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DTi2Vec: Drug–target interaction prediction 
using network embedding and ensemble 
learning
Maha A. Thafar1,2, Rawan S. Olayan3, Somayah Albaradei1,4, Vladimir B. Bajic1, Takashi Gojobori1, 
Magbubah Essack1*   and Xin Gao1* 

Abstract 

Drug–target interaction (DTI) prediction is a crucial step in drug discovery and repositioning as it reduces experimen-
tal validation costs if done right. Thus, developing in-silico methods to predict potential DTI has become a competitive 
research niche, with one of its main focuses being improving the prediction accuracy. Using machine learning (ML) 
models for this task, specifically network-based approaches, is effective and has shown great advantages over the 
other computational methods. However, ML model development involves upstream hand-crafted feature extraction 
and other processes that impact prediction accuracy. Thus, network-based representation learning techniques that 
provide automated feature extraction combined with traditional ML classifiers dealing with downstream link predic-
tion tasks may be better-suited paradigms. Here, we present such a method, DTi2Vec, which identifies DTIs using 
network representation learning and ensemble learning techniques. DTi2Vec constructs the heterogeneous network, 
and then it automatically generates features for each drug and target using the nodes embedding technique. DTi2Vec 
demonstrated its ability in drug–target link prediction compared to several state-of-the-art network-based methods, 
using four benchmark datasets and large-scale data compiled from DrugBank. DTi2Vec showed a statistically signifi-
cant increase in the prediction performances in terms of AUPR. We verified the "novel" predicted DTIs using several 
databases and scientific literature. DTi2Vec is a simple yet effective method that provides high DTI prediction perfor-
mance while being scalable and efficient in computation, translating into a powerful drug repositioning tool.

Keywords:  Drug repositioning, Drug–target interaction, Heterogeneous network, Network embedding, Random 
walk, Link prediction, Representation learning, Ensemble learning, Cheminformatics
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Introduction
Identifying novel drug–target interactions (DTIs) is cru-
cial to various biomedical and polypharmacology appli-
cations, such as drug discovery, drug repositioning [1], 
drug resistance, and side-effect prediction [2]. However, 
high experimental validation costs plague its success. 

Thus, before pursuing costly practical endeavors, more 
research efforts are now directed towards computation-
ally predicting the more feasible DTIs first. Identifying 
these feasible DTIs can be ascertained in different ways 
(i.e., using various DTIs prediction tasks) such as via (1) 
determining if a drug interacts with the target or not (i.e., 
binary classification) [3, 4], (2) predicting the drugs’ bind-
ing affinity towards the target protein (i.e., regression) [5, 
6], or (3) predicting if the drug inhibits or enhances the 
reaction that occurs in the cell when the target is bound 
[7].
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Several methods have been developed based on these 
various DTI prediction tasks. According to recent 
reviews focused on DTIs prediction methods [4, 8–12], 
we can classify such prediction methods into three main 
categories, namely: docking-based approaches [13–15], 
ligand-based approaches [16, 17], and chemogenomic-
based approaches [4, 8]. Of these approaches, the go-to 
approach is chemogenomic-based [10, 18]. The chemog-
enomic-based approaches overcome the limitations of 
docking-based approaches (3D structure information for 
many target proteins are unavailable) and ligand-based 
approaches (the number of known ligands is limited or 
few), utilizing the chemical and genomic information 
of drugs and the target proteins instead. The chemog-
enomic-based approaches incorporate DTI prediction 
models based on network-, machine learning (ML)-, 
and deep learning (DL)-based methods. The ML-based 
methods use a feature-based approach that represents 
each drug–target pair by hand-crafted extracted fea-
tures/feature vectors (FV) [8, 10, 19], or a similarity-
based approach built based on the "guilt-by-association" 
hypothesis that similar drugs tend to interact with similar 
target proteins and vice versa [20, 21]. DL-based methods 
are a special type of ML that can learn representations of 
data with multiple abstraction levels and proved its effi-
ciency in the biomedical domain [22, 23], including DTIs 
prediction [24].

This article focuses on the network-based methods; 
specifically, the network embedding-based methods, 
since our method, DTi2Vec, and the compared state-
of-the-art methods belong to this category. Network-
based methods [9] have been developed by formulating 
the prediction of DTIs as a link prediction problem in 
a heterogeneous graph where the goal is to uncover a 
novel interaction or link between drugs and targets. The 
network-based methods include traditional graph-based 
methods [9, 25–29] and network embedding meth-
ods. Traditional network-based methods predict DTIs 
through bipartite local model (BLM) [30, 31], network-
based inference (NBI) model [32, 33], path score model 
(PSM) [27, 28, 34], and a special type of network-based 
method that are knowledge graph-based [35]. These tra-
ditional network-based methods proved their efficiency 
in solving DTIs link prediction. For example, DDR [27], 
a PSM-based method, proved its efficiency in predicting 
novel DTIs. It constructs a heterogeneous graph consist-
ing of known DTIs, multiple drug–drug similarities, and 
multiple target–target similarities. Similarity selection 
and similarity integration algorithms select a subset of 
the similarities then fuse them using a nonlinear function 
(SNF) [44]. The path score for different path categories is 
generated as features, and then these features are fed into 
the RF classifier for prediction. However, such methods 

suffer from some limitations. They require a lot of net-
work analysis and can only leverage from a specific subset 
of statistics and ML techniques due to challenges associ-
ated with handling the sparsity and high dimensionality 
of heterogeneous DTI networks. Thus, network-embed-
ding methods [36–39] have emerged as a new efficient 
and promising paradigm to address traditional network 
analysis limitations. Network embedding converts the 
graph into low-dimensional space while preserving the 
network’s structural and topological information maxi-
mally. Compressed yet informative FV represents the 
DTIs in the embedding space, and downstream link 
prediction tasks can be done using ML or DL classifi-
ers. Categories of network embedding-based methods 
include the random walk-based method [40], matrix fac-
torization (MF) based methods [41], and neural network 
(NN) based methods [42]. DNILMF [43] (Dual Network 
Integrated Logistic Matrix Factorization) is an MF-based 
method that integrates different similarity measures for 
both drugs and targets by applying a nonlinear similarity 
fusion technique based on the similarity network fusion 
method (SNF) [44]. Then it used this final combined 
measure to predict DTIs based on their graph neighbors. 
NRLMF [45] (Neighborhood Regularized Logistic Matrix 
Factorization) is another MF state-of-the-art method 
that integrated logistic MF with neighborhood regulari-
zation for DTI prediction by modeling the DTI probabil-
ity for each drug–target pair using logistic MF. Next, it 
extracted drug-specific and target-specific latent feature 
vectors that represented drug and target properties. It 
also includes the local structure of DTIs to improve the 
interaction and use the drug similarities and target simi-
larities in terms of nearest neighbors to eliminate the 
noise from using all similar neighbors. TriModel [37] (a 
very recent network-based method) utilizes a knowledge 
graph (KG) constructed from integrating different infor-
mation sources to generate KG embeddings for entities 
(i.e., nodes) and relations (i.e., edges). TriModel predicted 
novel DTIs based on their interaction scores calculated 
using trained tensor factorization applied on the knowl-
edge graph embeddings. The last state-of-the-art method 
worth mentioning is DTiGEMS+ [28], a path-score-
based method developed to predict DTIs using graph 
embedding, graph mining, and similarity-based tech-
niques. First, DTiGEMS+ integrated multiple drug–drug 
similarities using similarity network fusion algorithm 
(SNF) [4], and did the same on multiple target–target 
after applying a similarity selection procedure. After that, 
it constructed the final heterogeneous graph by augment-
ing the known DTIs graph with these two sub-graphs of 
drug–drug similarity and target–target similarity. Finally, 
DTiGEMS+ calculated the path score features from the 
full graph and fed them to the ML classifier.
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Current methods that address the DTI prediction prob-
lem still suffer from high false-positive rates that need 
improvement. Thus, in this study, DTi2Vec addresses 
the DTI link prediction problem in a heterogeneous 
network using graph embedding and ensemble learning 
techniques. Figure 2 provides an overview of the pipeline 
used in our method. The DTi2Vec method’s objective is 
to predict novel DTIs with high accuracy and avoid the 
limitations associated with literature methods of tra-
ditional network analysis. We performed an empirical 
evaluation by comparing DTI prediction performance of 
the proposed method DTi2Vec to several network-based 
state-of-the-art methods using four benchmark datasets 
and a large-scale FDA_DrugBank dataset. We demon-
strated our approach’s effectiveness in terms of the AUPR 
evaluation metric and error reduction rate, and verified 
novel DTIs predicted by DTi2Vec using reliable databases 
and scientific literature.

