes to shutdown sends Leave-Req to the MM–M.

2. The MM–M in response moves the node to the Leaving state (see Figure 6.1). It sends
a Force-Return(R) command to all nodes in the system. Each recipient returns all of
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the pages at R that it owns and will reject any such pages received in future Grant
commands.

3. Node R frees all pages used by Tmem and returns ownership of all remote pages to
their home nodes using peer-to-peer Grant messages.

4. Each node sends a Grant command to node R to return ownership of the pages that it
borrowed.

5. The MM–M is disabled once it has received Statistics from every node indicating that
R and that it owns no pages at R, then the MM–M moves R to Inactive (Figure 6.1)
and sends Leave-Notify to R.

6. Node R at this point check that it has ownership of all its local non-leaked pages,
officially leaves the vMCA system, and may proceed to shutdown.

Active

Leaving

Inactive Recovery

Paused

Lost 
connection

Re-established 
connection

Invalidate

Invalidate
Leave_ReqLeave_Notify

Invalidate_Ack

Register

Figure 6.1: Node state transition diagram (at MM–M)

Resilient memory capacity aggregation

There are two aspects to ensuring resiliency in the face of node failures: 1) protecting the
integrity of the data stored in Tmem, and 2) restoring lost system state.

Ensuring data integrity on slave failure: The Tmem interface guarantees that a
get returns the data previously written by the corresponding put. In addition, if the pool is
persistent, the get operation must succeed.

Assume that node A has ownership of memory located at node R. If R fails, then this
data is lost. If R reboots, it will restart and may even attempt to re-join vMCA. Since any
get performed at A must never access the (incorrect) new contents of the physical page at
node R, the following procedure must be followed after a failure:

1. When a node R boots, remote memory accesses to it must raise a hardware exception
(Sect. 6.2.5), also raised when a node accesses a page from a failed node. If a remote
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access causes such an exception, the VM must be shutdown if the page is in a persistent
pool. If the pool is non-persistent, the get fails. On any failed access, read or write,
the page is returned to the corresponding Buddy allocator, and it is disabled.

2. When node R is initialized without a previous clean shutdown, it sends Invalidate to
the MM–M.

3. The MM–M moves the node to the Recovery state (Figure 6.1) and sends Invalidate(R)
to all nodes. Each node then disables node R, and if it has ownership of pages with
home R, it makes an Invalidate-Xen hypercall to invalidate the pages.

4. Once the MM–M has received Statistics from every node, i.e. it has disabled R and
owns no pages at R, then the MM–M moves the node to the Inactive state and sends
an Invalidate-Notify command to R.

5. Node R begins its normal initialization procedure upon receiving the Invalidate-Notify
command.

Restoring lost pages on slave failure: After a node R fails, vMCA is unable to
recover the pages that it owned. It is possible to approximate the number of lost pages from
a home node using the statistics sent by the nodes to the MM–M, by adding the number
of pages owned and comparing against the number of physical pages at the node. However,
since this is done using potentially outdated information from Statistics commands, the value
will not be exact.

Restoring system state on MM–M failure: If the MM–M fails, the system will
continue to work except that a) no memory capacity will be redistributed, and b) nodes
can’t enter/leave the system.

When the MM–M attempts to restart, it will listen for connections from the other nodes.
When a node connects and starts sending Statistics, it is added to the system in the Active
state. A node that is in the process of leaving or invalidation will send a new Leave-Req
or Invalidate command on re-connecting to the MM–M, which will restart the leaving or
invalidation process. At any time, all nodes in the Active state are part of the global memory
allocation.

6.2.4 Memory Management Policies

We tested three memory management policies: 1) greedy-local [36] (single-node Tmem im-
plementation), 2) greedy-remote [36] and a 3) two-level memory management policy (TLP),
divided in a first and a second level of memory management, implemented for this work.
greedy-remote, like greedy-local, allows for the node’s HV to give Tmem pages away to its
VMs on demand without any constraints. In contrast to greedy-local, greedy-remote issues
a Grant-Any to the MM–M requesting 1000 of pages when the MM detects that the node
needs memory.

