1,210 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Prediction of protein-protein interaction sites using an ensemble method

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of protein-protein interaction sites is one of the most challenging and intriguing problems in the field of computational biology. Although much progress has been achieved by using various machine learning methods and a variety of available features, the problem is still far from being solved.</p> <p>Results</p> <p>In this paper, an ensemble method is proposed, which combines bootstrap resampling technique, SVM-based fusion classifiers and weighted voting strategy, to overcome the imbalanced problem and effectively utilize a wide variety of features. We evaluate the ensemble classifier using a dataset extracted from 99 polypeptide chains with 10-fold cross validation, and get a AUC score of 0.86, with a sensitivity of 0.76 and a specificity of 0.78, which are better than that of the existing methods. To improve the usefulness of the proposed method, two special ensemble classifiers are designed to handle the cases of missing homologues and structural information respectively, and the performance is still encouraging. The robustness of the ensemble method is also evaluated by effectively classifying interaction sites from surface residues as well as from all residues in proteins. Moreover, we demonstrate the applicability of the proposed method to identify interaction sites from the non-structural proteins (NS) of the influenza A virus, which may be utilized as potential drug target sites.</p> <p>Conclusion</p> <p>Our experimental results show that the ensemble classifiers are quite effective in predicting protein interaction sites. The Sub-EnClassifiers with resampling technique can alleviate the imbalanced problem and the combination of Sub-EnClassifiers with a wide variety of feature groups can significantly improve prediction performance.</p

    Prediction of aptamer-protein interacting pairs using an ensemble classifier in combination with various protein sequence attributes

    Get PDF
    The ranked feature list given by the Relief algorithm. Within the list, a feature with a smaller index indicates that it is more important for aptamer-protein interacting pair prediction. Such a list of ranked features are used to establish the optimal feature set in the IFS procedure. (XLS 56.5 kb

    JPPRED: Prediction of Types of J-Proteins from Imbalanced Data Using an Ensemble Learning Method

    Get PDF

    DTi2Vec: Drug-target interaction prediction using network embedding and ensemble learning.

    Get PDF
    Drug-target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimental validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive research niche, with one of its main focuses being improving the prediction accuracy. Using machine learning (ML) models for this task, specifically network-based approaches, is effective and has shown great advantages over the other computational methods. However, ML model development involves upstream hand-crafted feature extraction and other processes that impact prediction accuracy. Thus, network-based representation learning techniques that provide automated feature extraction combined with traditional ML classifiers dealing with downstream link prediction tasks may be better-suited paradigms. Here, we present such a method, DTi2Vec, which identifies DTIs using network representation learning and ensemble learning techniques. DTi2Vec constructs the heterogeneous network, and then it automatically generates features for each drug and target using the nodes embedding technique. DTi2Vec demonstrated its ability in drug-target link prediction compared to several state-of-the-art network-based methods, using four benchmark datasets and large-scale data compiled from DrugBank. DTi2Vec showed a statistically significant increase in the prediction performances in terms of AUPR. We verified the novel predicted DTIs using several databases and scientific literature. DTi2Vec is a simple yet effective method that provides high DTI prediction performance while being scalable and efficient in computation, translating into a powerful drug repositioning tool

    Deep Learning for Genomics: A Concise Overview

    Full text link
    Advancements in genomic research such as high-throughput sequencing techniques have driven modern genomic studies into "big data" disciplines. This data explosion is constantly challenging conventional methods used in genomics. In parallel with the urgent demand for robust algorithms, deep learning has succeeded in a variety of fields such as vision, speech, and text processing. Yet genomics entails unique challenges to deep learning since we are expecting from deep learning a superhuman intelligence that explores beyond our knowledge to interpret the genome. A powerful deep learning model should rely on insightful utilization of task-specific knowledge. In this paper, we briefly discuss the strengths of different deep learning models from a genomic perspective so as to fit each particular task with a proper deep architecture, and remark on practical considerations of developing modern deep learning architectures for genomics. We also provide a concise review of deep learning applications in various aspects of genomic research, as well as pointing out potential opportunities and obstacles for future genomics applications.Comment: Invited chapter for Springer Book: Handbook of Deep Learning Application

    PDNAsite:identification of DNA-binding site from protein sequence by incorporating spatial and sequence context

    Get PDF
    Protein-DNA interactions are involved in many fundamental biological processes essential for cellular function. Most of the existing computational approaches employed only the sequence context of the target residue for its prediction. In the present study, for each target residue, we applied both the spatial context and the sequence context to construct the feature space. Subsequently, Latent Semantic Analysis (LSA) was applied to remove the redundancies in the feature space. Finally, a predictor (PDNAsite) was developed through the integration of the support vector machines (SVM) classifier and ensemble learning. Results on the PDNA-62 and the PDNA-224 datasets demonstrate that features extracted from spatial context provide more information than those from sequence context and the combination of them gives more performance gain. An analysis of the number of binding sites in the spatial context of the target site indicates that the interactions between binding sites next to each other are important for protein-DNA recognition and their binding ability. The comparison between our proposed PDNAsite method and the existing methods indicate that PDNAsite outperforms most of the existing methods and is a useful tool for DNA-binding site identification. A web-server of our predictor (http://hlt.hitsz.edu.cn:8080/PDNAsite/) is made available for free public accessible to the biological research community

    Drug Target Interaction Prediction Using Machine Learning Techniques – A Review

    Get PDF
    Drug discovery is a key process, given the rising and ubiquitous demand for medication to stay in good shape right through the course of one’s life. Drugs are small molecules that inhibit or activate the function of a protein, offering patients a host of therapeutic benefits. Drug design is the inventive process of finding new medication, based on targets or proteins. Identifying new drugs is a process that involves time and money. This is where computer-aided drug design helps cut time and costs. Drug design needs drug targets that are a protein and a drug compound, with which the interaction between a drug and a target is established. Interaction, in this context, refers to the process of discovering protein binding sites, which are protein pockets that bind with drugs. Pockets are regions on a protein macromolecule that bind to drug molecules. Researchers have been at work trying to determine new Drug Target Interactions (DTI) that predict whether or not a given drug molecule will bind to a target. Machine learning (ML) techniques help establish the interaction between drugs and their targets, using computer-aided drug design. This paper aims to explore ML techniques better for DTI prediction and boost future research. Qualitative and quantitative analyses of ML techniques show that several have been applied to predict DTIs, employing a range of classifiers. Though DTI prediction improves with negative drug target pairs (DTP), the lack of true negative DTPs has led to the use a particular dataset of drugs and targets. Using dynamic DTPs improves DTI prediction. Little attention has so far been paid to developing a new classifier for DTI classification, and there is, unquestionably, a need for better ones

    Robust Principal Component Analysis-based Prediction of Protein-Protein Interaction Hot spots ( {RBHS} )

    Get PDF
    Proteins often exert their function by binding to other cellular partners. The hot spots are key residues for protein-protein binding. Their identification may shed light on the impact of disease associated mutations on protein complexes and help design protein-protein interaction inhibitors for therapy. Unfortunately, current machine learning methods to predict hot spots, suffer from limitations caused by gross errors in the data matrices. Here, we present a novel data pre-processing pipeline that overcomes this problem by recovering a low rank matrix with reduced noise using Robust Principal Component Analysis. Application to existing databases shows the predictive power of the method
    corecore