Materials and method
DTIs datasets
We used five datasets for this work, of which four 
were the "gold standard" Yamanishi_08 [46] datasets. 
The Yamanishi datasets are families of target proteins 
(http://​web.​kuicr.​kyoto-u.​ac.​jp/​supp/​yoshi/​drugt​arget/), 
including (1) G protein-coupled receptors (GPCR), (2) 
ion channels (IC), (3) nuclear receptors (NR), and (4) 
enzymes (E). Yamanishi et al. [46] collated the DTI data 
from several reliable sources, namely KEGG BRITE [47, 
48], BRENDA [49], SuperTarget [50], and DrugBank [51] 
databases released in 2008. They also collated the chemi-
cal structures of drugs/compounds from the KEGG 
LIGAND and KEGG DRUG databases [47, 48]. They then 
calculated the similarity scores representing drug fea-
tures for each pair of drugs using [52] by finding the com-
mon chemical substructure. They further collected the 
targets’ amino acid sequences from the KEGG GENES 
database [47, 48], then calculated the sequence similari-
ties using the normalized Smith-Waterman scores [53] 
based on the alignment of protein sequences.

The fifth dataset, FDA_DrugBank, used to evaluate 
DDR [27] and TriModel [37] methods, was retrieved 
from the 5.0.3 version of the DrugBank database [51]. 
The FDA_DrugBank dataset only includes the DTIs with 
Food and Drug Administration (FDA) approval (https://​
www.​drugb​ank.​ca). We calculated drug similarity SIM-
COMP scores, as well as normalized Smith-Waterman 
scores for the targets.

Table 1 summarizes the statistics of the datasets used 
in our study. The sparsity ratio is the number of known 
DTIs divided by the number of unknown DTIs. It reflects 
that the data is highly imbalanced between negative and 
positive samples (Table 1).

Link prediction formulation in the heterogeneous network
DTI prediction was formulated as a link prediction prob-
lem in a heterogeneous graph. The goal is to predict the 

Table 1  Benchmark Yamanishi_08 datasets and FDA_DrugBank 
dataset statistics

Statistics Benchmark datasets FDA_DrugBank

NR GPCR IC Enzyme

Number of drugs 54 223 210 445 1,482

Number of targets 26 95 204 664 1,408

Known DTIs 90 635 1476 2926 9881

Unknown DTIs 1314 20,550 41,364 292,554 2,076,775

Sparsity ratio 0.068 0.031 0.036 0.010 0.005

Table 2  Fusion functions for learning drug–target edge 
representations

 represents element wise matrix multiplication, and  represents the average 
of the two matrices

Fusion function Function equation

1. Concatenation
[

f (d)+ f (t)
]

= f (d)f (t)

2. Hadamard [f(d)  f(t)]= f (d) ∗ f (t)

3. Average [f(d)  f(t)] = (f (d)+ f (t))/2

4. Weighted-L1 �f (d).f (t)�1 = |f (d)− f (t)|

5. Weighted-L2 �f (d).f (t)�2 = |f (d)− f (t)|2

Fig. 1  An illustration of the underlying DTI link prediction paradigm

http://web.kuicr.kyoto-u.ac.jp/supp/yoshi/drugtarget/
https://www.drugbank.ca
https://www.drugbank.ca
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likelihood of a missing link (i.e., edge) between drug–
target nodes in the DTI network, as shown in Fig. 1. We 
constructed a heterogeneous graph by defining and then 
augmenting all three networks (the DTIs network, drug–
drug similarity network, and target-target similarity net-
work). Thus, we obtained weighted heterogeneous graph 
G (V, E) that consists of a set of drugs D = {d1, d2, …, dm} 
and a set of targets T = {t1, t2, …, tn}, where m is the num-
ber of drugs and n is the number of targets, respectively. 
Before augmenting each similarity network, we filtered 
each network separately by applying the K nearest neigh-
bor (KNN) algorithm to keep the top k similar nodes as 
described later in the preprocessing section. In the het-
erogeneous graph G, drug–target edges represent the 
known DTIs and have weight = 1, and the drug–drug (or 
target-target) edges represent the similarity scores and 
have the weight range of (0, 1]. We defined the DTIs as 
an m * n adjacency matrix Y that specify the class labels 
between each drug–target pair as follow:

where yij corresponds to the < i, j > element of matrix Y. 
The samples with class labels = 0, called negative samples 

(1)yij =

{

1, ifthereisaninteractionbetweendiandtj
0, otherwise.

(i.e., unknown interaction), are constructed by generating 
an edge between all possible drug–target pairs with no 
edge connecting them (i.e., unknown interaction). This 
process reflects a real-life scenario where negative sam-
ples are much larger than positive ones. Then, X vector is 
constructed, where X = {x1, x2, …, xn*m}, to represent each 
data sample (i.e., drug–target pairs feature vector) as will 
be described later.

Workflow of the DTi2Vec model
In Fig. 2, we show that implementing DTi2Vec involves 
five main steps, which are:

1.	 Preprocessing the drug similarity and target similar-
ity networks.

2.	 Constructing a heterogeneous network G (V,E) by 
augmenting the DTI graph (training part) with the 
k-nearest neighbor drugs subgraph (KNN-DDsim) 
and the k-nearest neighbor targets subgraph (KNN-
TTsim).

3.	 Applying a biased random walk using node2vec 
framework to generate feature representation (i.e., 
embedding) for each node (drug and target).

Fig. 2  DTi2Vec Method Flowchart, (1) Filter the TTsim and DDsim graphs, (2) Construct a full DTI network by augmenting the three graphs, (3) 
Apply the three-step node2vec framework on the full DTI network, (4) Generate edge representation for each drug-target pair, (5) Feed the feature 
vector (FV) into ensemble boosting classifier to output the class labels



Page 5 of 18Thafar et al. J Cheminform           (2021) 13:71 	

4.	 Creating drug–target edge embeddings by generating 
embeddings for each drug and each target and then 
combining them using several fusion functions.

5.	 Classifying the data samples by ensemble learning 
using boosting classifiers to predict the probability 
scores for each class.

We provide a detailed explanation of each step below.