Algorithm 8 shows the first level of TLP. It uses the statistics provided by the HV
(memstats, in Table 6.1), checks the number of VMs running (line 5) and if the VMs have
failed puts since receiving the previous statistics set (lines 6–8). Initially, all VMs have an
equal portion of the node’s available Tmem. If put fail rate > 0, the MM increases the
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Algorithm 8 First-Level of TLP

1: function flm policy(memstats, node info, P, threshold)
2: ttmem← memstats.total alloc pages
3: node id← node info.id
4: sumtgt← 0
5: for i← 1,memstats.vm count do
6: ptr ← memstats.vm[i].puts total rate
7: psr ← memstats.vm[i].puts succ rate
8: puts fail rate← ptr − psr
9: if puts fail rate > 0 then

10: ctgt← memstats.vm[i].mm target
11: mm target← ctgt+ (P ∗ ttmem)/100
12: else
13: ctgt← memstats.vm[i].mm target
14: curr use← memstats.vm[i].tmem used
15: difference← ctgt− curr use
16: if difference > threshold then
17: mm target← ((100− P ) ∗ ctgt) /100
18: else
19: mm target← ctgt
20: end if
21: end if
22: mm out[i].vm id← memstats.vm[i].vm id
23: mm out[i].mm target← mm target
24: sumtgt← sumtgt+mm target
25: end for
26: if sumtgt > ttmem then
27: send msg(Grant-Any(node id, (sumtgt− ttmem)))
28: for i← 1,memstats.vm count do
29: nt← (ttmem/sumtgt) ∗mm out[i].mm target
30: mm out[i].mm target← nt
31: end for
32: end if
33: send hypercall(Mem-Limit(mm out))
34: send msg(Statistics(memstats) )
35: end function

allocation of the VM by P% of the total amount of Tmem pages available to the node (lines
9–11).

If put fail rate = 0, the VM allocation is reduced by P% assuming that it currently has
more pages allocated than its actual use by a threshold (difference > threshold). In case
not, then it keeps the current allocation (lines 12–19).

The MM then sums and assigns the target allocations to the corresponding data struc-
tures (lines 20–22). If the sum exceeds the amount of Tmem available, the MM does the
following: 1) send a Grant-Any command to the MM–M to request memory pages (line 24),
and 2) readjust the VMs’ allocations according to Eq. 6.2 (lines 25–27). The MM sends the
Grant-Any command because the node is under memory pressure, so it needs remote pages.
There’s no guarantee it will get them, thus it’s necessary to readjust the allocations until
more pages are available. After this, the MM issues the Mem-Limit hypercall (line 28) and
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the Statistics message to the MM–M if the node is a slave (line 29).

Upon receiving the Grant-Any request, the MM–M decides how many pages to actually
request and from which node(s) to get them from. This is the second-level of TLP shown
in Algorithm 9. The MM–M has an extended version of memstats, where it stores its own
statistics and from other slave nodes, that it gets through Statistics messages.

Algorithm 9 Second-level of TLP

1: function slm(memstats,GrAny,R, np← {})
2: for i← 1,memstats.node count do
3: np[i].id← memstats[i].node id
4: np[i].tmem← memstats[i].total tmem
5: end for
6: sort nodes(np)
7: for i← 1,memstats.node count ∧GrAny.n > 0 do
8: diff ← np[i].tmem−GrAny.n
9: if diff > R then

10: nr ← GrAny.n
11: send msg(Grant-Fwd(nr, np[i].id,GrAny.x))
12: GrAny.n← 0
13: else if diff < R ∧ np[i].tmem ≥ R then
14: nr ← np[i].tmem−R
15: send msg(Grant-Fwd(nr, np[i].id,GrAny.x))
16: GrAny.n← GrAny.n− nr
17: end if
18: end for
19: end function

Algorithm 9 uses a data structure (np) that stores the amount of Tmem pages available in
each node and their IDs (lines 3–4). Then, it sorts the nodes (using merge sort) in descending
order in np (line 5). This is to decide which node to forward the request to (lines 6–15),
usually the one with more memory available. The MM–M first checks that the potential
donor node will have enough memory for itself (above a threshold R) . If the node is able
to satisfy the request while meeting the threshold, then the request is forwarded to it using
a Grant-Fwd message (lines 7–11).

If the node is unable to satisfy the request but has memory available, the MM–M can still
forward the request (line 14) but requesting less pages (line 13) to meet the threshold of the
node. Then, a new node from np is selected to request the rest of the remaining pages. From
this process, it’s clear that there’s no guarantee that requests for pages will be satisfied.

6.2.5 Hardware Support for Memory Aggregation

vMCA requires the computing node to provide support for specific hardware features. vMCA
and GV-Tmem require similar hardware support and they have a similar high-level view when
both systems are deployed, similar to what is shown in Figure 5.2 in Chapter 5. But vMCA
requires additional features to support the new resiliency constraints. We enumerate all of
the necessary hardware features necessary for vMCA in their entirety for convenience:

1. Fast interconnect providing a synchronous interface to the NUMA distributed memory.
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Node CPU Frequency Memory

Node 1 AMD FX Quad-Core 1.4 GHz 8 GB
Node 2 Intel Core i7 2.10 GHz 16 GB
Node 3 Intel Xeon 2.262 GHz 64 GB
Node 4 AMD FX-4300 Quad-Core 3.8 GHz 8 GB

Table 6.3: Hardware characteristics of the nodes used to evaluate vMCA.

2. Direct memory access from the HV to all the memory available: the HV has to be able
to access transparently its local and remote memory through the same mechanisms,
either through load/store instructions and/or through RDMA.

3. Remote access to a node’s pages is disabled on hardware boot. Access is enabled when
the node joins vMCA, when it sends the Register command. A series of hardware
control mechanisms, like interrupts and event controls, need to be implemented as well
to support the resiliency constraints within vMCA

4. Extraction of the node ID given a physical address, for instance depending on some
higher-order bits.

6.3 Experimental Methodology

We evaluated vMCA in a platform consisting of four computing nodes. UNIMEM-based
architectures usually have 4 to 8 nodes sharing the global physical address space. Every
node and VM runs Ubuntu 14.04 with Linux kernel 3.19.0, and Xen 4.5. The MM of the
nodes communicate using TCP/IP sockets over Ethernet. Node 2 executes the MM–M. The
hardware properties of the nodes are given in Table 6.3.

Accesses to remote sections of the shared global address space are emulated using the
node’s local memory, similar as it was done with GV-Tmem. Whenever the hypervisor
performs an emulated remote access, we add a delay in the hypervisor lasting 50 µs to model
a reasonable worst-case hardware latency. We evaluate vMCA using the CloudSuite 3.0
Benchmarks [31] as well, with every VM having 1 vCPU and every node having 1 GB of
Tmem initially available. We run at most three VMs simultaneously with memory intensive
applications that generate memory pressure on the node, and also refer to each set of VMs
as a scenario, shown in Table 6.4. We run each scenario at least four times. As it was with
the case of SmarTmem and GV-Tmem in Chapters 2 and 5, the scenarios created here, the
configurations of the VMs and the datasets were chosen in order to generate a considerable
amount of memory pressure within the VMs, generating memory footprints two or three
times of their initial memory capacity [100].
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Scenario VM RAM (MB) Description

Scenario 1 VM1: 768 , VM2: 1024 , VM3:
1024

Every VM executes simultaneously in-memory
analytics once, sleeps 5 seconds and then executes
it again. The data set was taken from [43]

Scenario 2 VM1: 768 , VM2: 768 , VM3:
768

Every VM executes simultaneously graph analyt-
ics once. The data set was taken from [16, 92, 91],
chosen to generate enoug memory pressure

Scenario 3 VM1: 768 , VM2: 768 , VM3:
1024

VM1 and VM2 execute graph analytics while
VM3 executes in-memory analytics, all at once.
Every VM executes its benchmarks twice.

Scenario 4 VM1: 768 , VM2: 512 , VM3:
512

VM1 executes graphs analytics, while VM2
and VM3 execute the client and server (mem-
cached [32]) for data-caching, respectively.

Table 6.4: List of scenarios used to evaluate vMCA.

6.4 Results

6.4.1 Results for Scenario 1

Figures 6.2(a, b) show the average running times of each VM for Scenario 1 for all policies,
showing average improvements of 11.94% and 12.9% in nodes 3 and 4, respectively, when
going from greedy-local to greedy-remote. TLP shows an improvement of 7.3% (P = 2.0%)
and 7.0% (P = 6.0%) in nodes 3 and 4 over greedy-remote.