Preprocessing
When the DTI graph includes the similarity scores as 
edges connecting similar drugs or similar targets, the 
graph becomes a complex network, especially when 
dealing with a huge number of drugs or targets. Several 
similarity scores were very low or shallow, not providing 
any informative meaning (see the drug–drug similarity 
and target-target similarity matrices for the NR dataset 
in Fig.  3). Thus, instead of using all similarity edges for 
the drug similarity graph, we ranked all similarity scores 
for each drug in descending order and removed all the 
drugs except the top-k similar drugs as per the k-near-
est neighbors (KNN) algorithm. Finally, we applied the 
same process to the target similarity network and kept 
the KNN determined top-k similar targets for each tar-
get node. Through this process, we generated a KNN 
drugs similarity subgraph and a KNN targets similar-
ity subgraph, augmented with the training part of DTIs, 
as shown in Fig. 2.1. Choosing the k value is not an easy 
task. If the k setting is too large, it increases the time and 
memory complexity, making the process computationally 

expensive. Still, if the k setting is too small, some use-
ful information could be dropped and affect the perfor-
mance. Thus, we conducted several experiments to find 
the optimal number of nearest neighbors k, using differ-
ent values of k. We apply this optimization process by 
assigning various values to k, comparing the model per-
formance under each k value in terms of AUPR in the 
tenfold CV, and then selecting the k value based on the 
best-performing model. Using this technique means we 
reduced noise or meaningless information, introduced 
when using all similarity scores, affecting performance. 
It also decreases the node2vec model’s time and memory 
complexity since the number of the edges for each sim-
ilarity network is reduced from m (m − 1) /2 to (k*m), 
where m is the number of the nodes.

Network embedding technique
Our study applied the graph embedding technique to 
transform nodes, edges, and features (i.e., similarity) into 
vector space by converting the graph into a low dimen-
sional space while maximally preserving graph structure, 
nodes’ relationship, and other relevant properties. In the 
following subsections, we explain in more detail one of 
the random walk-based embedding techniques, the ben-
efit of using this technique, how it works, and how we 
generate the feature vector for each drug–target pair.

Random walk‑based embedding for features generation
A random walk is a stochastic process of graph traversing 
to describe node sequences (i.e., path) consisting of steps 

Fig. 3  Visualization of similarity matrices of the NR dataset, a drug-drug similarity matrix, b target–target similarity matrix
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selected uniformly among the present vertex neighbors. 
Several graph embedding techniques have been devel-
oped based on utilizing random walk in the heterogene-
ous networks to improve the quality of feature learning 
(i.e., embedding) [54, 55].

In our work, we applied node2vec [56], a semi-super-
vised feature representation learning technique for nodes 
in a network that optimizes the objective of preserving 
the neighborhood. Node2vec is a generalized version of 
DeepWalk [57] inspired by the famous natural language 
processing (NLP) technique (word2vec) that treats the 
sequence of the nodes generated by a short random walk 
as a sentence and implements Skip-gram [58] to learn 
features for each node (similar to word). Skip-gram is a 
language model that consists of a neural network with 
one hidden layer. This model maximizes the co-occur-
rence probability among the words appearing within a 
window in a sentence and then predicts the neighboring 
words in the sentence.

For this study, we were motivated to apply the node-
2vec technique instead of DeepWalk because node2vec 
provides a biased and more flexible random walk strat-
egy that encodes global and local proximities in the 
sampled path. We achieved this by interpolating two 
extreme searching strategies: breadth-first search (BFS) 
and depth-first search (DFS). BFS captures the structural 
equivalence characteristic while DFS discovers the graph 
homophily characteristics (i.e., graph communities where 
nodes are connected close to each other). Two hyper-
parameters control which search strategy to follow: 
Return parameter, p and In–out parameter, q. Parameter 
p controls the likelihood of immediately revisiting a node 
in the walk. In contrast, parameter q controls the search’s 
probability to differentiate between moving inward (i.e., 
revisiting a node) or outward to nodes that move deeper. 
[56] provides more detailed information about the node-
2vec algorithm.

In our method DTi2Vec, after we constructed the full 
heterogeneous weighted graph  G = (V, E)  consisting of 
known DTIs, KNN drug–drug similarity subgraph, and 
KNN target-target similarity subgraph, we applied the 
three-step node2vec framework (see Fig. 2.3). The node-
2vec framework translated each node in the graph G  to 
a low dimensional vector space  Rd,  using a mapping 
function:

while preserving the graph structure and some sort of 
node similarity based on the network topology, result-
ing in obtaining a FV representation (i.e., latent feature 
vectors) for each drug and target nodes. Moreover, since 
more properties encoded by the embedder leads to better 
results in the downstream task performance, we utilized 

(2)f : V → Rd , where d < |v|

several node2vec hyperparameters to improve the fea-
ture representations’ quality. Thus, we performed a grid 
search on multiple parameters to identify those values 
that provide the best performance using the training data 
during the tenfold CV process for each dataset sepa-
rately. We created a dictionary of all the different hyper-
parameter values for the grid search, which feeds all 
combinations through the model for testing. We applied 
GridSearchCV by first initializing the node2vec hyperpa-
rameters’ values from the dictionary, then using tenfold 
CV to obtain the model performance using the training 
data. Then, a second-round is started by changing the 
hyperparameters’ values from the dictionary and apply-
ing the same steps. Once all the values are tested, the 
grid search cycle finishes. The hyperparameter combina-
tions that give the best performance during the training 
stage are selected. We applied this GridSearchCV proce-
dure on each dataset separately except for the DrugBank 
dataset, where we used RandomizedSearchCV to tune 
the hyperparameters. Running these experiments on the 
huge DrugBank dataset will require excessive run time 
and large memory if GridSearchCV is applied. Therefore, 
we applied these two algorithms to identify the optimal 
values for the different datasets’ hyperparameters. This 
allowed us to identify the optimal values of these param-
eters, including embedding dimension d (i.e., the feature 
representation length); walk-length, the number of walks 
per source node; the number of the walk num-walk; and 
the worker number that scales and parallelizes the walks 
from each source node, which speeds up the feature gen-
eration process. Additional file  1: Table  S1 provides the 
tested parameter values and indicates the optimal param-
eter values for each dataset.

Edge representation learning
After the node2vec framework generated an embedding 
matrix f of size |V | x d (V is the number of vertices and d is 
the feature dimension), we extracted the embedding (i.e., 
FV representation) for each drug and each target in the 
DTI network. Then, because our goal is to predict drugs 
and targets potentially linked, we created an embedding 
for each drug–target pair (i.e., edge). We accomplished 
this task by applying a fusion function between two FVs, 
because the fusion function combines two FVs to obtain 
a single FV. So, given two nodes drug (di) and target (tj) in 
G(V, E), we generated edge feature representation g(di, tj) 
by applying several fusion functions over the correspond-
ing nodes FV representation f(di) and f(tj) such that g: V x 
V – > R d’, where d` is the representation size for the pair 
(d, t) (Table 2). We applied these fusion functions to any 
possible drug–target pair, including the unknown DTIs 
(i.e., when the edge does not exist between this drug and 
target).
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Note, in the fusion function step (Fig. 2, panel 4) there 
is no dimensionality reduction. In all fusion function 
cases the FV sizes remained the same (where d` = d), 
except in the concatenate fusion function case, where the 
FV sizes increased (d` = 2d) since it connects the drugs’ 
FV and targets’ FV for each drug–target edge (i.e.,  by 
joining the feature representation f(di) and f(tj) in one 
series). We specified the node FV dimension (between 
32 and 128) that has been used for each dataset in Addi-
tional file 1: Table S1. Therefore, the final FV size for each 
edge was between 32 and 256 (note, 128 × 2 = 256, in the 
concatenate fusion function case).