Figures 6.2(c, d, e) present the Tmem capacity (remote and local) that each VM takes
for all policies in node 3. For greedy-local and greedy-remote (Figures 6.2(c, d)), VM3 and
VM4 take a smaller proportion of Tmem when compared to VM2, but this disparity reduces
with TLP, as shown in Figure 6.2(e). TLP tries to be fair on the distribution of the Tmem
capacity among the VMs. In this case, fairness is defined in the same way as it was in
Sections 2.4 and 5.5.

For some values of P , TLP degrades the performance of in-memory analytics. Consider
the first iteration of VM1 in node 3 for P = 1% (tlp-1, Figure 6.2(a)). With TLP, limits are
enforced on the Tmem capacity of a VM. When a VM tries to go beyond its initial allocation,
the hypervisor prevents it from taking pages until the MM updates its allocation target. But
with P = 1%, the targets increase slower than needed, forcing the VM to access the disk
device.

With higher P , the targets increase faster. But when P becomes too high, a VM might
have excess memory allocated, making it unlikely for other VMs to take a fair share, thus
degrading performance. In Figures 6.2(a), the performance improves when increasing P up
to 2.0% but degrades again as P keeps increasing. This highlights a trade-off between the
adaptability of TLP to adjust to changes in memory demand and to achieve a fair distribution
of Tmem, similar as it was seen for the case of SmarTmem.
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b) Node 4

a) Node 3

e) tlp-2 (TLP, P=2.0%)

d) greedy-rmt

c) greedy-local

Figure 6.2: Running time for Scenario 1 in nodes 3 (a) and 4 (b). Tmem capacity (nod-
tmem) used by every VM in node 3 for Scenario 1 in all three policies (c, d ,e). target-VM4
refers to the target allocation of VM4.
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6.4.2 Results for Scenario 2

Figures 6.3(a, b) present the average running times of each VM for Scenario 2 for the
three policies. They show average improvements of 50.84% and 45.96% in nodes 3 and 4,
respectively, when going from greedy-local to greedy-remote. With TLP, there is a further
improvement of 32.1% (P = 2.0%) and 31.8% (P = 2.0%) in nodes 3 and 4, respectively,
over greedy-remote.

Figures 6.3(c, d, e) show the amount of Tmem taken by each VM on node 3, for each
policy. When P = 2.0%, the MM enforces fairness in the Tmem allocation of the VMs
when comparing greedy-local to greedy-remote. The difference in Tmem ownership between
VM4 and other VMs is significant for greedy-local but reduces for greedy-remote, because
of the remote memory availability. In both cases, the VMs are competing for the Tmem
capacity. Figures 6.3(a, b) highlight the adaptability-vs-fairness trade-off. As P increases,
the performance improvements hit a minimum and then increase. For this scenario, this
trend is maintained for large P , making P = 2.0% an optimal value.

6.4.3 Results for Scenario 3

Figures 6.4(a, b) show the average running times of each VM for Scenario 3 for the three
policies. They show average improvements of 50.6% and 55.4% in nodes 3 and 4, respectively,
when going from greedy-local to greedy-remote. When implementing TLP, there is a further
improvement of 10.1% (P = 6.0%) and 15.6% (P = 4.0%) in nodes 3 and 4 over greedy-
remote.

Figures 6.4(c, d, e) show the Tmem capacity taken by each VM for all policies in node 3.
As remote memory becomes available to the node, the running time dramatically drops while
VM4, running in-memory analytics, takes the longest. The adaptability-vs-fairness tradeoff
is observed in Figures 6.4(a, b). Performance improves as P increases, but it can change
suddenly with P , as in the second iteration of VM1 and VM2 for node 3 (Figure 6.4(a)). In
both nodes, the second iteration of VM4 (in-memory analytics) performs the same for all
policies because it runs on its own, while the others have completed (Figure 6.4(c, d, e)). In
this Scenario, it is more difficult to obtain an optimal value of P .

After VM2 and VM3 execute graph analytics, they keep a large part of the Tmem
pages they acquired. The MM is unable to allocate Tmem pages that are in use, until the
VMs flushes them. But these VMs never actually flush. If the node runs more VMs with
benchmarks that keep pages in this way, the Tmem pages may be inefficiently depleted.

6.4.4 Results for Scenario 4

Figures 6.5(a, b) show the average running times of each VM of Scenario 4 for all policies,
showing average improvements of 63.5% and 76.8% in nodes 3 and 4, respectively, when
going from greedy-local to greedy-remote. TLP shows improvements of 23.7% (P = 2.0%)
and 37.5% (P = 2.0%) in nodes 3 and 4 over greedy-remote.

Figures 6.5(c, d, e) show the Tmem capacity of each VM for all policies in node 3. In
all cases, VM4 (memcached server) uses the same amount of Tmem, while VM2 (graph
analytics) and VM3 (data-caching client) compete for the Tmem capacity. With TLP (Fig-
ure 6.5(e)), fairness is achieved quickly, showing the adaptability-vs-fairness tradeoff in Fig-
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a) Node 3

b) Node 4

e) tlp-2 (TLP, P=2.0%)

d) greedy-rmt

c) greedy-local

Figure 6.3: Running time for Scenario 2 in nodes 3 (a) and 4 (b). Tmem capacity (nod-
tmem) used by every VM in node 3 for Scenario 2 in all three policies (c, d, e). target-VM4
refers to the target allocation of VM4.
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a) Node 3

b) Node 4

e) tlp-6 (TLP, P=6.0%)

d) greedy-rmt

c) greedy-local

Figure 6.4: Running time for Scenario 3 in nodes 3 (a) and 4 (b). Tmem capacity (nod-
tmem) used by every VM in node 3 for Scenario 3 in all three policies (c, d ,e). target-VM4
refers to the target allocation of VM4.

ures 6.5(a, b). In this case, P = 2.0% is optimal for most VMs, except for VM3 in node 4,
in which P = 1.0% is better.
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b) Node 4

a) Node 3

e) tlp-2 (TLP, P=2.0%)

d) greedy-rmt

c) greedy-local

Figure 6.5: vMCA: Running time for Scenario 4 in nodes 3 (a) and 4 (b). Tmem capacity
(nod-tmem) used by every VM in node 3 for Scenario 4 in all three policies (c, d, e). target-
VM4 refers to the target allocation of VM4.
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6.5 Related Work

Venkatesan et al. [110] use Tmem and non-volatile memory (NVM) to reduce accesses to
disk by VMs in a system with DRAM and NVM, showing that Tmem is useful in systems
with non-uniform memory hierarchies. The non-uniformity in our case is a consequence of
the different memory hierarchies across the nodes, the amount of memory available to a node
and the physical location of this memory.

Lorrillere et al. [66] proposed a mechanism, called PUMA, to improve memory utilization
based on remote caching to pool VMs memory across a data center for the benefit of VMs
having I/O intensive workloads. PUMA uses an interface similar to Tmem to access the
cache in a remote server. vMCA differs from [66] because the latter targets clean file-backed
pages for I/O intensive applications, while vMCA targets pages generated by the processes
of the applications during their computations (not file-backed).

Zcache [68] is a backend for frontswap and cleancache that provides a compressed cache
for swap and clean filesystem pages. RAMster [68] is an extension of zcache that uses kernel
sockets to store pages in the RAM of remote nodes. Similarly, RAMCloud [82] is a POSIX-
like filesystem in which all data is stored in RAM across the nodes. vMCA differs from all
these approaches in: 1) vMCA grants and releases memory capacity at a higher granularity
larger than a single page (reducing communication between nodes), 2) vMCA is not entirely
within the kernel, leveraging user-space flexibility, and 3) vMCA exploits a global shared
address space with low-latency communication.

Hwang et al. [46] proposed Mortar: a mechanism that pools spare memory on a server
and exposes it as a volatile data cache managed by the hypervisor using a similar interface
to Tmem, and it can evict objects from the cache in order to reclaim memory for other VMs.
They test two use cases, the first using memcached protocol to aggregate free memory across
data center, and the second works at the OS-level to cache and prefetch disk blocks. vMCA
puts all the memory aggregation and management details on a user-space process, keeping
the hypervisor small and secure.