ML predictive model
After extracting all the drug–target pairs’ features, we 
prepared the FVs to be fed into the ML classification 
model by first normalizing the training and test data-
sets separately using min–max normalization [59] and 
then oversampling the training data (explained below). 
We used min–max normalization [59] to ensure that all 
features are equally treated by the classifier where all fea-
tures get transformed into a given range, which is [0,1] 
in our case. We applied min–max normalization as fol-
lows: first, we define the min–max normalization scalar, 
fit this scalar on the training data that saves the normali-
zation parameters, and then transform the training data 
features. The last step is to normalize the features of the 
test data using the training normalization parameters by 
applying the scalar that was fitted.

Sampling techniques for imbalanced data
Table 1 shows that the number of unknown DTIs is much 
larger than the known DTIs in all datasets. This issue 
needs to be dealt with as ML classifiers face a problem 
when predicting based on imbalanced data, i.e., the ML 
models classify most test samples into the majority class 
when the minority class lacks information. We solved 
this problem by applying random oversampling [60] on 
the minority class (i.e., positive known DTIs) to obtain 
the same number of DTIs as the majority class (nega-
tive unknown DTIs) in the training data. This technique’s 
implementation is done using an imblearn python pack-
age [61].

Boosting learning model
Boosting converts a family of weak learners into strong 
learners by combining weak learners to build ensem-
bles: a more efficient learning algorithm that achieves 
better prediction performance. In boosting algorithms, 
the most common type of weak learner used is decision 
trees. Each decision tree decides what features are essen-
tial for the next model and tries to correct any mistake 
introduced by the previous model in a sequential process. 

Figure 2.5 provides an overview of how the boosting clas-
sifier works.

In DTi2Vec, supervised ML models are utilized based 
on two ensemble classifiers, Adaptive Boosting (Ada-
Boost) and eXtreme Gradient Boosting (XGBoost) clas-
sifiers [62], that are implemented respectively for DTIs 
prediction. AdaBoost is implemented using python 
library scikit-learn [63], and the XGBoost classifier is 
implemented using an optimized distributed gradient 
boosting library, called XGBoost [64]. AdaBoost uses 
decision trees as weak learners. XGBoost uses regres-
sion trees or CART (Classification and Regression 
Trees), which use continuous scores assigned to each leaf 
and then sum them up and provide the final prediction 
instead of having equal weight as in the decision trees.

XGBoost provides parallel tree boosting, which 
enhances performance in terms of speed. For each clas-
sifier, we performed hyperparameter optimization using 
tenfold CV on the training data, then tested the models 
using the test set to determine the set of optimal hyper-
parameters. We selected the model with the best perfor-
mance in terms of AUPR and the corresponding set of 
hyperparameters. However, XGBoost tuned more hyper-
parameters than AdaBoost, such as the weighted regu-
larization parameters (e.g., lambda and alpha), the tree 
construction algorithms, subsample ratio, etc. The most 
critical parameters for both classifiers include the num-
ber and maximum depth of trees, the learning rate, and 
the number of features and the function needed to attain 
a quality split.

The feature embeddings that are learned for each node 
and then generated for each edge (i.e., drug–target pair) 
are the input that is fed into these two boosting classi-
fiers to predict the likelihood of their interactions. We 
constructed the ML prediction model by providing this 
FV X for both positive and negative data with their labels 
Y, as either known DTIs to represent positive labels or 
unknown DTIs that are treated as negative labels. This 
procedure is done for each dataset separately.

Results and discussion
This section describes the evaluation protocols, the 
conducted experiments, and the results of our DTI pre-
diction experiments using FDA_DrugBank and four 
benchmark datasets. We further compared the per-
formance of our model, DTi2Vec, with select state-
of-the-art methods. We also validated several novel 
DTIs predictions using scientific literature and ’reliable’ 
databases.

Evaluation metrics and protocols
Several performance metrics are used in the literature 
to compare the performance of binary classification 
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methods. However, since the datasets we used are highly 
imbalanced, typical accuracy measures are not accurate. 
Thus, the area under the receiver operating characteris-
tic (ROC) curve (AUC) [65] and the area under the pre-
cision-recall curve (AUPR) [65] are standard evaluation 
metrics used in DTIs prediction even though the AUC 
is over-optimistic when dealing with such a problem. 
Moreover, AUPR is considered more informative and 
provides better assessment, in such cases, by separating 
the predicted scores of known interactions from pre-
dicted scores of the unknown interaction. Thus, in our 
study, we mainly focus on the AUPR metric for perfor-
mance evaluation. AUC and AUPR are defined and com-
puted on the testing data. To obtain AUC and AUPR, we 
calculated the true positive rate (TPR) (also referred to as 
recall or sensitivity) and the precision [66], as shown in 
Eqs. 3 and 4, respectively.

The precision is the ability of the classifier not to label 
as positive a sample that is negative (i.e., the ratio of true 
positive (TP) over the total of TP and false positive (FP)). 
The recall is the classifier’s ability to find all the positive 
samples (i.e., the ratio of TP over the total of TP and false 
negative (FN)). We constructed the ROC curve based on 
calculations using different recall and false predictive rate 
(FPR) values of different thresholds, then calculated the 
area under the ROC curve. Similarly, we constructed the 
AUPR curve based on calculations using different preci-
sion and recall values at different cut-offs, then calculated 
the area under this curve. The closer the value of AUC 
and AUPR is to 1, the better performance. We also cal-
culated the error rate (ER) and the relative error rate 
reduction for the best performing model compared to 
the second-best performing model (ΔER), as defined in 
Eqs. 5 and 6, respectively:

where ER1 and ER2 are the error rate of the best and sec-
ond-best methods, respectively. We evaluated the predic-
tion performance of our method by applying a random 
setting. The random setting ensures that all the drugs and 
the targets are seen in the training data, which means 
every target and drug has at least one interaction in the 
training data. To facilitate the performance comparison 
on the benchmark Yamanishi_08 and FDA_DrugBank 
datasets with state-of-the-art methods, we followed 
these methods’ evaluation setup by conducting stratified 

(3)Recall = TPR = TP/(TP + FN )

(4)Precision = TP/(TP + FP)

(5)ER = 1− AUPR

(6)�ER = (ER2 − ER1)/ER2

tenfold CV for each dataset separately. We applied ran-
dom CV setting where random pairs of (drug–target) 
are removed to be in the test data.  Therefore, we ran-
domly split the data into ten subsets in a stratified fashion 
wherein each subset must include the same percentage 
of negative and positive samples (i.e., enforcing the posi-
tive and negative class distributions in each fold to match 
the distribution in the whole data). We used this strati-
fied strategy since the data is imbalanced because using 
the standard CV may result in some subsets without a 
positive label, which affects the performance and causes 
a computational error. We used nine subsets (with posi-
tive and negative samples) in each training stage to fit 
the model and kept the remaining subset, the testing 
data, to evaluate the model. We repeated this process ten 
times using each subset in the testing part. All results are 
reported based on the overall performance by averaging 
the model performance in the 10 test subsets. It is worth 
mentioning that we removed all the edges of the known 
DTIs, from the constructed graph G, in the test data 
before applying the node2vec technique.

Although the random setting, tenfold CV, is the most 
popular and widely used in computational methods, it 
will mimic the real application scenario when there are 
no known interactions for the new drugs. Therefore, we 
apply a new drug setting (i.e., leave drugs out) by split-
ting the data to have only part of the drugs available in 
the training phase, while the other known DTIs in test-
ing contain drugs that have no known DTIs in the train-
ing data. We repeated this process ten times to simulate 
a tenfold CV but by holding new drugs in each round 
for testing and then averaging the results. We evalu-
ated DTi2Vec using the new drug setting, but with the 
same node2vec hyperparameters and XGBoost clas-
sifier hyperparameters (the only classifier used for the 
"new drug" experiments) used for the random setting 
experiments. We also tested different node2vec embed-
ding dimensions and chose the dimension with the best 
results.