In [5], Aguilera et al. pointed out that one of the challenges for systems that enable
remote memory access was the situation in which a remote host crashes or fails, effectively
causing a VM to lose access to the memory it was using at the remote location. In this work,
we provide a mechanism to recover the memory capacity for the VM that was accessing
a remote region in order to prevent memory leakage problems. However, the problem of
recovering the actual data that was lost upon remote host failure is out of the scope of this
work. As proposed in [5], this could be done by enabling data replication at some level, but
this is left for future work.

In [55], Lagar-Cavilla et al. proposed a mechanism to use remote memory that relies on
zswap, which is related to a Tmem frontend Zcache in frontswap mode. Their approach is
totally software-based, and does not require special hardware support for inter-node commu-
nication i.e. their approach is network latency agnostic. In this work, they use the remote
memory regions as caches between DRAM and permanent storage, and they encrypt and
decrypt the pages that are stored in remote memory, effectively protecting the data in remote
memory regions for the cases in which remote hosts get compromised [5]. vMCA is similar
to [55] in that it uses remote memory as a cache between DRAM and permanent storage,
but differs in some fundamental ways, and we explain some of them.

First, vMCA leverages hardware support in two respects: partially shared global physical
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address space and fast communication links among the nodes, which is an important enabler
for remote memory capacity support to maintain application performance within specific
bounds [33]. Second, vMCA relies on the functionality provided by Tmem to make memory
transparent to the VM without any encryption to prevent taking CPU time and reducing
application performance. Although, we still believe that securing the data in remote memory
is necessary.

6.6 Conclusions and Future Work

This chapter introduced vMCA, a resilient mechanism that exploits Tmem to aggregate
memory capacity across multiple nodes, based on thework developed for GV-Tmem [36]. We
evaluated vMCA using CloudSuite, obtaining up to 37.5% performance improvement when
enabling memory aggregation and management policies. The results demonstrate the effec-
tiveness of vMCA for improving the performance of the evaluated CloudSuite applications.

Future work will investigate how to integrate in vMCA other resource management mech-
anisms and to create a more complete solution for data centers. We need to consider recla-
mation of in-use Tmem pages, VM migration and more adaptive and predictive memory
management policies.

As it was the case with SmarTmem, future work will also need to analyze its effectiveness
with a larger set of workloads for cloud data centers. In this context, it will be necessary to
implement ways for vMCA to optimize other performance metrics such as energy consump-
tion, cost of ownership, tail latency and define a more general way to determine fairness
quantitatively.
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Chapter 7

Conclusions

In Chapter 2, it was demonstrated that there the demand-based approach to hand out Tmem
pages to VMs in a virtualized node was sub-optimal, and that current state-of-the-art Tmem
implementations needed high-level strategies to optimize the available Tmem of a system.
SmarTmem provides the first known solution for this, and was able to obtain up to 35%
over the state-of-the-art implementations of Tmem, opening the door for the introduction of
more Tmem management policies

Chapter 3 introduced a formulation of the dynamic memory re-allocation problem as a
de-centralized and continuous-action MDP, and CAVMem proved that a continuous-action
RL agent with this formulation can in fact learn to track performance objectives, and that
it may be a cost-effective solution when compared to discrete-action RL algorithms (DQL)
and to tabular RL approaches (QL).

Chapter 4 builds on the work presented in Chapter 3 to generate CARLEMM. The system
dynamics add an important level of complexity when deploying RL based algorithms into
the virtualized node, but CARLEMM demonstrated that the continuous-action RL approach
with our novel MDP formulation learns to track performance objectives for a limited set of
workloads, with limitations regarding its stability.

Chapter 5 presented GV-Tmem, which is the first mechanism to aggregate memory ca-
pacity across multiple nodes in a cloud infrastructure. GV-Tmem was designed to exploit
the hardware features provided by state-of-the-art UNIMEM-like hardware architectures,
which provide support for a partial global physical address space, fast interconnects and
local enforcement of memory coherency.

Chapter 6 builds on the work of Chapter 5 to generate vMCA. Similar as it was the case
with GV-Tmem, vMCA also builds on the specialized features of UNIMEM-like hardware
architectures, and also includes resiliency support and efficiency constraints for the use of
remote memory.