We executed all experiments on a Linux Ubuntu 
machine with 112 processors, running some parts of 
our implementation in parallel, such as generating 
embedding using node2vec or in XGBoost classifier. 
We used python 3.7 for the implementation, importing 
some important libraries mentioned above in previous 
sections.

DTi2Vec experiments performance
Table 3 provides the results we obtained for our experi-
ments. For each dataset, separately, DTi2Vec was evalu-
ated in terms of AUPR using two ensemble learning 
classifiers for different sets of FVs learned by applying 



Page 9 of 18Thafar et al. J Cheminform           (2021) 13:71 	

five edge fusion functions. We calculated the standard 
deviations (std) to evaluate each models’ robustness. This 
process allowed us to test our methods’ performance in 
multiple experiments before selecting the model with the 
best-obtained results. All std values reflected robustness 
in the performance of DTi2Vec (i.e., std < 0.05) except 
when using the very small NR dataset.

The results are not entirely consistent among the clas-
sifiers and FVs across all datasets (specifically NR dataset 
due to its excessive small size) (see Table 3). However, it 
shows the XGBoost classifier achieved the best perfor-
mances except when using the NR dataset, with which 
the AdaBoost classifier obtained the best performance. 
The reason we obtained this result may be multifold. 
First, compared to the XGBoost classifier, Adaboost per-
forms worse when including irrelevant features, and the 
noise is high, which may be the likely scenario when deal-
ing with larger datasets. Thus, AdaBoost performed bet-
ter in the smallest dataset NR. XGBoost is more robust 
since it has a regularization parameter that successfully 
reduces variance. Furthermore, the main advantage of 
XGBoost is its speed due to the implementation of paral-
lel processing, making it significantly faster than the Ada-
Boost classifier.

Beyond the differences observed when using AdaBoost 
and XGBoost, we further observed that DTi2Vec’s over-
all performances are drastically higher for the datasets 
grouped based on the target proteins family (i.e., Yamani-
shi_08 datasets) than for the FDA_DrugBank dataset. 
Also, with all FVs, both classifiers delivered better per-
formance when dealing with the larger datasets, IC and 
E, than NR and GPCR (for Yamanishi_08 datasets), sug-
gesting applying node2vec to large graphs generate high 
quality and more meaningful embedding.

The best results obtained for:

1.	 The NR dataset was from FVs generated using the 
WL1 and WL2 functions using AdaBoost,

2.	 The GPCR dataset was generated from FVs using the 
Hadamard function using XGBoost, and

3.	 IC and Enzyme datasets were generated using FVs 
from the Concatenate functions using XGBoost.

Thus, we did not observe any explicit link between 
the functions used to generate FVs and the individual 
performances observed with each dataset. However, 
the Average function obtained the worst performance 
for each dataset using both classifiers. Therefore, for 
any further analysis or optimization, we will exclude 
the average function. Also, using FVs from the Concat-
enate functions seemed to work better with the larger 
datasets (IC and Enzyme). Thus, for the FDA_Drug-
Bank dataset, we expected to obtain the best result 
using the Concatenate function; however, we got bet-
ter results overall for this more complex dataset using 
Hadamard with XGBoost and the second-best using 
the WL1 and WL2 functions with the same classifier. 
Using the AdaBoost classifier achieved lower perfor-
mances than when using XGBoost, but the Hadamard, 
WL1, and WL2 functions performed the same and 
achieved better results overall. The results suggest 
Hadamard, WL1, and WL2 are the more stable func-
tions that produce good quality FVs with the Drug-
Bank dataset. For further analysis and to gain more 
insights into the impact of fusion function choices, we 
calculated the average performance in terms of AUPR 
for each fusion function across all datasets for each 
classifier separately.

Table 3  Performance of DTi2Vec in terms of AUPR using AdaBoost and XGBoost classifiers on each dataset with multiple FVs 
generated by applying different edge representation functions for the random CV setting, and averageAUPR for each fusion function 
across all datasets for each classifier

AUPR in bold font with underline indicate the best result in each dataset, and the italic values between parentheses are the standard deviations

Model Fusion function
(FF)

Yamanishi_08 datasets FDA_DrugBank AVG AUPR per FF

NR GPCR IC E

DTi2Vec
AdaBoost

Concatenate 0.74 (0.145) 0.83 (0.039) 0.97 (0.010) 0.97 (0.01) 0.77 (0.014) 0.856

Hadamard 0.85 (0.127) 0.89 (0.037) 0.93 (0.020) 0.96 (0.007) 0.82 (0.009) 0.89

Average 0.64 (0.132) 0.78 (0.054) 0.90 (0.029) 0.92 (0.007) 0.75 (0.022) 0.798

Weighted L1 0.92 (0.082) 0.84 (0.052) 0.93 (0.017) 0.96 (0.008) 0.82 (0.009) 0.894

Weighted L2 0.92 (0.082) 0.84 (0.054) 0.94 (0.018) 0.96 (0.008) 0.82 (0.008) 0.896
DTi2Vec
XGBoost

Concatenate 0.72 (0.118) 0.87 (0.039) 0.98 (0.0096) 0.98 (0.007) 0.82 (0.011) 0.87

Hadamard 0.81(0.115) 0.90 (0.036) 0.93 (0.017) 0.97 (0.006) 0.88(0.0087) 0.898

Average 0.68 (0.142) 0.81 (0.042) 0.91 (0.024) 0.95 (0.009) 0.78 (0.020) 0.826

Weighted L1 0.88 (0.107) 0.84 (0.055) 0.94 (0.014) 0.97 (0.006) 0.87 (0.009) 0.9

Weighted L2 0.89 (0.103) 0.84 (0.055) 0.94 (0.014) 0.97 (0.006) 0.87 (0.009) 0.902
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With this average, we have a clear vision about the 
best function performance. The average performances 
have the same order across all fusion functions for both 
classifiers, as reflected in the last column in Table  3. 
Overall, Weighted-L2 gives the best performance based 
on average AUPR across all datasets for both classifiers. 
Weighted-L1 (second-best) and Hadamard (third-best) 
obtained average results very close to the best perform-
ing function WL2. The overall results indicate that 
WL2 and WL1 are the more highly stable functions and 
then the Hadamard function.

Furthermore, based on the sparsity ratio for each data-
set (see Table  1) and the results of the Yamanishi_08 
datasets in Table 3, we can see the link between the spar-
sity issue and the model performances. We observe that 
the model performance is low when the sparsity ratio is 
high, as is the case for the NR dataset. On the contrary, 
when the sparsity ratio decreases, the model perfor-
mance increases, as seen in GPCR and Enzyme datasets. 
We can see that although the model has better perfor-
mance using IC, the sparsity ratio is larger than for the 
GPCR dataset. The number of known interactions in the 
IC dataset being much larger than in GPCR, suggests that 
the sparsity ratio and the number of known interactions 
may affect performance. Nonetheless, the overall per-
formance is good even though the sparsity ratio is high 

since DTi2Vec can effectively deal with sparsity problems 
and imbalance issues. Figure 4 illustrates the connection 
between the sparsity ratio and the performances in terms 
of AUPR applied in two different classifiers.

Comparing the performances of DTi2Vec 
and the state‑of‑the‑art methods
Here we compare DTi2Vec’s performance on the 
NR, GPCR, IC, E, and FDA_DrugBank datasets 
with five state-of-the-art methods, which include 
DTiGEMS + [28], TriModel [37], DDR [27], DNLMF 
[43], and NRLMF [45]. We selected these methods to 
give a comprehensive comparison and a broad perspec-
tive of our method prediction performance against the 
most representative and successful network-based DTIs 
prediction methods. Since DTiGEMS+ [28] is more 
recent and is the extension method of DTiGEM [29] that 
achieved better results, we exclude the latter from the 
comparison.

Table  4 shows DTi2Vec outperforms all the state-
of-the-art methods based on it obtaining the highest 
averageAUPR for the four Yemanashi_08 datasets. It 
also obtained the highest averageAUPR for all data-
sets, including the FDA_DrugBank dataset, which is 3% 
higher than the second-best method (DTiGEMS+) in 
the first case and 2% higher than the third-best method 

Fig. 4  A depiction of the datasets’ sparsity ratios and the model performances in terms of AUPR applied in AdaBoost and XGBoost classifiers on 
Hadamard FVs
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(DTiGEMS+) in the second case. It also achieved the 
best averageAUC in the two cases. However, since the 
AUC results are already high in most other methods, 
DTi2Vec only showed a slight improvement in this met-
ric (see Additional file  1: Table  S2), but this is not the 
case for the AUPR performance metric (see Table  4). 
We separated the calculation of averageAUPR to have 
two averages, one across Yamanashi_08 datasets and the 
other across all datasets, which includes the FDA_Drug-
Bank dataset, to show our method’s high performance in 
both cases. We applied this evaluation because most of 
the current methods have not achieved high performance 
using FDA_DrugBank in terms of AUPR, and we show 

our method performs better with and even without the 
FDA_DrugBank dataset. Table 4 shows the best and sec-
ond-best results in each category.

As shown in Fig.  5, DTi2Vec outperformed the other 
state-of-the-art methods in terms of AUPR 0.92, 0.90, 
0.98, 0.98, 0.88 for the NR, GPCR, IC, Enzyme, and 
FDA_DrugBank datasets, respectively. Additional file  1: 
Table  S3 provides each fold result for 10-folds CV with 
the standard deviation of AUPR in 10-folds CV for each 
dataset (to show the stability of the results). For the 
NR, GPCR, IC, and Enzyme datasets, DTi2Vec outper-
formed the second-best method (DTiGEMS+) by 3%, 
4%, 2%, and 1%, respectively. For the FDA_DrugBank 

Table 4  Prediction performances for DTi2Vec and all comparison methods across all benchmark datasets

We rounded off all results to two decimal places. The bold underlined font indicates the best result in each category, while underlined values indicate the second-best 
outcome

Dataset Metric Method

NRLMF DNILMF DDR TriModel DTiGEMS+  DTi2Vec

Yamanishi_08 datasets AvgAUPR 0.80 0.78 0.87 0.88 0.92 0.95
AvgAUC​ 0.95 0.95 0.96 0.98 0.99 1.00

All datasets
(Yamanishi_08 and FDA_DrugBank)

AvgAUPR 0.72 0.69 0.82 0.84 0.86 0.93
AvgAUC​ 0.94 0.95 0.96 0.98 0.99 0.99

FDA_DrugBank
(Hold-out test set)

AUPR 0.34 0.31 0.63 0.66 0.62 0.82
AUC​ 0.93 0.95 0.97 0.99 0.97 0.99

Fig. 5  Comparing the prediction performance of DTi2Vec and state-of-the-art methods in random CV setting (in terms of AUPR with standard 
errors are shown) using the Yamanishi_08 and FDA_DrugBank datasets
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dataset, DTi2Vec outperformed the second-best Tri-
Model by 21%. Furthermore, to show that our results 
are statistically significant compared to the other meth-
ods, we applied the Wilcoxon test [67, 68] (a nonpara-
metric statistical test that compares two paired groups). 
The Wilcoxon test comes in two versions, the Signed 
Rank test or the Rank Sum test, based on the individ-
ual AUPR values for each fold in the tenfold CV (see 
Additional file  1: Table  S3). We demonstrate that the 
DTi2Vec results reflect an increase in the performance 
that is statistically significant compared to the second-
best method (DTiGEMS + , TriModel) with probabil-
ity values (p-values) < 0.05 obtained over GPCR, IC, E, 
and FDA_DrugBank datasets as 0.021, 0.014, 0.001 and 
0.0002, respectively, except for the NR dataset which has 
p-value > 0.05.

We calculated the AUPR score error rate (ER) and the 
relative reduction of the AUPR score error rate of the best 
method (DTi2Vec) relative to the second-best method, 
defined previously in Eqs. 4 and 5, respectively, to show 
DTi2Vec’s performance improvement and its robust-
ness. Using obtained AUPR of tenfold CV experiments, 
the ER = 8%, 10%, 2%, 2%, and 12% for NR, GPCR, IC, E, 
and FDA_DrugBank, respectively. For predicting DTIs 
in NR, GPCR, IC, and Enzyme, our method DTi2Vec 
significantly reduces AUPR error relative to the next 
best method (DTiGEMS+) by 33%, 29%, 50%, and 33%, 
respectively. For the FDA_DrugBank dataset, the rela-
tive reduction of the AUPR error obtained by DTi2Vec 
relative to the next best method (TriModel) is 63%. Our 
method, DTi2Vec, consistently reduced the relative error 
rate compared to the state-of-the-art methods.

Nonetheless, we performed one more experiment 
using hold-out test data to demonstrate DTi2Vec’s pre-
diction reliability. We used the FDA_DrugBank dataset 
and split the data into three sets for training, validation, 
and testing. First, we initialized the hyperparameter val-
ues using the values obtained in the optimization process 
for the first experiment. Then we generated node2vec 
embeddings and used these embeddings to train the 
model. Next, we evaluated DTi2Vec on the validation set. 
We repeated this process several times to test random 
hyperparameter values for tuning, similar to Randomized 
Search. Finally, we generated embeddings using the opti-
mized hyperparameter set and evaluated the model pre-
diction performance on the test set. Using the random 
prediction setting, DTi2Vec achieves the highest AUPR 
on the hold-out test data compared to state-of-the-art 
methods (Table  4). Relative to the second-best method 
(TriModel), DTi2Vec reduces the AUPR error rate for the 
FDA_DrugBank dataset by 47%.

For the other experimental setting, when DTi2Vec pre-
dicted interactions for the new drugs, we obtained the 

results using all sets of FVs generated using the fusion 
functions except for the AVG function that always per-
formed the worst, and we provided these results in the 
Additional file  1: Table  S4. In addition, we compared 
the results with the same state-of-the-art methods but 
excluding DTiGEMS+ since it does not handle new drug 
settings. The best-obtained results when predicting new 
drugs are reflected in Fig. 6, which shows DTi2Vec out-
performed all the state-of-the-art methods based on 
average AUPR across all datasets. Moreover, the sig-
nificantly higher performance compared to the second-
best (TriModel) is associated with the larger datasets, 
IC (AUPR 12%), Enzyme (AUPR 15%), and DrugBank 
(AUPR 26%). The new drug setting results for all the 
state-of-the-art methods are taken from [37].

The last evaluation process we performed to show the 
practicality of the predictive power of DTi2Vec in real 
scenarios by establishing the ability of our model to repo-
sition a specific drug other than a hub drug node. This 
ability is important as hub nodes will likely not be the 
subject of drug research and development as they are 
usually well-studied. We apply this assessment: first, we 
calculate the average precision for DTI prediction at each 
drug. Second, we average this value (i.e., the average pre-
cision) over 10-folds. Finally, we calculate the mean aver-
age precision (MAP) [69] as the mean of 10-folds average 
precision for each drug across all drug nodes in the 
graph. We show that DTi2Vec achieves high MAP values, 
over NR, GPCR, IC, E, and FDA_DrugBank datasets as 
0.96, 0.82, 0.91, 0.91, and 0.72 respectively. We conclude 
that the hub nodes do not likely drive our model’s overall 
performance from these results.