To close this conclusion section, the main contributions of this thesis are presented once
again:

• A mechanism called SmarTmem for the optimal allocation of Tmem in a single virtu-
alized node.

– A demonstration that the default way of allocating Tmem at the single node level,
used in state-of-the-art hypervisors, is not optimal.
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– Development of a high-level memory management policies to manage Tmem
through SmarTmem in a single node.

Luis Garrido, Rajiv Nishtala, and Paul Carpenter. SmarTmem: Intelligent manage-
ment of transcendent memory in a virtualized server. In RADR 2019: 1st Workshop
on Resource Arbitration for Dynamic Runtimes, 2019 [35].

• A mechanism called CAVMem (Continuous Action Agent for Virtualized Memory Man-
agement) developed as a proof-of-concept for the use of Continuous-Action Reinforce-
ment Learning for RAM allocation in a simulation of a virtualized node

– Formulation of the RAM management problem as a Markov Decision Process
(MDP) in a simulated environment that models memory management constraints.

– Development of a continuous-action off-policy model-free reinforcement learning
algorithm for memory allocation in a simulated environment.

– Comparison of the CARL algorithm in CAVMem with non-continuous action
reinforcement learning algorithms like Q-Learning and Deep Q-Learning in the
context of RAM management within the simulated environment

Luis Garrido, Rajiv Nishtala, and Paul Carpenter. Continuous-Action Reinforcement
Learning for Memory Allocation in Virtualized Servers, In 14th Workshop on Virtual-
ization in High-Performance Cloud Computing (VHPC’19), International Conference
on High Performance Computing, 2019 [37].

• A mechanism called CARLEMM (Continuous Action Reinforcement Learning for Mem-
ory Management), based on the proof-of-concept provided by CAVMem, but enhanced
to solve the memory allocation problem in a real computing node.

– Formulating the RAM management problem as an MDP for a real virtualized
computing node.

– A continuous-action reinforcement algorithm for RAM allocation in a real virtu-
alized node

– A flexible software stack for the implementation of CARLEMM and performance
evaluation.

• A mechanism called GV-Tmem (Globally Visible Tmem) for remote memory capacity
sharing across multiple computing nodes in a cloud infrastructure

– A software architecture to share memory capacity across nodes using Tmem.

– A two-tier mechanism for allocation and management of dis-aggregated memory.

Luis A. Garrido and Paul Carpenter. Aggregating and managing memory across
computing nodes in cloud environments. In 12th Workshop on Virtualization in High-
Performance Cloud Computing (VHPC’17), International Conference on High Perfor-
mance Computing, pages 642–652. Springer International Publishing [36].

• A mechanism called vMCA (virtualized Memory Capacity Aggregation) for the shar-
ing of memory capacity across nodes, but enhanced for resiliency and efficiency in
comparison to GV-Tmem.
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– A software stack to aggregate memory capacity across multiple nodes, focused on
resiliency and efficiency.

– A multi-level user-space mechanism for allocation management of aggregated
memory capacity, with special considerations for memory allocation within a node
and memory distribution across nodes.

– A more complete analysis of high-level policies for memory aggregation and allo-
cation.

Luis A. Garrido and Paul Carpenter. vMCA: Memory capacity aggregation and
management in cloud environments. In IEEE 23rd International Conference on Par-
allel and Distributed Systems (ICPADS), December 2017 [34].
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Glossary

CARL Continuous Action Reinforcement Learning

CARLEMM Continuous Action Reinforcement Learning for Memory Management

CAVMem Continuous Action Agent for Virtualized Memory Management

CPU Central Processing Unit

DDPG Deep Deterministic Policy Gradient

DRAM Dynamic Random Access Memory

DQL Deep Q-Learning

GV-Tmem Globally Visible Tmem

HV Hypervisor

I/O Input/Output

MDP Markov Decision Process

MM Memory Manager

MM–M Memory Manager Master

NUMA Non-Uniform Memory Access

RAM Random Access Memory

RDMA Remote Direct Memory Access

RL Reinforcement Learning

SLA Service Level Agreement

TKM Tmem Kernel Module

TLP Two-Level memory management Policy

Tmem Transcendent Memory

TTM Two-Tier Memory Management

VM Virtual Machine

vMCA virtualized Memory Capacity Aggregation
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