In summary and based on all reported results, DTi2Vec 
outperformed all state-of-the-art methods in two inde-
pendent datasets: Yamanashi_08 datasets and the FDA_
DrugBank dataset and proved its general applicability, 
and declared its effectiveness in the prediction of DTIs.

Novel DTI prediction and validation
To further demonstrate and analyze the capability of 
DTi2Vec, we performed a complimentary evaluation of 
its ability to predict new DTIs for each dataset and then 
validate the DTIs. To predict the new DTIs, we used all 
positive samples to train the model and divided the nega-
tive samples into training and test sets. The predicted 
DTIs (unknown in the original data but predicted to be 
positive) with high scores in the testing data are ranked 
based on their scores. We report the top 5 ranked DTI 
for each dataset separately. We manually confirmed 
those novel candidate DTIs using scientific literature 
and biomedical databases, including DrugBank [70], 
KEGG [47], ChEMBL [71], PubChem [72], Compara-
tive Toxicogenomics Database (CTD) [73], MATADOR 
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and SuperTarget [50], and Uniprot knowledgebase [74]. 
Table 5 shows the top 5 ranked novel DTIs for Yamani-
shi_08 and FDA_DrugBank datasets with the validation 
evidence. When we did not find any evidence, we marked 
the evidence as unknown since there is no confirmation 
that this interaction exists. We confirmed 21 out of 25 
(84%) of the newly predicted DTIs as known interaction 
(i.e., this includes the top 5 ranked DTI for each of the 
five datasets used). Here, it is important to note that the 
DTIs data was last updated in 2008; this may be why we 
managed to confirm so many of the novel DTIs.

Key strength of DTi2Vec
This section highlights some reasons for improvements 
in DTi2Vec performance compared to the current state-
of-the-art methods and how our results show high prom-
ise in identifying novel DTIs.

The advantages of DTi2Vec over DTiGEMS+ 
DTi2Vec is a simple yet effective method that achieves 
less error-prone results using one type of drug similar-
ity and target/protein similarity augmented to DTIs. In 
contrast to other graph-based methods such as DDR and 
DTiGEMS+ , it leverages from the full weighted hetero-
geneous graph G, without the complexity of selecting and 
integrating multiple kernels (i.e., similarities) that require 
much effort and time. However, it can utilize differ-
ent types of similarity that can be augmented to the full 
graph G and then follow the same steps.

DTi2Vec has several advantages over our previous 
method (DTiGEMS+ , the second-best method) using 
the Yamanishi_08 datasets, even though they have some 
similarities in the feature extraction pipeline, including 
applying the node2vec technique. DTi2Vec has an advan-
tage over DTiGEMS+ in five major points:

1.	 DTi2Vec performed much better in the most exten-
sive dataset DrugBank, by increasing the prediction 
performance by 27% compared to DTiGEMS+ in 
terms of AUPR.

2.	 DTi2Vec has a more straightforward pipeline with 
fewer steps but is more effective, faster, and require 
less memory than DTiGEMS+ mainly because:

a)	 DTi2Vec constructs just one graph to auto-gen-
erate features for each drug–target edge, while 
DTiGEMS + constructed three graphs for the hand-
crafted feature extraction for each drug–target pair.

b)	 DTi2Vec utilized single drug–drug similarity and tar-
get–target similarity while DTiGEMS + calculated 
and utilized multiple drug–drug and target–target 
similarities then applied similarity selection and inte-
gration. All these steps increase the time and mem-
ory complexities.

3.	 Both DTi2Vec and DTiGEMS + applied node2vec 
on the whole heterogeneous DTIs network, but 
they used the embeddings for each node in different 
ways. The DTi2Vec method takes advantage of the 
automatically learned feature representations in low 

Fig. 6  Comparing the prediction performance of DTi2Vec and other state-of-the-art methods when using new drug settings (in terms of AUPR 
using the Yamanishi_08 and FDA_DrugBank datasets, and the average AUPR across all datasets)
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dimensional space for each node. It directly applies 
the fusion function to create features for each drug–
target pair. On the other hand, DTiGEMS + calcu-
lated the cosine similarity for each drug–drug and 

target–target pair separately to formulate a new het-
erogeneous network, from which the path score fea-
tures are obtained, resulting in losing some valuable 
features directly related to some drug–target edges.

Table 5  The highly ranked (top-5) candidate novel DTIs obtained by DTi2Vec for each dataset verified with evidence from databases 
and published literature

C ChEMBL, CTD Comparative toxicogenomics database, DB DrugBank, M MATADOR, KG KEGG, DG chemical Drug Group from KEGG, PMID PubMed, UP UniProt 
Knowledgebase

# DrugID Drug name TargetID Target name Validation evidence

NR dataset (KEGG IDs)

1 D00690 Mometasone furoate hsa2908 NR3C1 (Glucocorticoid receptor) PMID:8439518

2 D00075 Testosterone hsa5241 PGR (Progesterone Receptor) PMID: 23229004
PMID: 23933754
C: 386630

3 D00554 Ethinyl estradiol hsa2100 ESR2 (Estrogen Receptor 2) CTD: D004997

4 D00327 Fluoxymesterone hsa5241 PGR (Progesterone Receptor) Unknown

5 D00348 Isotretinoin hsa5915 RARB (Retinoic acid receptor beta) KG: D00348- DG01604, C

GPCR dataset (KEGG IDs)

1 D05792 Salmeterol hsa153 ADRB1 (adrenoceptor beta 1) Unknown

2 D04625 Isoetharine hsa154 ADRB2 (Adrenoceptor Alpha 1B) PMID:21948594

3 D02358 Metoprolol hsa154 ADRB2 (Adrenoceptor Alpha 1B) DB:DB00264

4 D02250 Octreotide acetate hsa6751 SSTR1 (Somatostatin Receptor 1) CTD: D015282
PMID:16438887

5 D01712 Theophylline sodium acetate hsa136 ADORA2B (adenosine A2b receptor) KG: D01712

IC dataset (KEGG IDs)

1 D02098 Proparacaine hydrochloride hsa8645 KCNK5 (Potassium Two Pore Domain Channel Subfamily K 
Member 5)

Unknown

2 D00438 Nimodipine hsa779 CACNA1S (Calcium Voltage-Gated Channel Subunit 
Alpha1S)

KG: D00438
DB:DB00393

3 D00649 Amiloride hydrochloride hsa8911 CACNA1I (Calcium Voltage-Gated Channel Subunit Alpha1 I) M: Amiloride (direct)

4 D00495 Paramethadione hsa8913 CACNA1G (Voltage-dependent T-type calcium channel 
subunit alpha-1G)

KG: D00495
DB:DB00617(indirect)

5 D03365 Nicotine hsa1137 CHRNA4 (Cholinergic Receptor Nicotinic Alpha 4 Subunit) PMID: 17590520
KG: D03365
DB: DB00184

Enzyme dataset (KEGG IDs)

1 D00542 Halothane hsa1571 CYP2E1 (Cytochrome P450 2E1) PMID:19442086

2 D00437 Nifedipine hsa1559 CYP2C9 (Cytochrome P450 Family 2 Subfamily C Member 9) CTD: D009543
PMID: 9929518

3 D00139 Methoxsalen hsa1543 CYP1A1(Cytochrome P450 1A1) PMID: 7702611

4 D00574 Aminoglutethimide hsa1589 CYP21A2 (Cytochrome P450 Family 21 Subfamily A Member 
2)

M: Aminoglutethimide (indirect)
PMID: 8201961

5 D00410 Metyrapone hsa1583 CYP11A1 (Cytochrome P450 Family 11 Subfamily A Member 
1)

CTD: D008797

FDA_DrugBank dataset (DrugBank IDs)

1 DB00801 Halazepam Q9UN88 GABRQ (Gamma-aminobutyric acid receptor subunit theta) DB, UP,
C:3885575
KG: D00338

2 DB01012 Cinacalcet O15530 PDPK1(3-phosphoinositide-dependent protein kinase 1) Unknown

3 DB00424 Hyoscyamine P08912 CHRM5 (Muscarinic acetylcholine receptor M5) KG: D00147- DG00053

4 DB01589 Quazepam P47870 GABRB2 (gamma-aminobutyric acid type A receptor subunit 
beta2)

KG: D00457

5 DB00546 Adinazolam Q9UN88 GABRQ (gamma-aminobutyric acid type A receptor subunit 
theta)

DB, KG: D02770 -DG00911
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4.	 DTi2Vec FVs are the drug–target edge embeddings, 
while DTiGEMS + FVs are the sum and max path-
scores for each drug–target edge under six path 
structures. This difference can lead to the best char-
acteristic of DTi2Vec is that the FVs are not sparse 
contrary to the situation in DTiGEMS + , where the 
FVs can be sparse. The reason is that DTi2Vec lever-
ages the node2vec embeddings to directly construct 
edge representation using fusion function, resulting 
in converting the sparse graph data into low dimen-
sional vector spaces used as features. In contrast, 
DTiGEMS + used node2vec embeddings to calculate 
new cosine similarity and used these similarities to 
construct a new heterogeneous graph to obtain path 
score features. Although applying graph mining to 
extract path score features between each drug–target 
pair provides meaningful features for the classifier 
in DTiGEMS + , it can suffer from the sparsity issue, 
specifically when the number of known DTIs is lim-
ited, which affects the classifier’s performance.

5.	 The last advantage of DTi2Vec over DTiGEMS is that 
DTi2Vec can handle the newDrug setting by predict-
ing novel interactions for new drugs, and it achieved 
good results.

Effectiveness of feature representation used 
with the heterogeneous network
Most of the prior network-based methods have 
focused on a homogeneous network (by using sepa-
rately the drug similarity graph and target similar-
ity graph). Each node obtains the features from the 
corresponding subgraph and then predicts the edge 
connecting these two graphs by inferring DTI. Con-
sidering only the homogenous graph might result in 
losing some informative links and meaningful features 
that enhance the DTIs prediction accuracy. DTi2Vec 
takes advantage of combining two techniques of 
working on a complete heterogeneous DTIs graph 
with graph embedding (i.e., representation learning) 
that provides a powerful graph analytical approach 
to capture meaningful and rich features. Specifically, 
we constructed the full, rich, heterogeneous DTIs net-
work augmented with KNN drug similarity and tar-
gets similarity graphs. We then apply the node2vec 
model to learn an embedding (i.e., feature representa-
tion) for each node (drug and target). These generated 
representations incorporate the node topological con-
text and structural information so that similar nodes 
will have similar numerical representations. Node 

representations are learned via the Skip-gram model 
by optimizing the likelihood objective using stochas-
tic gradient descent (SGD). Then, an efficient repre-
sentation is generated for each drug–target edge using 
several fusion functions.

Efficient performance in large scale data
Many recent DTI prediction methods have performed 
well in terms of AUPR evaluation metric using Yamani-
shi_8 datasets, but none have achieved good AUPR using 
the approved FDA_DrugBank dataset. The possible rea-
son for this may be because the previous methods did 
not consider the feature representation for drug–target 
edges (and did not distinguish between the positive and 
negative edges (i.e., unknown interaction)). DTi2Vec 
overcame this limitation and achieved improved predic-
tive performance by obtaining high AUPR (0.88) in the 
FDA_DrugBank dataset.

Effectiveness of the gradient boosting classifier
Although DL using deep neural network (DNN) dem-
onstrated its efficiency in prediction problems and 
outperformed most other ML classifiers, we believe 
that DNN doesn’t perform well in the classification 
stage using the FVs of all drug–target pairs in our 
work. We tested our hypothesis by applying a sequen-
tial DL model in FVs for each dataset, and the results 
were less than the results obtained using XGBoost. 
The result suggests DNN works better dealing with 
unstructured data such as images, text (e.g., protein 
sequences or drug SMILES in DTIs prediction prob-
lem) and when using very large data, which is not 
the case for the Yamanishi_08 datasets. At the same 
time, ensemble-based algorithms (including boost-
ing classifiers: AdaBoost and XGBoost) perform bet-
ter in structured/tabular data. We selected XGBoost 
as the primary classifier in our work, a scalable and 
accurate gradient boosting machine. XGBoost classi-
fier was developed and optimized for overall perfor-
mance and computational speed. It has demonstrated 
the ability to push the boundaries of computing power 
for boosted trees algorithms. Furthermore, we com-
pare XGBoost to several ML ensemble classifiers and 
the forward neural network classifier (FNN) but did 
not include the results in this manuscript since Ada-
Boost and XGBoost outperformed them all. Several 
of the previous DTIs prediction methods have applied 
different versions of the ensemble/boosting classifiers, 
but none of them leverage the advantage of using the 
XGBoost classifier.
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Conclusion
This work has developed an efficient computational 
method that solved DTI identification as a link predic-
tion problem in heterogeneous networks. This method, 
DTi2Vec, takes advantage of the heterogeneous network 
to infer the interaction instead of separately using each 
homogeneous graph. It integrated the drug similarity 
graph, target similarity graph, and known DTIs graph to 
formulate the complete weighted heterogeneous graph 
G(V, E), a more informative network to enhance the pre-
diction performance. The Node2vec model was applied 
to this graph G, to generate efficient feature representa-
tions for each node and then learn feature representation 
for each drug–target edge using different fusion func-
tions. These features proved to be very useful and inform-
ative, capturing all needed information from the graph 
for DTI prediction. It is generated automatically by omit-
ting time-consuming feature engineering steps that can 
potentially affect prediction accuracy. We fed the FVs to 
two ensemble classifiers for a better comparison of pre-
diction performance. DTi2Vec significantly increases the 
prediction performance compared to five state-of-the-art 
methods using Yamanishi_08 and FDA_DrugBank data-
sets and multiple evaluation metrics, which indicates 
the robustness of DTi2Vec. Furthermore, DTi2Vec dem-
onstrates its efficiency in the reliability of results (based 
on the AUPR), and predicting new DTIs, validated using 
several databases and published literature.

One limitation worth mentioning is that DTi2Vec can-
not predict the interaction of new targets or newDrug-
newTarget pairs. We intend to overcome this limitation 
in future work by extending DTi2Vec capabilities to deal 
with other settings, including new target settings or new-
Drug-newTarget pairs, beyond the commonly applied 
random setting. As future work, we also plan to further 
improve the performance by applying and utilizing dif-
ferent representation learning algorithms (i.e., graph 
embedding techniques) and using different types of simi-
larity of drug-drug and target-target that may be more 
informative. We also want to use our model to develop 
a real-life case study related to drug repositioning in 
cancer and experimentally validate our model’s selected 
predictions to demonstrate our results’ clinical relevance. 
Another extension of our method will be formulating the 
task as a regression model to predict the drugs and target 
binding ability that reflects more meaningful interaction. 
The last significant extension is that our network-based 
method is suitable for DTIs prediction, but it can be gen-
eralized to any network-based problem in biomedical 
domains such as drug-drug interactions network, drug-
disease indication network, protein-disease association 
network, and others.
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